ADVANCED REFRACTORY ALLOY CORROSION LOOP PROGRAM

QUARTERLY PROGRESS REPORT NO. 15
For Quarter Ending January 15, 1969

prepared by
R. W. Harrison

prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA Lewis Research Center
Contract NAS 3-6474
Robert L. Davies, Project Manager
Materials Section

NUCLEAR SYSTEMS PROGRAMS
SPACE SYSTEMS
GENERAL ELECTRIC
CINCINNATI, OHIO 45215

REPRODUCIBLE COPY
NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the National Aeronautics and Space Administration (NASA), nor any person acting on behalf of NASA:

A.) Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B.) Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method or process disclosed in this report.

As used above, "person acting on behalf of NASA" includes any employee or contractor of NASA, or employee of such contractor, to the extent that such employee or contractor of NASA, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with NASA, or his employment with such contractor.

Requests for copies of this report should be referred to:

National Aeronautics and Space Administration
Scientific and Technical Information Division
Attention: USS-A
Washington, D.C. 20546
QUARTERLY PROGRESS REPORT 15

ADVANCED REFRACTORY ALLOY CORROSION LOOP PROGRAM

prepared by
R. W. Harrison

approved by
E. E. Hoffman

NUCLEAR SYSTEMS PROGRAMS
MISSILE AND SPACE DIVISION
GENERAL ELECTRIC COMPANY
Cincinnati, Ohio 45215

prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Period October 15, 1968 to January 15, 1969
April 9, 1969

CONTRACT NAS 3-6474

NASA Lewis Research Center
Cleveland, Ohio
Robert L. Davies, Project Manager
Materials Section
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>I</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td>SUMMARY</td>
<td>3</td>
</tr>
<tr>
<td>III</td>
<td>PROGRAM STATUS</td>
<td>5</td>
</tr>
<tr>
<td>A.</td>
<td>T-111 Rankine System Corrosion Test Loop</td>
<td>5</td>
</tr>
<tr>
<td>1.</td>
<td>Reinstrumentation of the Boiler</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td>Test Facility Operations</td>
<td>5</td>
</tr>
<tr>
<td>3.</td>
<td>Alkali Metal Purification</td>
<td>8</td>
</tr>
<tr>
<td>4.</td>
<td>Lithium-Potassium Solubility Study</td>
<td>10</td>
</tr>
<tr>
<td>5.</td>
<td>Alkali Metal Flushing of the Loop</td>
<td>13</td>
</tr>
<tr>
<td>6.</td>
<td>Filling the Loop with Alkali Metals for Operation</td>
<td>22</td>
</tr>
<tr>
<td>B.</td>
<td>Advanced Tantalum Alloy Capsule Tests</td>
<td>22</td>
</tr>
<tr>
<td>C.</td>
<td>2600°F Lithium Loop</td>
<td>22</td>
</tr>
<tr>
<td>IV</td>
<td>FUTURE PLANS</td>
<td>25</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

Figure Page
1 Tungsten Filament Heater Installed on Metering Valve of T-111 Rankine System Corrosion Test Loop. (P68-11-15A) 6
2 Tungsten Filament Heater Before Assembly. (C65012245) 7
3 Potassium Transfer System for Filling and flushing the T-111 Corrosion Test Loop. 14

LIST OF TABLES

Table Page
I Analysis of Lithium 9
II Analysis of the Distilled Lithium to be Used in the T-111 Rankine System Corrosion Test Loop 11
III Mutual Solubilities of Potassium and Lithium 12
IV Analysis of the Potassium Used in Flushing the T-111 Corrosion Test Loop 17
V Temperatures and Pressures Recorded During Flushing of the T-111 Corrosion Loop Secondary Circuit with Potassium Before Filling the Primary Circuit with Lithium 18
VI Analysis of the Lithium Used in Flushing the T-111 Corrosion Test Loop 20
VII Temperatures and Pressures Recorded During Flushing of the T-111 Corrosion Loop Secondary Circuit with Potassium Using Lithium in the Primary Circuit to Supply the Heat 21
VIII Analysis of the Alkali Metals Used in Operation of the T-111 Corrosion Test Loop 23
FOREWORD

The work described herein is sponsored by the National Aeronautics and Space Administration under Contract NAS 3-6474. R. L. Davies of NASA - Lewis Research Center is the NASA Technical Manager.

The program is being administered for the General Electric Company by E. E. Hoffman, and R. W. Harrison is acting as the Program Manager. J. Holowach, the Project Engineer, is responsible for the loop design, facilities procurement, and test operations. Personnel making major contributions to the program during the current reporting period include:

Alkali Metal Purification and Handling - Dr. R. B. Hand, L. E. Dotson, and H. Bradley.
ADVANCED REFRACTORY ALLOY CORROSION LOOP PROGRAM

I. INTRODUCTION

This report covers the period from October 15, 1968 to January 15, 1969. The primary task of this program is to fabricate, operate for 10,000 hours and evaluate a T-111 Rankine System Corrosion Test Loop. Materials for evaluation include the containment alloy, T-111 (Ta-8W-2Hf) and the turbine candidate materials Mo-TZC and Cb-132M which are located in the turbine simulator of the two-phase potassium circuit of the system. The loop design will be similar to the Cb-1Zr Rankine System Corrosion Test Loop; a two-phase, forced convection, potassium corrosion test loop which has been tested under Contract NAS 3-2547. Lithium is being heated by direct resistance in a primary loop. Heat rejection for condensation in the secondary potassium loop is being accomplished by radiation in a high vacuum environment to the water cooled chamber. The compatibility of the selected materials will be evaluated at conditions representative of space electric power system operating conditions, namely:

a. Boiling temperature, 2050°F
b. Superheat temperature, 2150°F
c. Condensing temperature, 1400°F
d. Subcooling temperature, 1000°F
e. Mass flow rate, 40 lb/hr
f. Boiler exit vapor velocity, 50 ft/sec

g. Average heat flux in plug (0-18 inches), 240,000 Btu/hr ft²
h. Average heat flux in boiler (0-250 inches), 23,000 Btu/hr ft²

In addition to the primary program task cited above the program also includes capsule testing to evaluate advanced tantalum alloys of the ASTAR 811 type (Ta-8W-1Re-1Hf) in both potassium and lithium.

