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Abstract

A Computer Design Language (CDL) has been developed for

facilitating design automation of digital computers. When

the functional organizatl.on and sequential operation of a

digital computer are conceived and specified by the CDL, this

CDL description is called a Macro design. The macro design

is highly descriptive in computer elements. it describes

precisely and concisely what the computer is expected to do

functionally step by step. It is then punched into a deck of

cards. A CDL simulator accepts the deck, simulates the

design, checks out the operations and outputs the contents

of selected registers and memory words at every clock, every

sequence or every instruction.

The'macro design is then translated into a Micro design

which is a set of boolean equations. This translation is

called Boolean translation. A boolean translator accepts the

CDL deck and translates the macro design into a micro design.

The micro design describes interconnections of gates, flip-

flops, switches and the like as is done in a conventional

logic design. The micro design is again punched on a deck

of cards. The CDL simulator can also simulate and check out
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the micro design. The set of Boolean equations can be trans-

lated by a digital computer into logic diagrams which may then

be implemented by modules of logic circuits and memories.

Alternatively, the set of boolean equations can be translated

by a digital computer into a set of logic matrices which in

turn may be implemented by large scale integration of logic

circuits and memories. A change in the design as a result of

evaluation of the implementatior. is conveniently made in the

macro design with subsequent s,?.mulation and translation done

automatically. Macro design, micro design, logic diagrams

and logic matrices are illustrated by examples.
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Design Automation by the Computer Design Lana,- uage

Automation, according to Webster's distionary, is the

technique of making a process (or system) automatic. Design

automation may simply be defined as the technique of making

a design process (or a design system) automatic. The design

process of a digital computer may include functional design,

logic design, circuit design, wiring design, test design or

LSI (large-scale integration) design and so forth. Since

the advent of the digital computer, the pace of automation

is quickened. It is no surprise that much effort (13) has

been spent in automating various aspects of the design

process of a digital computer. This paper presents the

idea of design automation of a digital computer by a par-

Indeed, itticular approach in using a digital computer.

is an application of computer aided design.

ir
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1. Computer Design Automation

The approach of computer design automation presented in

this paper is shown by the block diagram in Figure 1. It

begins by describing and specifying the computer elements,

micro-operations, control sequences and, if any, microprograms

in a highly descriptive yet precise and concise language.

Such a description and specification is called a macro design.

When a macro design is ready, a computer program called the

CDL simulator is employed to simulate the design and shows the

operations of the designed computer, sequence by sequence and

step by step, as a means of checking out the macro design.

Similar to the conventional logic design, the micro design

is represented by a set of boolean equations. A micro design

F

describes how the computer is interconnected from the com-

ponents such as gates, flipflops and switches, but a macro design

specifies what the computer is expected to do functionally.

The micro design can be obtained from the macro design by

translation. A computer program called the boolean translator

translates the statements of a macro design into the equations

of a micro design. When a micro design is ready, it can again

be simulated by the above mentioned CDL simulator to check out

the micro design.

}	 r,r
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The Boolean equations can be translated into a set of

logic diagrams by a digital computer. The design may then

be implemented by wiring the logic circuits, modules and

memories. ,alternatively, the boolean equations can be trans-

lated into a set of logic matrices, and the computer may then

be implemented by large-scale integration of logic circuits

and memories. in either approach, the cost of theimplementa-

tion may then be evaluated.

Should a change in the design be needed as a result of

cost and other evaluations, the change is made in the macro

design with subsequent simulations and translations done

automatically. This is the feedback which forms the design

shown in Figure 1. The advantage of such an automatic

design process, like the others, relieves the design engineer

of many tedious and repetitive details and eliminates possible

inconsistencies and errors.

In the subsequent sections, a sample design problem is

chosen. The details of various steps of the design automation

are then shown in order to .illustrate this particular, approach

of computer design automation.
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2. A Design Problem

In oraer to show some details of macro design and micro

design, a simple design problem is chosen. This problem is to

design a serial compl.ementer, This complementer serially

complements every bit of a binary word stored in a shift

register.

Figure 2 shows register A..i.n which the binary word is

stored:. When register A is being shafted one bit to the

right, the contents of 'bait A(4) at the right end of the

register are complemented by a logical.N- T block and then

transferred to bit p (1) at the left end of the register.

