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PARTICLE MOTIONS IN A MAGNEIIC FIELD

Introduction

The motion of & charged particle in the earth's magnetic field
has long been of interest tc mathematicians and physicists in con-
nection with the study of the polar aurora and cosmic rays. The
mathematical formulation of this problem was given by Stormer as
early as 1907, it is often referred to as Stormer' s problem,
Recently, this problem received renewed significance with the dis-
covery of the Van Allen radiation belt. (see Dragt [6]). This is
a region in space that consists of electrically charged particles,
which are assumed to be trapped by the earth's magnetic field.

Some of these particles were observed to have a lifetime of several
vears, The purpoée of this paper is to rigorously establish the
theory of almost periodic motions for the StOrmer problem, exhibit-
ing thereby the trapping of charged particles as observed in the

Van Allen belt, An additional feature of the theory we shall develop
is that it can easily be generalized to any rotationally symmetric
"mirror field".

The trajectory of a particle in a magnetic field is generally
very complicated and must be obtained by numerical integration of
"~ the differential equations of motion., In the special case of a
uniform static magnetic field B, the trajectories can be obtained

explicitly., As is well known, all particles gyrate in a helix



about the ma metic field lines (see Figure 1).

Figure 1, Particle motions in a constant magnetic field,

If m denotes the mass of the particle, q its charge, vl the

velocity perpendicular to the magnetic field, and B the magnitude

of the magnetic field, then the quantities,

mv2

1
M=p5 >
mv

o

are constant along any orbit. M is called the magnetic moment of
the particle, and "a" its radius of gyration,

Many mathematicians have concerned themselves with the motion
of a charged particle in a slowly varying magnetic field, A slowly

varying magnetic field is a field which varies slowly in space and
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time - that is, clowly compared with the gyration radius and period,
Essentially this means that in the course of one gyration asbout a
magnetic field line, the particle sees an approximately constant
field. In & slowly varying field thé particle moves approximately
in a cirele whose center drifts slowly across the lines of force
and moves rapidly along the lines, This is the so-called "guiding
center" or "adiabatic" approximation, It was shown by Alfvéﬁ [1]
that the magnetic moment is an adiabatic invariant in a slowly vary-
ing field, +that is to say, it is constant to first order in the
radius of gyration., This result is of extreme importance in plasma
phyzirs, where one is interested in confining charged particles in
a bounded region. Suppose, for example, that the magnetic field is
a convex function along the lines of force. A particle moving a-
long a line of force will be "reflected" backwards at the point PO

defined by

MB.(PQ) = E
where E 1s the energy of the partvicle, Thus, to first order, the
guiding center of a particle oscillates periodically along a line
of force, between two "mirror" points., In this case it has been

shown (Northrop [12]) that the quantity

J = fP"dS



is alsc an adisbatic invariesnt, where P, i1s the guiding center
momentum parallel to the lines of force, and the integral is taken
over a complete oscillation from one mirror point to the other and
back again. J 1s usually referred to as the longitudinal adiabatic
invariant.

However, for wvirtually every prospective device for the pro-

duction of useful energy from controlled thermonuclear fission, it

was seen ‘that the requirement that the particle remain confined for
periods of time encompassing many millions of gyrations could gen-
erally be met only if the magnetic moment were constant to a much
higher order. In 1955, Hellwig [9] proved the constancy of the
magnetic moment to second order in the radius of gyration, and in
1957, Kruskel [10] proved the constancy to all orders. Finally,
Gardner [7] showed the constancy of the longitudinal adiabatic in-
variant to all orders, Moreover, Gardner presented a general method
to obtain formal asymptotic expansions for all the adiabatic in-
variants, The main idea of this paper is to show that the phase
space of a particle moving under the influence of the earth's
magnetic field contains a region where series, analogous to the

formal expansions of Gardner, are actually convergent expansions,

This will be accomplished by using a theorem of J. Moser which
guarantees the existence of almost periodic solutions of the differ-

ential equations of motion,* In this manner we will show that

?=—
Gardner [8], in 1962, announced a result like ours for particle
trajectories in a "mirror" field. To the author's knowledge, a
proof of this result was never published by Gardner.



parbicles which are adiabatically trapped are, in fact, rigorously
trapped for all time. This possibility was first pointed out by
Arnold [2].

The author wishes to express his deepest gratitude to his thesis
advisor, Prcfessor Jurge. K. Moser, for his meny helpful hints and
suggestions and above all for his patience and understanding while

this paper was being written.

1. The Stormer Problem

The earth's magnetic field is assumed here to be equivalent to
the field produced by a magnetic dipole situated at the center of
the earth. Such a field can be described in cylindrical coordinates

p,z,¢ by the equations

(1.1)

=]

i
H\:l %

S>>

B= || = (13 sinPp) /2

r

(see Figure 2), where M 1is the moment of the magnetic dipole,

A
which points in the negative 2z direction, and ¢ is a unit
vector in the ¢ direction. The plane A = 0 1is the equat¢rial

plane, and the magnetic lines of force are given by



Figure 2,

From the previous discussion one would intuitively expect that
the particles with small energy will gyrate about the guiding field

line 'rith the (so.called cyclotron) frequency

where q and m denote the charge and mass of the particle, More-
over, since the field B is a convex function along a line of force,
we would expect that the particle, as it moves into regions of
stronger field at higher latitudes, will be reflected back toward

the equator by converging lines of force. To what extent this is



true will be discussed in the fellowing sections,
To write the differential equations of motion for the Stormer
problem, it is most convenient to employ a vanonical formulation

described by the Hemiltonlan

1.2 2. 5 2
H=gmlo) + b, + (5 - 4A)7] (1.3)
where
= m'
Pp P
{p = mz

(B = me"® + qoh.
Since H is independent of time, the energy
H= %mv = F
is a constant of the motion., A second integral of the motion is

obtained by noting that H is independent of the angle ¢. Hence

the canonical angular momentum

Pp = qMT, (L.b)

where I' 1is defined by this equation, is a constant of the motion.