Also included in the program is the fabrication, 5000-hour operation and evaluation of a 2600°F, high flow velocity, pumped lithium loop designed to evaluate the compatibility of the ASTAR 811 type alloys, T-111, T-222, and the tungsten alloy, W-25Re-30Mo at conditions simulating an out-of-pile thermionic reactor system.
II. SUMMARY

Reinstrumentation and reinsulation of the T-111 Corrosion Loop was completed, and the vacuum chamber was sealed and evacuated.

Purification of the alkali metals was completed. Both loop circuits were cleaned by alkali metal flushing and filled with charges for test operation.

The alkali metals are being circulated and the loop is being brought to temperature.
III. PROGRAM STATUS

A. T-11 RANKINE SYSTEM CORROSION TEST LOOP

1. Reinstrumentation of the Boiler

Reinstrumentation and reinsulation of the boiler commenced following leak checking of the loop after postweld annealing of the installation welds. Over thirty W-3Re/W-25Re thermocouples required replacement. The thermocouple installation has been completed, and insulation with Cb-1Zr dimpled foil is in progress.

A heater was installed on the bottom of the metering valve as shown in Figure 1. The heater shown before assembly in Figure 2 was originally designed for the vapor nucleator installed in the Cb-1Zr Rankine System Corrosion Test Loop, NASA Contract NAS 3-2547.

2. Test Facility Operations

Reinstrumentation and reinsulation were completed, and the chamber was closed on November 15, 1968. The chamber was evacuated with the turbo-molecular pump, and mass spectrometer leak checking was performed. No leaks were found, and ion pumping was initiated. The bakeout heaters were then turned on, and on November 21, 1968, a pressure of 4×10^{-7} torr was recorded with the chamber at 500°F. At that time a final helium leak

Figure 1. Tungsten Filament Heater Installed on Metering Valve of T-111 Rankine System Corrosion Test Loop. (P68-11-15A)
Figure 2. Tungsten Filament Heater Before Assembly. (C65012245)
check was performed between the potassium and lithium circuits with the loop at 375°F, and no leaks were found. Bakeout will continue until alkali metal flushing of the loop circuits is completed.

3. Alkali Metal Purification

Additional analytical results were obtained on the lithium received from Foote Mineral Company, Exton, Pennsylvania. A sample was previously taken during the transfer of 28 pounds of lithium to the hot trap. The analysis of this sample (No. 2039) is compared with that for the hot trapped lithium (No. 2067) in Table I. The lithium was hot trapped for 200 hours at 1500°F.

Before distillation was initiated, the vacuum manifold on the lithium purification system was disconnected from the receiver and cleaned. As described previously, lithium had been inadvertently blown back into the vacuum manifold during a sample operation. The manifold was reinstalled and subsequently twenty pounds of hot trapped lithium was distilled at 1230°F. The sample (No. 2081) taken from the receiver was analyzed and had a high nitrogen concentration as shown in Table I. Examination of the lithium purification facility indicated the Granville-Phillips high vacuum valves, previously cleaned of lithium, had leaks in the bellows. It is believed that these leaks were primarily responsible for the nitrogen contamination of the lithium.

The valves were replaced with new valves and the system leak checked. The contaminated lithium was returned to the hot trap and hot trapping

TABLE I

ANALYSIS OF LITHIUM

<table>
<thead>
<tr>
<th>Element</th>
<th>As Received<sup>(a)</sup></th>
<th>Hot Trapped<sup>(b)</sup></th>
<th>Distilled<sup>(c)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2039</td>
<td>2067</td>
<td>2081</td>
</tr>
<tr>
<td>O</td>
<td>95</td>
<td>69</td>
<td>30</td>
</tr>
<tr>
<td>C</td>
<td>75</td>
<td>5</td>
<td>49</td>
</tr>
<tr>
<td>N</td>
<td>278</td>
<td>21,23,33</td>
<td>295</td>
</tr>
<tr>
<td>Ag</td>
<td>< 5</td>
<td>< 5</td>
<td>< 5</td>
</tr>
<tr>
<td>Al</td>
<td>< 5</td>
<td>< 5</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>< 50</td>
<td>< 50</td>
<td>< 25</td>
</tr>
<tr>
<td>Ba</td>
<td>< 50</td>
<td>< 50</td>
<td>< 75</td>
</tr>
<tr>
<td>Be</td>
<td>< 5</td>
<td>< 5</td>
<td>< 5</td>
</tr>
<tr>
<td>Ca</td>
<td>< 50</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>Cb</td>
<td>< 25</td>
<td>< 25</td>
<td>< 25</td>
</tr>
<tr>
<td>Co</td>
<td>< 50</td>
<td>< 5</td>
<td>< 5</td>
</tr>
<tr>
<td>Cr</td>
<td>< 50</td>
<td>< 5</td>
<td>< 5</td>
</tr>
<tr>
<td>Cu</td>
<td>5</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>Fe</td>
<td>< 50</td>
<td>< 5</td>
<td>5</td>
</tr>
<tr>
<td>Mg</td>
<td>< 50</td>
<td>< 5</td>
<td>5</td>
</tr>
<tr>
<td>Mn</td>
<td>< 50</td>
<td>< 5</td>
<td>5</td>
</tr>
<tr>
<td>Mo</td>
<td>< 50</td>
<td>< 5</td>
<td>5</td>
</tr>
<tr>
<td>Na</td>
<td>< 75</td>
<td>< 50</td>
<td>< 75</td>
</tr>
<tr>
<td>Ni</td>
<td>< 50</td>
<td>< 5</td>
<td>< 5</td>
</tr>
<tr>
<td>Pb</td>
<td>< 50</td>
<td>< 50</td>
<td>< 50</td>
</tr>
<tr>
<td>Si</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Sn</td>
<td>< 25</td>
<td>< 25</td>
<td>< 25</td>
</tr>
<tr>
<td>Sr</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Ti</td>
<td>< 25</td>
<td>< 25</td>
<td>< 25</td>
</tr>
<tr>
<td>V</td>
<td>< 25</td>
<td>< 25</td>
<td>< 25</td>
</tr>
<tr>
<td>Zr</td>
<td>< 25</td>
<td>< 25</td>
<td>< 25</td>
</tr>
</tbody>
</table>

