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ABSTRACT

The use of a set of digital matched filters is presented as an alternative
to direct computation of the likelihood-ratio, for the problem of detecting a
random signal in random noise. It is assumed that a random process of Gaussian
background noise and (with probability P) a zero-mean Gaussian signal is
sampled at N instants, the samples being corrupted by additive Gaussian
measurement noise. The samples are processed by K << N digital correlation
filters which are structured so that the signal can be detected with minimum
Bayes risk. The optimum filters are shown to be matched to the most relevant
components of the simultaneously orthogonal expansion of the set of sampled
data. State variable techniques are used to find a ver, , practical method for
determining the optimum filter structures.

I. INTRODUCTION

Suppose that we are required to detect a random signal in the presence
of noise; more specifically suppose

n(t) + s(t) when the signal is present
r(tD =	 (1)

n(t)	 otherwise

where the signal s(t) and the background noise n(t) are random processes, and
we must decide whether the signal is present by observing a sequence of noisy
measurements

z i = r(t i) + m i l	 i = 1, ... , N,
	

(2)

taken at N sampling instants t  <t 2 <... <t N' (The random variables m  repre-
sent measurement noise.)

The following additional assumptions will be made:

A. s(t) and n(t) are Gaussian random processes and {m i } Nl is a
sequence of Gaussian random varibles. Furthermore, s(t), n(t),
mi,m2.... , m  are statistically independent.

B. s(t), n(t), and (mi} Nl are zero-mean.

C. The covariances

Rs (i, j) 
A 

E[s(t i)s(tj)I Rn (i, j) 4 E[n(ti)n(tj)]; and M(i) 
a E[mi ]

are known. (Note that E[m im j ] = 0 when i Pi j because of A and B.)

D. M(i) >0 for i= 1, ... , N.

The assumption that n(t) and {m i } N 1 are zero-mean is made with no
loss in generality, since any non-zero means would always be present and
could be subtracted from the observations with no loss in our ability to detect
the signal.
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We shall denote by H (H 0) the hypothesis that the signal is (is not)
present, and define a data vec or

z = (zl, z2""' z N) T •	 (3)

Then under either hypothesis z is a zero-mean Gaussian random vector, and its
hypothesis-conditional covariance matrices are

R 0 E [ zzT/H O ] = R  +1 	 (4)

R 1 E[?,zTAll]= R s
+Rn+M =Ro+Rs	

(5)

where the elements of the matrices R , R and Mare defined+
—s n

LRs)i j Q Rs (I,j); (Rn) ij R n ( i.j); and Uij °= M(i) a ij •	 (6)

The detector can be represented as a decision function ,&U which,
given a data sample z, chooses either H or H ; i.e. .6::N -+ {H , H }where
RN is the N-dimensional observation space. 'I^he performance criterion most
often used to appraise a given detector B(z) is the risk,

j 
Q P • C m • Prob{.8(z) = H0 when Hl is true}

+ (1-P) • C f • Prob{9(z) = H 1 when H0 is true) .	 (7)

where P is the a priori probability that the signal is present (i.e. that H is
true), and Cm and C are the assigned costs (both > 0) of a "miss" and a
"false alarm" respectively. (When C m = Cf = 1, j is simply the probability of
an error) .

The "optimum" detector, i.e. the one which minimizes j, is one
based on the well-known Bayes test,

JH, whenever .¢(^ > ^1*__
'^ (z}	 H0 otherwise	 (8)

where AUz is the likelihood ratio and I is defined as

(1-P)C
n	 f	 (See [1] p. 26)	 (9)

m

The resulting risk is called the "Bayer Risk" , and we shall denote
it by j*L]. It should be noted that j*Lz] is a function of the conditional
statistics of z and not of z itself.

+Parentheses with subscripts will be used to denote elements of vectors
and matrices.
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For our problem, the optimum detector can be expressed in a more
explicit form, (See [1] p. 107).