(The integration congtant I’ has the dimensions of a reciprocal



length,) The three dimensional problem is now reduced to the
cimpler problem of finding the two-dimensional motion of a particle

in the p - z plane under the influence of the potential
V(p, Z) =

2
PG5 .5

Once p(t) and z(t) have been found, ¢(t) 1s then determined by

integrating the equation

¢ = -H
X"
which yields
t -
B(t) = ¢(0) + = | (LL . Byay, 1.6
(+) = $(0) m_[ -5 (1L.6)

The sizn of T' plays a crucial role in determining the general

properties of trajectories, The radial derivative of V is given

by

I'QVV =

2 2
M, R I 2p
= (-p- - ;3') (5' - ?) ’ (L.7)

which is strictly less than zero for I' negative. A negative

radial derivative for the potential corresponds to a repulsive



TRy e ——

by

radial force, since .r. V is the component of the force in the
radial direction., Hence all trajectories characterized by a
negative I’ must extend to infinity and cannot be trapped. 1In
addition the particle is restricted to lie in the region V(p,z) s

E. This region is indicated in Figure 3.

Figure 3, fThe region " =E for T <O,

R CTE R
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Note also that no orbits extend into the dipole (r = 0) for T
negative,

The situation is very similar when I’ = O, For p unequal
to zero the radial derivative of V is again negative. However,
p=0 is a solution of the equations of motion., Hence the tra-

Jjectory

z(t) = VemE t + 2,9 2, <0

runs into the dipole from below the equator, and

z(t) = -v/2mE t + Z, s 2, >0

is a trajectory running into the dipole from above the equutor.
All orbits siarting in the shaded region of Figure 4 must extend

to infinity.

PR,
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Figure 4, The region V sE for I = O,

For the study of bounded trajectories, therefcre, we restrict
ourselves to the case I’ > 0, It is corvenient at this peint to

introduce the dimensionless variables

z' =Tz \

pr =1Ip
¢ =9 ( (1.8)

t':——‘t/ .
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Tt is easily seen that the equations of motion for these dimension-

less variables are derived from the new Hamiltonian

(1.9)

where we have omitted the primes for convenience, In this system

cf units the particle has th: dimensionless velocity

W = 1 ,
(o] L{.;Z
vwhere

o
7,;_ = %6(1%) rb’ . (1.9)!

The dimensionless constant 7, is that used by Stormer (141,

1

Note that the angular momentum TI' dis now normalized to one,

The potential

V(p,z) = -;‘--lé - -p3-)2 (1.10)
r

. 2 . s
vanishes along the curve r = cos 7\, and is positive elsewhere.

(The line of force r = 00327\ corresponds in our old coordinates

1

to the line of force r = I cos‘z?\.) Since the Hamiltonian H of

(1.9) is a constant of the motion, the particle is restricted to
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lie in the regicn O 2V 2 H, This region assumes three different

forms derending on whether H is iess then, equal to, or greater

than 1/32,

Figure D, Allowed region V(p,z) SH for H < %’-9- .

Figure 6., Allowed region V(p,z) > 1/32,

el e e e 1
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Figure 7. Allowed region V(P,z) £H for H = %ﬁ .

From Figure D we see that any trajectory starting in the oval

2
like region surrounding the curve V = 0 (r = cos A), with initial

energy less than 1/32 can never leave this region for otherwise
it would encounter larger values of V. The almost periodic
motions we shall find will all lie in this oval like region, where
the value of H will be very small, These solutions will gyrate
about the line of force r = coszk and oscillate back and forth
across the equator. Furthermore, we shall show that these motions
can penetrate arbitrarily close to the dipole, a result which was
somewhat unexpected,

One cannot expect to trap particles with H > 1/52, since the




pngrea s

15

region V £ H exbends continuously to infinity. However, for just
this reason these solutions are important. Namely, a trajectory
canmot extend into the dipole from infinity unless H > 1/32. Such
trajectories play a role in the theory of the poler aurora (St%rmer
[14]1).

Unfortunately, there are no further known constants of the
motion, so that the system of equations derived from the Hamiltonian
(1.9) is as simple a system as one can achieve, In general, it has
no known explicit solutions. The equations can, however, be solved

in terms of elliptic functions for the special initial conditions

in which case the orbit is confined to the equatorial plane (since
the magnetic field is perpendicular to the equatorial plane, and
the force d? x B is perpendicular to B). The general properties
of all equatorial orbits can be obtained by considering the in.egral
curves
1.2 1 1.2

E=xlp + (5 - ';g) ] (1.11)
in the p - p plane (Figure 8). As is to be expected, the shape of
the trajectory depends on whether E 1is less than, equal to, or

greater than 1/32,
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Figure 8, Integrals curves in the p - p plane for
equatorial orbits,

For E > 1/52 all trajectories run off to infinity, and no
periodic solutions exist., For E = 1/32, the circle p =2 is
a periodic orbit (in the x - y plane). Moreover, one trajectory
spirals into this circle from within and one from without (Figure 9).
For & < 1/32 there exist two distinct types of orbits. For
DO < P< 2, the orbits are all periodic, and for p > 2, the or-

bits run off to infinity,
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Figure 9, Orbits in the x - y plane spiraling into a
periodic orbit, for E = 1/32,

Stormer has done extensive work in calculating other families
of periodic solutions [14], A general method to obtain all these
periodic motions was presented by De Vogelaere [4]. We shall ob-
tain, as a corollary to our result on the existence of almost
periodic solutions, infinitely many periodic solutions, which like-
wise will lie in the oval like region of Figure 5,

The behavior of the equatorial orbits for small excursions out
of the equatorial plane may be examined by perturbation methods.
Expanding V as a power series in 2z and applying Hamilton's

equations, one obtains

¢

g e i e
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R _(_%J’._)_ z = 0 + ﬁ(?) (1.12)
5 (P-1)(2-P) = O + é7(22) (1.13)
= . .

If the serms of second and higher order in 2z are neglected, the
solutions to equation (1,13) are the equatorial orbits, and are
therefore known periodic functions of time (for p < 2, E < 1/32),
Equation (1.12) then becomes Hill's equation. Its solution can be
written in the form

Z = CthW(t) + De'ntw(-t) (1.14)
where C and D are arbitrary constants and W(t) is periodic in
time with the same period as p(t). The constant @, the character-
istic Poincaré exponent determines the stability of the orbit, It
cen be only real or purely imaginary., If © is real and # O,
the motion in the z-direction grows (within the approximation made)
without bound., If § is purely imaginary the motion is bounded
(for time intervals in which the neglected terms have negligible
effect) and is therefore stable. The behavior of { as a func-
tion of 7 has been studied by De Vogelaere [5] who finds that

8ll orbits are stable for 7i > 1,3137.

In Section 3, we shall show the existence of a family of two
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dimensional inverient tori in the four dimensionsal phase space of
e particle. Any trajectory starting between two such tori can
never escape, and will remain trapped between these two tori for-

ever, This is a much stronger result than De Vogelaere's. However,

our result is only valid for values of 7y much greater than 1,3137.

