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ABSTRACT

This investigation is primarily con,.  -ned with the planar problems
of intercept and pursuit as seen from both the mathematical and physical
points of view. Specific applications are not the major intent here, yet the
ideas of reality are a strong undercurrent retained in these developments.
Several specific problem studies are undertaken, for illustrative purposes;
and, ample graphical results are included in order to present a clearer
picture of the happenings which occur during each of the maneuvers. In
addition to describing the typical and specific trajectories, information
is included which pertains to the time of flight, range and range-rate
histories, as well as the acceleration levels to be experienced by the
maneuvering vehicles. Categorically, the cases studied here include the
simple linear intercept problem, the pursuit of a vehicle moving along a
straight line path and a case wherein the target flies a circular trajectory.
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A STUDY FROM KINEMATICS — THE PROBLEMS OF
INTERCEPT AND PURSUIT

I. INTRODUCTION

The problems of intercept and pursuit have been subjects of interest to
mathematicians and to engineers and scientists for a very long period in time.
The mathematician has been concerned, principally, with the problem's solution,
especially since analytic studies may be achieved when suitable simplifying
assumptions are introduced. On the other hand, the engineers and physicists most
likely have been concerned with the applications aspects of these problems. In
this regard one might visualize, as applications, the study of one tactical vehicle
intent upon colliding with — on intercepting — another vehicle at some position
in (mathematical or physical) space. In theory, then, it would be reasonable to
conclude that these studies might apply to a missile intercepting a moving air-
craft as a target; the track of a torpedo as it seeks to intercept its target; the
flight of one space vehicle in pursuit of another; or, as is frequently mentioned
in mathematical studies, the "hound and hare" problem.

In this investigation no particular application is inferred, even though any
of the above, and/or other, example cases may come to mind. Throughout the
development undertaken in this study the thread of reality, and application, has
been retained and held in the investigator's mind. The assumptions which have
been employed herein were those necessary to produce the results which are in-
cluded. Basically, these simplifications were no more or less restrictive than
necessary, in any particular phase of the developments, in order to produce the
results acquired in each and every instance. Wherever possible the mathematics
were related to the physics; and, the discussions have tended to indicate this by
suggesting applications and/or physical reality in most every instance.

From the observations made here it would appear that even though the basic
ideas are well known, this work will enhance the general knowledge of these modes
for maneuvering. The including of range-rate and acceleration information
should point to the nature of the physically realistic constraints which could exist
for intercept and pursuit operations. Hopefully, those practical minded persons
who work in design and analysis may find, here, facts which are useful, or
methods which can be applied to their needs.

As a summary, the contents of this paper include a study of the planar inter-
cept and pursuit situations — as kinematic investigations — with examples intro-
duced to direct attention to the several aspects of these problems. Also,

1
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graphical results are included to clarify the mathematical and physical inter-
pretations which can be given to the various case studies. Under these categories
one will find the simple intercept case, and variations of it, as well as the planar
pursuit problem with one analytical and one computer developed solution. In the
first case, the pursuit of a target moving in a straight line is introduced for in-
vestigation; while in the second case the problem considered is that of a target
moving along a fixed circular path. For both of these studies ample graphic
results are presented to clarify the contents and to stimulate the interested
reader.

II. THE PROBLEMS OF INTERCEPT AND PURSUIT

In a classical sense the problem of Intercept is concerned with the finding
of a point in space where two bodies will collide as a result of their traveling
along predetermined paths of motion. The Pursuit problem, on the other hand,
is concerned with the finding of a flight path which allows a chase (or pursuing)
vehicle to overtake and collide with a target particle which may be traveling
along an unknown, a priori, path. In the case of a pursuit, the interceptor flies
along a trajectory so that it always "looks" at its target; and contrary to this,
for a simple intercept the "chase" vehicle flies along a precalculated path which
"directs" it to that point in space where the collision is to occur. One obvious
disadvantage of this simple maneuver is that the paths (thus the collision point)
must be predetermined; and therefore, these are based on a known (or assumed)
initial state of motion for the target. Hence any variation in the direction and/or
speed of the target will cause the intended collision point to be incorrectly located,
and collision will not occur.

As a variation of the simple intercept case, one might consider the "lead in
intercept" situation, whereby (say) some change in the interceptor's speed along
its path would produce an "earlier" collision. In this case, an "altered" collision
position would exist, and would be found to lie between the initial point and the
"simple" collision point.

The several situations noted above are illustrated in the sketches shown
below. For the intercept problem to be studied herein, the target is presumed
to fly along a knovm, predetermined straight-line path; and, generally, it will
do this at a fixed speed. The pursuit maneuver which will be investigated is
a planar case with the vehicles assumed to be in flight at fixed speeds; however,
the pursuit's track is not known or calculated as a priori information.

2



C

SIMPLE INTERCEPT
PATH

8

TARGET PATH

VTO	
1 NTERCEPT WITH

LEAD

8 Tp	
rr

TO

Sketch 11.1. Illustrating the INTERCEPT Case (T and I denote the Target and
Interceptor positions at t = 0); C designates the COLLISION Point, occuring at
t = td. The angles 0 j denote the inclination of the respective velocity vectors
relative to the range vector 'r.

Point A, on the lead Intercept Path, suggest a position where V, is increased
so that an earlier intercept would occur (at B).

C

INTERCEPTOR'S
PATH

TARGET'S	 U
PATH	 \

VTp \ \ 3

TO
TO	 10

VIo

Sketch 11.2. Illustrating Pursuit. Here the interceptor has its velocity vector always
pointing to the instantaneous position of the target (T). Once more collision occurs at
"C". Since I "looks" at T continually, the path of motion is a curvilinear track — in
contrast to the linear path described for the simple intercept case. Note that in the
terminal phase of this maneuver the interceptor is "chasing" the target (from dead astern).

1/_

^10

0
Io

O
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III. THE Ih TERCEPT MANEUVER

III.1. General Considerations

This problem, like that of Pursuit, is principally one of kinematics; that is
the track flown by the interceptor (or pursuit vehicle) is dependent only on the
relative positions of these two vehicles, and their speeds.

To illustrate the nature of the general governing equation for the intercept
case consider the diagram, shown below, depicting cinditions as they exist at
some general, intermediate time, t ( t o _< t _< t i ). the horizon serves as a
reference direction to aid in "locating" the relative. displacement vector (or range
vector) rr ; and in describing the inclination of the velocity vectors V. ( j = I, T).
For the notation employed here the angles (Di serve to describe the velocity in-
clination with respect to	 while the Bi (and 6) locate the range vector ff ),
and the velocity vectors (V,, V,), relative to the horizon.

VI

ee

/VOO VT

e	 —	
^
	 der er

T	 rr	 HORIZ.
T ^

HORIZ. 
8r

^rT	 .IF,

HO RIZ.	 0

Sketch 111.1. Illustrating a genera/ intercept situation. T and I
designate Target and Interceptor, respectively; 0 is an inertial origin;
FT and , locate the vehicles wrt 0; and, ir is the relative position
(range) vector. The angles 4)i locate the vectors V j relative to F,,
while the Bj locate the Vj relative to the horizon; Or describes the
inclination of Fr wrt the horizon.
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From the sketch (preceding page) one can see that, vectorially,

r r _ r I .- 
r 
	 (III.1)

thus the range rate, or the relative velocity vector, is

d7a. _ d - _

	

Vr	
dt	 dt ^ rI	 FT)

which is equivalent to writing

Vr = VI - VT.	 (III.2)

With V: described (kinematically), through Y. , then it follows that in ref-
erence to a (moving) coordinate frame attached to T (target) one can write, also,

d(-r)	 dr	 de

	

V _̂	 = e	 + r —` .	 (III.•".)
`	 dt	 r dt	 ` dt

since rr = r r -jr .

Here dr r /dt is called the range rate, with r r being the linear range; while
the quantity de r /dt arises as a consequence of the "rotation" given to the posi-
tion vector, rr .

Recalling that from kinematics

de
r

= w x e'
dt	 r

where _W is the angular velocity vector for the moving unit 'triad (e r , ee, eZ ), then
if the motions are planar (i.e., T and I occupy the same plane) it should be
evident that 5	 r eZ , hence

5



d`e

d: wxer =er (e = x e r )=0r ee.

Thus, from Eq. (I11 .3) one sees that

Vr = r r er + rr e r ee,	 (11IA)

inferring that the relative velocity (Vr ) is composed of a radial (or range rate)
component plus a transverse part which is orthogonal to the range vector (Tr ).

Making use of Eqs. (111.2) and (11IA) it is apparent that the inertial and rela-
tive speed components may be related in the following fashion:

Since

Vr = VI - VT

Vr = rr er + r r Or e8,

rr = Vr • j  = VI •er - VT . -j r

= VI COS (77-0 1 ) - VT COS (q^r)

= VI COS [ 7T - (BI + 'd] _VT COS [ OT - Br] '

or

rr = - [VI COS (^I + V,. COS OT) _ - [VI COS (61 4 e r ) + VT COS (BT - Br))
(111.5)

Likewise, it follows that

r r Br ^ _Vr 'ee= VI•ee-VT •ee,

and

then

6



leading to

r r Br - 
VI sin c^t -VT sin (kT V t sin (B I + O r ) - VT sin (OT_ E3 r )	 (111.6)

wherein the angles 0. , may be regarded as "inertial" position indicators, while
the (P, serve as relative position angles.

HI.2. The Simple Intercept Problem

The case to be considered here is a restricted version of the more general
situation noted in the preceding paragraphs. Here it will be assumed that:

(1) The target flies a straight line path at a fixed speed (thus, VT = VT =
constant) .	 °

(2) The problem is planar throughout (that is, e r , eq define the directions
for all in-plane components, and e= is normal to the plane of motion).

(3) One can neglect any influence, from winds, atmospherics, etc. (thus the
problem reduces to a kinematic discussion).

(4) The interceptor has a fixed speed ( VI = constant), and will fly along a
line path (hence VI is a constant).

Since both vehicles move over fixed distances in the same time interval
(flying at fixed speeds) then it follows that

^T = ^T	 and q5I = 0, (const ants);
0	 0

and, likewise,

BI=BI	 as well as, BT =BT;
0	 0

in addition, B r = 0. Now, with 0 , being an arbitrary angle let this be set at
Or = 0; thus the sketch (on following page) geometrically describes the problem
under discussion.



IoTO

C

Sketch 111.2. Illustrating the simple
Intercept Case; VSO - constant; also
0 
1 

and BT are fixed in value. Point
"C" is the Collision Position.

With both vehicles flying; at fixed speeds, it is prudent to define a speed ratio,

V VI
n I = —° .	 (111.7)

VT VT 

Specializing Eqs. (III . 5) and (IH.6) for the present case it follows that

if = — (VI COS ^6I + VT Cc.S OT ) = — (VI COS (61 ) + VT COS (OT)I,

an.-J, since there is no transverse speed apparent to this problem,

A=VI sin 0I - VT sin 4=V l sine, - VT sin OT;

or

t'r = — VT (4 COS (91 +COS eT],

and

V	 sin 6
I ^_ ,^ =	 T ^	 (III. B)

VT	 Sin eI

8



thus

Tr =-VT [A2 - Sin2 8T + COS BTI.	 (111.9)

Equation (M.9) defines the range rate in terms of the known (a priori) constants
describing the path flown by the Target Vehicle.

In order to describe the range (rd one could integrate Eq. (III.9) from an
initial state (rr 0

 , t = 0) to (say) a general condition (r r , t) obtaining, as a result,

r  = rr 
0 - 

VT [A2 - Sin e 5T + COS ®T ] t.	 (III.10)

At the collision point r r = 0 and t = t i ; thus one finds from the expression
above that

rr
0 

=VT [A2 -sing BT+COS BT1 ti

leading to a time to intercept relation given by

r
t i =

	 r0	
(HI.11)

VT [A2- sin 2 8T +Cos BT)

A graph of Eq. (M.11) has been prepared to illustrate the influence of 8T
(or 0T ) and A on the time-to-intercept. (See Figure M.1). For this represen-
tation the time is presented as the non-dimensional factor, t i VT/ r r o ; this was
done to remove the influence of any specific flight condition(s). The variation
with BT , as shown here, includes all cases from the head-on intercept OT = 0),
up to and including the pure chase intercept ( BT = 7r).

From this figure one can see that A plays only a minor role, in the intercept,
so long as 9 is no larger than (say) 77/3. Above 7r/2 the value of k becomes a
much more dominant factor. As one might expect the smaller the value of A the
longer the time to intercept, as the maneuver approaches the pure chase

9
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OT (DEG)

Fig. 111.1. Dimensionless time to intercept, as a function of 8 T (the inclination angle
for the target).
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configuration. Contrary to this, as h increases (say to a value of 3), the time to
intercept becomes almost insensitive to OT ; that is, the relative (direction)
orientation of the two vehicles is a fact of diminishing influence.

Combining Eqs. (III.10) and (III.11) one notes that the range-time expression
can be given simply as

	

r =r I1-t }	 (III.12a)
r	 r0	 t. fi

while the range rate-time relationship is simply

r
r r = _ 0̀	 (III.12b)

t.

suggesting the constancy of this quantity for any particular problem.

III.3. An Example

Recalling that A = s i n (^r A i n (kI (here), or A = s i n 0T / s in B I , then there
are certain conditions whereby two possible intercepts might occur for the same
value of 4 (note that A > 1.0 applies, however). To illustrate this situation, one
such possible set of cases is examined below.