T -1	 -1	 detRl
^ z
	

H1 whenever z (R -1 - R 1 ) z > 21og'^ +log detR 0
	 (10)O*U H otherwise

Unfortunately, this decision scheme becomes prohibitively complex
when N, the number of sampling instants, is large. When the signal and
noise processes admit state variable models, Schweppe [2] has shown that
the likelihood ratio can be obtained by recursive computation. However, for
many applications, even this simplified scheme proves impractical.

A technique which can be used to avoid difficulty is to use a decision
function which depends only upon the values of K linear combinations of the
measurements, [3]

N
yk = E bkiz i , for k = 1,.. , K,	 (11)

i=1

where K is considerably smaller than N. Each y may be regarded as the output
of a digital filter which correlates the measurement sequence { z i }Nl with a
predetermined weighting sequence [bkl } iv 1• If we define vectors

bk g (bkl' bk2' ...'bkN)T fork = 1, ... , K,	 (12)

then

yk = b T z	 for k = 1, ... , K.	 (13f

Another interpretation is provided by defining a vector

Y_ A (yl , y2 , ... ,y K ) T	 (14)

and a KxN matrix

B 0 (bl ,b2 , ... 
' 12K )T	 (15)

so that

Y = Bz .	 (16)

Clearly the data vector z has simply been "reduced" by a linear transformation.
Thus y is, under either hypothesis, a zero-mean Gaussian random vector,
and it may be regarded as a new data vector. We can associate with Y its
Bayes Risk, j*(Y] = J*Cz], which is the least risk that can be attained when
y is used for signal detection.
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Our problem will be to find the optimum B for a given value of K, i.e.
to find a B which minimizes j*j: ]. We will show that our optimum choice,
designated B*, has the property that its row vectors are "matched" to the most
relevant components in the simultaneously orthogonal expansion of the data
vector z. Furthermore, B* depends neither upon the a rp iori probability P nor
upon the costs C , C , and is invariant with respect to scalings of s(t) by a
constant factor, rR Ve will present a very practical method for finding B* when N
is large, by employing state variable models for the signal and noise processes;
this is perhaps our most important result. Before proceeding, we note that the
independent variable "t" need not represent time . it could just as well correspond
to position along a line in space.

II. SIMULTANEOUSLY ORTHOGONAL EXPANSION OF z

It is a well known fact that there exists a linear, invertible transfor-
mation which sends z into a random vector whose elements are statistically
independent under either hypothesis. We shall develop this transformation in
a form slightly different from that found in most texts, and interpret it in terms
of a simultaneously orthogonal expansion of the data vector z. (Our procedure
will be similar to that of Kadota and Shepp [43.)

From assumptioli D. the matrix M must be positive definite, so R 0 is
positive definite and RD exists, is ,positive definite, and symmetric. Thus
11 - i R 1 R j is positive definite, symmetric, and has N positive eigenvalues

Dl a D 2 a ..., a D 	 (17)

and associated eigenvectors

R O 'R I R-i cp = D i2. for i = 1, ... , N,	 (18)

which may be taken orthonormal,

T
c2i _Vj = 6 ij for i, j = 1, ... , N.	 (19)

If we define

di Q R p ^i for i = 1, ... , N,

Eqs. (18) and (19) can be expressed in the equivalent form

IRId i = D id i for i = 1, ... , N	 (20)RO 

dTRO dj = b ij for i, j = 1, ... , N.	 (21)
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Alternatively, given Dl 's and d i 's which satisfy Eqs. (20) and (21) , we can

define	 421 Q 4 td i which will satisfy Eqs. (18) and (19).