2, Almost Periodic Motions, Moser's Theorem

(a) We will be concerned in this paper with Hamiltonian systems
of two degrees of freedom, and, in perticular, with proving the ex-
istence of quasi-periodic solutions for systems close to integrable
ones.+ To this end we turn now to the discussion of two geo-
metrical theorems which will be bagic for the following. These
statements refer to area preserving mappings defined in an annulus
in the plane. How the reduction of the differential equations to
a mapping can be carried out we will see later on,

To describe an annulus in the plane we use polar coordinates

R = xE + y2 and the polar angle 6. The annulus is given by

and. the area element by

*There is a theorem by Kolmogorov and Arnold [2] guaranteeing the
continuation of quasi-periodic motions under small perturbations
of the Hamiltonian, However, this theorem does not quite apply
to our case since the second frequency Wy will be small, For

this singular case we resort to Moser's theorem.

e RO B A L e



axdy = ZARAO,

At first we consider a simple type oi mapping which we shall call

o "twlict mepping" Ma:

6, = 6+ 7(R)
which clearly preserves the area element ag well as concentric
cirecles R = constant. Each of these circles is rotated by an
enzle y(R), which, in general, depznds on the radius, It will be

o bagsic assumption for the following that 7?(R) is not a constant,

L40 in 1LsRs2, (2.1)

The properties of this mapping are easily understood. Each circle
R = constant for which 7/27 = p/q is rational consists of fixed
points of Mg. Bach circle for which ¥ and 2T are incommen-
surable is densely covered by the images of the iterates Mg“(q =

1,2,...) of any point on this circle,

Our main objective will be to discuss a mapping M which is

close to the twist mapping Mo' Therefore, we consider & mapping Me

B il



R, = R+ ef(R,0,¢€)
(2.2)
6 + 7(R) + eg(R,6,¢)

|

6y

where f,g are assumed to have the period 27 in 6. This mapping
is defined in the anmulus 1 s R £ 2 but need not map this annulus

into itself,

Theorem (Poincaré-Birkhoff). TLet 9'(R) # O and let M_ be erea

preserving for all e in the sense that

[ Rao = [ mag'

C MC

for any closed curve C. Given any rational number p’q between
2ry(1) and 2ry(2) there exist 2q fixed points of M® satis-

fying

g =8 + 2m

provided e is sufficiently small,

This theorem is actually a very simple version of the celebrated

*For simplicity we write M in place of ‘Me.
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and much deeper fixed point theorem by Poincaré ani Birkhoff in
which no smallness assumption is required. The present theorem
is a consequence of the implicit function theorem:; One sees

imnediately thal the qﬁh iterate of M has the form

R+ Oc)

e
I

0+ qy(R) + O(¢€)

D
il

and ~-- by the implicit function theorem -- there is a unique R =

F(6,e) satisfying
0 = 0+ 27Tp
a

for sufficiently small e. This solution R = F(9,e¢) represents
a starlike curve C which is mapped "radially" by Mq, since eq
and 6 differ by an integral multiple of 2T, Since the mapping

a

M and hence M® preserves the area [ Rd6 it follows that ¢

C

and the image curve MY intersect in at least two points. These
points are clearly the desired fixed points, If P is one fixed
point, MP,G..,Mq'lP provide q - 1 further fixed points and the
theorem is proven,

It is important to obserwve that we hal a zontinuum of fixed
points of M:1 for € =0 while for € > O we predict only a
finite number of fixed points, In fact, it can be shown by examples

that in general the curve of fixed points breaks up into a finite set
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of fixed points,
Now we turn to the question of what happens under perturbation

to those circles R = constant for which »(R)/2m is irrational,

This is the content of the following theorem which will not be

proven here,

Theorem (Moser [1l]). Let » (R) # O and let any curve C sur-

rounding R = 1 and its image curve MC intersect each other,
The function f,g are assumed to be sufficiently often differ.
entiable, Then, for sufficiently small e there exists an

invariant curve I' gsurrounding R = 1., More precisely, given
any number o between (1) and y(2) incommensurable with 2T,

and satisfying the inegqualities

[ClyJ -5/2
q

z clq

for all integers p,q, and some constant ¢ > O, there exists a

differentiable closed curve

>3}
il

76 (2.5)

D
I}

0+ G(0,¢)

with F,G of period 27 in @, which is invariant under the
mapping Me -- provided e is sufficiently small, The image

point of a point on the curve (2,3) is obtained by replacing



¢ by ¢ + w.
In actual fect this theorem provides not only one but infinitely
many invariant curves. We observe thet the intersection property

for curves mentioned in the above theorems is certainly satisfied if

the area [ Rd® is preserved. Namely, if C is any curve surround.

C
ing R =1 so will the image curve surround R = 1, If the curves

¢ and MC would not intersect each other one of them would lie in-

side the other and the areas [ R4 and [ Rd6 could not agree,
C MC

For later applications we need an extension of the previous

thecrem: If the mapping (2.2) is replaced by

o]
"

o
R+ ¢ f(R,0,¢)
1 29 (2.1)

D
1

L =6+ a+ eR) + %5(R,0,¢)

where 0 = p< 0, then the conclusions of the previous theorems re-
main true. The essential point is that the perturbation term is
small compared to the "twist" ePy(R).

To apply Moser's theorem to prove the existence of invariant
tori for a Hamiltonian system of two degrees of freedom, we first

approximate the Hamiltonian H, (if possible) by an integrable

Hemiltonian H_; i.e. we write

)
H=H (R,R,,€) + ¢H (R;,0,,R,,0,,¢) (2.5)

§i ——
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where o, = H_'®R, is of order one, and the frequency ratic

. R k | _ i
wé/mi varies over a region of order € with k < z(aé = Eﬂb ERE).

On the energy surface H = c we solve for

R, = ®(R,,0,,0,) (2.6)

1 2 R

Using el a5 independent variable instead of t and setting

Rg = R, 62 = ¢, we find from Hemilton's equations that

aw _ o, a .7
W, Hy, ' %1 Fy

One verifies easily that on H = ¢ these equations take the form

dr ag
] ’
Qel 8 del R

where @ is defined in (2.6).
The system (2.7) is again Hamiltonian, of one degree of freedom,
but non-autonomous. To eliminate the independent variable we fol-

low the solutions from el = 0 to the next intersection with Gl =

2T, This defines a mapping which -- by Liouville's Theorem --

-

preserves the area [ Rd6. This mapping will have the form

R(2r) = R(0) + B(Y)

]

(2.8)

o(ar) = 6(0) + a+ &y(@®) + B(h
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with 7' (R) # 0. Note that the condition 9'(R) # 0 means that

the frequency ratio wgﬂwl varies on the energy surface H = c,.