C2

\ \^ C
J 

I\ (8) / \ VIo
T 2 (8T)I	

e

	

t

	

10
To	 rro

Sketch 111.3. Illustrating this example and showing
the influence of BT on the intercept.
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Let the two cases be designated as () 1 , ( )2;  then, for

OI = 30°, and ( 6T ) 1 = 60°;

01 = 30°, and ( BT ) 2 = 1200;

it follows that

VI - (sin PT), 	 sin (60°)
^ )I	

VT 1	 sin 6,	 in (30

and

- (sin f)T) 2 = sin (1200)
( )2	 sin 6,	 sin 30°

illustrating the consistency of 4 here. Now, from Eq. (M.11)

VT t i	 1
	

2

rro 

1 - 
AI - (Sint PT)I + (COS 601 =

3 +V,

and

VT t i	 1

rr o 2 y Yt2 - (Sin2 PT) 2 + (cos 6T)2

so that for fixed values of VT and r ro one sees that the flight time to C2 is
longer than the time needed to reach the collision point C l (as should be expected,
in agreement with the sketch on preceding page!).

12



V1_ VI to +V I  I tB
I	

to + tB

(IH.13)

III.4. The Intercept With Lead

By incorporating an added speed increment, or allowing a segment of the
intercept path to be flown at an increased speed, then the collision occurs earlier
(in time), and after the target vehicle has flown a shorter distance (see the sketch
below). Normally, without the speed change intercept would occur at C; however
when the path length segment (A to B) is flown at an increased speed (say VI I )
then intercept will occur at point B.

C

B

A

X8T
VI

 eZ
T	 I

Sketch 111.4.	 Illustrating "intercept
with lead", due to a change in V1.

A simple method for describing this case would be to define a second value
for VI (say, VI ) which includes the temporal influence of V II . That is, write
this new interceptor speed as

where t and t^ are the times needed to reach pt. A and pt. B (along path seg-
ments d and AB), respectively. Then, using VI in place of VI (described earlier)
the same mathematical expressions apply (approximately) for the range, range-
rate and time of flight.

111.5. Geometric Descriptions

It has been indicated that the simple Intercept Problem can be described
solely in terms of the speeds (or VT and k), the initial range (r , ) and the time
to intercept (t i ). Also it has been noted that in some instances i%e problem may

13
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have two possible solutions (exclusive of the time to intercept), provided 'k > 1.0.
In order to gain a clearer understanding of these situations a geometric descrip-
tion of the problem is presented below.

The sketch shown here describes the problem, generally, and indicates the
relevant parameters entering into this discussion. In order to best present this
case a set of (planar) space oriented axes are selected and utilized to locate the
two maneuvering particles. Once again the assumptions of the Simple Intercept
Problem are presumed to hold. Arbitrarily, the origin for the inertial coordinates
is chosen to coincide with the target ('_M at initial time ( t = 0).

Y

C
5'c	 f

rT^
^	 rI

^	 C

I

(YI Q -	 o
rr

To	

(XI)Xc

	 X

Sketch 111.5. To illustrate the Intercept Problem. The axes
(x, y) are inertially defined and have their origin at To (posi-
tion of T at t = 0).

From the sketch, one notes that

r r = 7  — rj s
C	 c

where TT and rI locate the collision point wrt the target (T) and the Interceptor
(I).

14



In terms of the coordinates (x, y) write

rTo xIO ex + yIo ey,

rT In, X ': ex + yc eY,
C

and, hence,

rIc 4 (xc — xIO ) ex + (Yc - YIO) eY .	 (III.14)

Recognizing that while flying at their prescribed fixed speeds (V,) the vehicles
do cover distances proportional to their speed (in a given time), then

V	 r c

VT r C

or

A2 r
T 

2 = r 
I 

2
C	 c

which expands to

,k2 (
x 2 + Y2) = L(xc - xIO)2 + (Y C - YIo)2),

and leads directly to

(42 - 
1 ) (xC + YC)  _ (x io  + Y io ) - 2 F.x c xIo + yc yIo )	 (IIL15)

Suppose that the loci for all possible intercept (or collision) points define a
circle. To describe such a figure, which would have "C" as a point on the cir-
cumference, one could write

(xc — `'c ) 2 + (Yc — 77c ) 2 = Ra ,

15



y1O	 for (,k2< 1.0) .
1 _ 42 (III.17b)

where the coordinates (^,, 77,) locate the center of the circle of loci, and R o is
its radius. Next, rearranging Eq. (III.15), and accounting for the description of
rr 

0 , 
it can be shown that

r

2 + 2 
xTo x(y2

2

x	 + 
	

+ 2 ^'IO 
Y	 roC	 ,k2- 1 c	 c	 ^2_ 1 c	 h2_ 1

so that completing the square (here) leads directly to

2	
Y	

2

x - x1O	
+ Cy	

I°	 _ 2 	r2	 (III.16)`	
1 _ ^2	

\ `	
1 _ ^2	 (1 _ k2)2 ro

(for f,2 < 1.0) .

This expression describes the circle with its center located at (60 7^, ); one
whose radius ( Ro ) is noted to be

A r r^
Ro = (1 - 

t2 )

Here the coordinates of the center are recognized to be,

6 = 
X 1	 (III.17a)

i - 42

and
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and

YIO

f:tr
To

Ro =	 ,
,^2- 1

(M.18)

Remembering that 6, VI /VT , then the more interesting cases would be
those which have 0 > 1.0. For this requirement it can be proven that the loci
of collision points describe a circle with center and radius defined by

_ - X 1

x,2_1

respectively (for k > 1.0).

111.6. A Limit Case for the Gpometry

A cursory study of the results given by Eqs. (111.17) and (III.18) w ; :l acquaint
the reader with the fact that as 4 1.0 the central points recede (to large .'.:s-
tances) from the origin; and, that the radii increase without limit. This would
indicate that the loci of collision points degenerate from a circle to a straight
line (and, in particular, this line bisects the didtauce between I and T). Naturally
these loci are equidistant from I and T (since k = 1.0), hence the line of per-
missible intercept positions is orthogonal to rTo.

III.7. Geometry of the Intercept

As an aid to understanding the graphics associated with this maneuver the
figures shown below have been prepared using Eqs. (M.17) and (III.18). Generally,
the contours :Or the intercept loci are circles, each corresponding to a fixed
value of k; these are all centered along extensions of r To , but are not concentric
in their construction. Also, as the value of ,^ decreases (from unity) the size of
the circles decrease; and, as increases in value (from unity) the size again
decreases. The limit case ( 4 = 1) is depicted as a straight line, bisecting the
length TI (= r T ) and constructed perpendicular to it.

0
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In a like manner it is easy to ascertain that the circles reduce to a point as
k - co and as k 0. A general com,)osite diagram is shown in the (unsealed)
sketch below; more correct representations are included as Figures III.2 and III.3.

//111

uT -.0/

x

Sketch 111.8. Depicting the geometry for the simple intercept ianeuver. The
angles OT and 01 are possible inclinations indicative of an intercept — To and 10
indicate the original positions of the Target and Interceptor (at t = 0). The
length (TI)o = rro (initial range).

The sketch, above, indicates both the possible and impossible conditions
for an intercept based on a set of known Initial Conditions. Two cases ('Z < 1.0
and ^ > 1.0) are considered. First, for the case when ^, < 1.0, one notes that if
the target flies along the path inclined at (kT (relative to the line TI) it is possible
for the interceptor to collide with the Target at two admissible points (C and CO.
It should be evident that the intercept at C l occurs in lesser time than that
happening at point C; also the path direction for each of these intercepts is
different.

When the Target (T) flies along the line T QE (at the velocity V T ) it is im-
possible for I to collide with T (for the value of ^, (< 1.0) used in consti acting
the circle shown). The reason for such stems from the fact that this circle
represents all possible loci for a collision when the vehicles have the given
speed ratio (4) noted. Hence when the flight path (of T) does not touch the circle,
at least, no collision can occur.

18
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Next, suppose that k > 1.0 (as shown). In this case, for a same prescribed
value of <kT , there is only one possible intercept to be made by I — this could occur
at C3 (as noted). And, to the contrary, if the interceptor flies along the line in-
clined at t I , relative to TI, it could intercept — and collide — with T at either
of the points C  and /or Ca (on the circle for ft > 1.0). Necessarily, a,3 in the
previous case, when the interceptor ilies along the line I ©, and the spaed ratio
is ^, (as noted above), no collision can occur since that line from I does iiot touch
the circle of intercept points.

Incidentally, the maximum ( minimum) inclinations of the paths from T and
I are those which begin at T and I, respectively, and are just tangent to the
intercept circles — for these k values considered. It can be shown that these
limit cases occur for l tT i and/or 10, 1 equal to 77/2. That is, the target and/or
interceptor must fly from their initial positions orthogonal to the initial range
vector (rr 

0 ).

A pair of accurately scaled figures are included below to enhance the i ' ::xa-
tive geometry of this intercept problem (see Figs. III .2, M.3). Several cir,,_-.,,
for different values of it 1.0, are indicated on these plots. In addition to the
circles, the location of their centers and a typical pair of possible intercept
positions (C andC') are shown. Also, the loci for all ^L = 1.0 intercepts are
included on these graphs; this locus is the straight line appearing on both figures.

IV. THE PURSUIT PROBLEM

IV.1. General Considerations

The second type of collision example to be studied here is that one classed
as the pursuit problem. This differs from the Simple Intercept situation in that
now the path for the interceptor is a continually varying curve in space. A basic.
premise in this study is the idea that the interceptor always "looks" at the Target,
hence the velocity vector (V I ) is continually pointing at the Target vehicle (s. e
the sketch on following page).

In concurrence with the previous investigation it will be assumed that the
speed of each vehicle is a constant, thus their speed ratio is (again) the constant



X

v

Fig. 111.2. Geometry of the Planar Intercept Problem for 'C> 1.0. Shown are several
circles of position- where intercept can occur, each for a given value of A. Note that I
can intercept T at two possible positions (C, C`) for the case illustrated.
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' k=1.0	 k = 2/3

y

6

4

2

TI
X

Fig. 111.3. Geometry-of the Intercept Problem fork < 1.0. The circles of intercept loci.
their centers and relative sizes are indicated here. Note that two intercept points (C, C)
exist for a given value of 4 kT (or BT ) and 4.
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PATH
5(x,y)=0—

YT I-- 	-

I _^
yI

I
X

In addition, it is presumed that the flight path of the target is known, a priori,
and that the interceptor 's path is to be determined.

In the initial phases of this investigation cartesian coordinates will be
employed. It has been decided that a general origin will be selected, but not
necessarily coincident with either vehicle; and that the quantities which refer
to each vehicle will have an appropriate subscript affixed to them.

Y
	

VT

X I	XT

Sketch IVA. Depicting the Pursuit Problem.
Note that V, always points toward "T", and that Cartesian Coordinates

are used for convenience. The subscripts are to describe the appropriate vehicle
(1, T).

The paths v(x, y) and s(x, y) will describe the track of the target and inter-
ceptor, respectively. The angle a indicates the inclination of V, wrt the x-axis.

Since the speed of each vehicle is fixed, and in a constant ratio (see Eq. (N.1)),
then it follows that

ds do-	 (IV2)at - t-
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Also, with VI directed toward T, at all times, and being tangent to o-(x, y),
then

or

dyj 
=
	 YT - YI

tan a = 
	

.
dX I 	 XT - XI

In agreement with Eq. (IV.2) it follows that

(ds)2 = k2 (dcr)2

k2[ (dxT ) 2 + (dyl.) 2^ = (dx i ) 2 + (dy j )2;

which is equivalent to

[(̂ Z,	

dyT 2	 dyT2

^ 	 + dxj	1 + dxj

(IV•3)

(IV.4)

This last expression connects the two paths of motion (s and o) through their
derivatives. The quantities on the left side of Eq. (IV.4) are obtained from the
specification of the path (cT) for T. With these terms evaluated, then - in
principle - an integration could be performed to give a description of the inter-
ceptor's flight path, s (x, y) !

Assuming that the Target 's path is known, and can be written as (say)
o- (x, y) = 0, then the problem reduces to that of obtaining a path for the inter-

,	 ceptor, (say) s ( x, y) = 0!

In order to describe this desired trajectory one could make use of Eq. (IV.4),
obtaining the required derivatives from:

(1)the known path, or (x, y) = 0;

and,

(2) the inclination expression for the line of sight, Eq. (IV.3).

23
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d	 d'au dxT a^ YT

axT dxI ayT dxI
(N.5)

That is, making use of:

dx (0- ( x , Y)) = 0;
I

(Z)	
d [dyi] _ d yT - y I

dxI dxI	dxI xT - XI

or from (1),

(1)

and,

and, replacing (2) with

	

d dy I 	 d
dx

I 
(XT - XI)	 dx (YT - YI )'

I	 I	 I

obtaining

dy.I dyI dxT d2yl

dxI dxI dxI + dx2 
(XT - XI),

I

which can be alternately expressed as

(IV.6a)

dyT dxT yT - yI	 d2yI

dxI dxI x1 - xI	 dxI
(IV.6b)

24



In theory, then, the interceptor's p q"h can be acquired by incorporating Eqs.
(IV.5), (IV.6) into Eq. (IV.4) and integrating; knowing, of course, the path o- (x, y)
= 0.

IV.2. An Example.

As an example of this formulation the following case will be studied. For
simplicity the orientation of the axes (x, y) have been described in a manner which
should allow the presentation to be as uncomplicated as is feasible.

The problem situation, presented here, shows the Target (T) moving along a
straight line path (xT = a), beginning at the initial point

(YT)o = b; (xi.)o = a-	 (IV.')