After complementing and right shifting in this manner four

times, each bit of register A is complemented. An example

is shown in Figure 2. Register A initially stores binary

word 1111. After the first complement-shift operation, it

becomes 0111. it next becomes 0011, thon 0001, and finally

0000 which is the l's complement of 1111.

I
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Fig. 2	 Design Problem--:A Serial Complementer

Register A

A (l ) I A ( 2 ) 1 A(3) I A(4)
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3. Macro Design and Simulation

The designer of digital computers has long had a language

problem. The minute details of the design, whether in diagrams

or in equations, obscure the entire logic description of the

computer. A similar situation once existed in programming.

A program written in machine language or assembly language is

too detailed to be clearly comprehended and, as a result,

programming languages at higher levels have been developed.

Similarly, the computer designer can profit from a design

language of higher level.

3.1 Computer Design Language

A number of higher level languages have been reported

during recent years ( 1-13, 16-19) . one of them, called Com-

puter design language (CDL), has been developed to describe 	
A

the computes organization and operation (7) . This language

is highly descriptive. It identifies major computer elements,

such as registers, decoders, switches, memories and terminals.

It is precise, concise and highly expressive at the bit level,
t	

,

work level and bit-array level. It can express timing signals,

control commands, and serial and parallel register transfers.

j
It allows special operators and subcontrol sequences to be

defined by the user. When a digital computer is specified

I
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by the CDL, the computer elements, the micro-operations, the

sequences and the micro-program (if any) are all described.

3.2 Configuration

As an example of describing computer elements by the

Computer Design Language, consider the configuration„ shown

in Figure 3 for the serial complementer. Register A is the

shift register where the binary word is stored. Counter C

counts the niz0ber of times of shifting. Control Register T

and clock P generate the control signals T(i)*P. Switch

START actuates the necessary operations for initializing the

sequence, and light FINI indicates the completion of the

operation. This configuration can be described by the follow-}

ing statements of the Computer Design Language,

Register,	 A(1-4),, 	 $shift register	 (1)

T(1-3),, 	$control register

C(3-1),, 	 $counter

Switch	 START(ON)	 $start switch

Light,	 FINI(ON,OFF)	 $completion indicator

Clock,	 P	 $clock signal

The first statement is a register statement which declares the

4-bit register A. the 4-bit register T, and the s-bit register C.



Counter

C(3)	 C(2)	 C(l)

T(1)*P Control
T(2)*P signals
T(3 *P 8

Control register

8

complementer

A(1) A(2) A(3)	 AM NOT

I

Light
Switch

'c
START

ON	 OFF	 ON

G Fig. 3	 Configuration of a Serial Complementer
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The second statement is a switch statement which declares a

5	 single-position switch START. The third statement is a

light statement which declares light FINI with two light con-

ditions ON and OFF. The last statement declares a single-

phase clock whose pulses are called P. Since these statements
i

declare the computer elements, they are called declaration

statements.

3,3 Sequence Chart

The sequential operations of the complementer are described

by the sequence chart shown in Figµre 4. As shown, when

switch START is turned to the ON position, counter C is reset

to 0 and ,light FINI is set to the OFF condition. Then, the

complementing and right-shifting operation is performed and

at the same time counter C is incremented by 1. Counter C

is next tested for a value of 4. If the value is not 4, the

complementing and right-shifting operation and counter-

incrementing operation are repeated. Counter C is again

tested. This process continues on until counter C reaches a

value of 4; by then, each bit of register A is complemented,

Light FINI is then turned to the ON condition and the sequence

is terminated. Notice the loop in the sequence chart.

^r
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START(ON)

C,*--O

FINI*--OFF

AE--A(4)'-A(1-3)

CE--countup D

f
CCm44

To

FINI4-ON

End

Fig. 4 Sequence chart of the Serial Complement Sequence
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The following statements,

C<--O (2)

F INI4--OFF
is

AE--A(4) '-A(1-3)

i	 C4--countup C

FIN14--0N

are taken from the chart in Figure 4. 	 They are called micro-

statements.	 Each micro-statement specifies a micro-operation.

'A micro-operationop	 on is an elementary, functional operation that

is physically built in a digital computer. 	 Since a micro-

performs only a simple function, a more complexUl

IA! function can be obtained by ordering a number of micro-operations

k into a sequence.	 The complementer is obtained by a sequence.

The sequence chart describes the operations of the sequence.
T^!

