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PARTICLE MOTIONS IN A MAGNETIC FIELD

introduction

The motion of a charged particle in the earth's magnetic field

has long been of interest to mathematicians and physicists in con-

nection with the study of the polar aurora and cosmic rays. The

H
mathematical formulation of this problem was given by Stormer as

early as 1907; it is often referred to as Stormer's problem.

Recently, this problem received renewed significance with the dis-

covery of the Van Allen radiation belt. (see Dragt [6]). This is

a region in space that consists of electrically charged particles,

which are assumed to be trapped by the earth's magnetic field.

Some of these particles were observed to have a lifetime of several

years. The purpose of this paper is to rigorously establish the

theory of almost periodic motions for the Sto'rmer problem., exhibit-

ing thereby the trapping of charged particles as observed in the

Van Allen belt. An additional feature of the theory we shall develop

is that it can easily be generalized to any rotationally symmetric

►'mirror field".

The trajectory of a particle in a magnetic field is generally

very complicated and must be obtained by numerical integration of

the differential equations of motion. In the special case of a

uniform static magnetic field B. the trajectories can be obtained

explicitly. As is well known., all particles gyrate in a helix

W
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about the ma,metic field lines (see Figure 1).

Figure 1. Particle motions in a constant magnetic field.

If m denotes the mass of the particle ., q its charge ., vl the

velocity perpendicular to the magnetic field,, and R the magnitude,

of the magnetic fi.eldl then the quantities

Z
mvl

M = =B

MVa = qE

are constant along any orbit. M is called the magnetic moment of

the particles and "a" its radius of gyration. j

Many mathematicians have concerned themselves with the motion

of a charged particles in a slowly varying magnetic field. A slowly

varying magnetic field is a field which varies slowly in space and 	 a:
'i

a
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eltiza - that is, olowly compared with the gyration radius and period.

Essentially this means that in the course of one gyration about a

magnetic field line ., the particle sees an approximately constant

field. In a slowly varying field the particle moves approximately

in a circle whose center drifts slowly across the lines of force

and moves rapidly along the lines. This is the so-called "guiding

center" or "adiabatic" approximation. It was shown by Alfven

that the magnetic moment is an adiabatic invariant in a slowly vary-

ing field; that is to say, it is constant to first order in the
radius of gyration. This result is of extreme importance in plasma

phy.cins ., where one is interested in confining charged particles in

• bounded region. Suppose, for example., that the magnetic field is

• convex function along the lines of force. A particle moving a-

long a line of force will be "reflected" backwards at the point Po

defined byIr

le(P0) = P,

where E is the energy of the particle. Thus to first order the

guiding center of a particle oscillates periodically along a line

of force, between two "mirror" points. In this case it has been

shown (Northrop [12]) that the quantity

i	 P11 ds
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is also an adiabatic invariant ., T`here P,, is the guiding center

momentum parallel to the lines of force, and the integral is taken

over a complete oscillation from one mirror point to the other and

back again. J is usually referred to as the longitudinal adiabatic

invariant.

However, for virtually every prospective device for the pro-

duction of useful energy from controlled thermonuclear fission, it

was seen that the requirement that the particle remain confined for

periods of time encompassing many millions of gyrations could gen-

erally be met only it the magnetic moment were constant to a much

higher order. in 1955, Hellwig [9] proved the constancy of the

magnetic moment to second order in the radius of gyration ) and in

1957., Krusk,91 [10] proved the constancy to all orders. Finally,

Gardner 171 showed the constancy of the longitudinal adiabatic in-

variant to all orders. Moreover, Gardner presented a general method

to obtain formal asymptotic expansions for all the adiabatic in-

variants. The main idea of this paper is to show that the phase

space of a paxticle moving under the influence of the earth's

magnetic field contains a region where series, analogous to the

formal expansions of Gardner, are actually convergent expansions.

This will be accomplished by using a theorem of J. Moser which

guaxantees the existence of almost periodic solutions of the differ-

ential equations of motion. 
t 

In this manner we will show that

T 
Gardner [8], in 1962P announced a result like ours for particle
trajectories in a "mirror" field. To the author's knowledge, a
proof of this result was never published by Gardner.
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particles which are adiabatically trapped are, in fact, rigorously

trapped for all t ime. This possibility was first pointed out by

Arnold.. [2] .

The author wishes to express his deepest gratitude to his thesis

advisor, Professor Jurgr.,. K. Moser, for his many helpful hints and

suggestions and above all for his patience and understanding while

this paper was being written.

1. The Stormer Problem

The earth's magnetic field is assumed here to be equivalent to

the field produced by a magnetic dipole situated at the center of

the earth. Such a field can be described in cylindrical coordinates

p^ z, o by the equations

B = curl Z

r

$ = JBI	 3 (1`1-3 s in  ?) 1/2
r

(see Figure 2), where M is the moment of the magnetic dipole,

which points in the negative z direction) and	 is a unit

vector in the (fi directiem. The plane T = 0 is the equattrial

planes and the magnetic lines of force are given by

.



Figure 4.

From the previous discussion one would intuitively expect that

the particles with small energy will gyrate about the guiding field

line -Tith the (so-called cyclotron) frequency

qB
M

where q and m denote the charge and mass of the particle. More-

over, since the field B is a convex function along a line of force,

we would expect that the particle, as it moves into regions of

stronger field at higher latitudes ., will be reflected back toward

the equator by converging lines of force. To what extent this is



tr%u will be alkscusae4 in the followinZ sections*

To write the differential equations of motion for the St'ofrmer

problem, it is most convenient to employ a canonical formulationJV

described by the Hamiltonian

V

4

2	 P46 -H= 
1
M [p 2P + P z + ( P qA)2

,where

pp = MA

P z ME

0 
MP 1. qpA.p 

Since H is independent of time, the energy

t 2H 	 = E

is a constant of the motion. A second integral of the motion is

obtained by noting that H is independent of the angle 	 Hence

the canonical angular momentum

p0 = qtIrI

where r is defined by this equation is a constant of the motion.

(The integration constant r has the dimensions of a reciprocal

li
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longth.) mjhe three dimensional problem is now reduced to the

.:Iiqler problem of finding the two-dimensional motion of a particle

in the p - z plane under the influence of the potential

(12M2 r P 2V (P.- Z)

once P(t) and z(t) have been found, O(t) is then determined by

integrating the equation

-H 
po

which yields

t
qW 7) dt'0(0 ) + 1 1(= - 	 6)

m
0 P

The sign of r plays a crucial role in determining the general

properties of trajectories. The radial derivative of V is given,

by

= - 2̂M2 (r P ) r 2Pr.VV m P 7 (—P - 7)r	 r

which is strictly less than zero for r negative. A negative

radial derivative for the potential corresponds to a repulsive

16



Figure 3. The region 
,r -5; E for r < o.

