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SPIN-ORBIT RESONANCE OF MERCURY 

Charles Claude Counselman I11 

Submitted to the Department of Aeronautics and Astronautics in 
February, 1969 in partial fulfillment of the requirement for the degree 
of Doctor o f  Philosophy. 

ABSTRACT 

The present oscillations in orbital eccentricity, if considered typi- 
cal for geologic time periods, imply that the probability of Mercury's 
having evolved to the 3 : 2  spin-orbit resonance state is only about 0.02. 
This probability is too low to be believable and indicates that the two- 
dimensional mathematical model hitherto used to describe the evolution 
into resonance may be seriously in error. 
eccentricity (now 0.18) may have been significantly higher (>0.25) in 
the distant past, or, perhaps, Mercury has a liquid core disgipatively 
coupled to its mantle. The first possibility, if realized, would yield 
a high capture probability but requires extensive calculations and has 
not yet been explored. Investigation of the second showed that the 
probability of penetration of the higher resonances, with subsequent cap- 
ture into the 3 : 2  state, is only appreciable ('0.5) for a very narrow 
range of core-mantle coupling constants. For core whose moment of 
inertia is one-tenth that of the mantle, the capture probability is a 
maximum for coupling with a characteristic relaxation time of about 
40,000 years. 
different capture probabilities but has not yet been analyzed. 

Mercury's average orbital 

A three-dimensional model might lead to significantly 

Included in the thesis is a critical discussion of tidal models 
appropriate for planetary spin-orbit resonance problems. 
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SPIN-ORBIT RESONANCE OF MERCURY 

I. Introduction 

Radar observations have revealed t h a t  Mercury's ax ia l  ro t a t ion  is  

d i r e c t  with a s ide rea l  period of 59 * 3 days (Pe t t eng i l l  and Dyce, 1965; 

Dyce, P e t t e n g i l l ,  and Shapiro, 1967), r a the r  than t h e  previously accepted 

value of 88 days (see, f o r  example Dollfus,  1953). Peale and Gold (1965) 

f i rs t  proposed an explanation f o r  t h i s  59-day period s o l e l y  i n  terms of 

t i d a l  torques;  with an o r b i t a l  eccen t r i c i ty  of 0.2 Mercury's o r b i t a l  an- 

gular  ve loc i ty  a t  per ihe l ion  s l i g h t l y  exceeds i t s  sp in  r a t e  so  t h a t  t he  

t i d a l  torque on the  planet  would be reversed i n  d i r ec t ion  during j u s t  

t h a t  port ion of t he  o r b i t  when t i d a l  i n t e rac t ion  i s  s t ronges t .  Although 

the  planet  does spend more t i m e  near aphelion than per ihe l ion ,  the  average 

t i d a l  torque could vanish f o r  a r o t a t i o n  period o f  about 59 days, r e su l t i ng  

i n  a s t a b l e  sp in  state. Colombo (1965) pointed out ,  however, t h a t  t he  ob- 

served sp in  period was almost exact ly  2/3 of an o r b i t a l  per iod,  o r  58.65 

days. 

o r b i t a l  angular ve loc i ty  might ac tua l ly  be s t a b i l i z e d  i f  Mercury had a 

s l i g h t  permanent equator ia l  asymmetry. 

and Shapiro (1965) and soon a f t e r  by o thers  (Liu and O'Keefe, 1965; 

Goldreich and Peale,  1966a; Las l e t t  and Sess le r ,  1966; J e f f e rys ,  1966) 

confirmed t h a t  such a sp in-orb i t  resonance could, under c e r t a i n  conditions,  

be s t ab le .  

H e  suggested t h a t  a near ly  uniform r o t a t i o n  a t  j u s t  3/2 t h e  mean 

Approximate analyses by Colombo 

An average sp in  period exact ly  2/3 of an o r b i t a l  period is a l so  consis- 

t e n t  with many op t i ca l  observations of Mercury (McGovern, Gross, and Rasool, 

1965; Colombo and Shapiro, 1965; Camichel and Dollfus,  1967; Chapman, 1967). 
Due t o  t h e i r  qua l i t y  and t h e i r  spacing i n  time, these  op t i ca l  observations 

are somewhat ambiguous; i . e .  much of the  da ta  appears t o  allow mult iple  

so lu t ions  f o r  t h e  sp in  period (hence p a r t i a l l y  explaining t h e  earlier 

88-day r e s u l t ) .  

so lu t ion  may be q u i t e  small -- perhaps 0.01 days (Camichel and Dollfus 

1967). 

(Dyce, Pe t t eng i l l  and Shapiro, 1967) are less prec ise ,  but  have no such 

But t h e  purely s ta t is t ical  uncertainty of  a given s ing le  

Radar measurements of t he  sp in  rate based on delay-Doppler mapping 
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ambiguity. 

sp in-orb i t  resonance condi t ion i n  f a c t  e x i s t s ,  with Mercury completing 

th ree  a x i a l  ro t a t ions  with respect  t o  the "f ixed"stars ,  and one ro ta -  

t i o n  with respect  t o  the  sun, i n  two o r b i t a l  per iods.  

The radar  and op t i ca l  da ta  taken together  suggest t h a t  a 

In t h i s  paper w e  compute the  p robab i l i t y  t h a t  Mercury's sp in  s t a t e  

would evolve i n t o  t h i s  resonance, f o r  a va r i e ty  o f  a p r i o r i  assumptions 

regarding the  long-term va r i a t ions  of Mercury's o r b i t ,  the  behavior of 
the  t i d a l  torque,  t h e  s i z e  of the  permanent equator ia l  asymmetry of 

Mercury's i n e r t i a  e l l i p s o i d ,  and the  possible  exis tence and nature  o f  
a f l u i d  core within Mercury. 

us t o  i d e n t i f y  the  most l i k e l y  physical p roper t ies  and parameter values 

from among the  various a p r i o r i  p o s s i b i l i t i e s  considered. 

excluded because they lead t o  a vanishing p r o b a b i l i t i e s  of occurrence 

of the  3 : 2  sp in-orb i t  resonance. 

The r e s u l t i n g  computed p r o b a b i l i t i e s  allow 

Many can be 

One might ask how p robab i l i t y  en te r s  i n t o  t h i s  problem, t o  which 

de terminis t ic  c l a s s i c a l  mechanics presumably appl ies .  After  a l l ,  i n  

c l a s s i c a l  mechanics the  equations of motion of a dynamical system and the  

spec i f ied  i n i t i a l  conditions determine t h e  s t a t e  at  a later time with no 

randomness. 

small va r i a t ions ,  e i t h e r  i n  the " i n i t i a l "  s t a t e  of motion o r  i n  t h e  values 

of parameters i n  the  equations of motion, a f f e c t  dec is ive ly  the  f i n a l  

( s tab le)  s t a t e  of the  system, which usua l ly  corresponds t o  Mercury e i t h e r  

being i n  a sp in-orb i t  resonance, o r  r o t a t i n g  a t  the  r a t e  f o r  which the  

t i d a l  torque i t se l f  averages t o  zero. 

t i a l  conditions and parameter values  for the  p lane t  Mercury which makes 

only a s t a t i s t i c a l  treatment reasonable.  

For t h e  sp in  s t a t e  of Mercury, however, we f ind  t h a t  incred ib ly  

I t  is our ignorance of these  i n i -  

Goldreich and Peale (1966b) were the  first t o  publ ish ca lcu la t ions  

of t he  p robab i l i t y  f o r  Mercury t o  be captured i n t o  the  3:2 sp in-orb i t  

resonance s t a t e ;  they considered severa l  t i d a l - f r i c t i o n  models and a range 

of f ixed  values of o r b i t a l  eccen t r i c i ty .  

within Mercury was not considered, although i n  a later paper, Goldreich 

and Peale (1967) computed the  e f f e c t  of core-mantle coupling i n  the  p lane t  

Venus on the  p robab i l i t y  of capture of Venus' sp in  i n t o  a resonance with 

The effect of a f l u i d  core 
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the relative orbital motion of the Earth and Venus. Goldreich and Peale 
(1966b) also discussed the applicability of their Mercury calculations, 
in which the orbital eccentricity e was fixed, to the real case in which 
planetary perturbations cause secular variations of the orbital elements. 
[According to calculations by Brouwer and van Woerkom (1950), Mercury's 
eccentricity can vary between approximately 0.12 and 0.24 in a few hun- 
dred thousand years, due principally to perturbations by Venus and Jupiter.] 
Clearly if the rate of change of eccentricity is sufficiently slow, the 
capture probability may be calculated for fixed values of the eccentricity 
with the effective capture probability being an appropriate (weighted) 
average over the separate values for each eccentricity that can occur. 

- 

Less obvious is the proper simplification for the opposite extreme case, 
in which de/dt is so large that the eccentricity goes through many 
oscillations while the spin state remains in the neighborhood of a resonance. 
Having performed several thousand Monte Carlo trials on a computer, Gold- 
reich and Peale (1966b) concluded for this case "with some confidence that 
the over-all capture probability in an orbit of varying eccentricity is 
intermediate between the largest and smallest values of the capture pro- 
bability (calculated for fixed orbits) over the range of eccentricity." 
For  the eccentricity variation determined by Brouwer and van Woerkom 
(1950) for Mercury, these largest and smallest values of the capture 
probability, for the model used by Goldreich and Peale, are nearly one 
and zero, respectively; hence their conclusion, although unassailable, 
is not particularly useful. Moreover as they also realized, the actual 
value of de/dt for Mercury lies between these limiting cases. A theory 
of resonance capture is clearly needed which includes such orbital ele- 
ment variations. 

In this paper we consider the rotation of Mercury near a spin-orbit 
resonance, developing a theory which encompasses possible variations in 
orbital eccentricity as well as core-mantle coupling. Formulae are de- 
rived for computing the probability of capture into a resonance and are 

ied for various tidal models and for a range of values of the tidal 
the permanent equatorial asymmetry (B-A)/C of 
soid, the core moment of inertia, and the ef- 

fective core-mantle viscosity. 
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11. MATHEMATICAL MODEL 

We w i l l  assume t h a t  Mercury's ax i s  of ro t a t ion  has always remained 

normal t o  i t s  o r b i t a l  plane and so w i l l  neglect  t he  e f f e c t s  of ob l iqui ty  

i n  our ana lys i s .  

sp in  ax is  and t h e  e f f e c t s  of varying o r b i t a l  i nc l ina t ion  w i l l  be consi-  

dered i n  a separa te  publ icat ion.  

The possible  evolut ion of t h e  d i r ec t ion  of t he  p l a n e t ' s  

A.  Torques 

Mercury's r o t a t i o n a l  s t a t e  i s ,  of course,  influenced by the  

t o t a l i t y  of torques ac t ing  on it .  

most important (Colombo and Shapiro, 1965): The torques exerted by the  

sun on a permanent equator ia l  asymmetry of Mercury's moment of i n e r t i a  

e l l i p s o i d  and on the  t i d a l  bulge r a i sed  by the  sun. 

t u rn .  Defining Mercury's t h ree  pr inc ipa l  moments of i n e r t i a  as A,  B, 

and C ,  and assuming t h a t  t he  p l a n e t ' s  sp in  ax is  coincides with the  body 

ax i s  o f  maximum moment of i n e r t i a  C(C>B>A), w e  f ind  t h a t  the  torque ex- 

e r t ed  by t h e  sun on t h i s  permanent asymmetry is  given t o  s u f f i c i e n t  pre- 

c i s ion  by MacCullagh's formula (see, e .g . ,  Danby, 1962) 

We consider only the  two which seem 

We discuss  each i n  

(B - A) s i n  2(8 - v)R , 3 GMo T = - - -  
Pa r3 

where I? is a u n i t  vector  p a r a l l e l  t o  t h e  sp in  ax is ,  (B-A) is  t h e  d i f f e r -  

ence between t h e  two equator ia l  moments, G i s  t h e  g rav i t a t iona l  constant ,  

M -  i s  t h e  mass of t he  Sun, and - r is  the  Sun-Mercury d is tance .  Figure 1 

shows t h a t  (6- v)  is, by d e f i n i t i o n ,  the  difference between t h e  o r b i t a l  

t r u e  anomaly - v and the  angle 8 between the  a x i s  of minimum moment o f  in -  

e r t ia  of t he  p lane t  and t h e  o r b i t  major ax i s .  

0 

The o ther  ex terna l  torque l i k e l y  t o  be s i g n i f i c a n t  is  the  t i d a l  

drag torque (Darwin, 1908). The t i d a l  torque i s  analogous t o  the  asym- 
metry torque j u s t  discussed, t h e  main d i f fe rence  being t h a t  the  asymmetry 

i n  t h i s  case is not a permanent one but i s  due t o  the  deformation of t h e  

-9- 



non-rigid planet by the differential solar gravitational field. 
mechanically lossless planet the tidally induced long axis ("high tide") 
always points directly towards the sun, so that the torque due to the 
tidally-induced asymmetry vanishes (cf. Eq. 1). If there is internal 
dissipation, however, the motion of the tidal bulge lags behind the mo- 
tion of the planet-sun direction, the dissipated energy being supplied 
by the rotation of the planet. 

In a 

The detailed mechanisms of tidal dissipation are uncertain, even 
for the Earth, but it is possible to estimate the magnitude of the gross 
effect (see, for example, MacDonald, 1964; Goldreich and Soter, 1966). 
For our purposes the tidal torque is adequately described by its magni- 
tude (its sense is assumed to be opposed to the planet's rotation as 
seen from the sun) and the manner in which this magnitude depends on, 
for example, the rate of rotation. 
tidal torque can be written as 

In Appendix A, we show that the 

A 
6 4 

(VT+1)-l ( F ) ( k )  sin 26 k , -t - 45 T t - - -  8 

where - n is Mercury's orbital mean motion, - a its orbital semimajor axis, 
R its radius, gthe acceleration of gravity on its surface, pT its tidal 
effective rigidity, and 6 the tidal lag angle. 
to Mercury's effective "Q" 

The relation of this angle 

is also derived in Appendix A. 

How does the tidal lag angle (or the Q) of Mercury vary with the 
spin rate, or with the amplitude of the tidal strain? Unfortunately 
the answer is unknown and we will therefore examine three models for 

angle: (1) 6 constant; (2) 6 proportional to the rate; and (3) 

6 proportional to the amplitude of the tidal strain. The first was 

-10- 



considered by Colombo and Shapiro (1965) and all three by Goldreich and 
Peale (1966). Clearly other models could be constructed, but these 
three should prove representative. 

If the tide always lags the sun by a constant angle 6, independent 
of the amplitude o r  rate of the tidal strain (model l), Eq. (2) can be 
written as 

2 6 dv l+e cos v)' sgn [de - - - dv] Tt/n C = -a(a/r) sgn[g - a] = -a ( 2 dM dM 1 - e  

in which M = nt is the orbital mean anomaly and a is a small positive 
dimensionless constant: 

where in the last relation we assume 1-1 = 20 (see Appendix A ) .  The T 
division by n C makes both sides of Eq. (4) dimensionless; this form 
will be useful below. 
(upper bound on Q) by the following argument (Colombo and Shapiro, 1965). 
Assuming that Mercury's Q has been constant since the planet was formed 
(about 4.5 x 10 years ago), that Mercury's spin period was then about 
20 hours, and that solar tidal friction was wholly responsible for the 
slowing of the spin rate, we find that 

2 

We may place an approximate lower bound on a 

9 

2 - -  - - a n  d20 
dt2 

requires 

or 
Q < u 200 

-11- 



This bound on Q is about the same as that implied by laboratory studies 
on rocks and by seismic studies of the Earth's mantle. (See Appendix A.) 

For model 2, we assume that the tidal dissipation is viscous or, 
de equivalently, that Q-l a B a 

behavior is that of a linear, damped oscillator. 
- 1 .  The corresponding mechanical 

Thus, 

where a is again a small positive constant. 
Because the tide-raising potential varies as r-3, Mercury's orbital 

eccentricity of  0.2 causes the tidal amplitude at perihelion to be about 
3 . 4  times greater than at aphelion. Therefore, an amplitude dependence 
of dissipation mechanisms could be significant f o r  Mercury. 
Q is taken inversely proportional to the strain amplitude (model 3), we 
obtain 

If the planet's 

2 l+e cos v Tt/n C = 

in which a represents the small positive constant. 

B. Equation of Motion 

In our discussion of  the spin equation of motion we ,ake the idal 
torque from Eq. (4). The results of this section will, however, apply 
as well to the other tidal torque formulae, (9) and (10). 

With Eq. (1) representing the torque attributable to the permanent 
asymmetry, the spin equation of motion may be written after division by 
n C throughout, as 2 

(11) 
where here and in what follows we use the dimensionless orbital mean 
anomaly,M, rather than time as the independent variable, and introduce 

-12- 



the  asymmetry parameter 8 :  

3 (B-A) 
2 - C '  

6 5  

E q .  (11) i s  not solvable  i n  closed form. An approximate so lu t ion  can 

be obtained e a s i l y  because a, 6 << 1; thus,  i n  one o r b i t a l  period (M 

increased by ZIT) t he  change i n  t h e  dimensionless sp in  r a t e  de/dM must 

be small compared t o  uni ty .  

of (11) over an o r b i t a l  period holding de/& constant i n  the  in t eg ra t ion ,  

t o  e l iminate  the  t i m e  dependence introduced by - v. 

no ta t ion  of Bellomo, Colombo and Shapiro (1966) i s  usefu l .  The funct ions 

appearing on t h e  r i g h t  s i d e  of Eq. (11) a r e  denoted by P(e, 8 ,  M) and 

T (e, w, M) where 

We may therefore  i n t e g r a t e  t h e  r i g h t  s i d e  

For t h i s  purpose t h e  

and 

- de 
dM - .  u =  

, 

Assuming u t o  be constant inT(e,w,M), we may in t eg ra t e  t o  obtain 

t h e  average value T (e,u) : 0 

ZIT 1 T (e,u) E - ,f T (e,w,M)dM 
2* 0 0 

(14) 

(15) 

where the  zero subscr ip t  i nd ica t e s  t he  zero-th coe f f i c i en t  i n  a Fourier 

series expansion i n  M of the  per iodic  f u n c t i o n T .  

complexity of the  funct ion T ,  t he  i n t e g r a l  i n  (16) may be ca r r i ed  out  

ana ly t i ca l ly  t o  obta in  closed-form expressions f o r  the  average dimen- 

s ion le s s  t i d a l  t o r q u e T 0  f o r  each of t h e  th ree  models previously discussed. 

In s p i t e  of t he  seeming 
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The resulting expressions forT (e,w) are given in Appendix B. 0 

Before integrating P(e,B,M), we express 8(M) in terms of an ini- 
tial value eo 5 e(0) and an (assumed constant) angular rate W. 

of our interest in resonances, we at first consider only half-integer 
values of W, or 

Because 

, -2, -1, 0, 1, 2, 3 ,  ... (17) , k = ... k W =  - 

We observe that P(e,BO + kM/2,M) is a periodic function of M having 
period 27~. The result of an integration over an orbital period may be 
expressed simply as 

27T 

0 
-Pk(e) sin 2e0 = - 27T P(e,e0 + kM/2,M)dM , 

where P 
tions Pk(e) have been derived by Bellomo et al. (1966) for k = - 3 ,  -2,.. . 
. . , 7 .  Goldreich and Peale (1966b) have pointed out that coefficients 
of series expansions in - e through e7 for such functions as Pk(e) are 
given in Cayleyls (1859) tables. 
is presented by Counselman and Shapiro (1969). 

is a function of only the orbital eccentricity e. The func- k - 

An expression valid for arbitrary - k 

The angle eo appearing in Eq. (18) is the instantaneous value of 
8 at perihelion passage (M = 0). 
8 = 8 (mod T) at successive perihelia (M = 2nn, n = 1,2,3 ...). The 
orientation of the planet's principal axes of inertia with respect to 
the orbit major axis is thus precisely the same at every successive 
perihelion passage when W is a half-integer. 
integer value, it is useful to imagine the planet's rotation as being 
observed stroboscopically, i.e. only at perihelion passage, and t o  de- 
fine the instantaneous orientation observed there as 8 ' .  A so-called 

If indeed w = constant = k/2, then 

0 

For w at o r  near a half- 

rotation state is characterized by a fixed value of 8 ' .  If 
the actual rotation rate w is nearly equal to a half-integer then 

-14- 



w i l l  appear (s t roboscopical ly)  t o  be slowly varying. We may then def ine  

der iva t ives  of 8 '  by 

d28 d28 > - = < -  
dM2 dM2 

where t h e  angle brackets s ign i fy  averages taken over an o r b i t a l  period. 

The long-term behavior of  8 '  i s  given approximately by t h e  so lu t ion  of 

the d i f f e r e n t i a l  equation obtained by s u b s t i t u t i n g  the  averaged expres- 

s ions (16), (18), and (19) f o r  t h e  corresponding (unaveraged) quan t i t i e s  

i n  Eq. (11). We obta in  

Because de1/& is  small, 'rO may be expanded near  w = k/2. Defining 

and dropping t h e  prime on 8 ,  w e  may wr i te  

d28 de - + BP,(e) s i n  20 = aTo(e,k/2) + a T  ' (e ,k/2)  a . dM2 0 

For a given resonance number k and eccen t r i c i ty  - e, the  coe f f i c i en t s  Pk, 

T o ,  and r o t  a r e  constant.  The near-resonance motion is  seen t o  obey a 

simple "pendulum" equation, t o  which a constant term and a term propor- 

t i o n a l  t o  rate have been added on t h e  r i g h t  s ide .  