Similar to the flow chart, the sequence chart describes an 	 ^k

algorithm.	 Likewise, similar to the software, the hardware

also implements an algorithm though their restraints are
ti

different.

3.4	 Statement Description

r The sequencing in the sequence chart of Figure 4 is

; represented bylines.	 In the physical implementation., the

s
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sequencing is activated by a control sequence. An example is

the control sequence generated by register T. The contents

of register T are initially set to 100 2 by switch START; this

makes the output terminal of bit T(1) as the command signal

for the first step of operation. During the first step, the

contents of register T are circulated one bit to the right;

this makes the output terminal of bit T(2) as the command

signal for the second step. If the contents of register T

are again circulated during the second step, the output

terminal of bit T(3) becomes the command signal for the

third step. Thus, by circulating the contents of register T,

the control sequence for a three-step sequence is generated.

By applying this control sequence to the sequence in

Figure 4, the complement sequence can be described by the

following statements of the Computer Design language.

/START (ON) / CE--O,	 (3)

FINI<--OFF,

TE--100,

/T(1) *P/	 AE--A(4) '-A(1-3),

CE--countup C,

T (1-2) 4•-01
IE

/T (2) *P/	 IF (C=4) THEN (T (2, 3) E--ol) ELSE (T (1, 2) E--10)

/T(3)*P/	 FIN14--ON

END
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The above statements are called execution statements except

the last statement which is the end statement. Each execu-

tion statement consists of one or more micro-statements and

a label. The label, the quantity enclosed by a pair of slashes,

represents the control. signal. The label, is a logical quantity.

When its value is true, the associated micro-statements are

executed; otherwise, they are ignored. This is the manner

that execution of parallel micro-operations is described.

The following statements,

T4- -100,	 (4)

T(1,2)4--01,

T(2,3) <--01,

T(1,, 2)<--10

taken from the above statements (3), are also micro-statements

which circulate the contents of register T or set the contents

of register T to a particular value. The statement.

IF ( C=4) THEN (T (2, 3) <--01) ELSE (T(1,,2)<-- -10) 	 S (5)

is'--ealled a conditional micro-statement. The above conditional

micro-statement.,is of the IF-THEN-ELSE type and can be replaced

R

r,
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by the two conditional micro-statements of the IF--THEN type

as shown below,

IF (C=4) THEN (T(2,,3)<--Ol) ,	 (G)

IF (CA) THEN (T (l, 2) 410)

the conditional micro-statement (5) represents the test block

in the sequence chart in Figure 4.

The declaration statements in statements (1) and the

executioh statements in statements (3) completely and precisely

specify the complement sequence and thus constitute the macro

design of the serial complementer.

3.5 Macro Simulation

A CDL simulator has been developed. It consists of two

parts, a translator program and a simulator program. The

translator program accepts a description in the CDL punched

on a deck of cards, translates it into a program called

"polish string", and establishes varous tables and a storage

array. The simulator program consists of five parts; loader,

output routine, switch routine, simulate routine and reset

routine. The loader accepts test data from punched cards and

stores them into the simulated memories and registers of the

CDL described computer. The output routine handles the
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printout of the contents of the chosen registers and the

memory words and the positions of the switches during the

simulation. The switch routine simulates the operation of

manual switches. The simulate routine executes the Polish

String in an interpretive Mode. The reset routine reinitializes

the simulator program for a next simulation run.

Execution of the Polish String by the simulate routine is

carried out in a control loop, called Label Cy_ cle. During a

Label, Cycle, the following processing is performed. (a) If a

manual switch operation has occurred, the micro-statements of

the execution statement with the switch as the label or a part

of are executed. (b) Labels of all execution statements are

evaluated. Those labels which are activated are noted.

Activated labels are those whose logical values are 1. (c) The

micro-statements of those execution statements with the activated.

labels are executed. (d) Condition for simulation termination

is checked. if the condition is fulfilled, the run is terminated;

otherwise, it proceeds to the next label cycle.

Version 1 of the CDL simulator has been available since

the Summer of 1967 this version allows a limited set of the
e

Computer Design Language (15). Version 2 has been available

since February, 1968; this version implements most of the
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features of the Language (20) . Version 2 was furt;1er improved

to become version 3. Version 3 has been available since the

Fall of 1958. All the three versions were written in

Fortran IV with several routines in assembly language MAP

for the IBM 7090 family of computers.