The important point is that the frequency ratio varies over a
region which is large compared to ez, i.e, the twist eky(R) is
small compared to the neglected terms. Moser's Theorem guarantees
infinitely many invariant curves of the mepping (2.8), for
sufficiently small e, Any curve invariant under this mapping
generates an invariant torus if we ‘take all solutions which issue
forth from the invariant curve, and on these tori, the motion is
quasi-periodic with two frequencies,

In this case a quasi-periodic motion will densely cover a two
dimensional invariant torus in the four dimensional phase space of
the particle, Any trajectory starting between two such tori must
always remain between these two tori. (Warning: This is not true
for n > 2,) This provides a powerful tool for proving the sta-
bility of periodic orbits. In the following section we shall show
the existence of quasi-periodic motions in the earth's magnetic
field which lie near the equator, All trajectories near the
equator which are caught between two such tori must remain near
the equator forever, This is the stability result for "near
equatorial” orbits which we mentioned in the preceding section,

(b) We would now like to show how one goes about approximating

H +to higher and higher order by an integrable Hamiltonian, The

method we shall present is known as the Lindstedt method [13].
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For simplicity we shall restrict ourselves to systems with {wo
degrees of freedom,
Consider a Hamiltonian H of the form

, 2
Hy = 0% + o, + eHl(xl,xz,yl,yE) + €THy e (2.9)

where X, is conjugate to yi and H has period 27T in vy

nd i.e
a ye, [ )

H(x,yi+2W) = H(x,yi).

We would like to finl new canonical variables xi,yi so that H
will be independent of the angular variables yi,yé through terms

of order n. To this end we consider a generating function of the

form
2
—_ 1 ! 1 ! R X
S = yx! + Y XL+ eSl(xl,xe,yl,yQ) + €78, + (2.10)
with
s oS
=g YiTET (2.10)"

If we denote the Hamiltonian H expressed in terms of the primed

variables by



Hx',y') = Wy X] + WXL + eH (x! ,xe) + ezﬁ + eee (2.11)

then from (2.10)

6, S

4 ooy, %! 4+ eai-{‘ coey, yl,ye) = H. (2.12)
2

H(xi + & b

4

Equating terms of order ¢ in (2.12) we see that

&, ® .
YL T2, T Hy (x,xp) - Hy(x],%57,V5). (2.13)

In order for S, 1o be periodic in yl and Y, we must require

1

that the right hand side of (2.13) have mean value zero. Hence

Hy (x1,x) = ( l) f [ Hy (21,25, ¥,¥,)47, 45 5 (2.1k)

i.e. ﬁi is the mean value of H,. We still cannot solve for 8§,
since a Fourier series expansion will contain the small divisors
Jioy + Jptse We therefore require that the frequencies satisfy

the infinitely many inequalities

| GG,0)] = H3]™" (2.15)

for all integers j,J, with 3] = ]jll + {jzl > 0, and with some
constants ¢ and 7> 1. If the right hand side of (2.13) has

the Fourier expansion



&
,

foor.

2 ey (enetoY)

then Sl is given by

. (xf) ei(k’y) .

8 = 2
,(D

1 Kkdo

To determine Sk we note that equating terms of order k in

(2.12) yields

+ W
2

=H_+ G - H (2.16)

S
SEd

where G, depends only on S:5Hyy 0=i=2k-1, Thus H, 1is

determined by setting the mean wvalue of the right hand side of

(2.16) equal to zero, and then = is determined. To eliminate

the y dependence of H through order n, we simply truncate the
series for § aftur enSn.
The above method may be extended to the case where the lowest

order term Ho of H is given by

Hy = Ho(xp,%p)-

We simply chyose x' = xo so that
w., = an <Xo)
S

1
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are rationally independent numbers satisfying (2.15), and then re-

striet the variables x' to a smell neighborhood
lxuxﬂ = CNJ%lL

Finally, if the frequency Wy is zero to lowest order, we
first eliminate the Yy dependence of H through order n. Then,
if we can find new variables so that ﬁi
Yo we may eliminate the y2 dependence through order n,

is also independent of

3, Main Result. Existence of Quasi-Periodic Mctions

(a) 1In this section we will prove the existence of quasi-
periodic solutions of the Stormer problem, These motions will all
lie in the oval like region of Figure 5 and will satisfy H << 1/32,
Moreover, these motions may penetrate arbitrarily close to the
dipole.

(b) Dipolar coordinates, Since our intuitive idea of the
motion is a gyration gbout a line of force and an oscillation a-
long the line of force, it is natural to introduce new "orthogonal
coordinates a(p,z), b(p,z) such that the curve a(p,z) = const.
defines a magnetic line of force., The magnetic field lines are

given by the equation

a

1

, (a = const,). (3.1)
cos
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From the equation |
I L 2 (5-2)
we find that
b(p,2z) = fgfﬁfﬁ . (3.3)

(Any function of b together with a provide an orthogonal co-
ordinate system.) The new canonical variables may be obtained

from the generating function

F(P,2,D,,P,) = a(p,2)p_ + b(p,2)py (3.4)

by emplcying the standard relations

o)
)]
¥

’ (3.5)

= a(p,z), pp=%=%Pa+%P«b
-b(e,2); 7, F- T,

o’
]
H¥

In terms of these new variables the Hamiltonian H of (1,9) takes

the form



2
P ¢! -1 2
H(a,p 0,0 ) = %(_% + ..% + _(%_')E' (3.6)
h, hb 2a cos A
where
2 cosék 2 _ aécosleh

h = i . 507
8 1+3$in2; ’ hb 1+38in ; ( )

It is understood that sin A and cos A are to be expressed in
terms of & and b,

We now wish to restrict ourselves to a region in phase apace
where the energy H will be small, This is to conform with our
notion that in the course of one gyration sbout its guiding field
line, the particle should see an approximately constant magnetic

field., Thus we consider the change of variables

o
]
=
|
m
o]
o’
1

€f
2 5 2 (3'8)
b, = €D pb = € PB

where e 1is a small parameter, The condition a - 1 = eea means
that we require the particle to remain near the gulding field line

T = 0052%. Our system will remain Hamiltonian if we take

H(Ozyﬁypayps> = H/eh' (5'9)

Our next step is to try and approximate H by an integrable
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Hemiltonian, To this end we first show that A(a,b) is an
analytic function of a and b for b small. Squaring equation

(3.1) and multiplying by (3.3) yields

sin A 5
2% = . (3.10)
(l-sinzz)E
The derivative of the right hand side of equation (3,10) with re-
spect to A is one at A = 0. Therefore, we are guaranteed that
N(a,b) 1is an analytic function of z = % for |z| small,

Hence, we may write

sinzk = GEEQ + ueu(aﬁe-ﬁh) + Gl(O%B;G)
. L (3.11)
cos'6k =1+ 36252 + be (2052-6‘) + G2<a,ﬁ,€)

where G, can be written in the form eéﬁi(ogﬁ,e) with G,
analytic in the variables «,B,e. These expansions are trivially

derived from the relation

aub2 = 51n2% T (3.12)
(l-sinek)
The Hamiltonian (3.9) may now be written in the form
H=H +H,+H +H (3.13)



where
Pir?
H, = —s—
€2 a2 210, Bing? 2
H2 = "'2-(66 Pa'u‘ +PB+BB o )
4
_ 3e 22, k2, 2,22, L 2L
H, = _E_(Qhaﬁ P0735 p0;20p6+55 PB+2a -20B )
and