Eq. (22) i s  equivalent t o  t h e  averaged equation derived e a r l i e r  by 
Goldreich and Peale (1966b). O u r  der iva t ion  makes more evident the as- 
sumptions involved and allows one t o  compare t h e  averaged equations with 

the  d i f fe rence  equations derived by Bellomo e t  al .  (1966). 
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Before discussing these assumptions, we describe the properties 

of the solution to Eq. (22). 

pends on the relative magnitudes of the constants a ,  8 ,  Pk,TO, and 
T o t .  The constants a and 6 are small: 
Q, which is unknown, but a may be expected to be in the range from 10 
to lo-' (Q between 20 and 200); 6 ,  also unknown, would be 3 x lom4, if 
Mercury's equatorial asymmetry were as large as the moon's. 
Earth, 8 
with a probably on the order of 6 . 
the orbital eccentricity e, for a specified resonance number k .  For 
the 59-day resonance (k=3), Pk = 0.64 when e = 0.2; usually Pk is on 
the order of unity. The parameters T 
tidal model as well as on the orbital eccentricity and resonance num- 
ber. 

T o  The parameters a and 6 are thus much less 
than unity, whereas the magnitudes of Pk, T o ,  andTO' are usually of 
the order of unity. 

Evidently the nature of the solution de- 

a depends on the planet's tidal 
-8 

For the 
lom5. Thus we can expect a and 6 to satisfy a << 6 << 1, 

2 The parameter Pk depends only on 

- - 

and T o '  depend on the choice of 0 

We will be concerned primarily with physical conditions for which 
-1 and -1 <To1 < 0. 

I - 

By analogy with the familiar behavior of a pendulum, we now re- 
view briefly the qualitative behavior of the solution to Eq. (22), here 
rewritten in simplified form with a dot notation signifying differen- 
tiation with respect to M: 

This review will be helpful in understanding the discussions in the fol- 
lowing sections. 

Clearly, two equilibrium points exist in the interval - ~ / 2  < 8 - < ~ / 2 .  

The equation is satisfied if 6 = 0 and 

1 -1 6 = 8 = -sin (mo/BPk) . 
eq 2 

Since la T I << @Pk, we have 

6 = aT0/28Pk , 
eq 
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or 

. 
Straightforward l i nea r  s t a b i l i t y  ana lys i s  (Bellomo e t  a l . ,  1967) shows 

t h a t  i f  Pk(e) > 0,  t h e  f ixed point  (26) is always unstable ,  and t h a t  i f  

TO1 < 0,  t h e  o ther  f ixed point  (25) i s  asymptotically s t a b l e .  

c i l l a t i o n s  about (25) have a c i r c u l a r  frequency approximately ( 2 8  Pk) 

and decay as exp (a  T ' M/2) with M approaching i n f i n i t y .  

Small os- 
1 / 2  

0 

If  a = 0 (or if a # 0,  but TO1 = 0 ) ,  an energy in t eg ra l  e x i s t s  

(Goldreich and Peale, 1966b). I t  is  e a s i l y  v e r i f i e d  by subs t i t u t ion  t h a t  

i s  an i n t e g r a l  of (23) i f  a = 0 ;  

is an i n t e g r a l .  The first and second terms i n  (27) may be i d e n t i f i e d  

a s  a k i n e t i c  and po ten t i a l  energies ,  respec t ive ly .  Eq. (23) thus des- 

c r ibes  the  one-dimensional conservative motion of a c l a s s i c a l  p a r t i c l e  
2 i n  a per iodic  po ten t i a l  -BPkcos 0 i f  a= 0; i f  a # 0, but To1 = 0,  a s l i g h t  

uniform s lope  is superimposed on the  per iodic  po ten t i a l  pa t t e rn .  The 

equilibrium so lu t ions  (26) and (25) c l e a r l y  correspond, respec t ive ly ,  

t o  p a r t i c l e s  balanced on the  top  of a po ten t i a l  llhumpll and r e s t i n g  s t a b l y  

i n  the  bottom of a po ten t i a l  l fwel l f l .  

analogy, a p a r t i c l e  confined t o  one of t he  pe r iod ica l ly  spaced "wells" 

represents  Mercury trapped i n  a sp in-orb i t  resonance. 

t a t i n g  f a s t e r  than the  ha l f - in teger  resonance r a t e  but being decelerated 

by t h e  t i d a l  torque (T +T '8  < 0) i s  represented by a p a r t i c l e  moving 

through a force  f i e l d  composed of the  gradient  of a per iodic  po ten t i a l  

and a s l i g h t ,  ve loc i ty  dependent drag term. 
absorbs a l l  of the  p a r t i c l e ' s  k i n e t i c  energy and it s tops  a t  a point  cor- 

responding t o  the "uphill" s i d e  of a po ten t i a l  well  and begins t o  f a l l  

backward. The subsequent motion w i l l  depend c r i t i c a l l y  on t h e  coef f i -  

i f  a # 0 but To1 = 0, then (E - aT00) 

In t h e  par t ic le -poten t ia l -wel l  

The p lane t  ro-  

. 
0 0  

Eventually the  drag term 

c ien t  T '. If Tof = 0 t h e  dynamic system i s  exac t ly  r eve r s ib l e  i n  

the p a r t i c l e ' s  subsequent motion i s  j u s t  t he  reverse  of t h a t  which 
0 t i m e  : 

pre- 
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0 
The analogous 

ceded the moment of zero ve loc i ty .  

term is replaced i n  f u l l  during the  reversed motion. 

planet  slows t o  the  resonance sp in  rate and passes on, continuing t o  

dece lera te .  I f ,  on the  other  hand, T < 0, t h i s  term causes d i s s i -  

pat ion both as the p a r t i c l e  moves forward before stopping, and again 

as  it moves backwards through t h e  same periodic  po ten t i a l .  

on how much energy i s  l o s t  i n  the "f inal"  well  and on j u s t  how much 

k i n e t i c  energy t h e  p a r t i c l e  had when enter ing the last w e l l ,  t h e  "re- 

versed" p a r t i c l e  may o r  may not be ab le  t o  escape from t h i s  f i n a l  

well. If it escapes, t he  p a r t i c l e  w i l l  keep on going backwards; i f  

not,  i t  w i l l  be trapped, moving back and f o r t h  with ever-decreasing 

o s c i l l a t i o n s ,  tending asymptotically toward the  s t a b l e  equilibrium 

pos i t ion  (8 = clT0/2f3Pk) corresponding t o  the bottom of t h e  well. 
eq 

The p lane t  corresponding t o  the  trapped p a r t i c l e  reaches the reso- 

nance sp in  r a t e  and passes it only temporarily, with the instantaneous 

spin r a t e  performing ever-decreasing o s c i l l a t i o n s  about the  resonance 

value.  

number of times per  o r b i t ,  and the  p l ane t ' s  equator ia l  p r inc ipa l  a x i s  

of minimum i n e r t i a  makes an angle with the  o r b i t  major a x i s  a t  pe r i -  

hel ion passage o f  j u s t  8 

The energy subtracted by the  T 

0 

Depending 

A t  f i n a l  equilibrium t h e  planet  r o t a t e s  by a ha l f - in t eg ra l  

= clT0/2f3Pk f o r  Pk(e) > 0. 
eq 

Assuming t h a t  t h e  i n i t i a l  k i n e t i c  energy of t h e  p a r t i c l e  is a 
uniformly d i s t r ibu ted  random var iab le ,  w e  can e a s i l y  compute t h e  "cap- 

ture" p robab i l i t y  f o r  t he  p a r t i c l e ,  i . e .  t h e  p robab i l i t y  t h a t  t h e  par- 

t i c l e  becomes trapped i n  the  well where it first s tops ,  r a the r  than 

r o l l i n g  backwards out of t h i s  well. 

obtained by considering the  poss ib le  range of k i n e t i c  energy of t he  

p a r t i c l e  as it enters the  f i n a l  well, and by comparing t h i s  range with 

the  energy d i s s ipa t ed  i n  the f i n a l  well due t o  To1 being negative 

(Goldreich and Peale,  1966b). 

The p robab i l i t y  of capture is 

If we denote t h e  p a r t i c l e ' s  pos i t i on  by 8, i n  analogy with the  

va r i ab le  descr ibing the  a x i s  o r i en ta t ion  at  per ihe l ion  i n  t h e  planet  

case, then the  p a r t i c l e ' s  motion through the  f ina l  (nth) - well is  boun- 

ded by the  unstable  f ixed  poin ts  (near t he  po ten t i a l  maxima) at  
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1 1 8 

be the f i n a l  w e l l ,  the  k i n e t i c  energy of the p a r t i c l e  as it passes 

must be l e s s  than E ,  where 

= (n - 7)7'f - aT0/26Pk and en+l = (n + T)r - aTO/2@Pk. For  t h i s  t o  

n 

n 

plus  whatever energy t h e  T ' term causes t o  be d iss ipa ted  i n  the  mo- 

t i o n  from en t o  8 

ve loc i ty  of the  p a r t i c l e  i n  the  f i n a l  well is given approximately by 

Eq.  (27), with t h e  constant E appropriate  f o r  the conditions ex is t ing  
a t  the  p a r t i c l e ' s  en t ry  i n t o  t h e  f i n a l  well. 

w i l l  vanish i n  t h i s  f i n a l  well due t o  d i s s i p a t i o n  caused by forces  

proportional t o  a, and s ince  a << B,  we must have E << BP, i n  the  f i n a l  

well. Therefore, we s e t  E = 0 i n  (27) and solve f o r  0 i n  terms of 8: 

0 
This d i s s i p a t i o n  i s  velocity-dependent, but t h e  n + l '  

Since the  k i n e t i c  energy 

. 

The energy d iss ipa ted  as 8 increases  from en t o  
6 ,  where 

i s  approximately 

n+ 1 e 
6 alTOtli)d8 

n 8 
(30) 

(We are assuming, of course, t h a t  To1 < 0.) Subs t i tu t ing  (29) i n t o  (30) 

and in tegra t ing  y i e l d s  

Thus at  8 = 8 t h e  k i n e t i c  energy Kn must l i e  i n  t h e  range n 

0 < K n < -7'faTo - 2aTOI (2BPk)1'2 = E + 6 , (32) 

i n  order f o r  the k i n e t i c  energy t o  vanish within t h e  - nth  w e l l .  

p a r t i c l e  w i l l  be trapped t h e r e  unless  Kn a c t u a l l y  exceeds 26 because 

the To'  d i s s i p a t i v e  effect acts independently of  the  s ign  of 8 and hence 

i s  cumulative over the  forwards and backwards motion within t h e  - nth w e l l .  

The 

. 
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If a l l  values of Kn i n  t h e  range (32) are equally l i k e l y ,  then the  

capture  p robab i l i t y  P {capture) is simply 

P {capture) = 2 6 / ( ~  , (33) 

as  first given by Goldreich and Peale (1966b). 
g rea te r  than 1, then of course P {capture) = 1. 

If (33) yie lds  a value 

Hence capture becomes 

c e r t a i n  when 6 - > E. This condition has an appealing and useful  i n t e r -  

p re t a t ion  i n  terms of what may be ca l l ed  the "width" of t he  resonance, 

This width w 

about the  s t a b l e  point  ( 2 5 ) .  

var i a t ion  i n  the (average) spin r a t e  6 when the p lane t  i s  first trapped 

i n  the  f i n a l  well, as seen i n  Eq. (29) .  

wr i t ten  i n  terms of w as  

is  equ-a1 t o  the  c i r c u l a r  frequency o f  small o s c i l l a t i o n s  

It is  a l so  equal t o  the  amplitude of the  
B 

The condition 6 > E may be 
I 

B 

We see t h a t  capture i s  c e r t a i n  i f  twice the  va r i a t ion  i n  t i d a l  torque 

across one resonance width exceeds IT times the  (average) value of t he  

t i d a l  torque a t  the  center  of t h e  resonance. 

(wB lo-' when B t h e  inequal i ty  (35) requi res  ] T O t l > > l T O I .  

Because ITol I  is of t he  order of un i ty  f o r  p laus ib le  t i d a l  models and 

reasonable values of o r b i t a l  eccen t r i c i ty ,  l a rge  capture  probabi l i ty  

evident ly  requi res  t h a t  IT 1<<1; i n  o the r  words, for  capture  t o  be 

l i k e l y ,  t h e  resonance sp in  rate must be very near ly  equal t o  t h a t  sp in  

r a t e  f o r  which the  average t i d a l  torque vanishes. 

rate is  just  the  - same equilibrium rate t h a t  would r e s u l t  i n  t h e  absence 

of an equator ia l  asymmetry (f3 = 0),  it would appear t h a t  resonance 

capture  does not a l ter  the  equilibrium rate subs t an t i a l ly .  

capture  w i l l  be l i k e l y  only a t  sp in  rates within a narrow "resonance 

Because w is s o  small B 

0 

Since the  la t ter  

Resonance 
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width" of t h e  t idal- torque equilibrium rate. In effect, Peale and 

Gold's (1965) explanation of the 59-day spin period, although wrong, 

i s  not far  wrong i f  the  assumptions upon which Eq. (33) depends a r e  
va l id .  

How v a l i d  are these  assumptions? A s  was already mentioned, the 

effect of varying o r b i t a l  e c c e n t r i c i t y  must be analyzed. But even f o r  
f ixed e,  t h e r e  are e r r o r s  committed i n  passing from the  o r i g i n a l  equa- 

t i o n  of motion (11) t o  the averaged Eq.(20). To the  extent t h a t  terms 

of order B 
i s  adequate. 

Eq. (11) through the  "feedback" of the  first order  v a r i a t i o n  i n  8 i n  

the term 'bP(e, 8,  M).] 

B2 2 a.  
of  t h e  form B F(8,B)to t h e  r i g h t  s i d e  of Eq. (20), i n  which F(8,6) is 

some function of 8,6 whose absolute  value is  not much greaqer than 

u n i t y  f o r  the  8,B values of i n t e r e s t .  

t i o n s  of the equilibrium poin ts  8 [Eqs. (25) and (26)] may be s h i f t e d  

s l i g h t l y ,  by an amount of order 13. 
previously computed displacement of order (a/B) fram the  pos i t ions  

8 = 0 and 8 = +r /2 .  

(3 << 1. Theequilibrium point  near 8 = k r / 2  must remain unstable.  How- 

ever, the s t a b i l i t y  of the other  equilibrium point  (near 8 = 0) is  now 

brought i n t o  question. With terms neglected, t h i s  point  was shown 

t o  be asymptotically s t a b l e  f o r  P,(e) > 0 and To'  < 0, with the dam- 

ping ra te  being of order a.  
of terms of order B2 could increase it o r  make the  equilibrium unstable.  

The damping of l i b r a t i o n s  about the  equilibrium near 8 = 0 is, however, 

int imately r e l a t e d  t o  the resonance capture mechanism: i n  our o r i g i n a l  

model it was t h i s  damping which allowed capture.  

of capture p r o b a b i l i t i e s  based on per turbat ions of order a t o  the  energy 

i n t e g r a l  (27), may be rendered inva l id  by the  presence of terms of order 

B2 i n  the averaged equation of motion (20).  

2 may be neglected next t o  terms of order a ,  our der iva t ion  
2 [These terms of order f3 may arise i n  the  so lu t ion  of 

But f o r  Mercury it i s  q u i t e  possible  t h a t  

Let us consider the possible  consequences of  adding a term 
2 

We observe first t h a t  the  posi- 

eq 
This displacement compares t o  a 

Such displacements are inconsequential f o r  a << 

2 

Additions t o  t h i s  very weak damping rate 

Thus t h e  discussion 
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Even i f  the  po ten t i a l  d i f f i c u l t i e s  w e  have mentioned do not occur, 

w e  must s t i l l  consider t he  p o s s i b i l i t y  t h a t  the k i n e t i c  energy of the  

"pa r t i t l e "  enter ing the  t l lasttf  po ten t i a l  well is not uniformly d i s t r i -  

buted i n  an in t e rva l ,  but takes  on c e r t a i n  values p re fe ren t i a l ly ,  re- 

s u l t i n g  from the  de t a i l ed  dynamics implied by Eq. (11). In the  next 

subsection, we develop an approach t o  the  so lu t ion  of (11) which an- 

swers these  questions and allows us t o  explain adequately the spin-orbi t  

resonance capture conditions.  

C. Transformation Method 

A d i f f e r e n t  method of so lu t ion  of Eq. (11) which leads t o  Eq.(20), 

but avoids the object ions r a i sed  t o  simple f i r s t - o r d e r  averaging, can 

be based on a monodromy transformation. We first rewrite (11) i n  t h e  

normal form 

with 

a W(e,B,w,M) = P(e,B,M) + gT(e,w,M) = P + yT , 

where the  funct ions P(e,B,M) and T(e,w,M) a r e  the  same as defined pre- 

viously i n  (13) and (14),  and y i s  considered t o  be a constant inde- 

pendent of f3. We then assume t h a t  t h e  so lu t ion  may be expanded i n  a 
power series i n  8: 

a, 

= 1 BiBi(M) 
i = O  

m 

i = O  

where 
ei(0) = wi(0) = 0; i = 1 ,2 ,3 ,  ..., 

(37) 

(39) 
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and eO(O)  and u (0) match the initial conditions. 
expansions into the equations of motion and equating separately the co- 
efficients of terms multiplied by the same power 8 ,  we obtain 

Substituting these 0 

de 
dM i '  w - i = 0,1,2, ... - =  

= o  - 
dM 

etc. 
sions f o r  the members ei(M), w. (M) of the power series solution (38). 

[The solution complete to i = 2, together with expressions for e3(M) 

and w3(M) for the special case of vanishing orbital eccentricity, is 
presented in Appendix C. The latter expressions are applicable to 
general spin-orbit coupling problems, e. g .  the problem of Venus ' spin. ] 

These equations may be solved serially to obtain explicit expres- 

1 

The series solution (38) provides an explicit expression for the 
planet's rotation angle 8 and spin rate w as a function of M and the 
initial conditions O(0) and w(O), but cannot be expected to converge 
for M much greater than f3-1'2. However we expect that over one orbital 
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period (0 < M <  IT) a good approximation t o  the  exact so lu t ion  i s  pro- 

vided by the  f i r s t  few terms i n  t h e  series. Although t h i s  expectat ion 

might be (and has been)checked by accurate  numerical so lu t ions  of Eq. 
(36), a more general  approach is  poss ib le  and preferab le .  

_ -  

Because the  coe f f i c i en t s  i n  the  exact equation of motion a r e  per io-  

F i r s t ,  d i c a l l y  time-varying, t he  so lu t ion  may be obtained i n  two s t eps .  

the  transformation is  found which r e l a t e s  the  values of 0 and w at  time 
M = 2n t o  t h e  i n i t i a l  values  0 (0) and w(0) .  

t imes M = 2nn, n = 2,3,4, ... a r e  evident ly  obtained by i t e r a t i o n  o f  

t h i s  single-period transformation (cal led a monodromy transformation 

i n  d i f f e r e n t i a l  equation theory) .  Second, the  so lu t ion  is completed 

i n  an obvious way f o r  a l l  time i f  w e  know 0(M) and w(M) f o r  0 < M < 2n 

i n  terms of 0 ( 0 ) ,  w(0) .  

The values  of 0 and w a t  

O f  course we need t o  know only the  monodromy transformation exact ly  

i n  order t o  descr ibe  t h e  sp in-orb i t  resonance evolution. 

t ua t ions  i n  0 and w which occur between the  times of successive pe r i -  

he l ion  passages a r e  represented s u f f i c i e n t l y  w e l l  by one o r  two terms 

of (38) f o r  t h e  i n t e r p r e t a t i o n  of observations of Mercury's ro t a t ion ,  

and a r e  otherwise unin te res t ing .  

The small f luc-  

A first approximation t o  the exact monodromy transformation f o r  

E q .  (36) is  provided by t runca t ing  (38) a t  i = 1 and s e t t i n g  M = 2 ~ .  

We obtain (see Bellomo e t  a l . ,  1967) 

0(2IT) = eo(2IT) + B0,(2IT) + O(f3 ) 2 1  
(45) 

where 

eO(2n) = e01 + 27Tw0' 

w0(21T) = wo' 

and 
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s i n  (2eO1 + 47ru0') - s i n  2eO1 
+ (471 

with e o 1  and w 

a r e  as defined i n  Eq. (18) and To is  the average t i d a l  torque, defined 

i n  (16). Expl ic i t  expressions f o r  T a r e  given i n  Appendix B.  The 

equilibrium points ,  o r  f ixed poin ts  of the  monodromy transformation, 

a r e  found by requir ing e(2-i~) = 0 !(mod T ) ,  and w(27r) = w o l  i n  Eq. (45). 0 
In a l i n e a r  s t a b i l i t y  ana lys i s  of these  f ixed poin ts ,  the locat ion i n  

t h e  complex plane of the p a i r  of eigenvalues of t h e  matrix J ,  

being the  i n i t i a l  conditions:  the c o e f f i c i e n t s  P . (e )  
0 J 

0 

,., 

J =  - 

i s  evaluated f o r  the f ixed poin ts .  

a = 0 successive values of 0,w a t  times M = 2nr, n = 1,2,3,  ..., f a l l  

along curves i n  the 0,w plane corresponding t o  constant-value contours 

of t h e  energy i n t e g r a l  E given i n  Eq. (27) and derived from the  

averaged equation of motion (22). In general  w e  f ind ,  as expected, t h a t  

t h e  above d i f fe rence  equation approach, used by Bellomo e t  a1.(1967), 

and t h a t  of Goldreich and Peale (1966b), both exact t o  first order i n  

8,  are equivalent t o  t h i s  accuracy. In ne i ther  was the e f f e c t  of 

higher-order terms i n  f3 discussed. 

