

FORTRAN PROGRAM FOR CALCULATING VELOCITIES IN A MAGNIFIED REGION ON A BLADE-TO-BLADE STREAM SURFACE OF A TURBOMACHINE
by Theodore Katsanis and William D. McNally
Lewis Research Center
Cleveland, Ohio

NASA. Technical Note D-5091

FORTRAN PROGRAM FOR CALCULATING VELOCITIES IN A MAGNIFIED REGION ON A BLADE-TO-BLADE STREAM SURFACE OF A TURBOMACHINE
 by Theodore Katsanis and William D. McNally April 1969

Page 45: Replace line 6 with IF (NOBL. EQ. 2) GO TO 95
IF (MBII. LT. 1) MBII $=1000$
IF (MBOO.GT. MMM) MBOO $=-1000$
GO TO 130

Page 46: The following lines should be inserted between statement 165 and the two calls on SPLINT:
IF (MBII. GE. 1. AND. MBII. LE. MMM) MV(MBII) $=$ MLE (3)
IF (MBOO. GE. 1. AND. MBOO. LE. MMM) MV(MBOO) $=$ CHORD(1) $+\operatorname{MLE}(1)$

FORTRAN PROGRAM FOR CALCULATING VELOCITIES IN A MAGNIFIED REGION ON A BLADE-TO-BLADE STREAM SURFACE OF A TURBOMACHINE

By Theodore Katsanis and William D. McNally
Lewis Research Center
Cleveland, Ohio

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Abstract

A FORTRAN IV computer program was written to obtain a local detailed solution around a leading or trailing edge or in a slot region for compressible, subsonic, nonviscous flow on a blade-to-blade surface between turbomachine blades. This program allows a coarse-mesh solution for an entire blade-to-blade region to be magnified in a small rectangular region. The results include detailed surface velocities, velocity magnitude and direction, and stream-function values throughout the magnified region. The method is based on the stream function and uses the iterative solution of nonlinear finite-difference equations.

CONTENTS

Page
SUMMARY 1
INTRODUCTION 1
SYMBOLS 2
MATHEMATICAL ANALYSIS 3
NUMERICAL EXAMPLES 4
Leading Edge of Rear Blade of Tandem Blade Turbine Rotor 4
Trailing Edge of Mixed-Flow Impeller 5
DESCRIPTION OF INPUT AND OUTPUT 13
Instructions for Preparing Input 13
Modification of 2DCP Input 13
Choosing Magnified Region 16
Input 17
Example of Preparing Input 18
Output 25
Error Conditions 26
PROGRAM PROCEDURE 28
Conventions Used in Program 30
Labeled COMMON Blocks 30
Subroutine INPUT 31
Subroutine PRECAL 31
Subroutine WRITU 31
Main Dictionary 32
Program Listing for Subroutines Using Main Dictionary 41
Subroutine BDVINT 73
Program Listing of Remaining Subroutines 75
REFERENCES 80

FORTRAN PROGRAM FOR CALCULATING VELOCITIES IN A MAGNIFIED REGION ON A BLADE-TO-BLADE STREAM SURFACE OF A TURBOMACHINE by Theodore Katsanis and William D. McNally
 Lewis Research Center

SUMMARY

A FORTRAN IV computer program was written to obtain a local detailed solution around a leading or trailing edge or in a slot region for compressible, subsonic, nonviscous flow on a blade-to-blade surface between turbomachine blades. This program allows a coarse-mesh solution for an entire blade-to-blade region to be magnified by a chosen magnification factor in a small rectangular region.

The program input requires information obtained from a less detailed solution from one of three other FORTRAN programs. These programs have been presented in NASA Technical Notes. The output includes detailed surface velocities, velocity magnitude and direction, and stream-function values throughout the magnified region.

The method is based on the stream function with the solution of the simultaneous, nonlinear, finite-difference equations being obtained by two major levels of iteration. The inner iteration consists of the solution of simultaneous linear equations by successive overrelaxation, using an estimated optimum overrelaxation factor. The outer iteration then changes the coefficient of the simultaneous equations to compensate for compressibility.

This report includes the FORTRAN IV computer program with an explanation of the equations involved, the method of solution, and the calculation of velocities. Numerical examples have been included to illustrate the use of the program and to show the results which are obtained.

INTRODUCTION

In the design of blade rows for turbines and compressors, it is desirable to obtain the velocity distribution through the passage and particularly over the blade surfaces. The authors have published computer programs (refs. 1 to 3) for obtaining this type of
solution for single and tandem blade rows.
With these programs, however, it is not always possible to obtain sufficient detail on some critical parts of the blade surfaces. These programs give an approximate solution for velocities only at the mesh points of a finite-difference grid. Due to storage requirements on the computer, grid spacing may be too large to give the desired detail around small leading- or trailing-edge radii or within slot regions. And it is in these regions where geometry, and thus velocities, change most rapidly.

For these reasons a computer program has been written to obtain a solution on a fine mesh in a small part of the blade-to-blade region. The method used is similar to that used by Kramer (ref. 4). A small rectangular region of the solution obtained by either 2DCP (ref. 1), TURBLE (ref. 2), or TANDEM (ref. 3) can be magnified by a chosen factor using MAGNFY, the program described herein. The input and output are similar to 2DCP, TURBLE, and TANDEM, with additional input required. The additional input is obtained from the output of 2DCP, TURBLE, or TANDEM.

This report includes the FORTRAN IV computer program that was developed with explanation of the input required. An axial-flow turbine rotor slot and the tip of a mixedflow impeller have been analyzed to illustrate the use of the program.

This report is organized so that the engineer desiring to use this program needs to read only the sections MATHEMATICAL ANALYSIS, NUMERICAL EXAMPLES, and DESCRIPTION OF INPUT AND OUTPUT. The necessary information of interest to a programmer is contained in the sections DESCRIPTION OF INPUT AND OUTPUT and PROGRAM PROCEDURE.

A MAGNFY source deck on tape is available from COSMIC (Computer Software Management and Information Center), Computer Center, University of Georgia, Athens, Georgia 30601. The program number is COSMIC number LEW-10789.

SYMBOLS

A
b stream-channel thickness normal to meridional streamline, meters $\underline{k} \quad$ constant vector, $\left(\begin{array}{c}k_{1} \\ \cdot \\ \cdot \\ \cdot \\ k_{n}\end{array}\right)$, (eq. (A7), ref. 1)
m meridional streamline distance, meters
R gas constant, joule/(kg) ($\left.{ }^{0} \mathrm{~K}\right)$
radius from axis of rotation to meridional stream-channel mean line, meters temperature, ${ }^{\mathrm{O}_{\mathrm{K}}}$
stream function
fluid velocity relative to blade, meters/sec
mass flow per blade flowing through stream channel, $\mathrm{kg} / \mathrm{sec}$
angle between relative velocity vector and meridional plane, rad
specific-heat ratio
relative angular coordinate, rad
prerotation $\left(\mathrm{rV}_{\theta}\right)_{\text {in }}$, meters $^{2} / \mathrm{sec}$
density, $\mathrm{kg} /$ meters 3
overrelaxation factor, (eq. (A8), ref. 1)
rotational speed, rad/sec
Subscripts:
in inlet or upstream
le leading edge
$m \quad$ component in direction of meridional streamline
te trailing edge
θ tangential component
Superscript:
absolute stagnation condition

MATHEMATICAL ANALYSIS

It is desired to determine the flow distribution over the leading or trailing edge of a turbomachine blade or through the slot of a tandem or slotted blade. The stream function is used for the analysis. The basic assumptions and equations are given in references 1 and 3. The only difference in this analysis from that of references 1 and 3 is in the boundary conditions. For the MAGNFY program, the value of the stream function must be given for the entire boundary of the region considered. These values are determined on a coarse mesh by 2DCP, TURBLE, or TANDEM. MAGNFY then interpolates
these values to obtain boundary values of stream functions on a finer mesh. These boundary conditions determine a solution to the stream function (eq. (1), ref. 1). The numerical solution is determined by using finite-difference equations, as described in appendix A of references 1 and 3 .

NUMERICAL EXAMPLES

Two numerical examples are given to illustrate the use of the program and to show the type of results which can be obtained. The first example is the slot region of a tandem axial-flow turbine rotor blade, and the other is the trailing edge of a mixed-flow impeller.

Leading Edge of Rear Blade of Tandem Blade Turbine Rotor

Flow about the leading edge of the rear blade of a tandem axial-flow turbine rotor blade (ref. 5) has been analyzed to illustrate the use of MAGNFY. The entire blade was first analyzed by using TANDEM with the mesh size shown in figure 1. Due to computer storage limitations, this was as fine a mesh as could be obtained with TANDEM. However, more detail was desired for velocities between adjacent mesh points on the leading edge of the tandem blade. Therefore, MAGNFY was used in order to reduce the mesh spacing in the region around the leading edge by a factor of 8 , as shown in figure 2.

The input for this case is given in table I. This includes most of the input necessary

Figure 1. - Tandem axial turbine with region to be magnified.

Figure 2. - Magnified region of figure 1 with reduced mesh size.
for TANDEM, in addition to the stream-function values on the vertical and horizontal boundaries of the magnified region. These stream-function values and their coordinates were obtained as output from the TANDEM program.

Blade-surface velocities from both TANDEM and MAGNFY are plotted in figure 3. The original velocities obtained by using the coarse mesh are denoted by circles in figure 3. The MAGNFY output is plotted as a solid line. As shown in figure 3, the velocity peak on the suction surface is much higher than indicated by the coarse-mesh solution. This illustrates the need for a finer grid in some parts of the solution region since the velocities denoted by circles do not define the velocity adequately.

The execution time for this example was 10 minutes on the direct-coupled IBM2-7094-7044 computer.

Figure 3. - Comparison of velocities from coarse-mesh and fine-mesh solutions.

Trailing Edge of Mixed-Flow Impeller

Flow about the trailing edge of the main blade of a mixed-flow impeller with splitter blades (ref. 6) has also been analyzed using MAGNFY. The entire impeller was originally analyzed with TANDEM (ref. 3). The impeller profile (in the meridional plane) is shown in figure 4(a). Figure 4(b) shows the blade-to-blade region with the coarse mesh used in the TANDEM run. The region to be magnified about the trailing edge of the main blade is indicated by heavy lines in figure 4(b). MAGNFY was used to reduce the mesh

$\begin{gathered} \mathrm{MR} \\ -1.0 \mathrm{AF} \\ \hline 00000 \end{gathered}$	$\begin{aligned} & \text { RRAY } \\ & 0 \end{aligned}$	1.0000000			
RMS ${ }^{\text {P }}$	ARRAY				
$0.3238,00$		0.3238500			
BESP	ARRAY				
0.1143000		0.1143000			
BLDAT	AANDK	ERSOR	Strfn	INTVL	SURVL
1	1	2	2	2	3

```
MBCYF MBDYL 
    LAMHDA
27.587140
    KBDRY NSP
    BVIN ARRAY
0.1519700E-01
    SBYIN ARRA
0.1646400E-01 0.1773000E-01
-0.2741800
    -0.2883600
                                    -0.2920900
                                    -0.2874300
KBDRY NSP
    2 6
    BVIN ARRA
0.1519700E-01 0.1646400E-01
    UBVIN ARRAY
-0.1300000E-03 -0.1841000E-01
-0.3630000E-01
                                    ,
                                    -0.5292000E-01
                                    -0.6547000E-01
                                    -0.7366000EE-01
KBDRY NSP
    3 6
    BVIN ARRAY
-0.4133700E-02
    UBVIN ARRAY
-0.2562700 -0.2123600
0.4133700E-02 0.8267400E-02
0.1240100E-01
0.1653500E-01
-0.1671100
-0.5821000E-01
-0.1300000E-03
KBDRY NSP
    4 2
    &VIN ARRAY
-0.4133700E-02 -0.8230000E-03
    UBVIN ARRAY
0.2874300 ARRAY -0.2567200
    KBDRY NSP
    4 BVIN ARRAY
0.6708000E-02 0.8267400E-02 0.1240100E-01 0.1653500E-01
0.2567200 -0.2261100 -0.1478300 -0.7366000E-01
```


(a) Hub-shroud profile, showing meridional section of stream tube.

Figure 4. - Mixed-flow pump impeller.

(b) Blade-to-blade surface, showing coarse grid used in TANDEM program.

Figure 4. - Concluded.

MR ARRAY	
$-0.3124000 \mathrm{E}-01$	$-0.1514000 \mathrm{E}-01$
$0.5115000 \mathrm{E}-01$	$0.5964000 \mathrm{E}-01$
0.1272600	0.1407300
RMS ARRAY	
$0.7586000 \mathrm{E}-01$	$0.7662000 \mathrm{E}-01$
$0.9447000 \mathrm{E}-01$	$0.9820000 \mathrm{E}-01$
0.1360200	0.1448700
BESP ARRAY	
$0.1053300 \mathrm{E}-01$	$0.1004500 \mathrm{E}-01$
$0.3235000 \mathrm{E}-02$	$0.2728000 \mathrm{E}-02$
$0.8250000 \mathrm{E}-03$	$0.7240000 \mathrm{E}-03$

$0.2500000 \mathrm{E}-03$	$0.1065000 \mathrm{E}-01$	$0.1853000 \mathrm{E}-01$
$0.6828000 \mathrm{E}-01$	$0.7709000 \mathrm{E}-01$	$0.8607000 \mathrm{E}-01$
$0.7874000 \mathrm{E}-01$	$0.8091000 \mathrm{E}-01$	$0.8294000 \mathrm{E}-01$
0.1022800	0.1067400	0.1114600
$0.8724000 \mathrm{E}-02$	$0.7420000 \mathrm{E}-02$	$0.6316000 \mathrm{E}-02$
$0.2299000 \mathrm{E}-02$	$0.1936000 \mathrm{E}-02$	$0.1629000 \mathrm{E}-02$

$0.2651000 \mathrm{E}-01$	$0.34600 \mathrm{COE}-01$	$0.4281 .000 \mathrm{E}-01$
$0.9524000 \mathrm{E}-01$	0.1046100	0.1141700
$0.8531000 \mathrm{E}-01$	$0.8802000 \mathrm{E}-01$	$0.9108000 \mathrm{E}-01$
0.1165600	0.1220000	0.1277800
$0.5354000 \mathrm{E}-02$	$0.4532000 \mathrm{E}-02$	$0.3831000 \mathrm{E}-02$
$0.1370000 \mathrm{E}-02$	$0.1151000 \mathrm{E}-02$	$0.9790000 \mathrm{E}-03$

```
BLDAT AANDK
\begin{tabular}{cccc} 
MBOYF MBDYL & ITF & ITL & MAGFAC \\
\(44 \quad 50\) & -97 & -90 & 5 \\
LAMBDA & & & \\
\(0.9835000 E-02\) & & &
\end{tabular}
KBDRY NSP
0.9660700E-01 0.9958800E-01 0.1025700
    660700E-01
-0.2089400 -0.1757100 -0.1440400
-0.1137000
-0.8342000E-01 -0.5251000E-01
-0.2076000E-01
KBDRY NSP
    2 BVIN ARRAY
BVIN ARRAY
0.1517000E-01 0.4847000E-01
0.1025700
0.8207000E-01
0.1055500
0.1085300
0.1115100
KBDRY NSP
    3 6
    BVIN ARRAY
-2.7208400
-2.7208400 GRRAY
-0.2089400
        -2.6927900
        -2.6647400
        -2.6366900
        -0.1226400
\[
-0.7412000 \mathrm{E}-01
\]
        -0.7412000E-01\(-0.2446000 \mathrm{E}-01\)
-2.5949900
-0.1676100
    KBDRY NSP
    3 2
    BVIN ARRAY
-2.5380100 ARVIN ARRAY
                                    -2.5244900
                                    0.1517000E-01
    KBDRY NSP
    4 BVIN ARRAY
-2.7208400 -2.6927900 -2.6647400 -2.6366900 -2.6086400
0.2077000E-01 0.1455000E-01 0.4942000E-01 0.8343000E-01
0.1166400
-2.5805900
0.1499700
\(-2.5525400\)
\(-0.2077000 \mathrm{E}-01 \quad 0.1455000 \mathrm{E}-01\)
\(0.4942000 \mathrm{E}-01\)
\(0.8343000 \mathrm{E}-01\)
0.1499700
0.1837800
\(-2.5244900\)
0.2181900
```


Figure 5. - Magnified region for mixed-flow impeller.

Figure 6. - Comparison of velocities near trailing edge of mixed-flow impeller.
size in this region by a factor of 5 . The reduced mesh is shown in figure 5 .
The input for this example is given in table II. It includes the original TANDEM input plus stream-function boundary values about the magnified region. These were obtained from the output of TANDEM. The process by which this input was obtained is explained later in the section Example of Preparing Input.

The blade-surface velocities from TANDEM and MAGNFY are plotted in figure 6. The velocities obtain by TANDEM (coarse mesh) are not accurate near the trailing-edge radius, and the magnitude of the peak is not shown accurately.

The execution time for this example was 2 minutes on the direct-coupled IBM2-7094-7044 computer.

DESCRIPTION OF INPUT AND OUTPUT

The computer program requires as input the same input as was used in either 2DCP (ref. 1), TURBLE (ref. 2), or TANDEM (ref. 3) plus the stream-function values along the boundary of the region to be magnified. These stream-function values are generally obtained from the output of either 2DCP, TURBLE, or TANDEM (refs. 1 to 3).

Output obtained from MAGNFY includes velocity magnitude and direction at all interior mesh points in the region, blade-surface velocities, and stream-function values throughout the region.

Instructions for Preparing Input

The first step in obtaining input for MAGNFY is to obtain the usual coarse-mesh solution from either 2DCP (ref. 1), TURBLE (ref. 2), or TANDEM (ref. 3). If TURBLE or TANDEM are used, their input forms part of the input for MAGNFY. If 2DCP is used, modifications must be made to its input to make it appropriate for MAGNFY. These modifications make the 2DCP input agree with input for TURBLE, and are explained in the following section.

The remainder of the input for MAGNFY (beyond the input for 2DCP, TURBLE, or TANDEM) consists of coordinates and stream-function values obtained from the output of one of these three programs. Figure 7 shows all the input for MAGNFY beyond that required for 2DCP, TURBLE, or TANDEM.

The boundary value input for MAGNFY could be determined from some method other than either 2DCP, TURBLE, or TANDEM. In this case the input which would ordinarily have been used with these programs must be determined as explained in references 1 or 2 (single blade) or reference 3 (tandem or slotted blade).

Modification of 2DCP Input

If the user desires to magnify a solution obtained with 2DCP, the 2DCP input must be rearranged as if it were to be run on TURBLE before it can be used with MAGNFY. Some of the 2DCP input variables have the same names as MAGNFY variables, but some

Figure 7. - Input form. Card column numbers appear at top.

Figure 8. - Input form for TURBLE (ref. 2). Card column numbers appear at top.
do not. Table III lists the 2DCP and MAGNFY variables which have the same meaning but different names. Figure 8 and table III show the user how to rearrange his 2DCP input to make it compatible with MAGNFY. The first card of 2DCP input (the GAM card) must be modified for MAGNFY by shifting OMEGA and W 10 spaces to the right (see fig. 8). The second card should have the inlet and outlet flow angles (BETAI and BETAO) placed before CHORD and STGR. Also BETAI and BETAO have been redefined to be the flow angles at the leading and trailing edges, instead of at upstream and downstream boundaries. The third card contains information obtained from the fourth card for 2DCP. Once again, the position of variables on the card and the relation between 2DCP and MAGNFY variables can be seen from figure 8 and table III. The information on the third 2DCP card must be placed on two cards for MAGNFY. These cards are placed directly above the two sets of m - and θ-coordinates (MSP1, 2 and THSP1, 2) for the two blade surfaces. Each of these cards for MAGNFY contains inlet and outlet radii, tangency angles, and number of spline points for one of the two blade surfaces. Finally, the cards containing m- and θ-coordinates are unchanged between 2DCP and MAGNFY.

TABLE III. - 2DCP AND MAGNFY VARIABLES WITH

SAME MEANING BUT DIFFERENT NAMES

2DCP variable	Corresponding MAGNFY variable
W	ORF
RI	RI1 and RI2
RO	RO1 and RO2
ALUI	BETI1
ALLI	BETI2
ALUO	BETO1
ALLO	BETO2
MXBI	MBI
MXBO	MBO
MX	MM
NUSP	SPLNO1 (real)
NLSP	SPLNO2 (real)
MU	MSP1
XSPU	THSP1
ML	MSP2
XSPL	THSP2

Choosing Magnified Region

The region where magnification is desired is usually located around a leading or trailing edge or about a tandem blade slot. Therefore, the region generally includes portions of both lower and upper blade surfaces. This is indicated by the heavily outlined region of figure 9 and by the similar region for the mixed-flow impeller example (fig. 4(b)). However, input must be given to MAGNFY as though the region was entirely located about the lower blade. (See the dashed portion of the region in fig. 9.) This condition, of course, results in a magnified region which is partially outside of the original $2 D C P$, TURBLE, or TANDEM region. In the case of the leading edge of the rear blade of a tandem blade, the magnified region may lie completely outside of the original TANDEM region. The region may contain at most one leading and one trailing edge.

The fact that the magnified region is restricted to the lower blade implies that, once it is drawn about the lower blade, no part of it may include any of the upper blade.

Figure 9. - Input variables defining magnified region.

Input

Only the additional input beyond that required for 2DCP, TURBLE, or TANDEM will be described in detail herein. All integers are in a five-column field and must be right adjusted. All numbers with a ten-column field are real numbers and must have a decimal point punched on the data card.

The first input data card (fig. 7) is a label card containing any desired identification label. The next card has either NOBL=1 (single blade) or NOBL=2 (tandem or slotted blade) in column 5. This is followed by the input data from either TURBLE or TANDEM, or modified input from 2DCP. This input consists of all the input cards from the first one starting with GAM up to the last geometry input card containing values of BESP. This input remains unchanged, except for the overrelaxation factor (ORF), which should be recalculated for the MAGNFY program; that is, it should be set equal to zero again for the initial MAGNFY run on a set of data.

The next input card has variables (BLDAT to SURVL) used to indicate what output is desired. These variables are used in the same way as in TURBLE or TANDEM, except for the ommission of SLCRD, which is not required in MAGNFY.

The remaining input variables (see fig. 7) are as follows:
MBDYF index IM of vertical mesh line which is to be left boundary of magnified region (see fig. 9)

MBDYL index IM of vertical mesh line which is to be right boundary of magnified region

ITF

ITL

MAGFAC magnification factor (If MAGFAC $=\mathrm{n}$, one mesh square of original coarse mesh will contain n^{2} squares of smaller mesh.)

LAMBDA value of prerotation λ at inlet (LAMBDA is given as part of the output for 2DCP, TURBLE, or TANDEM.)

KBDRY indicates which boundary is referred to on input cards which follow it:
KBDRY=1, lower boundary
$K B D R Y=2$, upper boundary
KBDRY=3, left boundary
KBDRY=4, right boundary
NSP

BVIN

UBVIN stream-function values corresponding to BVIN
The variables from KBDRY to UBVIN are given for each segment of the boundary. After all boundary values are given for each segment of the four boundaries, one blank card (or a card with zeros for KBDRY and NSP) is added to signal the end of the input data for a particular case.

Example of Preparing Input

The second numerical example of this report (p. 5) dealt with solving for detailed

Figure 10. - Mixed-flow impeller, showing information for input example.
velocities about the trailing edge of the main blade of a mixed-flow impeller with splitter vanes (ref. 6). This section illustrates, in detail, how the additional MAGNFY input (beyond the normal TANDEM input) for that example was obtained. This input is given in table II.

MAGNFY is intended to be used by those who have run 2DCP, TURBLE, or TANDEM, and who desire a more detailed solution about some critical region on the blade. For the impeller example, that region is the trailing edge of the main blade as shown in figure 10. Notice that most of this region lies about blade surface 1, but that a portion of it is located at the end of blade surface 2. In most cases, the region to be analyzed will be divided in this way. However, input must be given to MAGNFY as though the region is entirely located about the lower blade. The way this is done is illustrated in the following paragraph.