The interceptor is initially placed at the origin, thus

( xI)o = %Y,)o = 0;

and its initial line-of-sight will be described as,

dY I 	 (YT - Ydo _ b	 (IV.8*)
dx,)

o 
(xT — xI)o a

or, as an equivalent statement,

tan 	 bp=
a

*As an alternate description for the line-of-sight (4LOS) T , measured wrt VTO , one could write
4(LOS) TO = (37r/2) - ao, initially; or4(LOS) T =(37r/2) - a, generally.
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e'(X,Y)

)am

TM
I

	

	 Sketch I V.2. Describing a pursuit prob-
lem wherein the target (T) flies a straight

VT line path, and the interceptor (1) moves
o

	

	 in the manner whereby it is always di-
rected at the Target.

To

a,b)

 
VIo

IoLe
!q`o**w-

X

As illustrated on the sketch, the target moves along the linear path

o-(x, y) = xT - a = 0,	 UV-9)

at its constant velocity

VT= constant;

while the interceptor pursues the target along its trajectory s (x, y), at a fixed
speed but with its velocity vector always in the direction of the line of sight (i.e.
at angle a). Note that

a = a(t)

VI = VI (t), but VI = constant,

Y
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Solution:

Since o- (x, y) = 0 is as described in Eq. (IV,9), then it follows that

d xT
dxI

and consequently Eq. (IVA) reduces to

d YT	
z

dxI	 dx2
(XT - XI) - dx

I dxI 
(a - xI).I	 J (IV.10)

Next, defining

P 0 dyI , and P' `^ d (A ),

	

I - dxI	 = dXI I

then Eq. (IV.10) is compactly written as

dyI=(a- xI)pI.
dxI

Now, from Eq. (IVA) one notes that

0

d 2

( ŶT2,k2	
dx	 + dx	 - 1 + AI

	

I	 I
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or

d =
dxI

(IV.12)

having chosen the positive radical. On combining Eqs. (IV.11) and (IV.12), then

P', - A(a _ XI),
	 (IV.13)

which is a differential equation describing the slope of the line of sight.

This last expression is separable, and consequently has — as a first integral —
the solution form

In (PI + Î) = In (Q (a - x I )-I/"	 (IV.14)

where q is a constant of integration. Obviously an alternate form of this resultant
is

PI = 2 F (a _ xI )- vkz _	 (IV.15)

The quantity pI measures the instantaneous slope of the path to the collision
point; thus a second integration for a description of the trajectory is immediately
available.

To facilitate manipulations here it is suggested that a transformation of the
independent variable should be introduced. In this regard define
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z ^- a - x I , hence dz = - dxl;

then Eq. (IV.15) is rewritten and separated into

YI = 
I

f z  dz - 2 f z- I Adz

which can be shown to yield

t ii

	

YI = QI + 	 ¢ 1 ) z * - Q ( + 1) z	 (IV.16)
2(A s - 1)

wherein CI is an integration constant.

The two integration constants: may be defined from the initial values: e.g., if

(

dy,

	 (PI)0 - a (- tan a0),
I 0

and

(xI)o = (y I )p = 0; or, z p = ac

then, as a consequence of these conditions, the final form of the expressions for
pI and yI may be written as:

	

a

+ b +1	 xI I/,k

	

PI
1Y[.2 C1 a
2	 (IV.1^

	

C1 - xI\I/Ik	 bb2
aa	 a2
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and

yi = a 	 ( +1) b+ b2 +1	 1 - ^1
-XI2(,k2 _ 1)	 a	 a2	 \ 

A+I
( - 1)	 1 - (1 - XI/ ^	 (IV.18)

	

2	 a
b+J

!a2

 
+1

a

since

b 2
¢ = + b + 1 (= tan ao + sec ao ). (IV. 19)

a 1/	 a	 a2

Equations (IV.17) and (IV.18) describe the angle a (pi = tan a) and the tra-
jectory for the interceptor (y i = yi (xi )), respectively. In these two expressions
the independent variable (to manipulate) is the coordinate x i , which has a range
of values given by

X
0 <_ ' <_ 1.0,

a

(see Sketch IV.2).

An examination of equation (IV.17) will demonstrate that pi can be varied
from tan ao to very large values (indicating a 	 7T/2), when pursuit occurs.

As a means of illustrating the geometry of the trajectories obtained for this
example; and to indicate the influence of A, and the initial launch orientation (a.)
on the problem, Figs. IV.1 have been prepared.
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a

Fig. IV. I (a). Plot of the dimensionless pursuit trajectory, showing the influence of A for
4e. The values of y llm /a we noted hem to Indicate the full extent of the motion.
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Fig. IV.'.' (b). Plot of the dimensionless pursuit trajector y, showing the influence ofkfor
ap -360 . The values of y 1l, /a are noted here to Indicate the full extent of the motion.
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(k 1.05) X

2.68 7 -- —
	 X(1.20)

(1-50)

(2.0)

=2.0 (3.0)

0
C)	 0.2	 0.4	

X	
0.6	 0.8	 1.0, 

a

;: ig. I V- 11(c). Plot of the dimensionless pursuit trajectory, showing the influence of A for
ao = Cr. The values of y 1j ,/a are noted here to indicate the full extent of the motion.
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Fig. IV. I  (d). P lot of the dimensionless pursuit trajectory, showing the influence of 4 for
ao = 450 . The values of y1i n /a are noted here to indicate the full extent of the motion.
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Fig. I VA (e). Plot of the dimensionless pursuit trajectory, showing the influence of A for
ao = 7e. The values of y llm /a are noted here to indicate the full extent of the motion.
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In agreement with the choice of coordinates used here, each trajectory will
begin at the origin (0); and, by the philosophy of the pursuit maneuver, each will
terminate with the interceptor approaching from dead astern of the target.

These figures are indicative of the fact that regardless of the initial orienta-
tion, the trajectory having the largest 4 value is that one which reaches the
target the quickest, flies the shortest path and has the least path curvature,
initially. It is also apparent that all of these paths have their largest curvature
near the terminal phase of the motion; and, that this increases with k.

For convenience of representation the flight paths have been nondimensionalized
by division with the distance, a; and are presented a hey would be traced on
the plane of motion. Since each figure is for a different value of a o (from -CO"
to +75°), and each trajectory will terminate at a different final displacement
(y 1 im ) — dependent on the value of A — these final ordinates are indicated, but
not to proper scale in each instance.

A study of these several plots should acquaint the reader with the inrluence
of these various factors. The values, ylim, are obtained from Eq. (IV.20),
found in the next section; note that 

ylim 
A 

f (ao , k),

In order to clarify the physical picture of the initial orientation, one should
recognize that when ao = - 7r/2 the interceptor is positioned "dead ahead" of the
target; at ao = + -r/2 the interceptor is "dead astern;" and, at a o = 0 the inter-
ceptor is located at the "nine o 'clock" position relative to the target.

N.3. Limits for the Maneuver

It should be recalled that the initial value for yI is, yI = 0; while the upper
(limit) for yI must be obtained from Eq. (IV.18). In this regard one should
recognize that yI	 ŷ I evaluated at x I /a = 1.0; or, that

lim

^Z	 I )

ylli .r 
0 

I=01 yI
	

2(	 S 1) ( + 1) a i¢/A C/a 1"
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-b
AO- _ yllim

M VT = VT (IV.21)

which is the same as

^, a	
I^
	 1	 )

yI lim ( 2 _ 1) -tan ao + sec 10 (A + 1 tan a0 (IV.20)

taking account of Eq. (IV.19).

IVA. FliLrht Time

At the limit of yI the Interceptor should have successfully collided with
the Target. During the time lapse needed for this maneuver, the Target vehicle
has flown from y  = b to y  = yj 1 im — 

and has done so at the constant speed
VT . Taking these facts into account, it is possible to determine the time required
for this flight operation, as

where yIlim is from Eq. (IV.20). Making the appropriate substitutions and manipu-
lations, accounting for Eq. (IV.10), it is found that Eq. (IV.21) can be recast as

t =	 4a	 1	 +'A+1 tans
°' VT ^^2 _ 1) tan ao + sec ao	 U -	 (IV.22)

Having described the time to complete the pursuit operation, a plot of this
expression (presented as the dimensionless parameter, t m VT /a) is included here
with this time expressed as a function of ao (see Fig. N.2). Because of the
apparent singularities noted in Eq. (IV.22) values for the time have not been
computed fog ao = f 7T/2 and A = 1.0. For the situations depicted on the figures,
limits have been set at 4 > 1.0 and I ao 1 <_ 80 degrees.

t
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Fig. IV.2. Dimensionless time to complete the pursuit maneuver, as a function of initial
orientation (ao), for several values of ^,,.
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Fig. I V.2. (Continued). The dimensionless time for the pursuit maneuver, as a function
of initial positioning (%) when A= 1.05.
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From an inspection of this figure it is evident that over the general range of
lao l <- 60 0 , and at large values of f,, the time to intercept is not largely influenced
by ao . However as la I increases the time required is increased and appears
to grow rapidly as la 9' - ,7 /2. Also, it is seen that the least time requirement
is experienced for some a o less than 0°, and for "moderate" ^R values. It would
seem that as ^k increases the least time occurs nearer to a o = 0 0 and that this
requirement remains relatively fixed over a larger range of a o . As a surmise
to the physical situation, which occurs here, one might suggest that as ao ap-
proaches - 77/2 the interceptor must be expending time in turning about to attain
the final "chase" attitude. Evidentally the better maneuver to be undertaken in
this instance would be an "intercept" rather than a "pursuit."

For the case of ae - + 7T/2, the interceptor must fly a pure chase path; it is
evident from the figure that such an operation is as time consuming (or more so)
as the turn-around operation requirea f or a o - _ 71 /2 .

IV.5 The "Range" Between Vehicles

The distance (rd between the vehicles is usually referred to as the "range."
Actually this is the relative separation distance between vehicles, and is a length
which should be continually decreasing if the maneuver is being conducted in a
satisfactory manner.

y

S(X,Y)^14/	 I
/	 VT

T(t)	
4(LOS)T

rr

I (t)	 a(t)	 _,--IT.
(a

	

'	 ,b)

rro

Io
LtffS ao	

X

Sketch I V.3. Illustrating the "range"
between vehicles; the initial value, rro,
is the length from to to To. A subse-
quent range value, r r , is the line length
from I(t) to TM. Also shown are the
respective angles of inclination, for the
LOS, ao and a(t).
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thus

Xr , 	 2
= 
a 1- — /I + PIr	 a )

(IV.24a)

I;	 '

The initial separation ( r,, is easily described (see the sketch on preceding

page) as

r r 
0 = /(yT - y l )02 (xT - X I )o = a /(b/^a+	 a /(p ITO +

or, in terms of a.,

rr = u sec ao 	(IV.23)o 

since (p, )O
	

tan ao (see Eq. (IV.8)).

Similarly the range (r , ), at any instant during the operation, can be ascer-
tained in a similar manner. That is, one notes that, in general,

r Vr- -(y^^ Y I ) 2 + (0^ XI ) 2 ;

however, from the figure it is seen that

(YT - Yd = PI (a - x,),

wherein p, = p, (x, /a) as indicated by Eq. (IV.17). An alternate form for

Eq. (IV.24a) iy easily shown to be

	

r	 r	
X1	 sec 	 (IV.24b)

	

r	 ro	 a	 sec ao
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Using either of Eqs. (IV.24) it is possible to establish the distance between
the vehicles (the "range") during this flight operation. The controlling variable
in these calculations would be the quantity xi /a which has the range in values,
0 <_ x i /a 5 1.0.

IV.6. Distance Flown During Intercept

Equations (IV.21) and (IV.22) define and describe the time lapse which occurs
during the maneuver of pursuit and collision, per se. As noted in the first of
these expressions, the distance which the target vehicle flies, in time t m , is 0c-;
however, as seen in Eq. (IV.20) this quantity is dependent on a° (through yI ).
That is,	 i im

Lc- =V
T t=	

a r	 1	 +'k + 1 tan a°
m	 Ltana°+Seca° 

U.

- + sin a

	

0o- = r	 °	 (IV.25)
r°	

M 
1

accounting for Eq. (IV.23).

The following figure (Fig. IV.3) plots Eq. (IV.25) for the range in values of a° ,

_2<a°<+2,

and for several values of k (from slightly greater than 1.0 through 2.5). As noted
on the graph the "head-on" case ( a° = - 7/2) shows a rather small dependence
on 4, as should be expected. Conversely the pure "chase" situation ( a° = + 7T/2)

is largely dependent on the value of 4 assumed for es.ch  path.

When the chase vehicle has its velocity vector (V I ) orthogonal to the target's
vector (VT ), at the initial point, the distance traveled by the Target is slight more
than one-half of the distance required for the pure chase case (based on a same
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Fig. IV.3. Distance flown by the target during the pursu it, as a function of ao, for
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initial separation, r r o). It is also interesting to note that so long as the initial
direction for tha interceptor lies between the "head-on" u^4se ( ao = - 77/2) and the
orthogonal orientation (a = 0), the distance that the Target flies is relatively
small compared to the situation when ao is between 0 and + 77/2. Evidentally,
this latter path, which the pursuing vehicle flies, is basically a "turn-around"
trajectory with the final segment being a simple 'chase" maneuver.

IV.7. The Range-Rate Expression

As a matbfsmatical operation, the range-rate expression could be ascertained
by differentiating Eq. (IV.24); however this leads to some rather cumbersome
algebraic manipulations.

Instead of proceeding in this straight forward fashion a different approach
will be undertaken here; one which relies on a direct evaluation of the relative
speed components.

1,1.7a. The Relative Velocity

From the accompanying sketch it is a rident that the range, or relative posi-
tion, vector (r r ) can be described as follows:

(1) at t = to,

r= r	 - r ;
r^	 TD	 IO

(2) for a general value of t,

r  = r  - r  .

