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ABSTRACT 

A review. Quantum detection theory is a reformulation, in 

quantum-mechanical terms, of statistical decision theory as applied 

to the detection of signals in random noise. Density operators take 

the place of the probability density functions of conventional statistics. 

The optimum procedure for chooeing between two hypotheses, and an 

approximate procedure valid at small s i  nal-to-noise ratios and call 

threshold detection, a r e  prersented. Quantum estimation theory seeks 

best estimators of parameters of a density operator. A quantum counter= 

part of the Crapdr-Rao inequality of conventional statirstics sets a lower 

bound to the mean-square e r ro r s  of such estimates, 

present a r e  p r a a r i l y  to the detection and estimation of signals of optical 

Applications at 
I 

frequencies in the presence of thermal radiation. 
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signal detecti6n, detection theory, parameter estimation, ~ statistical 
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I. Quantum Statis tical Theory 

Much of statistical theory can be viewed as  the calculation of 

expected values. Classically, a system characterized by the variables 

xl ,  x2, . . . , x has associated with i t  a probability density function n 

(p. d. f. 1 P(X1’ X2’ Y xn), and the expectations of certain measurable 

functions f(xl , x2, . . . , Xn) ’ 

a r e  required. Quantum-mechanically a system is described by a 

density operator p ,  which is a function of the dynamical variables of 

the system, and the expected value of an observable whose quantum- 

mechanical operator is F is given by the t race 1 

- E(F)  = Tr(pF).  (1 .2)  

The density operator p is the quantum counterpart of the p. d. f .  

p (x l , . .  , 5). 

presentation based on the simultaneous eigenstates I x 

operators X 

When, as  in the classical  limit, p is diagonal in a r e -  

. . x ) of the 1’ n 

. . . , X corresponding to the variables x1 , . . . , x 1’ n n’ 

the expectatipn in Eq. (1.2) reduces to Eq. (1. l), with 

f(xl, .. . ,x ) = (xl..  .x { Flxl. - . x  }. (1.4) n n n 
2 

Quantum statist ical  theory includes the classical  as  a special case . 

Modern statistical 

aspect, .which appears 

theory also has a normative and methodological 

in its treatment of hypothesis testing and estimation. 
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It seeks the best  procedures for making statements ab,Qvt the condition 

of a system under observation, statements that a r e  framed a s  decisions 

among hypotheses about the system, o r  as estimates of numerical 

parameters  characterizing it. The statements a r e  based on observa- 

tional data subject to unavoidable random e r ro r .  The best methods 

a r e  those that minimize the influence of e r r o r ,  and by evaluating their 

quality i t  is possible to determine the ultimate limits imposed by statisti- 

cal  uncertainty on the accuracy of decisions and measurements . 3 

In classical  physics statist ical  uncertainty is largely due to the 

presence of random noise, which originates primarily in molecular 
I .  

chaos, Statistical hypothesis -testing or  decision theory has been ex- 

tensively applied to the detection of acoustic and electromagnetic 

signals in noise and permits defining the weakest signal that can be 

detected with a specified probability of e r r o r ,  as a function of the 

strength of the interfering n ~ i s e ~ - ~ .  Estimation theory has been 

applied to the measurement of signal parameters such a s  amplitude, 

c a r r i e r  frequency, and time of arr ival ,  which a r e  important in tele- 

metry and radar. The noise sets  a limit to the accuracy of such 

measurements.  

The subject of this review is the formulation of statistical decision 

and estimation theory in quantum-mechanical terms.  

placing the probability density functions that appear in the classical  

It involves re -  

theory by quantum-mechanical density operators. Although the context 

will be the detection of signals a t  optical frequencies and the estimation 
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of their parameters ,  the application of these concepts is not limited 

thereto. The aim of quantum detection and estimation theory is to 

determine how the reliability of decisions and parameter estimates 

is affected both by random noise and by quantum-mechanical uncertainty. 

Classical Decision and Estimation Theory 

Decision theory t reats  the choice among hypotheses about the 

system 

theses, 

form in 

( 0 ,  TI. 

HO 

H1 

at hand. 

exemplified by the absence o r  presence of a signal s ( t )  of known 

the input x( t )  to a receiver during a certain observation interval 

The hypotheses a r e  then 

(null hypothesis): x(t)  = n(t), 

(alternative hypothesis): x(t)  = n(t) t s ( t ) ,  

In the simplest binary decision there a r e  two hypo- 

where n(t) is a random process representing noise with certain specified 

statistical properties. 

n samples x = x(t.) of the input x(t) during the interval ( 0 ,  T),  (i = 1,  

2,  . . ., n). The p.d.f . ' s  p (x . . . , x ) and p (x .. ,x ) of these 

We suppose that the decision is to be based on 

i 1 

o 1' n 1 1" n 

data under the two hypotheses a r e  known. The best  method of deciding 

between them is sought. 