The user should draw a magnified picture of the region for which a detailed solution is desired (fig. 11). This rectangular picture should extend three or four mesh lines (coarse mesh) in all directions from the point at which most detail is desired. The coarse mesh should be numbered with IM and IT grid line values. The ITV array of TURBLE or TANDEM can be used in the drawing of this sketch. The boundaries parallel to the IM axis are defined as boundaries 1 and 2 of this sketch, and those parallel to the IT axis as 3 and 4, as indicated in figure 11.

At this point, some of the input to MAGNFY can be obtained. The first and last values on the IM and IT axes are called MBDYF, MBDYL, ITF, and ITL. For the impeller example, these values are $44,50,-97$, and -90 , respectively.

Boundary 1
Figure 11. - Magnified region for input example.

MAGFAC can also be chosen at this time. A number between 5 and 8 is typical, and in this case 5 was used. MAGFAC must be chosen so that the resulting grid has less than 2000 mesh points in it.

LAMBDA is the next required input. It is obtained directly from the output of either 2DCP, TURBLE, or TANDEM.

The remainder of the MAGNFY input consists of geometrical (BVIN) and streamfunction (UBVIN) boundary values for the coarse-mesh boundary points on the four boundaries of the magnified region (fig. 11). The boundaries 1 to 4 should be entered in order, giving values from left to right on boundaries 1 and 2 and from bottom to top on boundaries 3 and 4.

The blade surfaces always intersect some boundaries of the region. When this occurs, the resulting sections of boundaries should be entered separately. In this example, boundary 3 is divided into two parts. The first has six points (IT $=-97$ to IT $=-93$ plus the blade-surface point (point a), fig. 11). The second has two points (point band IT $=-90$).

For each section of a boundary, four items of input are needed: KBDRY, NSP, the BVIN array, and the UBVIN array. KBDRY identifies by number the boundary for which data are given, and NSP is the number of points given on a section of that boundary. For the impeller example, NSP = 7 on boundaries 1 and $2 ;$ NSP $=6$ and NSP $=2$ on boundary 3 ; and NSP = 8 on boundary 4.

For boundaries 1 and 2, BVIN is obtained from the Stream Sheet Coordinates and Thickness Table for both TURBLE and TANDEM. A portion of the table for this example is reproduced in table IV. The meridional coordinates for BVIN from $\mathrm{IM}=44$ to $\mathrm{IM}=50$ are circled.

TABLE IV. - STREAM SHEET COORDINATES AND THICKNESS TABLE

IM	M	R	SAL	8	DB/DM
1	-0.24455E-01	0.76028E-01	0.3899OE-01	$0.10422 \mathrm{E}-01$	-0.25197E-01
2	-0.21738E-01	$0.76152 \mathrm{E}-01$	$0.52336 \mathrm{E}-01$	0.10342E-01	-0.33504E-01
3	-0.19021E-01	$0.76314 \mathrm{E}-01$	$0.67178 \mathrm{E}-01$	0.10239E-01	-0.42743E-01
4	-0.18303E-01	$0.76519 \mathrm{E}-01$	0.83516E-01	$0.10109 \mathrm{E}-01$	-0.52913E-01
5	-0.13586E-01	$0.76769 \mathrm{E}-01$	0.10100	0.99507E-02	-0.63772E-01
39	$0.81702 \mathrm{E}-01$	0.10914	0.52474	0.17711E-02	-0.34060E-01
40	$0.84683 \mathrm{E}-01$	0.11071	0.53430	$0.16727 E-02$	-0.31962E-01
41	$0.87664 \mathrm{E}-01$	0.11233	0.54631	0.15804E-02	-0.29980E-01
42	0.90645E-01	0.11397	0.55690	$0.14938 \mathrm{E}-02$	-0.28176E-01
43	$0.93626 E-01$	0.11564	0.56553	0.14122E-02	-0.26560E-01
44	$0.96607 E-01$	0.11734	0.57246	$0.13352 \mathrm{E}-02$	-0.25103E-01
45	$0.99588 \mathrm{E}-01$	0.11906	0.57954	0.12626E-02	-0.23590E-01
46	0.10257	0.12080	0.58712	0.11947E-02	-0.21979E-01
47	0.10555.	0.12256	0.59514	$0.11317 E-02$	-0.20275E-01
48	0.10853	0.12434	0.60279	0.10739E-02	-0.18520E-01
49	0.11151	0.12615	0.60980	0.10213E-02	-0.16728E-01
50	0.11449	0.12798	0.61617	0.97415E-03	-0.14901E-01
51	0.11747	0.12983	0.62238	0.93233E-03	-0.13193E-01
52	0.12046	0.13169	0.62878	$0.89527 \mathrm{E}-03$	-0.11706E-01
53	0.12344	0.13357	0.63535	0.86232E-03	-0.10440E-01
54	0.12642	0.13548	0.64210	$0.83281 E-03$	-0.93952E-02
55	0.12940	0.13740	0.64879	$0.80611 E-03$	-0.85392E-02

TABLE V. - THETA COORDINATES OF HORIZONTAL MESH LINES

Ir	THETA
-107	-3.00134
-106	-2.97329
-105	-2.94524
-104	-2.91719
-103	-2.88914
-102	-2.86109
-101	-2.83304
-100	-2.80499
-99	-2.77694
-98	-2.74889
-97	-2.72084
-96	-2.69279
-95	-2.66474
-94	-2.63669
-93	-2.60864
-92	-2.58059
-91	-2.55254
-90	-2.52449
-89	-2.49644
-88	-2.46839
-87	-2.44034
-86	-2.41229
-85	-2.38424
-84	-2.35619

If a blade surface passes through boundary 1 or 2 (it does not in this example), the BVIN for the point of intersection of the blade and boundary is obtained from the MH array (m-coordinates of intersections of horizontal mesh lines with blade given as output from 2DCP, TANDEM, or TURBLE) for the blade surface involved.

For boundaries 3 and 4, BVIN is obtained from the table of Theta Coordinates of Horizontal Mesh Lines for both TURBLE and TANDEM. A portion of this table for this example is reproduced in table V. The tangential coordinates for BVIN from IT $=-97$ to $\mathrm{IT}=-90$ are circled.

If a blade surface passes through boundary 3 or 4, the BVIN for the point of intersection of the blade and boundary is obtained from the TV array (θ-coordinates of blade at vertical mesh lines) for the blade surface involved. In the example, blade surfaces 1 and 2 pass through boundary 3 . A portion of the TV array output from TANDEM for surfaces 1 and 2 is given in table VI. The m-coordinate corresponding to $\mathrm{IM}=44$ is circled along with the θ values, called TV, where the $\mathrm{IM}=44$ mesh line meets surfaces 1 and 2. The θ for blade surface 2 (or 4 on the rear blade of a tandem blade) must always have PITCH subtracted from it to bring it down on the same blade as surface 1 (or 3).

TABLE VI. - EXAMPLE OF TV ARRAY OUTPUT FROM TANDEM
FOR BLADE SURFACES 1 AND 2

blade oata at ivtersections of vertical mesh lines with blades						
	blade Surface 1			BLADE SURFACE 2		
M	TV	DTDMV		TV	DTDMV	
0	0	0.10000 E	11	0.78540	-0.10000E	11
0.27172E-02	-0.62034E-01	-69.7931		0.52933	-85.1682	
0.54344E-02	-0.24292	-63.4793		0.31771	-71.3544	
$0.81517 \mathrm{~F}-02$	-0.40773	-57.9565		0.13743	-62.0849	
$0.10869 \mathrm{~F}-01$	-0.55860	-53.2247		-0.21730E-01	-55.2224	
0.81702E-01	-2.37840	-11.8861		-1.66869	-10.7007	
$0.84683 \mathrm{E}-01$	-2.41299	-11.3360		-1.69985	-10.2016	
$0.87664 \mathrm{E}-01$	-2.44605	-10.8536		-1.72952	-9.70233	
0.90645F-01	-2.47777	-10.4388		-1.75770	-9.20294	
$0.93626 \mathrm{E}-\mathrm{OL}$	-2.50836	-10.0916		-1.78439	-8.70342	
$0.96607 \mathrm{~F}-01$	-2.53801	-9.81206		-1.80959	-8.20376	
$0.99588 \mathrm{E}-01$	-2.56692	-9.60010		-1.83330	-7.70396	
0.10257	-2.59531	-9.45574		-1.85548	-6.36166	
0.10555	-2.62900	-0.10000E	11	-1.84360	0.10000 E	11

All values of UBVIN are obtained from the table Stream-Function Values. A portion of that table for the example has been reproduced in table VII. The boundary values for the region of figure 11 have been circled in table VII, and the following paragraph explains how they were obtained.

The table of stream-function values gives u along vertical mesh lines from blade to blade. Each mesh line is listed separately, and if a second blade intersects the mesh line, the two parts of the mesh line are listed separately. On each part the IT of the first mesh point on the line above blade surface 1 or 3 is listed as IT1 in table VII. With this information, the proper boundary values for the region can be obtained.

Values in the shaded portion of the region of figure 11 must be obtained from the blade above, as shown in figure 10.

Along boundary 1 in the example it is desired to obtain u at $I T=-97$ for $\mathrm{IM}=44$ to 50 . However, for $\mathrm{IM}=44$ to $\mathrm{IM}=47$, u must be obtained from the blade above the region in the figure (see fig. 10). Since NBBI (the number of horizontal mesh lines between AB and MN) is 28 in this example, u must be obtained at $\mathrm{IT}=-97+28=-69$ for these values of IM.

For $\mathrm{IM}=44$, ITL $=-76$ for the upper section of this vertical mesh line. Therefore, the eighth value in the row (0.79106) is the u for $I T=-69$. To reduce it to correspond to $I T=-97$, the stream-function period (1.0) is subtracted. The input value used is thus $0.79106-1.0000=-0.20894$. Likewise, for $\mathrm{IM}=45$, $\mathrm{IT} 1=-77$; and the ninth value (0.82429) corresponds to $I T=-69$. Reducing this by 1.0 gives -0.17571 , the value used as input.

TABLE VII. - STREAM-FUNCTION VALUE TABLE

After line 47, the region of figure 11 is normal, and values at $\mathrm{IT}=-97$ are desired. Since IT1 = $\mathbf{- 1 0 7}$ for $\mathrm{IM}=48$ to 50 , the 11 th value in these rows corresponds to IT $=\mathbf{- 9 7}$.

Boundary 2 is easier for this example than boundary 1. At all values of IM, u is desired for $\mathrm{IT}=-90$. At $\mathrm{IM}=44$, $\mathrm{IT}=-90$ corresponds to the first value in the row, which is 0.01517 . For $\mathrm{IM}=50$, we need the 18 th value $(-107+17=-90)$, which is 0.21819 .

On boundary 3, values of u are desired from mesh line 44. For the first section of the boundary, values must once again be obtained from the periodic blade above. IT $=-97$ to -93 is the desired range. Adding NBBI $=28$ gives IT $=-69$ to -65 . The values corresponding to these IT's are circled in table VII (0.79106 to 0.97554). Subtracting 1.0 from each of these gives -0.20894 to -0.02446 . For the final point on the blade surface (point a), $u=0$ is used.

The upper part of boundary 3 has two points. The first is again $u=0$. The second, for $\mathrm{IM}=44$, is $\mathrm{IT}=-90$. This point is the first stream-function value given for line 44, which is 0.01517 .

Boundary 4 corresponds to $\mathrm{IM}=50$. Values are required from $\mathrm{IT}=-97$ to $\mathrm{IT}=-90$. Since IT1 $=-107$, the 11 th to 18 th values are desired. These are circled in table VII (-0.02076 to 0.21819).

After the final set of boundary values is given for boundary 4, a final data card must be given with zero for KBDRY and NSP. This signals the end of the data for MAGNFY.

Output

Generally, the MAGNFY output is similar to the 2DCP, TURBLE, or TANDEM output, but for the finer mesh. In MAGNFY the vertical mesh lines are numbered with $\mathrm{IM}=1$ for the left boundary to $\mathrm{IM}=\mathrm{MMM}$ for the right boundary. The horizontal mesh lines are numbered with IT = 1 for the lower boundary to IT = ITMAX for the upper boundary.

Sample output is given in table VIII for the first example. Since the complete output would be lengthy and is similar to that for 2DCP, TURBLE, or TANDEM, the only output reproduced here is that which differs from the output of these three programs. The main part of table VIII is the stream-function values (UBV) and values of ρ times the component of W normal to the boundary (RWBV) along the vertical and horizontal boundaries for the finer mesh. This main part is followed by a table of calculated program constants. The variable names are all defined in the section Main Dictionary.

TABLE VIII. - EXAMPLE OF MAGNFY OUTPUT
StREAM FUNCTION ANO RHO*W-SUB-THETA ON HORIZONTAL BOUNDARIES

	LOWER HORIZONTAL BOUNDARY	UPPER HORIZONTAL BOUNDARY		
M	UBV	RWBV	UBV	RWBV
$0.96607 E-01$	-0.20894	-25.8414	$0.15170 \mathrm{E}-01$	-25.3671
$0.97203 E-01$	-0.20220	-25.4841	$0.21810 \mathrm{E}-01$	-25.6806
$0.97799 E-01$	-0.19550	-26.0991	$0.28460 \mathrm{E}-01$	-26.0027
$0.98395 E-01$	-0.18884	-26.1856	$0.35119 \mathrm{E}-01$	-26.3336
$0.98992 \mathrm{E}-01$	-0.18225	-26.2423	$0.41788 \mathrm{E}-01$	-26.6735

STREAM FUNCTION AND RHO*W-SUB-M ON VERTICAL BOUNDARIES

SURFACE BOUNDARY VALUES

SURFACE	BV
1	0.
2	0.
3	-0.44431
4	-0.44431

Error Conditions

The error conditions are as follows:
(1) SPLINT USED FOR EXTRAPOLATION

EXTRAPOLATED VALUE = X. XXX
SPLINT is normally used for interpolation, but may be used for extrapolation in some cases. When this occurs, the above message is printed, as well as the input and output of SPLINT. Calculations proceed normally after this printout.
(2) BLCD CALL NO. XX

M COORDINATE IS NOT WITHIN BLADE
This message is printed by subroutine BLCD if the m-coordinate given this subroutine
as input is not within the bounds of the blade surface for which BLCD is called. The value of m and the blade-surface number are also printed when this happens. This condition may be caused by an error in the integer input items for the program.

The location of the error in the main program is given by means of BLCD CALL NO. XX, which corresponds to locations noted by comment cards at each MHORIZ, ROOT, and BLCD call in the program.
(3) ROOT CALL NO. XX

ROOT HAS FAILED TO CONVERGE IN 1000 ITERATIONS
This message is printed by subroutine ROOT if a root cannot be located. The input to ROOT is also printed. The user should thoroughly check the input to the main program.

The location of the error in the main program is given by means of ROOT CALL NO. XX, which corresponds to locations noted by comment cards at each MHORIZ and ROOT call in the program.
(4) DENSTY CALL NO. XX
$\operatorname{NER}(1)=X X$
RHO*W IS X. XXXX TIMES THE MAXIMUM VALUE FOR RHO*W
This message is printed if the value of $\rho \mathrm{W}$ at some mesh point is so large that there is no solution for the values of ρ and W . This indicates a locally supersonic condition, which can be eliminated by decreasing WTFL in the original 2DCP, TURBLE, or TANDEM run to obtain new input boundary values for MAGNFY.

If RHO*W is too large, MAGNFY still attempts to calculate a solution. This often permits an approximate solution to be obtained which is valid at all the subsonic points in the region. In other cases, the value of W is reduced at some of the points in question during later iterations, resulting in a valid final solution for these points. The program counts the number of times supersonic flow has been located at any point during a given run (NER(1)). When $\operatorname{NER}(1)=50$, the program is stopped.

The location of the error in the main program is given by means of DENSTY CALL NO. XX, which corresponds to locations noted by comments cards at each DENSTY call in the program.
(5) THE USER HAS FAILED TO SPECIFY WHICH TYPE OF INPUT HE IS USING The first card of input after the title card specifies whether a single or tandem blade is being considered. There must be a 1 or a 2 in column 5 of this card.
(6) MMM GT 100, OR ITMAX GT 50

This is printed if MMM >100 or if ITMAX >50. In this case either MAGFAC should be reduced, or a smaller region chosen.
(7) ONE OF THE MH ARRAYS IS TOO LARGE

This is printed if there are more than 100 intersections of horizontal mesh lines with any blade surface. In this case MAGFAC should be reduced, or a smaller region chosen.
(8) THE NUMBER OF INTERIOR MESH POINTS EXCEEDS 2000

This is printed if there are more than the allowable number of finite-difference grid points. Either MAGFAC must be reduced, or a smaller region must be chosen.
(9) SEARCH CANNOT FIND M IN THE MH ARRAY.

If this is printed, the value of m and the blade-surface number are also printed. The user should thoroughly check the input to the main program.

PROGRAM PROCEDURE

The program is segmented into seven main parts - the subroutines INPUT, PRECAL, COEF, SOR, SLAX, TANG, and VELOCY, called by the main program MAGNFY. In addition there are several other subroutines. All the subroutines and their relation are shown in figure 12. All information which must be transmitted between the seven main subroutines is placed in COMMON.

Figure 12. - Calling relation of subroutines.

Although most subroutines have been changed from those in TANDEM (ref. 3), the subroutine names have not been changed. Even with the rather extensive revisions made in some subroutines, the general descriptions of the subroutines in reference 3 still apply with minor differences, except for INPUT and PRECAL. Therefore, the only subroutines described here are INPUT and PRECAL, plus two new subroutines, WRITU and BDVINT.

Most of the subroutines in MAGNFY use the same set of variables. And most of these variables are the same as those used in TANDEM. These variables are all defined in the Main Dictionary (p . 32). The subroutines using these variables are described prior to the Main Dictionary or in reference 3. The remaining subroutines are described after

Figure 13. - Arrangement for overlay, showing octal storage requirements.
the Main Dictionary or in reference 3, and variables are defined with each subroutine.
The program can handle as many as 2000 mesh points on the IBM 2-7094-7044 directcoupled system with a 32768 -word core. To provide for the handling of 2000 mesh points an overlay arrangement is used, as shown in figure 13. All subroutines not shown are in the main link. The total program storage requirement is $74044_{(8)}$ of which 53364 (8) is in COMMON blocks which are stored in the main link. The system storage requirement for our computer is $2764_{(8)}$ and unused storage is $750_{(8)}$. If there is a storage problem on the user's computer, the maximum number of mesh points should be reduced. The following program changes are required to change the maximum number of mesh points:
(1) Change the dimension of A, U, K, and RHO in the COMMON/AUKRHO statement to the maximum allowable number of mesh points. This statement occurs in most subroutines.
(2) In subroutine INPUT change the number of values of K and RHO to be initialized (the bound on the DO loop near statement 240).
(3) In subroutine PRECAL change the statement following statement 210 and format statement 1130 to reflect the maximum allowable number of mesh points. The statement following statement 210 will cause the program to stop if there are too many mesh points.
(4) Change the dimensions of W, RWM, and BETA in SLAX, SLAVBB, TANG, VELOCY, and VELBB.
(5) If the number of mesh points is reduced below 1600, the EQUIVALENCE state-
ments in SLAX, SLAVBB, TANG, VELOCY, and VELBB must be changed.
The first segment of the program is INPUT. This subroutine reads all input data cards, calculates constants, and initializes arrays. It also uses SPLINE interpolation on the input boundary values to obtain boundary values on the fine mesh. The next subroutine is PRECAL, which calculates all quantities that remain constant for a single problem. INPUT and PRECAL are each called once for a given problem. The remaining subroutines are each called once for each outer iteration. The subroutine COEF calculates the entries of the matrix A and the vector k of equation (A7) (ref. 1). These coefficients must be recalculated for each outer iteration. On the first outer iteration subroutine SOR estimates an optimum overrelaxation parameter Ω on the first call if it is not given as input. The same value of Ω is used for each outer iteration. SOR then finds the linear solution to equation (A7) (ref. 1) with fixed coefficients by successive overrelaxation. Then subroutine SLAX calculates $\rho \mathrm{W}_{\mathrm{m}}$. Subroutine TANG calculates $\rho \mathrm{W}_{\theta}$, and then $\rho \mathrm{W}$ and β throughout the region. Finally, the subroutine VELOCY calculates density ρ and velocity W throughout the region and on the blade surfaces, and plots the surface velocities.

Conventions Used in Program

In general, the same conventions are used in MAGNFY as were used in the TANDEM program (ref. 3). In addition the lower, upper, left, and right boundaries of the magnified region are numbered 1, 2, 3, and 4, respectively. Also, the lower and upper boundaries of the region must sometimes be considered as blade surfaces by the program. In these cases they are numbered 5 and 6, respectively.

Labeled COMMON Blocks

The labeled COMMON blocks are organized the same as for TANDEM (ref. 3), except for the omission of /SLA/.

Subroutine INPUT

Read and print first part of input. - The program first reads the input cards which are the same as those for TURBLE or TANDEM, or were modified from 2DCP. A description of this input is given in reference 1, 2 , or 3 . All the input data are printed as they are read in.

Fill in dummy second blade for single-blade case. - When there is only one blade,
the arrays for the second blade (surfaces 3 and 4) are filled in with the data for the first blade.

Calculate large mesh arrays. - The large mesh spacing and MV array are calculated first so that the RMI and RMO arrays can be calculated.

Transfer blade coordinates for tandem blade when necessary. - If a leading-edge region is being analyzed, it is always considered to be on the rear blade. Hence, if it is the leading edge of the first blade of a tandem or slotted blade, the arrays for the rear blade are filled with the data for the front blade. Similar considerations hold for a trailing-edge region, since it is always considered to be on the front blade.

Calculate constants. - Geometrical and miscellaneous constants are calculated.
Calculate fine-mesh m-coordinates. - The final MV array for the fine mesh can now be calculated.

Read boundary values and interpolate for fine mesh. - Each set of coarse-mesh boundary value data is read. Then interpolated stream-function values for the fine mesh are calculated and printed.

Subroutine PRECAL

The calculation of λ and other constants in PRECAL is no longer necessary in MAGNFY, since λ is given as input and the other constants are not used in the calculation. The remainder of the description of PRECAL in reference 3 is still valid.

Subroutine WRITU

WRITU prints the value of the stream function along a given vertical line between blades or boundaries. A label is printed with the value of IM for the mesh line and the value of IT(IT1) for the first printed stream-function value.