I t  is  possible  t o  show t h a t  f o r  

In t h e  second-order approximation t o  the monodromy transformation, 

-25- 



I '  2 3 
w(2a) = w0(2a) + Pw1(2n) + P w,(Zn) + O ( 6  ) 

(49) 

we could set 

and hope to solve the now incredibly more complicated (second-order in 
P) equations to find the fixed points. 
might be completed to determine the behavior of the solution in the 
neighborhood of these points. 
unnecessary. 

Then a linear stability analysis 

Fortunately following this procedure is 

The precise locations of the fixed points near 8 = 0 and 8 = a/2 

are unimportant. 
need not be known exactly, although the complex part of this frequency, 
which measures the exponential damping rate of librations, must be known 
with an absolute error much less than laT ' I .  
(49) representing secular accelerations of the spin must be identified 
if they are comparable to aTo. 

because the libration damping rate and the secular acceleration together 
determine the resonance capture probability. 

Also the libration frequency at the point near 8 = 0 

Similarly any terms in 0 

The latter two requirements are essential 

Inspection of the results in Appendix C shows that the second-order 
terms in (49) contain no secular-acceleration terms. Only the librational 
damping remains to be examined. We may proceed without knowing the exact 
fixed-point coordinates by taking advantage of the fact that Eq. (36) re- 
presents a slightly perturbed Hamiltonian system (i.e. the monodromy 
transformation of the system is nearly a contact transformation). 
fact is utilized in the capture probability calculation. 

Following closely the development of Counselman (1968), we consider 

This 

the more general single degree-of-freedom dynamic system whose equa- 
tion of motion is, in Lagrangian form, 
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. 
where q i s  a generalized coordinate,  q = dq/dt ,  its associated gener- 

a l i zed  ve loc i ty ,  and - t t h e  time. We assume t h a t  the  Lagrangian L and 

t h e  generalized fo rce  f *  have an e x p l i c i t  per iodic  time-dependence: 

f o r  - a t < m .  Evidently Eq. (11) i s  i d e n t i c a l  with (51) i f  we i d e n t i f y  

q = e  

t = M  i 

where T is the  funct ion defined i n  (14). I t  i s  e a s i e r ,  however, t o  

work with t h e  more general  equation, (51). 

If t h e  system (51) is  Hamiltonian, it i s  always poss ib le  t o  e l i -  

minate f* from the  r i g h t  s i d e  by including an appropriate  work function 

i n  the  Lagrangian. Hence w e  assume t h a t  f* represents  only those foces 

not s o  representable .  The general ized momentum p =(aL/aq) and the  

Hamiltonian H: 

. 

may be defined i n  any case and y i e ld  t h e  p a i r  of f i r s t - o r d e r  equations 

. a H  
q = a p  

P = - -  aH + f (q ,p , t )  as 

-27- 



i n  which the  function f (q ,p , t )  replaces  f* ( q , i , t ) .  

If a so lu t ion  of Eqs. (55) is denoted by the 2 x 1 matrix x, 
.., 

and a neighboring so lu t ion  by x + 6x, t h e  deviat ion 6x obeys t h e  l i n e a r  - 
matrix d i f f e r e n t i a l  equation 

6x = A(t) 6x d 
d t  -.., - - 

i n  which A is  the  2 x 2 matrix - 

L 

(57) 

evaluated along x ( t )  . 
.., 

We a re  in t e re s t ed  i n  the so lu t ion  t o  (55) only a t  the  times t = 2nn, 

n = 0,1,2,3 ..., i . e .  only s t roboscopical ly .  The general  so lu t ion  x ( t ) ,  

evaluated a t  t =  IT, defines  the  monodromy transformation of (55) which 

maps (q,p) at  t = 0 i n t o  (q,p) a t  t = 21r. 

mapping evident ly  corresponds t o  a per iodic  so lu t ion  of (55). Such 

per iodic  so lu t ions ,  w e  have seen, charac te r ize  the  spin-orbi t  resonance 

of Mercury. Two f ixed  poin ts  e x i s t  f o r  each resonance, one near (9,u) 
= (O,k/2) and the  o ther  near (n/2,k/2) f o r  each in teger  k. (9 is de- 

f ined modulo IT.) The behavior of the  monodromy transformation i n  t h e  

neighborhood of t he  f ixed  poin ts  is  determined by Eq. (57). 

w 

A f ixed point  (qo,po) o f  t h i s  

When the  matrix A ( t )  i n  (57) is evaluated along the  per iodic  solu- .., 

t i o n  x ( t )  .., corresponding t o  a stroboscopic f ixed poin t ,  then Eq. (57) 
becomes a l i n e a r  d i f f e r e n t i a l  equation with per iodic  coe f f i c i en t s .  This 
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type of equation is  the  subjec t  of Floquet theory.  

t h i s  case (Counselman 1968) t h a t  t h e  so lu t ion  of (57) obeys 

I t  i s  known i n  

i n  which J is the  2 x 2 constant matrix defined by Eq. (48) with the  

elements evaluated a t  the  f ixed  point .  

point  depends on the  eigenvalues of J ,  which must be e i t h e r  both real 

o r  a conjugate complex p a i r .  

o r  both eigenvalues f a l l  ou ts ide  of a u n i t  c i r c l e  centered on the  

o r ig in  i n  t h e  complex plane.  

i f  both eigenvalues f a l l  i n s ide  t h e  u n i t  c i r c l e .  If they f a l l  on the  

u n i t  c i r c l e  a t  angles+$ with respect  t o  t h e  r e a l  ax i s ,  then the  strobo- 

scopic values Sx (2nTr) a r e  per iodic  samples of purely o s c i l l a t o r y  func- 

t i o n s  of t he  form s i n  ($t /2~r)  o r  cos ($t /21~) .  

- 
The s t a b i l i t y  of the  f ixed 

- 
The f ixed point  is  unstable  i f  e i t h e r  

The f ixed  point  i s  asymptotically s t a b l e  

-* 

The Jacobi-Liouvi l le  formula (Cesari ,  1962) r e l a t e s  the  determinant 

of 2 t o  t h e  t r a c e  (sum of diagonal terms) of &: 

2Tr 

0 
d e t  J = exp f tr (A) d t  - - 

A t  t h i s  point  the  advantage of having used a general  Lagrangian formu- 

l a t i o n  of t h e  equation of motion becomes apparent: In the  sum of the  

diagonal terms of A(t)  i n  E q .  (58) t h e  mixed p a r t i a l  de r iva t ives  can- 

eel, leaving simply 
- 

a f  
aP 

t r ( 5 )  = - 

Using t h e  d e f i n i t i o n s  given i n  (53) and subs t i t u t ing  (61) i n t o  (60) 

w e  ob ta in  

de t  J - = exp[2mTo' (e,k/Z)+O(aB)] , 
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where T ' (e ,k/2)  i s  defined i n  (21). The determinant of J is, of course, 

equal t o  the  product of i t s  eigenvalues. 

point near 6 = 0 w e  f i nd  from Eqs. (45) t o  (48), but t o  only first order 

i n  8 ,  t h a t  these eigenvalues l i e  near ly  on the  u n i t  circle i n  the  com- 
plex plane a t  angles of + 2 1 ~ ( 2 f 3 P ~ ) ~ / ~ .  Eq. (62) now cont r ibu tes  t h e  ad- 

d i t i o n a l  information t h a t  when aTo l  = 0 these  eigenvalues, t o  order aB, 

l i e  on t h e  u n i t  circle. The eigenvalues are ana ly t i c  functions of a 
a t  a = 0. Therefore, s ince  f o r  Mercury a << B << 1, these  angles of 

these  eigenvalues a r e  not changed s i g n i f i c a n t l y  when a # 0. However 

0 ..d 

For t he  stroboscopic f ixed 

- 

when a T o l  < 0 the  eigenvalues must l i e  s l i g h t l y  in s ide  the  u n i t  c i rc le  

a t  angles near i 2 1 ~ ( 2 0 P ~ ) ~ / ~ ,  and t h e i r  magnitudes must be almost exact ly  
c) 

equal t o  exp (aTO'M/2). 

averaged equation of motion (20) with constant coe f f i c i en t s  represents  

the  l i b r a t i o n a l  damping co r rec t ly  at l e a s t  t o  order a@. 

There is  no damping e f f e c t  of order B' and the  

D .  S t a t i s t i c a l  Considerations 

We now demonstrate t h a t  the s t a t i s t i c a l  p roper t ies  of the  so lu t ion  

of (12) a re  adequately represented by our simple model based on Eq.(20). 

The above r e s u l t s  a r e  usefu l  f o r  t h i s  purpose. 

behavior might be troublesome; i . e .  only when w is within a few '!resonance 

widths" of the  resonance r a t e  k/2.  Before the  sp in  rate approaches t h a t  

near t o  a resonance, t he  f luc tua t ions  i n  r o t a t i o n  are small and rap id ,  

and the time required t o  dece lera te  from, say,  120% t o  110% of the  re- 

sonance rate i s  determined mostly by the  t i d a l  coe f f i c i en t  a. 
-8  7 t h e  k = 3 resonance with a =: 10 

ro t a t ions  t o  be completed i n  such a t i m e  i n t e r v a l ,  although the  exact 

number of ro t a t ions  cannot be known any b e t t e r  than is the  value of a. 

The change i n  w during any f ixed time i n t e r v a l  M2 - M1 is s imi l a r ly  un- 

ce r t a in ,  and is  of the  order  of Aa*To(e,k/2) (M2-M1) where Aa represents  

the  uncer ta in ty  i n  a. 

say, a gaussianly d i s t r ibu ted  random var iab le .  If i ts  standard devia- 

t i o n  is any more than about t h e  two dependent random var iab les ,  

6(mod IT) and w, after any reasonably l a rge  t i m e  i n t e r v a l ,  w i l l  be q u i t e  

Only the  near-resonance 

Thus f o r  

we would expect on t h e  order of 10 

For Mercury it is  reasonable t o  consider a as, 
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uncorrelated because t h e i r  values depend on d i f f e r e n t  numbers of i n t e -  

gra t ions  o f  d 8/dM Since a is not known t o  within even an 
order of magnitude, we may consider t h a t  a t  a time when the  p l a n e t ' s  

sp in  approaches a resonance t o  within a few "resonance widths", t he  

p robab i l i t y  dens i ty  f o r  the sp in  s t a t e  is  nonzero and approximately 

uniforin i n  a p a r t  of t he  0 ,  w plane extending i n  0 from -7r/2 t o  +7r/2, 

and i n  w over an i n t e r v a l  many times 

dens i ty  i n  the  phase plane,  w e  can d iscuss  the  subsequent near-resonance 

behavior of t he  system i n  which is  descr ibable  conveniently i n  terms 
of poin ts  i n  the  phase plane.  Every point  i n  t h e  region of non-zero 

p robab i l i t y  dens i ty  w i l l  follow a t r a j e c t o r y  which e i t h e r  converges 

(stroboscopically) t o  the  s t a b l e  equilibrium po in t ,  r e su l t i ng  i n  "cap- 

ture",  o r  passes through the  resonance region t o  "escape". 

generalized forces  a r e  e x p l i c i t l y  time-varying, i n  general  t h ree  va r i ab le s  

(e.g. 8 ,  w, and M), must be spec i f ied  t o  completely determine i ts  f u t u r e  
motion. But t h e  two va r i ab le s  8 ,  w s u f f i c e  i f  we consider t h e  s t a t e  

only s t roboscopical ly ,  t h a t  is  a t  times M=2nr with n an in t ege r .  

s imp l i c i ty  when r e f e r r i n g  t o  motion near the k t h  resonance, w e  use the  

abbreviat ion 8 E w-k/2 f o r  t he  sp in  ra te .  

2 2  = (olTo). 

Using t h i s  p robab i l i t y  

Because t h e  

For 

e 

The sp in  motion s a t i s f y i n g  Eq. (11) generates a sequence of po in ts  

8,  8 from any given i n i t i a l  point  i n  t h e  phase plane.  
transformation of t he  d i f f e r e n t i a l  equation maps the  n th  point  of t h i s  

sequence i n t o  t h e  ( n + l ) s t .  

along t h e  continuous t r a j e c t o r i e s  which s a t i s f y  Eq. (23). However, w e  

must e s t a b l i s h  t h a t  t he  motion of an ensemble of i n i t i a l  phase po in t s ,  

s a t i s f y i n g  a p a r t i c u l a r  p robab i l i t y  d i s t r i b u t i o n ,  leads t o  the  same 

capture  and escape p r o b a b i l i t i e s  as are implied by t h e  same d i s t r i b u -  

t i o n  f o r  phase poin ts  which follow t h e  pendulum equation (23). 
may be accomplished i n  two s t eps .  

The monodromy 

These point  sequences tend t o  f a l l  near ly  

This 

F i r s t ,  w e  show t h a t  i n i t i a l  po in t s  d i s t r i b u t e d  uniformly over a 

given a rea  of the  phase plane (area dens i ty  E d)  w i l l  remain uniformly 

d i s t r i b u t e d  within t h e i r  boundary for a l l  time, as each member point  

i s  ind iv idua l ly  transformed according t o  t he  monodromy transformation. 
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The shape of the boundary becomes d i s t o r t e d ,  but the densi ty  of points  

within the area grows uniformly as the area shrinks,  t o  t h e  extent t o  

which To1 is constant over t h a t  region. These proper t ies  a r e  derived 

from the Jacobian of t h e  monodromy transformation [see Eqs. (60)-(62)]. 
(Previously w e  evaluated the Jacobian only a t  f ixed points  of the t rans-  

formation, but E q .  (60) and (61) a r e  v a l i d  f o r  any so lu t ion . )  Since 

the der iva t ive  To'  of the t i d a l  torque w i l l  be slowly varying, we may 

employ E q .  (62) f o r  the e n t i r e  region -*/2 < 8 < ~ r / 2  near the  kth re -  
sonance 161 << 1 and write 

- -  

d(271-n) = exp ( - 2 ~ a T ~ '  (e,k/2)n)d(O) (63) 

which relates the densi ty  of points  i n  the "occupied" p a r t  of the phase 

plane after n - o r b i t a l  revolut ions t o  the corresponding i n i t i a l  densi ty ,  

d(0) .  (Here w e  neglect t h a t  p a r t  of the argument of the  exponent which 
is of order a@.) The monodromy transformation is  area-preserving only 

when 

merely s t a t e s  Liouvi l le l s  theorem: For a Hamiltonian system, the den- 

s i t y  of points  i n  phase space is  unchanged by the na tura l  motion of the  

system. 

t h e  near-resonance region ( i .e . ,  where T remains constant) .  This 

general  contract ion per o r b i t a l  revolut ion is  necessary, of course, 

f o r  t h e r e  t o  be a convergence of t r a j e c t o r i e s  a t  the s t a b l e  equi l i -  

brium point  near ( 0 , i )  = (0,O). 

T o f  = 0, i n  which case it is a contact transformation and ( 6 3 )  

When a T o (  < 0 t h e  mapping reduces area by a constant r a t i o  over 

0 

The constancy of the Jacobian allows us t o  der ive the resonance 

capture p r o b a b i l i t i e s  very simply. We may consider t h e  analogy between 

t r a j e c t o r i e s  i n  t h e  0 ,  8 plane, emanating from poin ts  uniformly d i s t r i -  

buted over some region, and streamlines of flow of a uniformly dense, 

uniformly contract ing f l u i d .  

bers  o f  the  ensemble of systems whose i n i t i a l  conditions are uniformly 

d i s t r i b u t e d  over some (small) region of the  phase plane. O f  the  t o t a l  

f l u x  of "f luidt t  passing from p o s i t i v e  t o  negative 6 (actual ly ,  the  f l u x  

. 

The p a r t i c l e s  of f l u i d  correspond t o  mem- 

-32- 



of ensemble members, a l l  of whose states migrate),  t h a t  f r a c t i o n  which 

converges t o  t h e  s t a b l e  equilibrium point  is  j u s t  t he  probab 

capture  f o r  t he  resonance. We may compute t h i s  f r a c t i o n  e a s i l y  after 

studying t h e  phase-plane geometry shown i n  Fig.  2(a).  

In  Fig. 2(a) a r e  drawn two t r a j e c t o r i e s ,  represent ing point  sequences 

which converge t o  t h e  unstable  equilibrium poin t ,  C .  [Continuous curves 

are drawn r a t h e r  than sequences of po in ts  f o r  convenience, but t h e  exis-  

tence of a s tagnat ion point  a t  C allows unique curves t o  be defined i n  

any case.  

t he  motion is  away from C (Bellomo e t  a l .  1967).] The curves a r e  drawn 

f o r  To < 0 and To1 < 0, s o  t h a t  t he  sp in  r a t e  can approach resonance 

only from above (6 > 0). 

2  I IT/^ - aT0/2BPk,0). 
i s  labe l led  D .  

i n  Fig.  2(a) l i e  i n  t h e  d i r e c t i o n  of the eigenvector of J which cor- 

responds t o  the  r e a l  eigenvalue less than uni ty .  

There a r e  two o ther  sequences asymptotic a t  C ,  but along which 

The coordinates of C are, approximately, (e ,6)  
The s t a b l e  equilibrium a t  (e ,6)  2 (aT0/2BPk,0) 

A t  t h e  unstable  point  C t h e  two t r a j e c t o r i e s  shown 

-. 
(The o ther  eigenvalue, 

real and g rea t e r  than un i ty ,  corresponds t o  t h e  two t r a j e c t o r i e s  along 

which t h e  motion i s  away from 6 . )  

2(a) backward from C ,  w e  designate  the  poin ts  where they first cross 

a v e r t i c a l  l i n e  (constant e) through C ,  as A and B. For the  t r a j e c t o r y  

passing through A,  8 is pos i t i ve  everywhere along it. 

Following t h e  t r a j e c t o r i e s  i n  Fig. 

. 
In general ,  t he  6 coordinate of po in ts  A and B could be obtained 

numerically f o r  given values  of a ,  f3, etc., by using a computer t o  evalu- 

ate i t e r a t i v e l y ,  but  backwards i n  time, the  expressions f o r  the  mono- 

dromy transformation, s t a r t i n g  from i n i t i a l  po in ts  near C .  This calcu- 

l a t i o n  has been done for various values of the  parameters, but  only as 
a check, because an approximate ana ly t i c  so lu t ion  is poss ib le  f o r  t he  

case of physical  i n t e r e s t :  a << f3 << 1. We present  here  only the  

a n a l y t i c  so lu t ion  and a remark on i t s  accuracy, based on the  numerical 

so lu t ions .  A manipulation of Eqs. (45) - (47) leads t o  t h e  same r e s u l t ,  

t o  first order  i n  6, as was derived using Eq. (ZO), v i z . :  
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where 

E = -?raTo(e,k/2) 

6 = -2aT0' (e,k/2) (213Pk(e)) 112 J 

With t h i s  r e s u l t ,  we can ca l cu la t e  t he  capture p robab i l i t y  simply: 

A l l  of  t he  f l u i d  coming from t h e  upper (6 > 0) h a l f  of the  phase plane 

crosses the  l i n e  segment ABC exact ly  once. The component of flow velo- 

c i t y  perpendicular t o  t h i s  segment, i . e .  i n  t he  0 d i rec t ion ,  i s  j u s t  0 .  

The t o t a l  f lux  $Ac across AC is  j u s t  (suppressing the  uniform dens i ty) :  

. 

1 - 2  
$Ac = 6d6 = 7 (0,) 

0 

and the  f lux  $Bc across the  segment BC which flows toward the  s t a b l e  

point D and is  "captured" is  j u s t  

Therefore t h e  ne t  p robab i l i t y  of capture a t  the  k th  resonance is 

- Q, BC ' AC 
Pc - - = 26/(&+6) 

Although we assumed f o r  s impl ic i ty  t h a t  To and T 

near t he  k th  resonance, t h e  ca lcu la t ions  f o r  o ther  s i g n s  of these  

were both negative 0 
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constants a r e  very similar. In p a r t i c u l a r ,  w e  f i n d  Eq. (68) t o  be v a l i d  

unless T ' > 0. With t h e  t i d a l  torque models w e  have considered it i m -  
possible  t h a t  T ' > 0. However, var ia t ions  of o r b i t a l  e c c e n t r i c i t y  

with time have an e f f e c t  equivalent t o  To'  > 0 under c e r t a i n  circum- 

stances (see Section 111). 

comes unstable  and l i b r a t i o n s  around it have an amplitude increasing 

exponentially with t i m e .  

captured e a r l i e r ,  it would now be dr iven out of t h e  resonance. 

Fig. 2(b) . ]  The question then would be whether t h e  planet  escapes 

with spin f a s t e r  (6 > 0) o r  slower (6  < 0) than t h e  resonance r a t e .  

The ca lcu la t ion  of the  r e l a t i v e  p r o b a b i l i t i e s  of these  two events f o l -  

lows c lose ly  the  l i n e s  of the  der iva t ion  of Eq. (68) but with time re -  

served. The r e s u l t s  are very similar. 

cape with sp in  r a t e  g r e a t e r  and less than the resonance ra te  are wr i t ten  

as Pe 

0 

0 

I f  T O f  > 0 t h e  equilibrium point  a t  D be- 

In  such a case i f  the p l a n e t ' s  sp in  had been 

[See - 

If the p r o b a b i l i t i e s  of es- 

+ 
and Pe-, respect ively,  we f i n d  t h a t  when T o t  > 0,  

+ 
'e (6+&)/26 

- 
P = (6-&)/26 e 

where as usual the  p r o b a b i l i t i e s  must l i e  i n  t h e  range ( 0 , l ) .  

course, Pe 

within the "resonance width". 