I

radial force, since --r- V is the component of the force in the

radial direction. Hence all trajectories characterized by a

negative r must extend to infinity and cannot be trapped. In

addition the particle is restricted to lie in the region V(P'Z)

E. This region is indicated in Figure 3.
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A"

Note also that no orbits extend into the dipole (r = 0) for I'
	 iI

negative.

The situation is very similar when P = 0. For p unequal

to zero the radial derivative of `r is again negative. However

p =— 0 is a solution of the equations of motion. Hence the tra-

jectory

z(t) V 2m t + zo no < 0

runs into the dipole from below the equator, and

Z(t) _ -V/Tra t + zo ) z  > 0

is a trajectory running into the dipole from above the equ^.tor.

All orbits s-arting in the shaded region of Figure 4 must extend

to infinity.

r



z , = Pz

P  = rp

o'	 0
t' = 1-3 qM t

m

^l•8)

4

I'

	 11
I	 6

i

Figure 4. The region V s E for P = 0.

is

For the study of bounded trajectories. therefore ., we restrict

ourselves to the case P > 0. It is convenient at this point to
4

introduce the dimensionless variables
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it is easily seen that the equations of motion for these dimension-

less variables axe derived from the new Hamiltonian

n
(1.9)

r

where we have omitted the primes for convenience, In this system

cf units the particle has th"^ dimensionless velocity

WO	 1^7

where

4l q1 2 4
yl= l (mv) P (1.9)

The dimensionless constant yl is that used by Stormer [14].

Note that the angular momentum P is now normalized to one.

The potential

V( Pi z) = 2 (P _ 1 ) 2	 (1.10)
r

vanishes along the curve r = cos 2T, and is positive elsewhere.

(The line of force r = cos 2T corresponds in our old coordinates

to the line of force r = I' 1 cos 2T.) Since the Hamiltonian H of

(1.9) is a constant of the motionY the particle is restricted to
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lie in the region 0 ii V 9 H. This region assumes three different

forms derendins on whether H is less than) equal to, or greater

-t-.Ijan 1/A2.

Figure 5. Allowed region V(P.,z) ;9 H for H < L52

Figure 6. Allowed region V(P,,z) > 1/32.
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Figure 7. Allowed region V(P^ z) s H for H = 1 .

From Figure 5 we see that any trajectory starting in the oval

like region surrounding the curve V 0 (r = cos 2T , with initial

energy less than 1/32 can never leave this region for otherwise

it would encounter larger values of V. The almost periodic

motions we shall find will all lie in this oval like region ., where

the value of H will be very small. These solutions will gyrate

about the line of force r = cos	 and oscillate back and. forth

across the equator. Furthermore, we shall show that these motions

can penetrate arbitrarily close to the dipole., a result which was

somewhat unexpected.

One cannot expect to trap particles with H > 1132, since the

i
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region V s H extends continuously to infinity. However, for just

this reason these solutions are important. Namely, a trajectory

cannot extend into the dipole from infinity unless H > 1/32. Such

it
trajectories play a role in the theory of the polar aurora (Stormer

[14])•
Unfortunately, there are no further known constants of the

motion, so that the system of equations derived from the Hamiltonian

(1.9) is as simple a system as one can achieve. In general, it has

no known explicit solutions. The equations can, however, be solved

in terms of elliptic functions for the special initial conditions

Z = z _ 0

in which case the orbit is confined to the equatorial plane (since

the magnetic field is perpendicular to the equatorial plane, and

the force qv x B is perpendicular to B). The general properties

of all equatorial orbits can be obtained by considering the in.egral

curves

E 2[p2 + (p -)2]
P

(1.11)

in the p - p plane (Figure 8). As is to be expected, the shape of

the trajectory depends on whether E is less than, equal to,, or

greater than 132.

h

L



At

16

Figure 8. Integrals curves in the p	 plane for
equatorial orbits.

For E > 132 all trajectories run off to infinity, and no

periodic solutions exist. For E = 1/32, the circle p = 2 is

a periodic orbit (in the x - y plane). Moreover, one trajectory

spirals into this circle from within and one from without (Figure 9).

For .6 < 132 there exist two distinct types of orbits. For

P  < p < 22 the orbits are all periodic. and for p > 2, the or-

bits run off to infinity.
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Figure 9. Orbits in the x y plane spiraling into a
periodic orbit, for E 1/32.

Stormer has done extensive work in calculating other families

of periodic solutions [14]. A general method to obtain all these

periodic motions was presented by De Vogelaere [4]. We shall. ob-

tain., as a corollary to our result on the existence of almost

periodic solutions, infinitely many periodic solutions, which like-

wise will lie in the oval like region of Figure 5.

The behavior of the equatorial orbits for small excursions out

of the equatorial plane may be examined by perturbation methods.

Expanding V as a power series in z and applying Hamilton's

equations, one obtains

P
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(-U- z = Q + eat J }	 {1,12 j
P

p + 
1

( A-1) (2-A) p + &?(z2).
R

If the Terms of second and higher order in z are neglected, the

solutions to equation (1.13) are the equatorial orbits, and are

therefore known periodic functions of time (for A < 21 E < 1/32).

Equation {1.12} then becomes Hill's equation. Its solution can be

written in the form

z = Ceat*(t) + De-NW)	 (1. 14)

where C and D are arbitrary constants and IQ) is periodic in

time with the same period as jt). The constant S2, the character-

istic Poincar"e exponent determines the stability of the orbit. It

can be only real or purely imaginary. If a is real and 1 Q^
the motion in the z-direction grows (within the approximation made)

without bound. If 92 is purely imaginary the motion is bounded

(for time intervals in which the neglected terms have negligible

effect) and is therefore stable. The behavior of a as a func-

tion of y1 has been studied by De Vogelaere [>] who finds that

all orbits are stable for yl > 1.3137.

In Section 3, we shall show the existence of a family of two

W._

a
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dimensional invariant tori in the four dimensional phase space of

a particle. Any trajectory starting between two such tors can

never escape, and will remain trapped between these two tori for-

ever, This is a much stronger result than De Vogelaere's. However,

our result is only valid for values of Yl much greater than 1.3137.

2. Almost Periodic Motions, Moser' s Theorem

(a) We will be concerned in this paper with Hamiltonian systems

of two degrees of freedom, and, in particular, with proving the ex-

istence of quasi,-periodic solutions for systems close to integrable

t
ones. To this end we turn now to the discussion of two geo-

metrical theorems which will be basic for the following. These

statements refer to area preserving mappings defined in an annulus

in the p.iane. How the reduction of the differential equations to

a mapping can be carried out Tire will see later on.