Main Dictionary

The Main Dictionary applies to the previously discussed subroutines.
A
array of coefficients of u (i.e., elements of $a_{i j}$ of matrix A in eq. (A7) of ref. 1)

A12, A34
AA
AAA
AANDK
AATEMP
ANS

AR
AZ
B

B12, B34
BB
BE
BEH

BESP
BETA
BETAH(BETAV)

BETAI(BETAO)
BETI(BETO)

BLDAT
BV

BVIN
BZ
$\mathrm{a}_{12}, \mathrm{a}_{34}$ in eq. (A2) of ref. 1
temporary variable in BLCD
array used for temporary storage
input variable
temporary location for AANDK in SOR
result of calls on ROOT in TANG and DENSTY in SLAVBB and VELBB
input variable (from 2DCP, TURBLE, or TANDEM)
a_{0} in eq. (A2) of ref. 1
array containing stream-channel thickness b at the four points adjacent to a point for which AAK is called
$\mathrm{b}_{12}, \mathrm{~b}_{34}$ in eq. (A2) of ref. 1
temporary variable in BLCD
array of values of b at vertical mesh lines
array of values of b where horizontal mesh lines meet the four blade surfaces
input variable (from 2DCP, TURBLE, or TANDEM)
array of values of β at interior mesh points
array of values of β where horizontal (vertical) mesh lines meet the four blade surfaces
input variable (from 2DCP, TURBLE, or TANDEM)
array of angles at tangent points of leading- (trailing-) edge radii with the four blade surfaces (see input BETI1, 2, 3, 4 and BETO1, 2, 3, 4)
input variable
array of stream-function boundary values on the four blade surfaces
input variable
stream-channel thickness b_{0} at point for which AAK is called

CDMBIT(CDMBOT)

CHANGE

CHORD

CMM

CP
CPTIP
DBDM

DIST

DMLR

DTDM
DTDMH(DTDMV)

DTLR
DUDM

DUDT

EM

EMK, EMKM1
ERROR

ERSOR
EXPON
FIRST
GAM
temporary grid locations along meridional axis in INPUT change in value of stream function at a particular point during an iteration of SOR
array containing the meridional chord distances of each of the four blade surfaces (see input CHORDF and CHORDR)
temporary variable in BLCD
specific heat at constant pressure, \mathbf{c}_{p}
$2 c_{p} T_{i n}$
array of slopes at vertical mesh lines of spline curve for streamchannel thickness
meridional distance in SEARCH from a blade leading edge to where a horizontal mesh line meets a blade surface
tolerance for mesh points near a boundary in the m-direction (If a mesh point is closer than DMLR to a boundary, the point is considered to be on the boundary.)
$\mathrm{d} \theta / \mathrm{dm}$ along a blade surface in BLCD
array of $\mathrm{d} \theta / \mathrm{dm}$ where horizontal (vertical) mesh lines meet the four blade surfaces
tolerance in θ-direction (see DMLR)
array of derivatives of stream function $\partial u / \partial \mathrm{m}$ along horizontal mesh lines in meridional direction
array of derivatives of stream function $\partial u / \partial \theta$ along vertical mesh lines in θ-direction
array of second derivatives of spline curves for each blade surface, calculated by SPLN22 in BLCD
temporary variables for EM in BLCD
maximum absolute value of change in u at any point for an overrelaxation (SOR) iteration
input variable
$1 /(\gamma-1)$
initial value of some index
input variable (from 2DCP, TURBLE, or TANDEM)

H	array containing mesh spacing h between the point for which AAK is called and the four points adjacent to it
HM1	mesh spacing in m-direction from upstream boundary through front blade
HM2	mesh spacing in m-direction for overlapping portion of front and rear blades, or between blades for nonoverlapping case
HM3	mesh spacing in m-direction through rear blade to downstream boundary
HT	mesh spacing in θ-direction from blade to blade
I	temporary integer variable in INPUT, PRECAL, SLAX, and SEARCH
IEND	integer variable set equal to 1 when final convergence to a solution is reached in the outer iterations on a given set of data
IH	array containing current number of intersections of horizontal mesh lines with each of the four blade surfaces as intersections are located
IHS	integer variable in BDRY34 and TANG for counting intersections of horizontal mesh lines with blade surfaces
IM	index of mesh line in the meridional direction (m-direction)
IM1(IMT)	integer variable in TANG indicating vertical mesh line index of the first (final) point in region of a horizontal mesh line
IM2	$\mathrm{IM} 1+1$
IMS	array containing total number of intersections of horizontal mesh lines with each of the four blade surfaces
IMSL	temporary variable in PRECAL
IMSS	temporary variable in PRECAL, VELOCY, and VELBB
IMTM1	IMT - 1
INF	variable in PRECAL indicating when an infinite slope is located at a blade leading or trailing edge in a call on BLCD
INIT	array used to indicate whether BLCD has been called previously on a given blade surface
INTVL	input variable
IP	index of mesh point

IP1,IP2,IP3,IP4	value of IP at the four points adjacent to the mesh point under consideration
IPL(IPU)	value of IP where a vertical mesh line meets a lower (upper) surface or boundary
IPLM1(IPUP1)	value of IP on a vertical mesh line adjacent to a lower (upper) surface in VELBB
IS	integer variable in SEARCH for indicating where a horizontal mesh line intersects a blade surface
IT	index of mesh line in θ-direction
ITF(ITL)	input variable
ITER	outer iteration counter
ITMAX	maximum value of IT in magnified mesh region
ITOR	value of IT at origin of coordinates at leading edge of front blade
ITV	array of horizontal mesh line indexes (IT) corresponding to itersections of vertical mesh lines with blade surfaces (ITV(IM, SURF) is the IT value for the mesh point in the region on vertical mesh line IM which is closest to blade surface SURF. If ITV ≤ 1, the value is adjusted to 1 for a lower surface or 2 for an upper surface. If ITV \geq ITMAX, the value is adjusted to ITMAX - 1 for a lower surface or ITMAX for an upper surface. If a vertical line does not intersect a blade surface, its value of ITV(IM, SURF) is equal to -10000 . For the lower boundary ($\operatorname{SURF}=5$), $\operatorname{ITV}=2$; and for the upper boundary (SURF = 6), ITV = ITMAX - 1.)
ITVL(ITVU)	ITV of lower (upper) blade surface on a given vertical mesh line
ITVM1(ITVP1)	ITV of a blade surface in COEFBB for vertical mesh line to left (right) of the line under consideration
IV	array containing the value of IP at the base of each vertical mesh line
J	temporary integer variable in INPUT
K	array of constants; the vector \underline{k} in eq. (A7) of ref. 1
KA	integer array indicating which of the four points surrounding a mesh point lie on a boundary

KAK	real array giving boundary values of points surrounding a mesh point next to a boundary
KBDRY	input variable
KK	integer counter in BLCD
KKK	array containing information used in plotting subroutine PLOTMY
LAMBDA	input variable
LAST	final value of some index
LER	array indicating location of error messages printed by program
LMAX	maximum value of u_{i}^{m+1} / u_{i}^{m} for eq. (B2) of ref. 7
LOWER	integer variable representing one of lower blade surfaces, 2 or 4
M	meridional coordinate, meters
MAGFAC	input variable
MB1, MB2	temporary vertical grid line locations along meridional axis
MBDYF, MBDYL	input variable
MBI	input variable (from 2DCP, TURBLE, or TANDEM)
MBI2	input variable (from TANDEM)
MBII	number of vertical mesh lines from left boundary to leading edge of a blade in the magnified region (If region surrounds trailing edge of rear blade of a tandem blade, $\mathrm{MBII}=1000$.)
MBIIM1	MBII - 1
MBIIP 1	MBII + 1
MBIT, MBOT	temporary grid locations along meriodional axis
MBO	input variable (from 2DCP, TURBLE, or TANDEM)
MBO2	input variable (from TANDEM)
MBOO	number of vertical lines from left boundary to trailing edge of a blade in the magnified region (If region surrounds leading edge of front blade of a tandem blade, $\mathrm{MBOO}=-1000$.)
MBOOM1	MBOO-1
MBOOP1	$\mathrm{MBOO}+1$
MH	array of m -coordinates of intersections of horizontal mesh lines with the four blade surfaces

MLE

MM
MMM

MMMM1
MMLE
MMMSP
MR
MRTS

MSP

MSPMM
MV
NBBI
NBL
NER

NIP
NOBL
NP1, NP2

NRSP
NSP
NSPI

NSPM1
OMEGA
ORF
ORFOPT
array of m-coordinates of leading edges of the four blade surfaces (see input MLE2)
input variable (from 2DCP, TURBLE, or TANDEM)
number of vertical mesh lines from the left to right boundaries of the magnified region

MMM - 1
temporary meridional distance in BLCD
temporary meridional distance in BLCD
input variable (from 2DCP, TURBLE, or TANDEM)
integer switch in PRECAL indicating when infinite derivatives would be encountered in a call on MHORIZ
array of m-coordinates of spline points for each blade surface measured from its leading edge (see input MSP1, 2, 3, 4)
temporary meridional distance in BLCD
array of m-coordinates of vertical mesh lines
input variable (from 2DCP, TURBLE, or TANDEM)
number of blades
array indicating number of times certain error messages are printed by program
number of interior mesh points
input variable
integer counters in VELOCY indicating number of plotted bladesurface velocities
input variable (from 2DCP, TURBLE, or TANDEM)
input variable
array containing number of spline points on each of the four blade surfaces (see input SPLNO1, 2, 3, 4)
NSP - 1
input variable (from 2DCP, TURBLE, or TANDEM)
input variable (from 2DCP, TURBLE, or TANDEM)
upper bound for optimum Ω from eqs. (B1) and (B2) of ref. 7

ORFTEM	temporary storage for ORFOPT
P	array containing information used in the plotting subroutine, PLOTMY
PITCH	θ-coordinate from blade to blade, $2 \pi / \mathrm{NBL}$
R	array of densities ρ at the four points adjacent to a point for which AAK is called
RATIO	value of u_{i}^{m+1} / u_{i}^{m} for use in eqs. (B2) and (B3) of ref. 7
RBV	array of densities ρ on the four boundaries of the magnified region
RELER	maximum relative change in density at surface mesh points between two outer iterations
RHO	array of densities ρ at interior mesh points
RHOB	temporary storage in VELBB for a value of ρ on a blade surface
RHOHB	array of densities ρ at horizontal mesh line intersections with the four blade surfaces
RHOIP	input variable (from 2DCP, TURBLE, or TANDEM)
RHOVB	array of densities ρ at vertical mesh line intersections with the four blade surfaces
RI(RO)	array of leading- (trailing-) edge radii on the four blade surfaces (see input RI1, 2, 3, 4 and RO1, 2, 3, 4)
RM	array of \mathbf{r}-coordinates of the mean stream surface radii at vertical mesh lines
RMDTL2(RMDTU2)	$[r(\mathrm{~d} \theta / \mathrm{dm})]^{2}$ at vertical mesh line intersections on lower (upper) blade surfaces
RMH	array of r -coordinates of the stream surface radii where horizontal mesh lines meet the four blade surfaces
RMI(RMO)	array of r-coordinates of mean stream surface radii at the inlet (outlet) of the four blade surfaces
RMM	temporary meridional distance in BLCD
RMSP	input variable (from 2DCP, TURBLE, or TANDEM)
RW	value of $\rho \mathrm{W}$ of a mesh point
RWBV	array of ρ times the velocity component normal to the boundary of the magnified region

RWM

RWT

RWMBV

RZ
S

S1(ST)

SAL
SIGN
SPLNO
SPM
SRW

STGR

STRFN
SURF

SURVL
T1, T2
TBI
TBO
TGROG
array of ρW_{m} where vertical mesh lines intersect the four blade surfaces
array of $\rho \mathrm{W}_{\theta}$ where horizontal mesh lines intersect the four blade surfaces
value of ρW_{m} at a mesh point along the lower or upper boundary of the magnified region
density ρ_{0} at point for which AAK is called
meridional distance between two adjacent blade-surface spline points in BLCD
blade-surface number at the beginning (end) of a horizontal mesh line in TANG
array of values of $\sin \alpha=\mathrm{dr} / \mathrm{dm}$ at each vertical mesh line integer constant in BLCD
number of input spline points on a blade surface
array of m -coordinates along a horizontal mesh line in TANG integer code variable that will cause certain subroutines to write out useful data for debugging:

SRW $=13$, SPLINE will write input and output data.
SRW $=16$, SPLINT will write input and output data.
SRW $=18$, SPLN22 will write input and output data.
SRW $=21$, ROOT will write input and successive estimates of
the root to which it is converging.
array of θ-coordinates of center of each trailing-edge radius with respect to center of its leading-edge radius (see input STGRF and STGRR)

input variable

integer variable referring to each of the four blade surfaces, the
lower boundary (5), or the upper boundary (6)
input variable
elapsed time in clock pulses ($1 / 60 \mathrm{sec}$)
$\tan \beta_{l e}$
$\tan \beta_{\text {te }}$
$2 \gamma R /(\gamma+1)$

TH	array in INPUT; also single variable in PRECAL and TANG containing θ-coordinates from leading edge of front blade to a horizontal mesh line
THETA	θ-coordinate of a point along a blade surface in BLCD
THK, THKM1	temporary variables in BLCD
THLE	array of θ-coordinates from origin of front blade to leading edge of each blade surface (see input THLE2)
THSP	array of θ-coordinates of spline points for each blade surface measured from its leading edge (see input, THSP1, 2, 3, 4)
TIME	elapsed time in minutes
TIP	input variable (from 2DCP, TURBLE, or TANDEM)
TSP	array of θ-coordinates of points along a vertical mesh line in SLAVBB
TV	array of θ-coordinates where vertical mesh lines meet the four blade surfaces
TWL	$2 \omega \lambda$
TWLMR	$2 \omega \lambda-(\omega \mathrm{r})^{2}$
TWW	$2 \omega / \mathrm{w}$
U	array of stream-function values at each mesh point, or of eigenvector associated with calculation of ORFOPT
UBV	array of values of stream function u at mesh points on boundary of magnified region
UBVIN	input variable
UNEW	new value of stream-function estimate at a single point calculated by eq. (7) of ref. 1
UPPER	integer variable representing one of the upper blade surfaces, 1 or 3
USP	array of values of stream function along a vertical or horizontal mesh line, including boundary points
W	array of relative velocities W at unknown mesh points, also used for storing $\rho \mathrm{W}$
WCR	critical velocity on a blade surface

WMB

WTB

WTFL
WTFLSP
WWCRM

WWCRT

XDOWN
YACROS
array of ρW_{m} where vertical mesh lines intersect the four blade surfaces
array of $\rho \mathrm{W}_{\theta}$ where horizontal mesh lines intersect the four blade surfaces
input variable (from 2DCP, TURBLE, or TANDEM)
input variable (from TANDEM)
array, ratio of blade-surface velocity (based on meridional components) to critical velocity
array, ratio of blade-surface velocity (based on tangential components) to critical velocity
array of m-coordinates where surface velocities are plotted array of surface velocities to be plotted

Program Listing for Subroutines Using Main Dictionary

```
    COMMON SRW,ITER,ItND,LER(2),NER(1)
    COMMON /AUKRHO/ A(2000,4),U(2000),K(2000),RHO(2000)
    COMMON /INP/ GAM,AR,TIP,RHOIP,MTFL,WTFLSP,OMFGA,ORF,HETAI,BETAI,
    INOBL,MBI,MBU,MLI2,MBO2,MM,NBBI,VBL,NRSP,MBDYF,MBDYL,ITF,ITL,
    2HLDAT, AANDF, ERSOR,STRFN,INTVL,SURVL,MAGFAC,
    3MR(,O),RMSP(5O),BESP(50)
        COMMOV/CALCUN/ MBII,MBUE,MMM,MBIIMI,MBIIPI,MOUOMI,MBOOPI,MMMMI,
        1HM1,HM2,HM3,HT,DTLR,DMLR,PITCH,GP,EXPON,TWW,CPTIP,TGRGG,TEI,TBU,
        2LAM,DA,TWL,ITUR,ITMAX,NIP,IMS(4),BV(4),MV(100),IV(101),
        3UBV(100,4),KW\DeltaV(100,4),I IV (100,6),1V(100,4),0TDMV(100,4),
        4BETIV(100,4),MH(100,4),0TDMH(10U,4), PETAH(100,4),RMH(100,4),
        5BEH(100,4),KM(100), BE(100),DPDH(100),SAL(100),AAA(100)
        COMMON /GFOMIN/ CHORD(4),STG贝(4),MLE(4),THLE(4),RMI(4),RMU(4),
    IRI(4),RO(4),BLTI(4),RETO(4),NSPI(4),MSP(50,4),THSP(50,4)
        COM*ON /RHOS/ RHOHB(100,4),RHOVB(100,4),RBV(1UU,4)
        COMMON/BLCCCM/ FM(50,4),IMIT(4)
        INTEGER BLDAT,AANDK,ERSOK,STRFN,SURVL,AATEMP,SURF,
    IFIRST,UPPER,SI,ST,SRW
    REAL K,KAK,LAMBDA,LMAX,MH,MLF,MR,MSP,MV,MVIMI
    CALL TIMEI(Il)
10 IEND = -1
    ITER = O
    DO \angleO SURF=1,4
20 INIY(SURF) = 0
    CALL INPUT
    CALL PRECAL
30 CALL COEF
    CALI. SOR
    CALL TIMEI(T2)
    TIME=(T2-T1)/3600.
    WRITE(6,1000) TIME
```

```
            CALL SLAX
            CALL TANG
            CALL VELOCY
            CALL TIMEI(T2)
            TIML=(T2-T1)/3600.
            WRITE(6,1000) TIME
            IF (IEND) 30,30,10
1000 FORMAT {8HLTIME = ,F7.4,5H MIN.)
            END
```

SUBROUTINE INPUT

COMMON SRW,ITER, IEND,LER(2), NER(1)
COMMON /AUKKHO/ A(2000.4),U(2000),K(2000), RHO(2000)
COMMON /INP/ GAM,AR,TIP,RHOIP,WTFL,WTFLSP,OMEGA,ORF,BETAI,BETAD,
INOBL, MBI, MRO, MBI 2, MBD2,MM, NBAI, NBL,NRSP, MBDYF, MBDYL, ITF,ITL, 2BLOAT, AANDK, ERSUR,STRFN, INTVL, SURVL, MAGFAC,
3MR(50), RMSP(50), BESP(50)
COMMON /CALCON/ MBII,MBOU,MMM,MBIIMI,MBIIPI,MBUUMI,MBOOPI,MMMMI, 1HM1, HM2, HM $3, H T$, UTLR, DMLR,P ITCH, CP, EXPON, TWW, CPTIP, TGROG, TBI, TBO,
2LAMBDA, TWL, ITOR,ITMAX,NIP,IMS(4),BV(4),MV(100), IV(101),
3UBV(100,4), $\operatorname{RWBV}(100,4), \operatorname{ITV}(100,6), \operatorname{TV}(100,4), \operatorname{DTOMV}(100,4)$, 4BETIV(100,4), MH (100,4$),$ DTDMH (100,4), BETAH(100,4), RMH(100,4),
5AEH (100,4),RM(100), BE (100), DBDM (100), SAL(100), AAA (100)
COMMON /GEGMIN/ CHORD(4),STGR(4),MLE(4),THLE(4),RMI(4),RMO(4),
1RI(4), RO(4), BETI(4), BETO(4),NSPI(4), MSP(50,4), THSP(50,4)
COMMON /RHOS/ RHOHB(100,4),RHOVB(100,4),RBV(100,4)
DIMINS ION BVIN(100), UBVIM(100),TH(100)
INT:GER BLDAT, AANOK,ERSOR,STQFN,SURVL, AATEMP,SURF,
LFIRST,UPPER,S1,ST,SRW
REAL K,KAK,LAMBDA,LMAX,MH,MLE,MR,MSP,MV,MVIMI
C READ A JD WRITE INPUT DATA