O f  
+ 

w i l l  be nonzero only if E (TO+TOt6) becomes p o s i t i v e  

Formulas (68) and (69) are s t r i c t l y  v a l i d  f o r  laTo << BPk, i . e .  

f o r  the equilibrium poin ts  lying c lose  t o  0 = 0 and 0 = 1~/2(mod IT). 

Numerical ca lcu la t ions  show t h a t  even f o r  IaT0/@PkI = 0 05, formula 

(68) gives p r o b a b i l i t i e s  Pc which are too  large by 0.04 when Pc i s  about 

0.5, but t h e  r e l a t i v e  e r r o r  is  less a t  both higher and lower values 

of P For 

the  treatment of Mercury's spin-orbi t  resonances, formulas (68) and (69) 

are p e r f e c t l y  adequate. 

and improves monotonically as IaT /BPkl approaches zero. 
C 0 
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111. VARIATIONS I N  ORBITAL ECCENTRICITY 

A. Orbit  Perturbations 

So fa r  we have considered Mercury's o r b i t  t o  be a f ixed e l l i p s e .  

In f a c t ,  a l l  of Mercury's o r b i t a l  elements vary because of per turbat ions 

by the other  planets .  

r e l a t i v i t y  a r e  ins igni f icant  here . )  

of development of celestial  mechanics, and of planetary theory i n  par- 

t i c u l a r ,  allows us t o  say nothing with c e r t a i n t y  about Mercury's o r b i t  

a t  times as remote as 10 years ago. Even the  bas ic  question of t h e  

s t a b i l i t y  of t h e  s o l a r  system over such a time i n t e r v a l  remains open 

(see, e .g . ,  Hagihara, 1961). Perhaps the bes t  estimate, r e a l l y  a guess 

(Brouwer and Clemence, 1961), of the very-long-term behavior of planetary 

o r b i t s  is  provided by the "secular" var ia t ions  which, by d e f i n i t i o n ,  

are those computed by l imi t ing  the planetary dis turbing function t o  

t h e  p a r t  independent of the mean longitudes.  In the f i r s t - o r d e r  solu- 

t i o n  of the planetary n-body problem by expansion i n  powers of the  

dis turbing masses there  are i n  general both secular  terms and per iodic  

terms. Because the sp in-orb i t  resonance mechanism e f f e c t i v e l y  averages 

over many o r b i t s ,  the  per iodic  o r b i t a l  var ia t ions  a r e  unimportant. 

(An exception would occur if Mercury were involved i n  an o r b i t a l  re -  

(The well-known e f f e c t s  a t t r i b u t e d  t o  general 

Unfortunately the  current s ta te  

9 

sonance with one o r  more other  p lane ts . )  

This method of secular  per turbat ions has been applied t o  the  pla-  

ne ts  Mercury through Neptune by Brouwer and van Woerkom (1950), who 

ref ined it t o  include the pr inc ipa l  e f f e c t , o f  the  grea t  inequal i ty  be- 

tween J u p i t e r  and Saturn. 

e 

i n e r t i a l  space f o r  the  planet a(a  = l , Z ,  ..., 8 ) ,  is of the  form 

The t y p i c a l  so lu t ion  fo r  the  e c c e n t r i c i t y  

and longitude of per ihel ion T ~ ,  measured from a f ixed d i r e c t i o n  i n  a 

10 

k= 1 Za = 1 Nakexp (i$k - i s k t )  
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T f Arg Z a a 

ak'@k' where i 5 c, and N 

10 because of t h e  inclusion 
sk are 

of the 

r e a l  constants (k ranges from 1 t o  

great  inequal i ty) .  
- 

A very similar expression, yielding the inc l ina t ions  y and longi- 
tudes ea of the  ascending nodes (both re fer red  t o  the invar iab le  plane) 

i s  obtained by replacing e 

d i f f e r e n t  s e t  of constants I and I), replace Nak, @k i n  t h i s  case. 

The c i r c u l a r  frequencies s appearing i n  (70) a r e  determined by the 

planetary masses and semi-major axes, which remain constant.  The pre- 

sent  values of t h e  e c c e n t r i c i t i e s ,  p e r i h e l i a ,  inc l ina t ions ,  and nodes 

serve t o  determine t h e  constants of in tegra t ion  Nak, @,, Iak, and qk ,  

(a = 1 f o r  Mercury) a r e  l i s t e d  i n  T a b l e  1. 

a 

by s i n  y and T~ by ea i n  Eqs. (70). A a a 
ak 

k 

The values obtained by Brouwer and van Woerkom f o r  k9 'k' and Nlk  

The i n c l i n a t i o n  t o  the invariable  plane of Mercury's o r b i t  accor- 

ding t o  t h i s  theory w i l l  never exceed the sum of a l l  the  Ilk. 

l i m i t  i s  l e s s  than l o o ,  so  t h a t  we s h a l l  here ignore var ia t ions  of the 

o r b i t a l  plane. (However, i n  a study of the  evolution with time of the 

ax is  d i rec t ion ,  the motion of the plane and the "ab i l i ty"  of the spin 

ax is  t o  follow i t  must be analyzed.) 

and accelerated motion of the sun-perihelion reference l i n e ,  measured 

by the rate of advance of rl. 
play an important r o l e .  Only minor modifications are required: One 

may consider t h e  anomalist ic period as b a s i c  and modify t h e  equilibrium 

points  accordingly, taking i n t o  account t h e  d i f fe rence  i n  ( i n e r t i a l )  

o r ien ta t ion  af ter  each period. 

very small and a l s o  of no concern. 

This 

Also unimportant a r e  the uniform 

The uniform p a r t  of the advance does not 

The accelerated p a r t  of t h e  advance is 

Since Nll =: 0.175 and 

10 

k= 2 
1 l N l k l  0.066, 

2 2 a good approximation t o  t h e  grea tes t  possible  magnitude of d Kl/dM 

is given by 
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where n is Mercury's o r b i t a l  mean motion given i n  the  same u n i t s  as sk. 
Subs t i tu t ion  of numerical values from Table 1 yie lds  

- 

which i s  more than th ree  orders  of magnitude smaller than the  accelera- 

t i o n  due t o  the  t i d a l  torque alone when the  t i d a l  parameter a = 10- . 9 

Because the  value and ra te  of change of Mercury's o r b i t a l  eccen- 

t r i c i t y  i n  p a r t i c u l a r  are c ruc ia l  t o  t h e  spin-orbi t  resonance phenomena, 

we must know the  behavior of t h i s  element during Mercury's pas t  o r b i t a l  

h i s to ry  i n  order t o  study properly these  resonances. 

dence of e i s  given by 

The time depen- 

- 

Part of t h i s  function is  shown i n  Fig. 3(a) .  From the  f igure ,  o r  f rom 

the coe f f i c i en t s  i n  Table 1, it i s  evident t h a t  t he  behavior of e ( t )  i s  

dominated by th ree  terms: N l l ,  N12, and N15. 

follows from Venus and J u p i t e r  being the dominant p lane ts  i n  t h e i r  per- 

Physically,  t h i s  r e s u l t  

turbing effect  on Mercury. Because Nl l  is  much g rea t e r  than t h e  other  

coe f f i c i en t s ,  the  eccen t r i c i ty  has an average value near ly  equal t o  N 

and exhib i t s  two superimposed nearly-sinusoidal o s c i l l a t i o n s  of ampli- 

tudes N12 and N15 with frequencies (sl-s2) and (s5-sl), respect ively.  

The other  seven terms i n  the sum i n  (73) contr ibute  f a i r l y  small o sc i l -  

l a t i ons  of various periods.  

11' 

The two frequencies (s -s  ) and (s5-sl) are near ly  commensurable 
6 1 2  

i n  the  r a t i o  8:s .  In  about 5.5 x 10 years the  argument involving 
(s -s  ) completes 8 cycles  and t h a t  f o r  (s5-sl) completes 5 .  The 

1 2  

-38- 



deviat ion from exact commensurability i s  about one per  cent of t h e  

period of t h e  former so t h a t  i n  about 70 x 10 

pa t t e rn  generated between the  two terms repea ts  i t s e l f .  However be- 

cause of t he  f a i r l y  high order of 8:s commensurability, a sec t ion  of 

length 5.5 x 10 years  taken from t h e  e ( t )  "waveform" looks about t h e  

same regard less  of its pos i t i on  i n  t h e  70 x 10 

period. For p r a c t i c a l  purposes, therefore ,  the  eccen t r i c i ty  may be 

approximated by the  per iodic  funct ion,  

6 years  the  in te r fe rence  

6 

6 year  in te r fe rence  

where T is  t h e  period and the  nk are in t ege r s .  A six-frequency ap- e 
proximation t o  (731, generated by taking e - ( i  = 0 + 6 ) ,  

T 
6 i - Nl,i+l 

= 5.52 x 10 years ,  nk(k = 1 + 6 )  = 8, 50, 53, 5, 95, 11, with a l l  e 
the  K~ = 0, except K 

3(b).  
pu ta t ion  o f  the  Mercury sp in-orb i t  resonance capture  p r o b a b i l i t '  ieS a C -  

cording t o  the  method described below. 

= 194?70 and 'c4 = 152?63, i s  p lo t t ed  i n  Fig. 1 
This per iodic  eccen t r i c i ty  function has been used i n  the  com- 

I t  has a l s o  been found t h a t  

no s i g n i f i c a n t  change i n  these  p r o b a b i l i t i e s  occurs when the  s ix -  

frequency funct ion i s  replaced with the  much simpler and smoother 

funct ion obtained by taking R = 2 i n  (74), with eo = N l l ,  e 
e 

reassuring t h a t  the  small d e t a i l s  of  eccen t r i c i ty  behavior are in-  

s i g n i f i c a n t .  

= N12, 1 
= 8, n2  = 5, preserving the  same period T ~ .  I t  i s  = N15, and n 2 1 

8 .  Spin Equation of Motion with Varying Eccen t r i c i ty  

From the  preceding w e  see  t h a t  t h e  o r b i t a l  eccen t r i c i ty  change 

during one o r b i t a l  period is small, so t h a t  t he  der iva t ion  of t he  aver- 

aged sp in  equation of motion (30) from the  o r i g i n a l  equation (20), which 

is time-varying with o r b i t a l  period, remains v a l i d .  We have 

.. 
8 + BPk(e) s i n  28 = clTO(e) + olT01(e)6 
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i n  which the  coe f f i c i en t s  Pk(e),  T o ( e ) ,  and T ' ( e )  are now considered 

t o  be slowly varying. 

and escapes may occur at t h e  same sp in-orb i t  resonance. For example, 

during a time when the  o r b i t a l  eccen t r i c i ty  is  e s s e n t i a l l y  s t a t iona ry  

0 
A s  a r e s u l t  we w i l l  f i nd  t h a t  mult iple  captures  

a t  a s u f f i c i e n t l y  high value,  t he  p l a n e t ' s  sp in  r a t e  might be deceler-  

a ted by the  t i d a l  torque and be captured i n  a resonance, as described 
i n  Section 11. 

decay. 

the  amplitude of l i b r a t i o n s  about the  resonance sp in  ra te  may ac tua l ly  

grow, through ad iaba t i c  "pumping", as the coe f f i c i en t  Pk(e) decreases. 

Eventually the  l i b r a t i o n s  may grow so  large t h a t  the  sp in  motion ceases 

t o  be l i b r a t o r y  with respec t  t o  the  resonance r a t e ,  and becomes c i rcu-  

la tory .  

sense with respect  t o  the  resonance. 

c i r cu la to ry  i n  t h e  p o s i t i v e  sense (actual  sp in  r a t e  f a s t e r  than re- 

sonance r a t e ) ,  then c e r t a i n l y  a t  some fu tu re  time as t h e  r a t e  of ec- 

c e n t r i c i t y  decrease diminishes the  sp in  w i l l  again be slowed t o  r e -  

sonance. A t  such a time capture  might again t a k e  place,  o r  passage 

through t h e  resonance t o  slower sp in  might occur. In  order  t o  cal-  

c u l a t e  the  probabi l i ty  of permanent, u l t imate  capture  i n  a given r e -  

sonance, it is necessary t o  consider each poss ib le  temporary capture ,  

t o  consider t he  p o s s i b i l i t i e s  of escape following a capture,  and so on, 

combining these  p r o b a b i l i t i e s  i n  t h e  end t o  f ind  the  overa l l  p robabi l i ty  

of  the  compound event. Because each of these  p r o b a b i l i t i e s  is now per i -  

od ica l ly  time-varying (i .e.  a funct ion of phase within a cycle of eccen- 

t r i c i t y  v a r i a t i o n ) ,  a method w i l l  be needed t o  determine the times of  

poss ib le  captures  o r  escapes (when t h e  ac tua l  sp in  rate reaches resonance, 

o r  t h e  stroboscopic ra te  8 reaches zero).  

Librat ions of the  instantaneous sp in  r a t e  might then 

If the  o r b i t a l  e c c e n t r i c i t y  now begins t o  decrease,  however, 

The d i r ec t ion  of t he  c i r cu la to ry  motion might be i n  e i t h e r  

If the r e l a t i v e  sp in  becomes 

. 
The ove ra l l  p robab i l i t y  of u l t imate  capture i s  ca lcu la ted  by consi- 

der ing an i n i t i a l  set of systems with i n i t i a l  condi t ions uniformly d i s -  

t r i bu ted  a t  a given epoch over an area i n  phase space somewhat above the  

resonance region. 

i n t o  a p a r t i c u l a r  resonance s t a t e  on the assumption t h a t  a l l  higher 

(We are here  discussing the  p robab i l i t y  of capture 
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resonances have a l ready  been passed.) 

b a b i l i t y  of u l t imate  capture  fo r  a (randomly chosen) member of t h e  

i n i t i a l  set  may be ca lcu la ted  by repeated p a r t i t i o n i n g  and recombining 

of the  o r i g i n a l  set: 

porary'' capture a t  the  o r ig ina l  epoch. 

f o r  t h i s  p robab i l i t y ,  where t 

tu re ,  with the  prime s igni fy ing  "temporary". 

tems would thus be divided i n t o  two subsets  with t h e  p r o b a b i l i t i e s  of 

a randomly chosen member belonging t o  t h e  temporarily captured, o r  tem- 

po ra r i ly  escaping subset ,  being given by (respect ively)  P{C' ; tO} o r  

l - P { C ' ; t O ) .  

subsets  may be considered. For example, t he  evolut ion of a system tem- 

pora r i ly  captured ( f i r s t  subset)  is followed using the  equation of mo- 

t i o n  (der ved below) t o  determine the  time ( i f  any) of a poss ib le  es- 
cape - t o  e i t h e r  faster or  slower sp in .  The condi t ional  p r o b a b i l i t i e s  

P{E+'; tl C ' ;  to} and P{E - I ; t l l C f ; t 0 )  - f o r  temporary escape t o  f a s t e r  

(E+') and slower (E - I )  sp ins  a t  time tl  following temporary capture a t  

time t 

b a b i l i t y  P{C1; t  } i s  pa r t i t i oned  accordingly. 

tween successive capture and escape oppor tuni t ies  i s  i n  general  s o  grea t  

compared t o  t h e  l i b r a t i o n  period t h a t  we may s a f e l y  assume t h a t  each 

For any i n i t i a l  epoch the  pro- 

We begin by computing the  p robab i l i t y  of "tem- 

We adopt the  nota t ion  P{C';to} 

i s  t h e  i n i t i a l  epoch and C denotes cap- 

The o r i g i n a l  set of sys- 
0 

Next, a (randomly se lec ted)  system from each of  t h e  two 

- a r e  then ca lcu la ted  and t h e  first subset with associated pro- 0 
The t i m e  i n t e r v a l  be- 0 

system has l o s t  a l l  "memory" of i t s  s ta te  a t  t he  t i m e  of an earlier 

capture.  We a r e  ab le ,  therefore ,  t o  use unconditional p robab i l i t y  

formulae such a s  were derived i n  Section 1I.D f o r  subdividing t h e  var ious 

subsets  a t  times of poss ib le  captures  and escapes. 

p r o b a b i l i t i e s  and subdivis ion of sets proceeds i n  t h i s  manner with each 

a l t e r n a t e  path being followed u n t i l  permanent 

escape occurs. 

discussed below. ) The overa l l  p robab i l i t y  of ult imate capture P{C;t& 

f o r  a member of t he  s t a r t i n g  set of systems is  then obtained by recom- 

bining t h e  subsets  (adding t h e i r  associated p r o b a b i l i t i e s )  which reached 

permanent capture.  

sum of cascaded products of t he  type P { C 1 ; t n l E  - I ; t n  - 1)-P{E - t ; t n - l ( C 1 ; t n  - ,I 
. . .Pic1 ;to). 

The ca lcu la t ion  of 

capture  o r  permanent 

(The cr i ter ia  f o r  these  two terminal  events w i l l  be 

The ove ra l l  p robab i l i t y  P{C;t& w i l l  be given by a 

Although the  number of branches o r  subdivisions of  t h e  
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or ig ina l  set might i n  p r inc ip l e  be enormous, i n  p r a c t i c e  with physi- 

c a l l y  reasonable values of a and @ t h e  number of branches is  small, 
o r  the  probabi l i ty  ca lcu la t ion  can be stopped a t  a point  where the  

f r a c t i o n  of the  o r ig ina l  set whose u l t imate  f a t e  remains undecided 

f a l l s  below a small, a r b i t r a r y  threshold.  

The p robab i l i t y  of u l t imate  capture  P{C;t 1 so far determined s t i l l  0 
We must therefore  a s k :  i s  the  sp in  depends on the i n i t i a l  epoch, to. 

r a t e  equally l i k e l y  t o  reach resonance a t  a l l  times, to; or ,  s ince  t h e  

eccen t r i c i ty  va r i a t ion  is  quasi-per iodic ,  a t  a l l  phases within a cycle? 

In  f a c t  a l l  phases w i l l  not be equal ly  l i ke ly ;  it may even be impossible 

f o r  the  sp in  r a t e  t o  reach resonance a t  ce r t a in  phases, f o r  reasons 

discussed below. I t  w i l l  be found, however, t h a t  only a f e w  "resonance 

widths" above resonance [w - (2@Pk)l l2  is  the  "resonance width"] t h e  B =  
d i s t r i b u t i o n  of a r r i v a l  times becomes e s s e n t i a l l y  uniform i n  phase. 

I t  becomes possible ,  therefore ,  t o  average the computed capture pro- 

b a b i l i t i e s  over one cycle  i n  t , provided t h a t  t he  sp in  evolution and 

probabi l i ty  ca lcu la t ion  is  s t a r t e d  beyond a few times w 
0 

above resonance. 

In order t o  follow the  near-resonance sp in  motion when eccen t r i c i ty  

is var iab le ,  we w i l l  use a normalized energy function E of 8 ,  6 ,  and e ,  

which is  obtained by simply dividing t h e  energy funct ion E (Equation 33) 

by t h e  square of t h e  (now time-varying) resonance width (Equation 39): 

B 

n 

1 2 -1 1 2 
En(8,i),e) = (6)  (2@Pk(e)) - - c o s  2 8 

In general  the  t i m e  de r iva t ive  dEn/dM 5 in is  [using Equation (76)] 

= [$ (6)  2 (Z@Pk)-l] [2aTO1 - (ik/Pk)] 
En 

+ [ 6  (2BPk)-1/2] [aTo* (2@Pk) - 1 3  

where 
ik E dPk/dM = (dPk/de)(de/dM). 

(79) 
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Evidently i f  a = 0 and 6 E de/dM = 0 then (as expected) in is iden t i -  

c a l l y  zero  and En is  an i n t e g r a l  of the  motion. Contours o f  constant 
E 

t r a j e c t o r i e s  of Equation (76) when kn=O.  

are shown i n  Fig. 4. 

t he  sepa ra t r ix  because it separa tes  the  two regions of 

t r a j e c t o r i e s  (E 

gion of l i b r a t i n g  t r a j e c t o r i e s  (-l/Z < En < 0 ) .  

may be drawn i n  the  0 , 6  plane, and these  must coincide with phase n 
Examples of such contours 

The spec ia l  contour defined by En=O i s  ca l led  

> 0 with e i t h e r  6 > 0 or 6 < 0 from the  i n t e r i o r  re- n 

We a r e  not s o  much concerned with knowing Mercury's ac tua l  sp in  

s t a t e ,  as with knowing the  changes i n  the  value of En, because the  

times when E 

E 

bined inf luences of the  t i d a l  torque and e c c e n t r i c i t y  va r i a t ion  [through 

Pk i n  Eq. (79)],  En may slowly be reduced u n t i l  it reaches zero. A t  

t h a t  t i m e  t h e r e  is i n  general  some p robab i l i t y  t h a t  t h e  sp in  w i l l  be 

"captured" i n  the resonance ( i .e . ,  t h a t  En w i l l  go negat ive) ,  and a 

complementary p robab i l i t y  t h a t  the  sp in  s ta te  w i l l  pass  through t h e  

resonance ( i . e ,  t h a t  8 w i l l  change s ign  and En s t a y  pos i t i ve ) .  The 

p robab i l i t y  formulas derived earlier f o r  these  events w i l l  of course 

have t o  be modified t o  include the  e f f e c t  o f  e c c e n t r i c i t y  va r i a t ions .  