To describe an annulus is the plane we use polar coordinates

R = x2 + y2 and the polar angle e. The annulus is given by

1 S R S 2

and. the area element by

tThere is a theorem by Kolmogorov and Arnold [2] guaranteeing the
continuation of quasi-periodic motions under small perturbations
of the Hamiltonian. However, this theorem does not quite apply
to our case since the second frequency w 2 will be small.. For
this singular case we resort to Moser's theorem.
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J kt first we consider a sJln,,)le type oi` mapping which we shall call

a "t-elct mkpping!' M 0

Ri 
= R

el = e + Y(R)

which clearly preserves the area element as well as concentric

circles R = constant. Each of these circles is rotated by an

angle y(R), which, in general, dePends on the radius. It will be

a basic assumption for the followinZ that Y(P) is not a constant.,

or; more precisely' that

67J0 in I :-^ R 9 2.

The properties of this mapping are easily understood. Each circle

R = constant for which 7/27r = p/ q is rational consists of fixed

points of 0. Each circle for which Y and 27r are incommen-

surable is densely covered by the images of the iterates Mo(q

1,2) ...) of any point on this circle.

Our main objective will be to discuss a mapping M which is

close to the twist mapping Mo . Therefore) we consider a mapping M e

20
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Rl R + of (R, ej, e)

gl : e + y(R) + eg(R,e,E)

(2.2)

where f,g are assumed to have the period 2ir in e. This mapping

is defined in the annulus 1 s R s 2 but need riot mete this annulus

into itself.

Theorem (Poincare-Birkhoff). Let y'(R) 4 Q and let Me be area

preserving for all. e in the sense that

f Rd.S = f Rdet
C	 MC

for any closed curve C. Given any rational number pfq between

,my(1) grid 2r► y(2) there exist 2q fixed points of Mq satis-

fying

R RC

e	 e + 2mp

provided c is sufficiently small.

This theorem,is actually a very simple version of the celebrated

i2

tFor simplicity we write M in place of Me.
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na mush deeper fixed point theorem by Poincaree and. Birkhoff in

which no smallness assumption is required. The present theorem

i-W a consequence of the :implicit function theorem: One sees

immediately that; the qth iterate of M has the form

Rq R + 0(E)

Oq 0 + qy(R) + ^(E)

and	 by the implicit function theorem - there is a unique R

F(6, c) satisfying

0q = 0 + 2 7T

for sufficiently, small E. This solution R F(e,c) represents

a starlike curve C which is mapped "radially" by Mq, since 0q

and 0 differ by an integral multiple of 27r. Since the mapping

M and hence M  preserves the area f Rd0 it follows that C
C

and the image curve M 
q 
C intersect in at least two points. These

points are clearly the desired fixed points. If P is one fixed

point ., 	 ...,?^Iq-lP provide q - 1 further fixed points and the

theorem is proven.

It is important to observe that we had, a continuum of fixed

points of Mq for E = 0 while for e > 0 we predict only a

finite number of fixed points. In fact ., it can be shown by examples

that in general the curve of fixed poir^cs breaks up into a finite set
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(2-3)
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of fixed points.

Now we turn to the question of what happens under perturbation

to those circles R = constant for which y(R)/27r is irrational.

This is the content of the following theorem which will not be

proven here.

Theorem  (Mo ser [111). Let yl (R) j 0 and let any curve C sur-

rounding R = 1 and its image curve MC intersect each other.

The function fi g are assumed to be sufficiently often differ-

entiable. Then., for sufficiently small E there exists an

invariant curve P surrounding R = 1. More precisely ., given

any number w between y(1) and y(2) incommensurable with 2.7T,

and satisfying the inequalities

27T-

..
 q^	

cI qj _1/2

for all integers p,q, and some constant c > 0 ,.'there exists a

differentiable closed c1arve

d

0 = ^ + G( ,t .9 E)

with FJ G of period 27r in 0, which is invariant under the

mapping ME -- provi:led e is sufficiently small. The image

r	
,point of a point on the curve (2.3) is obtained... by replacing

,r
1.

t

^i
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by t + co.

In actual fact this theorem provides not only one but infinitely

many invariant curves. We observe that the intersection property

for curves mentioned in the above theorems is certainly satisfied if

the area f Rde is preserved. Namely, if C is any curve surround-
C

ing; R = 1 so will the image curve surround R = 1. If the curves

C and MC would not intersect each other one of them would lie in-

side the other and the areas f Rde and f Rde could not agree.
C	 MC

For later applications we need an extension of the previous

theorem'. If the mapping (2,2) is replaced by

Rl = R + e of (R, e, e)

el e + a + E p y(R) + Eog(R)e,E)

where 0 s p < a, then the conclusions of the previous theorems re-

main true. The essential point is that the perturbation term is

small compared to the "twist" epy(R).

To apply Moser's theorem to prove the existence of invariam0

tor; for a Hamiltonian system of two degrees of freedom, we first

approximate the Hamiltonian H, (if possible) by an integrable

Hamiltonian Ho; i.e. we write

H _ H0 (R1 R2, e) + e ^H1(R1, 81' R2 9 e2 J' E)	 (2.5)



where w1 = CH  Al
 is of order one, and the frequency ratio

an/in. varies over a region of order C with k < 102 = To OR2 ) .

on the energy surface H c we solve for

R1 O 
(R2' 

0102).
	 (2. 6)

Using 81 as independent variable instead of 	 t and setting

R2 _ R, e2
= e, we find from Hamilton's equations that

m

dR _ -He 	 de	 HR̂- .del _ HRl ' de1 %'1
(2.7)

One verifies easily that on H c these equations take the form

del	 1e	 de	 R
	 (2 ^ 7 ) r

where I is defined in (2.6).

The system (2.7) is again Hamiltonian, of one degree of freedom,

but non-autonomous. To eliminate the independent variable we fol-

lost the solutions from e 1 = 0 to the next intersection with e1

27! This defines a mapping which -- by Lionxille ' s Theorem --

preserves the area f Rde. This mapping will have the form

R(2tr) R(0) + Q C I )

e (2tr) = e (a) + a + e y (R) +
(2.8)
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with y' (R) :^ 0. Note that the condition y' (R) 4 0 means that

the frequency ratio w21w1 varies on the energy surface H ^ C.

The important point is that the frequency ratio varies over a

region which is large compared to eX. i.e, the twist eky(R) is

small compared to the neglected terms. Moser's Theorem guarantees

infinitely many invariant curves of the mapping (2.8), for

sufficiently small c. Any curve invariant under this mapping

generates an invariant torus if we take all solutions which issue

forth from the invariant curve ., and on these Lori, the motion is

quasi-periodic with two frequencies.

In this case a quasi-periodic motion will densely cover a two

dimensional invariant torus in the four dimensional phase space of

the particle. Any trajectory starting between two such tori must

always remain between these two tori. (Warning: This is not true

for n > 2.) This provides a powerful tool for proving the sta-

bility of periodic orbits. In the following section we shall show

the existence of quasi-periodic motions in the earth's magnetic

field which lie near the equator. All trajectories near the

equator which are caught between two such tori must remain near

the equator forever. This is the stability result for "near

equatorial" orbits which we mentioned in the preceding section.