The simulation deck ccnsists of three types of punched

cards: system control cards, CDL statement cards, and

simulation control cards. An example of a simulation deck

is shown in Figure 5. The system control cards are those for

the user to communicate with the operating system of a com-

puter installation. The first ten and the last three cards

in Figure 5 are the system control cards. The CDL statement

cards constitute the description of a sequence or a computer

to be simulated. The 13th through 30th cards in Figure 5

are the CAL statement cards. The simulation control cards

are those for the user to communicate with the CDL Simulator.

The 11th, 12th, 31st through 40th cards in Figure 5 are the

simulation cards. There are eight types of simulation control

cards hea6ing	 P, load, output * switch, simulate, reset data

and call-simulator-program.

The statements (1) and (3) which describe the serial

complement sequence are punched into a deck of cards shown	 4`,

	

. 	 r
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in Figure 5 with the following exceptions. Light FINI and

operator countup are replaced respectively by operator COUNT

and register FINI. And Comment statements (,hose with letter

C in column 1) are added for better readability. As men-

tioned, the 31st through 40th cards are simulation control

cards. The 31st $SIMULATE card calls the simulator program.

ar

	 The 32nd through 36th cards are those simulation control

cards for the first simulation run. The 32nd *OUTPUT card

specifies that the contents of registers A, T, C and FINI

kt

	 be printed out at every clock cycle. The 33rd *SWITCH card

simulates the ON position of the START switch. The 34th *LOAD

card loads the octal number on the 35th data card into
}

register A. The 36th *SIM card specifies that simulation

run be terminated at the end of 30 Label, cycles or when three

consecutive Label Cycles with a group of repeatedly activated

labels occur. The 37th through 40th cards are those for the

second simulation run. The 37th *RESET card reinitializes the

simulator program. The 38th through 40th cards are similar

to those explained above.

The output of the second simulation run of the description

in Figure 5 is shown in Figure 6 where the label cycle becomes

the clock cycle. Notice that the initial value of register

i
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Swl TC1 4 	INTFRRUPT
MART	 = C 

A	 ..9905 T	 =	 9.0..4	 C	 —	 .000on

I.Ab	 L	 CYCLE	 1 TRUE LABELS
/T( 1)*P/

A	 -	 r • • . 0 2 t
T	 -	 • . 0 • 0 2 	C	 . • . • . 1

LABEL CYCLE	 2 TRUE LABELS
/T(2)*P/

A	 =	 ...•;12 T	 =	 .:0o.4	 C	 —	 0000.1

LABEL U,"'LE	 3 TRUF LABELS
/T(1)*P/

AA
W t, 

2.1
1W	 i'	 ,,NN ,̂y
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yy ,

.
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LABEL CYCLE	 4 TRUE LABELS
/T(2)*P/

A	 =	 ....21 =	 900604	 C	 =	 .....2

LAbl L CYCLE	 5 TRUE LABELS
/T(1)*P/

A	 •00010 T	 =	 ....92	 C	 —	 ..0..3

LABEL CYCLE	 6 TRUE LABELS
/T(2)*P/

A	 =	 400610 T	 =	 .9.9.4	 C	 =	 0000%3

LABEL CYCLE	 7 TRUE LABELS
/T(1)*P/—

A —	 ....24
_

T	 0..0.2	 C	 oo9..4

LABEL CYCLE	 8 TRUE LABELS
/T(2)*P/

A	 =	 ....24 T	 -	 ..9..4	 C	 =	 ..0094

LABEL CYCLE	 9 TRUE LABELS
/Tl1)*P/

A =	 ....32 T	 =	 ....02	 C	 =	 ..o.05

LABEL CYCLE	 10 TRUE LABELS
/T(2)*P/

A =	 ..ss32 T	 =	 0090.1	 C	 =	 .... . 5

LABEL CYCLE	 11 TRUE LABELS
/T(3)*P/

s A =	 0.o.32 T	 =	 0.0.01	 C	 —	 00..05

LABEL CYCLE	 12 TRUE LABELS
/T13)*P/

A =	 00o.32 T	 000.01	 C 	 ..ipso5

LABEL CYCLE	 13 TRUE LABELS
T ( 3 A*P/

t A =	 ..o.32 T	 =	 ..9..1	 C	 =	 .000.5

a	 E..
Fig. 6, Output of the simulation

tom.'	 •- k	 a	 a  -	 —
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FINNI = .00000