H6 = €6ﬁ6(a,5,Pa,PB, 6)

with ﬁ% analytic in all its variables.
We shall now show that H5 + H2 + Hu can be transformed into

an integrable Hamiltonian, modulc terms of order eo. Firstly,

define new coordinates R,6 via the formula
o= VR sing, p_ = V2R cose. (3.14)

From their definition, R and 6 are csionical coordinates., The
magnetic moment M of the particle will be proportional to euR
(to be shown in Section 4). Note also that H_ =R, and R is
constant to order 62. Next, we employ Lindstedt's method to
average out the 8 dependence of H to order 66, i.e., we define

new variables R',6',p',p! so that H is independent of @'

p

v atad
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through order eu, The frequency Wy of (2.9) is zero, while

W = 1., In the notation of Section 2,
2r 2
R, = 3 Hge = SR (612 + (27 (3.15)
o}
and
or W, %, & %
= _1 2 %o Pp 2 Fa 2 ¥ Pp -
i) B gl 9

The generating function 8§, = SE(R',G,B,pé) is given by

8, = - l=—— sin 20 - M(ER')B/g(-cos 0 + == 6)] (3.17)

Performing the integration in (3.16) we find that the Hamiltonian

'3.13) may be written in the form

H=H_ + Hy,+ H + H (3.18)
where
H =R
(o}
7(9125 7;)
eu 2 6915{stL
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X , 6
(we have suppresses the primes for convenience), and He = Oe)

For fixed R the curves

9R§2 + P52 = const,

are ellipses in the B8, pﬁ plane, These curves may be transformed

into circles (with the same area) by the generating function

Setting
B! = V2R2 sin 6, pé = VR, cos 6, (3. 20)

we see that H2 is independent of 62. Hence, we may employ the

Lindstedt method to average out the 6 5 dependence of H to

order € ., In terms of new canonical variables which we again

call Ry 61,R2,92, the Hamiltonian H now assumes the form

2
13R
= Ry +5€R\/1?+ (ElR + 82

1 ) + H6 (3. 21)

where Hg = €6ﬁ6(R Ry61,6, €), with ﬁ6 analytic in all its

variables. Thus, we have succeeded in approximating H by an



integrable Hamiltonian

to order 66.
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F=H-H6

We now apply Moser's Theorem to prove the continua-

tion of quasi-periodic motions under the perturbation H6' As

described in Section 2, we solve for R

1

= ®(R,,0,,6,€) on the

energy surface H = c, and take el instead of t as independent

variable,

next intersection with 6

mapping which we denote by M.

d92 _ 2
del HR
1
and
1/2
Ry

the mapping

v R4

il

@2

M

B

has the form, in the coordinates

R(2m)

6 (2m)

We then follow the solutions from 6

1

Since

1

3(—:2\/1;:-L - -253- eu R, + @(66)
1/2 5€2R2 . @(eu),

R + e6f(R,9,e)

29

e + 5€2C!l/2 - -g-

R = Ry,

euR + e6g(R,6,e)

6 =

= 0 to their

= 27, This defines an area preserving

(3.22) .

(3.22)1

92,

(3.23)
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where K = R(0), 6 = 6(0) and f,g are analytic in the variables

R,0,¢. This mapping is of the form (2.4) with p =1L, 0 =6, and
y () = - 24 0.

Hence, Mcser's Theorem applies,

Thus, we have established the existence.of quasi-periodic
motions with two frequencies for sufficiently small €. Since we
restricted b to be small, all these motions must lie near the
equatorial plane, Moreover, these motions gyrate tightly about
the guiding fie ine r = cos or r =TI "cos in our o
th idi field 1li 2% r 1 2% i 14

coordinates)., A typical motion is illustrated in Figure 10,

Figure 10. A quasi-periodic motion in the p - 2 plane,

ERE

il g
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These orbits all cross the magnetic field line at an angle near
900 since the velocity of the particle parallel to the magnetic
field is much smaller than the total velocity, This follows from
the fact that Py = €5p5 is of third order small while P, =
eepa is only of second order.

(¢) Quasi-periodic motions which penetrate arbitrarily close
to the dipole.

Our goal now is to prove the existence of quasi-periodic

motions which need not lie near the equatorial plane, To this end

we ccasider, instead of (3.8) the change of coordinates

(3. 24)

where again e denotes a small parameter, Let M and N be two
fixed constants, with N very large. We then consider all vari-

ables to be complex, and restrict ourselves to the region T

defined by

lof + |5,) + |pg| =¥
|Re b| = N | (3.25)

| Im b| = 8(M,N,e€)
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where & depends on M,N, and € and will be chosen so that the
Hemiltonizn (3.6) is analytic in the varisbles a,b,p_,p, in the
region T, for € sufficiently small, To find the singularities

of H in the complex 4-space we consider again the equation (3.10)

sin A
a.ab= .
(l-singk)e

With z = a% and ¥y = sin A(a,b), we observe that

2
dz 143y
——— ® (5. %)
T (D)

Hence the only singular points are y =11, y =1 L . It is

V5

clear that for fixed M and N, & may be chosen so that sin A #

t1 for l]’m b| = 8, and € sufficiently small, The points ¥y =

* i/4/3 correspond to the points

z=a2b='fi-335—5.

Letting a2 = + la_., b=b, + ibg, we see that

&1 o

2% = a,b, - ab, + i(alb2+a2bl). (3.27)
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For fixed M and N, we now restrict & eand ¢ still further

so that

< D
|abgrab, | = =
thus excluding the points 2z = % 322%%;5, The new Hamiltonian

2 2
1 10 s o? -
H(a, D ,B,D,,€) = = H(g,0,p ,p. ) = 5(~5 + =) + (3.28)
2T TR ;Z > 78?7 2‘;3 EE 2(L+ea)4cos6%

is now analytic in all variables in the region T. Note that al-
though N is fixed, it may be chosen as large as desired, The
points (a = 1+ e, b = N) all lie very clcse to the dipole, and
approach the dipole as N —~ =,

() Our next task is tc approximate the Hamiltonian by an in-
tegrable one, We cannot expand H in powers of ex and €B as
we did previously, since now B ~ 1l/¢, Instead we expand H in
powers of (a-1l) = ex only. Since sin A and cos™t  are analytic

in T we may write

, 2
1+ 3 sin A = Kl(b) + Fl(a,b)

p (3.29)
cos” A= Cl(b) + F,(a,b)
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where Fi(a,b) = O((a-1)). (d?((a-l)k) denotes an analytic
functicn which vanisghes, together with its first k - 1 derivatives
with respect to &, at &= 1l.) The Hemiltonien (3.28) may thus

be written in the form

H=H +H (3.20)
where
2
¢ X.C
1 2 2 171 2 |
HO = E—(Klpa'%‘a ) + - Py (3-50)

and Hl = éﬁl(o665’p0fp5,e)’ with ﬁi analytic in all its variables.