(b) We would now like to show how one goes about approximating

H to higher and higher order by an integrable Hamiltonian. The

method we shall present is known as the Lindstedt method [13].
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For simplicity we shall restrict ourselves to systems with two

degrees of freedom.

Consider a Hamiltonian H of the form

Hl '1 1 + o2'2 + eH1 (xl-x2P yly y2) + E2H2 + ...	 (2.9)

where xi is conjugate to y  and H has period 2Tr in yl

and y., i.e.L

H (x, yi+21T) = H(x.,yi).

We would like to f n.:L new canonical_ variables xl^y^ so that H

will be independent of the angular variables yl,y2 through terms

of order n. To this end we consider a generating function of the

form

S _ ylxl + y2x2 + ESl (xl) xtylP y2) + E 2 S 2 + ...	 (2.10)

with

xi	 yt

If we denote the Hamiltonian H expressed in terms of the primed

variables by



2V

(x? )yl	 wlxi + Co2x 1
2
 + etll (x I xt) + e 2 + ..o	 (2.11)

then from (2.10)

H(x' + E
CS

 1 + ..., xt + E
ll + ..., y ^y) = H.

1 1-	 2 2	 l 2

Equating terms of order e in (2.12) we see that

^S
^' + cu cal = H (x' x t ) - H (x ' , x' , Y , y ) •

01(71 272 l i^ 2	 1 1 2 1 2

(2.12)

-'.13)

In order for S  to be periodic in yl and y2 we must require

that the right hand side of (2.13) have mean value zero. Hence

2Tr 2rr

Hl (xl, x2} = ^	 Hl (xi1 x2, yl, y2) dyldy1	(2.!4)  
()	 0	 0

i.e. Hl is the mean value of Hl . We still cannot solve for Sl

since a Fourier series expansion will contain the small divisors

jlal + j2a^ o We therefore :,.•equire that the frequencies satisfy

the infinitely many inequalities

I ( j ^ W) ( ? 7d j I T	 (2. 15 )

for all integers j 1,j2 with M = Ij l l + 1 02 1 > 0, and with some

constants r and T > 1. If the right hand side of (2.13) has

the Fourier expansion
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T ak (x 1 ) 
e i (kj, Y)

k^o

then S  is given by

S =	
ak(x') e

i (k' Y) •
1 k4o I, ua

To determine S  we note that equating terms of order k in

(2.12) yields

1

(DI  
^ + w aSk .^	 + G - H
7 2 ^ Hk k Hk (2. 16)

r.

where GI, depends only on S ig Hip 0 s i s k 1. Thus	 is

determined by setting the mean value of the right hand side of

(2 0 16) equal to zero ., and then Sk is determined. To eliminate

the y dependence of H through order n. we simply truncate the

series for S of cr enSn.

The above method may be extended to the case where the lowest

order term Ho of H is given by

Ho = HO (xl, x2) .

We simply ch ,.)ose x'	 x  so that

GJ.	 ZHO (xo)
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are rationally independent numbers satisfying (2.15), and then re-

strict the variables x t to a small neighborhood.

I 
x1

-x0I = &,(Cn+l ) -

Finally, if the frequency o)2 is zero to lowest order, we

first eliminate the yl dependence of H through order n. Then,

if we can find new variables so that 71 is also independent of

yr„ we may eliminate the y 2 dependence through order n.

3. Vain Result. Existence of Quasi-Periodic Motions

(a) in this section we will prove the existence of quasi-

periodic solutions of the Stormer problem. These motions will all

lie in the oval like region of Figure 5 and will satisfy H << 1/32.

Moreover, these motions may penetrate arbitrarily close to the

dipole.

(b) Dipolar coordinates. Since our intuitive idea of the

motion is a gyration about a line of force and an oscillation a-

long the line of force, it is natural to introduce new "orthogonal"

coordinates a(p, z), b (p, z) such that the curve a(p, z) = const.

defines a magnetic line of force. The magnetic field lines are

given by the equation

a = r	 , (a = const.).	 (3.1)
cos



^1

From the equation

	

77+7 -g-
	

(3.2)

we find that

	

b (p p z) = s_n27^
	 (3.3)

r

(,Any function of b together with a provide an orthogonal co-

ordinate system.) The new canonical variables may be obtained

from the generating function

F(p) z) paP pb ) = a(pl z)pa + b(p,z)pb

by employing the standard relations

c)F	 3a
a -'= a ( p , z ); pp_--	 Pa 	 Pb67-

b=.^.=b(p,z); pZ^Mz -pa+'9Pb

(3.4)

(3.5)

In terms of these new variables the Hamiltonian H of (19) takes

the form



'A2

2	 2	
2

	

1 pa "b	 (a-l)H (a, Pa) b, Pb )	 + -. -T)+	 (3.6)
	h 

P, 
N	 2a' cos A

where

h2
	 cos6N	 2 a6cosl2X

 
a 1+3sin2N 

Y N	 0	 (3-7)

It is understood that sin T and cos	 are to be expressed in

terms of a and b.

We now wish to restrict ourselves to a region in phase space

where the energy H will be small. This is to conform with our

notion that in the course of one gyration, about its guiding field

line, the particle should see an approximately constant magnetic

field. Thus we consider the change of variables

a I= e 2 a	 b ep

Pa 
C 

2 P a	 Pb 63 PP
	 (3-8)

"I

where e is a small parameter. The condition

that we require the particle to remain near the

r = cos 2 . 
Our system will remain Hamiltonian

H((Y,,P, pCV,pP ) = H/e 4 *

Our next step is to try and approximate H

2
a -l= ea means

guiding field line

if we take

(3.9)

by an integrable

-19,
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Hamiltonian. To this end we first show that T(a^b) is an

analytic function of a and b for b small. Squaring equation

(3.1) and multiplying by (3.3) yields

^ T
alb =	

in	
.

(1-sin )
(3.10)

The derivative of the rig Int hand side of equation (3.10) with re-

spect to T is one at T = 0. Therefore, we are guaranteed. that

^\ (al b) is an analytic function of z = a2b for I z I small.

Hence, we may write

sin A = e 2 p 2 + 4e4 (op 2-P4 ) + Cxl(a,P,e)
(3.11)

cos-6T = 1 + 3e 2P 2 + 6e4(2o,P2-P 14 ) + G2(a,P,e)

where G  can be written in the form e6 G̀:i (a P, e) with Gi

analytic in the variables a,p,e. These expansions are trivially

derived from the relation

a4b2 = _ sin 22\

(1-sin ) .
( 3.12)

The Hamiltonian (3.9) may now be written in the form

H=Hn+H2+H4+H6	 (3.13)
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where

a2+p2

Ho - —

2	 r

H2 = ( 6p P 4a + .p +3 p a2)

3e4 	2 2 4 2	 2 2 2 4 2 4H4 = .^,, (24^ pa 3R p^; 2ap^+3P p
P

+ 2a -2a P )

and

H6 = e H6 (a, R, pa, pP ) e )

with H6 analytic in all its variables.