For a given set (Dl , dl) , (D2'-d2 , 	 , (DN'-4N ) which satisfy Eqs. (17) ,
(20) , and (21) , define

of 	 for a = l,...,N.	 (22)

Then the a
l
 's are, under either hypothesis, zero-mean Gaussian random

variables, and have hypothesis-conditional covariances, for i, j = 1, ... , N,

E[a laj /H 0 ] = diR O dj = 8 lj ,	 (23)

E[a iaj /H l ] = ,.R ld
j 

= d RO R O 1R ld^ = Dj d R O dj = Dja lj	 (24)

Define an Nxl vector

A A (Celia 2 ' .... aN ) T 	(25)

and an NxN matrix

T Q Ll A ... ,dN) T .	 (26)

so that

a = Tz .	 (27)

Eq. (21) implies that the d i 's are linearly independent, so T is
invertible. Thus

z = T_-1

	

	 (28)= E a 1T1
i=1

where Tl '12 , ... ,T'N are the column vectors of T-1.

Eq. (28) 1s the simultaneously orthogonal expansion of the data
vector z. The basis vectors _X1 , , ... , T.are, in general, not orthogonal.
The words "simultaneously orthogonal" 	 reYer to the fact that the random
coefficients a are statistically orthogonal, i.e. uncorrelated, under both
hypotheses. 'Tote that since TT-1 = I,

dT^ = 6 lj for i, j = 1, ... , N.	 (29)

III. OPTIMUM CHOICE OF B

Given a zero-mean Gaussian random vector with two alternative
positive definite covariance matrices Ro and Rl , the problem of finding the
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the best y = BZ is closely related to the simultaneously orthogonal expansion.
For the case K = 1 (so that B is simply a row vector), it is shown in Kullback
(see [5] p. 198) that the B for which the divergence + is maximum is given by

B=dj*

where j* is the j for which f  A D  + 1/D
i
 has its largest value.

Kadota and Shepp [3] generalized this result to the case K > 1,
showing that the B which maximizes the divergence is

B = Lj* , dj* , ... ,.1*)T
1	 2	 K

where jl is the j for which f j has its larest value.
J* is the j for which fj has i1s gQnJest value, etc.

They also showed that the same choice maximizes the Bhattacharya distance.
(Actually, they showed that it minimizes the Hellinger integral, which is
equivalent.)

Since the statistically independent a's have unit variances under
hypothesis HO, and variances D, under hypothesis 	 H1 , it follows that the
expansion components most relevant for hypothesis determination are those for
which the D's are farthest away from the value one. (This is in agreement
with the use of fj = Di + 1/Di in the cases just described) . However, for our
problem R -Rte^+ R . Using this fact and premultiplying Eq. (20) by d TR , we
achieve the followisng results:	 —i-0

T

D i =1+ d TRs—i	 for i = 1,...,N.
diROdi

Thus D 2 1 for i = 1, ... ,N. Henc ;. the most relevant components of the
expansion are those with the largest values of D i . The following theorem is,
therefore, not surprising.

THEOREM: Given a set (Dl , d l ) , ( D 2 , d 2) , ... , ( DN , d ) , which
satisfy Eqs. (17) , ( 20) , and ( 21) , define

B*	 (d l ,d 2 , ... ,dK) T .	 (30)

Then for any KxN matrix B,

J* L*?] z J* 17.1	 (31)

+See Kullback [5] p. 6 for the definition of divergence.
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i.e. B* minimizes the Bales risk. The proof of this theorem is given in
Appendix A.

If we define

X* 4 B*z,	 (32)

then the optimum decision r,aie is simply
K	 2	 K

fHI whenever E (1-1 /D i) (yI ), > 21og j + E locD,	 (33)
B * 

(Y*)
*) 

- 
 

,.H 0 otherwise

This result is rbtaired by :eplacir..g z by v* and substituting the appropriate
covariance macrices into Eq. (10).