^(a) From shipping container received from Foote Mineral Co., Exton, Pa.

^(b) 28 pounds hot trapped for 200 hours at 1500°F

^(c) 20 pounds distilled at 1230°F subsequently found to be contaminated by leaks in the vacuum manifold valves during distillation.
initiated. The contaminated lithium from the still receiver was hot trapped 305 hours at 1500-1550°F and sampled by flushing two pounds of lithium through the sample tube. Subsequent analysis indicated 15 ppm nitrogen. Distillation was initiated, and samples were taken after five and twelve pounds of lithium distillate was obtained in the still receiver. The respective nitrogen analyses, 380 ppm and 146 ppm, indicated that the high nitrogen concentration in the lithium in the still was being diluted by the distillate but not sufficiently to reduce the nitrogen level to an acceptable value. The lithium in the still receiver was therefore returned to the hot trap for further purification. The lithium was hot trapped for 200 hours at 1500-1550°F and sampled. A nitrogen concentration of 13 ppm was obtained, and distilling was again resumed. Twenty-two pounds of lithium was distilled. The analysis of a sample of this material is presented in Table II. The use of the purified lithium for flushing and filling the loop was approved by the NASA Program Manager, and preparations were made to connect the lithium purification system to the loop transfer system.

4. Lithium-Potassium Solubility Study

The mutual solubilities of lithium and potassium are being determined over the 600°F to 1200°F temperature range in the apparatus described previously. The data obtained to date are presented in Table III. These data were obtained by equilibrating equal volumes of lithium and potassium at constant temperature for at least 16 hours. The data shown

TABLE II

ANALYSIS OF THE DISTILLED LITHIUM TO BE USED IN THE T-111 RANKINE SYSTEM CORROSION TEST LOOP\(^{(a)}\)

<table>
<thead>
<tr>
<th>Element</th>
<th>Concentration, ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>27,33</td>
</tr>
<tr>
<td>O</td>
<td>31</td>
</tr>
<tr>
<td>C</td>
<td>46</td>
</tr>
<tr>
<td>Ag</td>
<td>< 5</td>
</tr>
<tr>
<td>Al</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>< 50</td>
</tr>
<tr>
<td>Ba</td>
<td>< 75</td>
</tr>
<tr>
<td>Be</td>
<td>< 5</td>
</tr>
<tr>
<td>Bi</td>
<td>< 25</td>
</tr>
<tr>
<td>Ca</td>
<td>25</td>
</tr>
<tr>
<td>Cb</td>
<td>< 25</td>
</tr>
<tr>
<td>Co</td>
<td>< 5</td>
</tr>
<tr>
<td>Cr</td>
<td>< 5</td>
</tr>
<tr>
<td>Cu</td>
<td>< 5</td>
</tr>
<tr>
<td>Fe</td>
<td>< 5</td>
</tr>
<tr>
<td>Mg</td>
<td>5</td>
</tr>
<tr>
<td>Mn</td>
<td>< 5</td>
</tr>
<tr>
<td>Mo</td>
<td>< 5</td>
</tr>
<tr>
<td>Na</td>
<td>< 10</td>
</tr>
<tr>
<td>Ni</td>
<td>< 5</td>
</tr>
<tr>
<td>Pb</td>
<td>< 50</td>
</tr>
<tr>
<td>Si</td>
<td>< 5</td>
</tr>
<tr>
<td>Sn</td>
<td>< 25</td>
</tr>
<tr>
<td>Sr</td>
<td>25</td>
</tr>
<tr>
<td>Ti</td>
<td>< 25</td>
</tr>
<tr>
<td>V</td>
<td>< 25</td>
</tr>
<tr>
<td>Zr</td>
<td>< 25</td>
</tr>
</tbody>
</table>

\(^{(a)}\) Analysis obtained on a sample removed from the still receiver following hot trapping and vacuum distilling.
TABLE III