We shall now show that Ho + H2 + H4 can be transformed into

an integrable Hamiltonian, modulo terms of order e 0
. Firstly,

define new coordinates R,e via the formula

a = 1/rK sine, p
a 

^ cosh.	 (3.14)

From their definition, R and 6 are ceeionical coordinates. The

magnetic moment M of the particle will be proportional to e 4 R

(to be shown in Section 4). Note also that Ho = R, and R is

constant to order e 2. Next, we employ Lindstedt's method to

average out the e dependence of H to order e6, i.e. we define

new variables R I , e',p',pl so that H is independent of e'
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through order e	 The frequency cut of (2.9) is zero, while

wl _ 1. In the notation of Section 2.

H	 1 f H d@ = E2[9R' (P') 2 
+ (p') 2]
	

(3.15)2	 0 2	 7

and

816 
2

2Tr	 Cd'1 'Cc2E81ST 2
H4 -
	 f [H4+

e2 	+ E2
	

_ 
E2 

3'	 ']d@.	 (3.i-6)
o	 p

The generating function S2 = S2(R'^@^^tPp) is given by

S2 = - 7[3 

2 
t sin 20 - 4(2R') 3/2 ( - cos @ + CO

S3 
)]•	 (3.17)

Performing the integration in (3.16) we find that the Hamiltonian

.'3.13) may be written in the form

H = H° +H2+H4+H6	 (3.18)

where

H R0
2

H2 = -ET 9^ +Pp )

H4 _ 7-(9p p2- 2t2 - 6	 ).
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(we have suppresses the primes for convenience), and H = O(e6).

For fixed R the curves

916 2 + pP2 = const.

are ellipses in the P, p  plane. These curves may be transformed

into circles (with the same area) by the generating function

F((9.,P;Rl n? ) = (9Rl) 1'4Pp^ f + 9Rl .	 (3.19)

Setting

^' = y ^ 2 sin 9 2-' 	 y72 cos 8 2	 (3.20)

we see that H2 is independent of 9 2. Hence, we may employ the

Lindstedt method to average out the 9 2 dependence of H to

order e	 In terms of new canonical variables which we again

call Rl, 8 1, R 2, 9 2, the Hamiltonian H now assumes the form

2	 E4	 2 i3R2H = Rl + 3e R2"R + - (-21R1 +	 ) + H6	 (3.21)

where H6 = e H6 (R1 ,R2 , 9 1 , 9 2 , e), with R6^ analytie in all its

variables. Thus, we have succeeded in approximating H by an



.
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integrable Hamiltonian

F H- H6

to order e6 . We now apply Moser's Theorem to prove the continua-

tion of quasi-periodic motions under the perturbation H 6. As

described in Section 2^ we solve for R1 = O (R2
0

1x0 2-' E) on the

energy surface H = c. and take 0 1 instead of t as independent

variable. We then follow the solutions from e1 = 0 to their

next intersection with e1 = 27T. This defines an area preserving

mapping which we denote by M. Since

d8 2 _ "R2 _ 2 - 23 4	 +	 E6	 22d8	 F^" 3E	 E R2 	^'( )	 (3• ) .
l	 R1

and

1/2 _ c1/2 - 3E R2 +	 4  
R1	

2	
0(E ) ^	 ( 3 . 22)1

the mapping M has the form, in the coordinates R = R2-' 0 = 02,'

rV

R = R (21') = R + E6f (Rj, 0 .9 E )
M.

	

	 (3.23)
r,.

2 1/20 = e (2ir) = e + 3e c 	 _ 
7 4ER 	 + E6g(RjO,E)



38

where R = R(0), 0 = e(0) and f^ g are analytic in the variables

R, 0, e. This mapping is of the form (2.4) with p = 4, a = 6, and

t

y ' (R) _ - 59 j 0.
8	 -

Hence ., Moser's Theorem applies.

Thus, we have established the existence of quasi-periodic

motions with two frequencies for sufficiently small c. Since we

restricted b to be small all these motions must lie near the

equatorial plane. Moreover ., these motions gyrate tightly about

the guiding field line r = cos T or r = I' lcos h in our old

coordinates). A typical motion is illustrated in Figure 10.

Figure 10. A quasi-periodic motion in the p - z plane.`"
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These orbits all cross the magnetic field lane at an angle near

900 since the velocity of the particle parallel to the magnetic

field is much smaller than the total velocity. Tnis follows from

the fact that Pb = e 3pP is of third order small whale pa

e2pa is only of second order.

(c) Quasi-periodic motions which penetrate arbitrarily close

to the dipole.

Our goal now is to prove the existence of quasi-periodic

motions which need not lie near the equatorial plane. To this end

we ccisider, instead of (3.8) the change of coordinates

Ab

S

a - 1 _ ca b - ep

pa = epa 	pb Epp
(3.24)

where again E denotes a small parameter. Let M and N be two

fixed constants ., with N very large. We then consider all vari-

{4
	 ables to be complex, and restrict ourselves to the region T

defined by

lal + IpaI + IpP I ^-- M

IRebi ;^N (3.25)

Im b  s s (M,Nse)

^^ f
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where & depends on MN, and e and will be chosen so that the

Hamiltonian (3.6) is analytic in the variables a,b,pa,pb in the

region T, for e sufficiently small. To find the singularities

of H in the complex 4-space we consider again the equation (3,10)

s in T

(],sin 2T)

With 7 = a b and y sin 'N(a) b), we observe that

dz 1+3y2
cly. _ (1-Y 2 3 . (3.26)

Hence the only singular points are y = +l, y = ± i 0 It is

clear that for fixed M and N, S may be chosen so that sin T

+l for Irn bl s B., and E sufficiently small,. The points y

± i/ v/-3 correspond to the points

z= alb= ±i 3v3
16

Letting a 2 = al + ia2, b 'V + ib 2, we see that
1r

alb = alb, - a2b2 + i(alb2+a211). (3.27)
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For fixed 14 and 11, we now restrict S and a still further

so that

alb 2+a^b11 5 3

thus excluding the points z = ' 3 V3 . The new Hamiltonian

2	 2
p	 p	 2

H(x^ p ^^ p,^ E) _	 H(aY )p a'  Pb) = 12 0' + -7 +	 (3. 28)
e	 ha N	 2(1+Ea) cos ?^

is now analytic in all variables in the region T. Note that al-

though N is fixed Y it may be chosen as large as desired. The

points (a = 1 + Ea) b N) all lie very close to the dipole, and

approach the dipole as N -a oo.