Certainly, B* does not depend P,C m , orC f . Furthermore, Eq. (20) is
equivalent to

R O lR s d i = ( D i- 1)d. for i= 1, ... ,N.	 (34)

Thus if s(t) becomes • s(t) , where d is a constant scaling factor, then R
becomes S R , the eigenvectcrs remain the same, e nd the orde.ing of then
eigenvaluess uncharged; i.e. B* is unaffected wl 	 the signal is scaled by
a constant factor.

Clearly , in order to find B* we must find the eigenvectors of R- 1RI
corresponding to the largest eigervalues; so the fundamental problem is that
of finding solutions (D,dl to the equation

,R IR ld = Dd.	 (35)

However, it should be noted that any solution (D,d) with D = ! would yield a
component of y* which would be useless for signal detection (since it would
have the same variance under either hypothesis). From Eq. (34) it is clear
that a useless solution (i.e. D = l.) exists if (and only if) R s is singular.

The "orthogonalization" of the solution vectors required by Eq. (21)
is not difficult to achieve. If (Da A and ( Db ,db) are two solutions to
Eq, (35) and L -4 D titer daP d - G^; thus we reed only insure that Eq. (21)a
is satisfied when Db = Dj . a-f1--b _

Eq. (35) may be expressed in another form,

X(D)d = 0
	

(36)

where 3{ (D) i (1-D) (Rn+M) + 
Rs .
	

(37)
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Solutions therefore occur at values of D for which3C(D) is singular; i.e. at the
zeros of det Y(D) . Unfortunately the dimension of the matrix X(D) is equal to
the number of sampling Instants, and if this number is large ( say in excess of
fifty) it becomes practically impossible to find the zeros of det MD) . In the
next two sections of this paper we will assume that the signal and noise
processes admit state variable models, and will develop a technique by which
the problem is reduced to finding solutions (D,g) of

.d,( D) q = 0 ,
	 (38)

where je( D) is a square matrix which depends upon D and whose dimension is
net more than twice the sum of the dimensions of the signal and noise state
vectors. The values of D for which Eq. (38) has a solution are the same as those
for Eq. (36), and the solution vectors d for Eq. (36) are related to the solution
vectors of Eq. (38) by a simple transformatio.:.

Before proceeding, we noie that the rows d  of B* are matched to the
cgmponents of the simultaneously orthogonal expansAon of z in the sense that
dTy = 6(from Eq. (29)). Alsc, (z*) is just 	 the i I, coefficient i n the
expinsIA.	 I	 i

IV. STATE VARIABLE MODELS FOR THE SIGNAL AND `? OTSE PROCESSES

We will assume that the noise and signal processes can be represented
In terms of an Lnx 1 noise state vector xn(t) and an L s x 1 signal state vector xs(t)
as follows,

n(t = ryT̂i (t)xn(t); s(t) = cs( t)xs (t) 	 (39)

where the state vectors obey the following dynamic equations,

dx (O	 dx (t)

d 	 = Fn (t)xn (t) + u n (t);	 dr	 = F S (t)x$ (t) + u s (t)	 (40)

u-n (t) and u s (t) are zero -mean, white Gaussian vector processes, independent of-each other, witii covarian :-es

E[un (t)un(T)] = Ut1(:)6(t-T); E[us(t)us(-r)] = L (t)6(t-0	 (41)

Furthermore we will assume th?t the initial statistics for the state vectors are
E[xn(tI)] - E[ s( tI)] = 0, and

E[xn ( tl)xn(tl)] = Kn (1,1); E[xs ( t l)xs(tl)] = Ks (1,1)	 (42)

We assume that the vectors c (t„ c (t) and the matrices F (t), F (t), VM(t),
I9 (t), K n(1,1), and K s (1,1) are known	 n.	 '-
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We now convert from continuous state variable models to discrete
models. Since the models for n(t) and s l% O have the same form, we will refrain
from writing equations for both models, and use only the Greek letter 8 which
may be taken as either n or s.

Define the (square) transition matrix 4(t, T) through the relations

A A (t, T)

at	
= F (t) 4(t, T); 04 (T, T) = I	 (43)

where I is the identity matrix.