WRITE(6,1000)
READ (5.1100)
WRITE(6.1100)
REAU (5,1010) NOBL
WRITE(6,1110) NOBL
IF (NDBL.EQ.1.OR.NOBL.EQ.2) GO TO 10
WRITE $(6,1120)$
STOP
C ULD TURBLE (2DCP) OR TANDEM DATA
10 IF (NOBL.EQ.1) WRITE (6,1130)
IF (NOBL.EQ.2) WRITE (6, 1140)
READ $(5,1030)$ GAM,AR,TIP,RHOIP,WTFL,WTFLSP,OMEGA, URF
WRITE(6,1040) GAM,AR,TIP,RHOIP,WTFL,WIFLSP,OMEGA, ORF
IF (NOBL.EQ.1) WRITE(6,1150)
IF (NOBL.EO.2) WRITE $(6,1160)$
READ(5,1030) BETAI,BETAO,CHORD(L),STGR(1),CHORD(3),STGR(3),
1MLE(3), THLE(3)
WRITE(6,1040) BETAI, BETAO,CHORD(1),STGR(1),CHORD(3),STGR(3).

```
    1MLE(3),THLF(3)
        IF (NOHL.EQ.1) WRITE(6,1170)
        IF (NOHL.EQ.2) WRITE(6,1180)
    REAO (5,LOLU) MBI,MBO,MBI2,MBO2,MM,VBBI,NBL,NRSP
    WRITE(6,1010) MBI,MBO,MBI2,MBO2,MM,NBBI,NBL,NRSP
    DO 20 J=1,4
    IF (NOBL.EQ.1.AND.J.EQ.3) GO TO 30
    IF (J.EQ.1) WRITE(6,1190)
    IF (J.EQ.2) WRITE(6,1200)
    IF (J.EQ.3) WRITE(6,1210)
    IF (J.EQ.4) WRITE(6,1220)
    WRITE(6,1230) J,J,J,J,J
    READ (5,1030) RI(J),RO(J), BETI(J),BETO(J),SPLNO
    WRITE(6,1040) RI(J),RO(J),BETI(J),BETO(J),SPLNO
    NSPI(J)= SPLNO
    NSP= NSPI(J)
    WRITE(6,1240) J
    REAC (5,1030) (MSP(I,J), [=1,NSP)
    WRITE(6,1040) (MSP(I,J),I=1,NSP)
    WRITE(6.1250) J
    READ (5,1030) (THSP([,J),I=1,NSP)
    20) WRITF(6,1040) (THSP(I,J),I=1,NSP)
    30 WRITE(6,1260)
    REA:) (5,1030) (MR(I), I=1,NRSP)
    WRITE(6,1040) (MR(I), I=1,NRSP)
    WRITE(6,1270)
    REAO (5,1030) (RMSP(I),I=1,NRSP)
    WRITE(6,104U) (RMSP(I),I=1,NRSP)
    WRITE(6,1280)
    REAi) (5,1030) (BESP(I),I=1,NRSP)
    WRITE(6,1040) (BESP(I),I=1,NRSP)
C NEW MACNFY DATA
    WRITE(6,1290)
    REAO (5,1010) BLDAT,AANDK,ERSOR,STRFN,INTVL,SURVL
    WRITE(G,1020) BLDAT,AANDK,ERSOR,STRFN,INTVL,SURVL
    WRITE(6,1300)
    REAU (5.1010) MBDYF,MBDYL.ITF,ITL,MAGFAC
    WRITE(6,1020) MBOYF,MBOYL,ITF,ITL,MAGFAC
    WRITE(6,1310)
    READ (5,1030) LAMBDA
    WRITE(6,1040) LAMBDA
    MLE(1) = 0.
    THLE(I)=0.
C
C for single blave case, fill in dummy tandem blade
    IF (NOBL.EQ.2) GO TO 60
    WTFLSP=0.
    CHORD(3) = CHORO(1)
    STGR(3) = STGR(1)
    MLE(3)=0.
    THLE(3)=0.
    MBI2= MBI
    MBO2= MBD
    RI(3)= RI(1)
    RI(4)=RI(2)
    RO(3)= RO(1)
    RO(4)= RO(2)
    BETI(3)= BETI(1)
```

```
    BETI(4)= BFTI(2)
    BETII(3)= BFTO(1)
    BETO(4)= BETO(2)
    NSPI(3)= NSPI(1)
    NSPI(4)= NSPI(2)
    NSP= NSPI(3)
    DO 40 I=1,NSP
    MSP(I,3)= MSP(I,1)
40 THSP([,3)= THSP(I,1)
    NSP= NSPI(4)
    DO 50 I=1,NSP
    MSP(I,4)= MSP(I,2)
50 THSP(I,4)= THSP(I,2)
C
    C calculate largé mesh spacing;
    C
60 HM1 = CHORD(1)/FLOAT(MRO-MBI)
    IF (MBO.GT.MBI2 .AND. MBI.NE.MBI2) HMI= MLE(3)/FLUAT(MBI2-MBI)
    HM2 = 1.E30
    IF (MBI2.NE.MBO) HM2= (CHORD(1)-MLE(3))/FLOAT(MBO-MBI2)
    HM3 = CHDRD(3)/FLOAT(MBU2-MBI2)
    IF (MBO.GT.MBI2 .AND. MBU.VE.MHU2) HM3= (CHORD(3)+MLE(3)-CHORD(1))
    1/FLUAT (MBO2-MBO)
        PITCH= 2.*3.1415927/FL\capAT(NBL)
    HT = PITCH/HLOAT(NBBI)
    C
    C
    C
    MBOT= MINO(MBG,MBI2)
    CDMHOT= AMIN1(CHORD(1),MLE(3))
    0O 70 IM M 1,MBOT
70 MV(IM)= FLOAT(IM-MBI)*HMI
    MBIT= MAXO(MBU,MBI2)
    CDMEIT= AMAA1(CHORD(1),MLE(3))
    DO &O IM=MFUT,MBIT
80 MV(IM)= COMDOT +FLOAT(IM-MBOT)*HM2
    OO งO IM=MB[T,MM
90 MV(IM)= CDMEIT+FLUAT(IM-MBIT)*HM3
    CALL SPLINT (NR,RMSP,NRSP,MV,MM,RM,SAL)
    RMI(1)= RM(MBI)
    RMI(2)=RM(MBI)
    RMI(3)= RM(NBI2)
    RMI(4)=RM(MBI2)
    RMO(1)=RM(MBO)
    RMO(2)=RM(MBO)
    RMU(3)=RM(MBO2)
    RMO(4)= RM(MBO2)
    RV(1)=0.
    BV(2)=0.
    BV(3)= -WTFLSP/WTFL
    BV(4)= BV(3)
C
C Calculate gegmetrical constants
C
    MBII= (MBI2-MBDYF)*MAGFAC+1
    MBOO= (MBO-MEDYF)*MAGFAC +1
    NMM=(MBDYL-M\triangleDYF)#MAGFAC+1
    ITMAX= (ITL-ITF)*MAGFAC+1
```

```
        HM1 = HM1/FLUAT(MAGFAC)
        HMZ = HM2/FLUAT(MAGFAC)
        HM3 = HM3/FLOAT(MAGFAC)
        HT = HT/FLOAT(MAGFAC)
        ITOK= -ITF*MAGFAC+1
        IF (NDBL.EQ.1) GO TO 130
C
C FOR TANDEM BLAUE CASE, IF REGIDN SURROUNOS LEADING EUGE UF
C FRUNT BLADE, STORF BLADE SURFACES 1 AND 2 INTO }3\mathrm{ AND 4
C
    IF (MBDYF.GE.MES.OR.MBDYL.LE.MBI) GO TO 110
    IF (ITF.GE.O.OR.ITL.LE.O) GO TO 110
    MBII = (MBI-MBDYF)*MAGFAC+1
    MBOOI= -1000
    HM2 = HM1
    HM3 = HM1
    CHORD(3)= CHORD(1)
    STGR(3) = STGR(1)
    MLE(3)= MLE(1)
    THLE(3) = THLE(1)
    DO 100 J=1,&
    RI(J+2)=RI(J)
    RO(J+2)=RU(J)
    BETI(J+2) = BETI(J)
    BETO(J+2) = BETO(J)
    RMI(J+2)=RMI(J)
    RMO(J+2)=RMO(J)
    BV(J+2) = BV(J)
    NSPI(J+2)=NSPI(J)
    NSP = NSPI(J)
    DO 100 I=1,NSP
    MSP(I,J+2)= MSP(I,J)
    100 THSP(I,J+2)= THSP(I,J)
C
C FDR TANDEM BLAUE CASE, IF REGION SURROUNDS TRAILING EDGE OF
C RFAR BLADE, STURE BLADE SURFACES 3 ANO 4 INTO I AND 2
C
110 IF (MBOYF.GE.MBO2.OR.MBUYL.LE.MBO2) GO TO 130
            IF (FLOAT(ITF*MAGFAC)*HT.GE.THLE(3)+STGR(3).OR.FLOAT(ITL*MAGFAC)*
    1HT.LE.THLE(3)+STGR(3)) GIj TO 130
    MBII=1000
    MBOI= (MBO2-MBDYF)*MAGFAC+1
    HM1 = HM3
    HM2 = HM3
    CHORD(1) = CHORD(3)
    STGR(1)= STGR(3)
    MLE(1) = MLE(3)
    THLE(1) = THLE(3)
    DO 120 J=3,4
    RI(J-2) = RI(J)
    RO(J-2)=RO(J)
    BETI(J-2) = BETI(J)
    BETII(J-2) = BETO(J)
    RMI(J-2)= KMI(J)
    RMO(J-2)= RMO(J)
    BV(J-2)= BV(J)
```

```
        NSPI(J-2)=NSPI(J)
        NSP = NSPI(J)
        DO 120 I=1,NSP
        MSP(I,J-2)=MSP(I,J)
    120 THSP(I,J-2)=THSP(I;Jj
C
    130CHORD(2)=CHORD(1)
        CHORD(4) = CHORD(3)
        STGR(2) = STGR(1)
        STGR(4) = STGR(3)
        MLE(2) = MLE(1)
        MLE(4) = MLE(3)
        THLE(2) = THLE(1)
        THLL(4) = THLE(3)
        DTLR= HT/1000.
        DMLR= AMIN1(HM1,HM2,HM3)/1000.
        MBIIMI= MBII-I
        MBIIP1= MBII+1
        MBOUMI= MBOO-1
        MBOITP1= MEOUT+1
        NMMP1 = MMM-1
        NER(1) = 0
        CP=AR/(GAM-I.)*GAM
        FXPBN= 1./(GAM-1.)
        TWW= 2.*OMEGA/WTFL
        CPTIP= 2.*CP*TIP
        TGROG= 2.*GAM*AR/(GAM+1.)
            calculate fine mesh mv array
            MV(1)= MV(MbDYF)
            MBOT= MINO(MBII,MBOO)
            MBOT= MAXO(MROT,1)
            DO 140 IM=1,MBOT
    140 MV(IM)= MV(1)+FLDAT(IM-1)*HML
    MBIT = MAXO(MBII,MBOO)
    MBIT= MINO(MBIT,MMM)
    DO 150 IM=MBOT,MBIT
    150 MV(IM)= MV (NBOT) +FLOAT(IM-MBOT)*HM2
    DO 160 IM=MBIT,MMM
    160 MV(IM)= MV(MBIT)+FLOAT(IM-MBIT)*HM3
    DO 165 IM=1,MMM
    165 IF (ABS(MV(IM)).LT.DMLR) MV(IM)=0.
    CALL SPLINT(MR,RMSP,NRSP,MV,MMM,RM,SAL)
    CALL SPLINT(MR,BESP,NRSP,MV,MMM,BE,DBOM)
C
G FINISH READING NEW MAGNFY INPUT DATA
C READ, COMPUTE, AND STORE BOUNDARY VALUES
C
    OO 170 I= 1,100
    DO 170 J=1,4
    UBV(I,J)=0.
    170 RWHV(I,J) = 0.
    180 READ(5,1010) KBDRY,NSP
```

```
            IF (KBDRY.EQ.O) GU TO 210
            WRITE(6,1320)
            WRITE(6.1020) KBDRY,NSP
            WRITE(6,1330)
            READ (5,1030) (BVIN(I),I=1,NSP)
            WRITE(6,1040) (BVIN(I),I=1,NSP)
            WRITE(6,1340)
            READ (5,1030) (UBVIN(I),I=1,NSP)
            WRITE(6,1040) (UBVIN(I),I=1,NSP)
            IF (KBDRY.FQ.3 .OR. KBDRY.EQ.4) GO TO }19
            CALL BDVINT(BVIN,UBVIN,NSP,MV,KBDRY,DMLR,MMM)
            GO TO 180
    190 DO 200 IT=1,ITMAX
    200 TH(IT)= FLOAT(IT-ITOR)*HT
            CALL BDVINT(BVIN,UBVIN,NSP,TH,KBDRY,DTLR,ITMAX)
            GO TO 180
    210 DO 220 KBDRY=1,2
    DO 220 I M=1,MMM
    220 RWBV(IM,KBDRY) = -RWBV(IM,KBDRY)*WTFL/BE(IM)
            DO 230 KBDRY=3,4
            DO 230 IT=1,ITMAX
    230 RWBV(IT,KBDKY) = RWBV(IT,KBDRY)*WTFL/BE(IM)/RM(IM)
            IF(BLDAT.GT.O) WRITE (6,1350) (MV(IM),UBV(IM,1),RWBV(IM,1),
            IUBV(IM,2),RWBV(IM,2),IM=1,MMM)
            IF(BLDAT.GT.O) WRITE (6,1360) (TH(IT),UBV(IT,3),RWRV(IT,3),
            IUBV(IT,4),RwBV(IT,4),IT=1,ITMAX)
C
C INITIALIZE ARRAYS
C
            DO 240 I=1,2000
            U(I) = 1.
            K(I)= 0.
    240 RHO(I)= RHOIP
            DO 250 IM=1.100
            DO \
            RHOHB(IM,SURF)= RHOIP
            RHUVB(IM,SURF)= RHOIP
            RBV(IM,SURF) = RHOIP
    250 ITV(IM,SURF) = -10000
            DO 260 IM=1,1U0
            ITV(IM,5)=2
    260 ITV(IM,6)= ITMAX-1
            IF (MMM.LE.100.AND.ITMAX.LE.100) RETURN
            WRITE (6,1370)
            STOP
C
C FORMAT STATEMFNTS
C
1000 FORMAT (1HI)
1010 FORMAT (16I5)
1020 FORMAT (1X,16I7)
1030 FORMAT (8F10.5)
1040 FORMAT (1X,8G16.7)
1100 FORMAT 180H
            1 )
1110 FORMAT (7X,4HNOBL/7X,13)
```

1120 FORMAT $(29 H 1$ NOBL HAS NOT BEEN SPECIFIED)
1130 FORMAT $17 X, 3$ HGAM, $14 X, 2 H A R, 13 X, 3 H T I P, 12 X, 5 H R H O I P, 12 X, 4 H W T F L, 2 I X$, 15 HDNEGA, $12 \mathrm{X}, 3$ HORF)
1140 FORMAT $17 \mathrm{X}, 3 \mathrm{HGAM}, 14 \mathrm{X}, 2 \mathrm{HAR}, 13 \mathrm{X}, 3 \mathrm{HTIP}, 12 \mathrm{X}, 5 \mathrm{HRHOIP}, 12 \mathrm{X}, 4 \mathrm{HWTFL}, 11 \mathrm{X}, 6 \mathrm{HW}$ 1 TFLSP, $10 X, 5$ OMMEGA, $12 X, 3 H$ ORF)
1150 FORMAT ($6 X$, , SHBETAI, $10 X, 5 H B F T A O, 11 X, 5 H C H U R D, 12 X, 4 H S T G R$)
1160 FOR:AAT $(6 X$, HHBETAI, $10 X, 5 H B E T A O, 11 X$, GHCHORDF, $11 X, 5 H S T G R F, 10 X$,
IGHCHORDR, $10 x, 5 H S T G R R, 12 X, 4 H M L E R, 11 X, 5 H T H L E R$)
1170 FOR:AAT ($4 X, 8 H M E I$ MBO, $12 X, 18 H M M$ NBBI NEL NRSP)
1180 FORMAT (41H MBI MBO MBI 2 MBO2 MM NBBI NBL NRSP)
1190 FORMAT (53HL BLADE SURFACE 1 -- UPPEK SURFACL - FRONT BLAOE)
1200 FORMAT (53 HL BLADE SURFACE 2 -- LOWER SURFACE - FRONT BLAUE)
1210 FORMAT (52 HL BLADE SURFACE 3 -- UPPER SURFAGE - REAR BLADE)
1220 FORMAT (52HL BLADE SURFACE 4 -- LOWER SURFACE - REAR BLADE)
1230 FORMAT $(7 X, 2 H R I, I L, 12 X, 2 H R O, I 1,12 X, 4 H B E T I, I 1,11 X, 4 H B E T O, I 1,11 X, 5 H S$ 1PLNO,Il)
1240 FORMAT ($7 \mathrm{X}, 3 \mathrm{HMSP}, \mathrm{I} 1,2 \mathrm{X}, 5 \mathrm{H}$ HRRAY)
1250 FORMAT (7X,4HTHSP, I $1,2 X$, 5HARRAY)
1260 FOR"AT (16HL MR ARPAY)
1270 FORMAT (7X,11HRMSP ARRAY)
1280 FORMAT (7X, ILHEESP ARRAY)
1290 FORAAT ($4511 L$ BLDAT AAVOK ERSOR STRFN INTVL SURVL)
1300 FORMAT (39HL MBUYF MADYL ITF ITL MAGFAC)
1310 FORMAT (7 X , OHLAMBUA)
1320 FOR:AT (15HL KBDRY NSP)
1330 FORMAT ($7 \mathrm{X}, 11 \mathrm{HBVIN}$ ARRAY)

1350 FORMAT (IHI, $7 \times$, GOHSTREAM FUNCTIUN AND RHO*W-SUO-THETA ON HORIZUNTA IL BOUNDARIES//19X,55HLOWIR HORILONTAL BUUNOARY UPPER HORIZONTA

1360 FORIAT $11 H 1,7 X, 54 H S T R E A M$ FUNCTIUN AND RHO*W-SUB-M GV VERTICAL BOUN IDARIES//20X,5 $2 H L E F T$ VERTICAL BOUNDARY RIUHT VERTICAL BOUNDAR 2Y/6К,5HTHETA,4X,2(7X,3HUEV,12X,4HRWBV,4X)/(1X,2G15.5))
1370 FORMAT (28H1 MMM GT 100 CR ITMAX GT 100) FNU

SUBKOUTINE PRECAL
6
PRECAL CALCULAIES ALL REQUIRED FIXED CONSTANTS

```
COMMOV SRW,ITER,IEND,LER(2),NER(1)
    COMMOV/AUKRHU/ A(2000,4),U(2000),K(2000),RHO(2000)
    COMMON /INP/ GAM,AR,TIP,RHDIP,WTFL,WTFLSP,DMEGA,ORF,BETAI,BETAD,
    INOBL,MBI,MBU,MBI2,MBO2,MM, NBBI,NBL,NRSP,MBDYF,MBDYL,ITF,ITL,
    2BLDAT, AANDK,ERSOR,STRFN, INTVL,,SURVL,MAGFAC,
    3MR(:0),RMSP(5U),BESP(50)
    COMMON/CALCON/ MBII,MBOL,MMM,MBIIMI,MBIIPI,MDUOML,MBOOPI,MMMM1,
    1HM1,HM2,HM3,HT,DTLR, DMLR,PITCH,CP,EXPON,TWW,CPTIP,TGROG,TBI,TBO,
    2LAM:!DA,TWL,ITOR,ITMAX,NIP,IMS(4),BV(4),MV(100),IV(101),
    3UBV(100,4),RWbV(100,4),ITV(100,6),TV(100,4), DTUMV(100,4),
    4EET IV(100,4),MH(100,4),DTDMH(100,4), BETAH(100,4),RMH(100,4),
    5HEH(100,4),RM(100),BE(100),DBDM(100),SAL(100), AAA(100)
    INTLGER BLDAT. AAVLK,ERSOR,STRFN,SURVL,AATEMP,SUKF,
LFIR;T,UPPFR,SI,ST,SRW
    REAI K,KAK,LAMEDA,LMAX,MH,MLE,MR,MSP,MV,MVIMI
    EXTLRVAL BLL,BL2,BL3,BL4
```

```
C
    C CALCULATE TV, ITV, IV, DTDMV AND BETAV ARRAYS
10 BETAV(IM,2)=ATAN(DTDMV(IM,2)*RM(IM))*57.295779
```

20 MBIT = MAXO(1,MBII)
MBOT = MINO(MMM, (MRJ2-MBDYF)*MAGFAC+1)
IF (MBIT.GT.MBOT) GO TO 40
DO 30 IM=MHIT,MBOT
LER(2)=3
BLCO CALL NO. 3
CALL BL3(MV(IM),TV(IM,3),DTDMV(IM,3),[NF)
ITV(IM,3)= INT((TV(IM,3)+DTLR)/HT)+ITOR
IF(TV(IM,3),GT.-DTLR)ITV(IM,3)=ITV(IM,3)+1
ITV(IM,3)= MINO(ITV(IM, 3),ITMAX)
ITV(IM,3)= MAXO(ITV(IM,3),2)
BETAV(IM,3)= ATAN(DTDMV(IM.3)*RM(IM))*57.295779
LER(2)=4
BLCO CALL NU. 4
CALL BL4(MV(IM),TV(IM,4),DIDMV(IM,4),INF)
ITV(IM,4)=INT((TV(IM,4)-DTLR)/HI)+ITOR
IF(TV(IM,4).LT.DTLRIITV(IM,4)=ITVIIM,4)-1
ITV(IM,4)= MAXO(ITV(IM,4),1)
ITV(IM,4) = MINO(ITV(IM,4),ITMAX-1)
30 BETAV(IM,4)= ATAN(DTDMV(IM,4)*RM(IMI)*57.295774
C IV ARRAY
40 IV(I) = 0
IV (2)=1
MBOT = MINO(MBIIMI,MBOO)
IF(MBOT.LT.2) GO TD 60
DO 50 IM=2,MBOT
IV(IM+1)=IV(IM)+ITV(IM,2)-ITV(IM,1)+ITMAX-1
50 IF (ITV (IM,I).EQ.-10000) IV (IM+I)=IV(IM+1)-1
60 MBIT = MAXO(2,MBII)
MBOT = MINO(MMMML,MBOO)
IF(MBIT.GT.MBOTIGO TO 80
DO 70 IM=MHIT,MBOT
70 IV(IM+1)= IV(IM)+ITV(IM,4)+ITV(IM,2)-ITV(IMM,3)-ITV(IM,1)+ITMAX
80 MBIT = MAXO(2,MBOOP1)
MBOT = MINO(MMMM1,MBIIM1)

```
```