CLUCK TIME =

FINT = 00600 0

CLOCK TIME =

FINI = 000000

CLOCK TIME =

FINI = .....iJ

CLOCK TIME

FINI = 000600

CLOCK TIME =

FINI = .....0

CLOCK TIME =

FINI = 000004

CLOCK TIME =

FINI = *00000

CLOCK TIME =

FINI. = 000000

CLOCK TIME =

FINI = .09000

CLOCK TIME =

FINI = 0.0000

CLOCK TIME =

FINI = 0000.1

CLOCK TIME

F INI = 0.0001

CLOCK TIME =

FINI = .....1
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(A=058) is the value on the data card of the second simula-

tion run, and the final value of register A (A=32 8) is shown

in the last line in Figure 6. The simulated result is correct

because octal number 32 is the 1's complement of octal number 05.

J
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4. Micro Design and Simulation

Micro design is the conventional logic design described

by a set of boolean equations. The micro design specifies

how the gates, flipflops, switches and the "like are inter-

connected. Because of its minute details, the macro design is

difficult for anyone to understand and often fraught with errors.

Since the macro design completely and precisely specifies

the functional organization and sequential operations, it

would be most desirable to translate the macro design into a

micro design by the digital computer. Such a translator is

calleJ a boolean translator. A boolean translator which

accepts a design in the Computer Design Language is partially

available (20) . As an example, the macro design of the com-

plement sequence described in statements (1) and (3) is now

f	 '
translated into a micro design. Assume that RS f lipflops are

chosen for the registers.

4.1 State Equations

The micro design consists of state equations and input

equations.' The state equations describe those storage elements

that are translated from the register and light statements.

The input equations describe the logic networks. The register

and light statements of the complement sequence are,
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Register,	 A(1-4) , T(1-3) , C(3-1)
	

}	 (7)

Light	 FINI (ON, OFF)

The state equations for registers A, T. and C are,

A (1-4) =Ar (1-4) ' *A (1-4) +A s (1-4) ,	 (8)

T (1-3) =Tr (1-3) ' *T (1-3) +T s (1-3) ,

C (1-2) =C r (1-2) ' *C (1-2) +C s (1-2)

where A , T and C are the reset inputs and A , T and Cr	 r	 r	 s	 s	 s

are the set inputs of the flipflops of registers A. T and C.

The state equation for light FINI is,

FINI (ON) =FINIOFF' *FINI (ON) +FINION 	 (9)

where FINIOFF and FINION are the inputs of light FINI by

which the light` is turned to.the OFF and ON positions respec-

tively.

4.2 Input Equations

Input equations describe the logic networks specified by

the terminal and decoder statements, by the basic operators

such as countup, by the micro-statements and by the labels.

Since the clock and the switches in the clock and switch

statements are input devices, no translation is needed.
i

k
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)
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Input equations are grouped according to each register

or each light.	 There is only one execution statement that

^f
changes the contents of register A.	 This statement is,

/T(1)*P/	 A<--A(4)'-A(1-3)	 (10)

The input equations for register A translated from the above

statement are shown below,

+ Al	 = A (4) *T (1) *P	 (11)r
Al 	 = A (4) ' *T (1) *P

A2 	 = A (1) *T (1) *P

A2 s - A (1) ' *T (1) *P

Aar = A (2) *T (1) *P

A3 	 - A(2) '	 T (1)	 P

A4	 = A(3) *T(1) *P
r

A4 s = A(3) *T(1) *P

where Al	 A2A2r , A3	 and A4	 are the reset inputs and Al, A2r	 r	 i	 S,

A3 	 and A4 	 are the set inputs of the flipflops of register A.
r.

F The above 1st, 3rd, 5th and 7th input equations are obtained

from the conditions that bits AM,, A(1), A(2) and A(3) are

reset to 0 respectively, while the 2nd, 4th, 6th and 8th input

I
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equations from the conditions that these bits are set to

1 respectively.