Using the transition matrix,

Xe (t i+l) - ^Q(ti+1-td2S6(ti) + fti+1 4(t,T)uS (T)dT for i = 1, ... , N-1.
t.
i

If we define
t

A (i) = ^(t i+I , ti), %(i)	 f i
+l j,(t , T)u,(T)dT	 (44)

t,L
then the equation can be written

2S8 (t i+1) = AA (i)xx (t i) + ge(i) for i = 1, ... , N-1 (45)

which is the discrete version of (40). Note that the(i)'s are zero-mean,
Gaussian random vectors. From (41) and (44) it can  easily be shown that

E[_%(1)%0) 1 = Q^y(0 8ii	 (46)

where 2,(i) is defined
t

,r i+l G(t,T) O (T)4(t,T)dT	 (47)
t.

Since u (t) and us (t) are mutually independent, (qn(i) )N I and (gs (i) } Nlwill be mutually gndependent random sequences .

As a final comment before proceeding to the next section, we note
that A9W always has an inverse since it is a transition matrix.

V. METHOD OF SOLUTION

Since we are only interested in solutions of Eq. (35) such that D P i 1,
we may define D' d	 and write Eq. (35) in the equivalent form
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d = M -1 [D'Rsd - Rnd].

By defining d(i) Q (d 1 , this equation can be written as

d 	 =M -1(i)[D' E R s (i,j)d(j) - E Rn(i,j)d(j)] for i = 1,..., N
j =1	 j=1	 (48)

But, for i, j = 1, ... , N,

R0 (i, j )	 E[8(ti)£(tj)]=  _ce(t i) x_8 (i, j)_e(tj )	 (49)

where

j) o E[xe (ti)xe(tj )7 	(50)

(Note that this definition of K9 (i, j) is compatible with the previous definition
of K9(11111). 

By defining, for i = 1, ... , N,
N

v9(i) A E K0 ( 1 , j )c9 ( tj ) d (j),	 (S1)
j=1

Eq. (48) becomes

d(i) = M-1 (i)[D'cs(ti)_vs (i) - cn(ti)_vn(i)] for i = 1, ... , N.	 (52)

In Appendix B it is shown that v9 (i) may be obtained as the solution
of a system of linear difference equations,

v9 (1+1) = Ae (i)_ve (i) + Sg (i)Ae T(i)w9 (i)	 (53)

for a=l,...,N-1
w9 (i+l) = A9T(i)w9(i) - c8(ti+1)d(i+l) 	 (54)

with boundary conditions w 9 (N) = 0	 (55)

and	 v9(1) = K9 (1,1)[c9 (t1)d(1) + w9 (1)J	 (56)

It is also shown in Appendix B that, given d(i) for i = 1, ... , N, Equations
(53)-(56) have a unique solution.

+The superscript "-T" denotes inverse transpose.
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The procedure by which the summations of Eq. (48) have been expressed
in terms of "state" vectors _v0 is similar to that employed by Baggeroer [5] to
transform integral equations into state -differential equations.

The models for 9 = s or n can be combined by defining,•
	 lz (i)

for i = 1,..., N, X(i)© c
	 1:,X( -ti'-)1

i} 

K (1,1),	 0

	

C(i)	 c(i)cT(i); K(1,1)	 - S --1------0	 Kn(1,1)

rD ^ M-1(1)1 s 	 0

	

--------- i- ---- 1----	 where Ig is an identity matrix of dimension

	

0	 -M (i)1 n

L8 , and by defining, for i = 1, ... , N-1,

	

As (i)
^
I 0 l	 QS (i)^ 0

Q() 4 
in

Eq. (52) may then be written simply as

d(i) = cT(i)D{i)v_( i) for i = 1, ... , N,	 (57)

and (53) and (54) become

_v(i+1) = A (i)v(i) + Q( i)h#TMAW

	

	 (58)
for i = l,....N-l.

w(i+1) = A# T ( i)w(i) - c ( i+l)d(i+1)	 (59)

But d ( i+l) can be expressed in terms of _v(i+l) by using (57), and
v(i+l) can be obtained from ( 58), so that Eq. (59) is equivalent to

w(i+l) = -C(i+l)D(i+lM ( i)v( i) + [L_ C( i+l).2(i+l)Q(i) ]A Tw(i) (60)
for i = 1,...,N-1.