Consequently the ^,elocity relationship is immediately noted to be

Vr = VT - VI

wherein the

dry
V^ = dt (j = T, I, r).
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y I VT 1-VT  Qy	
IVT
	

er

4

0

Sketch IVA Illustrating quantities needed to evaluate the
relative speeds, thus the range rate (i r). The origin, "0", is
inertial (in character); the vectors f. G = 1, T) position the
Interceptor and Target during the fight operation. Quanti-
ties ( )0 refer to initial values. The vectors O r, ea, eZ)
form a unit orthogonal traid at the interceptor. (Note that
6z = er X ea.)

From kinematics, and definition, one can write

_ 0 dr
Vr = dt = rr er + rr er

wherein

r r
er =	 ,

IrrI

and

er = Wr x er

with a;r describing the rate of turning of the triad (er , ,,, eZ ) at I.
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It should be evident that for the planar motion considered here

m =a.e
r	 s

and, therefore,

er = a (eZ x er ) = a ea .

As a consequence of this evaluation the relative velocity vector (V r ) can be
expressed as,

Vr = i' r er + r r a ea = Vr - VI ,	 (IV•26)

taking account of the mathematical statements above.

IV.7b. The Speed Components

In order to define the radial and transverse components of the relative velocity
one can proceed in the following manner (referring to the accompanying sketch):

Y

/a

	 —
er

/ Zae	 T \ _ a

/—	 I 
vTO

VI / TO

I	 a

VIO	
f

ao	
X

Io	 .

Sketch IV.5. Describing the kinematics of the pursuit prob-
lem, especially those related to the relative motion.
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(a) The radial component (T r ) is,

ir^ 
Veer =VT • e r -VI • er =VT sina - VI.

(b) The transverse component ( r r a) is,

rr ct^Vr • ea =VT • eQ -VI ea VT cos a.

Recalling that the speed ratio 4 '^-' VI/VT , then the above relations are written as

r r =VT (sin a—k),

and

rr(I=VT cos a.	 (IV.27)

Recognizing that the slope of the pursuit curve (p,) is

pl = tan a

then

1	 pI
Cosa-	 and sina -	 ,

vl +p2	 3 1 +pI

where pI is defined by Eq. (IV.17); and, alternate forms for Eq. (IV.27) are,

j  = VT(71:pI - ^t ,

and

r 	
V

a. = 	 T	 (IV.28)
1/1—+ I
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IV.8. The Range-Rate

The first of the two expressions above (or the corresponding form in Eq. (T"7.27))
is the "range-rate" for the interceptor during its pursuit of the target. From
the physics of the problem it should be apparent that j r < 0 for ^ successful
operation; hence it would be necessary (here) that

PI
>	 or, 4 > sin a.

1 +P

This requirement is not restrictive since I s i n al -< 1.0; also, a premise
for the entire pursuit problem has been that k > 1.0.

Equations (IV.28) and (IV.24) describe two of the more useful quantities
related to a flight operation - namely, the range-rate and the range of the
interceptor-target combination. Figure (IV.4) plots these two quantities against
one another, for several values of 4 and for selected initial positioning of the
vehicles (ao ). As an indication of the limit values which these two expressions
achieve, when x i - 0, one should note that rrlim	 0 and iriim	 VT (1 - f.).
These limits are located on the following graphs using dashed line segments
to complete the curves.

The accompanying plots are indicative of a rather profound influence (for a
given value of A) attributed to the varying of ao . However, a look at Eq. (IV.28)
will verify that the limit value of the (dimensionless) range-rate is uninfluenced
by This variable. Also, it is not immediately evident that as ao increases the
variability of the range rate decreases (during the overall maneuver). The plot
of these quantities, for ao = 75 0 , shows the very nearly linear relationship
between range and range-rate. Of course, as ao -. 7T/2 this should not be
unexpected.

When one reads the following figures it should be kept in mind that r r /a
attains its maximum value at t = 0, and diminishes to r r /a = 0 at the termination
of the maneuver.

IV.9. Turning Rate for the interceptor

The rate at which the Interceptor's flight-path tangent must rotate during the
pursuit of the Target (T) can be ascertained from the second expression in
Eq. (IV.28). Thus the turning rate is,
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Fig. I VA(a). Correlation of range-rate (ir/VT) to rang- (rr/a) during the purvjit maneuver,
for ao - The influence of A is illustrated by means of the several curves shown on
this plot. It should be recognized that the lower limit of ir/VT (a r./a - 0) is 0 - 4).
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Fig. I VA(b). Correlation of range-rate (ir/VT) to range (rr/a) during the pursuit maneuver.
for ao = -300 . The influence of h is illustrated by means of the several curves shown on
this plot. It should be recognized that the lower limit of it/VT (as rr/a - 0) is 0 -A).
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Fig. I VA(C). Correlation of range-rate (i rNT ) to range (rr/a) during the pursuit maneuver,
for ap - 0°. The influence of 4 is illustrated by means of the several curves shown on
this plot. It should be recognized that the lower limit of ir/VT (as rr/a - 0) is 0 -;0-
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VT 	 VT	 (N.29)a=	 _

r r 3 i { pi a (I - ei^ (1 + pI^

accounting for Eq. (IV.24); and, wherein p I would be obtained from Eq. (IV.17).
Once more it is noted that the controlling variable is x I /a.

In addition to describing how the slope angle (a) varies during the flight, a
is a parameter w7eful in determining the maneuverability requirements which
will be placed on the interceptor (1).

Fig. IV.5, which follows as several graphs, presents the turning rate and
the lateral acceleration*, as dimensionless quantities, expressed in terms of
the dimensionless range for the two vehicles. On these graphs the several
values of 4 serve as parameters, while each figure is for a given a o . It should
be evident that the singularities apparent to these dimensionless expressions do
not allow one to conveniently extend the results completely to x I /a = 1.0 (the
position of intercept by the pursuit craft). Of course these limits may be as-
certained by a manipulation of the governing equations.

It does not seem likely, at first glance, that there is a siml ie direct relation-
ship between the two quantities in question here ( a and Aa). 17-%, by a simple
manipulation one can show that

as _
A. a _	 1

VT = ^c VT	 (I - X I) rI + 
pI

1	 a/ \

wherein pI describes the local tangent (to the interceptor 's path) and x I /a de-
scribes the pursuit 's location as it moves along its trajectory.

A glance at the graphs included here will verify that the initial phases of
the pursuit operation may or may not be too stringent; and that the interceptor
could fly a rather "easy" path here. Yet, as the terminal phase of the maneuver
is approached the pursuing vehicle may have to undergo some rather difficult
gyrations, and may have to overcome comparatively large lateral forces, if the
operation is to continue as desired.

` The lateral acceleration is developed in the next section (IV.10); only the connecting relationship
between these parameters (nondimensionalized) is of consequence here.
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As one might expect there will be a fair to beavv influence exerted by the
value of 4 (which is being experienced) and by the a o for the flight operation.
Generally, the higher values of ft lead to the most difficult operations in terms
of turning rates, and lateral accelerations. As the pure chase maneuver is
approached ( ao = + 7T/2) the interceptor is relieved of having to engage in the
more difficult operational aspects of this flight type, provided 4 S 2.0. Here, as

increases (4 > 2.0) the equations suggest a rather sharp rise in a and A,,.
Conversely, one could argue that as k becomes small, the relative (positional)
accelerations quickly begin to vanish and the interceptor will be engaged in an
almost pure chase operation.

IV.10. Interceptor Acceleration

In the foregoing section it was found that the interceptor 's velocity vector
underwent a continual rotation (a) which was dependent on the inclination (a) and
the range (or separation distance) — see Eq. (IV.27).

Since the velocity vector ( VT) has a fixed magnitude, then it can be shown
that the only (kinematic) acceleration for the interceptor is one having a trans-
verse component (normal to VI ).

Since the velocity vector for the interceptor can be written as

VI = VI er

then it follows that the (kinematic) acceleration can be described by,

dVI	_
A - dt	 7'I er + VI er

since VI i^ constant; thus

A = VI er = VI (W-r X er )

where, as before, z3r = a e= . As a consequence the kinematic acceleration is
found to be

A=VIae.;	 (IV.30)

which is a vector normal to V I , having only the transverse component (A,).
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10

Sketch IVA To aid in the evaluation of Interceptor's acceleration.
Shown is a part of the unit triad attached to the interceptor — this is
the moving tried 16r, ia, mil; 6, is normal to the plane of motion
(shown); it is aligned with V i , instantaneously.

That is,

A  = VI a,

which, after incorporation Eq. (IV.27), can be written as

	

4V? 	 a
A. =	 I	 (IV.31a)

r r

taking account of the definition for k, and substituting for a.

,.+ To

X
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Expressing r r, the "range," from Eq. (IV.24a) then

;. Vi	 VT2

A. =	 _	
r

XXa (1 a J (I+ PI) rrc \1 - a,) 1 pt

(IV.31b)

using Eq. (IV.23); recall that rro is the initial "range." (Note: a plot, using
Eq. (IV.31b), is included here on Fig. IV.5, as noted earlier. Of course, the
acceleration is graphed in dimensionless form, as was the turning rate.)

In the interest of recasting the description of the acceleration this quantity
is rewritten below, after noting that r r can be alternately expressed as

sec a sec ao + tan ao
rr - rro (sec	 ao) ( sec a. + tan a)

In this regard Eq. (IV.31a) can oe rewritten into the form,

A - 
PVT (sec ao)1	

((cos a)2' (1 + sin a)]	 (IV.32)
r r o (1 + sin aoi

wherein the range on a is:

_i<cr< +2*

In the interest of gathering information regarding this acceleration, a natural
question to ask is cne concerning the extremal(s) for this .quantity. Thus, after
taking the derivative of Eq. (IV.32) (wrt a) the condition for an extremal to exist
is found to be,

sin a= 
Z .
	 (IV.33)

67



r

Quite naturally this suggests some constraint on A (necessarily, now,
1 S A < 2 for the extremals). This does not imply that A > 2.0, but does suggest
the existing conditions for a finite maximum acceleration.

The condition noted in Eq. (IV.33) does not restrict the initial angle (a o); this
parameter, in the expression for acceleration, is free in its choice. Physically,
however, if ao > a (= siri 1 4/2), then it should be apparent that the vehicle
will not experience the maximum acceleration (corresponding to its value of 4).
Also, it should be evident to the reader that a is an increasing quantity for the
intercepting pursuit problem.

Another interesting fact, regarding the normal acceleration, becomes apparent
if one looks at the quantity inside the squared brackets in Eq. (IV.32). Noting that
when a = 0 (that is, when the interceptor (1) has its velocity vector directed
orthogonal to the velocity vector for the target (T)) this quantity becomes unity
regardless of the value for (A). Hence, for any launch where a o < 0, the
acceleration experienced by the vehicle (as it passes through a = 0) is heavily
dependent on the initial conditions and the value of A (provided, of course, 1 <
f^t -< 2.0).	 T

One last remark regarding this acceleration: When the angle of inclination
( a) is at its lowest limit (- 7r/2), then in order for the vehicle to experience any
acceleration it is necessary that ao = - 77/2 (also)). As a consequence, the
transverse acceleration given to the vehicle at this inclination angle is found to
be zero. Of course, this is a natural consequence arising from the orientation
of the two vehicles relative to each other.

W.U. A Figure of Merit

A "Figure of Merit" for the pursuit problem will be defined in terms of the
interceptor's ability to affect a collision, in comparison to a collision by means
of a "direct 'ntercept." It is easy to visualize that the direct intercept, being
• straight line path, will yield a smallest time for a collision to occur based on
• prescribed set of initial values and a given value of 4. As a corresponding
situation, for the same values of 4 and initial range, the pursuit path will take
longer to accomplish the collision; how much longer this mode of operation re-
quires will be measured by the figure of merit. For those special cases wherein
the times to intercept are identical, the figure of merit is unity; the larger We
discrepancy between the two methods the greater the value for the figure of merit.
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In establishing this quantity, the time of reference — that for a direct
intercept — has been obtained previously as Eq. (M.11); that is, the time to inter-
cept (directly) is,

rr°

VT [ 2-S1n2 6T +C0SOT]

Now, for this expression it can be shown that

BT = 22+ao

(See the appropriate sketches); hence, this time, expressed in terms of a o, is

r
t. =	 r°	 (IV.34)

VT [A2 - C o a2 a° - sin a°]

with r being the initial "range", or separation distance, between I and T.r
0

Now, defining the figure of merit as M 0 tm A , then

^ +sin a
M =	 ° ( 2 - cost a° - sin ao )	 (IV.35)

f2 -1

after manipulation, and after using Eq. (IV.23), (IV .22), and (IV.34). The range of
a° applicable here is, of course,

2 < a. V

this takes into account all Mi ght paths from the direct "head-on" collision course
to the simpler "chase" of the target (T) by the interceptor M.
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From a study of Eq. (IV .35) one can deduce that M -- 1.0 as a o -o^ - 7T/2, and
as ao -0 + 77/2, regardless of the value givento k( ,k > 1.0). At these limit values of
ao the pursuit problem reduces to the corresponding intercept case.

Also, one can see that as A - 1.0 the figure of merit (M) becomes quite large
(in the vicinity of ao = 0) indicating a very substantial increment in the time
needed to effect an intercept by the pursuit maneuver. Actually there is no finite
solution for M when = 1.0.

Also, one notes that for ao - -300 the values of M are comparatively large
for values of 4 not too different from unity. This would indicate that the Figure
of Merit peaks (or, is maximized) in the region near to ao - -300 ; and as
increases, from this level, the values for M decrease. Apparently the lowest
values of M occur at the extreme limits of ao (as indicated above).

It is equally evident that as A becomes large (say A - 10, or greater) the
value for M does not vary much from unity. This would indicate that the pursuit
trajectories and the direct intercept paths do not differ, substantially, in geometric
form.