MUTUAL SOLUBILITIES OF POTASSIUM AND LITHIUM

<table>
<thead>
<tr>
<th>Temperature °F</th>
<th>Wt. % K(a) in Li</th>
<th>Wt. % Li(a) in K</th>
<th>Run No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>610</td>
<td>0.10</td>
<td>0.23</td>
<td>4</td>
</tr>
<tr>
<td>610</td>
<td>(b)</td>
<td>0.23</td>
<td>5</td>
</tr>
<tr>
<td>800</td>
<td>0.19</td>
<td>0.36</td>
<td>1</td>
</tr>
<tr>
<td>800</td>
<td>(b)</td>
<td>0.37</td>
<td>2</td>
</tr>
<tr>
<td>1000</td>
<td>0.70</td>
<td>1.12</td>
<td>3</td>
</tr>
<tr>
<td>1230</td>
<td>2.60</td>
<td>-</td>
<td>6</td>
</tr>
</tbody>
</table>

(a) Determined by spectrophotometric analysis

(b) Sample lost in preparation
for 800°F represent times of 16 hours and 24 hours with no change in solubility indicated. No data was obtained for the solubility of lithium in potassium at 1200°F because the valves used did not function properly after prolonged exposure to this temperature. The temperatures were measured with calibrated chromel/alumel thermocouples accurate to ±10°F.

Details on the apparatus and evaluation of the data will be reported at a later date.

5. Alkali Metal Flushing of the Loop

As previously reported(5) examination of the alkali metals drained from the loop indicated lithium in the potassium and potassium in the lithium as a result of the boiler leak. Particulate matter was also found in the potassium. The particles and contaminated alkali metals will be removed from the loop by repeatedly flushing the circuits with pure alkali metals.

The apparatus required for filling and flushing the potassium loop circuit is shown in Figure 3. The transfer system was modified for flushing operations by inserting a dump line between valves FF, KK, and the disposal tank. This permits the transfer of flush charges of potassium directly to the disposal tank without contaminating the fill system upstream from valve FF. In addition, the dump line is connected to a small potassium still where flush potassium charges can be diverted for subsequent distillation and analysis of the residue for lithium concentration and particulate matter.

Figure 3. Potassium Transfer System for Filling and Flushing the T-ill Corrosion Test Loop.
The lithium transfer system was modified similarly; however, after the lithium circuit is flushed, a sampler is attached directly to valve KK on the lithium side of the transfer system. The sample taken is then analyzed to determine the potassium concentration in the lithium.

The entire transfer system was baked out at temperatures up to 500°F, and on December 12, 1968, the pressure rise rate was measured to be less than 0.2 micron-liters per minute.
The potassium side of the transfer system was filled, and the potassium was dumped into the disposal tank to flush the system. The system was refilled with potassium and a sample obtained. The analysis of this sample, shown in Table IV, was acceptable and the use of this potassium was approved by the NASA Program Manager. The potassium surge tank was filled with an 1800 cc charge on December 13, 1968, and flushing operations on the potassium loop circuit were initiated.

The secondary circuit was flushed with four 1800 cc charges of potassium while the final purification of lithium was in progress. The loop temperatures and pressures obtained during these flushing operations are presented in Table V.

The first charge was used to establish circulation and, after the flow was reversed to agitate particles, was quickly dumped into the disposal tank. Flow indications during circulation indicated some plugging of the metering valve with particles, and the valve was actuated to its full open position. The observed pressure drop across the valve, shown in Table V, confirms particulate matter plugging in the valve. Improved flow indications were obtained during the circulations of the second and third potassium charges with some observed decrease in the pressure drop across the valve. Both the second and third charges were circulated four times before removal from the surge tank. The second charge was dumped into the disposal tank. The third charge was dumped into the still for subsequent analysis. The potassium was distilled off

TABLE IV

ANALYSIS OF THE POTASSIUM USED IN FLUSHING THE T-111 CORROSION TEST LOOP(a)

<table>
<thead>
<tr>
<th>Element</th>
<th>Concentration, ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>7.14</td>
</tr>
<tr>
<td>C</td>
<td>51</td>
</tr>
<tr>
<td>Ag</td>
<td>< 2</td>
</tr>
<tr>
<td>Al</td>
<td>< 2</td>
</tr>
<tr>
<td>B</td>
<td>< 30</td>
</tr>
<tr>
<td>Ba</td>
<td>< 10</td>
</tr>
<tr>
<td>Be</td>
<td>< 2</td>
</tr>
<tr>
<td>Ca</td>
<td>< 2</td>
</tr>
<tr>
<td>Cb</td>
<td>< 10</td>
</tr>
<tr>
<td>Co</td>
<td>< 2</td>
</tr>
<tr>
<td>Cr</td>
<td>< 2</td>
</tr>
<tr>
<td>Cu</td>
<td>< 2</td>
</tr>
<tr>
<td>Fe</td>
<td>< 2</td>
</tr>
<tr>
<td>Mg</td>
<td>< 2</td>
</tr>
<tr>
<td>Mn</td>
<td>< 2</td>
</tr>
<tr>
<td>Mo</td>
<td>< 2</td>
</tr>
<tr>
<td>Na</td>
<td>< 20</td>
</tr>
<tr>
<td>Ni</td>
<td>< 2</td>
</tr>
<tr>
<td>Pb</td>
<td>< 20</td>
</tr>
<tr>
<td>Si</td>
<td>< 2</td>
</tr>
<tr>
<td>Sn</td>
<td>< 20</td>
</tr>
<tr>
<td>Sr</td>
<td>< 2</td>
</tr>
<tr>
<td>Ti</td>
<td>< 10</td>
</tr>
<tr>
<td>V</td>
<td>< 20</td>
</tr>
<tr>
<td>Zr</td>
<td>< 10</td>
</tr>
</tbody>
</table>