Eqs. (58) and (59) can be combined,

{i+1) = A(i) î 	 for i = 1, ... , N-1,	 (61)

where, for i = I,— , N-!,

A(i) -

	

	 ---------	 -------^__-----	 (62)
-C(i+i)D(i+1)A^,(i} i [I - C{I+i}^(i+1}Q{^] T(i}

11	 ^



1

Te boulndary conditions (55) and (56) can be written as

w(N) = 0	 (63)

and

[I - K(1,1)C(1)D(1))v(1) - K(1,1)w(1) = 0, 	 (64)

where we have substituted for d(1) from Eq. (57).

From the linear recursion relation of (61) it follows that

kklN$
	 v(l)

wfN) = A w(1F	 (65)

where A A A(N-1)A(N-2) ... •A(1). If we partition A 	 (66)

into four square matrices,

A	 ^A^v I ^tw
A =	 A -

-t ---	 (67)
-wv ; ^vw

then the boundary conditions (63) and (64) can be combined;

{)

I - K(1)G(1)D(1) K l,l)	 w(1}	 - 0.	 (68)

If we define

v (I)	 A s	 Ad	
; 7C{D)	 -- 
	 {- - -- -	 (69,70)w(i)	 I - K(1,1)C(1)D(1) 	 K(1,1)

then (68) reduces to

.z!Ii)g = 0.	 (71)

Each step that we have made toward arriving at Eq. (71) has involved
only substitution, and is therefore reversible; so !iat Eq. (71) is, whenever
D # 1, completely equivalent to Eqs. (48) and (36). If we can find a value
of D ;4 1 for which det le(D) = 0, then we can find a solution g of (71); and if
we define d(i) from (57) using (61) and (69) to compute _v(i), then d(i) will
solve (48) (for the same value of D) . Note that .,&(D) is a square matrix of
dimension 2 L + 2 L .

s	 n
Given a particular value of D - 1 for which Eq. (71) and (36) have

solutions, Eqs . (53) , (54) , (55) , (56) , (57) , (61) , and (69) describe a linear,
invertible, one-to-one transformation between solutions g of (71) and solutions
d of (36) . Hence if (71) has k linearly independent solutions g for some value
of D, then (36) has k linearly independent solutions d for the same value of D.

12



If K(i,l) is nonsingular, then (64) implies

w(1) = [K-1 (1,1) - 2(02(1)]_v(1),	 (72)

so that (71) is equivalent to

jè #(D)_q k = 0,	 (73)

where

9# 0 v(1), jlf#(D) A
-A Wv +WWI 1(1,1)-C(1)D(1)3	 (74,75)

The problem has been reduced to one of finding the largest zeros of
det .jf.(D) [or(D) ] . For given values of D, A can be computed and used to
determine de(D); thus the zeros can be found by standard computer techniques.
When a zero is found, initial conditions solving Eq. (68) can be obtained, v(i)
and w(i) can be computed recursively by using Eq. (61), and the eigenvector d
can be obtained through use of Eq. (52) .

If the signal, background noise, and the measurement noise are
stationary random processes, then A(i) is the same for all i, and

A = A N where A Q A(i) .

In particular, if N = 2 n , then A can be obtained by n matrix-squaring operations.
(eg. N = 128 = 2 7) .