(d) Our next task is to approximate the Hamiltonian by an in-

tegrable one. We cannot expand H in powers of Ea and EP as

we did previously, since now P — 1/e. Instead we expand H in

powers of (a-1) = Ea only. Since sin T and cos 
1 

are analytic

in T we may write

1 + 3 sin 
2 
T  Kl (b) + F1 (a, b)

cos -& T	

(3.^9)
 = C 1 (b) + F2(a^b)

.

i

i

A

1.

1	 '
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where Fi (a,b) = &((a-I)). { &((a=1)k) denotes an analytic

:function which vanishes, together with its first k - l derivatives

with respect to a, at a =.1.) The Hamiltonian (3.28) may thus

be written in the form

	

H = Ho + Hl	 (3.30)

where

2

H = C1 (K 	 _p2^.a ) 
+ K1Cl 

P
2 	 (3.30)o	 1 a 

and H1 = EHl (, E^, pa, p E) , with Hl analytic in all its variables.

The arguments of the functions C1 and K1 are b = 0.

(e) The next logical step is to transform the Hamiltonian Ho

into an integrable one modulo terms of order e. We start 'by

finding new variables a' , pa so that Ho is a function of (a) +

(pa) 2 alone. These variables may be obtained from the generating
function

fp r

' (a, P, pa, pt ) = K1l'4QPa + --	 (3. 31)

where the argument4: of the functions Kl and f are ep. It

would suffice (for the purpose stated above) to take f cP. How-

ever ) a judicious choice of f will enable us to express Ho

A



4^

explicitly, and thereby simplify most of the later calculations.

he new canonical variables nxIpt f0 ,10 1 are determined from the

relations

1-14
Kl PI ; PI

a	 ann

	

P	
(3.32)

al = ^
V 

= K- 1 /4
I )

. 

fp	

C)F f(1)PI	 -1/4 K (I)
I	 i	 C19
a

where K (l) and f(l) denote the derivatives of the functions
1	 K,

and f with respect to b = ep.

A point in the p - z plane is determined from the coordinates

0( 1 ,f, l in the following manner: Given a , and PI ., the point lies

on the magnetic field line r = a cos 2A J. where

2 V4
a	 + ea' [1+3(,EP I ) I ^ • (3-33)

The coordinate b on this magnetic field line is then found from

the relation

f(b) = f(eP) = ep'.	 (3.34)

We cannot solve (3.34) exactly for b. However ., for the f we

shall determine is will be seen that as eP I increases (decreases)

to +1(-1) 1 b increases (decreases) to +co(-co); and that the

-_I
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a

latitude 1t, for a = 1, is precisely

sin-1(01).

Thus, '(t) essentially describes the motion along a line of

force, for the coordinate a near one. in terms of the primed

variables the Hamiltonian (3.34) assumes the form

H = -- 2 [ (a') + (p ') + c	 ') 2(p') 2] + H	 (3.35)2	 a	 ^. l	 ^	 l

with Hl :̂. Q(e)

(f) We shall now show that the Hamiltonian Ho is an in-

tegrable Hamiltonian., i.e. we shall find new canonical, coordinates

R, e, J, ^V so that Ho = Ho (R, J) . To this end we define canonical

coordinates R,e in place of a',pt by the relations

	

_ N/FR sine, pt = -v/2R, cose.	 (3.36)

Ho is now independent of e. Hence the coordinate R, which we
r

shall, later show (see Section 4) is ;proportional to M e 2, is a

constant of the motion to lowest order in e. To lowest order, 8

is given by the equation

•

	

e = cul 
= ClVI**,K—1 .
	 (3.37)



Hl
Fl=-.

l

(3.39)'
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But the quantity on the right hand side of (3.37) is the magnitude

of the magnetic field along the lane of force r = cos	 (see (1.1),9

(1.2) and (3-29)). Thus ' we have confirmed our intuitive notion

that to lowest order the particle gyrates about its guiding field

line with the cyclotron frequency w1.

It is convenient at this point to introduce a new time scale i

so that the frequency col becomes one, i.e. the particle gyrates

about its guiding .field line in the new time scale with constant

frequency. This is easily accomplished by setting

T = f veldt.	 (3.38)

Our trajectories are now the zero energy solutions of the Hamiltonian

.

i = L (H-h) = Fa + Fl
l

(3.39)

where h is the constant value of the Hamiltonian (3.35) and

Fo = R + 1	 (f 1 )2 (p,  ) 2 - 2h)
1

Thus, to lowest order we have decoupled the motion in a',pa and in

This puts into evidence the integrability of the truncated

system.

-	 a0
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2
= 1+ 3y 

with y = E^^
1 (l3

f, (1-f 2)3 O 3 =	 1	 .
1+

_3'^_ 
1+3yL co, 1+3y2

and

I

In this approximation the motion in the p'^pl plane is

described by the Hamiltonian

z

1

which we now calculate. For this purpose we observe that wl =

C1N/K—i and f t all are expressed in terms of f(b) = f(EP) = Ept
if we define f(b)  by

b = - f	 (3.41)
(1-f ) •

Therefore, 0 can be expressed in explicit algebraic for*rl. To

show this write

sin T = f1 (b) + &((a-1) )

where we have fl = fsee a b	 sin T(	 ). Then compute
(1-sin)
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1'rence

1	 (P') 2	
_ (1- y2) 3 (P^) 2 

_	 ^E— — — 2ha _ —^[— 2	 , .	 (3.42)
l 1+3y	 2 1+3y- 

1+3y

The motion in the 
Pl,pf 

plane derived from the Hamiltonian

F  is qualitatively determined by considering the level curves

(see Figure 11)

C = -
h(1- y2)3 

+ l	

(1_y2) 3 
(p t  )2

(1+3^r/'2 2 (1+3y )	 P
(3.43)

in the P''p, plane. For c > 0 these curves are not closed and

asymptotically approach the lines y ±1. The curves corresponding

r^	 to c .-= 0 are hyperbolas defined by

2(PI) 2 _ 3hy2 = h.	 (3.44)

f^

r,T

i^
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For c < 0, the components of these curves in jyj < 1 are all

dosed, and lie inside the domain bounded by y = ±1 and the hyper-

bole, with the point s in Figure 11 determined from the equation

h _ (1+3s2 
l 2

_ C	

(1-s )
(3.45)

The quasi-periodic orbits obtained previously correspond to small

oscillations in the P I ,pt plane about the equilibrium correspond-

ing to equatorial orbits. Since we are only considering the zero

energy solutions of F, the constant c is essentially -R. Hence

,r-'(T) and D I (T) will be periodic functions of ti if we neglect

the term Fl in (3 0 39). Thus we have justified our intuitive idea

that the guiding center of a particle oscillates along a line of

force between two mirror points. This motion is indicated sche-

matically in Figure 12. To lowest order, the particle mirrors at

a latitude ?r = sin-1s where

h _ (1+3s 
2)1/2

R - (l_s )
(3.46)
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Figure 12. Schematic description of guiding center motion.