(a) Analysis obtained on a sample removed from the transfer system before transferring the potassium into the loop surge tank.
TABLE V

TEMPERATURES AND Pressures Recorded During Flushing Of The T-111 Corrosion Loop Secondary Circuit With Potassium Before Filling The Primary Circuit With Lithium(a)

<table>
<thead>
<tr>
<th>Circulation(b)</th>
<th>First Charge</th>
<th>Second Charge</th>
<th>Third Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1(c)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Maximum Chamber Pressure, torr</td>
<td>4.7 x 10^-6</td>
<td>1x10^-6</td>
<td>2x10^-6</td>
</tr>
<tr>
<td>Loop Temperatures, °F(c)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiler</td>
<td>785</td>
<td>787</td>
<td>905</td>
</tr>
<tr>
<td>Potassium Preheater Inlet</td>
<td>1025</td>
<td>689</td>
<td>759</td>
</tr>
<tr>
<td>Potassium Preheater Exit</td>
<td>785</td>
<td>897</td>
<td>970</td>
</tr>
<tr>
<td>Pump Discharge</td>
<td>970</td>
<td>839</td>
<td>900</td>
</tr>
<tr>
<td>Metering Valve Inlet</td>
<td>1040</td>
<td>895</td>
<td>958</td>
</tr>
<tr>
<td>Subcooler</td>
<td>875</td>
<td>674</td>
<td>733</td>
</tr>
<tr>
<td>Pressures, psia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metering Valve Inlet</td>
<td>82</td>
<td>4</td>
<td>104</td>
</tr>
<tr>
<td>Metering Valve Exit</td>
<td>53</td>
<td>13</td>
<td>54</td>
</tr>
<tr>
<td>ΔP (valve full open)</td>
<td>29</td>
<td>9</td>
<td>57</td>
</tr>
<tr>
<td>Surge Tank Temperature, °F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before</td>
<td>320</td>
<td></td>
<td></td>
</tr>
<tr>
<td>After Dumping</td>
<td>410</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔT</td>
<td>90</td>
<td>77</td>
<td>72</td>
</tr>
</tbody>
</table>

(a) Heat supplied by the potassium preheater.
(b) The second and third charges were circulated and dumped into the surge tank four times. After the fourth circulation the second charge was dumped through the surge tank into the disposal tank and the third charge was dumped into the still for subsequent analysis.
(c) Reverse flow
(d) Forward flow. The flow direction of the potassium was changed to agitate particulate matter.
and the 39 mg of residue analyzed for lithium. A concentration of approximately 30 ppm lithium in the potassium was determined. A very small amount of particulate matter was found in the still. The still was cleaned, welded together and reinstalled in the transfer system as shown previously in Figure 3.

On December 26, 1968 bakeout of the lithium transfer system and purification system was completed and a pressure rise rate of less than 0.4 micron liters/minute was obtained. The lithium transfer system was subsequently flushed by filling and draining the lithium into the disposal tank. The transfer system was refilled and the lithium sampled. The analysis, presented in Table VI, was acceptable to the NASA Program Manager and the loop surge tank was filled with lithium.

The first lithium charge was discarded into the disposal tank, and the surge tank was refilled with a 1600 cc charge of lithium. The lithium was circulated in the primary circuit and used to heat a fourth charge of potassium to higher temperature than previously possible with only potassium in the loop. The potassium charge was circulated and dumped into the surge tank three times. The temperatures and pressures recorded just before the final dump into the small potassium still, are presented in Table VII.

The potassium was distilled off and the 28 mg residue analyzed for lithium. A concentration of approximately 20 ppm lithium in the potassium was determined. No particulate matter was found in the still. The data indicated sufficient flushing of the potassium circuit had been performed.
TABLE VI

ANALYSIS OF THE LITHIUM USED IN FLUSHING THE T-111 CORROSION TEST LOOP(a).

<table>
<thead>
<tr>
<th>Element</th>
<th>Concentration, ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>34</td>
</tr>
<tr>
<td>O</td>
<td>20</td>
</tr>
<tr>
<td>C</td>
<td>46</td>
</tr>
<tr>
<td>Ag</td>
<td>< 5</td>
</tr>
<tr>
<td>Al</td>
<td>25</td>
</tr>
<tr>
<td>B</td>
<td>< 50</td>
</tr>
<tr>
<td>Ba</td>
<td>< 50</td>
</tr>
<tr>
<td>Be</td>
<td>< 5</td>
</tr>
<tr>
<td>Bi</td>
<td>< 25</td>
</tr>
<tr>
<td>Ca</td>
<td>25</td>
</tr>
<tr>
<td>Cb</td>
<td>< 25</td>
</tr>
<tr>
<td>Co</td>
<td>< 5</td>
</tr>
<tr>
<td>Cr</td>
<td>< 5</td>
</tr>
<tr>
<td>Cu</td>
<td>5</td>
</tr>
<tr>
<td>Fe</td>
<td>< 5</td>
</tr>
<tr>
<td>Mg</td>
<td>5</td>
</tr>
<tr>
<td>Mn</td>
<td>< 5</td>
</tr>
<tr>
<td>Mo</td>
<td>5</td>
</tr>
<tr>
<td>Na</td>
<td>< 50</td>
</tr>
<tr>
<td>Ni</td>
<td>5</td>
</tr>
<tr>
<td>Pb</td>
<td>< 50</td>
</tr>
<tr>
<td>Si</td>
<td>25</td>
</tr>
<tr>
<td>Sn</td>
<td>< 25</td>
</tr>
<tr>
<td>Sr</td>
<td>25</td>
</tr>
<tr>
<td>Ti</td>
<td>< 25</td>
</tr>
<tr>
<td>V</td>
<td>< 25</td>
</tr>
<tr>
<td>Zr</td>
<td>< 25</td>
</tr>
</tbody>
</table>