 IF(MBIT.GT.MHUT) GO TO 100
 DO 9O IM= MUIT,MBOT
 90 IV(IM+I)= IV(IM)+ITMAX-2
 100 MBIT = MAXO(MEII.MHOOPI)
 IF(MBIT.GT.MMMM1)GO TO 120
 DO 110 IM=MBIT,MMMMI
 IV(IM+I)=IV(IM)+ITV(IM,4)-ITV(IM,3)+ITMAX-1
 110 IF (ITV(IM,3).EQ.-10000) IV(IM+1)=IV(IM+1)-1
 120 NIP=IV(MMM)-1
 WRITE (6,1020) PITCH,HT,HM1,HM2,HM3
 WRITE (6,1030) MBII,MBOO,MMM,ITMAX,NIP
 WRITE (6,1040) (SURF,BV(SURF),SURF=1,4)
 IF(:LDAT.LF.O) GO TO 140
 MBIT = MAXO(1,(MBI-MBCYF)*MAGFAC+1)
 MBOT = MINO(MMM,MBOD)
 WRITE (6,105O)
 DO 130 SURF=1,3,2
 I = SURF+1
 IF (MBIT.LE.MBOT) WRITE(6,1060) SURF,I,(MV(IM),TV(IM,SURF),DTOMV(I
 IM,SURF),TV(IM,I),DTDMV(IM,I),IM=MBIT,MBOT)
 MBIT = MAXO(1,MBII)
 130 MBOT = MINO(MMM,(MBO2-MBDYF)*MAGFAC+1)
 WRITE!G,1070)(IM,MV(IM),RM(IM),SAL(IM),BL(IM),DBDM(IM),IM=1,MMM)
 WRITE(6,1080) (IM,IV(IM),(ITV(IM,SURF),SURF=1,4),IM=1,MMM)
 C
c. CALCULATE MH AND DTDMH ARRAYS.
C
140 IMS(1)=0
MRTS = 0
MRIT = MAXO(1.(MBI-MBDYF)*MAGFAC+1)
MBOT = MINO(MMM,MBOO)
LER(2) = 5
BLCO AND RCOT (VIA MHORIL) CALL NO. 5
CALL MHORIZ(MV.ITV(1,1),GL1,MBIT,MEUT,ITOR,HT,UTLR,O,IMS(1),
1MH(1,1),DTDMH(1,1),MRTS)
IF(ITV(MBOO,1)-ITV(MBOO,2).NE.2) GO TO 150
IMSL = IMS(1)+1
MH(IMSL,1)= MV(MBOO)
DTUiH([MSL,L)= -1.E10
IMS(1)= IMSL
150 [MS(2)=0
MRTS = 0
LER(2)=6
BLCD AND R(IUT (VIA MHORIZ) CALL NO. 6
CALL MHORIZ(MV,ITV(1,2), EL2,MBIT,MBOT,ITOR,HT,DTLR,I,IMS(2),
IMH(1,2),DTDMH(1,2),MRTS)
IMS (3)=0
IF(ITV(MBII,3)-ITV(MBII,4).NE.2) GO TO 160
MRTS = 1
IMS (3)=1
MH(1,3)=MV(MBII)
DTDMH(1,3)=1.E 10
160 MBIT = MAXO(1,MBII)
MBOT = MINO(MMM, (MBO2-MBLYF)*MAGFAC+1)
LER(2) = 7
C. BLGO ANO ROOT (VIA MHORIZ) CALL NO. }
CALL MHOJRIZIMV,ITV(1,3),HL3,MBIT,MBOT,ITOK,HT,UTLR,O,IMS(3),
1MH(1,3),DTDMH(1,3),MRTS)
IMS (4)=0
IF (ITV(MBII,3)-ITV(MBII,4).EQ.2) MRTS=1

```

LER(2) \(=8\)
BLCD AND ROUT (VIA MHORI 2.) CALL NO. 8
CALL MHORIZ(MV, ITV(1,4), HL4, MBIT, MBOT,ITOR,HT, OTLR, I, IMS(4),
\(1 \mathrm{MH}(1,4), \operatorname{DTDMH}(1,4), \mathrm{MRTS})\)
\(I=\operatorname{MAXO}(I M S(1), I M S(2), I N S(3), I M S(4))\)
IF (I.LE.100) GO TO 170
WRITE(6,1090) I
STOP
C
C
CALCULATE RMH, BEH, AND BETAH ARRAYS
170 1F (BLDAT.GT.0) WRITE (6, 1100 )
DO 190 SURF=1,4
CALL SPLINT(MR,RMSP,NRSP,MH(1,SURF), IMS(SURF),RMH(1,SURF), AAA)
CALL SPLINT(MR,BESP,NRSP,MH(1,SURF),IMS(SURFI,BEH(I,SURF),AAA)
IMSS= IMS(SURF)
IF (IMSS.LT. 1) GO TO 190
DO 180 IHS \(=1\),IMSS
180 BETAH(IHS,SURF) = ATAN(DTIMH (IHS,SURF)*RMH(IHS,SURF))*57.295779 IF (BLDAT.GT.O) WRITE (6, 1110) SURF, (MH(IM, SURF). RMHIIM,SURF), 1BEH(IM,SURF), UETAH(IM,SURF), DTDMH(IM,SURF), IM=1,IMSS)
190 CONTINUE
IF (BLDAT.LE.O) GO TO 210
WRITE (6,1120)
DO 200 IT \(=1\), ITMAX
\(T H=\) FLOAT (IT-ITOR)*HT
200 WRITE \((6,1010)\) IT,TH
210 WRITE (6.1000)
IF (NIP.LE.2000) RETURN
WRITE (6,1130)
STOP
1000 FORMAT (1H1)
1010 FORMAT ( \(4 \times, 14, G 16.5\) )
1020 FORMAT (1HI/////5X,28HCALCULATED PROGRAM CONSTANTS//5X,5HPITCH, \(113 \mathrm{X}, 2 \mathrm{HHT}, 13 \mathrm{X}, 3 \mathrm{HHM} 1,13 \mathrm{X}, 3 \mathrm{HHM} 2,13 \mathrm{X}, 3 \mathrm{HHM} 3 / 1 \mathrm{X}, 5 \mathrm{G} 10.71\)
1030 FORMAT (/5X,4HMEII, \(10 \mathrm{X}, 4 \mathrm{HMBOO}, 10 \mathrm{X}, 3 \mathrm{HMMM}, 10 \mathrm{X}, 5 \mathrm{HITMAX} / 3 \mathrm{X}, \mathbf{1 5}, 9 \mathrm{X}, 15\), \(19 \mathrm{X}, \mathrm{I} 5.9 \mathrm{X}, \mathrm{I} 5 / / / 5 \mathrm{X}, 33 \mathrm{HNUMBER}\) OF INTERIOR MESH PUINTS \(=\) I 5 )
1040 FORMAT (//////5X,23HSURFACE BOUNDARY VALUES//5X,7HSURFACE,7X,2HBV/ 1(5X, I4,4X,F10.5))
1050 FORMAT (IHI, \(6 X, 62 H B L A D E\) DATA AT INTERSECTIONS OF VFRTICAL MESH LIN IES WITH BLAUES)
1060 FORMAT I IHL, 22X, 13 HBLADE SURFACE,I2,15X,13HBLADE SURFACE,I2/7X, 11 HM, \(14 \mathrm{X}, 2 \mathrm{HTV}, 11 \mathrm{X}, 5 \mathrm{HDTDMV}, 12 \mathrm{X}, 2 \mathrm{HTV}, 11 \mathrm{X}, 5 \mathrm{HDTDMV} /(5 \mathrm{G} 15.5)\) )
1070 FOKMAT \((1 H 1,13 X, 44 H S T R E A M\) SHEET COORDINATES ANU THICKNESS TABLE/ \(12 \mathrm{X}, 2 \mathrm{HIM}, 7 \mathrm{X}, 1 \mathrm{HM}, 14 \mathrm{X}, 1 \mathrm{HR}, 13 \mathrm{X}, 3 \mathrm{HSAL}, 13 \mathrm{X}, 1 \mathrm{HB}, 12 \mathrm{X}, 5 \mathrm{HDB} / \mathrm{DM} /\) 2(1X.I3,5G15.5))
1080 FORMAT \((4 H 1\) IM, \(9 X\), BHIV AHRAY, \(32 X, 9 H I T V\) ARRAY/38X,5HBLADE/37X,7HSUR IFACE, \(3 \mathrm{X}, 1 \mathrm{H}, 5 \mathrm{X}, 1 \mathrm{H} 2,5 \mathrm{X}, 1 \mathrm{H} 3,5 \mathrm{X}, 1 \mathrm{H} 4 / 39 \mathrm{X}, 3 \mathrm{HNO} . /(1 \mathrm{X}, \mathrm{I} 3,5 \mathrm{X}, \mathrm{I} 10,25 \mathrm{X}\), 24(I4,2X)))
1090 FORNAT \((35 H I\) ONE GF THE MH ARRAYS IS TOO LARGE/7HLIT HAS,IS, 18 H POINTSI
1100 FORMAT \(167 H I M\) COORDINATES OF INIERSECTIONS DF HORIZONTAL MESH LINE IS WITH BLADE)
1110 FQRMAT 125 HLMH ARRAY - BLADE SURFACE, \(12 / / 15 \mathrm{X}, 2 \mathrm{HMH}, 19 \mathrm{X}, 3 \mathrm{HRMH}, 19 \mathrm{X}\), 1 3HBEH,18X,5HBETAH,17X,5HDTDMH/(5G22.4))
1120 FORMAT \(143 H I T H E T A\) COQRDINATES OF HORIZONTAL MESH LINES//6X,2HIT. 15 X, БHTHETA)
1130 FORMAT (48H THE NUMBER UF INTERIOR MESH POINTS EXCEEDS 2000) END

\section*{SUBROUTINE COEF}

C COEF CALCULATES FINITE DIFFERENCE COEFFICIENTS, A, AND CONSTANTS, K,
    COMMON SRW, ITER,IEND,LER(2),NER(1)
    COMMON /AUKRHO/ A (2000,4),U(2000),K(2000),RHO(2000)
    COMMON /INP/ GAM,AR,TIP,RHOIP,WTFL,WTFLSP,OMEGA,ORF,BETAI,BETAO,
    1 NOBL,MBI, MBO, MBI \(2, M B O 2, M M, N B B I, N B L, N R S P, M B D Y F, M B D Y L, I T F, I T L\),
    2BLDAT, AANDK, ERSOR, STRFN, INTVL, SURVL, MAGFAC.
    3MR(50), RMSP(50), BESP(50)
    COMMON /CALCON/ MBII,MBOO,MMM,MBIIMI,MBIIP1,MBOUMI,MBOOPI,MMMMI,
    1HM1,HM2,HM3,HT, UTLR, DMLR,PITCH,CP, EXPON,TWW, CPTIP, TGROG, TBI, TBO,
    2LAMBDA, TWL, ITOR, ITMAX,NIP,IMS(4),BV(4), MV(100), IV(101),
    3UBV ( 100,4\(), \operatorname{RWBV}(100,4), I \operatorname{TV}(100,6), \operatorname{TV}(100,4), \operatorname{DTDMV}(100,4)\).
    4 RETAV ( 100,4\(), \mathrm{MH}(100,4)\), DTDMH \((100,4)\), BETAH(100,4), RMH \((100,4)\),
    5BEH(100,4), RM(100), BE (100), DBDM(100), SAL(100), AAA(100)
        COMMON /HRBAAK/ H(4),R(4),B(4),KAK(4),KA(4),IH(4),RZ,BZ
        INTEGER BLDAT, AANDK, ERSOR, STRFN, SURVL, AATEMP, SURF,
    IFIRST, UPPER,SI,ST,SRW
        REAL K,KAK, LAMBDA, LMAX,MH,MLE,MR,MSP,MV,MVIMI
    C INITIALIZE ARRAYS
    ITER = ITER+1
    \(\operatorname{IH}(1)=\operatorname{MAXO}(0, \operatorname{ITV}(2,1)-\operatorname{ITV}(1,1))\)
    \(\operatorname{IH}(2)=\operatorname{MAXO}(0, \operatorname{ITV}(1,2)-\operatorname{ITV}(2,2))\)
    \(\operatorname{IH}(3)=\operatorname{MAXO}(0, \operatorname{ITV}(2,3)-\operatorname{ITV}(1,3))\)
    \(\operatorname{IH}(4)=\operatorname{MAXO}(0, \operatorname{ITV}(1,4)-\operatorname{ITV}(2,4))\)
    IF(ITV(MBII,3)-ITV(MBII,4).EQ.2)IH(3)=1
C INCOMPRESSIBLE CASE
    IF(GAM.NE.1.5.OR.AR.NE. 1000..OR.TIP.NE.I.EG) GO TO 10
    \(I E N D=0\)
    GO 1020
C ADJUSTMENT OF PRINTING CONTROL VARIABLES
10 IF(ITER.NE.1.AND.ITER.NE. 2 ) GO TO 20
    AANDK \(=\) AANLK-1
    ERSOR \(=\) ERSOR-1
    STRFN = STRFN-1
    INTVL \(=\) INTVL-1
    SURVL \(=\) SURVL-1
20 IFIIEND.NE.O) GO TO 30
    AANDK \(=\) AANDK +2
    ERSOR \(=\) ERSOR +2
    STRFN \(=\) STRFN +2
    INTVL \(=\) INTVL +2
    SURVL \(=\) SURVL +2
C
C CALL COEFBB THROUGHDUT THE REGION
C
C FRONT BLADE
    30 MBOT \(=\) MINO(MBIIMI,MBOO)
    IF (MBOT.LT.2) GO TD 50
    DO 40 IM \(=2\), MBUT
    CALI. COEFBB (IM,5,2)
    40 CALL COEFBB (IM, 1,6 )
C OVERLAP REGION
50 MBIT \(=\) MAXO (2.MBII)
    MBOT \(=\) MINO (MMMM1, MBOO)
    IF (MBIT.GT.MBOT) GO TO 70
    DO 60 IM \(=\) MBIT, MBOT
    CALL COEFBP (IM,5,4)
```

 CALL COEFBB (IM,3,2)
 60 CALL COEFBR (IM,1,6)
 GO TO 90
 C NON-OVERLAP REGION
70 MBIT = MAXO(2,MBOUP1)
MBOT = MINO(MBIIMI,MMMMI)
IF (MBIT.GT.MBOT) GO TO 90
OO 80 IM=MEIT,MBOT
80 CALL COEFBR (IM,5,6)
C REAR BLADF
90 MBIT = MAXO(MBII,MBOOP1)
IF (MBIT.GT.MMMM1) GO TO 110
DO 1OD IM=NBIT,MMMM1
CALL COEFBB (IM,5,4)
100 CALL COFFBB (IM,3,6)
C SPECIAL CASES - POINTS J OR C ARE MESH POINTS
C POINT J
110 IF (ITV(MBII,3)-ITV(MEII,4).NE.2) GG TO 120
IT = ITV(MBII,4)+1
IP = IPF(MBIIMI,IT)
K(IP) = K(IP)+A(IP,4)*BV(4)
A(IP,4)=0.
C POINT C
120 IF(ITV(MBOO,1)-ITV(MBOO,21.NE.2) RETURN
IT = ITV(MBOO,2)+I
IP = IPF(MBUOPI,IT)
A(IP.3) = 0.
RETURN
END

```
C
C

\section*{SUBROUTINE COEFBB(IM,UPPFR,LOWER)}
C.

C COEFBB CALCULATES FINITE DIfFERENCE COEFFICIENTS, A, ANO CONSTANTS, K
C ALONG ALL VERTICAL MESH LINES WHICH INTERSECT BLAUES
GOMMON /AUKRHO/ A(2000,4),U(2000),K(2000),RHO(2000)
COMMON /INP/ GAM,AR,TIP,RHOIP,WTFL,WTFLSP, OMEGA,ORF,BETAI, BETAO, 1 NOBL, MBI, MBO, MBI 2, MB O2, MN, NBAI, NBL,NRSP, MBDYF,MBDYL, ITF, ITL, 2BLDAT, AANDK, ERSOR, STRFN, INTVL, SURVL, MAGFAC, 3MR(50), RMSP(50), RESP(50)
COMMOV /CALCON/ MBII, MBOD, MMM, MBIIMI,MEIIPI,MBOOMI,MBOOPI,MMMMI, IHM1, HM2,HM3,HT, DTLR, DMLR,PITCH,CP, EXPON,TWW,CPTIP,TGROG,TBI,TBO, 2LAMBDA, TWL, ITOR, ITMAX,NIP,IMS(4), BV(4), MV(100), IV(101), 3UBV (100,4), RWBV(100,4), ITV(100,6), TV (100,4), DTDMV (100,4), 4BETAV(100,4), MH(100,4), DTDMH(100,4), BETAH(100,4),RMH(100,4),
5BEH (100,4),KM(100),BE(100), DBDM(100),SAL(100), AAA(100) COMMON /HRBAAK/ H(4),R(4),B(4),KAK(4),KA(4),IH(4),RZ,BZ
INTEGER BLDAT, AANDK, ERSOR, STRFN, SURVL, AATEMP, SURF,
1FIRST, UPPER,S1,ST,SRW
REAL K,KAK, LAMBDA,LMAX,MH,MLF,MR,MSP,MV,MVIMI
IF(ITV(IM,UPPER).GT.ITV(IM,LOWER)) RETURN
ITVU= MAXO(ITV(IM,UPPER),2)
ITVL= MINO(ITV(IM,LOWER),ITMAX-I)
IF (ITVU.GT.ITVL) RETURN
```

 IT= ITVU-1
 IPU= IPF(IM,ITVU)
 IPL=IPU+ITVL-ITVU
 DO }80\mathrm{ IP=IPU,IPL
 IT=IT+1
 CALL HRB (IM,IT,IP)
 DO 10 I=1.4
 KAK(I)=0.
 10 KA(I)=0
 C
C FIX HRB VAlUES FOR CASES WHERE MESH LINES INTERSECT BI_ADES
C OR BOUNDARIES
C
IF (IT.NE.2) GO TO 20
KAK(1)= UBV(IM,1)
KA(1)=1
20 IF (IT.NE.ITMAX-1) GO TO 30
KAK(2)=UBV(IM,2)
KA(2)=1
30 IF (IM.NE.2) GO TO 40
KAK(3)=UBV(IT,3)
KA(3)=1
40 IF (IM.NE.MMMM1) GO TO 50
KAK(4)= UBV(IT,4)
KA(4)=1
50 IF (IT.EQ.ITVU.AND.UPPER.NE.5) CALL BDRYI2(I,IM,IT,UPPER)
IF (IT.EQ.ITVL.AND.LOWER.NE.6) CALL BDRYI2(2,IM,IT,LOWER)
ITVMI= ITV(IM-1,UPPER)
ITVPI= ITV(IM+1,UPPER)
IF (ITV(IM,UPPER).EQ.-10000) GO TO 55
IF (IT.LT.ITVMI) CALL BDRY34(3,IM,UPPER)
IF (IT.LT.ITVPI) CALL BORY34(4,IM.UPPER)
55 ITVA1= ITV(IM-1,LOWER)
ITVPL= ITV(IM+1,LOWER)
IF (ITVML.EQ.-10000) GO TO 60
IF (IM.EQ.MBII.AND.LOWER.EQ.4) GO TO }6
IF (IT.GT.ITVMI) CALL RDRY 34(3,IM,LOWER)
60 IF (ITVPI.EQ.-10000) GO TO 70
IF (IM.EQ.MBOO.AND.LOWER.EQ.2) GO TO }7
IF (IT.GT.ITVP1) CALL BDRY34(4,IM,LOWER)
C
C COMPUTE A AND K COEFFICIENTS
C
70 CALL AAK(IM,IP)
DO 80 I=1,4
K(IP)= K(IP)+KAK(I)*A(IP,I)
80 IF (KA(I).EQ.1) A(IP,I)=0.
RETURN
END

```

\section*{SUBROUTINE HRB(IM,IT,IP)}
```

HRB CALCULATES MESH SPACING, H, DENSITIES, RZ AND R, AT GIVEN AND
ADJACENT POINTS, AND STREAM SHEET THICKNESSES, BZ AND B, AT GIVEN
AND ADJALENT PDINTS

```

COMMON /AUKRHO/ A(2000,4),U(2000),K(2000):RHO(2000)
    COMMON /CALCON/ MBII, MBOD,MMM,MBIIMI,MBIIPI,MBOOMI, MBOOPI,MMMML,
1HM1,HM2,HM3,HT, DTLR, DMLR,PITCH, CP, EXPON, TWW,CPTIP, TGROG, TBI, TBO,
2LAMBDA, TWL, ITOR, ITMAX,NIP,IMS(4), BV(4), MV(100), IV(101),
3 UBV \((100,4), \operatorname{RWBV}(100,4), \operatorname{ITV}(100,6), \operatorname{TV}(100,4), \operatorname{ITDMV}(100,4)\),
4 BETAV \((100,4)\), MH ( 100,4\()\), DTDMH ( 100,4\()\), BETAH(100,4), RMH(100,4),
5 BEH ( 100,4 ), RM (100), BE (100), DBDM (100), SAL (100), AAA (100)
COMMON/RHOS/ RHOHB( 100,4\()\), RHOVB(100,4), RBV(100,4)
COMMON /HRBAAK/ H(4),R(4), B(4),KAK(4),KA(4),IH(4),RZ,BZ
INTEGER BLOAT, AANOK, ERSOR, STRFN, SURVL, AATEMP, SURF,
IFIRST, UPPER,SI,ST, SRW
REAL K,KAK, LAMBDA,LMAX,MH,MLE,MR,MSP,MV,MVIMI
H(1)= HT*RM(IM)
\(H(2)=H T * R M(I M)\)
\(H(3)=\) MV(IM) - MV(IM-1)
\(H(4)=M V(I M+1)-M V(I M)\)
RZ \(=\) RHO (IP)
\(I_{3}=I P F(I M-1, I T)\)
\(I P 4=I P F(I M+1, I T)\)
\(\operatorname{R(1)}=\operatorname{RHD}(I P-1)\)
\(\operatorname{IF}\) (IT.EQ. 2 ) R(1)=RBV(IM,1)
\(R(2)=R H O(I P+1)\)
IF (IT.EQ.ITMAX-1) R(2)= RBV(IM,2)
R(3) = RHO (IP3)
IF (IM.EQ.2) \(R(3)=R B V(I T, 3)\)
R(4) \(=\) RHO (IP4)
IF (IM.EQ.MMMM1) R(4) \(=\) RHV(IT,4)
\(B Z=B E(I M)\)
\(B(3)=B E(I M-1)\)
\(B(4)=B E(I M+1)\)
RETURN
FND

SUBROUTINE AAK (IM,IP)
AAK CALCULATES FINITE DIFFERENCE COEFFICIENTS, A, AND CONSTANT, K, at a single mesh point

COMMON /AUKRHO/ A(2000,4),U(2000),K(2000),RHO(2000)
COMMON /CALCON/ MBII, MBOO,MMM,MBIIMI,MBIIPI,MBOOMI,MBOOPI,MMMMI, 1HM1,HM2,HM3,HT, DTLR, DMLR,PITCH, CP, EXPQN, TWW, CPTIP, TGROG, TBI,TBC, 2LAMBDA, TWL, ITOR, ITMAX,NIP, IMS(4),BV(4), MV(100), IV(101), 3UBV \((100,4), \operatorname{RWBV}(100,4), \operatorname{ITV}(100,6), \operatorname{TV}(100,4), \operatorname{DTUMV}(100,4)\), 4BETAV(100,4), MH(100,4), DTDMH(100,4), BETAH(100,4), RMH(100,4), 5BEH(100,4),RM(100), BE (100), DBDM(100), SAL (100), AAA (100)
COMMON/HRBAAK/ H(4),R(4),B(4),KAK(4),KA(4),IH(4),RZ,BZ
INTEGER BLDAT, AANDK,ERSOR,STRFN, SURVL, AATEMP, SURF,
IFIRST, UPPER,SI,ST,SRW
REAL K, KAK, LAMBDA, LMAX,MH, MLE, MR, MSP, MV, MVIMI
```

A12= 2./H(1)/H(2)
A34= 2./H(3)/H(4)
AL=A12+A34
B12=(R(2)-R(1))/RZ/(H(1)+H(2))
R34=(B(4)*R(4)-B(3)*R(3))/BZ/RL/(H(3)+H(4))-SAL([M)/RM(IM)
A(I?,1) = (2./H(1)+B12)/AZ/(H(1)+H(2))
A(IP,2) = Al2/AZ-A(IP,1)
A(IP.3) = (2./H(3)+B34)/AZ/(H(3)+H(4))
A(IP,4) = A34/AZ-A(IP,3)
K(IP)= -TWW*BZ*RZ*SAL(IM)/AZ
RETURN
END

```

SUBROUTINE BDRYI2(I,IM,IT,SURF)

INTERSICTS A BLADE
COMMON /CALCON/ MBII, MBOD,MMM,MBIIMI,MBIIPI,MBOOMI,MBOOPI,MMMMI, LHM1, HM2, HM3, HI, DTLR, DMLR,PITCH, CP, EXPON, TWW, CP TIP, TGROG, TBI, TBO, 2LAMBDA. TWL, ITOR, ITMAX,NIP,IMS(4),BV(4), MV(100), IV(101), 3UBV(100,4), RWBV (100,4), ITV \((100,6), \operatorname{TV}(100,4), \operatorname{DTDMV}(100,4)\), 4BETAV \((100,4), \mathrm{MH}(100,4)\), DTDMH ( 100,4\(),\) BETAH \((100,4)\), RMH (100.4), 5BEH (100,4),: \(\mathrm{CM}(100), B E(100)\), DBDM(100),SAL(100), AAA (100)
COMMON /RHOS/ RHOHB(100,4), RHOVB(100,4),RBV(100,4)
COMMON /HRBAAK/ H(4),R(4),B(4),KAK (4),KA(4),IH(4),RZ,BZ
INTEGER BLDAT, AANDK, ERSUR, STRFN, SURVL, AATEMP, SURF, IFIRST, UPPER,SI,ST,SRW
REAL K,KAK, LAMBDA, LMAX,MH,MLF,MR,MSP,MV,MVIM1
\(H(I)=A B S(F L O A T(I T-I T O R) * H T-T V(I M, S U R F)) * R M(I M)\)
R(I) = RHOVB(IM,SURF)
\(K A K(I)=B V(S U R F)\)
\(K A(I)=1\)
RETURN
FND

SUBROUTINE BORY34(I,IM,SURF)
BDRY34 CORRECTS VALUES COMPUTED BY HRB WHEN A HORIZUNTAL MESH LINE INTERSECTS A BLAUE

COMMON /CALCON/ MBII,MBOO,MMM,MBIIML,MBIIPI,MBOOML,MBOOPI,MMMMI, 1HM1,HM2.HM3,HT, DTLR, DMLR,PITCH,CP, EXPON,TWW,CPTIP,TGROG,TBI,TBO, 2LAMIDA, TWL, ITUR, ITMAX,NIP,IMS(4), BV(4), MV(100), IV(101),
3UBV (100,4), RWBV (100,4), ITV(100,6), TV(100,4), \(\operatorname{DTUMV(100,4),~}\)
4 BETAV \((100,4), \operatorname{MH}(100,4), \operatorname{DTDMH}(100,4), \operatorname{BETAH}(100,4), \operatorname{RMH}(100,4)\),
5BEH ( 100.4 ) , RM ( 100 ), BE (100), DBOM (100). SAL (100), AAA (100)
COMMON/RHOS/ RHOHB(100,4),RHOVB(100.4), RBV(100.4)
COMMON /HRBAAK/ H(4),R(4),B(4),KAK(4),KA(4),IH(4),RZ,BZ
INTEGER BLDAT, AANDK, ERSOR, STRFN, SURVL, AATEMP, SURF,
1FIRST,UPPER,SI,ST,SRW
REAL K,KAK,LAMBDA,LMAX,MH,MLE,MR,MSP,MV,MVIML
```

IH(SURF)=IH(SURF)+1
IHS = IH(SURF)
H(I)=ABS(MV(IM)-MH(IHS,SURF))
R(I)=RHOHB(IHS,SURF)
B(I)=BEH(IHS,SURF)
KAK(I)=BV(SURF)
KA(I)=1
RETURN
END

```

SUBROUTINE SOR

C SOLVE MATRIX EQUATION BY SOR, OR CALCULATE OPTIMUM OVERRELAXATION FACTOR
```

 DO to IM=2,MMMMI
 IF(AATEMP.GT.O) WRITE (6,1020)IMM
 IPU = IV(IM)
 IPL=IV(IM+I)-I
 IT= 1
 DO 50 IP=IPU,IPL
 IF(IPU.GT.IPL) GO TO 50
 IT=IT+1
 IF(IT.GT.ITV(IM,4).AND.IT.LE.ITV(IM,3)) IT=IT+ITV(IM,3)-
 1MAXO(ITV(IM,4),1)-1
IF(IT.GT.ITV(IM,2).AND.IT.LE.ITV(IM,I)) IT=IT+ITV(IM,1)-
1MAXO(ITV(IM,2),1)-1

```
```

 IPI= IP-1
 IP2 = IP+1
 IP3=IPF(IM-1,IT)
 IP4=IPF(IM+1,IT)
 IF(IM.EQ.2) IP3 = 0
 IF(IM.EQ.MMMMI) IP4 = 0
 IF(ORF.GT.1.) GO TO 30
 C Calculate new estimate for lmax
UNEW = A(IP,I)*U(IP1)+A(IP,2)*U(IP2)+A(IP,3)*U(IP3)+A(IP,4)*U(IP4)
IF (UNEW.LT.1.E-25) U(IP) = 0.
IF (U|IP).FQ.O.) GO TO 40
RATIO = UNEW/U(IP)
LMAX= AMAXI(RAT[O,LMAX)
U(IP) = UNFW
GO TO 40
C CAlCULATE NEW ESTIMATE FGR STREAM FUNGTION BY SOR
30 CHANGE = ORF*(K(IP)-U(IP)+A(IP,1)*U(IPI)+A(IP,2)*U(IP2)+A(IP,3)*
1U([P3)+A(IP,4)*U(IP4))
ERRUR= AMAXI(ERROR,ABS(CHANGE))
U(IP)=U(IP)+CHANGE
40 IF(AATEMP.LE.O) GO TO 50
WRITE (6,1030) IT,IP,IPI,IP2,IP3,IP4,(A(IP,II,I=1,4),K(IP)
50 CONTINUE
AATEMP = 0
IF(DRF.GT.l.) GO TO 60
ORFOPT = 2./(1.+SQRT(ABS(1.-LMAX)))
WRITE (6,1040) ORFOPT
IF (ORFTEM-URFGPT.GT..00001.OR.URFOPT.GT.1.999) GO TO 10
WRITE (6,1000)
ORF = ORFOPT
GO TO 20
60 IF(FRSOR.GT.O) WRITE(6,1050) ERROR
IF(ERROR.GT..OOOOO1) GO TO 20
IF(STRFN.LE.O) RETURN
C
C PRINT STREAM FUNCTION VALUES FOR THIS ITERATION
C
WRITE (6,1060)
IPL = 0
MBOT = MINO(MBIIMI,MBCO)
IF (MBOT.LT.2) GO TO 80
DO 70 IM=2,MBOT
CALL WRITU(IM,5,2,IPL)
70 CALL WRITU(IM, 1,6,IPL)
80 MBIT = MAXO(2,MBII)
MBOT = MINO(MMMML,MBOO)
IF (MBIT.GT.MBOT) GO TO }10
DO ЭO IM=MBIT,MBOT
CALL WRITU(IM,5,4,IPL)
CALL WRITU(IM,3,2,IPL)
90 CALL WRITU(IM,1,6,IPL)
GO TO 120
100 MBIT = MAXO(2,MBOOP1)
MBOT = MINO(MBIIMI,MMMM1)
IF (MBIT.GT.MBOT) GO TO 120
DO 110 IM=MBIT,MBOT
110 CALL WRITU(IM,5,6,IPL)
120 MBIT = MAXO(MBII,MBOOP1)

```
```