There are two execution statements whick change the

contents of register C(3-1),

/START (ON) / 	 CAE--O,	 (12)

/T(1)*P/	 CE--countup C

The input equations for register C translated from these two

execution statements are,

C1  = C(1) *T(1) *P+START(ON) 	 (13)

C1  = C (1) ' *T (1) *P

C2  = C (2) *C (1) *T (1) *1 { -START (ON)

C2 s = C (2) ' *C (1) *T(1) *P

C3 r = C(3) *C ( 2 ) *C ( 1 ) *T(1) *P+START(ON)

C3 s = C(3) 1C(2)*C(1)*T(1)*P

where Clr , C2  and C3  are the reset inputs and Cl s , C2  and

C3  are the set inputs of the f lipflops of register C. The

above lst, 3rd and 5th input equations contain term START(ON)

which reflects the turning of switch START to the ON position;

the other terms of these and the remaining input equations

specify the count micro-operation.
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There are four execution statements which change the

contents of register T(1-3)

/START (ON) /	 X100 0 (14)

/T (1) *P/	 T (1, 2) E- -01,

/T (2) * P/	 IF	 (C=4)	 THEN (T (2 , 3) E--O 1) ,

/T (2) *P/	 1-7	 (C 4̂4)	 THEN	 (T (1, 2) E--10)

For ease of translation, the above third and fourth statements

are decomposed from the IF-THEN-ELSE conditional micro -statement

in statements (3).	 The input equations for register T trans-

lated from these four statements are,

Tlr = T (1) *P (15)

Tls =	 (C (.3) *C (2) ' *C (1) ') ' *T (2) *P+START (ON) ,

T2 	 = T (2) *P+START (ON) ,

T2 s = T(1) *P,

T3 	 = START (ON) ,

T3	 = C 3 *C 2	 ' *C 1 ' *T 2 *P

where Tlr_, T2 	 and T3 	 are the reset inputs and Tl s , T2 	 and

T3 s are the set inputs of the flipflops of register T respec-

tively.	 Factor C(3) *C (2) ' *C (1) ' represents the condition

that register C contains 4.

d

r
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There are two execution statements that change the

condition of light FINI,

/START (ON)	 FINIS--OFF,	 (.6)

/T (3) *P/	 FINI4- -ON ,

The input equations for light FINI are,

FINIOFF	 START (ON) ,	 (17)

FINION = T (3) *P,

where FINIOFF and FINION are the inputs to turn the light to

the OFF and ON conditions.

Equations (8) , (9) , (11) , (13) , (15) and (17) constitute

the set of the boolean equations for the complement sequence.

4.3 Micro Simulation

The set of the boolean equations for the complement

sequence can be simulated by the previously described CDL

Simulator, A listing which lists the deck of cards for the

micro simulation is shown in Figure 7. As sb.own in Figure 7,

the boolean equations become the terminal statements, and the

state equations become the execution statement. It is possible

to have the simulation partially in macro simulation and

	

partially in micro simulation. To illustrate this type of 	 z
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/START(L)N)/ r=49 	 gig. 7 9 A listing of a CDL simulation
C=O 9,

F INI- v	 deck for micro simulation
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simulation, the simula,'--ion of the micro-operations actuated

by the START switch in Figure 7 is macro simulation, while

the remaining simulation is micro simulation.

Both the system control cards and simulation control

cards in Figure 7 are identical to those in Figure 5. The

output of the simulation from the deck in Figure 7 is identical

to the output shown in Figure 6 as it should be.

4.4 Logic Diagrams

The set of the boolean equations can be translated into

logic diagrams by a digital computer. The logic diagrams may

then be implemented by logic circuits and memories. The 1,,-I,.ic

diagrams for the complement sequence are shown in Figure 8,

In Figure 8, large squares represent the flipflops; each small

square with a dot inside the square represents a logical. AND

circuit and each small square with a plus sign represents a

logical OR circuit. The inputs of zhe flipflops are shown,

while their outputs are not as they are apparent. The execu-

tion statements implemented by each logic diagram are also

shown in Figure 8.

it

i
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T(1)*P

A(4)	 ( A(1)	 1 . A(2)	 1 A(3)
A(4)'	 A(1)'	 A(2)'	 A(3)'

/T(1)*P/ A<--A(4)'-A(1-3)

C(3)	 C(2)	 C(1)

C3j - T T Tcl r Cl,

START(ON)

T(1)*P

't
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(3)*C(2)'*C(1)'

--START(ON)
T (1) *P

T(2)*P

T39
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/START(ON)/ T-46-100

/T(1)*P/	 T(192)<--01

/T(2)*P/	 IF (Cw4) THEN (T(2,3X--01) ELSE (T(102)E--10)

FINI

OFPON
T(3)*P

START(ON)

/START(ON)/ FINIS--OFF

/T(3)*P/	 FINI+-ON
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5. Logic Matrices

Boolean equations may alternatively be represented by

boolean matrices. This approach gives a functional represen-

tation in the matrix form which can readily be implemented by

logic matrices. Therefore, description of a micro design by

Boolean matrices gives a simultaneous realization of logic
-r

design and circuit implementation. As will be indicated,

such a description is amenable to implementation by large

scale integration.