VI. CONCLUSIONS AND APPLICATIONS

We have shown that the matched filter concept can be successfully,
applied to the problem of detecting zero-mean Gaussian signals in Gaussian
noise. For cases in which the signal and noise processes admit state variable
models, we have developed an efficient, easily-implemented technique for
finding the optimum set of digital matched filters. Approximations to the
continuous problem (i.e. finding the best set of continuous filters) may be
obtained by making N large. just as in the Kalman-Bucy filtering problem, we
found it necessary to assume that the observed process contained additive
white measurement noise. In order to discover what happens in a specific
problem when there is no such white noise, we may determine the optimum
filter set for successively smaller values of M(i).

In our treatment the use of a set of K matched filters was taken as an
alternative to the direct (and difficult) computation of the likelihood-ratio.
Although our technique may yield a somewhat larger Bayes risk (particularly
if K is very small) its inherent simplicity may make it more practical, or even
necessary, for many real problems. Since the matched filter basically involves
a correlation process, many existing devices (optical, mechanical, etc.) can
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be used for its implementation. Another advantage over the direct computation
of the likelihood ratio is that the transformation of the data achieved by the use
of matched filters is quite simple ( and linear) , and even if the statistical
assumptions for which the " l iters were designed are incorrect or only approxi-
mately correct, the reduced- data vector y will still probably prove useful for
signal detection purposes.

The assumption that the signal is zero mean is somewhat restrictive,
but there is a large class of problqms which fit this assumption, particularly
problems of "passive listening" and non-coherent reception. The remark has
been made previously that the independent variable " t" could represent position
in space. If this is so the quantities t 1 ,t 2 , ... ,t represent not sampling instants,
but receiving-element positions, s(t) is the spatial random process impressed
upon the receiving elements by the signal, n(t) is that due to background noise,
and the m i ' s represent receiver noise.

APPENDIX A

We must s:.u.% that, for any KxN matrix B,

j*C4*Z] 5 T*C$z]

The following lemma is essential.

Lemma. Let a be as defined in Section II, and let t be a KxN matrix

such teat: with T	 I g, the following conditions are satisfied:

(1) E [ YYT/H
0
 ] = I , the KxK identity matrix

T(ii) E[YY /H l ] =!, a KxK diagonal matrix having ordered diagonal
elements al a a2 Z... z aK .

Then j*[B*z] s j*r rot] .

Proof of Lemma: Suppose r satisfies the conditions of the lemma. Then

I = E[YY /HD ] = I' E[ LA /HQ ] I'T =ITT.

Also, note that a. is the j th largest eigenvalue of E, and D, is the jth
largest eigenvalue of the diagonal matrix	 I

ECggT/Hl ]

so since r r = I we can use the Poincare'E = E C YYT/Hl ] = r E C^^T/H 1 ] 
rT	 TBut 

Separation Theorem ( see [7], p. 52) to obtain

14
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DN-j+l s aj 
!r' D 	 for j = 1, ... , K.

However, all the D l 's are s 1, so

1 s a  s D 	 for j = 1, ... , K.

Now the optimum decision function ,B 
Y 

for y is simply
K

Hl whenever E (1-1/ady i > x

(.Y) =	
i=1

H 0 otherwise

K
where X Q 2 log j + EM log a l . Thus

T* [ r A ] = T* CY] = P • Cm • J1 1 -Y] + ( 1 -P) • C f • T2 Cy]

where	 Ti [y] © Prob { .6Y (Y) = H O when Hl is true}

and	 T2 [y] Prob{ .8 Y (y) = H I when H0 is true) .

Now suppose we use the same decision function on Y* = B*z. The resulting
risk, denoted T+[y*], will be

j+[Y* ] = P • C m • J1 [Y * ] + (1-P) • C f • J+Iy. ]

where ji [y* ] = Prob {.9 Y(y*) = HDwhen HO is true)

and	 T2 [y* ] = Prob {.8 Y(y*) = H^ when Hp is true) .