With appropriate  p robab i l i t y  formulas t o  t r e a t  t h e  s i t u a t i o n s  when En 

reaches zero (from both p o s i t i v e  and negative 6 ) ,  and with a d i f f e r e n t i a l  

equation t o  descr ibe the  time v a r i a t i o n  of En, w e  can determine t h e  pro- 

b a b i l i t y  of u l t imate  capture  i n  a resonance a s  described above, by com- 

bining t h e  p r o b a b i l i t i e s  f o r  the  individual  events.  

= 0 are times of poss ib le  capture o r  escape events .  When n 
> 0, t h e  planet  is "outside" t h e  resonance region; under t h e  com- n 

0 

0 

Eq. (79) i s  a d i f f e r e n t i a l  equation descr ibing the  time dependence 

of En, but (79) cannot be in tegra ted  d i r e c t l y  because the  r i g h t  s i d e  de- 

pends on 6 which is  not uniquely determined by the  values  of En and t h e  

t i m e .  [By t h e  same token, of course,  Eq. (78) is not of d i r e c t  use 

s ince  it does not give E Because 

a << B and :,(e) << 1, the  energy funct ion En w i l l  change only slowly 

with time so t h a t  over moderately long time i n t e r v a l s  t he  [stroboscopic) 

sp in  s t a t e  w i l l  follow c lose ly  a contour of constant En i n  the  phase 

plane.  

e x p l i c i t l y  as a funct ion of t i m e . ]  n 

Thus, f o r  l i b r a t i o n  (En <: 0) when the  amplitude is  not  la rge ,  
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the  period i s  approximately 27~(2pP )-'j2, whereas in is of the  order k 
of af3-1/2, so t h a t  the change of E during one l i b r a t i o n  period is  of n 
t h e  order of ap-', which f o r  Mercury is small compared t o  uni ty .  A 

similar argument appl ies  f o r  c i r c u l a t i o n  (En > 0) unless En i s  very 

small, i . e .  unless  the c i r c u l a t i n g  t r a j e c t o r y  passes very near the  un- 

s t a b l e  f ixed point  at ( e , 6 )  =: (- In order t o  apply the theory 

of capture probabi l i ty  developed i n  Section 11, however, we must show 

t h a t  the times spent on phase t r a j e c t o r i e s  which do pass near the un- 

s t a b l e  equilibrium point [C i n  Fig. 2(a)] may be neglected i n  compari- 

son with t h e  period of e c c e n t r i c i t y  var ia t ion .  

IT 
,O). 

The influence of the unstable point causes l i b r a t i o n  and c i rcu la-  

t i o n  periods t o  diverge as E -+ 0: n 

[The second of E q s .  (81) y i e l d s  a period twice as large as t h e  f i r s t  

near En = 0 because, by d e f i n i t i o n ,  the  l i b r a t i o n  period extends over 

a "round-trip" i n  t h e  phase s t r i p  whereas the  c i r c u l a t i o n  period is  only 

a "one-way" affair .]  

c u l t i e s ?  

region from above (e > 0 ) ,  i t s  t r a j e c t o r y  must pass between points  A 

and C .  

with randomly chosen i n i t i a l  conditions w i l l  en te r  the resonance re -  

gion with an energy s u f f i c i e n t l y  near zero t o  have a c i r c u l a t i o n  o r  
l i b r a t i o n  period comparable t o  or  grea te r  than t h a t  of the e c c e n t r i c i t y  

var ia t ion .  This statement is  e a s i l y  proved: from Eqs. (64), ( 6 5 ) ,  (78) 

and a simple ca lcu la t ion  of t h e  change i n  En a t t r i b u t a b l e  t o  6, during 

one c i r c u l a t i o n  cycle,  w e  f i n d  

Does t h i s  divergence of periods cause any d i f f i -  

From Fig. 2(a) w e  see t h a t  as a system e n t e r s  t h e  resonance . 
Only an e n t i r e l y  negl ig ib le  f r a c t i o n  of an ensemble of systems 
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which i s  of order  a/f3 and would be about 

and f3 =: 10 

t ions  but these  would c e r t a i n l y  be s o  infrequent as t o  be q u i t e  negl i -  

g ib le . )  passing point  A, 

w i l l ,  according t o  Eq. (81), have a c i r cu la t ion  period of only about 

500 y r  ( for  2BPk =: - negl ig ib le  compared with the  period of ec- 

c e n t r i c i t y  va r i a t ion .  Since, f o r  t h i s  case, only about 1 i n  10 mem- 

bers  of the  ensemble w i l l  have a t r a j e c t o r y  passing between A and C 

with En < 

f o r  Mercury i f  a 2 lo-’ 
. (The term fik/Pk, being var iable ,could lead t o  cancella- -4  

Even a t r a j e c t o r y  f o r  which En equals 

6 

our conclusion is  establ ished.  - 
We now re tu rn  t o  t h e  problem of in t eg ra t ing  Eq. (79). Since 

ne i the r  E nor Pk w i l l  change appreciably during a l i b r a t i o n  o r  c i r -  

cu la t ion  period, we may replace the  quan t i t i e s  [$e) (26Pk) 
[6(26Pk)-1’2] by t h e i r  average values over such a period. Thus, f o r  

1 ’ 2  -1 n 
] and 

En > 0, 

1 * 2  7 e (26pk)-1M 
1 

where we have used dM = de/;. 

rearranging, w e  obtain 

Subs t i tu t ing  for 6 from E q .  (78) and 

where 

0 
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is the  complete e l l i p t i c  i n t eg ra l  of the second kind. 

have 
For TciTC, w e  

where 

is the  complete e l l i p t i c  i n t eg ra l  of the first kind. Eqs. (84) and 

(86) y ie ld ,  of course 

s imi l a r ly ,  w e  f i nd  

. 
where the  plus  s ign i s  va l id  f o r  the  region above the  resonance (0 > 0 ) ,  

and t h e  minus s ign  holds f o r  below (6 < 0).  

Defining 

i n  analogy with Eq.  (65), we may now replace Eq. (79) by 
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where the  r i g h t  s i d e  has been averaged over a c i r c u l a t i o n  period. 

M-dependence of 6 and E follows from t h a t  of Pk, To, and T o f .  

The 

Inside t h e  resonance region (E < 0) ,  w e  f i n d  n 

T l i b  .2 
/ e (28pk)-1m 

(; Q2(28Pk)-') = - 1 

T l i b  0 

where 

> < o  - -1 1/2 * - I <  1 En e l  = s i n  (1+2En) (92) 

i s  t h e  l i b r a t i o n  amplitude. Using Eq. (78) and the  well-known i n t e g r a l  

(see, f o r  example, Gradshteyn and Ryzhik, 1965): 

2 
'I2 cos x dx = p * ~ ( p - l > + ( i - p ~ ) ~ ( p - l )  , I -2  2 1 / 2  0 (1-11 s i n  x) 

(93) 

i n  combination with the  change of  var iab les  s i n  x = (2En+1)-II2 s i n  0 ,  

y ie lds  

( 8Z(2gPk)-') = En+L(p-l) [2K(u-')]-'; 

9 En < 0, p -1 = (2En+l) 1 / 2  . 

where we have used, i n  addi t ion ,  the  expression f o r  Tlib: 

T l i b  
= - / d M = 2 /  " y-= de 4(28Pk)-1/2K(p-1) . 

0 -61 le1 T l i b  

(94) 

(95) 
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Since f o r  E < 0 the analog of Eq. (89) vanishes ( in  our approximation 

the l i b r a t i o n  cycle is  taken t o  be symmetric, therefore  yielding a zero 

average value f o r  e ) ,  we obtain 

n 

. 

= -{En+L(p-1)[2K(p'1)]-1}6@I) ; p -1 = (2En+l) 1'2 ; En<O . (79b) n 

The r i g h t  s ides  of Eqs. (79a) and (79b) depend only on M, hence 

these equations may be integrated numerically t o  determine t h e  t i m e  

t h a t  En reaches zero, given any i n i t i a l  value of E 

time Mo. 

the s i n g u l a r i t y  i s  a n a l y t i c a l l y  integrable .  Since Eq. (79b) is separable,  

it i s  e a s i e r  t o  use a new function Fn f o r  motion ins ide  t h e  separa t r ix  

where we def ine Fn = 0 when En = 0 and 

a t  an i n i t i a l  nO 
No d i f f i c u l t y  is caused by the  divergence of K(p) as p+l(En+O); 

dFn = { E , + L ( W - ~ ) [ ~ K ( ~  -1 ) ]  -1 1 -1 dEn 

Thus 

= -6 (M) dFn 
dM 
- 

(96) 

(97) 

which may be solved by quadrature t o  follow the sp in  evolution ins ide  

the  separa t r ix ,  i n  p a r t i c u l a r  t o  f ind  the l a t e r  time, i f  any, of escape 

from a resonance following capture. When the  o r b i t a l  e c c e n t r i c i t y  is  

a per iodic  function of t i m e  as i n  Eq. (75), then s o  is the  function 

S(M). For convenience i n  the numerical work, we separate  6(M) i n t o  

two p a r t s :  
P 

about (6(M)) . 
i t s  average value (6(M)) and the per iodic  v a r i a t i o n  6 (M) 

Because T ' ( e )  - < 0 f o r  a l l  e, it is evident from Eq .  (90) t h a t  0 
( 6(M)} must be non-negative. 

d e f i n i t e  i n t e g r a l  I (M) of 6 (M): 

I t  w i l l  a l s o  be usefu l  t o  def ine the  

P P 

M M 
I (M) E 6p(Mf)dM1 = I (6(M1) - (6) )dM1 
P 0 0 

(98) 
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Note t h a t  I (T ) = Ip(0) = 0, where T~ is  t h e  period of the  ec- 
c e n t r i c i t y  var ia t ion .  This i n t e g r a l  I (M) may be tabulated i n  advance 

f o r  one e c c e n t r i c i t y  period T e' 
time t h e  sp in  s ta te  again reaches the s e p a r a t r i x  following a (temporary) 
capture. We thus avoid numerical in tegra t ion ,  requir ing quadrature 

P e  

P 
and the t a b l e  may be used t o  f i n d  t h e  

only once f o r  given functions To1 (e ) ,  Pk(e), and e(M) . 
of capture,  defined as M = Mc, we have Fn = 0,  with tn < 0. 

Eqs. (97) and (98) we have, f o r  M > Mc, 

A t  t h e  i n s t a n t  

From 

Fn (M) = - (PI-Mc) (6) - Ip (M) +Ip (Mc) (99) 

which is v a l i d  as long as Fn remains negative. 

t r i x  occurs when F = 0 with > 0, i .e.  a t  the earliest time M i n  

the  i n t e r v a l  M < M1 < Mc+-re f o r  which the condition 

Escape from t h e  separa- 

n n 1 

C 

i s  s a t i s f i e d .  

t a b l e  of I (M) V J .  M, using in te rpola t ion  as required,  i n  order t o  de- 
P 

termine t h e  escape time M 

the tabular  argument. 

e f f i c i e n t  (6) of M1 i n  the  r i g h t  s i d e  of inequal i ty  (100) is pos i t ive ,  

it follows t h a t  i f  no so lu t ion  M 

then none e x i s t s  for l a r g e r  M 

Since (6) and M a r e  known, w e  need only r e f e r  t o  the  
C 

The value of M1 modulo T ~ ,  of course, is 1' 
Because I (M) has period T ~ ,  and because t h e  co- 

l i e s  i n  t h e  i n t e r v a l  Mc < M1 < Mc+'re, 

P 

1 
and t h e  capture is permanent. 1 

The probabi l i ty  formulae required f o r  the  moment when En reaches 

zero from above (possible capture) o r  below (escape possible  with e i t h e r  

s ign  of 8) are given by Eq. (68) and (69), where the  functions 6 and E 

must be evaluated a t  t h e  time En = 0 according t o  Eq. (90). 

The theory needed t o  pred ic t  the  ul t imate  fa te  of an ensemble of 

is now systems which have i n i t i a l  energies spread near EnO a t  time M 

completely developed. We review the procedure, which has been pro- 

grammed f o r  a d i g i t a l  computer. Eq. (79a) i s  integrated numerically 

0 
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from the given i n i t i a l  condition u n t i l  E = 0 is ed. A s t e p  s i z e  

of a f e w  thousand years is appropriate.  The fun 
a r e  tabulated i n  advance, as is the quant i ty  [Zp 

function only of E . 
ensemble i s  divided i n t o  two p a r t s  according t o  t h e  capture probabi l i ty  

formula (68). The f r a c t i o n  which penetrates  the  resonance is  "followedt1 

again by numerical in tegra t ion  of Eq. (79a), with the  opposite s ign now 

used f o r  E(M). If t h i s  f r a c t i o n  f a i l s  t o  r e t u r n  (within one eccentr i -  

c i t y  period) t o  the  En = 0 s ta te ,  it i s  recorded as having permanently 

avoided capture a t  t h e  resonance. 

t rea ted  i n  the same manner as was the i n i t i a l  ensemble. That f r a c t i o n  

of the systems captured when En first reaches zero w i l l  be f u r t h e r  divided 

i f  Inequality (100) i s  s a t i s f i e d  a t  some time during the  e c c e n t r i c i t y  
cycle. A t  such a t i m e  the  probabi l i ty  formula (69) i s  used t o  p a r t i t i o n  

these systems i n t o  two classes: 

with 6 > 0 and those t h a t  leave with 6 < 0. 

followed by t h e  use of Eq. (79a) and ul t imately disposed of i n  t h e  manner 
already described. 

n 
d(M) and E(M) 

The end time having been determi n 

If it re turns  t o  En = 0 again, it i s  

those t h a t  pass outs ide t h e  s e p a r a t r i x  

The two classes are each 

This algorithm has been programmed f o r  an IBM 360/65 d i g i t a l  com- 

Because an a r b i t r a r i l y  puter  following the descr ipt ion w e  have given. 

la rge  i n i t i a l  ensemble may be divided i n  two i n  p r i n c i p l e  many times, 
one might imagine the embarrassing r e s u l t  occurring t h a t  a v e r i t a b l e  

aerosol of subensembles i s  obtained, the algorithm never terminating. 

For the range of parameters believed appropriate f o r  Mercury, no d i f f i -  

cu l ty  has occurred because before a dozen subensembles have been pro- 

duced t h a t  f r a c t i o n  of the  systems e i t h e r  permanently captured o r  per- 

manently l o s t  approaches 99.9% of  the  t o t a l .  After a few seconds have 

been spent for t h e  tabulat ion of the  various functions required, typ i -  

c a l l y  less than one second of central-processor time is required t o  com- 

p l e t e l y  dispose of an ensemble of systems whose i n i t i a l  states l i e  f i v e  

t o  ten  "resonance widths" above a resonance, with values o f  a, cor- 

responding, respect ively,  t o  t idal-effect ive-Q's  varying from 10 t o  500, 

and planetary (B-A)/C varying from lom4 t o  
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Two addi t ional  parameters must be considered before the  t o t a l  pro- 

b a b i l i t y  of (ult imate) capture a t  a resonance can be calculated f o r  a 

given a, P and choice of t i d a l  model: 

i n i t i a l  t i m e .  These are e a s i l y  t r e a t e d  by (1) considering a range of 

i n i t i a l  times d i s t r i b u t e d  over an e c c e n t r i c i t y  cycle; and (2) observing 

t h a t  the r e s u l t a n t  p r o b a b i l i t i e s  become independent of the  s t a r t i n g  

value of En when it exceeds about 25 f o r  a and 6 lying i n  the ranges 

given above. 

E + 7 m ,  i .e.  t o  an ac tua l  sp in  period only a few per  cent more than 

t h e  resonance value.) The use of i n i t i a l  times d i s t r i b u t e d  over an 

e c c e n t r i c i t y  period --re does not c o n s t i t u t e  a Monte Carlo experiment. 

The capture probabi l i ty ,  determined by t h e  f r a c t i o n  of the  i n i t i a l  en- 

semble captured permanently, is a well-defined funct ion of t h e  i n i t i a l  

the i n i t i a l  value of En and t h e  

(Recall t h a t  a value of En = 25 corresponds t o  8 =: +7wg 

k 

t i m e .  The average probabi l i ty ,  defined by the  i n t e g r a l  over a range of 

i n i t i a l  times (corresponding t o  an e c c e n t r i c i t y  cycle) ,  is  approximated, 

f o r  example, by t h e  use of a number of uniformly spaced i n i t i a l  times. 

The number required f o r  a given accuracy depends on the  smoothness of 

the  probabi l i ty  as a funct ion of i n i t i a l  time. In the  l i m i t  of con- 

s t a n t  e c c e n t r i c i t y  only one sample need be computed, and the  present 

method reduces t o  t h a t  described i n  Section 11. 

-51- 



I V .  CORE MANTLE COUPLING 

The theory developed i n  the  preceding sect ion is  e a s i l y  modified 

t o  include a simple core-mantle coupling o f  the type considered by 

Goldreich and Peale (1967) i n  an ingenious attempt t o  explain the  con- 

t r o l  apparently exerted by the  ear th  on Venus' spin.  

same simple model i n  which a r i g i d  axially-symmetric core i s  coupled t o  

a concentric outer  s h e l l  (mantle) be a torque l i n e a r  i n  the  r e l a t i v e  

angular v e l o c i t i e s .  

the core-mantle torque proportional t o  the  difference (6-?i) such t h a t  

the  exponential re laxat ion time f o r  t h i s  angular ve loc i ty  difference 

We w i l l  use the 

0 

We denote the  core angular ve loc i ty  by q, and take 

is  G-'. If a <<1 and with the  r a t i o  of the  core moment-of-inertia t o  

t h a t  of the  mantle denoted by p, w e  may der ive averaged equations ana- 

logous t o  Eq. (20): 

.. 
e + BPksin 28 = a~~ + C X T ~ I B  - po(6 - ;1> 

f o r  the mantle and 

.. 
r) -I- 0; = 06 

f o r  the  core where a l l  q u a n t i t i e s  are defined i n  analogy with the uses 

i n  p r i o r  sect ions;  f o r  example 

- 3 (B-A) B = T I : F  
mantle 

and 

aTo = ( t idal  torque) /n 2 Cmantle . 
We define a new var iab le  t o  descr ibe t h e  core angular veloci ty:  
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i n  terms o f  t h i s  var iab le ,  t he  t i m e  der iva t ive  of En, defined i n  Eq. 

(78), becomes 

The de r iva t ive  of 

.. 
5 = o*[ 

2 If  5 << 6 and a << 

r i g h t  s ides  of Eqs. 

sa t  i s  f i es  

(1071 
2 

2 

. 
@ we may average the  8-dependent q u a n t i t i e s  on the  

(106) and (107) over a l i b r a t i o n  o r  c i r cu la t ion  

period of 0 ,  keeping En constant as i n  t h e  previous sec t ion .  

t h e  averages g (E,) and h(En) : 

Defining 

which were computed i n  Section 111, we obtain 

where 

The p a i r  of equations,  (109) and (110), rep laces  Eq. (79a). In  the  pro- 

b a b i l i t y  formulae (68) and (69) it is necessary only t o  replace the quan- 

t i t y  E by &-(2pa)t  and the  quant i ty  6 by 6+2pa. With these  changes t h e  
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algorithm developed i n  Section 111 may be applied as before.  

tioned t h e r e  c e r t a i n  s impl i f ica t ions  a r e  possible  when E 

numerical in tegra t ion  of (79b) was not required i n  t h i s  region. 

s impl i f ica t ions  remain ava i lab le  with the  p a i r  (109) and (110). When 

E < 0, these  equations become uncoupled: 

As men- 

i s  negative: n 
Similar 

n 

In d i r e c t  analogy with Eq. (97) we def ine Fn such t h a t  

= -6(M) - 2pO , dFn 
dM 
- 

where Fn = 0 when En does. Hence t h e  time of escape following capture 

may s t i l l  be determined from the  tabulated d e f i n i t e  i n t e g r a l  I (M) de- 

f ined i n  Eq. (98). 

only the constant p a r t  of 6(M). 

from the s e p a r a t r i x  are Mo and M1, respect ively,  then the value of 

at time M according t o  (112) is  j u s t  

P 
The core-mantle coupling has t h e  e f f e c t  of modifying 

If the  times of en t ry  i n t o  and escape 

1 

el denote t h e  e c c e n t r i c i t i e s  a t  times Mo, M1, respect ively.  0’ where e 

With Formula (114) no numerical in tegra t ion  of e i t h e r  of equations (112) 

is  needed. 
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V. DISCUSSION OF RESULTS 

Using the  methods described i n  the preceding sec t ions ,  w e  have 

computed capture p r o b a b i l i t i e s  f o r  several  (k = 3 , 4 , 5 )  sp in-orb i t  re- 

sonances of Mercury, assuming o r i g i n a l l y  rapid prograde r o t a t i o n .  The 

computations were repeated f o r  each of t h e  t h r e e  t ida l - torque  models 

discussed i n  Section I1 f o r  the  following parameter values: 
-9 parameter, a, w a s  increased by f a c t o r s  of 2 from 0.5 x 10 t o  1.6 x 

the  t i d a l  

corresponding t o  values of Q from 400 t o  12.5 respect ively;  t h e  

equator ia l  asymmetry parameter 8 E (3/2)(B-A)/C was increased by fac- 

t o r s  of 10 from 1 . 5  x t o  1.5 x f o r  the core-mantle moment- 

o f - i n e r t i a  r a t i o  p values of and 1.0 were used i n  addi t ion 

t o  0, o r  no d i s t i n c t  core a t  a l l ;  f i n a l l y  the core-mantle r e l a t i v e  

v e l o c i t y  damping constant CT was increased by f a c t o r s  of 

t o  corresponding t o  exponential re laxa t ion  times of about 4 x 
10  y r  t o  400 y r ,  respect ively.  These parameter ranges were chosen 

both on physical grounds and because e a r l y  ca lcu la t ions  showed these 

ranges t o  include t h e  region of n o n t r i v i a l  r e s u l t s ,  i . e .  nonzero and 
nonunity capture p r o b a b i l i t i e s .  We s h a l l  mention the most important 

general fea tures  of our numerical r e s u l t s ,  before describing them i n  

d e t a i l  : 

from l o w 8  

6 

(1) We found l i t t l e  difference between r e s u l t s  obtained with d i f -  

f e r e n t  t i d a l  torque models. With constant t i d a l  l ag  angle (constant Q ) ,  

with l a g  angle proportional t o  the angular rate of the  t i d a l  bulge, o r  

with lag  angle proportional t o  t i d a l  amplitude, t h e  r e s u l t s  are remarkably 

similar. 