Thus ., the smaller R. the closer the particle approaches the

dipole. It is also clear from Figure 11 and the discussion con-

cerning the coordinates a'.,p' that there exist orbits of the

unperturbed system F  in the region Ibi s N which achieve

Jb) > 3N/4.

Finally, since the curves (3.43) are closed for c < 0. we may

introduce the familiar action-angle variables J.,^ in place of

PT.,p^., where the action J is given by

J- 4^

s 	 2)	 (	 2)3 211/ 2
f n (1+3^s- C (1+ 3x	 dX .
o	 (1_x )

(3.47)
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(J is simply the area of the closed curves (3.43) in the P',pl

plane.) In terms of the variables R., 0 9 J^ (P the Hamiltonian F 

takes the form .

Fo=R+c(eJ).	 (3.48)

Thus we have succeeded in showing that the Hamiltonian F  is

integrable. The two frequencies of motion determined by F  are

C)F

zul_ .^°= 1

d)F
o	

Fc'M2 777

(3.49)

where c' denotes the derivative of c with respect to EJ„ In-

cidentally ., the fact that cat is proportional to e is in

agreement with our notion that the particle oscillates slowly a-

long a line of force ) while gyrating rapidly about it. Note also

that the action J., which is the longitudinal adiabatic invariant

divided by E2.9 is constant to lowest order.

We now apply Moser's 'Theorem to prove the existence of quasi-

periodic motions for the full Hamiltonian

F = R + c (EJ) + EF1(R.9 EJ1Y 6 1 0 V e)	 (3. 50)

where 
F1 

is analytic in all its variable. On the energy surface
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F = 0 we solve for R = 0 (eJ, 8 ) ^, e) and take 0 instead of t

as independent variable. We then follow the solutions from 8 = 0

to their next intersection with 8 ^ 2n`. 'This defines a mapping

-which in the coordinates r = eJ, ^ is given by

rl = r(2rr) = r + e2f(r)^Jqe)
^:	 (3.51)

l	 4)(2Tr)	 ^ + oc' (r) + e2g (r) e)

with f,g exialytic in all its arguments. The intersection property

of a curve with its image curve still holds ., trivially. Hence, the

above mapping M is of the form (2.4) with p 1. a ^ 2 and

y (r )	c' (r).	 (3.52)

To apply Moser's Theorem now } we need only verify the condition

y ► (r)	 c" (r) ^ 0	 (3.53)

i.e. y(r) should be a monotonic function of r. Unfortunately,

we cannot calculate y(r) explicitly and must be content with

numerical calculations. Figure 13 below shows the graph of y(r)

versus c. It is clear that y(r) has a single stationary point

at c = -.70. At this point the non-degeneracy condition (3.53)

is violated.
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Figure 13. Graph of y(r) versus c.

Thus ., with the exception of one point ., Moser's Theorem guarantees

the existence of quasi-periodic motions ., close to the unperturbed

motion defined by the Hamiltonian Foa for sufficiently small c.

Since some of the unperturbed motions achieved I b) > 3N,/4, then for

sufficiently small E there will exist quasi-periodic motions for the

full Hamiltonian which achieve (bl > N/2. By choosing N aritrarily T

3
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large these quasi-periodic motions can penetrate arbitrarily close

to the dipole. Of course, the larger we choose N, the smaller we

must take c, i.e. the tighter the particle gyrates about its

guiding field line.

We now wish to schematically describe these quasi-periodic

motions in coordinate space, rather than phase space. In the p

z plane the particle is confined to the oval like region in

Figure 5. with V very small, and it rotates slowly around the

z-axis in accordance with the equation

f ( l - P)dt'  + const.	 (3-54)
P r

It will be shown in the following section that the quantity

Pbb 
2/h 

2 
in (3. 6) is v,2  .9 where vit is the velocity of the part-

isle parallel to the magnetic field. To lowest order in c we

then have

2 23V11	 h [1-(EPI) 1.7 -1 + I

V,	 [1+3(EPI )21
 J

(3.55)

For R small., the particle crosses the equatorial plane	 0)

at an angle near 90
0

As cp l increases to its maximum value s,

the quantity v,,
2 
/vi decreases monotonically to zero. When the

particle crosses the field line r = cos 2T, ; = 0, and hence the

velocity vector lies in the meridian (p - z) plane. Thus ., the
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particle crosses the guiding field line in a sequence of angles

which monotonically approach 90o. This situation is illustrated

in Figure 14.

Figure 14.

As the particle moves back toward the equator, the crossing angles

begin to decrease monotonically, until the particle is moving nearly

parallel to the field at -che equator. Note that as the particle

moves into regions of high lattude P it begins to gyrate rapidly,

since the cyclotron frequency becomes large.

(g) As a corollary to the above result on the existence of quasi-

periodic motions ., we are automatically guaranteed infinitely many

_',;^	 ,;
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Iericdic solutions. We outline the proof briefly. Each quasi-

- .eriodio motion densely covers a two dimensional invariant torus

in the four dimensional phase space of the particle. Moreover,

this torus must lie on the energy surface H = const. We now cut

the -,Uoruc with a surface of section S, and consider the mapping

induced on 3 by the differential equations; i.e. M(P.

is the point where the trajector y beginning at P returns to S.1.	 -

From the form of the Hamiltonian F of (3.53), it is possible to

introduce coordinates R.0 on S . so that the mapping M has the

form

R1 = R + C 2 f (R) e ) C)

M:

e1 
= 0 + 67(R) + c 

2 
g(r, e, 6).

A mapping M of this form is referred to as a "twist" mapping, and

the Poineare-Birkhoff fixed point theorem (Birkhofl' [3]) guarantees

the existence of at least two fixed points. Since each fixed point

represents a periodic solution, we have estab2ished the existence of

infinitely many periodic solutions to the St '01 rmer problem (which al-

so lie in the oval-like region 5. with H very small).

4. Quasi.-Periodic Motions in a Rotationally Symmetric Magnetic
"Mirror" Field.

(a) We consider now a rotationally symmetric magnetic field

B, i.e. a field which is independent of the azimuthal angle 4).
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The motion of a charged particle in such a field can be described

by a 1kqmiltonian of the form

H(P,Zlpp.vpz )	 I(pp2
= 	+ P2 

+ 1(p - (P, Z) ) 
2
Y	 (4.1)

where we have normalized the mass and charge to be one, and r

is the constant electromagnetic angular momentum of the particle.

The magnetic field B may be determined from the equation

X,	 (4.2)

with

A(Pz)^.

The components of B in the P and z directions are then

	

P	
(4.3)

	

B z	
pA)

We make the following assumptions on the magnetic field B:

(i) The field strength is a convex function along a segment

S of a magnetic field line 1.