-The adjective "best" is principally defined in two ways. In 

"Bayesian" decision theory the observer knows the pr ior  probabilities 

6 and (1-6) of hypotheses Ho and H and he also knows the four costs C 1' i j  

of choosing hypothesis H. when H. is t rue (i, j 

a r e  entailed by the actions and circumstances 

1 J 

4 
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which is to be made in such a way that the average cost is minimum. 

11 This so-called "Bayes strategy" requires H to be selected whenever 1 

= A. 
P1(X1' . ' 7 X n )  2 ~(C,o-Coo)  

A ( X l , .  . . , x  ) = 
n p0(x1, ' > Xn' (1 - 6 ) ( C o ,  -C1 I 1 

Otherwise H is selected. The function A(x . . , x ) is called the 

likelihood ratio. 

0 1' * n 

(1.5) 

Decisions among more  than two hypotheses can be treated in a 

s imilar  manner. Often the costs associated with the various e r r o r s  

can be set  equal, whereupon it  is the average probability of e r r o r  that 

is to be minimized. The best  strategy is then to choose the hypothesis 

whose posterior o r  conditional probability, given the data (xl, . . . , xn), 

is greatest12. The posterior probability can be expressed in terms of 

likelihood ratios between pairs  of p. d. f .  ' s  for  the data under the several  

hypotheses. 

The second way of defining a "best" binary decision procedure is 

13, 14 
provided by the theory of Neyman and Pearson 

e r r o r s  can occur. Choosing H when H i s  true is called an e r r o r  of 

the f i r s t  kind, o r  false alarm; i ts  probability under a given decision 

strategy is denoted by Q,. Choosing H when H is true is an e r r o r  

of the second kind, o r  false dismissal;  i ts  probability is Q 

complement Q 

That strategy is now considered best  that attains the maximum proba- 

bility Q 'of detection for  a s e t  false-alarm dobabi l i ty  Q 

. Two kinds of 

1 0 

0 1 

The 1' 
15 = 1 - Ql is often called the probability of detection . d 

i 
It leads d 0' 
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to the same comparison of the likelihood ratio A ( x  

decision level A as  in Eq. (1.31, but with A fixed s o  that the false- 

a la rm probability equals the pre-assigned value . The Neyman- 

. . . , x  ) with a 1’ n 

0 0 
16 

Pearson criterion dispenses with the pr ior  probabilities and costs 

needed for  the Bayesian approach, but is not easily generalized to 

decisions among more  than two hypotheses. 

Estimation theory typically treats data E = (x . , . , x ) whose 1’ n 

joint p. d. f. p(xl,  . . . , x ; e l ,  . . . , 0  

parameters  0 = ( e l , .  . . , 0  ) that a r e  to be estimated. 

the data may be samples x = x(t .)  of the input 

) = p ( ~ ;  - 0 )  depends on some unknown 
n m 

For instance, 
m - 
j J 

x( t )  = s ( t ;  0 )  t n(t) - 
to a receiver,  composed of noise n(t) of known statistical properties 

and a signal s( t ;  E) depending on parameters  

as amplitude, time of arr ival ,  and c a r r i e r  frequency. On the basis 

= ( e l ,  . . . , 0  ) such m - 

of the n data E, the values of these parameters a r e  to be estimated 

as accurately as possible. 

Estimation theory sets  up a measure  of the cost o r  seriousness 
A / \  A 

of e r r o r s  in the estimates ft = (9 . . , , 0 ) of the parameters.  The 

most  common cost function is a weighted sum of the squared e r ro r s ,  

1’ m 
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A A  
The problem is to find estimates 0 = 0 (x . . , x ) as such functions k k 1” n 

of the data that the average cost  is minimum. 

lower bounds on the sizes of the errors, measured usually by the mean- 

, as well as the bias of each estimate, 
A 2 

square deviations E(O - k - ’ k )  

defined as the deviation 

Of interest  a lso a r e  

A 

17 of the expected value of the estimate f rom the t rue  value of the parameter  . 
The Generalization to Quantum Theory 

Central to c lass ical  decision and estimation theory a r e  the p. d. f .  ‘ s  

po(z), p (x), and p(z; - 0 )  of the outcomes of observations of the system. 1 -  

It is natural to consider analogous theories based instead on quantum- 

mechanical density operators p 0’ PI’ p (0 - ) of the sys tem, a generali- 

zation that leads to quantum decision and estimation theory 18-20 

The system under observation might, for instance, be a lossless 

cavity that functions as an ideal receiver of electromagnetic radiation. 

The cavity is  initially empty. In one wall is an aperture that faces the 

source of the signal, and during an interval (0, T) when the signal, if 

present in the external field, is expected to a r r ive ,  the aperture is 

open. At t h e  T the aperture is closed, and thereafter the cavity 

contains background radiation and, possibly, a field due to the signal. 