(2) Without core-mantle coupling t h e  probabi l i ty  of capture is  

inappreciable a t  resonances higher than k = 3 (spin period = 59 days), 

and remarkably small even a t  the k=3 resonance. Without core-mantle 

coupling t h i s  k = 3 probabi l i ty  depends only weakly on t h e  t i d a l  model 

and on the  t i d a l  parameter a, but var ies  as the  square root  of the  asym- 

metry parameter 8 .  With 8 = 1.5 x the  g r e a t e s t  p robabi l i ty  of 
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capture a t  k = 3 - about 0.1 - was obtained f o r  the  amplitude-proportional 

t i d a l  l a g  with t h e  r a the r  extreme value a = 1.6 x 10 

t o  an average Q l e s s  than 10. In view of t he  apparent capture of Mer- 

cury's sp in  i n t o  the  k = 3 resonance, one is  na tu ra l ly  curious whether 

core-mantle coupling could increase s i g n i f i c a n t l y  the  k = 3 capture  pro- 

babi l i t y  . 

- 8  , which corresponds 

( 3 )  Core-mantle coupling does i n  fact a c t  very s t rongly t o  increase 
the loca l  capture  p robab i l i t y  a t  each resonance. By the  loca l  capture  

probabi l i ty  we mean the  capture probabi l i ty  a t  the  kth resonance given 

t h a t  no capture occurs a t  t h e  higher (k+l,  k+2, ...) resonances. Since 

capture a t  - any higher (k+l ,  k+2,  ...) resonance precludes capture a t  the  

kth resonance, it i s  evident t h a t  core-mantle coupling might ac tua l ly  

reduce the  ne t  capture  p robab i l i t y  a t  the k = 3 resonance, r a the r  than 

increase i t .  We f ind  i n  f a c t  t h a t  such a reduction occurs f o r  a la rge  

range of values o f  0.  But the re  does e x i s t  a value 0 > 0 which maxi- 

mizes t h e  - ne t  k = 3 capture  probabi l i ty  f o r  any given values of a ,  6, 
and p # 0. 

- 

- 

The g rea t e s t  ne t  capture  probabi l i ty  found i s  about 0.5.  

( 4 )  We f ind  i n  general  t h a t  the  capture probabi l i ty  f o r  given a ,  
6, and - k ,  is  e s s e n t i a l l y  unchanged within the  ranges invest igated i f  

both p is  decreased and 0 i s  increased by the  same fac to r .  

f i c a t i o n  might not  have been expected, because the  range of core-mantle 

r e l axa t ion  times (= 0 - l )  involved went from much shor t e r  t o  a f e w  times 
longer than the  c h a r a c t e r i s t i c  time of o r b i t a l  eccen t r i c i ty  var ia t ion .  

Because of t h i s  pa-product dependence, we use the  intermediate value 

p = 0.1 throughout i n  the  de t a i l ed  presentat ion of r e s u l t s ;  p robab i l i t i e s  

f o r  p = 10 

using a value of 0 reduced o r  increased by a f a c t o r  of 10. 

b a b i l i t i e s  f o r  a "rigid" planet  ( i . e . ,  a planet  without a separa te ly  

r o t a t i n g  core) are obtained as the  l imi t ing  values as CT approaches 0; 

f o r  p r a c t i c a l  purposes the  l i m i t  is reached with 0 = lo-' (corresponding 

t o  a r e l axa t ion  t i m e  of 4 x 10 

This simpli-  

-2  and p = 1 may be obtained by, e .g . ,  reading the  graphs 

Capture pro- 

7 
yr). 

The r e s u l t s  of our computations f o r  t he  local capture  p robab i l i t y  

a t  the k = 3 resonance are summarized i n  Figs. 5, 6 and 7. In each 
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f igu re  the  - loca l  capture  p robab i l i t y  is shown (with a l i n e a r  scale) as 
a function of a(on a logarithmic sca l e ) ,  f o r  severa l  valu 

with p = 0.1. 

torque models: constant lag angle (Fig. 5 ) ,  l a g  angle pr 
t o  r a t e  (Fig. 6 ) ,  and proport ional  t o  amplitude (Fig. 7).  In each f i g u r e  

we observe t h a t  as a -+ 0 the  p robab i l i t y  approaches a small constant 

value asymptotically,  i n  t h e  range 0.03 t o  0.12. Although it cannot 

be seen on the  scale of these f igu res ,  i n  each case ( i . e .  fo r  any given 

a and t i d a l  model) t h e  asymptotic value of t h e  p robab i l i t y  varies as 
the  square root  of t he  asymmetry parameter 8 .  
a l so  character ized the  capture  probabi l i ty ,  when small, derived ana- 

l y t i c a l l y  f o r  t he  case of f ixed  o r b i t a l  eccen t r i c i ty .  

planat ion of t h i s  l a t t e r  funct ional  behavior may be found i n  t h e  i n t e r -  

p re t a t ion  of t he  capture  p robab i l i t y  as t h a t  f r a c t i o n  of t he  i n i t i a l  

ensemble of systems which flows i n t o  the  sepa ra t r ix  region (Section 11). 

Since the  dens i ty  of systems (where nonvanishing) increases  uniformly 

both near and i n  t h i s  region, the  number of systems ins ide  the  separa- 

t r i x  region w i l l  increase  at  a r a t e  proport ional  t o  i ts  area. 

area is i n  turn  proport ional  t o  the  square root  of f3 (Fig. 4) .  

The th ree  f igures  correspond t o  the  t h r e e  ‘di 

This f3’” dependence 

A physical  ex- 

This 

In each f i g u r e  the  capture  p robab i l i t y  i s  seen t o  increase  as (T 

increases ,  and i n  most cases when the  p robab i l i t y  exceeds about 0.2 

a fa i r  approximation t o  the ac tua l  curve may be obtained i n  the  form 

Pc = A a  where the  pos i t i ve  constants  A and B vary from one curve t o  

t h e  next with B remaining i n  the  range 0.6 t o  1.0. 
power-law approximation of t h i s  form is  found f o r  each p robab i l i t y  curve 

( i . e .  corresponding t o  each t i d a l  model and value of a and B), one 

discovers  t h a t  t he  exponent B does not depend on t h e  parameter 8, but 

t h a t  t h e  coe f f i c i en t  A i n  each approximation v a r i e s  as gB”. 
means t h a t  capture p robab i l i t y  curves similar t o  those shown i n  Figs.  

5, 6, and 7 f o r  8 = 1.5 x 

t a ined  by simply s h i f t i n g  t h e  ex i s t ing  curves t o  t h e  r i g h t  along t h e  

B 

If the  appropriate  

This 

but  f o r  smaller values of 8, may be ob- 

er of  10) f o r  every two dec owers of 10) 

ds ,  t he  capture  p robab i l i t y  is a funct ion 
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of (f31/20) f o r  moderate-to-large p robab i l i t i e s .  

asymptotic value of t h e  capture probabi l i ty  ( for  0 approaching 0 )  a l s o  
var ied as $ . 

We r e c a l l  t h a t  t he  

1/ 2 

These approximate and empirically-determined cha rac t e r i s t i c s  of 

t he  capture p robab i l i t y  curves t h a t  w e  have obtained are mentioned 

because of the  economy they allow i n  the presentat ion of an enormous 

amount of numerical da ta .  Clear ly  the  $1/2 dependence of both la rge  

and small capture p r o b a b i l i t i e s  has i ts  o r ig in  i n  E q .  (34), which 

arose i n  the  ana ly t i ca l  der iva t ion  of capture p r o b a b i l i t i e s  f o r  t h e  

highly a r t i f i c i a l  f ixed-eccent r ic i ty  case. I t  would have been un- 

j u s t i f i e d  t o  claim t h a t  t h e  B1/’ dependence must necessar i ly  follow 

a l so  f o r  the  varying eccen t r i c i ty  case; however the  f a c t  t h a t  it does 

serves conceptually t o  organize our numerical r e s u l t s .  

The loca l  capture p robab i l i t i e s  calculated f o r  t h e  k = 4 (44-day 

r o t a t i o n  period) 

a simple formula descr ibes  each of t he  p r o b a b i l i t i e s  calculated with an 

absolute  e r r o r  less than 0.05. In  general f o r  t h e  k = 4 resonance 

w e  f ind  the  loca l  capture  probabi l i ty  P {k=4) given by 

resonance need not be discussed so extensively,  because 

C 

-1 1 / 2  P {k=4) =: Ca 8 PO 
C 

i n  which C = 7.5 f o r  constant t i d a l  lag; C = 9.5 for lag proportional 
t o  r a t e ;  and C = 5.9 f o r  lag  proportional t o  amplitude. 

Formula (115) a l s o  descr ibes  the  loca l  capture p robab i l i t i e s  ca l -  

culated f o r  t h e  k = 5 (35-day r o t a t i o n  period) resonance with an ab- 

so lu t e  e r r o r  general ly  less than 0.05. 

values of t he  constant C are, f o r  the  k = 5 resonance, C = 0.36 f o r  

constant t i d a l  lag; C = 0.29 f o r  lag proportional t o  rate; and C = 0.31 

for lag proport ional  t o  amplitude. 

The empirically determined 

In  general  we expect t h a t  f o r  given a, 8 ,  p, 0, and t i d a l  model, 

t he  loca l  capture  probabi l i ty  w i l l  become smaller and smaller as w e  

go t o  higher and higher resonance numbers - k ,  because the  eccen t r i c i ty  
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functions Pk(e) grow smaller f o r  reasonable o r b i t a l  e c c e n t r i c i t i e s .  In the  

s e r i e s  representa t ion  of  Pk(e) w e  no t ice  t h a t  t h e  lowest power of - e 

with a nonzero coe f f i c i en t  is k - 2 f o r  k > 2 .  

b i l i t i e s  a r e  subs t an t i a l ly  smaller than the k = 4 p r o b a b i l i t i e s ,  which 

a r e  i n  t u r n  smaller than the  k = 3 p robab i l i t i e s .  

la te  the  - ne t  p robab i l i t y  of capture a t  t h e  k = 3 resonance, therefore ,  

we are probably j u s t i f i e d  i n  neglect ing the  k = 6,7,8 ... l oca l  capture  

p r o b a b i l i t i e s ,  and using only the k = 3,4 and 5 loca l  p robab i l i t i e s .  

If these  loca l  p r o b a b i l i t i e s  a r e  represented by pg, p4, and p then 

the - net  capture p robab i l i t y  a t  the  k = 3 resonance i s  approximately 

equal t o  p3*(1-p4)(l-p5).  
i n  t h i s  manner w e  obtain the  ne t  probabi l i ty  curves shown i n  Figure 8. 

In the Figure w e  have p lo t t ed  the  ne t  k=3 p robab i l i t y  as a funct ion of 

0 f o r  each of the  th ree  t i d a l  torque models, f o r  a = 0.4  x 

B = 1.5 x 10 , and p = 0.1. S i m i l a r  curves could be drawn f o r  d i f -  

f e r en t  values of these  parameters, but t h e  p r inc ipa l  e f f e c t  of varying 

Thus the  k = 5 proba- - 

In order t o  calcu- 

5’ 

Combining the  computed loca l  p r o b a b i l i t i e s  

-4 

and p would be only t o  s h i f t  t h e  curves t o  t h e  r i g h t  o r  l e f t ,  as 

discussed earlier, and a l s o  t o  vary the  small asymptotic (small-0) 

p robab i l i t y  with t h e  square root  o f  B .  
and Figures 5,6, and 7 ,  evident ly  the  p r inc ipa l  e f f e c t  of varying the  

t i d a l  parameter a would a l s o  be a r i g h t - l e f t  s h i f t ,  although some change 

i n  peak height ,  and i n  t h e  case of amplitude-proportional lag with 

a = 1.6 x 

occur. 

p robab i l i t y  goes abrupt ly  t o  zero when cl exceeds a certain value,  be- 

cause a t  t h i s  value capture  a t  a higher (k - > 4) resonance has become 

c e r t a i n  and k = 3 may not be reached. For s u f f i c i e n t l y  small values 

of CT t he  loca l  capture  p r o b a b i l i t i e s  a t  the  higher resonances become 
neg l ig ib l e  while a r e s idua l  (no-core) p robab i l i t y  remains a t  k = 3.  

Between these  extremes a peak value of  t h e  ne t  p robab i l i t y  is reached; 

fo r  t he  set of parameters used i n  Figure 8 t h e  peak is a t  c l  =: 

corresponding t o  a eore-mantle ve loc i ty  re laxa t ion  time of about 40,000 

years.  

By inspect ion of  formula (104) 

some broading of  the  peak toward t h e  l e f t ,  w i l l  a l so  

The curves i n  Figure 8 a re  representa t ive ,  however. The ne t  
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V I .  CONCLUSION AND SUGGESTIONS FOR FUTURE STUDY 

The two-dimensional mathematical model h i t h e r t o  

the  evolution of Mercury's sp in  may be ser ious ly  i n  err 
previous sec t ion  w e  have shown t h a t  the present  o s c i l l a t i o n s  i n  orbi-  

t a l  eccen t r i c i ty ,  if typ ica l  f o r  geologic t i m e  per iods,  imply t h a t  

t he  probabi l i ty  of Mercury's having evolved t o  the  3:2 spin-orbi t  re- 
sonance is on the  order of  0.02. 

bel ievable .  

has a l i qu id  core d i s s ipa t ive ly  coupled t o  i t s  mantle. 

we have found t o  be probably incapable of s i g n i f i c a n t l y  r a i s ing  the  

3:2 resonance capture probabi l i ty .  

a c t  very s t rongly t o  increase t h e  loca l  capture probabi l i ty  a t  each 

resonance, i . e .  t he  condi t ional  probabi l i ty  of capture  a t  t h e  k 

resonance given t h a t  no capture  occurs a t  t h e  higher (k+l,  k+2, ...) 

resonances. However, s ince  capture a t  any higher resonance precludes 

capture a t  the  k resonance, it follows t h a t  core-mantle coupling 

might ac tua l ly  reduce the  ne t  capture  probabi l i ty  at the  kth resonance. 

We have found t h a t  such a reduction does occur f o r  a la rge  range of 

core-mantle coupling constants.  

coupling constant which maximizes the  ne t  k = 3 (59 ) capture proba- 

b i l i t y  f o r  any given values of the t i d a l  torque parameter, a, the  

permanent equator ia l  asymmetry parameter, B , and core moment of in-  

er t ia .  

the  probabi l i ty  is  less than 0.1 i f  the  core-mantle coupling constant 

d i f f e r s  from the  optimum value by more than a f a c t o r  of  10. For a 

core whose moment of i n e r t i a  is one-tenth t h a t  of t h e  mantle, t he  3:2 

resonance capture p robab i l i t y  i s  maximized when the  core-mantle relaxa- 

t i o n  time i s  about 40,000 years.  

This probabi l i ty  is  too low t o  be 

Therefore w e  have explored the  p o s s i b i l i t y  t h a t  Mercury 

This mechanism 

Core-mantle coupling does i n  fact 

t h  

t h  

But there e x i s t s  a value of the  
d 

The g rea t e s t  ne t  capture  probabi l i ty  found i s  about 0.5, but 

t h a t  it was not.  (Indeed 
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the whole question of the stability of the solar system remains 
theoretically unanswered.) 
be in order to raise the capture proability to one-half? 
obtain a quick and approximate answer to this question from the data 
summarized in Figure 9. In this Figure are plotted values of the 
net 3:2 resonance capture probability computed for various values 
of  average eccentricity in the range 0.15 to 0.25, where for the pur- 
pose of illustration we have assumed three different manners of ec- 
centricity variation about the mean value: In the first case (indi- 
cated by circular points in Figure 9) the time-varying eccentricity 
is assumed given by the expression 

How great must the average eccentricity 
We may 

2 
e(t) = e + 1 ek sin[2Tnk(t/Te) + Kk] 

k=l 

6 where e is the average eccentricity, T = 5.52 x 10 years, n = 8, 0 e 1 
n = 5, el = -0.0255, e2 = 0.0357, K~ = 194.7", K~ = 152.63O [values 
obtained by truncating the harmonic expansion of Figure 3(b).]. 
the second case (square points in Figure 9) we assume simply a sinu- 
soidal oscillation of eccentricity with amplitude 0.04, given by 

2 
In 

(117) 
6 e(t) = eo + 0.04 sin 2 ~ t / ~ ~  ; Te = 10 years, 

and in the third case (triangular points in Figure 9) we assume sinu- 
soidal oscillation with twice the amplitude: 

(118) 
6 e(t) = eo + 0.08 sin 2rt/-ce ; -re = 10 years. 

In these probability calculations no liquid core was included, and 
constant-lag-angle tidal friction was assumed with the parameter 
a = 0.4 x 10 (cf. Section 1I .A) ;  the equatorial asymmetry was (B-A)/C 

= 

Figure 9 should be insensitive to the exact values used for a and B ,  

-8 

corresponding to 0 = 1.5 x lom4. The principal features of 
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o r  t o  t h e  choice of t i d a l  model. 

We f i n d  t h a t  no appreciable increase occurs i 

r e  probabi l i ty  u n t i l  the  average eccen 

near ly  0.25. 

zero for  the  resonance sp in  rate, so t h a t  t 

proaches uni ty .  

t h i s  t i d a l  model; s l i g h t l y  d i f f e r e n t  values f o r  other  models), then 

the 3:2 resonance would never be reached, because t i d a l  decay of Mer- 

cury's spin would cease a t  a somewhat faster spin rate. 

spin r a t e  decayed t o  t i d a l  equilibrium while Mercury's average eccen- 

t r i c i t y  exceeded 0.25, then a 3:2 resonance capture would be l i k e l y  

t o  r e s u l t  i f  the  average e c c e n t r i c i t y  la ter  decreased very slowly (say 
over 10 years) t o  l e s s  than 0.25. We emphasize, however, t h a t  c e l e s t i a l  

mechanics (a t  present) suggest no mechanism which would produce such a 
secular  change i n  o r b i t a l  eccent r ic i ty .  The subject  of long-term 

9 (over 10 years) changes i n  planetary o r b i t s  remains eminently open 

t o  f u r t h e r  study. 

A t  t h i s  value t h e  t i d a l  torque aver 

If the  average e c c e n t r i c i t y  were t o  exceed 0.25 (for  

But i f  the  

9 

Probably the most vulnerable assumption i n  our mathematical model 

of sp in  evolution i s  the planar assumption: t h a t  Mercury has always 

ro ta ted  about an axis near ly  normal t o  t h e  plane of i t s  o r b i t .  

reconsider t h i s  planar  assumption must remain f o r  f u t u r e  study. 

three-dimensional equations are formidable, and t h e i r  so lu t ion  may be 

possible  only by numerical in tegra t ion .  

worthwhile is indicated by the  following observation: When a p l a n e t ' s  

sp in  angular ve loc i ty  g r e a t l y  exceeds its o r b i t a l  mean motion and when 

t h e  equator is incl ined t o  the o r b i t  plane, i f  due t o  f r i c t i o n  the  t i d a l  

d i s t o r t i o n  of t h e  planet  s u f f e r s  an angular displacement ("lag") about 

the sp in  axis ,  then o r  component of  the t i d a l  torque 

normal t o  t h  

after in tegra t ion  over an o r b i t a l  period the  equator ia l  inc l ina t ion ,  

o r  angle between t h  

To 

The 

That such an e f f o r t  may be 

h i s  normal component i s  such t h a t  

p i n  angular ve loc i ty  vector and 
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the  magnitude is  such t h a t  moderate inc l ina t ions  (of a few degrees) 

a r e  increased t o  la rge  inc l ina t ions  (exceeding 45 degrees) i n  about 

the  same time a s  t i d a l  f r i c t i o n  reduces the  sp in  magnitude t o  10% 

of i t s  o r ig ina l  value.  