 IF (MBIT.GT.MMMM1) RETURN
 DO 130 IM=MBIT,MMMMI
 CALL WRITU(IM,5,4,IPL)
 130 CALL WRITU(IM,3,6,IPL)
 RETURN
 1000 FORMAT (1H1)
1010 FORMAT (82HI IT IP IPI IP2 IP3 IP4 A(1) A(2)
1020 FORMAT (5H IM =, I4)
1030 FORMAT(1X,I4,5IG,5F10.5)
1040 FORMAT(24H ESTIMATED OPTIMUM ORF =.F9.6)
1050 FORMAT(8H ERROR =,F11.8)
1060 FORMAT(1H1,10X,22HSTREAM FUNCTION VALUES)
FND
SUBROUTINE WRITUIIM,UPPER,LOWER,IPLI
COMMON /AUKRHO/ A(2000,4),U(2000),K(2000),RHO(2000)
COMMON /CALCON/ MBII,MBOO,MMM,MBIIMI,MBIIPI,MBOOMI,MBOOPI,MMMMI,
1HMI,HM2,HM3,HT, DTLR,DMLR,PITCH,CP,EXPON,TWW,CPTIP,TGROG,TBI,TBO,
2LAMBDA,TWL,ITOR,ITMAX,NIP,IMS(4),BV(4),MV(100),IV(101),
3UBV(100,4),RWBV(100,4),ITV(100,6),TV(100,4), DTDMV(100,4),
4BETAV(100,4),MH(100,4),DTDMH(100,4), BETAH(100,4),RMH(100,4),
5BEH(100,4),RM(100),BE(100),DBDM(100),SAL(100), AAA(100)
INTEGER BLDAT,AANDK,ERSOR,STRFN,SURVL,AATEMP,SURF,
IFIRST,UPPER,SI,ST,SRW
ITVU = MAXO(ITV(IM,UPPER),2)
ITVL = MINO(ITV(IM,LOWER),ITMAX-1)
IF(ITVU.GT.ITVL) RETURN
IPU = IPL+I
IPL = IPU+ITVL-ITVU
WRITE(6,1000) IM,ITVU
WRITE(6,1010) (U(IP),IP=IPU,IPL)
RETURN
1000 FORMAT(5H IM =,I 3,10X,5HIT1 =,I3)
1010 FORMAT (2X,IOF13.8)
END

```

SUBROUTINE SLAX
C SLAX CALLS SUBROUTINES TO CALCULATE RHO*W-SUB-M THROUGHOUT THE REGIUN
C and on the blade surfaces, and to calculate and plut the
C STREAMLINE LOCATIONS
COMMON /AUKRHO/ A(2000,4),U(2000),K(2000), RHO(2000)
COMMON /INP/ GAM,AR,TIP,RHOIP,WTFL,WTFLSP, OMEGA, ORF,BETAI,BETAD, 1 NOBL, MBI, MBO, MBI \(2, M B O 2, M M, N B B I, N B L, N R S P, M B D Y F, M B D Y L, I T F, I T L\), 2BLDAT, AANDK, ERSOR, STRFN, INTVL, SURVL, MAGFAC,
3MR(30), RMSP(50), BESP(50)
COMMON /CALCON/ MBII, MBOO, MMM, MBIIMI,MBIIPI, MBUOMI, MBOOPI,MMMMI, 1HM1, HM2, HM 3, HT, DTLR, DMLR, PITCH, CP, EXPON, TWW, CPTIP, TGROG, TBI, TBC, 2LAMBDA, TWL, ITUR, ITMAX,NIP,IMS(4),BV(4), MV(100), IV(101),
3UBV \((100,4), \operatorname{RWBV}(100,4), I \operatorname{TV}(100,6), \operatorname{TV}(100,4), \operatorname{DTDMV}(100,4)\),
```

 4BETAV(100,4),MH(100,4),DTDMH(100,4), BETAH(100,4),RMH(100,4),
 5BEH(100,4),KM(IOO),BE(100),DBDM(100),SAL(100), AAA(100)
 DIMFNSION W(2000),RWM(2000), BETA(2000),WMB(100,4),WTB(100,4),
 IXDOWN(800),YACROS(800),TSL(400),TSP(100),USP(100), DUOT(100)
 EQUIVALENCE (A(1,1),W(1)),(A(1,2),RWM(1)),(A(1,3),BETA(1)),
 1(A(1,4),WMR(1)),(A(401,4),WTB(1)),(A(801,4), XDOWN(1)),
 2(K(1),YACROS(1)),(K(801),TSP(1)),
 3(K(901),USP(1)),(K(1001),DUDT(1))
 INTEGER BLDAT, AANDK,ERSOR,STRFN,SURVL,AATEMP,SURF,
 LFIRST,UPPER,SI,ST,SRW
 REAL K,KAK,LAMBDA,LMAX,MH,MLE,MR,MSP,MV,MVIML
 CALL SLAVBB THROUGHOUT REGION
DO $10 \mathrm{I}=1,4$
DO 10 IM $M=1.100$
$W M B(I M, I)=0$.
$10 \mathrm{WTB}([M, I)=0$.
MBOT $=$ MINO (MBIIMI,MBOO)
IF (MBOT.LT. 2) GO TO 30
DO 20 I $M=2$, MBOT
CALL SLAVBB(IM,5,2)
20 CALL SLAVBB(IM, 1,6$)$
$30 \mathrm{MBIT}=\operatorname{MAXO}(2, \mathrm{MBII})$
MBOT $=$ MINO (MMMML, MBOO)
IF (MBIT.GT.MBDT) GO TO 50
OO 40 IM=MEIT,MBOT
CALL SLAVBB(IM,5,4)
CALL SLAVBR (IM,3,2)
40 CALL SLAVBB(IM,1,6)
GO TO 70
$50 \mathrm{MBIT}=\operatorname{MAXO}(2, \mathrm{MBOOP} 1)$
MBOT $=$ MINO (MBIIML,MMMML)
IF (MBIT.GT.MBDT) GO TO 70
DO 60 IM=MBIT, MBOT
60 CALL SLAVBB(IM,5,6)
$70 \mathrm{MBIT}=\mathrm{MAXO}(\mathrm{MBII}, \mathrm{MBOOP1})$
IF (MBIT.GT.MMMMI) RETURN
DO 30 IM=MPIT,MMMMI
CALL SLAVBB(IM,5,4)
80 CALL SLAVBB(IM, 3,6)
RETURV
ENO

```

SLAVBB CALCULATES RHO*W-SUB-M ALONG VERTICAL MESH LINES
COMMON SRW,ITER, IEND,LER(2), NER(1)
COMMON /AUKRHO/ A(2000,4),U(2000),K(2000),RHO(2000)
COMMON /INP/ GAM, AR,TIP,RHOIP,WTFL,WTFLSP, OMEGA,ORF,BETAI,BETAD,
INOBL,MBI,MHO,MBI2,MBO2,MM,NBBI,NBL,NRSP,MBDYF,MBDYL,ITF,ITL,
2BLDAT, AANDK,ERSOR,STRFN, INTVL, SURVL, MAGFAC,
3MR(50), RMSP(50), BESP(50)
COMMON /CALCON/ MBII, MBOO, MMM, MBIIMI,MBIIPI, MBOOMI, MBOOPI,MMMMI,
1HM1, HM2, HM3, HT, DTLR, DMLR,PITCH, CP, EXPON, TWW, CPTIP, TGROG, TBI, TBO,
2LAMBDA, TWL, ITOR, ITMAX,NIP,IMS(4),BV(4),MV(100),IV(101),
3UBV ( 100,4 ), RWBV ( 100,4\(), \operatorname{ITV}(100,6), \operatorname{TV}(100,4), \operatorname{DTDMV}(100,4)\),
4BETAV(100,4), MH(100,4), DTDMH(100,4), BETAH(100,4),RMH(100,4),
5BEH(100,4),RM(100), BE(100), DBDM(100),SAL(100), AAA(100)
COMMON /RHOS/ RHOHB( 100,4\()\), RHOVB(100,4), RBV(100,4)
DIMENSION W(2000), RWM(2000), BETA(2000),WMB(100,4),WTB(100,4),
1 XDOWN(800), YACROS (800),TSL(400),TSP(100), USP(100), DUDT(100)
EQUIVALENCE (A(1,1),W(1)),(A(1,2),RWM(1)),(A(1,3),BETA(1)),
\(1(A(1,4), W M R(1)),(A(401,4), W T B(1)),(A(801,4), X D O W N(1))\),
\(2(K(1), Y A C R O S(1)),(K(801), T S P(1))\),
3(K(901).USP(1)),(K(1001), DUDT(1))
INTEGER BLDAT, AANOK, ERSOR, STRFN, SURVL, AATEMP, SURF,
IFIRST, UPPER,SI,ST,SRW
REAL K,KAK, LAMBDA,LMAX,MH, MLE,MR,MSP,MV,MVIMI
ITVU= MAXO(ITVIIM,UPPER),2)
ITVL= MINO(ITV(IM,LOWER),ITMAX-1)
NSP = ITVL-ITVU+3
IF (VSP.LT.3) RETURN
\(\operatorname{TSP}(1)=\) FLOAT(1-ITOR)*HT
IF(ITV(IM,UPPER).LT. 2.OR.UPPER.EQ.5) GO TO 10
IF (TV(IM,UPPER).LT.TSP(1)) GO TO 10
\(\operatorname{TSP}(1)=\operatorname{TV}(I M, U P P E R)\)
\(\operatorname{USP}(1)=\operatorname{BV}(U P P E R)\)
GO TO 20
\(10 \operatorname{USP}(1)=\operatorname{UBV}(I M, 1)\)
20 TSP(NSP) = FLOAT(ITMAX-ITOR)*HT
IF(ITV(IM,LOWER).GE.ITMAX.OR.LOWER.EQ.6) GO TO 30
IF (TV(IM,LOWER).GE.TSP(NSP)) GU TO 30
\(T S P(N S P)=T V(I M, L O W E R)\)
USP(NSP) = RV(LOWER)
GO TO 40
\(30 \operatorname{USP}(N S P)=\operatorname{UBV}(I M, 2)\)
40 NSPM1 \(=\) NSP-1
IT=2
\(I P=I P F(I M, I T V U)\)
\(I P U=I P\)
50 IF(IT.GT.NSPM1) GO TO 60
TSP(IT) \(=\) FLOAT(IT-2+ITVU-ITOR)*HT
USP(IT) \(=U(I P)\)
\(I T=I T+1\)
\(I P=I P+1\)
GO TO 50

C CALCULATE RHO*W-SUB-M IN THE REGIUN, AND RHO*W AT VERTICAL
C MESH LINE INTERSECTIONS ON THE BLADE SURFACES, OR RHO
C ON THE HORIZONTAL BOUNDARIES
60 CALL SPLINE(TSP,USP,NSP, DUDT,AAA)
```

 IPL=IP-1
 IT=2
 IP=IPU
 70 IF(IP.GT.IPL) GO TO 80
 RWM(IP)= DUDT(IT)*WTFL/BE(IM)/RMIIM)
 IP=IP+I
 IT= IT+I
 GO TO 70
 80 IF(ITV(IM,UPPER).LT.2.OR.UPPER.EQ.5) GO TO }9
 IF (TV(IM,UPPER).LT.FLOAT(1-ITOR)*HT) GO TO 90
 : UPPER GLADE SURFACE
WMB(IM,UPPFR)= DUDT(L)*WTFL/BE(IM)/RM(IM)
RMDIU2 = (RM(IM)*DTDMV(IM,UPPER))**2
IF({MDTUZ.GT.10000.) WMB(IM,UPPER)=0.
WMB(IM,UPPER) = ABS(WMB(IM,UPPER))*SQRT(1.+RMDTU2)
GO TO 100
C LDWER BOUNDARY
90 RWMuV = DUDI(I)*WTFL/BE(IM)/RM(IM)
RW= SQRT(RWBV(IM,1)**2+RWMBV**2)
TWLMR=2.*OMEGA*LAMBDA-(OMEGA*RM(IM))**2
LER(1) = 1
C DENSTY CALL NO. I
CALL DENSTY(RW,RBV(IM,1),ANS,TWLMR,CPTIP,EXPON,RHOIP,GAM,AR,TIP)
100 IF(ITV(IM,LOWER).GE.ITMAX.OR.LOWER.EQ.G) GO TO 110
IF (TV(IM,LOWER).GE.FLOAT(ITMAX-ITOR)*HT) GO TO 1LO
C LDWER BLADE SURFACE
WMB(IM,LOWER)= UUDT(NSP) %WTFL/BE(IM)/RMIIM)
RMDTL2 = (RM(IM)*DTDMV(IM,LOWER))**2
IF(KMDTL2.GT.10000.) WMB(IM,LOWER)=0.
WMB(IM,LOWER) = ABS(WMR(IM,LOWER))*SORT(1.+RMOTL2)
RETURN
C UPPER BOUNDARY
110 RWMISV = DUDT(NSP)*WTFL/BE(IM)/RM(IM)
RW= SQRT(RWEV(IM,2)**2+RWMBV**2)
TWLMR= 2.*OMEGA*LAMBDA-(OMEGA*RM(IM))**2
LER(1) = 2
DENSTY CALL NO. 2
CALL DENSTY(RW,RBVIIM,2),ANS,TWLMR,CPTIP,EXPON,RHOIP,GAM,AR,TIP)
RETURN
END
Subcouting tang
C
C TANG CALCULATES RHO*W-SUH-THETA ANU THEN RHO*W THROUGHDUT THE REGION
C AND U'V THF BL{LF SURFACFS, AND CALCULATES THE VELUCITY ANGLE, BETA,
C THRCUGHOUT THF REGIUN
C
COMMON SRW,ITLR,ILND,LER(2),NER(1)
COMMON /AUKRHE/ A(2000,4),U(2000),K(2000),RHO(2000)
COMNOY/INP/ GAM,AR,TIP, IHOIP,WTFL,WTFLSP,OMRGA,OKF,BETAI,BETAO,
1.VOBL,MBI,MFO,MEI 2,MBO2,MN,NBBI,NPL,NRSP,MBDYF,MBDYL,ITF,ITL,
2FLDAT, AANIK,ERSOR,STRFN,INTVL,SURVL,MAGFAC,
3NR(20),RMSP(50),BESP(50)

```

COMMON /CALCON/ MBII, NBOC,MMM,MBIIMI,MBIIPI,MDOOMI,MBOOPI,NMMMI, 1HM1, HM2,HM3,HT, OTLR, DMLR,PITCH,CP, EXPON, TWW,CPTIP,TGROC, TBI,TBO,
2LAMHDA, TWL, ITOR, ITMAX,NIP, IMS(4), BV(4), MV(100), IV(101),
3UBV (100,4), \(\operatorname{RWEV}(100,4), \operatorname{ITV}(100,0), \operatorname{TV}(100,4), \operatorname{DTDMV}(100,4)\), 43ETAV (100,4), MH(100,4), DTDMH(100,4), BETAH(100,4),RMH(100,4), 5BEH (100,4),RM(100),HE(100), DBDM(100),SAL(100), AAA (100) COMMON /RHDS/ RHOHB(100,4),RHOVB(100,4),RBV(1UO,4) DIMENSION SPM (100),USP(100), CUDM (100) DIMENSION W(2000), RWM(2000), RETA(2000), WMB(100.4), WTB(100,4), \(1 \times D O W N(800), Y A C R O S(800)\)
    EQUIVALENCE (A(1, 1\(), W(1)),(A(1,2), R W M(1)),(A(1,3), \operatorname{EETA}(1))\),
\(1(A(1,4), W M P(1)),(A(401,4), W T B(1)),(A(801,4), X D U W N(1))\),
\(2(K(1), Y A C R O S(1))\)
    INTEGER BLOAT, AANDK, ERSOR,STRFN, SURVL, AATEMP, SURF,
1FIRST, UPPER,SI,ST,SRW
    REAL K,KAK, LAMBDA,LMAX,MH,MLE,MR,MSP,MV,MVIMI
    EXTERNAL BL1,BL2,BL3,BL4

PERFORM CALCULATIUNS ALUNG ONE HORIZONTAL LINE AT A TIME
```

 IT= 2
    ```
    10 IF (IT.EQ.ITMAX) RETURN

CN GIVEN HORIZONTAL MESH LINE, FIND FIRST POINT I V THE REGION
    IF (MBII.LE.1.AND.(IT.LE.ITV(1,4).OR.(IT.GE.ITV(1,3).AND.
    IIT.LE.ITV(1,2)).OR.IT.GE.ITV(1, l)) GO TO 50
    IF (MBII.GF.2.AND.IMBCO.LT.O.OR.IT.LE.ITVII,2I.OR.
    1IT.GE.ITV(1,1))) GO TO 50
    \(I M=1\)
20 I \(M=I M+1\)
    IF (IM.GE.MMM) GO TO 180
    DO 30 SURF \(=1,3,2\)
    IF (IM.GT.MBCO.AND.SURF.EQ.1) GO TO 30
    IF (IM.LE.MGII.ANU.SURF.EQ.3) GU TO 30
    IF (IT.GE. ITV(IM,SURF).AND.IT.LT.ITV(IM-I,SURT)) GO TG ou
    30 CONTINUE
    SURF = 1
    IF (IM.EQ.MSCLPI.AND.IT.EQ.ITVIMBOD,I)-I.AND.
    \(1 \operatorname{ITV}(M B O O, 1)-I T V(M B O Q, 2) . E Q .2)\) GO TO 60
    DO 40 SURF \(=\angle, 4,2\)
    IF (IM.GT.MBOU.AND.SURF.FQ.2) GU TO 40
    IF (IM.LE.MEII.AND.SURF.EQ.4) GO TO 40
    IF (IT.LE.ITV(IM,SURF).AND.IT.GT.ITV(IN-1,SURF)) GO TO 60
40 COVTINUE
    GO TO 20
    \(50 \mathrm{Sl}=0\)
    \(I M 1=1\)
    I \(M=2\).
    \(\operatorname{SPM}(1)=\operatorname{MV}(1)\)
    \(\operatorname{USP}(1)=\operatorname{UBV}(I T, 3)\)
    GO TO 70
    FIrst point is on a blade surface
60 Sl= SURF
```

 IMI=IM-1
 IM2 = IM
 TH= FLOAT(IT-ITOR)*HT
 MVIML= MV(IMI)
 IF (IM.EQ.MUIIPI.AND.(SURF.EQ.3.OR.SURF.EQ.4)) MVIMI=
 1MVIM1+(MV(IM2)-MVIMI)/1000.
 LER(2) = 9
 C BLCO (VIA RCOT) CALL NO. 9
IF (S1.EQ.1.AND.IML.NE.MEOO) CALL ROOT(MVIM1,MV(IM2),TH,BL1,
10TLR,ANS,AAA)
LER(2) = 10
BLCD (VIA RCOT) CALL NO. 10
IF (S1.EQ.2) CALL ROOT(MVIM1,MV(IM2),TH,BL2,DTLR,ANS,AAA)
LER(2) = 11
BLCD (VIA RCOT) CALL NC. Il
IF (S1.EQ.3) CALL ROOT(MVIM1,MV(IM2),TH,BL3,DTLR,ANS,AAA)
LER(2) = 12
C BLCU (VIA ROOT) CALL NO. 12
IF (S1.EQ.4) CALL ROOT(MVIML,MV(IM2),TH,BL4,DTLR,ANS,AAA)
IF (S1.EQ.1.AND.IM1.EQ.MEOO) ANS=NV(MBOO)
SPM(IMI)= 4NS
USP(IMI)= RV(Sl)
C
C MOVF ALONG HORIZONTAL MESH LINE UNTIL END OF REGION IS REACHED
C
70 DG d0 SURF=1,3,2
IF (IM.GT.MBUL.AND.SURF.FQ.1) GU TO 80
IF (IM.LE.MEII.ANU.SURF.EQ.3) GU TO }8
IF (ITV(IM-1,SURF).EQ.-10000) GU TO }8
IF (IT.LT.ITV(IM,SURF).AND.IT.GE.ITV(IM-I,SURF)) GO TO 1lO
80 CONTINUE
SURF = 3
IF (IM.EO.MHII.AND.IT.EQ.ITV(MBII,3)-1.AND.
1ITV(MBII,3)-ITV(MBII,4).EQ.2) GO TO 110
DO 90 SURF=2,4,2
IF (IM.GT.MUQO.AND.SURF.FQ.2) GO TO }9
IF (IM.LE.MBII.AND.SURF.EQ.4) GO TO 90
IF (IT.GT.ITV(IM,SURF).AND.IT.LE.ITV(IM-I,SURFI) GO TO 110
90 CONTINUE
SPM(IM)= MV(IM)
IP=IPF(IM,IT)
USP(IM)=U(IP)
IF (IM.EQ.MMM) GO TO 100
IM=IM+I
GO TO 70
C
C
C
100 ST = 0
IMT = MMM
USP(IMMT) = UBV(IT,4)
GO TO }12
C
C FINAL POIMT IS UN A BLAOE SURFACE
C
110 ST= SURF
IMT= IM
IMTMI= IMT-1
TH= FLOAT(IT-ITOR)\#HT
MVIN1 = MV(INTML)