As an aid toward understanding these remarks, and to gather other informa-
tion concerning these two modes for bringing about a collision, a plot of Eq.
(IV.35) has been prepared and is presented on Fig. IV.6, on following page. The
various features of such a graph (as noted above) are immediately evident; and,
as mentioned earlier, the computations were terminated at la (,I = 800 in order
to avoid the singularity which appears at the limit angle ( s). This cut-off does
not produce any difficulty since it is easy to recognize that M 1.0 as gao l - a /2.

IV.12. Line of Sight

One means of describing the location of one vehicle relative to the other is by
a "line-of-sight" angle. In the pursuit problem the target is always directly
ahead of the interceptor; however, the position of the interceptor relative to the
target is a variable. Of course, as noted earlier, the range of variation for this
line-of-sight angle can be described, a priori. What is of interest here is the
history of this quantity as the pursuit maneuver progresses toward the final
collision.

As a definition the line-of-sight angle, measured from (say) the direction of
VT , can be expressed as

(LOS)T = 32 - a,	 (IV.35)
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where a is described from pI in Eq. (IV.17). It is quite apparent that initially
(LOS)T = 3 7r/2 - ao , and that the terminal value is 4 (LOS) = 37r/2 - (7n/2)

hi7r, wch is equivalent to one of the terminal requirements for the pursuit
maneuver. Necessarily the history of this angle can be obtained directly from
the variability of pi which, in turn, depends explicitly on x I /a, the independent
variable for this study.

Figure IV.7 have been prepared to illustrate the behavior of the line-of-sight
angle, during this flight mode, and is presanted as a function of a. and A.
Generally speaking this angle has its most regular variation for the lower values
of k (considering the several a o conditions selected here). As 4 increases the
"elbow" in the curves becomes more pronounced - especially for the lowest
values of ao - and, would approach a no-variation condition as ao - 7r /2. For
small 4 and large ao (but < 77/2) this linearity is approached by the (LOS).r.
It is readily reckoned that as 4 becomes large (^k > 3.0), and/or ao - 7T/2,
the graphing of 4 (LOS) T would approach the condition where the graph could be
composed of two straight lines, orthogonal to one another. The first segment
would appear as a horizontal line on the figure, and the last segment would be a
vertical (parallel to the ordinate).

V. THE PURSUIT PROBLEM FOR A TARGET ON A CIRCULAR PATH

V .I. Introduction

A variation of the pursuit prcblems investigated in the previous sections
would be one which considers the t-,,rget vehicle to be traveling along a circular
path; thus, the study to be conducted here is aimed again at defining a trajectory
for the pursuit particle.

Remembering that the pursuing interceptor is always "looking" at the target,
then the tangent to its flight path continually and instantaneously points to the
(known) position of the target.

Since the circular path is predefined, then it is apparent that the position
angle for the target can serve, quite adequately, as an independent variable in
the solution. Thus, with suitable definitions, one should be able to formulate
and, in principle, solve for the interceptor's chase path during the entire maneu-
ver. Of course, as might be expected, this formulation becomes non-linear and
is somewhat complicated in form - much too much so for an analytic evaluation.
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V.2. General Description

It will be evident, shortly, that the geometry of this investigation could be
viewed as the pursuit of an orbiting vehicle by a second craft which has the
required maneuvering capability needed to negotiate the chase path. Since this
problem is essentially a kinematic study the assumption of a central force field
in this case would be secondary, and of consequence only when defining the
targeV3 velocity. Also, it should be apparent that this problem has other aero-
space applications, it could serve equally well to describe the path of a seeker
missile as it cha3es a target along a pursuit course.

In the following sketch a general, instantaneous situa tion is depicted. The
target (T) is me ving along its circular trajectory (of radius a); its position is
located, relative to an inertial x-axis, by the position angle, B T . The interceptor
(I) flies along the chase path, which is to be determined, at an assumed fixed
speed (V ) which is some multiple (4) of the 1 arget's speed. Thus, once again
the speed ratio is introduced and defined as

V
4 0 I .	 (V-1)

VT

y

V_

Sketch V.I. Show;;,g the basic geometry of the pursuit prob-
lem for a target flying along a circular path, o. The x, y axes
are inertial; 0 is the origin, and the r i , 9 1 are plane polar
coordinates.
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Recognizing that the time rate of the displacement along these two trajectories
defines each vehicle's speed, then VT -̂ dc,/dt and VI 0- ds/dt, where a-(x, y)
= 0 and s (x, y) = 0 denote the two space paths. In order to be fully cognizant
of the specifics required here an added sketch (V.2), with the needed detail, is
presented below.

W

Sketch V.2. Defining the specific geometry of the pursuit
problem. Shown here are vectors and angles necessary for a
more complete description.

•	 V.3. A Detailed Description

As an aid to the proper description of the geometry for this problem, it is
necessary to introduce several quantities not shown in the diagram on preceding
page (Sketch V.1). There, the basic geometric requirements were aluded to; in
the sketch above the more detailed geometries are defined.
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Several vectors needed in the problem's formulation are shown on ibis
sketch. In order to describe these vectors best, use will be made of the various
lettered positions as a means of denoting the vector lengths. Also, the letters
are arranged, under an overscore, in an order which signifies the "from" and
"to" of each vector. For instance the position vector rT may be "defined" as

— A --
rT --

denoting a vector originating at 110" and terminating at "T", as shown. Following
this scheme one sees on the figure the following vectors:

Name	 Notation	 Description

Position vector for the interceptor (1)	 rI	 OI

Position vector of the geometry point, P 	 rp	 OP

Position vector of the geometry point, Q	 r	 OQ

Line of sight vector (from I to T) 	 p	 IT

Vector locating T from P	 PT

Vector locating Q from I	 r1Q	 IQ

It will be assumed herein that the problem is confined to a single given
plane of motion (x, y); thus the inertial reference triad will be (e 	 eZ ) -
where e 

Z 
^-, eX x e ,. following the conventional right hand rule.- 

The several angles shown on the sketch on preceding page are positive valued,
and are necessary to the problem's formulation and solution. In addition, it is
essential to establish, as definitions, certain directions, lengths, etc. as noted
below.

For a description of the vector - one needs to: first, locate point P; second,
descrioe the line length OQ, and last to ascertain a direction for r . In this
regard, the point P is found by extending the vector p (forward or backward, as
needed) and drawing a line through O normal to p; the intersection of these two
lines locates P. The line OQ will be given a length' s which is A times larger
than the circular radius, a; that is,

*The reasoning behind this selection will be evident in a subsequent development.
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OQ 8=',a .

For the sake of consistency in notation the vector cQ will be defined as follows,

^e:xP

TQ	 IP I (OQ)

This is a vector having a fixed length (Aa = OQ), but a direction which varies
according to the relative positions of T and I; its direction is obtained from
the vector multiplication, (ez x p )/ 1;51

The several angles which are significant here are described in the following
table, and according to the operations noted there:

Description of the Angle	 Operation 	Notation

Angular location of r
T 

relative	 1 [ e • F•

to the x-axis	
17 T I z

Angular location of rQ relative	 1 [ e , r
to the x-axis*	 OQ x Q

Angular location of p measured	 1	 Cr, , P j
from 7 	 I rT I p l

Angular location of p measured	 1 [ e .—IP,from the x-axis	 ^^

Angular location of rQ relative	 1	 [ _ • r
Q ]to TIQ	 IrIQI OQ 	IQ 

and, from a study of the sketch: w - y = BT.

*A positive angle is shown; this particular representation is not contrary to vector descriptions.
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The reference angle, ©T , can be obtained by means of the integral,

t

BT=6T0 +e f

o 
dt,

since B = VI /a (a constant); 0T 
0 
corresponds to t = 0.

Two vectors, PI and _PQ, have a particular use in this study; these are de-
fined from the sketch as

PI = - -p,

PQ = rQ -rp;

also, note that

IPII=I0	 PI=IIPI - a Cos Y1,

and

IPQI = 16Q- rp I ° 14a-a sin yI.

In order to demonstrate that the above definitions and descriptions are con-
sistent, several general and specific cases have been investigated; three added
sketches are shown on following pages for the purpose of more fully illustrating
the generalities mentioned earlier. Note that the interceptor (I) may fly paths
which lie either :--side or outside of the target circle (radius a).

V.4. Formulation of the Pursuit Problem

The last sketch shcW^i on cage 84, is descriptive of the displacements which
occur during a time lapse (8 t); herein the target and interceptor will traverse
path segments 8- and 8s, respectively. According to Eq. (V.1), and accounting
for the definitions noted in the foregoing sections, it is seen that

8s = k8c- = ka 8eT,	 (V.2a)
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Y

Sketch V.3. Showing I outside of circle (a); O T > 91.

Sketch VA Showing I inside the circle (a); 8 1 > BT.

83



X

2GET PATH
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X

s

V ^

Sketch V.5. Showing I inside the circle (a):
6T < 6 1 . (Compare this to the previous
sketch to see the influence of d, > 6T).

Sketch V.6. Showing the basic geometry necessary for the formulation
of the circular pursuit problem.
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and

or

(!8y 

z
8s= 8 xI	 1+ 	 xI	

(V.2a)
I

wherein

	

8xI_8szosw,	
V

	

syI — 8s sin w.	 (V.2b)

As a consequence of the above statements, and for the limit as s t -• 0 (also
selecting the positive radical),

ds = 
11 + tan 2 = sec w;	 (V.3a)

dxI

or

ds	 dx

	

dB = 
ka - (sec co) 

dBI 	
(V.3b*)

T	 T

V.S. Cartesian Coordinate Representation, and the Gcverning Equations

With reference to the (inertial) cartesian axes it is noted that the points T
and I are located by;

XT = 1 7T
 I Cos B I = a COs BI

YT = I YT I sin BT = a sin BT ;	 (V.4a)

xI = x1 + IT I sin (27T - w -2) = XT - IN I cos w,	 (V.4b)

*This is the length assigned to the vector OQ (shown previously).
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x

V

Sketch V.7. Illustrating position geometry required to
formulate this problem.

YI =YT -  171 since,

respectively.

In addition, it should be apparent that:

I CT I = I T i cos cp' _ ^— a cos yl;	 (`.5)

IFp I = IrT1 sin Y' = la sin YI;

and, as a check on these lengths, recall that

'TT ' = a =	 I(T, 2 + 1rpi,

86



From Eq. (V.2) it is evident that

dx i sin w - dy I cos co = 0,

whereas, from Eq. (VA),

dx i = - (a sin OT ) dOT +psinwdw- (co s co) dp,

dy I =(a Cos OT ) d9T -p Cos wdw- (sin co) dp;

hence, it is easy to demonstrate that

dx i s i n w - dy I co s w = 0 = - a co s (co - 9T ) dBT + pdw

or

p des =a cosy,	 (V.6)
dBT

since (co- 8T ) ° cp

In addition, from Eq. (V.2), one notes that

ds = dx i cos w + dy I sin w,

or

ds = kadBT =a sin (w_0T ) - dp = a sines- dp,

leading directly to

dp +	 asincp.	 (V.7)
deT	

v.

Equations (V.6) and (V.7) describe the behavior of p and w in terms of the
most convenient independent variable (0T); unfortunately these quantities are
expressed in terms of still another variable, y. Consequently, in order to obtain
a system of equations which can be solved (at least in principle) to yield the
pursuing interceptor's path, these expressions must be further manipulated and
alter9d.
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Differentiating Eq. (V.6) provides the second order relation,

2
pd +d d+ aSinya =0,	 (V.8)

d BTz 	T T	 T

which can be altered by including Eq. (V.7) and using the relation _ y + 0T 
(as

an aid in correlating the variables, w, y and BT ) to obtain,

dw = 1 + dy	 (V.9)
dBT	dBT

Also, Eq. (V.6), per se, can be introduced to eliminate the variant p fro-a Eq.
(V.8). The end result of these operations leads directly to

aG
2 cos Y+ ('eTl2(2 sin cp - ^) - deT sin cp = 0.	 (V.10)

	

T 	 l

Eq. V.10) can be solved to obtain w = w(BT ); or it may be altered, again, to
describe a governing relation for y. To this end use Eq. (V.9), noting that

d 2 _d'Y.
d BT d BT

then it is easy to show that this result is,

d© cos cp+2(d T12 (s inep-2l +3d r 
(

inS3(sin0. (V.11)
T	 `	 l	 \\l 	 )

Eq. (V.11) suggests an alternate scheme for obtaining one of the unknowns
found in w = cp + BT — hence either of the above expre. dons can be employed
during the formal mathematical solution process.
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There remains the need to describe p = p (0 T ) in order to complete a descrip-
tion of the interceptor's trajectory. Such an expression may be obtained by
differentiating Eq. (V.7), and using Eqs (V.6) and (V.9) to reduce the variable
dependencies. After performing these operations it is found that,

Lp -a cosy ra cos y _ 11 = 0.	 (V.12a)
day T	 `	 /l

However, rather than use Eq. (V.12a) A somewhat more convenient form can be
had by substituting for the trigonometric terms from Eq. (V.7). The resultant
obtained from this substitution is,

P
 de

l + P a2 - 
C deT + Via) z - [a2 - Cd9T + 

fia) 

J = 
0.	 (V.12b)

9T2

 Eq. (V.12), and (V.10) or (V.11), form a set which may be solved to
describe a flight path for the pursuit problem being studied here. Necessarily
the finding of the path, per se, will have to be performed by numerical means;
and most likely with the aid of a computer, due to the essential non-linearity
of these governing expressions. Unfortunately the basic character of these
differential equations does not lend to an easy geometric representation of them;
consequently the results will most conveniently be viewed simply as the numerical
solutions produced for whatever case is being investigated.