5.1 Boolean Matrices

A boolean matrix can represent one micro-statement F

together with the associated control signal. Therefore,

representation of a micro design b boolean matrices is ag	 Y	 a

functional representation. The boolean matrices for the

micro-statements of the complement sequence are now presented.

The execution statement which describes the count-C`

micro-operation is,

/T (l) *P/ Cdr- countup C	 (18)

This statement can be expres,-.ed by the following matrix

equation,



(19)

T (1) *P

C(3)'

C(3)

C(2)'

C(2)

C(1)

C(1)

oioioio

ooiioio

oiiioio

C3
r

C3
s

C2r

Cgs

C1
r

Cls
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'A

L

a

P^

The above matrix equation represents a logic network. The out-

puts of the network are described by the vector on the left

side of the equation; this vector represents the inputs of

register C. The inputs of the network are described by the

vector on the right side of the equation; this vector repre-

sents the control signal T(1)*P and the outputs of the flip-

flops of register C. The mat'.x, having only 1's and O's, is

operated by the operator * and the input vector. The operation

is performed according to the rule as illustrated below for

the first row,

C3r=(O+T(1)*P) *(1+C(3)')*(O+C(3))*(1+C(2)')*(O+C(2))*(1+C(1)')*C (O+C (1)) (20)

which is the product of the first element of the first row by the

first element of the input vector and of the second element of
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the first row by the second element of the input vector and

so forth. Equation (20) can be simplified into,

C3r = T(1)*P*C(3)*C(2)*C(1) 	 (21)

Equation (21) is identical to the input equation for C3  in

statement (13). By expanding the other rows of the boolean

matrix in the similar manner, one obtains the input equations

(13) for register C (except the terms START(ON)).

The execution statement which describes the complement-

shift micro-operation is,

/T(1) *P/	 AA--A(4) ' -A(1-3)	 (22)

This statement can be expressed by the following matrix Qquation,

4

•4

}

Al
r

Als

A2r

A2 s;

A3 r

A3s

A4r

A4s

0 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0 1

0 1 0 1 1 1 1 1 1

0 0 1 1 1 1 1 1 1

0 1 1 1 0 1 1 1 1

0 1 1 0 1 1 1 1 1

0 1 1 1 1 1 0 1 1

0111101:11

T(1) *P

A(1)'

A(1)

A(2)'

* A(2)

A(3)'

A(3)

A(4)

A (4)

(23)
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Again, this matrix equation describes a logic network, the

inputs of which are the control signal T(1)*P and the outputs

of the flipflops of register A and the outputs of which are

the inputs of the flipflops of register A. When the above

boolean matrix is expanded according to the manner illustrated

by equation (20) , one obtains the input equations (11) .

The execution statements which describe the control

sequence are,

/START (ON) / W--100,

/T (1) *P/	 T (1, 2) E--01,	 (24)

/T (2) *P/	 IF (C=4) THEN (T (2, 3) <--01) ELSE (T (1, 2) «(--10)

These statements can be expressed by the following matrix

equation,

Tlr

Tls

T2
rl

T2s

T3r

T3
s

0 1 0 1 1 1 1 1 1

0 1 1 1 0 1 1 0 1^

0 1 1 1 0 1 1 1 1

0 1 0 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

0.1 1 1 0 1 1 1 0

P

j1)

T(1)
T(2)

T(2)
*

T(3)'

T(3)

T4'

T4

(25)
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where	 T4 = C (3) *C (2) '*C (1)

Expansion of the above matrix gives the input equations (15)

for register T (except the START (ON) terms) .