```
```

 IF (IIMTMI.EQ.MBII).ANC.(ST.EQ.3.OR.ST.EQ.4).AND.(ITV(MBII,3)-
 1 ITV(MBII,4).EQ.2)) MVIMI = MVIMI+(MV(IMT)-MVIMI)/1000.
 LER(2) = 13
 C BLCU (VIA RUOT) CALL NC. 13
IF (ST.EQ.1) CALL ROOT(MVIM1,MV(IMT),TH,BLI,OTLR,ANS,AAA)
LER(2) = 14
C BLCE (VIA ROOT) CALL NO. }1
IF (ST.FQ.2) CALL ROOT(MVIMI,MV(IMT),TH,BLZ,DTLR,ANS,AAA)
LER(2) = 15
C BLCD (VIA RUOT) CALL NO. }1
IF (ST.EQ.3.AND.IMT.NE.MBII) CALL ROOT(MVIMI.MV(IMT).TH.BL3.
1DTLR,ANS,AAA)
LER(2)=16
C BLCU (VIA ROGT) CALL NO. 16
IF (ST.EQ.4) CALL ROOT(MVIMI,MV(IMT),TH,BL4,OTLR,ANS,AAA)
IF (ST.FQ.3.AND.IMT.EQ.MEII) ANS=MV(MBII)
SPM(IMT) = ANS
USP(IMT)= BV(ST)
C
C
120 NSP=IMT-IMI+1
CALL SPLINE(SPM(IH1),USP(IMI),NSP,OUDM(IMI),AAA(IMI))
FIRST= 2
IF (IM1.NE.I) FIRST=IM2
LAST=MMMML
IF (IMT.NF.NMM) LAST=IMTMI
IF (FIRST.GI.LAST) GO TO 140
DO 130 I=FIRST,LAST
RWT = -DUDM(I)*WTFL/BE(I)
IP = IPF(I,IT)
W(IP)=SQRT(RWT**2+RWN(IP)**2)
130 BETA(IP)= ATAN(RWT/RWM(IP))*57.295779
C
C Calculate rho*w uN the blade surfaces, or rho on vertical boundaries
C
140 IF (SL.EQ.O) GO TO 150
CALL SEARCH (SPM(IMM1),Sl,IHS)
ANS= -DUDM(IMl)*WTFL/BEH(IHS,SI)
WTH(IHS,SI)= ABS(ANS)*SQRT(1.+1./(RMH(IHS,S1)*UTOMH(IHS,S1))**2)
GO TO 1%O
150 RWT= -fl!DM(1)*WTFL/BE(1)
RW= SQRT(RWT**2+RWBV([T,3)**2)
TWLMR= 2.*OMEGA*LAMBDA-(CMEGA*RM(1))**2
LER(1) = 3
C DENSTY CALL NU. }
CALL DENSTY(RW,REV(IT,3),ANS,TWLMR,CPTIP,EXPON,RHOIP,GAM,AR,TIP)
160 IF (ST.FQ.O) GO TO 170
CALL SEARCH(SPM(IMT),ST,IHS)
ANS = -IUUDM(IMT)*WTFL/BEH(IHS,ST)
WTB(IHS,ST)= ABS(ANS)*SQRT(1.+1./(RMH(IHS,ST)*DTDMH(IHS,ST))**2)
GO TO 20
170 RWT= -DUDM(MMM)*WTFL/BE(MMM)
RW= SQRT(RWT**2+RWBV(IT,4)**2)
TWLMR= 2.*OMEGA*LAMBDA-(CMEGA*RM(MMM))**2
LER(1) = 4
C OENSTY CALL NO. 4
CALL DENSTY (RW,RBV(IT,4),ANS,TWLMR,CPTIP,EXPUN,RHOIP,GAM,AR,TIP)
180 IT = IT +1
GO TO 10
FND

```

COMMON /CALCON/ MBII, MBOO, MMM,MBIIMI,MBIIP1,MBOOM1,MBOOP1,MMMM1, 1HM1, HM2, HM3,HT, DTLR, DMLR,PITCH,CP, EXPON, TWW,CPTIP,TGROG, TBI, TBO, 2LAMBDA, TWL, ITGR, ITMAX,NIP, IMS(4), BV(4), MV(100), IV(101), 3UBV(100,4), KWBV(100,4), ITV(100,6), TV (100,4), DTDMV(100,4). 4 BETAV \((100,4), \mathrm{MH}(100,4)\), DTDMH \((100,4)\), BETAH \((100,4), R M H(100,4)\), 5 BEH ( 100,4\(), \operatorname{RM}(100), B E(100), \operatorname{DBDM}(100), S A L(100), A A A(100)\) INTEGER BLDAT, AANDK, ERSOR,STRFN, SURVL, AATEMP, SURF, IFIRST,UPPER,SI,ST,SRW
REAL K, KAK, LAMBDA, LMAX,MH, MLE,MR,MSP,MV,MVIMI
DO \(10 \quad \mathrm{I}=1,100\)
IF (ABS(MH(I,SURF)-DIST).GT.DMLR) GO TO 10
\(I S=I\)
RETURN
10 CONTINUE
WRITE \((6,1000)\) DIST,SURF
STOP
1000 FORMAT 138 HL SEARCH CANNOT FIND M IN THE MH ARRAY/7H DIST \(=, G 14.6\), \(110 \mathrm{X}, 6 \mathrm{HSURF}=, \mathrm{G} 14.6\) )
END

\section*{SUBROUTINE VELOCY}

VFLOCY CALLS SUBROUTINES TO CALCULATE DENSITIES AND VELOCITIES THROUGHOUT THE REGION AND DN THE BLADE SURFACES, AND IT PLOTS THE SURFACE VELOCITIES

COMMON /AUKRHO/ A(2000,4),U(2000),K(2000),RHO(2000)
COMMON /INP/ GAM,AR,TIP,RHOIP,WTFL,WTFLSP,OMEGA, ORF,BETAI,BETAO, INOBL,MBI, MBO, MBI 2, MBO2,MM,NBBI,NBL,NRSP, MBDYF,MBDYL,ITF,ITL, 2BLDAT, AANDK, ERSOR,STRFN, INTVL,SURVL, MAGFAC, 3MR(50),RMSP(50), BESP(50)
COMMON/CALCON/ MBII, MBOO,MMM,MBIIML,MBIIP1, MBOOM1,MBOOPI,MMMMI, 1HM1, HM2,HM3, HT, DTLR, DMLR,PITCH, CP, EXPON, TWW, CPTIP, TGROG, TBI, TBD,
2LAMBDA, TWL, ITOR, ITMAX,NIP,IMS(4), BV(4), MV(100), IV(101),
\(3 \operatorname{UBV}(100,4), \operatorname{RWBV}(100,4), \operatorname{ITV}(100,6), \operatorname{TV}(100,4), \operatorname{DTDMV}(100,4)\),
\(4 \operatorname{BETAV}(100,4), \mathrm{MH}(100,4)\), DTDMH \((100,4), \operatorname{BETAH}(100,4), \operatorname{RMH}(100,4)\),
\(5 B E H(100,4), R M(100), B E(100), D B D M(100), S A L(100), A A A(100)\)
DIMENSION KKK (18)
DIMENSION W(2000), RWM (2000), BETA (2000), WMB (100,4), WTB(100,4),
1 XDOWN( 800 ), YACROS ( 800 )
EQUIVALENCE (A(1, 1),W(1)), (A(1,2),RWM(1)), (A(1,3), BETA(1)),
\(1(A(1,4), W M B(1)),(A(401,4), W T B(1)),(A(801,4), X D U W N(1))\),
2(K(1),YACROS(1))
INTEGER BLDAT, AANDK, ERSOR, STRFN, SURVL, AATEMP, SURF,
IFIRST, UPPER,SI,ST,SRW
REAL K, KAK, LAMBDA,LMAX,MH, MLE,MR,MSP,MV,MVIMI
DATA KKK(4)/IH*/,KKK (6)/1HO/,KKK(8)/1H=/,KKK(10)/1H(/,
1KKK(12)/1H+/,KKK(14)/IHX/,KKK(16)/1H\$/,KKK(18)/1H)/
CALL VELBB AND VELSUR THROUGHOUT THE REGION
```

 MBOT = MINO(MBIIM1,MBOO)
 IF (MBOT.LT.2) GO TO 20
 DO 10 IM=2,MBUT
 CALL VELBB(IM,5,2)
 10 CALL VELBB(IM,1,6)
 20 MBIT = MAXO(2,MBII)
 MBOT = MINO(MMMM1,MBOO)
 IF (MBIT.GT.MBOT) GO TO 40
 OO 30 IM=MBIT,MBOT
 CALL VELBB(IM,5,4)
 CALL VELBB(IM,3,2)
 30 CALL VELBB(IM,1,6)
 GO TO 60
 40 MBIT = MAXO(2.MBOOP1)
 MBOT = MINO(MBIIMI,MMMMI)
 IF (MBIT.GT.MBOT) GO TO }6
 DO 50 IM=MBIT,MBOT
 50 CALL VELBB(IM,5,6)
 60 MBIT = MAXO(MBII,MBOOP1)
 IF (MBIT.GT.MMMMI) GD TO 80
 DO 70 IM=MBIT,MMMMI
 CALL VELBB(IM,5,4)
 70 CALL VELBB(IM,3,6)
 80 CALL VELSUR
 C
C PREPARE INPUT ARRAYS FOR PLOT OF VELOCITIES
C
NP2=0
C SURFACES 1 TO 4 - TANGENTIAL COMPONENTS
DO 110 SURF=1.4
NP1= NP2
IMSS= IMS(SURF)
IF (IMSS.LT.l) GO TO 100
DO 90 IHS=1,IMSS
IF{WTB(IHS,SURF).EQ.O.I GO TO 90
IF (ABS(DTDMH(IHS,SURF)*RMH(IHS,SURF)).LT..57735) GO IO 90
NP1= NP1+1
YACROS(NP1)= WTB(IHS,SURF)
XDOWN(NPI)= MH(IHS,SURF)
90 CONTINUE
100 KKK(2*SURF+1)= NP1-NP2
110 NP2= NP1
C SURFACES 1 AND 2 - MERIDIONAL COMPONENTS
DO 140 SURF=1,2
NP1= NP2
MBOT = MINO(MBOOM1,MMMM1)
IF(2.GT.MBOT) GO TO 130
DO 120 IM=2,MBOT
IF(WMB(IM,SURF).EQ.O.) GO TO 120
IF (ABSIDTDMVIIM,SURF)*RM(IM)I.GT.1.7321) GO TO 120
NP1= NP1+1
YACROS(NP1)= WMB(IM,SURF)
XDOWN(NPI)= MV(IM)
120 CONTINUE
130 KKK(2*SURF+9) = NP1-NP2
140 NP2 = NP1
C SURFACES 3 AND 4 - MERIDIONAL COMPONENTS
DO 170 SURF=3,4
NP1= NP2
MBIT = MAXO(MBIIP1;2)

```
```

 IF(MBIT.GT.MMMM1) GO TO 160
 DO 150 IM=MBIT,MMMM1
 IF(WMB\IM,SURF).EQ.O.t GO TO 150
 IF (ABS(DTDMV(IM,SURF)*RM(IM)).GT.l.7321).GO TO 150
 NP1= NP1+1
 YACROS(NP1)= WMB(IM,SURF)
 XDOWN(NP1)= MV(IM)
 150 CONTINUE
 160 KKK(2*SURF+9) = NP1-NP2
 170 NP2= NP1
 C
C PLOT VELOCITIES
C
KKK(1)=1
KKK(2)=8
P= b.
WRITE(6,1000)
CALL PLOTMY(XDOWN,YACROS,KKK,P)
WRITE(6,1010)
RETURN
1000 FORMAT(2HPT,5OX,24HBLADE SURFACE VELOCITIES)
1010 FORMAT (2HPL,37X,63HVELOCITY(W) VS. MERIDIONAL STREAMLINE DISTANCE
l(M) DOWN THE PAGE /2HPL/
22HPL,50X,50H+ - BLADE SURFACE 1, BASED ON MERIDIONAL COMPONENT/
32HPL,50X,50H* - BLADE SURFACE 1. BASED ON TANGENTIAL COMPONENT/
42HPL,50X,50HX - BLADE SURFACE 2, BASED ON MERIDIONAL COMPONENT/
52HPL,50X,50HO - BLADF SURFACE 2. BASED ON TANGENTIAL COMPONENT/
62HPL,50X,50H5 - BLADE SURFACE 3, BASED ON MERIDIONAL COMPONENT/
72HPL,50X,50H= - BLADE SURFACE 3. BASED ON TANGENTIAL CDMPONENT/
82HPL,50X,50H) - BLADE SURFACE 4, BASED ON MERIDIONAL COMPONENT/
92HPL.50X,50HI - BLADE SURFACE 4, BASED ON TANGENTIAL COMPONENT)
END
SUBROUTINE VELBB(IM,UPPER,LOWER)
VEL CALCULATES DENSITIES AND VELOCITIES FROM THE PRODUCT OF DENSITY TIMES VELOCITY
COMMON SRW,ITER,IEND,LER(2), NER(1)
COMMON /AUKRHO/ A(2000,4),U(2000),K(2000),RHO(2000)
COMMON /INP/ GAM,AR,TIP,RHOIP,WTFL,WTFLSP,OMEGA,ORF,BETAI,BETAO, INOBL,MBI,MBO,MBI2,MBO2,MM,NBBI,NBL,NRSP,MBDYF,MBDYL,ITF,ITL,
2BLDAT, AANDK,ERSOR,STRFN, INTVL,SURVL, MAGFAC,
3MR(50), RMSP(50), BESP(50)
COMMON /CALCON/ MBII,MBOO,MMM,MBIIM1,MBIIP1,MBOOMI,MBOOPI,MMMM1* LHM1, HM 2, HM 3, HT, DTLR, DMLR,PITCH, CP, EXPON, TWW, CPTIP, TGROG, TBI, TBO,
2LAMCDA, TWL, ITOR, ITMAX,NIP,IMS(4),BV(4),MV(100),IV(101),
3UBV (100,4), RWBV(100,4), ITV(100,6), TV(100,4), DTDMV(100,4),
4BETAV(100,4), MH(100,4), DTOMH(100,4), BETAH(100,4),RMH(100,4),
$5 B E H(100,4), R M(100), B E(100), D B D M(100), S A L(100), A A A(100)$
COMMON /RHDS/ RHOHB(100,4),RHOVB(100,4),RBV(100,4)
DIMFNSION WWCRM(100,4),WWCRT (100,4)
DIMENSION W(2000), RWM(2000), BETA(2000),WMB(100,4),WTB(100,4), 1 XDOWN(800). YACROS (800)
EQUIVALENCE (A(1, 1),W(1)),(A(1,2),RWM(1)),(A(1,3),BETA(1)).
1(A(1,4),WMB(1)),(A(401,4),WTB(1)),(A(801,4),XDOWN(1)),

```
```

 2{K(1),YACROS(1))
 INTEGER BLDAT,AANDK,ERSOR,STRFN,SURVL,AATEMP,SURF,
 IFIRST,UPPER,SI,ST,SRW
 REAL K,KAK,LAMBDA,LMAX,MH,MLE,MR,MSP,MV,MVIML
    ```

IF (IM.NE.2.OR.UPPER.NE.5) GO TO 10
IF(INTVL.GT.0) WRITE(6.1000)
RELFR \(=0\).
10 ITVU = MAXO(ITV(IM,UPPER),21
ITVL \(=\) MINO(ITV(IM,LOWER),ITMAX-1)
IPUPI = IPF(IM,ITVU)
IPLMI \(=\) IPF(IM, ITVL)
TWLMR= 2.*OMEGA*LAMBDA-(OMEGA*RM(IM))**2
WCR = SQRT(TGROG*TIP*(1.-TWLMR/CPTIP))
IF (ITVL.LT.ITVU) GO TO 30
ALONG THE LINE BETWEEN BLADES
DO 20 IP= IPUPI,IPLMI
LER(1) = 5
DENSTY CALL NU. 5
CALL DENSTY(W(IP), RHO(IP), ANS, TWLMR,CPTIP,EXPUN,RHOIP,GAM,AR,TIP)
20 W(IP)= ANS
IF (INTVL.LE.O) GO TO 30
WRITE(6,1010) IM, (W(IP), BETAIIP),IP=IPUPI,IPLMI)
ON THE UPPER SURFACE, IF IT IS A BLADE
30 IF (UPPER.EQ.3) GO TO 40
IF (ITVIIM,UPPER).LT.2) WMB(IM,UPPER) \(=0\).
RHOR: \(=\) RHOVB(IM,UPPER)
LER(1) = 6
DENSTY CALL NO. 6
CALL DENSTY(WMB(IM,UPPER),RHOVB(IM,UPPER),ANS,TWLMR,CPTIP,EXPON,
IRHOIP,GAM, AR, TIPI
WMB(IM,UPPER)= ANS
WWCRM(IM,UPPER)= WMB(IM,UPPER)/WCR
RELFR= AMAXI(RELER,ABS((RHOB-RHOVB(IM,UPPER)) / RHOVB(IM,UPPER)))
ON THE LOWER SURFACE, IF IT IS A BLADE
40 IF (LOWER.EQ.6) RETURN
IF (ITV(IM,LOWER).GT.ITMAX-1) WMB(IM,LOWER) \(=0\).
RHOB= RHOVE(IM,LOWER)
LER(1) = 7
DENSTY CALL NO. 7
CALL DENSTY(WMB(IM,LOWER), RHOVBIIM,LOWER), ANS, TWLMR,CPTIP,EXPON,
1RHOIP,GAM,AR,TIP)
WMB(IM,LOWER) = ANS
WWCRM(IM,LOWER) = WMB(IM,LOWER)/WCR
RELER= AMAXI(RELER,ABS((RHOB-RHOVB(IM.LOWER)) / RHOVB(IM,LOWER)))
RETURN
velsur calculates along a blade surface
ENTRY VELSUR
DO 60 SURF=1,4
IMSS \(=\) IMS(SURF)
IF (IMSS.EQ.O) GO TO 60
DO 50 IHS =1, IMSS
TWLMR \(=\) 2.*OMEGA*LAMBDA-(OMEGA*RMH(IHS.SURF))**2
WCR = SQRT(TGROG*TIP*(1.-TWLMR/CPTIP))
RHOB= RHOHB(IHS,SURF)
LER(1) \(=8\)

C DENSTY CALL NO. 8
CALL DENSTY(WTB(IHS,SURF),RHOHB(IHS,SURF), ANS, TWLMR,CPTIP,EXPON, 1RHOIP,GAM, AR,TIP) WTB(IHS,SURF) \(=\) ANS WWCRT(IHS,SURF) = WTB(IHS,SURF)/WCR
50 RELER= AMAXI(RELER,ABS((RHOB-RHOHB(IHS,SURF))/RHOHB(IHS,SURF))) 60 CONTINUE

IF (RELER.LT..001) IEND=IEND+1
WRITE(6,1020) ITER,RELER
MARK \(=0\)
C
C. WRITE ALL BLADE SURFACE VELOCITIES

C
IF (SURVL.LE.O) RETURN
WRITE(6,1030)
MBOT \(=\) MINO (MMMM1, MBOC)
IF(MBOT.LT.2) GO TO 70
WRITE(6,1040)
WRITE(6,1050) (MV(IM), WMB(IM,1), BETAV(IM,1), WWCRM(IM,1),WMB(IM,2), 1BETAV(IM, 2), WWCRM(IM, 2), IM=2, MBOT)
70 MBIT \(=\operatorname{MAXO}(2\), MBII)
IF(ABIT.GT.MMMMI) GO TO 80
WRITE 6,1060\()\)
WRITE(6,1050) (MV(IM), WMB(IM, 3), BETAV(IM, 3), WWCRM(IM, 3), WMB(IM,4), LBETAV(IM,4),WWCRM(IM,4), IM=MBIT,MMMM1)
80 WRITE(6.1070)
DO 30 SURF \(=1,4\)
IMSS = IMS(SURF)
IF (IMSS.EQ.O) GO TO 90
WRITE(6,1080) SURF
WRITE(6,109U) (MH(IHS,SURF), WTB(IHS,SURF), BETAH(IHS,SURF),WWCRT
1 (IHS,SURF), IHS=1,IMSS)
90 CONTINUE
RETURN
1000 FORMATIIHI////40X,34HVFLUCITIES AT INTERIOR MESH POINTS//I
1010 FORMAT ( \(1 \mathrm{HL}, 3 \mathrm{HIM}=, 13,5(24 \mathrm{H}\) VELOCITY ANGLE(DEG))/
1(5X.5(G15.4,F9.21))
1020 FORMAT 14 HLITERATION NO., \(13,3 x, 36\) HMAXIMUM RELATIVE CHANGE IN DENSI \(1 T Y=, G 11.4)\)
1030 FORMAT ( \(1 H 1 / / / / 16 \mathrm{X}, 1 \mathrm{H} *, 25 \mathrm{X}, 49 \mathrm{HSURFACE}\) VELOCITIES BASED ON MERIDIONA IL COMPONENTS, \(36 \mathrm{X}, 1 \mathrm{H*}\) )
1040 FORMAT \((16 X, 1 H *, 53 X, 1 H *, 56 X, 1 H * / 16 X, 1 H *, 19 X, 15 H B L A D E\) SURFACE \(1,19 X\), \(11 H *, 20 \mathrm{X}, 15 \mathrm{HBLADE}\) SURFACE \(2,21 \mathrm{X}, 1 \mathrm{H} / 17 \mathrm{X}, 1 \mathrm{HM}, 8 \mathrm{X}, 1 \mathrm{H}, 2(3 \mathrm{X}, 8 \mathrm{HVELOCITY}\), \(13 \mathrm{X}, 10 \mathrm{HANGLE}(D E G), 5 \mathrm{X}, 5 \mathrm{HW} / W C R, 19 \mathrm{X}, 1 \mathrm{H}, 3 \mathrm{X})\) )
1050 FORMAT (1H , G13.4.3H *,G12.4,F9.2,G15.4,17X,1H*,3X,G12.4,F9.2,G15. 14, 17X, 1 H*)
1060 FORMAT \(/ / / / 16 \mathrm{X}, 1 \mathrm{H} *, 19 \mathrm{X}, 15 \mathrm{HBLADE}\) SURFACE \(3,19 \mathrm{X}, 1 \mathrm{H}, 20 \mathrm{X}, 15 \mathrm{HBLADE}\) SURF 1ACE \(4,21 X, 1 H * / 7 X, 1 H M, 8 X, 1 H *, 2(3 X, 8\) HVELOCITY, \(3 X, 10 H A N G L E(D E G), 5 X\), 15HW/WCR, 19X,1H*, 3XI)
1070 FORMAT \(1 \mathrm{IHI} / / / / 3 X, 49 H S U R F A C E\) VELOCITIES BASED ON TANGENTIAL COMPONE INTSI
1080 FORMATI//22X, \(15 H B L A D E\) SURFACE, I \(1 / 7 X, 1 H M, 10 X, 8 H V E L O C I T Y, 3 X, 10 H A N G\) ILE(DEG), \(3 \mathrm{X}, 5 \mathrm{HW} / \mathrm{WCR})\)
1090 FORMAT(1H,2G13.4,F9.2.G15.4)
END

SUBROUTINE BLCD
blcd Calculates blade theta coordinate as a function of m
COMMON SRW,ITER,IEND,LER(2),NER(1)
COMMON /INP/ GAM, AR,TIP, RHOIP,WTFL,WTFLSP, OMEGA, ORF, BETAI, BETAO, 1 NOBL, MBI, MBO, MBI2, MBO2,MM,NBBI,NBL,NRSP,MBDYF, MBDYL, ITF,ITL, 2BLDAT, AANDK, ERSOR,STRFN, INTVL,SURVL, MAGFAC, 3MR(50), RMSP(50), BESP (50)
COMMON /CALCON/ MBII,MBOO,MMM,MBIIMI,MBIIPI,MXOOMI,MBOOPI,MMMMI, 1HMI,HM2,HM3,HT,DTLR,DMLR,PITCH,CP,EXPON,TWW,CPTIP, TGROG,TBI,TBO, 2LAMBDA, TWL, ITOR,ITMAX,NIP,IMS(4), BV(4),MV(100), IV(101), 3UBV(100,4), RWBV(100,4), ITV(100,6), TV(100,4), DTDMV(100,4), 4BETAV ( 100,4\(),\) MH ( 100,4\()\), DTDMH ( 100,4\(),\) BETAH(100,4), RMH (100,4), 5BEH(100,4),RM(100), BE(100), DBDM(100), SAL(100), AAA(100)
COMMON /GEOMIN/ CHORD(4),STGR(4), MLE(4), THLE(4), RMI(4), RMO(4),
IRI(4), RO(4), BETI(4), BETO(4),NSPI(4), MSP(50,4), THSP(50,4)
COMMON /BLCOCM/ EM(50,4),INIT(4)
ENTRY BLI(M,THETA,DTDM, INF)
INTEGER BLDAT, AANDK, ERSOR, STRFN, SURVL, AATEMP,SURF,
LFIRST, UPPER,SI,ST,SRW
REAL K,KAK, LAMBDA,LMAX,MH,MLE,MR,MSP,MV,MVIMI
REAL M,MMLE,MSPMM,MMMSP
SURF=1
SIGN=1.
GO TO 10
ENTRY BL2(M,THETA,DTDM,INF)
SURF= 2
SIGN=-1.
GO TO 10
ENTRY BL3(M,THETA,DTDM, INF)
SURF= 3
SIGN= 1 .
GO 1010
ENTRY BL4(M,THETA,DTOM, INF)
SURF \(=4\)
SIGN=-1.
10 [NF=0
NSP = NSPI (SURF)
IF (INIT(SURF).EQ. 13) GD TO 30
INIT(SURF) \(=13\)
```