The arguments of the functions Cl and Kl are b = eB.

(e) The next logical step is to transform the Hamiltonian Ho
into an integrable one, modulo terms of order e, We start by
finding new variables a',p& so that H_ is a function of (a')g +
2
)

(p& alone, These variables may be obtained from the generating

funetion

) £p! |
F(a,B,p('x,pé) = Kll/hocp& + _6_5_ (3.31)

where the argumenty of the functions Kl and f are eB. It

would suffice (for the purpose stated above) to take f = ep, How-

ever, a judicious choice of f will enable us to express Hb
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explicitly, and thereby simplify most of the later caleculations.,

The new canonical variables a',pa?ﬁ',pé pre determined from the

relations
- s S PR - (N |
ot @R R BT TS
(3.32)
X el F (L), -/l (D)
R R T IR Sl - Sale e - Tl o N W

where Kil) and f<l) denote the derivatives of the functions Ki

and T with respect to b = eB.

A point in the p - z plane is determined from the coordinates
o',B' in the following manner., Given o' and B', the point lies

on the magnetic field line r = a cosek, where

a= 1+ ea‘[l+5(eﬁ')2]l/u. (3.33)

The coordinate b on this magnetic field line is then found from

the relation
£(b) = £(eB) = eB'. (3.34)

We cannot solve (3,34) exactly for b, However, for the f we
shall determine it will be seen that as epf' increases (decreases)

to +1(-1), b increases (decreases) to +w(-w), and that the



Lb
latitude A, for a = 1, is precisely
sin'l(sj’).
Thus, £'(t) essentially describes the motion along a line of

force, for the coordinate a near one, 1In terms of the primed

variables the Hemiltonian (3,30) assumes the form

c. VX,
)T ) oV T, (3.)

H=

with Hy = O(e).

(f) We shall now show that the Hamiltonian H_ 1s an in-
tegrable Hamiltonian, i.e. we shall find new canonical coordinates
R,0,J,¢ so that H_ = H_(R,J). To this end we define canonical

coordinates R,6 in place of a',p& by the relations
ol = \/ﬁﬁ sing, pé,= \/E% cosé, (3.36)

H, is now independent of 6, Hence the coordinate R, which we

shall later show (see Section L) is proportional to M/62

y is a

constant of the motion to lowest order in €. To lowest order, 6

is given by the equation
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But the quantity on the right hand side of (3.37) is the magnitude
of the magnetic field along the line of force r = coseh (see (1.1},
(1.2) and (3.29)). Thus, we have confirmed our intuitive notion
that to lowest order the particle gyrates about its guiding field
line with the cyclotron frequency Wy e

It is convenient at this point to introduce a new time scale 7
so that the frequency Wy

about its guiding field line.in the new time scale with constant

becomes one, i.e. the particle gyrates
frequency., This is easily accomplished by setting

T= [ widt' (3.38)
Our trajectories are now the zero energy solutions of the Hamiltonian

1
7= aI(H-h) =F_ +F, (3.29)

where h is the constant value of the Hamiltonian (3.35) and

1, 2,...2, .2
FO = R + E)I(Ujl(f') (pé) - gh)
H (3.29)!
1
e
1

Thus, to lowest order we have decoupled the motion in a',p& and in
B',pé° This puts into evidence the integrability of the truncated

system,
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In this approximation the motion in the B',pé plane is
described by the Hamiltonian

2
U.)l

o = g () ()" - (3.40)

which we now calculate, For this purpose we observe that W, =

C,V/K; and f' all are expressed in terms of f(b) = f(eB) = ep’

if we define f(b) by

b = "‘Tzf . (3.41)

Therefore, & can be expressed in explicit algebraic form, To

show this write

sin A = £, (b) + O((a-1))

sin A

(l-sinek)

where we have f. = f (see a2b =

1 2). Then compute

_ \/l+372

= L with 7 = ep'
(1-77)

@y

and

L -t (193)? 1

1437 143y° i)

D

f
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Hence

2 2
(p!) 2,3 (p!)
1 1+3y 2 143y
2V1+3y

The motion in the pB',p! plane derived from the Hamiltonian

B

Fo is qualitatively determined by considering the level curves

(see Figure 11)

2.5 . 2.3

-h(1-77) 1_ (-7 2

cC = + - (p’) (5-)'4'3)
(l+572)1'/2 2 (l+372)j/2 B

in the B',pé plane, For c¢ > 0 these curves are not closed and
asymptotically approach the lines ¥ = tl, The curves corresponding

to ¢ = 0 are hyperbolas defined by

%(pé)e - 3y = n. (3.44)



Figure 11.

L8

Level curves in the

7, P

&

plane of & = const.
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For c < 0, the components of these curves in |y <1 are all
closed, and lie inside the domain bounded by 7 = Il and the hyper-
bole, with the point s in Figure 11 determined from the equation

(1+5s2)l‘f2

(1-55)°

. (3.45)

h _
b

The quasi-periodic orbits obtained previously correspond to small

oscillations in the B plane about the equilibrium correspond-

25
ing to equatorial orbits. §Since we are only considering the zero
energy solutions of F, the constant ¢ 1is essentially -R. Hence
g'(t) and pé(?) will be periodic functions of 1 if we neglect
the term Fy in (3.39). Thus we have justified our intuitive idea
that the guilding center of a particle oscillates along a line of
force between two mirror points. This motion is indicated sche-
matically in Figure 12, To lowest order, the particle mirrors at

a latitude A = sin-ls where

2.1/2
h _ (1+3s7) . (3.46)

(157

s |
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Figure 12, Schematic description of guiding center motion.

Thus, the smaller R, the closer the particle approaches the

dipole. It is also clear from Figure 11 and the discussion con-

cerning the coordinates o',p! nat there exist orbits of the
unperturbed system Fo in the region |b| = N which achieve .