(a) Analysis obtained on a sample removed from the still receiver following hot trapping and vacuum distilling.
TABLE VII

TEMPERATURES AND PRESSURES RECORDED DURING FLUSHING OF THE T-111 CORROSION LOOP SECONDARY CIRCUIT WITH POTASSIUM USING LITHIUM IN THE PRIMARY CIRCUIT TO SUPPLY THE HEAT\(^{(a)}\)

Maximum Chamber Pressure, torr	5 x 10\(^{-8}\)
Loop Temperatures, °F	
Primary Heater	1420
Boiler	1393
Potassium Preheater, Inlet	660
Potassium Preheater, Exit	525
Pump Discharge	775
Metering Valve	770
Subcooler	675
1st Stage Turbine Simulator	1384
Stages 2-10	1260
Pressures, PSIA	
Metering Valve, Inlet	36
Metering Valve, Exit	26
\(\Delta P\) (valve full open)	10
Surge Tank Temperature, °F	
Before	476
After Dumping	528
\(\Delta T\)	52

\(\text{(a)}\) Data for the third circulation. The charge was dumped into the surge tank and returned to the loop twice before final dumping into the still for subsequent analysis.
The lithium charge in the primary circuit was dumped into the disposal tank and the loop filled with a third charge of lithium (1600 cc). The lithium sampler was installed at valve KK and, after circulating the lithium in the primary, a sample was taken. Analytical results indicated a concentration of 90 ppm potassium in the lithium. Since the solubility limit for potassium in lithium at the sampling temperature (580°F) was 1000 ppm and the potassium concentration in the distilled lithium was 55 ppm, further flushing of the lithium primary circuit was believed unnecessary.

6. **Filling the Loop With Alkali Metals for Operation**

The secondary loop was filled with 2300 cc of potassium and the primary loop was filled with 2200 cc of lithium. Samples were withdrawn from each loop for final qualification analyses. The analytical results, shown in Table VIII, indicated acceptable purities which were subsequently approved by the NASA Program Manager. Circulation of the alkali metals was initiated and start-up of the loop initiated.*

B. **ADVANCED TANTALUM ALLOY CAPSULE TESTS**

Testing of two ASTAR 811C and one ASTAR 811CN lithium thermal convection capsules continues. As of January 15, 1969, 2070 hours of testing had been completed. The chamber pressure at that time was 1.1×10^{-8} torr.

C. **2600°F LITHIUM LOOP**

Final assembly of the 2600°F Lithium Loop will be accomplished upon completion of the lithium heater subassembly. This subassembly

*On 1-25-69 operation of the T-111 Rankine System Corrosion Test Loop was initiated and as of 2-7-69 over 300 hours of trouble-free operation were attained.
TABLE VIII

ANALYSIS OF THE ALKALI METALS USED IN OPERATION OF THE T-111 CORROSION TEST LOOP\(^{(a)}\)

<table>
<thead>
<tr>
<th>Element</th>
<th>Concentration, ppm</th>
<th>Lithium</th>
<th>Potassium</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>35,39,46,49</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O</td>
<td>49</td>
<td>3,6</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>31</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Ag</td>
<td>< 5</td>
<td>< 2</td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>< 50</td>
<td>< 30</td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td>< 50</td>
<td>< 20</td>
<td></td>
</tr>
<tr>
<td>Be</td>
<td>< 5</td>
<td>< 2</td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Cb</td>
<td>< 25</td>
<td>< 10</td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>< 5</td>
<td>< 2</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>< 5</td>
<td>< 2</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>< 5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>< 5</td>
<td>< 2</td>
<td></td>
</tr>
<tr>
<td>Mo</td>
<td>< 5</td>
<td>< 2</td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>< 50</td>
<td>< 20</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>5</td>
<td>< 2</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>< 50</td>
<td>< 20</td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Sn</td>
<td>< 25</td>
<td>< 10</td>
<td></td>
</tr>
<tr>
<td>Sr</td>
<td>5</td>
<td>< 2</td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>< 25</td>
<td>< 10</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>< 25</td>
<td>< 10</td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td>< 25</td>
<td>< 10</td>
<td></td>
</tr>
<tr>
<td>Li</td>
<td>-</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>106</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

\(^{(a)}\) Analysis obtained on samples removed from the loop prior to initiation of loop start-up.
cannot be made until the tensile and corrosion test specimens of the ASTAR alloys are heat treated at conditions to be specified by the NASA Program Manager.
IV. FUTURE PLANS

A. Initiate test operation of the T-111 Rankine System Corrosion Test Loop.

B. Continue testing of the advanced tantalum alloy capsules.
<table>
<thead>
<tr>
<th>Quarterly Progress</th>
<th>For Quarter Ending</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report No. 4 (NASA-CR-72029)</td>
<td>April 15, 1966</td>
</tr>
<tr>
<td>Report No. 6 (NASA-CR-72177)</td>
<td>October 15, 1966</td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST
QUARTERLY AND FINAL PROGRESS REPORTS
CONTRACT NAS3-6474