AA = BETI(SURF)/57.295779
AA = SIN(AA)
MSP(1,SURF)= RI(SURF)*(1.-SIGN*AA)
BB = SQRT(1.-AA**2)
THSP(1,SURF) = SIGN*BB*RI(SURF)/RMI(SURF)
BETI(SURF) = AA/BB/RMI(SURF)
AA = BETO(SURF)/57.295779
AA = SIN(AA)
MSP(NSP,SURF) = CHORD(SURF)-RO(SURF)*(1.+SIGN*AA)
BB = SQRT(1.-AA**2)
THSP(NSP,SURF) = STGR(SURF)+SIGN*BB*RO(SURF)/RMO(SURF)
BETO(SURF) = AA/BB/RMO(SURF)
DO 20 IA=1,NSP
MSP(IA,SURF)= MSP(IA,SURF)+MLE(SURF)
20 THSP(IA,SURF)= THSP(IA,SURF)+THLE(SURF)
CALL SPLN22(MSP(1,SURF),THSP(1,SURF), BETI(SURF),BETD(SURF),NSP,

```
```

 1AAA,EM(1,SURF))
 IF (BLDAT.LE.O) GO TO }3
 IF (SRW.EQ.O) WRITE(6,1000)
 SRW = 1
 WRITE(6,1010) SURF
 WRITE (6,1020) (MSP(IA,SURF),THSP(IA,SURF),AAA(IA),EM(IA,SURF),
 |IA=l,NSP)
 C
C BLADE COORDINATE CALCULATION
C
30 KK = 2
IF (M.GT.MSP(1,SURF)) GO TO 50
C
C
C
MMLE= M-MLE(SURF)
IF (MMLE.LT.-DMLR) GO TO 90
MMLE= AMAXI(O.,MMLE)
THETA= SQRT(MMLE*(2.*RI(SURF)-MMLE))*SIGN
IF (THETA.EQ.O.) GO TO 40
RMM= RI\SURFI-MMLE
DTDM= RMM/THETA/RMI(SURF)
THETA= THETA/RMI(SURF) +THLE(SURF)
RETURN
40 INF= 1
DTDM = 1.E10*SIGN
THETA= THLF(SURF)
RETURN
C
C ALONG SPLINE CURvE
C
50 IF (M.LE.MSP(KK,SURF)) GO TO 60
IF (KK.GE.NSP) GO TO 70
KK = KK+l
GO IO 50
60S=MSP(KK,SURF)-MSP(KK-1,SURF)
EMKM1= EM(KK-1,SURF)
EMK= EM(KK,SURF)
MSPMM= MSP(KK,SURF)-M
NMMSP= M-MSP(KK-1,SURF)
THK= THSP(KK,SURFI/S
THKMl= THSP(KK-1,SURF)/S
THETA= FMKM1*MSPMM**3/6./S + EMK*MMMSP**3/6./S + (THK-EMK*S/6.)*
1 MMMSP + (THKM1-EMKM1*S/G.)*MSPMM
DTDA= -EMKML*MSPMM**2/2./S + EMK*MMMSP**2/2./S + THK-THKM1-IEMK-
1. EMKMI)*S/6.
RETURN
C
C AT TRAILING EDGE RADIUS
C
70 CMM= CHORD(SURF)+MLE(SURF)-M
IF (CMM.LT.-DMLR) GO TO 90
CMM= AMAX1(O.,CMM)
THETA= SQRT(CMM*(2.*RO(SURF)-CMM))*SIGN
IF (THETA.EQ.O.) GO TO 80
RMM= RO(SURF)-CMM
DTDM = -RMM/THETA/RMO(SURF)
THETA = STGR(SURF) +THETA/RMO(SURF) +THLE(SURF)
RETURN
80 INF= l

```
```

 DTDM = -1.E10*SIGN
 THETA= THLE(SURF)+STGR(SURF)
 RETURN
 C
C ERROR RETURN
C
90 WRITE (6,1030) LER(2),M,SURF
STOP
1000 FORMAT (1H1,13X,27HBLADE DATA AT SPLINE POINTS)
1010 FORMAT (1HL,17X,16HBLADE SURFACE,I4)
1020 FORMAT (7X , 1HM,10X,5HTHETA, 10X,1OHDERIVATIVE,5X,10H2ND DERIV. /
1(4G15.5))
1030 FORMAT (14HLBLCD CALL NO.,I3/33H M COORDINATE IS NOT WITHIN BLADE/
14H M =,G14.6,10X,6HSURF =,G14.6)
END
FUNCTION IPF(IM,ITI
COMMON /CALCON/ MBII,MBOO,MMM,MBIIMI,MBIIP1,MEOOMI,MBOOPL,MMMMI,
1HM1,HM2,HM3,HT,OTLR,OMLR,PITCH,CP, EXPON,TWW,CPTIP,TGROG,TBI,TBO,
2LAMBOA,TWL,ITOR,ITMAX,NIP,IMS(4),BV(4),MV(100), (V(101),
3UBV(100,4), RWBV(100,4),ITV(100,6),TV(100,4), DTDMV(100,4),
4BETAV(100,4),MH(100,4),DTDMH(100,4),BETAH(100,4),RMH(100,4),
5BEH(100,4),RM(100),BE(100), OBDM(100),SAL(100),AAA(100)
IPF=IV(IM)+IT-2
IF(IT.LE.ITV(IM,4)) RETURN
IF(IT.LE.ITV(IM,2).AND.IM.LT.MBII) RETURN
IF(IM.GE.MINO(MBII,MBOOP 1)) GO TO 10
IF (ITV(IM,1).EQ.-10000) RETURN
IPF=IPF-ITV(1M,1)+ITV(IM,2)+1
RETURN
10 IF(IM.GT.MAXO(MBIIMI,MBOO)) GO TO 20
IF(IM.GT.MBOO) RETURN
IPF=IPF-ITV(IM,3)+ITV(IM,4)+1
IF(IT.LT.ITV(IM,l)) RETURN
IPF=IPF-ITV(IM,1)+ITV(IM,2)+1
RETURN
20 IF (ITV(IM,3).EQ.-10000) RETURN
IPF=IPF-ITV(IM,3)+ITV(IM,4)+1
RETURN
END

```

\section*{Subroutine BDVINT}

BDVINT calculates interpolated values of the stream function along either a vertical or a horizontal boundary for the fine mesh. The interpolation is based on a cubic spline curve (ref. 8) using the stream-function values at the original coarse-mesh points.

The input arguments for BDVINT are as follows:
BVIN
input array from main program (see DESCRIPTION OF INPUT AND OUTPUT)


\section*{Program Listing of Remaining Subroutines}

The remaining subroutines are described in reference 3. The description applies even though the subroutines have been revised.
```

 SUBROUTINE MHORIZIMV,ITV,BL,MBI,MBO,ITO,HT,DTLR,KODE,J,MH,DTDMH,
 IMRTS)
 C
C MHORIZ CALCULATES M CODRDINATES OF INTERSECTIONS OF ALL HORIZDNTAL
C MESH LINES WITH A BLADE SURFACE
C KODE = O FOR UPPER BLADE SURFACE
C KODE = 1 FOR LOWER BLADE SURFACE
C
COMMON SRW,ITER,IEND,LER(2),NER(1)
DIMENSION MV(100),ITV(100),MH(100),DTDMH(100)
INTEGER BLDAT, AANDK,ERSOR,STRFN,SURVL,AATEMP,SURF,
IFIRST,UPPER,SI,ST,SRW
REAL K,KAK,LAMBDA,LMAX,MH,MLE,MR,MSP,MV,MVIMI
REAL MVIM
EXTERNAL BL
IF (MBI.GE.MBO) RETURN
IM= MBI
10 ITIND= 0
20 IF (ITV(IM+I)-ITV(IM)-ITIND) 30,40,50
30 J= J+1
TI= FLOAT(ITV(IM+1)-ITO-ITIND*KODEI*HT
ITIND= ITIND-1
MVIM = MV(IM)
IF (MRTS.EQ.1) MVIM = MVIM+(MV(IM+1)-MVIM)/1000.
CALL ROOT (MVIM,MV(IM+1),TI,BL,DTLR,MH(J),DTDMH(J))
GO TO 20
40 IM= IM+1
MRTS = 0
IF (IM.EQ.MBO) RETURN
GO TO 10
50 J= J+1
TI= FLOAT(ITV(IM)-ITO+ITIND+KODE)*HT
ITIND= ITIND+1
MVIM = MV(IM)
IF (MRTS.EQ.1) MVIM = MVIM+(MV(IM+1)-MVIM)/1000.
CALL RODT(MVIM ,MV(IM+1),TI,BL,DTLR,MH(J),DTDMH(J))
GO TO 20
END

```
```

 SUBROUTINE DENSTY(RHOW,RHO,VEL,TWLMR,CPTIP,EXPON,RHOIP,GAM,AR,TIP)
 C
C DENSTY CALCULATES DENSITY AND VELOCITY FROM THE WEIGHT FLOW PARAMETER
C DENSITY TIMES VELOCITY
C

```
    COMMON SRW,ITER,IEND,LER(2),NER(1)
    VEL \(=\) RHOW/RHO
    IF (VEL.NE.O.) GO TO 10
    RHO \(=\) RHOIP
    RETURN
        10 TTIP \(=1 .-(V E L * * 2+T W L M R) / C P T I P\)
            IF(TTIP.LT.O.) GO TO 30
            TEMP \(=\) TTIP**(EXPON-1.)
            RHOT \(=\) RHOIP*TEMP*TTIP
            RHOWP = -VEL**2/GAM*RHOIP/AR*TEMP/TIP + RHOT
            IF(RHOWP.LE.O.) GO TO 30
            VELNEW = VEL+(RHOW-RHOT*VEL)/RHOWP
            IF(ABS (VELNEW-VEL)/VELNEW.LT..0001) GO TO 20
            VEL = VELNEW
            GO rO 10
        20 VEL = VELNEW
            RHO \(=\) RHOW/VEL
            RETURN
        30 TGROG \(=2 . * G A M * A R /(G A M+1\).
            VEL \(=\) SQRT(TGROG*TIP*(1.-TWLMR/CPTIP))
            RHO \(=\) RHOIP*(1.-(VEL**2+TWLMR)/CPTIP)**EXPON
            RWMORW = RHOW/RHO/VEL
            NER(1) = NER(1)+1
            WRITE \((6,1000)\) LER(1), NER(1), RWMORW
            IF (NER(1).EQ.50) STOP
            RETURN
1000 FORMAT (16HLDENSTY CALL ND. I I \(3 / 9 H\) NER!1) \(=, I 3 / 10 H\) RHO*W IS,\(F 7.4\),
    134 H TIMES THE MAXIMUM VALUE FOR RHO*WI
    END
    SUBROUTINE ROOT ( \(A, B, Y, F U N C T\), TOLERY, X,DFX)
C
C ROOT FINDS A ROOT FOR (FUNCT MINUS Y) IN THE INTERVAL (A,B)
C
    COMMON SRW,ITER, IEND,LER(2), NER(1)
    INTEGER SRW
    IF (SRW.EQ.21) WRITE (6,1000) A,B,Y,TOLERY
    TOLERX=(B-A)/1000.
    \(A B 2=|A+B| / 2\).
    \(\mathrm{I}=0\)
    \(X=A\)
    10 CALL FUNCT (X,FX, DFX, INF)
    IF (SRW.EQ.21) WRITE (6,1010) I,X,FX,DFX,INF
    IF (ABS \((Y-F X) . L T\).TOLERY) RETURN
    IF (I.GE. 1000) GO TO 30
    \(I=I+1\)
    IF (INF.NE.O.OR. DFX.EQ.O.) GO TO 20
    \(X=(Y-F X) / D F X+X\)
    IF (X.GE.A .AND. X.LE.B) GO TO 10
    \(X=A+T O L E R X * F L O A T(I)\)
```

 IF(I.EQ.1) X = B
 GO TO 10
 20 IF (X.LT.ABZ) X=X+TOLERX
 IF (X.GE.AB2) X=X-TOLERX
 GO TO 10
 30 WRITE(6,1020) LER(2),A,B,Y
 STOP
 1000 FORMAT (32HIINPUT ARGUMENTS FOR ROOT -- A =G13.5,3X,3HB =,G13.5,
13X,3HY =,G13.5,3X,8HTOLEKY =,G13.5/17H ITER. NO. X,17X,
22HFX,15X,3HDFX,10X,3HINF)
1010 FORMAT (5X,I3,G16.5,2G18.5,I6)
1020 FORMAT (14HLRUOT CALL NO.,I3/47H ROOT HAS FAILED TO CONVERGE IN 10
100 ITERATIONS/4H A =,G14.6,10X,3HB =,G14.6,10X,3HY =,G14.6)
END

```

SUBROUTINE SPLINE (X,Y,N,SLOPE,EM)
C
C SPLINE CALCULATES FIRST AND SECOND DERIVATIVES AT SPLINE POINTS C END CONDITION - SECOND DERIVATIVES ARE THE SAME AT END POINT AND C ADJACENT POINT
            COMMON Q/BOX/S(100),A(100),B(100),C(100),F(100),W(100),S8(100),
        1G(200)
            DIMENSION X(N),Y(N),EM(N),SLOPE(N)
            INTEGER \(Q\)
            DO \(10 \mathrm{I}=2 \mathrm{~N}\)
        \(105(I)=X(I)-X(I-1)\)
            \(N O=N-1\)
            IF(NO.LT.2) GU TO 30
            DO \(20 \quad \mathrm{I}=2\), NU
            \(A(I)=S(I) / 6\).
            \(B(I)=(S(I)+S(I+1)) / 3\).
            \(C(I)=S(I+1) / 6\).
        \(20 \mathrm{~F}(\mathrm{I})=(\mathrm{Y}(\mathrm{I}+1)-\mathrm{Y}(\mathrm{I})) / \mathrm{S}(\mathrm{I}+1)-(\mathrm{Y}(\mathrm{I})-\mathrm{Y}(\mathrm{I}-1)) / \mathrm{S}(\mathrm{I})\)
        \(30 \mathrm{~A}(\mathrm{~N})=-.5\)
            \(B(1)=1\).
            \(B(N)=1\).
            \(C(1)=-.5\)
            \(F(1)=0\).
            \(F(N)=0\).
            \(W(1)=B(1)\)
            SB(1)=C(1)/W(1)
            \(G(1)=0\).
            DO \(40 \quad \mathrm{I}=2, \mathrm{~N}\)
            W(I)=B(I)-A(I)*SB(I-I)
            SB(I)=C(I)/w(I)
        \(40 \mathrm{G}(\mathrm{I})=(\mathrm{F}(\mathrm{I})-\mathrm{A}(\mathrm{I}) * G(\mathrm{I}-1)) / \mathrm{W}(\mathrm{I})\)
            \(E M(N)=G(N)\)
            DO \(50 \mathrm{I}=2, \mathrm{~N}\)
            \(K=N+1-I\)
```

 50 EM(K)=G(K)-SB(K)*EM(K+1)
 SLOPE(1)=-S(2)/6.*(2.*EM(1)+EM(2))+(Y(2)-Y(1))/S(2)
 DO 60 I=2,N
 60 SLOPE(I)=S(I)/6.*(2.*EM(I)+EM(I-1))+(Y(I)-Y(I-1))/S(I)
 IF (Q.EQ.13) WRITE (6,1000) N,(X(I),Y(I),SLOPE(I),EM(I),I=1,N)
 RETURN
 1000 FORMAT (2X,15HND. OF POINTS =,13/10X,1HX,19X,1HY,19X,5HSLOPE,15X,
12HEM/(4F20.8))
END
SUBROUTINE SPLN2Z (X,Y,YIP,YNP,N,SLOPE,EM)
C
C SPLN22 CALCULATES FIRST AND SECONO DERIVATIVES AT SPLINE POINTS
C END CONDITION - DERIVATIVES SPECIFIED AT END POINTS
C
COMMON Q/BOX/S(100),A(100),B(100),C(100),F(100),W(100),SB(100),
1G(200)
DIMENSION X(N),Y(N),EM(N),SLOPE(N)
INTEGER Q
DO 10 I=2,N
10 S(I) = X(I)-X(I-1)
NO=N-1
IF(NO.LT.2) GU TD 30
DO 20 I=2,NO
A(I)=S(I)/6.
B(I)=(S(I)+S(I+1))/3.
C(I)=S(I+1)/6.
20F(I)=(Y(I+I)-Y(I))/S(I+1)-(Y(I)-Y(I-1))/S(I)
30 A(N) = S(N)/6.
B(1)=S(2)/3.
B(N)=S(N)/3.
C(1)=S(2)/6.
F(1)=(Y(2)-Y(1))/S(2)-Y1P
F(N)= YNP-(Y(N)-Y(N-I))/S(N)
W(1)=B(1)
SB(1)=C(1)/w(1)
G(1)=F(1)/W(1)
DO 40 I=2,N
W(I)=B(I)-A(I)*SB(I-I)
SB(I)=C(I)/W(I)
40G(I)=(F(I)-A(I)*G(I-1))/W(I)
EM(N)=G(N)
DO 50 I=2,N
K=N+1-I
50 EM(K)=G(K)-SB(K)*EM(K+1)
SLOPE(1)=-S(2)/6.*(2.*EM(1)+EM(2))+(Y(2)-Y(1))/S(2)
0O 60 I=2,N
60 SLOPEII)=S(I)/6.*(2.*EM(I)+EM(I-1))+(Y(I)-Y(I-1))/S(I)
IF (Q.EQ.18) WRITE (6,1000) N,(X(I),Y(I),SLOPE(I),EM(I),I=1,N)
RETURN
1000 FORMAT 12X,15HNO. DF POINTS =,I3/10X,1HX,19X,1HY,19X,5HSLOPE,15X,
12HEM/(4F20.8))
END

```
```

 SUBROUTINE SPLINT (X,Y,N,Z,MAX,YINT,DYDX)
 C
C SPLINT CALCULATES INTERPOLATED POINTS AND DERIVATIVES FOR
C A SPLINE CURVE
C END CONDITION - SECOND DERIVATIVES ARE THE SAME AT END POINT AND
C ADJACENT POINT
C
COMMON Q/BOX/S(100),A(100),B(100),C(100),F(100),W(100),SB(100),
1G(100),EM(100)
DIMENSION X(N),Y(N),Z(MAX),YINT(MAX),DYDX(MAX)
INTEGER Q
IF(MAX.LE.O) RETURN
III=Q
DO 10 I=2,N
10 S(I)=X(I)-X(I-1)
NO=N-1
IF(NO.LT.2) GO TO }3
DO 20 I=2,NO
A(I)=S(I)/6.0
B(I)=(S(I)+S(I+1))/3.0
C(I)=S(I+1)/6.0
20 F(I)=(Y(I+1)-Y(I))/S(I+I)-(Y(I)-Y(I-I))/S(I)
30 A(N) = -. 5
B(1)=1.0
B(N)=1.0
C(1)= -. 5
F(1)=0.0
F(N)=0.0
W(1)=B(1)
SB(1)=C(1)/W(1)
G(1)=0.0
DO 40 I=2,N
W(I)=B(I)-A(I)*SB(I-1)
SB(I)=C(I)/W(I)
40G(I)=(F(I)-A(I)*G(I-1))/W(I)
EM(N)=G(N)
DO 50 I=2,N
K=N+1-I
50 EM(K)=G(K)-SB(K)*EM(K+1)
DO 140 I=1,MAX
K=2
IF(Z(I)-X(1)) 70,60,90
60 YINT(I)=Y(1)
GO TO 130
70 IF(Z(I).GE.(1.1*X(1)-.1*X(2))) GO TD 120
WRITE (6,1000) Z(I)
Q = 16
GO TO 120
80 K=N
IF(Z(I).LE.(1.1*X(N)-.1*X(N-1))) GO TO 120
WRITE (6,1000) Z(I)
Q = 16
GO TO 120
90 IF(Z(I)-X(K)) 120,100,110

```
```

 100 Y[NT(I)=Y(K)
 GO TO 130
 110 K=K+1
 IF(K-N) 90,90,80
 120 YINT(I) = EM(K-1)*(X(K)-Z(I))**3/6./S(K)+EM(K)*(Z(I)-X(K-1))**3/6.
 1/S(K)+(Y(K)/S(K)-EM(K)*S(K)/6.)*(Z(I)-X(K-1))+(Y(K-1)/S(K)-EM(K-1)
 2*S(K)/6.)*(X(K)-Z(I))
 130 DYDX(I)=-EM(K-1)*(X(K)-Z(I))**2/2.0/S(K)+EM(K)*(X(K-1)-Z(I))**2/2.
 10/S(K)+(Y(K)-Y(K-1))/S(K)-(EM(K)-EM(K-1))*S(K)/6.0
 140 CONTINUE
MXA = MAXO(N,MAX)
IF(0.EQ.16) WRITE(6,1010) N,MAX,(X(I),Y(I),Z(I),YINT(I),DYDX(I),
II=1,MXA)
Q=III
RETURN
1000 FORMAT (54H SPLINT USED FOR EXTRAPOLATION. EXTRAPOLATED VALUE = ,
1G14.6)
1010 FORHAT (2X,21HNO. OF POINTS GIVEN =,I 3,3OH, NO. OF INTERPOLATED PO
1INTS =,I3/10X,1HX,19X,1HY,16X,11HX-INTERPOL.,9X,11HY-INTERPOL.,
28X,14HDYDX-INTERPOL./(5E 20.8))
END

```

Lewis Research Center,
National Aeronautics and Space Administration, Cleveland, Ohio, December 12, 1968, 126-15-02-31-22.

\section*{REFERENCES}
1. Katsanis, Theodore: Computer Program for Calculating Velocities and Streamlines on a Blade-to-Blade Stream Surface of a Turbomachine. NASA TN D-4525, 1968.
2. Katsanis, Theodore; and McNally, William D.: Revised FORTRAN Program for Calculating Velocities and Streamlines on a Blade-to-Blade Stream Surface of a Turbomachine. NASA TM X-1764, 1969.
3. Katsanis, Theodore; and McNally, William D.: FORTRAN Program for Calculating Velocities and Streamlines on a Blade-to-Blade Stream Surface of a Tandem Blade Turbomach.ne. NASA TN D-5044, 1969.
4. Kramer, James J.: Theoretical Analysis of Incompressible Flow Through a RadialInlet Centrifugal Impeller at Various Weight Flows. II - Solution in Leading-Edge Region by Relaxatio. Methods. NACA TN 3449, 1955.
5. Lueders, H. G.: Experimental Investigation of Advanced Concepts to Increase Turbine Blade Loading. I: Analysis and Design. NASA CR-735, 1967.
6. Kramer, James J.; Stockman, Norbert O.; and Bean, Ralph J.: Incompressible Nonviscous Blade-to-Blade Flow Through a Pump Rotor with Splitter Vanes. NASA TN D-1186, 1962.
7. Katsanis, Theodore: A Computer Program for Calculating Velocities and Streamlines for Two-Dimensional, Incompressible Flow in Axial Blade Rows. NASA TN D-3762, 1967.
8. Walsh, J. L.; Ahlberg, J. H. ; and Nilson, E. N.: Best Approximation Properties of the Spline Fit. J. Math. Mech., vol. 11, no. 2, 1962, pp. 225-234.

6908600903


ATT E. LOU BOW MAI, ACTING CHIEF TECH. LI
POSTMASTER: If Undeliverable (Section 158
Postal Manual) Do Not Return
> "The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."
- National Aeronautics and Space Act of 1958

\section*{NASA SCIENTIFIC AND TECHNICAL 」 」UBLICATIONS}

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution because of preliminary data, security classificatron, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION
pUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Notes, and Technology Surveys.

Details on the availability of these publications may be obtained from:

\title{
SCIENTIFIC AND TECHNICAL INFORMATION DIVISION NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C. 20546
}```