V.6. Solution Procedure

In order to "start" the solution procedure one needs to know, or specify,
a set of initial conditions. Those quantities needed are po, BTO (and BT),
yo (or wo ), (dp/dBT ) O and (say) (dy/d9T ) O . The geometric initial values may
be simply stated as _a riori information; however, the derivative terms are
found by using the same (a priori) information, with other known quantities, plus
the appropriate mathematical statements. For instance, Eq. (V.7) can be used
to obtain

	

F
Idp\ = a (sin yo - );	 (V.13a)
dIIT)O

89



while Eqs. (V.9) and (V.6) are employed to give

dy ^

0 

a cos cpo - pof̀ 	 (V.13b)
d 9T	 p0

which, incidentally, is equivalent to writing a ratio of the initial lengths,

/d^

	 (IP)o	
(V.13c)

/I\dOT o	 po

where the length (IP) o is defined as,

(IP)o 0= I IPI o = fpo - co l .

(S3e Sketch V.7) .

V.7. Graphical Results

A graphical represemation of the results obtained from this investigation
is most conveniently presented as a trace of the interceptor's path of motion,
along with that of the target. Unfortunately, the solutions described from the
section above are not obtained in terms of the most desired variables. Rather
than present the path- as abstractions (say plots of p = p (y)), a more revealing
situation would be to show the actual trajectories pladed in terms of the
cartesian coordinates for the two vehicles during flight. Consequently, Eq. (71.4)
is recommended for use in reproducing these traces. As a convenience, these
expressions are noted below:

(1) the path of the target can be described from

xT=acos9T, yT =a sin 9T	 (V.14a)

and,

(2) the path of the interceptor from,
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xI = xT - p cos w = a cos 8T - p cos (CA + &T),

y,=yT-psinw=a sin BT -psin(Y+BT ),	 (V.14b)

wherein the independent variable, 6 T , is obtained from

f6T = 6T+ eT 
	

dt,	 (V.14C)
0 

s1llCe eT = `•TAP (a constant).

As an nid to understanding and illustrating the results obtained here, several
cases will. be presented from a more complete collection of material gathered
during the study of this overall problem. Also, included with each trace of the
two paths of motion there will be accompanying plots of the lateral acceleration
and the range-rate and the range, in dimensionless form, for the pursuit vehicle.
These latter graphs are presented as functions of the independent variable, BT

(for convenience of reference).

It was mentioned that all graphs are presented in terms of dimensionless
quantities. The purpose in doing so is to be able to represent a much larger
family of results, and to do this without having to consider the attendant larger
number of variables encountered in dimensional representations. Because of
the uniformity of the non-dimensional exp .-essions, this scheme is not only de-
sirable but contributes to the concisenes.Q of results.

Generally for the fi_ures shown here, lengths are nondimensionalized by
placing them in ratio to "a" (the target path's radius); speeds are expressed in
ratio to VT (the target's speed); and, the lateral acceleration (A I ) is ratioed to
the centrifugal acceleration for the target vehicle (VT/a). For each set of graphs
the initial values for that case are noted on the plot indicating the two trajectories;
each of the associated plots will have other pertinent notations inscribed on them
to aid in comparing cases and to illustrate the influence of initial values on the
problem.

V.8. Dimensionless Representations

For presenting try results obtained (here) it was suggested that transformations
of the variables, leading to dimensionless quantities, should be used with the plot
routines.
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and

67T ^ IT Cos e a

YT
77T =	 sin BT;

a
(V.19)

For such a representation let the variable p be replaced by X , where

X n p/a;	 (V.15)

then Eq. (V.12b) can be rewritten as

X del + X 1 _ ( d>e + ^Z1Z 	1 _ (a T + ^^)2]=0.(V.16)

T

Next, the initial quantity (dp/dOT ) o is transformed to

Ca(
9Tlo =sin yo - ;	 (V.1

and, similarly, Eq. (V.13b) is replaced by

C

dy	 Cos Yo - Xo	
(V.18)dOT)o	 Xa

For the graphical results, per se, the cartesian variables will be non-
dimensionalized, also, as noted below (refer to Eqs. (V.14)): that is, defining

^j = a =eT -XCOS CJ= COS BT -XCOS (Y+eT),
a
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TI^ a
i=77

T -X s i nw=sin 9T -X sin ( c)+ BT),	 (V.20)

then these last expressions will ne used for the presentation of trajectories flown
by the target and the interceptor, respectively.

V.9. The Acceleration, or A Control Requirement

The interceptor, during its pursuit operation, may have to undertake some
rather rigorous maneuvers, theoretically. Whether or not the vehicle can suc-
cessfully perform these has not been a constraint imposed on this problem. In
view of the possible restrictions which could arise some insight into (say) the
accelerations which the interceptor might encounter would be illuminating aTid

helpful to the investigator.

In order to define the interceptor's accelerations it is advantageous to intro-
duce a moving triad, attached to the interceptor, designated as the triad (eP , e(

eZ ). Here the unit vectors are described as:

e , parallel to the relative position vector, p;
P

e , normal to the plane of motion (e = i x e 
z	 z	 x	 y

and

e., normal to e P : thus, ew = eZ x e P ; (Note, say, sketch V.7).

Recognizing that the interceptor's velocity vector can be expressed as

(V.21)VI = VI eP , (VI	 a constant),

then the acceleration vector may be written as

_ dVI
AI = dtt = V eP + VIeP,

wherein V I = 0, and

e  = SZ x eP .
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Here Q is the rotational-rate vector describing the triad's angular motion. For
this problem, S, ^7'	 e Z , thus it follows that

A I = VI cw e^	 (V.22)

which states that there is a transverse acceleration (only); or, that this is a
requirement which must be met by the maneuvering capability of the intercept
vehicle in a realistic case.

Making substitutions from the analysis section - recalling the definitions
for 9T , 4, and du)MOT - it is easy to show that

$iVT cos cp
AI =

	

	 (V.23)
p

where p, y axa functions of BT , while 4 and VT are preselected constants.

This quantity could very well be viewed as a constrit imposed on whatever
vehicle is being represented here. As a convenience in understanding the be-
havior of this term, as the pursuit maneuver progresses, it is included among
the several graphic presentations appended to this section.

V.10. The Time for the Pursuit Maneuver

The time required to complete the pursuit maneuver is readily calculated
from a knowledge of the target vehicle's path. Since this particle moves at a
fixed speed along a given (fixed geometry) path, then it is evident that when the
total arc (Ao-) is known, the time of the motion is obtained from

	

a(O	 ©o )At = nAO_ =	f -	 (V.24)
VT	 VT

where a is the radius of the target's path, and 0, (i = 0, f) denotes the angular
position of the target initially (( ) o ) and finally (( ) f ). It is obvious that this is
the time of flight for the interceptor, as well, according to the definition of the
pursuit operation.
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Since this is an almost trivial resultant, there is no need to present any
results in tabular and/.,- graphic form; simple analytic answers may be obtained
from Eq. (V.24), directly.

VAL Path Length for the Pursuit Maneuver

Similar to the case discussed above, a determination of path length for this
operation is actually of minor consequence. In view of the basic assumptions
made for this maneuver, the path length for the target is known — at the com-
pletion of the problem. That is, with Ao- the path length for the target, then

	

(^c_) TOT - a (ef - 6 i ).	 (V.25)

Also, the definition, A ^ VI /VT infers that

ds=ado-

where s ^ path of the pursuit vehicle; therefore,

	

( 'n' S)TOT = 'k(^Q)TOV	
(V.26)

thus the length of this trajectory is known, also.

Needless to say the presentation of this result will result in very little ad-
ditional information; hence this will not be undertaken here.

V.12. Range and Range-Rate

Two of the primary measurable quantities in the pursuit (and intercept)
problem are the range (p) and range-rate (p) for the vehicles. Normally this
information is obtained from (say) on-board radar systems, and is used in
the navigational and guidance logic needed by the maneuvering vehicle.

The range (p) is obtained from the solution of Eq. (V.12b), as a part of the
general solution, while the range rate ( p) must be acquired from (V.'); that is,
this quantity is acquired from,

dp= 
dp 

deT= - a(4— sin c^)BT;
dt deT dt
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which, can be rewritten as

p = VT (s in CP - A),	 (V.27)

implying that p = p (BT ) through Y = Y (BT)

These two quantities are also included in the graphical representations
appended to this saction. Each trajectory represented on the figures will have,
accompanying it, one plot for the dimensionless range (p /a) variation, and one
for the dimensionless range-rate (p/VT ), both as functions of the position angle
(9T ).

Rather than chance being too repetitious in the discussions of each plot,
some general comments are offered as a beginning. These are accompanied
with the suggestion that one should look at the several different graphs in order
to gain a better insight into the behavior of these quantities for the various cases
preser-ted.

As one expects the range is a continually decreasing function of time (or &T),
being almost linear in many cases, but normally having some non-linearity.
Actually this parameter is not the most interesting of those considered in the full
investigation, and warrents very little general discussion.

The range-rate is the more fascinating topic to discuss. It is evident (here)
that this dimensionless parameter can undergo rather large excursions during a
given pursuit operation; and, it appears that, categorically, the cases have simi-
lar characteristics as shown on these plots. Normally, those cases which are not
close to a pure chase-flight type are those which exhibit the largest range-rate
changes. And, frequently, those paths which have a larger ^? value are also those
which give the more variable range-rates.

V.13. General Remarks from Observations of the Graphs

Lateral accelerations are noted to be largest, generally, for those cases
which initiate as a head-on (or near head-on) configuration. When the approach
to pursuit is from ahead, and ^ is large, the lateral accelerations area so large.
To some degree of expectation, those operations which originate from beside
and close to the target, even for small k values, also under go relatively elevated
levels of lateral acceleration. It is apparent that the more 1 -head-on" of dented
situations would be much better performed as "intercepts" that as "pursuits."
If this mode for operation was followed then the more restrictive aspects of this
flight type would be alleviated.
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It would seem, from this overall study, that the more likely 'optimum"
cases would be those which were allowed to select between the simple interce
and the pursuit modes, coupled with a capability of being able to switch from r„ ie
mode to the other in order to meet changing collision requirements as they arise.
The pursuit mode could be used to account for course deviations - not accoirated
for in arp iori considerations - while the simple intercept operation could be
utilized to overcome restrictions imposed by large turning ratas and lateral
accelerations when a near-to-head-on approach becomes apparent. Such a
selectivity has not been attempt3d in this study, nor is i' within the scope of the
present formulations; such a problem as this must be deferred to a subsequent
investigation.

A review of the figures produced during this h;tudy will indicate that rather
distinctive patterns arise for the geometry describing the lateral acceleration,
the range-rate and the range, as one varies the speeds (or 4 ) and the initial
positioning of the vehicles (yo, po).

When k is small (near unity), and po is of the order of "a", or greater, then
the lateral accelerations may undergo one or more cycles of variation; but, the
value ultimately tends to a level approaching k 2 VT ! As 'k grows this level
naturally increases, but only to the extent that the "catch-up" occurs more
quickly and the maneuver does not fully tend to the "hound-and-hare" type of
terminal condition.

For those cases where yo < -u12 the lateral accelerations are positive
throughout the maneuver (both vehicles have the same type of path curvature);
for 7r >- yo >- 7T/2 the initial phase of the operation has a negative acceleration,
but the terminal portion again approaches the same type of condition as that
experienced when yo < 7T /2. As yo is increased, from 7T/2 to 3 7r/2, the
initial excursion of the acceleration is negative; while those cases where To >
3 7r/2 are characterized by large (negative valued) "spikes" appearing on these
plots. These situations are noted to occur when p o = 0(a); however, when y o is
significantly increased (or decreased) the patterns are altered and the variations
can be noted best by looking at the figures.

Characteristically the Range-Rate parameter (,o /VT ) will generally experi-
ence one to two excursions as the value of yo is incremented from 0 to 7r. Above
yo = ,r this quantity returns to a single excursion, as a general statement. It
is also demonstrated that when large p o /a values ;,ve :included, and the flight
path is not "direct," but akin to a ;sinusoid, then the ra. ge-rate may undergo
multiple excursions - (see figures where po a >> 1.0) -- this is to be expected
since the target would likely fly alcng its patL for more than one circuit, neces-
sitating the flight condition for the interceptor as -)bserved and reported here.

97



A study of the dimensionless range (p /a) graphs shows that there are (again)
distinctive patterns developed for the several. classes of pursuit approaches
(po , yo) which are included among the plots appended to this section. Generally
speaking, "kinks" will appear in the range curves whenever there is a decided
(t) spike evident on the acceleration curve(s). An excursion in the acceleration
is accompanied by a non-linearity on the range picture; and, an influence, due to
the spread in 6T over which this excursion occurs, is noted. That is, so long
as the variation in acceleration does not approach the "spike" configuration then
the non-linearity in range is rather gentle and does not tend to t._:,; "kink."
(Compare Fig. 2 and Fig. 4, for instance.) The long range (p o /a >> 1.0) and
short range (po /a << 1.0) cases behave in a rather similar fashion to the
situations discussed here; consequently, after one becomes familiar with these
various maneuvers it would be relatively easy to predict what should be expected
in the variations for a given set of initial values. Also, it becomes evident, im-
mediately, that for certain of the pursuit cases the accelerations are rather un-
manageable; and, that in a real situation there are maneuvering requirements
which are not likely to be realized by actual pursuing vehicles.

The graphs which follow this section are, as indicated earlier, presented in
dimensionless form, but as functions of 6T as a most convenient variable. Of
course 6T and t are interchangeable variables due to the constancy of 6T.