NASA
Washington, D. C. 20546
Attn: Arvin Smith (RNW)
Simon V. Manson (RNP)
George C. Deutsch (RR)
Dr. Fred Schulman (RNP)
H. Rochen (RNP)

NASA
Scientific & Tech. Info. Facility
P.O. Box 33
College Park, Maryland 20740
Attn: Acquisitions Branch (SQT-34054)
(2 + Repro)

NASA
Goddard Space Flight Center
Greenbelt, Maryland 20771
Attn: Librarian

NASA
Langley Research Center
Hampton, Virginia 23365
Attn: Librarian

NASA
Lewis Research Center
21000 Brookpark Road
Cleveland, Ohio 44135
Attn: Librarian, MS 60-3
Dr. Bernard Lubarsky (SPSD)
MS 3-3
G. M. Ault, MS 105-1
R. L. Davies (ARSB) MS 500-201
(2)
John E. Dilley (SPSPS)
MS 500-309
Maxine Sabala, MS 3-19
T. A. Moss, MS 500-201
Coulson Scheuerman, MS 106-1
Report Control Office, MS 5-5
V. Hlavin, MS 3-14
(Final Only)

NASA
Manned Spacecraft Center
Houston, Texas 77001
Attn: Librarian

NASA
George C. Marshall Space Flight Center
Huntsville, Alabama 35812
Attn: Librarian

Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive
Pasadena, California 91103
Attn: Librarian

National Bureau of Standards
Washington, D. C. 20225
Attn: Librarian

Flight Vehicle Power Branch
Air Force Aero Propulsion Lab
Wright Patterson AFB, Ohio 45433
Attn: Charles Armbruster, ASRPP-10
AFAPL (APIP)
George E. Thompson, APIP-1
George Glenn

Army Ordnance Frankford Arsenal
Bridesburg Station
Philadelphia, Pennsylvania 19137

Bureau of Mines
Albany, Oregon
Attn: Librarian

Bureau of Ships
Department of the Navy
Washington, D. C. 20225
Attn: Librarian

Bureau of Weapons
Research & Engineering
Materials Division
Washington, D. C. 20225
Attn: Librarian

U. S. Atomic Energy Commission
Technical Reports Library
Washington, D. C. 20545
Attn: J. M. O'Leary (2)
M. J. Whitman
Report Distribution List — NAS3-6474 — Quarterly and Final (Continued)

U. S. Atomic Energy Commission
Germantown, Maryland 20767
Attn: Col. Gordon Dicker,
SNAP/50/SPUR Project Office
K. E. Horton

U. S. Atomic Energy Commission
Technical Information Service Ext.
P. O. Box 62
Oak Ridge, Tennessee 37831 (3)

Office of Naval Research
Power Division
Washington, D. C. 20225
Attn: Librarian

U. S. Naval Research Laboratory
Washington, D. C. 20225
Attn: Librarian

American Machine and Foundry Company
Alexandria Division
1025 North Royal Street
Alexandria, Virginia
Attn: Librarian

Aerojet-General Corporation
P. O. Box 209
Azusa, California 91702
Attn: Librarian

AiResearch Manufacturing Company
Sky Harbor Airport
402 South 36th Street
Phoenix, Arizona 85034
Attn: Librarian

AiResearch Manufacturing Company
9851-9951 Sepulveda Boulevard
Los Angeles, California 90045
Attn: Librarian

Argonne National Laboratory
Library Services — Dept. 203CE0125
9700 South Cass Avenue
Argonne, Illinois 60439
Attn: Report Section

Atoms International
8900 DeSoto Avenue
Canoga Park, California 91303
Attn: Harry Pearlman

Avco
Research & Advanced Development Dept.
201 Lowell Street
Wilmington, Massachusetts 01800
Attn: Librarian

Battelle Memorial Institute
505 King Avenue
Columbus, Ohio 43201
Attn: Librarian

Dr. E. M. Simmons

Battelle-Northwest Labs
P. O. Box 999
Richland, Washington 99352

The Bendix Corporation
Research Laboratories Division
Southfield, Michigan
Attn: Librarian

The Boeing Company
Seattle, Washington 98100
Attn: Librarian

Brookhaven National Laboratory
Upton, Long Island, New York 11973
Attn: Librarian

Chance Vought Aircraft, Inc.
P. O. Box 5907
Dallas, Texas 75222
Attn: Librarian

Clevite Corporation
Mechanical Research Division
540 East 105th Street
Cleveland, Ohio 44108
Attn: N. C. Beerli
Project Administrator

Convair Astronautics
5001 Kerny Villa Road
San Diego, California 92111
Attn: Librarian

Curtiss-Wright Corporation
Wright-Aeronaunal Division
Woodridge, New Jersey 07075
Attn: S. Lombardo
Report Distribution List - NAS3-6474 - Quarterly and Final (Continued)

Ford Motor Company
Aeronautronics
Newport Beach, California 92660
Attn: Librarian

General Atomic
John Jay Hopkins Laboratory
P. O. Box 608
San Diego, California 92112
Attn: Dr. Ling Yang
Librarian

General Electric Company
Atomic Power Equipment Division
P. O. Box 1131
San Jose, California

General Electric Company
Missile & Space Division
P. O. Box 8555
Philadelphia, Pennsylvania 19114
Attn: Librarian

General Electric Company
Vallecitos Atomic Lab
Pleasanton, California 94566
Attn: Librarian

General Dynamics/Fort Worth
P. O. Box 748
Fort Worth, Texas 76100
Attn: Librarian

General Motors Corporation
Allison Division
Indianapolis, Indiana 46206
Attn: Librarian