An unpublished analysis  by Peale (1968, p r iva t e  communication) 

ind ica tes  t h a t  although the  effect  of t i d a l  f r i c t i o n  on a rap id ly  

ro t a t ing  p lane t ,  as we have discussed, is t o  increase the  tilt of the  

ax i s ,  on the  other  hand the effect  of t i d a l  f r i c t i o n  on a slow, re- 

sonantly ro t a t ing  planet  i s  t o  reduce the  tilt. 

i s  cor rec t ,  w e  are led t o  the  following p i c tu re  of sp in  evolution 

f o r  Mercury: Mercury's spin,  l i k e  t h a t  of most of the  other  planets ,  

was once rapid and d i r e c t ,  with a period between 10 and 20 hours, and 

an inc l ina t ion  of  around 25 degrees. Through t h e  effect  of t i d a l  

f r i c t i o n  t h e  sp in  magnitude was reduced while t h e  tilt increased un- 

til (possibly) a resonance r o t a t i o n  s t a t e  was achieved with a severe 

axis tilt, perhaps near ly  90 degrees inc l ina t ion .  Then, while a 
spin-orbi t  resonance condition pers i s ted ,  t h e  sp in  ax i s  was erected 

u n t i l  t he  present configuration with small inc l ina t ion  was obtained. 

Whether a three-dimensional model might lead t o  s ign i f i can t ly  d i f -  

fe ren t  capture p robab i l i t i e s  than we have found f o r  the two-dimensional 

model remains unanswered. 

- 
If Peale's analysis  
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Appendix A 

The Tidal Torque 

I .  Tidal Fr ic t ion 

In t h e  c l a s s i c a l  theory of t i d a l  f r i c t i o n  due t o  Darwin (1908), 
the t i d a l  d i s t o r t i o n  of the p l a n e t ' s  f i g u r e  i s  assumed t o  be approxi- 

mated by the equilibrium d i s t o r t i o n  of a homogeneous e l a s t i c  sphere. 

To first order i n  ( R / r ) ,  where r i s  the d i s t a n  
surface radius  of the p lane t ,  the  t ide- ra i s ing  p o t e n t i a l  of the sun a t  

the planet i s  given by a spherical  harmonic function of second order. 

The equilibrium surface displacement ("tide") of a homogeneous e l a s t i c  

sphere subject  t o  t h i s  p o t e n t i a l  i s  a surface harmonic of second order 

a l so ,  such t h a t  the  height of the  t i d e  i s  simply proportional t o  t h e  value 

o f  the dis turbing p o t e n t i a l  everywhere on the surface.  

r a d i a l  inhomogeneity i n  t h e  body is only a change of s c a l e  of the t i d e ;  

the form of t h e  d i s t o r t i o n  is  not changed. Small  deviations from rota-  

t i o n a l  symmetry i n  the  body may be t rea ted  separately.  Thus the e l a s t i c -  

sphere model may be a reasonable first approximation of a real planet  i f ,  

f o r  times c h a r a c t e r i s t i c  of t i d a l  motions, the planet  behaves as a nearly- 

e l a s t i c  s o l i d ,  and provided t h a t  the na tura l  periods of free o s c i l l a t i o n s  

are s o  shor t  t h a t  resonance e f f e c t s  may be ignored. The e f f e c t s  of small 

deviations from per fec t  e l a s t i c i t y  may be calculated by per turbat ion of 

t h i s  bas ic  model. 

f the sun and R the  

The e f f e c t  of 

A t  a point on the surface of  a spherical  planet  of radius  R where 

the zenith dis tance of the sun is 5, the t i d e - r a i s i n g  p o t e n t i a l  of the 

sun i s  

(A* 1)  
3 2 3  2 1 

W(€J = - (GM/r ) R  ( cos 5 - 7 ) 

where G is  t h e  grav i ta t iona l  constant,  M the  s o l a r  mass, and r the  sun- 

planet  dis tance.  Terms of higher order than the  first i n  ( R / r )  a r e  neglec- 

ted .  In t h e  s teady-state  case (r and 5 constant) ,  the  r a d i a l  displace- 

ment, 6R,  of t h e  surface of a spherically-symmetric planet is (Love, 1892) 
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where g is  the surface g rav i t a t iona l  f i e l d  s t rength  of t h e  p lane t  and 

h is a dimensionless constant known as the  t i d a l  Love number, which 

accounts f o r  both t h e  elastic and gravi ta t iona l  r e s i s t ance  t o  deforma- 

t i o n  of the  sphere. 

dens i ty  p and modulus of r i g i d i t y  p(Love, 1892), 

For a homogeneous s o l i d  e las t ic  sphere of mass 

5/ 2 h =  1+19p/2gpR 

Eqs. (A.2) and (A.3) w i l l  be derived i n  the  following sec t ion .  Eq, 

(A.3) i s  of ten wr i t ten  i n  the  form 

where the  dimensionless parameter p 

e f fec t ive  r i g i d i t y .  

p a r a l l e l  t o  resist the  t i d a l  deformation, and pT expresses t h e  r a t i o  of 

e l a s t i c  t o  g rav i t a t iona l  e f f ec t s .  

(pT+O), the t i d a l  Love number h approaches 2.5. 

varying dens i ty  t h e  numerator i n  Eq.CA.4) may be replaced by a general  

parameter, hf ,  known as t h e  f l u i d  Love number. A numerical value h - f -  
1.96 has been estimated f o r  t he  Earth from t i d a l  observations (Munk and 

MacDonald 1960, p.26); the  5/2 f ac to r  is adequate f o r  our purposes, how- 

ever. 

= 19p/2gpR is known as the  t i d a l  T -  
E l a s t i c  and g rav i t a t iona l  r e s to r ing  forces  act i n  

In  the l i m i t  of zero e l a s t i c  r i g i d i t y  

For spheres of r a d i a l l y  

Numerical estimates of the  t i d a l  e f f ec t ive  r i g i d i t y  and t i d a l  Love 

number f o r  Mercury can be made from values determined f o r  the  Earth. 

From seismic da ta ,  Gutenberg (1959, ch.8.6) has derived values f o r  t he  

modulus of a r i g i d i t y ,  p, of the  Ear th ' s  mantle ranging from 0.7 x 10 1 2  

dyne/cm2 a t  a depth of  200 km t o  2.8 x lo1' dyne/cm2 a t  2800 km, and 

dropping o f f  sharply a t  t h e  outer  core.  Taking a value of p = 10 
2 2 3 8 dyne/cm , g = 980 cm/sec , p = 5.5 gram/cm , and R = 6.4 x 10 cm, f o r  

1 2  

t h e  Earth one ca lcu la tes  pT = 2.8. Observations of Earth t i d e s ,  by 
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comparison, lead t o  a value of yT = 2.3 (Munk and MacDonald, 1960, p.28),  

but t h i s  l a t t e r  inference is somewhat complicated by the yielding of 

t he  oceans so t h a t  the f a i r  agreement between these  two values may be 

for tu i tous .  The modulus of r i g i d i t y  value of y = 10l2 dyne/cm2 leads 

t o  an estimated y = 20 f o r  Mercury. (Note t h a t  yT % y/p 2 R 2 .  , the  den- T 
s i t y  of Mercury i s  about the  same as the  Ea r th ' s . )  

The pure ly-e las t ic ,  s teady-s ta te  model represented by Eq. (A.2) 

must be modified t o  include the  e f f e c t s  of d i s s ipa t ion  i n  the  dynamic 

case. We first consider the  e f f e c t  of d i s s ipa t ion  when the  planet  is  

ro t a t ing  a t  a uniform r a t e ,  w, about an axis normal t o  the  plane of a 

c i r c u l a r  o r b i t  around the  sun. 

n ,  is  measured i n  the  same sense as w. A s  always i n  t h i s  paper, the d i s -  

s ipa t ion  i s  assumed t o  be so small t h a t  the  equilibrium (diss ipat ion-  

f r ee )  t i d a l  d i s t o r t i o n  may be used t o  ca lcu la te  the  e f f e c t  of the  

d i s s ipa t ion .  In the  l i m i t  of zero d i s s ipa t ion ,  of course, the  equi- 

l ibrium t i d e  given by Eq. (A.2) is  obtained, with t h e  pa t te rn  of t i d a l  

d i s t o r t i o n  r o t a t i n g  t o  follow the sun a t  a r a t e  (n-w) with respect  t o  

t h e  planet .  (The attainment of t h i s  equilibrium configuration would 

requi re  f i n i t e  damping of t he  f r e e  o s c i l l a t i o n s  of t h e  e l a s t i c  planet .  

The damping i n  t h i s  case may be taken a r b i t r a r i l y  small .)  Viewed from 

a coordinate frame moving with the  sun, t he  t i d a l  d i s t o r t i o n  has exact ly  

t h e  form given by Eq. (A.2), independently of t he  value of (n-w) i n  t h i s  

l o s s l e s s  case. This 

symmetry must be destroyed, however, i f  t he re  is  energy d i s s ipa t ion  

caused by the  (s inusoidal ly)  varying s t r a i n  within the  planet .  Any 

energy d iss ipa ted  must be supplied by means of a t i d a l  torque opposing 

the  p l ane t ' s  r o t a t i o n  with respect  t o  the  sun. 

d i s s ipa t ion  is presumed t o  be l i nea r ,  i .e .  "viscous", t h e  modification 

of t h e  t i d a l  d i s t o r t i o n  is  p a r t i c u l a r l y  simple (Munk and Macdonald, 1960, 

p. 22): 

t h e  e n t i r e  pa t t e rn  is  ro ta ted  s o  t h a t  the  axis  of symmetry lags  behind 

t h e  apparent motion of the  sun by an angle, 6,  which for small d i s s ipa t ion  

The constant o r b i t a l  angular ve loc i ty ,  

There is  no t i d a l  torque because of symmetry. 

If the  mechanism of 

the  second harmonic form of the  d i s t o r t i o n  is unchanged, but  
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is proportional to the relative rate, (n-w), of solar motion. The lag 

thus corresponds to a small constant time delay of the tide. 
of the tidal bulge is unchanged to first order in 6. 
T, due to the small tidal lag angle, 6, may be calculated by the following 
procedure: 
the planet caused by the surface displacement, 6R, may be calculated by 
a straightforward application of  potential theory by considering that 
an infinitesimally thin layer of  surface mass density p6R has been de- 
posited on the spherical surface of the planet. 
distance, r, from the center of the planet, and of the angle, +, mea- 
sured from the axis of symmetry of the tidal distortion, the potential, 
V, at an external point due to the surface layer is 

The height 
The tidal torque, 

-+ 

the disturbance of the external gravitational potential of 

As a function of radial 

3 2 1 -1 4 3 2 n R  V(r,Cp) = - -mR (- )h( -z cos (9 - $M 
5 g 

4 3  j. 

3 where m = - ITR p is the mass of the planet. 
obtained by differentiating (A.5) with respect to Cp, evaluating Cp = 6, 
and multiplying by the solar mass, M, because the torque on the sun is 
equal and opposite to the sun's torque on the planet. 
is substituted for the moment of inertia of the sphere the result may 
be written 

The tidal torque, T, is 

2 2  
5 If C = -mR 

-+ 
where k is a unit vector in the direction of the planet's angular velo- 
city vector. 

The linear, o r  "viscous" dissipation model which implies 6 % (n-w) 
in Eq. (A.6) is very likely not a fair representation of the real mecha- 
nisms of tidal friction, which remain unknown even for the Earth. 
of seismic attenuation in the Earth (Smith, 1961; Alsop -- et al., 1961; 
Macuonald and Ness, 1961; Connes _.- et al., 1962; Anderson and Kovach, 1964; 
Anderson and Archambeau, 1964; Press, 1966; Nowroozi, 1968) and laboratory 
studies of acoustic attenuation in rocks (Knopoff and MacDonald, 1958; 
Peselnick and Outerbridge, 1961) both suggest, in fact, that the solid 

Studies 
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d i s s ipa t ion  mechanism i s  nonlinear,  such t h a t  a t  least f o r  s t r a i n  ampli- 

tudes less than the  e l a s t i c  ' ,qll  i s  independent of amplitude and 

frequency f o r  s inusoidal  s t r a i n  o s c i l l a t i o n s  between 10 and 10 Hz. 

The dimensionless parameter, Q, i s  defined as 2~ times t h e  r a t i o  of 

the peak s tored e l a s t i c  energy, 

of the s t r a i n  o s c i l l a t i o n ,  AE, 

- 2> 6 

t o  t he  energy d iss ipa ted  per  cycle Emax 2 

2TEmax 
= AE 

AE is  the  d i f fe rence  between the  mechanical work done t o  deform the  

mater ia l  and the work returned by the  re laxa t ion  of the deformation. 

In a l i nea r  system Q is  inversely proportional t o  frequency f o r  forcing 

frequencies much smaller than the  na tura l  frequency of free o s c i l l a t i o n s  

of the  system and Q i s  equal t o  the  r a t i o  of the s t r a i n  amplitude 

a t  resonance t o  the s t r a i n  amplitude a t  low frequencies,  f o r  t he  same 

amplitude of applied s t r e s s .  

be invoked (Knopoff and MacDonald, 1960) t o  account f o r  the  frequency 

independence of Q i n  ce r t a in  so l id s .  

Non-linear d i s s ipa t ive  mechanisms must 

What is  the  behavior of the  t i d a l  torque if  the  a n e l a s t i c i t y  of 

the  planet  i s  character ized by a constant e l a s t i c  Q, independent of the  

amplitude o r  frequency of t h e  s inusoida l ly  varying t i d a l  s t r a i n ?  

s tored e l a s t i c  s t r a i n  energy, Eel, of t he  sphere,  calculated f o r  the  

equilibrium t i d a l  d i s t o r t i o n  of Eq. (A .2 ) ,  may be wr i t ten  i n  the  form 

The 

In one cycle  o f - t i d a l  s t r a in ,  corresponding t o  one ha l f  ro t a t ion  of  t h e  

planet  with respect  t o  t h e  sun, t h e  energy d iss ipa ted ,  AE, must be 

AE = zn Q - ~ E ~ ~ .  

This energy, AE,  is  equal t o  the  work done on the  ro t a t ing  planet  by t h e  

t i d a l  twque ,  T. Eqs. (A.8) and (A.9) are compatible with (A.6) i f  t he  
3 
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t i d a l  l ag  angle,  6 ,  is given by 

s i n  26 = (7) UT Q -1 . 
UT 

(A. 10) 

The assumption of a constant t i d a l  l ag  angle, 6 ,  independent of the  

rate,  (n-u), of r e l a t i v e  t i d a l  r o t a t i o n  might seem unreasonable because 

it implies a t i m e  l a g  of the t i d e  which v a r i e s  inversely with the r z t e  

(n-w) . This "variable memory", however, is an inherent fea ture  of non- 

l i n e a r  a n e l a s t i c i t y  models i n  which d i s s i p a t i v e  forces  depending on r e l a -  

t i v e  displacement a r e  assumed, e .g .  hys te res i s  o r  Coulomb f r i c t i o n  

(Knopoff and MacDonald, 1960). 

What value of Q is  appropriate f o r  the planet  Mercury? Seismic 

s tudies  of the Earth 's  mantle and laboratory measurements on grani te  

suggest an upper bound on Q of a few hundred, due t o  simple s o l i d  an- 

e l a s t i c i t y .  For shear s t r a i n s  i n  the frequency range 3 x 10 t o  2 x 
H z ,  values o f  Q reported f o r  the Earth 's  mantle range from Q = l O O  

-5 

f o r  the upper 400 km, t o  Q=2000 f o r  the  lower mantle ( re fs .  above). 

The e f f e c t i v e  average Q f o r  the mantle appears t o  be between 200 and 

400. Granite under laboratory conditions has a Q of several  hundred 

i n  the  frequency range 4 Hz t o  l o 7  Hz (Peselnick and Outerbridge, 1961). 

Other s o l i d  diss ipat ion mechanisms may a l s o  be important: e .g .  Mac- 

Donald (1964) suggests t h a t  r e l a t i v e  motions of large blocks of the 

Ear th ' s  c r u s t  i n  response t o  the t i d a l  force account f o r  about 40% of 

the  t o t a l  d i ss ipa t ion ,  which is  characterized by a Q of about 30. O f  

course the motion of water on Earth provides a d i s s i p a t i o n  mechanism 

believed t o  be absent on Mercury. 

I t  remains t o  consider t h e  e f f e c t  of o r b i t a l  e c c e n t r i c i t y  on t h e  

t i d a l  torque. 

t e n t i a l  (Eq. A.l) is  time-varying: not only does t h e  sun ' s  dis tance 

vary, but the o r b i t a l  angular v e l o c i t y  i s  var iab le  according t o  Kepler's 

second l a w .  In pr inc ip le ,  however, the  time-varying p o t e n t i a l  func- 

t i o n  can be expanded i n  an i n f i n i t e  sum of harmonic terms, each term 

having a constant amplitude, and a constant c i r c u l a r  motion which is 

When the o r b i t a l  e c c e n t r i c i t y  is nonzero, the t i d a l  po- 
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a sum or difference of some multiple of the orbital mean motion, n, and 
the planet's (constant) spin angular velocity, w.  (Cf. Appendix B . )  

The amplitudes of the component terms will be functions of o 
centricity, but for moderate values of the eccentricity the amplitudes 
will decrease rapidly with increasing angular arguments (higher multiples 
of the orbital mean motion.) Now if the planet is nearly elastic, the 
first approximation to the solution for the time varying tidal distor- 
tion (in which dissipation is ignored) is given by the sum of the indi- 
vidual distortions caused by the individual component terms in the 
Fourier-harmonic expansion of the potential, taken separately. 
the previous discussion we recall that the response to each constant- 
amplitude, uniformly rotating potential term is a second-order surface 
spherical harmonic displacement, with height given by Eq. (A.2) .  Be- 
cause the spin and orbital angular velocities of Mercury (corresponding 
to period of tens of days) are so much smaller than the natural fre- 
quencies of free oscillations of the elastic sphere (which correspond 
to periods of a few hours at most), the effects of resonance on the am- 
plitude and phase of each component response may be neglected for all 
significant terms. A s  a result the composite tidal distortion (neglec- 
ting dissipation) is simply given by Eq. ( A . 2 )  with values of r and 6 
at every instant corresponding to the instantaneous position of the 
sun. The introduction of nonzero orbital eccentricity has no effect, 
therefore, on the dissipation-free tidal response. As in the circular- 
orbit case, there is no tidal torque when dissipation is absent. 

From 

The model of weak linear viscous dissipation remains easy to analyze. 
Assuming that all natural oscillation periods are very short compared to 
the tidal periods, then each harmonic component of the tide is delayed 
by the same constant time delay (i.e. by an angle proportional t o  the . 

rotation rate of the component). When the components are added, there- 
fore, the composite tide differs from the dissipation-free tide by only 
a constant time delay, or by an angle, 6, which at any instant is approxi- 
mately proportional t o  the instantaneous difference between the orbital 
angular velocity, v, and spin rate, w. 

tion, the instantaneous tidal torque is found to be 

b 

Following the previous deriva- 
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4 6 -+ 9 nRC a T = -  - h (-) (--) s i n  26 %, 
4 g 

(A. 11) 

where a is the  o r b i t  semi-major ax i s ,  r is  the instantaneous d is tance  

of the sun, and other  terms have the  same meanings as i n  E q .  (A.6). 

When other ,  nonlinear d i s s ipa t ion  models are considered, the  ca l -  
cu la t ion  of t he  instantaneous t i d a l  torque is i n  general more d i f f i c u l t  

than f o r  the  above, l i n e a r  model. The bas ic  per turbat ion method, of 
using the  d iss ipa t ion- f ree  so lu t ion  f o r  the  instantaneous t i d a l  d i s -  

t o r t i o n  i n  order t o  ca l cu la t e  the ra te  of energy d i s s ipa t ion  by anelas- 

t i c i t y ,  remains va l id  as long as the d i s s ipa t ion  is “weak” (Q >> 1 ) .  
Although the  presence of s tored  e l a s t i c  energy allows the re  t o  be a 

d i f fe rence ,  instantaneously,  between the  r a t e  of d i s s ipa t ion  and the  

power supplied by the  t i d a l  torque, these two r a t e s  of energy t rans-  

f e r  must balance over times long compared t o  the e las t ic  re laxa t ion  

t i m e ,  defined as the  quot ient  of the ( typ ica l  o r  average) s tored 

energy, divided by the (average) rate of  d i s s ip t ion .  On an o r b i t a l  

time sca l e  (days t o  hundreds of days),  therefore ,  it is va l id  t o  con- 

s i d e r  t he  t i d a l  torque a t  any t i m e  as given by Eq. (A . l l ) ,  where the  

t i d a l  l ag  angle,  6 ,  i s  determined i n  such a way as t o  balance the  

work done by the  torque, and t h e  rate of energy d i s s ipa t ion  a t  each 

in s t an t .  The nonlinear,  constant-Q d i s s ipa t ion  model thus y ie lds  a 

constant lag  angle, 6 ,  according t o  Eq. (A.10), where the  sense of 

the  t i d a l  lag angle reverses  i f  the  s ign of (G-w) reverses  a t  some 

point  i n  t h e  o r b i t .  