Finally, since the curves (3.43) are closed for c < 0, we may
introduce the familiar action-angle variables J,¢ in place of

B',pé, where the action J is given by

. 2,3/2
5o 2 IS{h(l-r}x“) + c%ﬁxz;;/ }l/gdx’ (3.47)
o l-x ' ;
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(7 is simply the area of the closed curves (3.43) in the ﬁ',pé
plane.) 1In terms of the variables R,6,J,¢ the Hamiltonian F_

takes the form

F_ =R+ c(ed). (3.48)

e

Thus, we have succceded in showing that the Hamiltonian Fo is

integrable, The two frequencies of motion determined by Fo are

x
O

xR

¥ (3.49)
(0]

Gl

where c¢' denotes the derivative of ¢ with respect to eJ. In-

cidentally, the fact that w, is proportional to e is in

2

agreement with our notion that the particle oscillates slowly a-

long a line of force, while gyrating rapidly about it., Note also
that the action J, which is the longitudinal adiabatic invariant
divided by 62, is constant to lowest order,

We now apply Moser's Theorem to prove the existence of quasi-

periodic motions for the full Hamiltonian

F=R+c(eJ) + eFl(R,eJ,9,¢,€) (3.50)

where Fl is analytic in all its variable., On the energy surface
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F=0 we solve for R = ®(eJ,0,%,¢) and teke 6 instead of t
as independent variable, We then follow the solutions from 6 = O
to their next intersection with 6 = 2r. This defines a mapping

¥, which in the coordinates r = eJ,¢ is given by

1= r(ar) = r + eef(r,¢,e)

M. 5 (3.51)
0. = ¢(2r) = ¢ + sc'(r) + €“g(r,9,¢€)

1
with f,g analytic in all its arguments. The intersection property
of a curve with its image curve still holds, trivially. Hence, the

above mapping M is of the form (2,4) with p =1, 0 = 2 and

y(r) = ¢! (r). (3.52)

To apply Moser's Theorem now, we need only verify the condition

7' (x) = c"(r) # O (3.53)

i.ec 7(r) should be a monotonic function of r, Unfortunately,
we cannot calculate y(r) explicitly and must be content with
numerical calculations., Figure 13 below shows the graph of 7(r)
versus ¢, It is clear that 7(r) has a single stationary point
at ¢ = -,70. At this point the non-degeneracy condition (3.53)

is violated,
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Figure 13, Graph of vo(») versus c.

Thus, with the exception of one point, Moser's Theorem guarantees
the existence of quasi-periodic motions, close to the unperturbed
motion defined by the Hamiltonian Fo’ for sufficiently small e,
Since some of the unperturbed motions achieved |b| > 3N/L, then for
sufficiently small ¢ there will exist quasi-periodic motions for the

full Hamiltonian which achieve |b| > N/2, By choosing N aritrarily

D e N R TR
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large these quasi-periodic motions can penetrate arbitrarily close
to the dipole. Of course, the larger we choose N, the smaller we
must take e, il.e, the tighter the particle gyrates about its
cuiding field line,

We now wish to schematically describe these quasi-periodic
motions in coordinate space, rather than phase space. In the p -
z plane, the particle iz confined to the oval like region in
Figure 5, with V very small, and it rotates slowly around the
z~axis in accordance with the equation

¢(t) = [ (%-~ Ez)dt' + const. (3.54)

r
It will be shown in the following section that the quantity
pg/hg in (3.6) is vf , where v, is the velocity of the part-

icle parallel to the magnetic field. To lowest order in e we

then have
o ‘
2.3
Elg I 1D (3.53)
v R [1+3(ep1)?]
For R small, the particle crosses the equatorial plane (' = 0)

at an angle near 900. As €B' increases to its maximum value s,
2 ‘

the quantity v"/vf decreases monotonically to zero, When the

particle crosses the field line r = cosgk, 6 = 0, and hence the

velocity vector lies in the meridian (p - z) plane., Thus, the
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particle crosses the gulding field line in a sequence of angles
which monotonically approach 900. This situation is illustrated

in Figure 1k,

Figure 1h.

As the particle moves back toward the equator, the crossing angles
begin to decrease monotonically, until the particle is moving nearly
parallel to the field at the equator, Note that as the particle
moves into regions of high latitude, it begins to gyrate rapidly,
since the cyclotron frequency becomes large,

(g) As a corollary to the above result on the existence of quasi-

periodic motions, we are automatically guaranteed infinitely many



rericdic soclutions. We outline the proof briefly, Each quasi-
rericdic motion densely covers a two dimensional invariant torus
in the four dimensional phase space of the particle, Moreover,
this torus must lie on the energy surface H = const, We now cut
the torus with a surface of section S, and consider the mepping

P - M(P) induced on § by the differential equations; i,e, M(P;
is the point where the trajectory beginning at P returns to 8,
From the form of the Hamiltonian F of (3.53), it is possible to
introduce coordinates R,6 on S so that the mapping M has the

form

R, = R+ e°£(R,0,€)
M.
6, = 6 + ey(R) + eeg(r,e,a).

A mapping M of this form is referred to as a "twist" mapping, and
the Poincar€-Birkhoff fixed point theorem (Birkhoft [3]) guarantees
the existence of at least two fixed points, Since each fixed point
represents a periodic solution, we have established the existence of
infinitely many periodic solutions to the Stormer problem (which al-

so lie in the oval-like region 5, with H very small),

4, Quasi-Periodic Motions in a Rotationally Symmetric Magnetic
"Mirror" Field,

(a) We consider now a rotationally symmetric magnetic field

B, i.e., a field which is independent of the azimuthal angle ¢,

B
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The motion of a charged particle in such a field can be described

by a familtonian of the form
; 1,2 2 1,r 2
H(p,2,0.,0,) = 3(p, + P,) + (3 - A(e,2))7, (4.1)

where we have normalized the mass and charge to be one, and T'
is the constant electromagnetic angular momentum of the particle,

The magnetic field -l? may be determined from the equation

i

Py

=V X. (4.2)
with

X = A(p, Z)$o

The components of 'ﬁ in the p and =z directions are then

w
l'l
e

(4.3)

il

B, % %(pA).

We meke the following assumptions on the magnetic field B:

(1) The field strength is a convex function along a segment

S of a magnetic field line 4.
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(ii) The potential A(p,z) is an analytic function of p
and =z in a nzighborhood T of 8.

(iii) 7The magnetic field is unequal to zero on §.