Hamilton Standard
Division of United Aircraft Corp.
Windsor Locks, Connecticut
Attn: Librarian

Hughes Aircraft Company
Engineering Division
Culver City, California 90230-2
Attn: Librarian

IIT Research Institute
10 West 35th Street
Chicago, Illinois 60616
Attn: Librarian

Lockheed Missiles and Space Division
Lockheed Aircraft Corporation
Sunnyvale, California
Attn: Librarian

Marquardt Aircraft Company
P. O. Box 2013
Van Nuys, California
Attn: Librarian

The Martin Company
Baltimore, Maryland 21203
Attn: Librarian

The Martin Company
Nuclear Division
P. O. Box 5042
Baltimore, Maryland 21220
Attn: Librarian

Martin Marietta Corporation
Metals Technology Laboratory
Wheeling, Illinois
Attn: Librarian

Materials Research & Development
Manlabs, Incorporated
21 Erie Street
Cambridge, Massachusetts 02139

Materials Research Corporation
Orangeburg, New York
Attn: Librarian

McDonnel Aircraft
St. Louis, Missouri 63100
Attn: Librarian

Union Carbide Metals
Niagara Falls, New York 14300
Attn: Librarian

Mr. W. H. Podolny
United Aircraft Corporation
Pratt & Whitney Division
400 West Main Street
Hartford, Connecticut 06108

United Nuclear Corporation
Research and Engineering Center
Grassland Road
Elmsford, New York 10523
Attn: Librarian
Report Distribution List – NAS3-6474 – Quarterly and Final (Continued)

Union Carbide Corporation
Parma Research Center
P. O. Box 6115
Cleveland, Ohio 44101
Attn: Technical Information Services

Wah Chang Corporation
Albany, Oregon
Attn: Librarian

Westinghouse Electric Corporation
Astronuclear Laboratory
P. O. Box 10864
Pittsburgh, Pennsylvania 15236
Attn: Librarian
R. T. Begley

Westinghouse Electric Corporation
Materials Manufacturing Division
RD #2, Box 25
Blairsville, Pennsylvania
Attn: Librarian

Westinghouse Electric Corporation
Aerospace Electrical Division
Lima, Ohio
Attn: J. Toth

Westinghouse Electric Corporation
Research & Development Center
Pittsburgh, Pennsylvania 15235
Attn: Librarian

Wyman-Gordon Company
North Grafton, Massachusetts
Attn: Librarian

Grumman Aircraft
Bethpage, New York
Attn: Librarian

Lawrence Radiation Laboratory
Livermore, California
Attn: Librarian (2)

Allison-General Motors
Energy Conversion Division
Indianapolis, Indiana
Attn: Librarian

North American Aviation, Inc.
Atoms International Division
P. O. Box 309
Canoga Park, California 91304
Attn: Director, Liquid Metals Information Center

Douglas Aircraft Company, Inc.
Missile and Space Systems Division
3000 Ocean Park Boulevard
Santa Monica, California
Attn: Librarian

Climax Molybdenum Company of Michigan
1600 Huron Parkway
Ann Arbor, Michigan 48105
Attn: Librarian
Dr. M. Semchyshen

Lawrence Radiation Laboratory
Livermore, California
Attn: Dr. James Hadley

MSA Research Corporation
Callery, Pennsylvania 16024
Attn: Librarian

North American Aviation
Los Angeles Division
Los Angeles, California 90009
Attn: Librarian

Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831
Attn: W. H. Cook
W. O. Harms
Librarian
J. H. DeVan
A. Litman

Pratt & Whitney Aircraft
400 Main Street
East Hartford, Connecticut 16108
Attn: Librarian

Engineering Library
Fairchild Hiller
Republic Aviation Corporation
Farmingdale, Long Island, New York
Attn: Librarian
Rocketdyne
Canoga Park, California 91303
Attn: Librarian

Solar
2200 Pacific Highway
San Diego, California 92112
Attn: Librarian

Southwest Research Institute
8500 Culebra Road
San Antonio, Texas 78206
Attn: Librarian

Superior Tube Company
Norristown, Pennsylvania
Attn: A. Bound

Sylvania Electrics Products, Inc.
Chemical & Metallurgical
Towanda, Pennsylvania
Attn: Librarian

TRW, Inc.
Caldwell Res Center
23555 Euclid Avenue
Cleveland, Ohio 44117
Attn: Librarian

Union Carbide Corporation
Stellite Division
Kokomo, Indiana
Attn: Librarian

Union Carbide Nuclear Company
P. O. Box X
Oak Ridge, Tennessee 37831
Attn: X-10 Laboratory,
Records Department (2)

Fansteel Metallurgical Corporation
North Chicago, Illinois
Attn: Librarian

National Research Corporation
405 Industrial Place
Newton, Massachusetts
Attn: Librarian

Varian Associates
Vacuum Products Division
611 Hansen Way
Palo Alto, California
Attn: Librarian

Universal Cyclops Steel Corporation
Bridgeville, Pennsylvania
Attn: C. P. Mueller

Los Alamos Scientific Laboratory
University of California
Los Alamos, New Mexico
Attn: Librarian

Lockheed Georgia Company
Division, Lockheed Aircraft Company
Marietta, Georgia
Attn: Librarian

TRW, Inc.
TRW Systems Group
One Space Park
Redondo Beach, California 90278
Attn: Dr. H. P. Silverman

Sandia Corporation
Aerospace Nuclear Safety Division
Sandia Base
Albuquerque, New Mexico 87115
Attn: A. J. Clark (3)
Librarian
James Jacob