But y* and y have the same statistics under hypothesis H O ,Cince E[y*,V*T/HO]

E[YY T/Hd = I), so J^[^ ] = T*CY]

Also, under hypothesis Hl , Y* has the same statistics as

1 (D /a 	 0

a =	 (DZ/a2}

aj	 0	 . (DK/aK)

is



so
K

j; [y* ] = Prob { E (1-1/Q i) a j < X when Hl is true }
f	 i=1

K

= Prob { E (1-1/Q i ) ( Di c i) 2 W - < X when H1 is true)
i=1

K

sProb{ E (1-1/ci)(^? < a when Hl is true}
i=1

since D./Q. Z 1.
1	 L

But the last quantity is simply j[Y] so

JCY* ] s JCY] so

J+CY* ] s J* 1Y3-

However, j*[y*] is the lowest possible risk that can be attained using y*, so

J* CY* ] s J+C Y* J s J* CY]

i.e.	 j*[B*z] s j*[Ey]Q.E.D.

In view of this lemma, the theorem will be proved if we can show that,
given any KxN B, there exists a L satisfying the conditions of the lemma,
such that

J* [ .E2] s J* [B z].

If one of the rows of B can be expressed as a linear combination of the
others, then the Bayes risk J *[y] = j*[B a] will certainly not be increased if
this row is replaced by a row vector lying outside the space spanned by the
other row vectors, since this adds new information. Thus there always exists
a KxN matrix B A having linearly independent rows, such that

J*CB^K] s J*[Bz].

Now since the rows of B are linearly independent, y	 B has positive
definite covariance matrtces (this fact is easily proven). Then from the results
of Section II we know that there is an invertible matrix transformation

-y- = T_lYA

such that E [ yy T/H0 ] = I, and E [ YYT/Hl ] is diagonal with ordered elements.

16



But	 j*[y1]= j*[TAyA]

since the Bayes risk is not affected by invertible transformations of the "test
statistic" y,. Define r = T B . Clearly r satisfies the conditions of the lemma
since y = LA has the requirld troperties. Also

j*[r z]= j* [ T A y^ = j*[B I z] s J* [B z].

Q.E.D.

APPENDIX B

Proof of Eqs . ( 53) , (54) , ( 55) , and (56) .

Multiple application of Eqs. ( 45) and (46) yields the result that,
for i = 1,..., N-1 and j = 1,..., N,

A(i)K% (i, j) for j e. i

Ke ti+l,j) _

1b*(i)Ke(ij) + c0e (i)
T

(i+1)A (i+2)... A^(j - 1) for j > i.

N
Since v,(i)	 E Ke (i, j)c e (tj )d(j) for 1 = 1, ... , N, it follows that

-	 i=1

N
_ve (i+l) = E % ( i+l, j)29 (tj)d(j) for i = 1, ... , N-1

j=1

N
= E Ae( i)% (i,1)gq(tj )d(j)j 1 

+ E Qe(i)^(i+1)A8( i+2)... Qj -1)
j +t+1

or

_ve(1+1) = A^ ( i)v_e{i) + Qe ( i) -T(i)we(i) for 1 = 1, ... , N-1.	 (53)

where

we(:) 4 E	 -0 Z-g 	—gT(i+1) ... 4A 	 1)28 (t )d(j) for 1 = 1, ... , N-1.
-	

^ -	 i

If we define -,(N) 0, then for i = 1, ... , n-1,	 (55)

B Twe (i+l) = A (i)we ( 1) - c9(ti+l) d(i+1).	 (54)
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The -w^ ( i)'s are uniquely determined by (54) and the boundary condition w 9 (N) = 0,
provided the d(i)'s are given.

Repeated use of ( 45) and ( 46) gives

K9 (i, j) _ ,K^(1,1)Ae(2) ... AT(j-1) for 1 < j sN,

so that

thus v9 (1) is determined and (53) has a unique solution.
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