The execution statement which describes the reset-C

micro-operation is,

/START (ON) / C*--0,	 (26)

This statement can be expressed by the following matrix equation,

C3r	0

C3s	1

C2r	0

Cgs 	1	 I START (ON) l	 (27)

Clr	0

Cl	 1
s

The execution statement which describes the set-T micro-

operation is,

/START (ON) / T4--100
	

(28)

i,



i

E
F

3

S

This statement can be expressed by the following matrix

equation,

Tl
_r

T1S

T2
r

T2s

T3
rli

T3s

The execution statements which describe the reset-FINI and

set-FINI micro-operations are,

/START (ON) / FINI+---OFF,
(30)

/T (3) * P/
	

F INI+---ON,

These statements can be expres sed by the following matrix

equation,

FINIOFF	 0 1	 START(ON)
*	 (31)

FINION	 1 0	 T(3)*P

Matrix Eqautions (19). (23) , (25) , (27), (29) and (31)

give another form of the micro design for the complement

:sequence.

37
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Fig. 9 Logic matrices of the Serial Complement Sequence
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x

T(1)*P

T(2)*P

T(3)*P

I

(c) control natriz and reset-T matrix 	 39

(d) set-FINI and reset-FINI matrix

FIR

T(3)*P

Fig. 9 (continued)
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5.2 Loaic Matrices

inch of the above boolean matrices describes a micro

operation together with the associated control.. signal. Each

of these matrices can be diagrammed in a matrix form, and

th--y are called logic matrices. Figure 9 shows several logic

matrices.

Figure 9(a) shows the count-C matrix described by the

boolean matrix in the matrix equation (19). Each 0 of the

boolean matrix in the matrix equation (19) represents an

interconnection which is represented by a dot in Figure 9(a).

There is an exact correspondence between the 0's of the boo,'.ean

matrix and the dogs in the Logic matrix. The reset-C matrix

is also shown in Figure 9(a); this is the line connected to

the START switch. Figure 9(b) shows the complement-shift

matrix described by the boolean matrix in the matrix equation

(23). Again, there shows the correspondence between the 0's

of the boolean matrix and the dots of the logic matrix.

Figure 9(c) shows the control matrix described by the boolean

matrix in the matrix equation (25). Again., there shows the

correspondence. The set-T matrix is also shown in Figure 9(c);

this is the line connected to the START switch. Figure 9(d)

shows the set-FINI and reset-FINI matrix which is degenerated

into two lines.

#,r
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In short, the patterns of l's and 0 ' s in the boolean

^F matrices specify .i;htu patterns of interconnections if the

micro design is implemented by logic matrices. This approach

realizes logic design and circuit implementation simultaneously.

5.3 Implementation by Logic Matrices
r

The approach of implementing the complement sequence by

means of logic matrices is illustrated by the block diagram

in Figure 10. As indicated, each logic matrix performs one

micro-operation. Thus, the functional nature of the implemen-

tation by logic matrices is apparent.

If the blocks in Figure 10 are replaced by the logic

matrices in Figure 9, the diagram in Figure 10 becomes the
X

one in Figure 11. This diagram in Figure 11 may be regarded

as a large logic matrix which can be partitioned into smaller

matrices on a functional basis. Therefore, the approach of
 F

using the logic matrices is amenable to implementation by

F	 large-scale integration of logic circuits. Building blocks

of such an implementation has been presented elsewhere (14).

,t

a

r
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count matrix

control	 complement-shift matrix

matrix	 I	 T to the inputs

of registers

and lights

clock	 register T START register C register A 	 light FIN

;V
L;

Fig. 10 Implementation of the serial complementer by logic matrices

P
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6. Unified Hardware-Software Design

An important objective of the development of the Computer

Design language is to bridge the communication gap bet%reen the

hardware and software designers and to realize a unified

s
	 hardware-software design. This is possible because the des-	 -

cription of a CDL design is readily understood by the software

designer without knowledge of electronics. On the other hand,

the CDL design specifies every bit and every step of operation

required by the hardware designer.

Figure 12 shows a block diagram to illustrate the approach

for a unified hardware-software design. When the design

expressed in the CDL is completed, the hardware designer sim-

ulates the design, checks out the operations, translates the

design for implementation, and in the meantime selects and

develops devices, circuits, memories, packaging and interconnecting
x

techniques, while the software designer builds and tests the

assembler and designs and implements the operating system and

programming systems. The results of the cost evaluation from

the hardware design and the performance evaluation from the

software design offer a basis for tradeoff. Should a change

in the design be needed as a result of the tradeoff considera-

tion, the change is made in the macro design; this brings
t

r

i
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Fig. 12 Unified hardware-software design automation
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x
about another design iteration. The simultaneous and unified

design may need a shorter design period and may produce a

better computer system design.
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