As an aid to the reader the several parameters which are plotted, and the
initial orientations (yo ) are clarified and noted below:

The quantities indicated on the ordinates of the graphs are:

(a) Dimensionless Lateral Acceleration Parameter = AI a /VT, (see Eq. (V.23));

(b) Dimensionless Range-Rate Parameter = p /V T , (see Eq. (V.27));

(c) Dimensionless Range Parameter = r/a (= X), (A solution resultant).

For the purpose of identifying where the Target (T) and Pursuit Interceptor
(I) are located, relative to one another for various yo values, the following
sketch indicates this positioning of I relative to T. The numbers, enclosed in
parens, ( ), indicate the value assigned to y o , in degrees, corresponding to these
several positions; the distance, p o , describes the straight line displacement
of I o relative to To.



180)

THE
TARGE
PATH

To IS GENERALLY LOCATED
AS SHOWN HERE

Ip SIGNIFIES THE POSITION(S)
ASSIGNED TO INTERCEPTOR,
INITIALLY.

In many of the figures there are notations included to aid in the understanding
of how the variations in these parameters occur, how these may be correlated
to the appropriate trajectory figure, and how they relate to one another for the
various cases described.
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TRAJECTORIES

TO

UTi = 248.210
I

Fig. VA (a). Trajectories for the Target (T) and Interceptor (1) during the circular pursuit
maneuver (for 4 = 1.01,yo = 0°, pp = 0.1a).
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LATERAL ACCELERATION

B	 1
M i

	

	 POSIT COORD
i

A	 (0°,10.09)	 j

j	 B	 (2.680,13.703) j

!.	 C	 (248.21°,1.02)
ti

i
i

i

A

O INh
Q >

i

o	 _	 CI

0
	

OT (DEG)	
248.207

Fig. V.1(b). Dimensionless Lateral Acceleration experienced by the Interceptor
during the Circular Pursuit Maneuver (for 1.01, yo = 0°, pp = 0.1a) as a
function o1' B T.
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RANGE RATE

o r! 6	 ^1

I^	 I

POSIT COORD

A	 (00-1.01)
B 21.0° 0.02
C	 (248.21°

-0.01)

Z5 JA

'0

	

	
248.207

OT (DEG)

Fig. VA(c). Dimensionless range-rate for the circular pursuit maneuver as a function of
0 T " = 1.01. Y0 = 0` , PO = 0.18 ► .
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RANGE

01
0	 248.207

8T (DEG) 

Fig.V.I(d). Dimensionless Range for the Circular Pursuit Maneuver as  function
OfOT(A=1.01,yO=dO,pO=O.Ia).
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TRAJECTORIES

eT1 k =1.05
0 -0a

p0=°

eTi = 260.96°

Fig. V-2(a, Trajectories for the Target (T) and Interceptor (1) during the circular
pursuit maneuver (fork= 1.05, yo = 00 , po = a).
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LATERAL ACCELERATION
2.89 -i -- - --	 ^F--

POSIT COORD

A	 (48°.56 ,  
2.893)

B (260.960
1.105)

0 C4

< 
I 

>

1.05
U

8T (DEG)	
etw.tsfo

Fig. V.2(b). Dimensionless Lateral Acceleration experienced by the Interceptor

during the Circular Pursuit Mamiuver (for 1.05, yo a) as a func-

tion of OT'
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RANGE RATE
-0.05

r
J

-1.050	
260.96

eT (DEG)

Fig. V.2(c). Dimensionless Range-Rate for the Circular Pursuit Maneuver as a
function of OT (k= 5.05, yo = 0°, P O = a).
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RANGE
I.Or----

260.96
8 T (DEG)

Fig. V.2(d). Dimensionless Range for the Circular Pursuit Maneuver as a function

Of OT (&= 1.05. q)O = do, PO = a)-
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TRAJECTORIES

i

I0
X	 = TO

k = I.O5
00= 0°
PO =30

8Ti = 161.140

Fig. V.3(a). Trajectories for the Target (T) and Interceptor (1) during the circular
pursuit maneuver (for 4 = 1.05, y 0 = 00 , pp = 3a).
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LATERAL ACCELERATION
15.9 r -	 - —	 _	 ------- T---- ---- -- --

POSIT COORD
A (I 130. 241

15.9)

B (161.14°,
1.105)

v Y
a >

A
0.350 	

161.14
8T (DEG)

Fig. V.3(b). Dim3nsionless Lateral Acceleration experienced by the Interceptor
during the Circular Pursuit Maneuver (for. - 1.06, cpb = 0°, pQ = 3a) as a func-
tion of BT.
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-0.05-
POSIT COORD

A (0°,
-1.05)

8 (88°.63,
-1.753

I
i

t

I

i

i

.a

161.14
-1.75Q

RANC E RATE

BT (DEG)

Fig. V.3(c). Dimensionless Range-Rate foi the Circular Pursuit Maneuver as a
function of B T ( ,k = 1.05, cpo = 0°, pp = 3a).
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RANGE
3.0

161.140'-
0

eT (DEG)

Fig. V.3(d). Dimensionless Range for the Circular Pursuit Maneuver as a function
Of OT (k= 1.05, cb = 0°, pp - 3a).
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TRAJECTORIES

|̀

|
|

\	 '
'

|

	

/	 \

	

|	 \

	

'	
\	 |

`

\
^	 ^	 !

r	 ^	 ^
!	 `	 |

	

.'	 !

^--^	 !

JTi 52.37

eTi

|	 |10 >
°'o

	

Fig. VA(a). Trajector ies for the Target [U and | 	 (|) during the circular
pursuit maneuver (for k~ 1.50, yo~Ur'po~a).
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U) J
52.372

CD
oI
ri

LATERAL

POSIT COORD
A (40.29°

7.086)

B (52.37°,
3.00

ACCELERATION

r'1 / A

^	 ^	 I

J	 'ti

8

Icy

Q >

i

i

OT (DEG)

Fig. VA(b). Dimensionless Lateral Acceleration experienced by the Interceptor
during the Circular Pursuit Maneuver (for 1.50, yo = 0°, po - a) as a func-
tion of O T-
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RANGE RATE

0,
'0

52.372
8T (DEG)

Fig. VA(c). Dimensionless Range-Rate for the Circular Pursuit Maneuver as a
function Of OT (, ,= 1.50, yo = (f, P0 - a),
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52.372

04
0
0
6

RANGE

0

o

OT (DEG)

Fig. VA(d). Dimensionless Range for the Circular Pursuit Maneuver as a function
Of O T ( ,k= 1.50, yo	 PO = a).
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TRAJECTORIES

Fig. V.5(a). Trajectories for the Target (T) and Interceptor (1) during the circular
pursuit maneuver (for Vie = 2.00, yo = 0°, pp = 6.25a).
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A
LATERAL ACCELERATION

A	 8	 C
I

1
i

'	 I

C N
Q ^

N
cD

POSIT COORD
A (0-, 0.32)
B (40.96',0.36)
C (106.3',0.0)

0	 8T (DEG)	 133.392

Fig. V.5(b). Dimensionless lateral Acceleration experienced by the Interceptor
during the Circular Pursuit Maneuver (for A = 2.0, To = V, po = 6.25a) as a
function of BT.
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RANGE RATE

Fig. V.5(c). Dimensionless Range-Rate for the Circular Pursuit Maneuver as a
function of B T (,,= 2.0, yo = 0°, p0 = 6.25x).
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Fig. V.5(d). Dimensionless Range for the Circular Pursuit Maneuver as a function
Of OT (4= 2.0, cftj - 0°, po - 6.25a).
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TRAJECTORIES

Fig. V.6(a). Trajectories for the Target (T) and Interceptor (11 during the circular
pursuit maneuver (for k = 1.50, yo = 600 , pp = a).
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LATERAL ACCELERATION

BT (DEG)

Fig. V.6(b). Dimensionless Lateral Acceleration experienced by the interceptor
during the Circular Pursuit Maneuver (for h - 1.50, (^p -; 60°, pg - a) as a func-
tion of OT-
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eT. (DEG)	
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Fig. V.6(c). Dimensionless Range-Rate for the Circular Pursuit Maneuver as a
function of BT (,,= 1.50, cpo - 60°, po = a).
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eT (DEG)

Fig. V.6(6,' Dimensionless Range for the Circular Pursuit Maneuver as a function
Of O T (4t- 1.50, CPO - e0°, pp - a).
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TRAJECTORIES

/ k - 1.01

00 =91'
po =0.10

8Ti = 487.4 6'

Fig. Y.7(a). Trajectories for the Target (T) and Interceptor (1) during the circular
pursuit maneuver (for k- 1.01, yo - 01°, pp - 0.1a).
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0	 PJSIT COORD
A	 (0.0',

-0.176)
6 (487.46

—0176 A

	 1. 02)

O	 BT ( DEG)
	 487.46

Fig. V.71b). Dimensionless Lateral Acceleration experienced by the Interceptor
during the Circular Pursuit Maneuver (for = 1.01, cep - 01 0, pD = 0.1a) as a
function of 9T.
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eT (DEG)	
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Fig. V.7(c). Dimensionless Range-Rate for the Circular Pursuit Maneuver as a
function of OT (,,= 1.01, yo = 91 0 , Pp = 0.18).
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Fig. VJ(d). Dimensionless Range for the Circular Pursuit Maneuver as a function
Of OT (fit- 1.01, 90-910,po-0.14.

127



TRAJECTORIES

k= 1.05
S60 = 91°

aTi
	

Po = 0
14_ _ .- as coo

Fig. V.B(a). Trajectories for the Target (T) and Interceptor (1) during the circular
pursuit maneuver (fork = 1.05, yo = 91 0 , po = a).
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0	 455.68
9T (DEG)

Fig. V.8(b). Dimensionless Lateral Acceleration experienced by the Interceptor
during the Circular Pursuit Maneuver (fork = 1.05, cpo = 91 0 , pp = a) n a funo-
tion Of 9T.
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Fig. V.8(d). Dimensionless Ranpe for the Circular Pursuit Maneuver a a function
Of BT (k- 1.05, TO - 91°, PO' a)•
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TRAJECTORIES

k =1.05
0C=150°

PO=a
8Ti = 486.12•

Fig. V.9(a). Trajectories for the Target (T) and Interceptor (1) during the Circular
Pursuit Maneuver (for A= 1.05, yo - 150°, pp = a).
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A (40.9,'0.0)
8 (188.2•, 1.3)
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1.105)
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0

8T (DEG)

Fig. V.9(b). Dimensionless Lateral Acceleration experienced by the Interceptor
during the Circular Pursuit Maneuver (for -,= 1.06, yo s 160°, pp - a) as a func-
tion of BT.
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Fig. V.9(c). Dimensionless Range-Rate for the Circular Pursuit Maneuver as a
function of B T ('t - "Of, YO - 1500 , PO = a).
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Fig. V.9(d). Dimensionless Range for the Circular Pursuit Maneuver as a function
Of BT (k- 1.05, cpb - 160°, Pp' a).
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TRAJECTORIES

k = 1.1
4j = 150°
Po=4a

OTC = 309.310

Fig. V.101a). Trajectories for the Target (T) and Interceptor (1) during the Circular
Pursuit Maneuver (for A- 1.10, yo - 150°, po - 40.
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Fig. V.10(b). Dimensionless Lateral Acceleration experiencud by the Interceptor
during the Circular Pursuit Maneuver (for = 1.10, yo = 150°, po = 4a) as a
function of 8T.
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Fig. V.10(c). Dimensionless Range ,-Rate for the Circular Pursuit Maneuver ass
function of BT Oti 1.10, yo = 1500 , pC = 4a).
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Fig. V.10(d). Dimensionless Range for the Circular Pursuit Maneuver as a
function of OT (k= 1.10, cb = 1500 , pp = 4a).
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TRAJECTORIES

W-

k =1.05

00 = 180.-

PO = Cl

eTi = 469.11*

8T,

I0

TO

Fig. V.1 I (a). Trajectories for the Target (T) and Interceptor (1) during the circular
pursuit maneuver (for A= 1.05, yo = 1180°, pp = a).
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469.109

Fig.V.11(b). Dimensionless Lateral Accelerating experienced by the Interceptor
during the Circular Pursuit Maneuver (for k = 1.05, y 0 = 1 800 , pp = a) as a
function Of 8T.
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Fig. V.11(c). Dimensionless Range-Rate for the Circular Pursuit Maneuver as 
function of B T (k= 1.05, cpo = 180°, po = a).
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Fig. V.11(d). Dimensionless Range for the Circular Pursuit Maneuver as a
function of 8 T (k= 1.05, TO = 1800 , pp = a).
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TRAJECTORIES

k =1.05
0021800

A

po = 7.8a

GlTe 871.07°

Fig. V.12(a). Trajectories for the Target (T) and Interceptor (1) during the circular
pursuit maneuver (for k= 1.05, yo- 180°, p 0 = 7.8a).
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during the Circular Pursuit Maneuver (for ^, = 1.05, rQp = 180°, pp = 7.6s) a
function of 9T.
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Fig. V.121b ► . Dimensionleas Lateral Acceleration experienced by the Interceptor
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Fig. V.121c ► . Dimensionless Range-Rate for the Circular Pursuit Maneuver as a
function of BT ( ,k= 1.05, cpq = 1800 , Fp = 7.8a).
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Fig. V.12(d). Dimensionless Range for the Circular Pursuit Maneuver as a
function of 8 T (,,= 1.05. yo = 180°. Pp - 7.8a).
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00 = IEIO°
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8 Ti= 83.260
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T
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10

6

Fig. V.13(a). Trajectories for the Target (T) ar.d taterceptor (1) during the circular
pursuit maneuver (for k= 1.50, yo - 180°, pp = a).
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rig. V.13(b). Dimensionless Lateral Acceleration experiermd by the Interceptor
during the Circular Pursuit Maneuver (for = 1.50, (po = 180°, po = a) as a
function of 8T.