Under the agsumptions (i-iii) we shall prove the existence of
quasi-periodic motions in T,

(b) The main step in our proof is to transform the Hamiltonian
(4,1) into a Haniltonien of the seme form as (3.6). This is

accomplished with the aid of the following L.emma,

Lemma; The magnetic lines of force are given by the equations

pA(p,z) = ¢ = const, (l*-’*)

Proof, The vector

7 - (Sg+%)a+%’z‘ (4.5)
P

is perpendicular to the e¢urve

Alp,2) - == O. (1. 6)
From (4.3) we may write
E =- %A + % %(pA)g. G
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Hence,

-2 e . Ay, A A, AW _ ¢ AR
Tle = + - -+ = { - =
n.B (;'g '35)( ) * (5 g)g (;g p)'éE
which vanishes along the curve A(P,z) = c. Thus, E = 0, and
the curves (4.l1) coincide with the magnetic field lines,
Since by (iii) the magnetic field does not vanish in a neighbor-
hood of §, we may introduce orthogonal coordinates a(P,z), b(P,z)

such that the curves a(p,z) = const. define a magnetic line of

force. By the preceding lemma we may take
a(p,z) = pA(P,2). (4.8)
The coordinate b(P,z) is then determined from the equation
% % + % = 0., (4. 9)
To effect a canonical transformation we use the generating function

F(a,b,p,,P) = a(p,z)pa +2(p,2)P, , (k.10)

and the Hamiltonian (L.1) assumes the form

22 .22 1 (I
H(ayb,Pa)Pb> = %(hajpa + thb) + 5 _q-‘_;.) (4,11)



where

- (@24 (D°
(b 21)
w2 ()24 (P

and the coordinates p,z are assumed to be expressed in terms of
a and b, As mentioned in the previous section, the quantity

hgps is v? . To prove this, note that

) ~
v = og (ppp + pZZ) . i(- &A.‘F &/Z\')
w= g E 5 RV XPT

_@%%+%P>
[(%%)2 2]]./2

(gg)
by virtue of (4.3) and (4.8). But

x % . R
% TN T T
Hence
2
2 Pb O

Vy = o) [(E) (E) + ("—) (E) -
&+ &

La2E
% P & P
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2 242 325 2
@R @R
C%%) 4‘(155

il

2 2 2 2
DD D@

1l

()2 4 (%02
22
= bRy

(¢) The Hamiltonian (4.11) is now very similar to (3.6)
and we proceed in the same manner as in Section 3. Our first step
is to consider only those particles with angular momentum I’ for

which the magnetic line of force
a(p,z) = pA(p,2) = T

coincides with the field line 4. (Of course, if the magnetic
field is convex along every field line, then no restrictions are
placed on T.) As in the previous section we consider only those
trajectories which stay near the guiding field line a(p,z) =TI,

and which have small energy. Thus, we take

a-I=€ex
Pa = €Pa
b= e
Pb = GPB
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with |qf, lpql, lpa] bounded end e sufficiently small so that

2

hi, hg, and P are snalytic functions of a and b, The new

Hamiltonian hasg the form

2
1., _1,22 ,22
H(a,B, Py Pp) = > H = Z(ho_ + hpe) + &pﬁ : (4.12)

To approximate H by an integrable Hamiltonian we write

hY = (0) + O((a-1)

no = b (b) + O((a-1)) (4. 13)

%2 = ¢ (b) + O((a-1)).

The Hamiltonian (4.12) may then be written in the rorm

H=H +H (L. L)
where
a ] b
_ 1,2 1 2 1.2

and H; = eﬁl(a, eB,pa,pB,e), with H, analytic in all its vari-

ables. The arguments of al’bl’ and cl are b = €B.
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Qur next step is to introduce new variables o ,p& in place
of @p, 8O that H_is a function of (a')2+ (p&)e alone.

This is accomplished by teking the generating function
tpt) = ! By
F(oyB,ypp) = Kyopy + BBy

where K, = cl/al. In terms of the new varisbles H_ assumes the

form

. (4.15)

Setting o' = «/55 sin 6, p& = \/ﬁﬁ cos @, we note that to

first order in €, R is constant and

6 =0 = '\/a;q : (4.16)

The quantity R is the megnetic moment M, and w, is the cy-
clotron frequency B evaluated along the magnetic field line £,

To prove this recall that

2

|

2
@ + D

a8 =




Hence

, 2 2
ml = a.lcl = £2(%) 4 -i-z(-g)
R
R
= (‘55) + ('5 + '35)

= B,

Jince ezblpg = vf to lowest order, it now folleows immedlately
that
eava
S
2B

to lowest order,
Again we change the time scale so that the frequency Wy be-
comes 1; our trajectories are then the zero energy solutions of

the Hamiltoniar

1
F = &I(H - h) (k. 17)

where h 18 the constant value of the Hamiltonian H. The lowest

ordexr Term FO of F dis now given by

2

b. (pL) |

F =R+ =P B , (k,18)
(0] o) w

1




€5

where the arguments of bl and @, ore eg!,
To determine the motion in the ﬁf,pé plane to lowest order,

i.e, to determine the motion along the guiding field line £, we

consider the level curves

\ 2
o, (1)
e :

in the ﬁ',pé plane, Under the agsumption that Wy = B is a

convex function, these curves will be closed for

boEcs (. 20)

where B, and B . are defined in Figure 15 below, and E

is the energy of the particle., To show this simply write the

curves (4.19) in the form

N2 2 e
(vs) "EE(NCDJ“)' (k.19)"
Hence the motion along S will be periodic for c¢,h satisfying

(4,20). The vegion outside (k.20) is usually referred to as the

"loss cone" of the particle, since one cannot hope to trap

particles in that region,
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E

Figure 15.

Finally, we introduce action angle variables J,¢ in place
of B',pé (for ¢ satisfying (4.20)). The Hemiltonian F now

may be written in the form

I

F =R+ c(el) + eF, (R,€J,0,9,¢) (k.21)

where FZL is analytic in ali its variables. This is exactly the
situation we encountered for the dipole field. It remains to g !

check the non-degeneracy condition




P

b TR - I

B m;

}

| vcs)

e ]

o

R
o

e"(r) £ 0

with r = eJ., ThLis is something which must be checked for each
magnetic field. Moser's Theorem will then guarantee quasi-
periovuic motions in the region c"(r) # O. These motions densely
cover two dimensional invariant tori in the four dimensional phase
space of the particle, Moreover, any trajectory starting hetween
two such tori can never escape. Hence all particles which are
adiabatically trapped are, in fact, rigorously trapped for all
time. Note also that the argusent in the preceding section con-
cerning the existence of infinitely meny periodic solutions is
carried over exactly to the more general case.

(d) To conclude this section, we would like to show the
impossibility of trapping ~harged particles in a "planar' magnetic
field, i.e. a field whose magnitude and direction do not depend
on the coordinate 2z, A parbticle moving in such a field can be

described by the Hamiltonian
H(X,¥,2,D,,0.,0,) = 205 + P2+ (2, - A(%,y))71.  (4.23)
"”X’ y,z 2“"x bl ¥ A A . .

The quantity P, is a constant of the motion since &A/% = 0.
We may now apply our method to get quasi-periodic motions in the
x - y 7plane, The motion in the z-direction is then found by

integrating the equation
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2= 1, - A(x(t),5(t)). (k. 24)

However, even if x(t) and y(t) are quasi-periodic functions,
we cannot expect 2z(t) ‘to be quasi-periodic, In fact, the mean
value of A(x(t),y(t)) need not be p,, in which case the motion

in the z-direction will definitely be unbounded.
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