4

t
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(ii) The potential A(p, z) is are analytic function of p

and z in a neighborhood T of S.

(iii) The magnetic field is unegaal to zero on S.

Under the assumptions (i-iii) we shall prove the existence of

quasi-periodo motions in T.

(b) V,e main step in our proof is to transform the Hamiltonian

(4,1) into a Hwailtonian of the same form as (3.6) . Tnis is

accomplished with the aid of the following Jrjemma.

Lemma: The magnetic lines of force are given by the equations
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I

Hence,

P	 P

1 which vanishes along the curve 	 .A( p, z) = c.	 Thus, •B = 0, and

the curves (4.4) coincide with the magnetic field lines.

Since b	 xi:^	 the magnetic field does: not vanish ^.n a neighbor-y (iii)	 g	 g

hood of	 S, we may introduce orthogonal coordinates 	 a( p , z), b(A, z)

such that the curves	 pa	 z	 = const.	 define a(^ )magnetic line ofg

force.	 By the preceding lemma we may take

n
a (p, z) - pA ( prz)• (4.8)

Ail The coordinate	 b ( p, z)	 is then determined from the equation

u as b +a	 0. (4.9)

`^ L

To effect a canonical transformation we use the generating function

F (a^ bt pa pb) = a,(p,z)pa + b(p,z)pb (4.10)

and the Hamiltonian- (4.1) assumes the form

(	 )H(a b p	 p	 = 1(h P2 + nn2P2) + ?-	 r- a 2> >	 b )	 2	 - b b	 2—
(4.11)

a-	 a a
!7IM

K<

 y^'>	 s t	 R^ 	 arm	 cr	
1
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where

ha = (^) 2 + (-^ ) 2

(4.^1) f

and the coordinates p^z are assumed to be expressed in terms of

a and b As mentioned in the previous section, the quantity

N

r,^

pb is v,2 . To prove this ., note that

n

v	
v B (PP p pzz) 1 ^ ., 6,Z

^^ = B	 B	 p(- NP 7- )

^z p 3p z

^ ( aa ) 2 + (^)2^1/2
7

by virtue of (4.3) and (4.8). But



L

ire

Pb	
x()2()2 + (

T
x ) 2() 2^.	

' 	 ^A

f

("gyp) 2 + ( 2a Pb

Npb .

(c) The Hamiltonian (4.11) is now very similar to (3.6)

and we proceed in the same manner as in Section 3. Our first step

is to consider only those particles with angular momentum r for

which the magnetic line of force

a( p, z ) = PA (PI Z) = P

coincides with the field line X. (Of course, if the magnetic

field is convex along every field line, then no restrictions are

placed on P.) As in the previous section we consider only those

trajectories which stay near the guiding field line a(p,z) r,

and which have small energy. Thus, we take



4
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with jaly Ipa(, 1P [ bounded and c sufficiently small so that

h 2 h,P-, and p2 are analytic functions of a and b. The new

Hamiltonian has the Form

2

e	 2p
(4,1.2)

To approximate H by an integrable Hamiltonian we write

h2 = al (b ) + &( (a-1)

N bl('b) +((a-1}

12 = Cl (b) + &((a-1) ).
P

The Hamiltonian (4.1,2) may then be written in the form

H = Ho + H.

(4,13)

(4.14)
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our next step is to introduce new variables a l pt in place

of al p a so that H© is a function of (fit) 2 + (p^} 2 alone.

This is accomplished by taking the generating function

F(a1pr p 1) = K 
apt + Opt

	where Kl = el/a	 in terms of the new variables H o assumes the

form

	

Ho .^	 alcl	 2	 + .^.(pa ) •	 (4.15)

Setting at = N/E sin 6, p^ = N/FR cos 8, we note that to

first order in e, R	 is constant and



Hence

64

2	 1 & 2 1 & 2
o,:L = alo,	 +

7P 	 p

2
+ (A + CA

p

2
B

S^ince e ip
% 2 = vil- to lowest order) it now follows immediately

that

v2

to lowest order.

Again we change the time scale so that the frequency w, be-

comes 1; our trajectories are then the zero energy solutions of

the Hamiltoniar,

F 
01

L (H - h)	 (4.17)
1



1

b I (ka
2
) - h

all
(k• 19)
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where the arguments of hl
 
and w, are eOt

To determine the motion in the W n t plane to lowest orJer

i.e. to determine the motion along the guiding field line 1. we

consider the level curves

in the Pt TjIP plene. Under the assumption that a), = B is a
11-

convex function, these curves will be closed for

Bmi. <- ^—'< B m.
c K

(4.2o)

where B,,,,in and Bmax are def ined in Figure 15 below, and E

is the energy of the particle. To show this simply write the

curves (4.19) in the form

2	 2	 CO,,).	 (4.19),

Hence the motion along S will be periodic for ch satisfying

(4.20). The region outside (4.20) is usually referred to as the

"Loss cone" of the particle, since one cannot hope to trap

i)articles in that reizion.
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j

Figure 15.

Finally, we introduce action angle variables T,4 in place

of ^ f , pfI (for c satisfying (4.2o) ). The Hamiltonian F now

may be written in the Form

F R + c ( 'Es) + eFZ (R, eJ, e, ,)	 (4.

}

Where F is analytic in alJ its variables. This is exactly the

situation we encountered for the dipole field. It remains to

check the non-degeneracy condition

i

i

1W
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with r = eJ. TLis is something which must be checked for each

magnetic field. Moser's Theorem will then guarantee quasi-

pevi,,aic motions in the region c"(r) 4 0. These motions densely
cover two dimensional invar,-Lant tori in the four dimensional phase

space of the particle, Moreover, any trajectory starting between

two such for can never escape. Hence al.1 particles which are

adiabatically trapped axe, in fact ., rigorously trapped for all

time. Note also that the axg=eat in the preceding section con-

cerning the existence of infinitely many periodic solutions is

carried over exactly to the more genera case.

(d) To conclude this section, we would like to show the

impossibility of trapping iharged particles in a ='planar" magnetic

field i.e. a field whose magnitude and direction do not depend

on the coordinate z. A particle moving in such a field can be

described by the Hamiltonian

H(X, Y., z y pX, P pz)	
1 	

+ P2 + (pz
	

2
A(x,y))	 (4.23) x 	 Yy 

The quantity p z is a constant of the motion since )0z 0.
We may now apply our method to get q:aasi-periodic motions in the

x - y plane. The motion in the z-direction is then found by

integrating the equation
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2 = p z - A(x(t),Y(t)).
	

(4. P-4)

However, even if X(t) and y(t) are quasi-periodic functions,

we cannot expect z(t) to be quasi-periodic. In fact, the mean

value of A(x(t),y(t)) need not be pz, in which case the motion

in the z-direction 
will definitely be unbounded..
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