149



83,258
eT ( DEG;

n
0

I

.alp

O
to
10

RANGE RATE

Fig. V.13(c). Dimensionless Range-Rate for the Circular Pursuit Maneuver as a
function of 9r (,.= 1.50, YO = 180°, pp = a).
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Fig. V.13(d). Dimensionless Range for the Circular Pursuit Maneuver as a
function of OT (,,= 1.50, qb = 18(°, po = a).
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TRAJECTORIES

Fig. V.14(a). Trajectories for the. Target (T) and Interceptor (1) during the circular
pursuit maneuver (for ^.= 1.05. yo = 210°, p0 = a).
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Fig. V.14(b). Dimensionless Lateral Acceleration experienced by the Interceptor
during the Circular Pursuit Maneuver (for = 1.05, q) p = 210°, po = a) as a
function of BT.
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Fig. V.14(c). Dimensionless Range-Rate for the Circular Pursuit Maneuver as a
function Of BT (,, = 1.05, yo = 21(f, p0 = a).
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Fig. V.14(d). Dimensionless Range for the Circular Pursuit Maneuver as a
function of BT (,,= 1.05, cpo = 2100 , pp = a).
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TRAJECTORIES

Fig. V.15(a). Trajectories for the Target (T) and Interceptor (1) during the circular
pursuit maneuver (for k= 1.01, yo = 2690 , p0 = a).
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Fig. V.15(b). Dimensionless Lateral Acceleration experienced by the Interceptor
during the Circular Pursuit Maneuver (for = 1.01, (pp = 269°, pp = a) as a
function of BT.
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Fig. V.15(c). Dimensionless Range-Rate for the Circular Pursuit Maneuver as a
function of 8 T (^R = 1.01, yo = 269°, Po = a).
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Fig. V.15(d). Dimensionless Range for the Circular Pursuit Maneuver as a
function of BT (k- 1.01. (f0 ' 269°. p0 - a).
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e Ti = 61.77"
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X
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Fig. V.16(a). Trajectories for the Target (T) and Interceptor (1) during the circular
pursuit maneuver (for kz = 1.05, yo = 2690 , po e).
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Fig. V. 16(b). Dimensionless Lateral Accewration experienced by the Interceptor
during the Circular Pursuit Man..aver Ifor = 1.05, yo = 269°, po = a) as a
function of BT.
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Fig. V.16(c). Dimensionless Range-Rate for the Circular Pursuit Maneuver as 
function of B T (fit= 1.05, yo = 2690 , po = a).
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tig. V.16(d) Dimensionless Range for t¢ie Circular Pursuit Maneuver as a
function of B T (k- 1.05, yo = 2690 , pp = a).
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k =1.05

00 = 2690
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TRAJECTORIES

Fig. V.17(a). Trajectories for the Target (T) and Interceptor (1) during the circular
pursuit maneuver (fork = 1.05, yo = 2W, p Q = 2a).
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Fig. V.17(b). Dimensionless Lateral Acceleration experienced by the Interceptor
during the Circular Pursuit Maneuver (for k = '1.05, yo = 2690, pp = 2a) as a
function of B•t.
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Fig. V.17(c). Dimensionless Range-Rate for the Circular Pursuit Maneuver as a
function of B T (,k= 1.05, yo = 2690 , po = 2a).
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Fig. V.17(d). Dimensionless Range for the Circular Pursuit Maneuv.- as a
function of BT ( ,k= 1.05, cep = 2W, pp = 2a).
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Fig. V.18(a). Trajectories for the Target (T) Lnd Interceptor (1) during the circular
pursuit maneuver (for $,,= 2.00, yo = 269 0 , po = 2a).
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Fig. V.18(b). Dimensionless Lateral Acceleration experienced by the Interceptor
during the Circular Pu rsuit Maneuver (for A = 2.0, yo = 2690 , P C) = 28) as a
function of 8T.
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Fig. V.18(c). Dimensionless Range-Rate for the Circular Pursuit Maneuver as a
function of O T (4= 2.0, yo = 2W, Po = 2a).
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Fig. V.18(d). Dimensionless Range ton the Circular Pursuit Maneuver as m
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^Ti

Fig. V.19(a). Trajectories for the Target (T) and Interceptor (1) during the circular
pursuit maneuver (for k = 1 50, yo = 3000 , po = a).
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Fig, V.19(b). Dimensionless Lateral Acceleration experienced by the Interceptor
during the Circular Pursuit Maneuver ;for A= 1.50, yo = 300°, po = a) as a func-
tion of OT.
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Fig. V.19(c). Dimensionless Range-Rate fcr the Circular Pursuit Maneuver as a
function of B T (Y,= 1.50, % = 300°, po = a).
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Fig. V.19(d). Dimensionless Range for the Circular Pursuit Maneuver as a
function of BT (,.= 1.50, yo = 300°, PO = a).
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Fig. V.10(a). Trdjectories for the Target (T) and Interceptor (1) during the circular
pursuit maneuver (for k = 1.05, yo = 3300 , pp = a).
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Fig. V.20(b). Dimensionless Lateral Acceleration experienced by the Interceptor
during the Circular Pursuit Maneuver (fork = 1.05, yo = 330°, p0 = a) as a func-
tion of BT.
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Fig. V.20(c). Dimensionless Range-Rate for the Circular Pursuit Maneuver as a
function of 8 T (4_ ',.05, APO = 33Y, pe = a).
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Fig. V.201d). Dimensionless Range for the Circular Pursuit Maneuver as a
function of BT (A= 1.05, cpp = 330°, pp - a).
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VI. SYMBOLS

A	 intermediate position on the Intercept Path (Intercept Problem).

a	 position coordinate for T o (Pursuit Problem).

A, (A)	 Acceleration Vector, (Acceleration Scalar).

B	 "Lead" Intercept Collision Position.

b	 position coordinate for To (Pursuit Problem).

C	 collision position (Intercept Problem).

C	 integration constant.

e.	 unit vectors (j = r, 8, z; x, y, z; r, a9 z; p, cot z).

I	 position of the Intercept Vehicle.

ratio of speeds ( n VI /VT).

LOS; f (LOS)	 Line-of-sight; angle for line-of-sight.

R	 figure of merit (see E q. ' :.35)).

0	 inertial origin.

P	 slope of the pursuit curve wrt the x-axis.

P	 position designation (Circular Pursuit Problem.

Q	 position designation (Circular :.Pursuit Problem).

r,, r^	 position vector, (radius); j =condition or vehicle considered.

Ko	 radius of the geometric intercept .figure (See Eq. (III.18)).

S	 designates the path of the Intercept Vehicle; s = s (x, y).

T	 position of the Target Vehicle.

t	 time.
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V j , (V ;	 Velocity Vector, (speed); j = condition or vehicle considered.

Y	 cartesian position coordinates.

z	 coordinew; transformation variable (Section IV).

Greek Letters

a	 inclination of VI wrt x-axis (Pursuit Problem); angular dis-
placement of Y  wrt TIQ (Circular Pursuit Problem).

S	 increment quantities.

Y	 Angular position of - wrt rT (Circular Pursuit Problem).

4)j	Angular position of velocity vectors wrt Tr (Intercept Problem).

e;, Ii i	 dimensionless coordinates (Circular Pursuit Problem).

coordinates locating the center of the geometric figure for the
^^	 G

Intercept Problem.

p, (p)	 vector displacement (scalar) of T wrt I (Circular Pursuit
Problem).

B^	 inclination of the velocity vector (Intercept Problem); position
angle in the circular pursuit problem, (j = T, I).

19T.
	 Intercept angle position, refarred to target angle (Circular

Pursuit' Problem).

path of the Target Vehicle; vector locating P wrt T (Circular
Pursuit Problem).

rotation vector (Intercept Problem); angular position for p wrt
the x-axis (Circular Pursuit)

X	 dimensionless quantity, p /a

S^	 rotation vector for the (p, w, z) triad;
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Subscripts

C

f

I

i

lim

M

0

r

T

a

designating collision.

a final value (Circular Pursuit Problem).

intercept, interceptor.

intercept value.

a limit value.

time for intercept (or collision), for Pursuit Problem.

initial value ( t = 0).

a relative value; a range quantity.

target.

component in the a direction (parallel to e« ).

Superscripts

differentiation wrt time.

denotes path arc.

a vector quantity.

182



VII. BIBLIOGRAPHY

Davis, H. T., "Introduction to Nonlinear Differential and Integral Equations;"
U. S. Atomic Energy Commission, 1961.

Locke, A. S., "Guidance (Principles of -acceded Missile Design)," Van Nostrand,
1955.

1p3


	GeneralDisclaimer.pdf
	1969014407.pdf
	0013B03.pdf
	0013B04.pdf
	0013B05.pdf
	0013B06.pdf
	0013B07.pdf
	0013B08.pdf
	0013B09.pdf
	0013B10.pdf
	0013B11.pdf
	0013B12.pdf
	0013C01.pdf
	0013C02.pdf
	0013C03.pdf
	0013C04.pdf
	0013C05.pdf
	0013C06.pdf
	0013C07.pdf
	0013C08.pdf
	0013C09.pdf
	0013C10.pdf
	0013C11.pdf
	0013C12.pdf
	0013D01.pdf
	0013D02.pdf
	0013D03.pdf
	0013D04.pdf
	0013D05.pdf
	0013D06.pdf
	0013D07.pdf
	0013D08.pdf
	0013D09.pdf
	0013D10.pdf
	0013D11.pdf
	0013D12.pdf
	0013E01.pdf
	0013E02.pdf
	0013E03.pdf
	0013E04.pdf
	0013E05.pdf
	0013E06.pdf
	0013E07.pdf
	0013E08.pdf
	0013E09.pdf
	0013E10.pdf
	0013E11.pdf
	0013E12.pdf
	0013F01.pdf
	0013F02.pdf
	0013F03.pdf
	0013F04.pdf
	0013F05.pdf
	0013F06.pdf
	0013F07.pdf
	0013F08.pdf
	0013F09.pdf
	0013F10.pdf
	0013F11.pdf
	0013F12.pdf
	0014A02.pdf
	0014A03.pdf
	0014A04.pdf
	0014A05.pdf
	0014A06.pdf
	0014A07.pdf
	0014A08.pdf
	0014A09.pdf
	0014A10.pdf
	0014A11.pdf
	0014A12.pdf
	0014B01.pdf
	0014B02.pdf
	0014B03.pdf
	0014B04.pdf
	0014B05.pdf
	0014B06.pdf
	0014B07.pdf
	0014B08.pdf
	0014B09.pdf
	0014B10.pdf
	0014B11.pdf
	0014B12.pdf
	0014C01.pdf
	0014C02.pdf
	0014C03.pdf
	0014C04.pdf
	0014C05.pdf
	0014C06.pdf
	0014C07.pdf
	0014C08.pdf
	0014C09.pdf
	0014C10.pdf
	0014C11.pdf
	0014C12.pdf
	0014D01.pdf
	0014D02.pdf
	0014D03.pdf
	0014D04.pdf
	0014D05.pdf
	0014D06.pdf
	0014D07.pdf
	0014D08.pdf
	0014D09.pdf
	0014D10.pdf
	0014D11.pdf
	0014D12.pdf
	0014E01.pdf
	0014E02.pdf
	0014E03.pdf
	0014E04.pdf
	0014E05.pdf
	0014E06.pdf
	0014E07.pdf
	0014E08.pdf
	0014E09.pdf
	0014E10.pdf
	0014E11.pdf
	0014E12.pdf
	0014F01.pdf
	0014F02.pdf
	0014F03.pdf
	0014F04.pdf
	0014F05.pdf
	0014F06.pdf
	0014F07.pdf
	0014F08.pdf
	0014F09.pdf
	0014F10.pdf
	0014F11.pdf
	0014F12.pdf
	0015A02.pdf
	0015A03.pdf
	0015A04.pdf
	0015A05.pdf
	0015A06.pdf
	0015A07.pdf
	0015A08.pdf
	0015A09.pdf
	0015A10.pdf
	0015A11.pdf
	0015A12.pdf
	0015B01.pdf
	0015B02.pdf
	0015B03.pdf
	0015B04.pdf
	0015B05.pdf
	0015B06.pdf
	0015B07.pdf
	0015B08.pdf
	0015B09.pdf
	0015B10.pdf
	0015B11.pdf
	0015B12.pdf
	0015C01.pdf
	0015C02.pdf
	0015C03.pdf
	0015C04.pdf
	0015C05.pdf
	0015C06.pdf
	0015C07.pdf
	0015C08.pdf
	0015C09.pdf
	0015C10.pdf
	0015C11.pdf
	0015C12.pdf
	0015D01.pdf
	0015D02.pdf
	0015D03.pdf
	0015D04.pdf
	0015D05.pdf
	0015D06.pdf
	0015D07.pdf
	0015D08.pdf
	0015D09.pdf
	0015D10.pdf
	0015D11.pdf
	0015D12.pdf
	0015E01.pdf
	0015E02.pdf
	0015E03.pdf
	0015E04.pdf
	0015E05.pdf
	0015E06.pdf
	0015E07.pdf
	0015E08.pdf
	0015E09.pdf
	0015E10.pdf
	0015E11.pdf
	0015E12.pdf
	0015F01.pdf
	0015F02.pdf
	0015F03.pdf
	0015F04.pdf
	0015F05.pdf
	0015F06.pdf
	0015F07.pdf
	0015F08.pdf
	0015F09.pdf
	0015F10.pdf
	0015F11.pdf
	0015F12.pdf