Because t h e  s ign i f i can t  ac tua l  mechanisms of t i d a l  f r i c t i o n  are 

unknown, even f o r  the  Earth, t h ree  d i f f e r e n t  models of t i d a l  f r i c -  

t i o n  a re  considered i n  t h i s  paper, corresponding t o  (1)6 = constant;  

(2) 6 %(G-u); and (3) 6 % amplitude of the  t i d e .  
intended t o  represent  an amplitude-dependence of  Q. These same th ree  

t i d a l  models, r e f e r r ed  t o  as “MacDonald’s models,” were considered by 

Goldreich and Peale (1966b) i n  t h e i r  ca lcu la t ions  of sp in-orb i t  re- 

sonance capture  p r o b a b i l i t i e s  f o r  Mercury. These authors a l so  con- 

The lask model is 
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sidered a model ("Darwin's") i n  which t h e  average (over an o r b i t )  t i d a l  

torque su f fe r s  a f i n i t e  s t e p  change as the p l ane t ' s  sp in  angular velo- 

c i t y  passes from j u s t  above t o  below each resonance value,  i . e .  ha l f -  

in teger  mult iple  of the  o r b i t a l  mean motion. This model, which inc i -  
den ta l ly  leads t o  high capture p robab i l i t i e s ,  was j u s t i f i e d  by an e r -  

roneous argument: 
t h  panded i n  a Fourier time s e r i e s  (as w e  have discussed above), the  i 

Fourier component of t he  ra i sed  t i d e  was considered t o  lag behind the  

ith po ten t i a l  component by a phase angle E which could be computed 

separa te ly  f o r  each component from the  value of the  p l a n e t ' s  "Q" cor- 

responding t o  the  frequency of the  ith harmonic. 

was assumed t h a t  the  phase lag 

t h i s  assumption admittedly having been suggested by the  experimental 

evidence t h a t  t he  Q of rocks is independent of frequency. 

d i c t ion  inherent i n  t h i s  (so-called tsDarwints'f) t i d a l  model should be 

evident from our discussion above. 

t h e  effect of each Fourier component of the  t i d a l  po ten t i a l  only when 

d i s s ipa t ion  i s  absent (when the  smallness of t he  s t r a i n  assures  the  

a p p l i c a b i l i t y  of l i n e a r  e l a s t i c i t y ) ,  or when the d i s s ipa t ion  mechanism 

i s  i tself  l i n e a r .  

of e f f e c t s . )  

components a r e  independent of t h e i r  frequencies is  inconsis tent  with 

the  assumption o f  l i n e a r i t y  (superposabi l i ty) .  

the  t i d a l  po ten t i a l  at the  planet  having been ex- 

i 

In p a r t i c u l a r  it 

was the same f o r  a l l  components - 

The contra- 

I t  i s  poss ib le  t o  compute separa te ly  

("Linearity" here  is equivalent t o  superposabi l i ty  

The assumption t h a t  t he  phase lags  of harmonic s t r a i n  

I t  should be noted t h a t  our own der iva t ion  of t i d a l  torque models 

above depends on t h e  assumption t h a t  the na tu ra l  frequencies of free 

o s c i l l a t i o n s  of t h e  s o l i d  p lane t  are very high compared t o  t h e  p l ane t ' s  

sp in  and o r b i t a l  angular ve loc i t i e s .  

for Mercury, but would ce r t a in ly  not  be j u s t i f i e d  i n  a discussion of t he  

t i d a l  evolution of the  Earth-Moon system. 

This assumption is probably j u s t i f i e d  

A . 2  Tidal  equilibrium of an elastic sphere 

l n  t h i s  s ec t ion  we der ive  expressions (A.2) and (A.3) giving t h e  

equilibrium t i d a l  d i s t o r t i o n  of  an e l a s t i c  sphere. 

i so t rop ic  incompressible elastic s o l i d  having shear  modulus li and mass 

For a homogeneous and 
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density p,  equilibrium of elastic and gravitational forces requires 
that the components u of the displacement along the Cartesian axes 
xi(i=1,2,3) satisfy (Sokolnikov, 1956, p.79): 

i 

(p+pU); i = 1,2,3 2 a uv ui = - axi 

in which p is the hydrostatic pressure, U the gravitational potential, 
and Q 2 is the Laplacian operator: 

(A. 12) 

2 
2 -  a2 v = c  - 

i=l axi 

The condition of incompressibility is 

3 aui 
= o  

i=l 

(A. 13) 

(A. 14) 

(This condition must apply to the interior o f  a planet to avoid gravi- 
tational collapse.) When the gravitational potential U is a known func- 
tion Equations (A.12) and (A.14) provide four independent simultaneous 
partial differential equations for the four unknown functions ui (i=1,2,3) 
and p. 
gravitating body, however, then an additional component of the gravita- 
tional potential is due to the displaced mass at the surface. 

When there is a tidal displacement of the surface of a self- 

In the absence of an externally originating tidal potential the 
gravitational potential distribution within a gravitating sphere is 
spherically symmetric and accompanied by a similar hydrostatic pressure 
distribution, such that the pressure everywhere balances .the weight of 
the overlying mass. 
hydrostatic forces are in equilibrium with zero elastic displacement. 
Because these spherically symmetric components of  the potential and 
pressure fields contribute nothing to the displacement they will be ig- 
nored in the following discussion. 

In an incompressible sphere these gravitational and 
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In order to compute the equilibrium tidal distortion of a self- 
gravitating elastic sphere we will consider first only the displace- 
ment produced directly by the externally applied tidal potential; then 
we will include the effects of the additional potential and surface 
pressure distributions due to the surface mass displacement. 

The tide-raising potential, W, of the sun at a planet may be written 
in the form 

2 2 1  2 1  2 W(x ,x ,x ) = -n (x3 - - x  - - x  ) 1 2 3  2 1  2 2  (A. 15) 

where n is the mean motion in a circular orbit (cf. Eq. A.1): 

n2 E GM/a3 = constant (A. 16) 

and the Cartesian system of coordinates x.(i=1,2,3) has its origin at 
the center of mass of the planet, with the x -axis directed toward the 
sun. The general solution of Eqs. (A.12) for an elastic sphere was 
given by Kelvin (1863, 1890; Kelvin and Tait, 1867). For the special 
case U=W (Eq. A.15) the solution which satisfies the incompressibility 
condition (A.14) and yields zero surface tractions is 

1 

3 

(A. 17) 
2 *  
19 1’ 2’ 3 p = -pW(x x x )  

where 

r2 3 3 2  1 xi 
i=l 

(A. 18) 

and r = R defines the unstrained surface of the sphere. 
(A.17) may be verified by direct substitution into Eqs.(A.12) and (A.14). 

This solution 
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The displacement a t  the surface,  obtained by evaluating (A.17) a t  r=R, 
is purely r a d i a l .  The (positive-outward) displacement, bR,  a t  a point 

on the surface may be wr i t ten  i n  the  form 

6R = - * [W(xl,x2,x3] * 
191-1 r=R 

(A. 19) 

When the  sphere is  considered t o  be se l f -grav i ta t ing ,  t h e r e  is  

an addi t ional  contr ibut ion t o  the i n t e r n a l  g r a v i t a t i o n a l  p o t e n t i a l  

due t o  the  displaced mass a t  t h e  surface,  and a normal surface t r a c -  

t i o n  a t  r=R due t o  t h e  weight of t h i s  t h i n  surface layer .  The i n t e r n a l  

(r<R) gravi ta t iona l  p o t e n t i a l ,  V, generated by the  surface displace- 

ment may be calculated simply if terms of order higher than t h e  first 

i n  (6R/R) a r e  neglected, by considering an equivalent surface mass 

layer  of in f in i tes imal  thickness and mass per area of p 6R. If 6R 
is  of t h e  general form 

where h is  a constant and g i s  the surface grav i ty ,  then the surface- 

generated i n t e r n a l  p o t e n t i a l ,  V ,  i s  given by 

(A. 20) 

(A. 21) 

The normal surface t r a c t i o n  a t  r=R due t o  t h e  weight of  the displaced 

mass i s  

-g p6R = phW. (A. 22) 

The displacements caused by t h i s  surface t r a c t i o n  are completely equi- 

valent  t o  those caused by an applied p o t e n t i a l  of U = -hW(x1,x2,x3) 

with - no t r a c t i o n .  

so lu t ion  t o  Eqs. (A.12) and (A.14) is considered: 

This fact becomes evident i f  the  following p a r t i c u l a r  

u = 0, ( i  = 1,2,3) i 
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The ne t  effect  of t h e  grav i ta t ing  surface layer  on the  e l a s t i c  displace- 

ments is  thus obtained by adding 

t o  the in t e rna l  po ten t i a l .  

given by E q .  (A.20) with 

The ne t  surface displacement, BR, is then 

(A. 24) 

(A. 25) 

o r  
5/ 2 (A. 3)  

1+19~/2gpR * h =  

The s tored e las t ic  s t r a i n  energy, Eel ,  associated with t h i s  de- 

formation may be obtained by d i r e c t  in tegra t ion  of  t h e  energy densi ty  

(A. 26) 

over the  sphere (r<R). 
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Appendix B 

Expressions f o r  the  Average 

Dimensionless Tidal  Torque 

If the  t i d e  lags  the  sun by a constant lag  angle, independent of 

the  amplitude o r  ra te  of t he  t i d a l  s t r a i n  (model l ) ,  t h e  dimensionless 

t i d a l  torque is  a T ,  where a is a small pos i t ive  constant and T has the  

form (Eq. 4 of t e x t )  

6 
T(e,w,M) = - 

1-e 

i n  which e is the o r b i t a l  eccent r ic i ty ;  w, the  dimensionless planetary 

sp in  ra te ;  M, o r b i t a l  mean anomaly; and v, t r u e  anomaly. The average 

dimensionless t i d a l  torque, To, is  defined by 

6 The binomial formula may be used t o  expand ( l ie  cos v) . The d i f fe rence  

(w-dv/dM) changes s ign  only i f  

In t h i s  case break t h e  in t eg ra l  i n  ( B . 2 )  i n t o  separa te  in t eg ra l s  f o r  

0 < v < vc, v < v < TT, e tc . ,  where c -  - - -  

The der iva t ive ,  T ', of the  average dimensionless t i d a l  torque, defined 0 
bY 

a 
a m  o Tol(e,w) Z -T (e,w) 
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is  obtained most d i r e c t l y  by d i f f e r e n t i a t i o n  of (B .2 )  before the in te -  

grat ion i s  performed. We obtain i n  t h i s  manner, when 

w < (1-e)'l2/(1+e) 3/2. . - 
(B. 6.1) 

2 3 4  T (e,w) = (1-e ) -9/2(1+3e + e ) ; Tot  (e,w) = 0 ; 0 

(B. 6.2) 
2 -9/2 (1+3e2+ 3 e4) ; TO' (e,@) = 0 ; To(e,w) = - ( l - e  ) 8 

otherwise (B.3): 

-16 e s i n  vc 

+ 6e (1~-2v~-2  s i n  v cos v ) 

-(16/3)e (3 s i n  vc-sin vc) 

2 
C C 

(B. 6.3) 3 3 

4 3 +(1/8) e (61~-12v~-12sin v cos vc-8 s i n  vccos vc)] 
C 

T 0 r (e,w) = -w3/2/[re(l-e2)3/4sin v C 1 

i n  which vc has the d e f i n i t i o n  (B .4 ) .  

When the t i d a l  lag angle is proportional t o  rate (model 2 ) ,  the  

form of t h e  t i d a l  function, T,  becomes (Eq.9 of t e x t )  

l i e  cos v 6 dv 
T(e,w,M) = - ( 2 >(w - dM" 

1-e 
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In t h i s  case To, defined by (B.2), and T O 1 ,  defined by (B.5), become 

respect ively 

T (e,u) = -(1-e2)-9’2(1+3e 2 3 4  + - e ).  0 8 

When the t i d a l  lag angle is proportional t o  the s t r a i n  amplitude 

(model 3 ) ,  we have (Eq.  l G  of t e x t )  

dv 9 
T(e,w,M) = - ‘Os 2 1 sgn(w - & . 

1-e 

The method used above f o r  model 1 y ie lds  when 

2 -15/2 2 1  e2 
2 

105 e4 + __ 35 e 6 
16 + -  

8 (1+ - T,(e,w) = (1-e ) 

T ‘ (e ,u)  = 0 ; 0 

2 -15/2 21  e2 105 e4 35 e61 + -  16 + -  8 (1+ - 2 To(e,w) = -(1-e ) 

Tol(e,w) = 0 ; 

otherwise (B. 3) : 

1 2 -15/2 To(e,w) = .rr (1-e ) 

21  2 105 4 35 6 ( [l+r e + - e + -  16 e 1 (2vc-.rr) 8 

(B. 10.1) 

(B. 10.2) 

105 3 105 e5+ 35 e7] sin vc 
32 e + -  +[14e + - 4 2 
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2 1  2 35 4 105 e61 sin 2vc e + -  32 +[7 e + - 2 

C 
35 e 4 3  e6] s i n  4v 32 (B. 10.3) 

C 
+ [ m e + -  e7] s i n  5v 160 

7 6  +[a e ] s i n  6vc 

3 7 +[L e 3 s i n  7vc 224 

Tor(e,w) = -w 3 /[Te s i n  vc( l -e  2 ) 3/2 ] 

i n  which vc has the d e f i n i t i o n  (B.4). 

The r e s u l t  expressed i n  (B.6), f o r  the average t i d a l  torque i n  
t h e  case of constant lag  (model l ) ,  was first published by Colombo 

and Shapiro (1965). Goldreich and Peale (1966) have published expres- 

s ions  equivalent t o  (B.6), (B.8), and ( B . l O )  f o r  a l l  t h ree  t i d a l  models; 

unfortunately t h e i r  expressions fo r  models 2 and 3 contain severa l  e r rors .  
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Appendix C .  

Ser ies  Solution of the  Spin 

Equation of  Motion 

The sp in  equation of motion (Eq. 11 of t e x t )  is  wr i t ten  i n  the  

form 

3 

%- = - @ [  [ 1-e2 cos s i n  ~ ( 8 - v )  

A so lu t ion  i s  sought as a power s e r i e s  i n  6: 

8 ( M )  = 1 Biei(M) 
i = O  

00 

u(M) = 1 Biwi(M) 
i = O  

Subs t i tu t ing  these  expansions i n t o  the  equations o f  motion and equating 

separa te ly  t h e  coe f f i c i en t s  of  terms mult ipl ied by the  same power of 6, 
as described i n  Section I I . C ,  we obta in  the  members Bi(M), ui(M) of t h e  

power series so lu t ion  ( C . 2 ) :  

wo(M) = w ' = const 0 

9,(M) = eo1  + w 'M 0 

m m 

u,(M) = 1 Pj(e)C2(j)-y{To(e,wo')M+ 1 j-lTj(e,wot) s i n  j M f 
j =-m j =1 

- 84- 



03 
-y {7 1 To(e,wo1)M2 - 1 j -2T.  (e,uol)  [cos jM-11) 

j =1 3 

- T '[s2(j) - M COS 2e01]  
0 

+ p j  [k -2Tk[2s2 ( j )  - s 2 ( j - k )  - s , ( j+k ) l  
J 

tT T I 

cos kM-1 1 2 'olo' 2 
+ Y [T M + 1 [TOTk' sin kM - T IT 0 k k2  k k 

'T cos (j+k)M-1 
+ 1 ( j + k )  

j , k  

P P  s 4 ( j + k )  - M cos 4OOf s i n  (j-k)M - (j-k)M + 
( j  -k) (4wO1 - j -k) 

j k  [ 
e2w1 = 1 2 j , k  (2wO1-k) 

I C 2 ( j ) + M  s i n  2eO1 

2w0 - j 
- 2 s i n  2OOf 
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2s2(k)-M(cos 2 0 0 f + ~ ~ ~ q ( k ) )  

2w01-j  + 2 cos 2 e o q  

+ Tof[C2(j)+M s i n  Z O O f +  1 (2w '-j)M 2 cos 2eo ' ]  
0 

C2(j-k)+M s i n  2eO1 
Tk' - C2(j)+M s i n  2eO1 

- 2  (2w01  - j  1 1 + (2w01- j )  [ 2 (2wO1 - j+k)  

(l-cos j MI,  ] + + cos 2e01 
C2(j+k)+M s i n  2eOf 

2 (2wo - j -k) 

11 ' sin(j+k)M- (j+k)M + sin(k-j)M-(k-j)M 

(k-j 1 ( j  +k) 

where 
s i n  [neo + (nuo * - j )MI - s i n  ne 

S n W  (nuo - j  1 
, 

cos[n0 '+(nw,'-j)M] - cos neO' 0 
Cn(j) (nuof - j  1 

and the  coe f f i c i en t s  P j ,  T j ,  Tjf a r e  given by Counselman and Shapiro, 1969. 

For t h e  spec ia l  case e = 0 w e  f i nd  
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+ (z 9 s i n  40,')S2(2) 

+ (6 cos 20,')C4(4) + (4 s i n  20,')s4(4) 

+ (6+3 cos 40,')M s i n  ~(2) 

- (2 s i n  40,') M cos q(2) 

+ (2 cos 20,') M s i n  2q(2) 

+ (2u0'-2)-l[ cos 3 q(2)-cos 3 20,'l) (C.9) 

13 
= (2~,'-2)-~-{ (12+9 cos 4eO1)S2(2)- 2 s i n  400fC2(2) 

+ 4 cos 20 S4(4)-2 s i n  20,'C4(4)-(2 s i n  4e0')M s i n  q(2) 0 

-(8+6 COS 40,')M COS ~(2) - (COS 2e0')M COS 2 ~(2) 

2 9 -(2+2 cos 40,l)M s i n  ~(2) - ( z s i n  40,')M s i n  28,' 

-(3+4 cos 40,')M cos 28,' - (2 s i n  20,')M s i n  48,' 

-(3 COS 20,')M COS 40,' 

3 3 s i n  q(2) -s in  28,' 
6 (u,' -1) 

3 - - M cos 28,' (C . l o )  
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TABLE 1 

Constants in the solution f o r  the secular variations 
of Mercury's orbital eccentricity, from Brouwer and 
van Woerkom (1950). 

sk (arcsec/ k Nlk 'k 
(degrees) Julian year) 

1 +. 1745 92.18 - 5.46 

2 -. 0255 196.88 - 7.34 

3 +. 0015 335.22 -17.33 

4 -. 0017 317.95 -18.00 

5 +. 0357 29.55 - 4.30 

6 +. 0010 125.12 -27.77 

7 +. 0004 131.94 - 2.72 

8 .oooo 69.02 - 0.63 

9 -. 0002 293.98 +19.17 

10 +. 0001 220.69 -51.24 
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Figure Captions 

Figure 1. 
the angle of rotation about the spin axis (normal to the orbital plane), 
measured between the orbit major axis and the planet's equatorial axis 
of minimum moment of inertia; r is the distance between the centers of mass 
of Sun and Mercury. 

Spin-orbit geometry: v - is the orbital true anomaly; 8 is 

- 

Figure 2(a). Phase plane geometry of resonance capture: 8 (modulo T) 

is the instantaneous angle of rotation observed stroboscopically at 
perihelion passage; 8 is the rotation rate relative to the resonance 
rotation rate. (Thus the 8-axis corresponds to the resonance rate.) 
C and D denote the unstable and stable equilibrium or fixed points, 
respectively. Continuous curves represent sequences of points (8,0) 
at successive perihelia which converge asymptotically to C. 
and B lying on these curves have the same abscissa as C. 
shown were actually computed and plotted from Eq.(23) using exaggerated 
parameter values (8 
behavior near A ,  B, and C. With realistic parameter values (a<<@) the 
points A ,  B, and C would appear on the scale of this Figure to coincide 
at (0,-~/2). 

Points A 

The curves 

=aT0/26Pk = -0.1) in order to display better the 
eq 

The capture probability for the case drawn is 0 . 5 .  

Figure 2@). Phase plane geometry for escape from resonance [refer to 
Fig. 2(a)]: Both A and D are unstable equilibria. Phase point sequences 
shown originating near A have the same value of abscissa as A at points 
B and C. Sequences (not shown) spiralling outward from D must cross 
line segment E or AC (escape to faster or slower spin, respectively). 
For the case drawn here 8 

faster and slower spin are 1/4 and 3/4, respectively. 
= -0.05, and the probabilities of escape to 

eq 

Figure 3(a) and @). Variation of Mercury's orbital eccentricity with 

time for 25 million years from 1950: (a) according to Brouwer and van 
Woerkom (1950); @) a periodic function with T = 5.52~10 yr (see text). 6 
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Figure 4. 

function En used to trace spin evolution. 

Figure 5 .  

resonance as a function of the core-mantle coupling constant, a, for 
various fixed values of the tidal friction parameter, a, and the equa- 
torial asymmetry, (3, with core--mantle moment-of-inertia ratio p=O.1 
and constant tidal lag angle. The orbital eccentricity variation of 
Figure 3 (b) was assumed. 

Contours in the phase ( 0 , i )  plane of the normalized energy 

Local capture probability at the k=3 (59 day rotation period) 

Figure 6 .  Same as Figure 5, except that the tidal lag angle is assumed 
proportional to the tidal rotation rate. 

Figure 7 .  

to the height of the tide. 
Same as Figure 5, except that the tidal lag angle is proportional 

Figure 8. 
resonance as a function of the core-mantle coupling constant, CT, for 
typical values of tidal friction, equatorial asymmetry, and core size 
parameters, and three different tidal friction models. 
large a is due to prior capture at higher (k=4,5, ...) resonance. 
mantle relaxation tims - l /a;  CT = 10 

Net capture probability for the k=3 (59 day rotation period) 

Cutoff for 
Core- 

-6  corresponds to about 40,000 years 

Figure 9. Effect upon local (k=3) resonance capture probability of 
changing average value of orbital eccentricity. 
computed and plotted for the eccentricity variation of Figure 3@), but 
with the different average values shown here. 
points correspond to simple sinusoidal variation of eccentricity with 

6 period 10 yr and amplitudes 0.04 and 0.08, respectively; Computed 
for constant tidal lag angle and no core-mantle coupling. 

Circular points were 

Square and triangular 
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