The density operator of the field will be p when only background 
0 

radiation is present (hypothesis H ) and p 

fied type has arr ived (hypothesis H ). 

when a signal of the speci- 0 1 

Detection involves a choice 
1 
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between these hypotheses. 

weakest signal that can be detected with a certain probability Q 

function of the false-alarm probability Q 

ground radiation. 

In particular,  one would like to know the 

as  a 

and the nature of the back- 

d 

0 

If, on the other hand, the signal field is known to be present, i t  

may be necessary to measure  certain of its parameters ,  such as  i ts  

amplitude o r  c a r r i e r  frequency. 

of the density operator p (5) = p(8  

One would like to know the minimum mean-square e r r o r s  with which 

the field parameters  can be estimated, as  functions of the character-  

ist ics of the signal and background fields. 

These can be regarded as parameters  

) of the net field in the cavity. . . . , 8  1’ m 

Crucial in quantum decision and estimation theory is the question 

In the of which dynamical variables of the system shall be measured. 

classical  theory i t  is possible in principle to measure all the variables 

and to conceive of their  having the joint probability density functions 

po(z), p (E), and p(x; - -  0 )  required for  setting up the optimum procedures. 

Quantum-mechanically only observables - - dynamical variables repre-  

1 

sented by Hermitian operators - -  can be measured, and since they a r e  

to be measured simultaneously on the same system, their operators 

must commute. Different se t s  of commuting observables may yield 

different costs in a Bayes decision or  estimation strategy, and the 

problemaremains of finding the set  that entails the lowest cost of all. 

If there  exists a representation in which all the density operators 
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involved a r e  simultaneously diagonal, they all commute, and by working 

in this representation, the decision o r  estimation problem can be r e -  

duced to one that can be  handled by the classical  theory. 

mechanical decision and estimation theory is presently formulated 

entirely within the framework of the conventional interpretation of 

quantum mechanics , and questions of the simultaneous measurability 

of variables whose operators do not commute have not been treated. 

Quantum- 

11. Binary Decisions 

The Detection Operator 

A choice is to be made between two hypotheses about a system, 

(H ) that its density operator is p and (H ) that i ts  density operator 

is p The pr ior  probability of H is 6 and of H (1-c), and the cost 

attendant upon choosing H. when H, i s  true (i, j = 0, 1) i s  C..  . 

0 0 1 

1’ 0 1 

Suppose 
1 J 1J 

X2, . . . , has been mea-  1’ that some set  of commuting observables X 

sured, with outcomes x x . . . . The decision will be based on the 

value of some function f(x x . . . ) of the outcomes. Equivalently, 

i t  could be based on the outcome of a measurement of the operator 

f(Xl, X2, . . . ). What operator should this be? 

1’ 2’ 

1’ 2’ 

All that we really require is that the outcome be one of two numbers, 

0 and 1, and we choose H if it is 0 ,  H if i t  is 1. The operator 0 1 

f(Xl ,  X2, . . . ) should therefore be one whose only eigenvalues a r e 0  

and 1, and such an operator is a projection operator. We denote it by 

ll and call  i t  the detection operator. 
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Which of all the projection operators II fo r  the system is best? 

To determine it we put down an expression for  the average cost and 

minimize it over the s e t  of all II's. The average cost depends on the 

probabilities Q and Q of e r r o r s  of the f i r s t  and second kinds. The 

former  is the probability under hypothesis H that H is chosen, that is, 
0 1 

that measurement of II yields the value 1 ,  

0 1 

Q, = Pr I n  --f 1 I H 3 = E(II~  H = ~ r p  II. 
0 -  0 0 

Similarly 

Q1 = T r [ p l ( l -  II)] = 1 - TrplII, 

and the average cost  is 
- 
C = c [ C  (l-QO) f CloQoI f ( 1 - C )  CColQl -i- C l l ( l  - Ql)I  = 00 

cco0 (l-c)col- (1 - 6)(co1- C l l )  Tr(pl-Apo)Il, 

where 

- 
C will be minimum if Tr(p Since C > C l l ,  01 - h p  o) is maximum. 

1 

Choose a representation in terms of the eigenstates 11 ) of the 

- A p O ,  whose eigenvalues we suppose discrete; 

k 

operator p 1 

(P -h0) 1 Tk) = V k l  T k )  - 
It is then necessary to maximize 

Tp(p 1- ' 6 )  0)' = Tk(Tk1 n l  Vk), L 
and this will be accomplished if 

(Tkl'lTk) = ' 3  Yk' ' 9  

<?1k/ '1 Tk) = ' 9  Tk< 

10 

( 2 . 3 )  



Hence the best  projection operator to measure in order  to choose 

between H and H is 0 1 

“ilk“ 

Equivalently, p - h p  is measured, and H is chosen if the outcome is 

positive 

1 0 1 
19, 21 

and the minimum average cost is 

Ok 
Denote the eigenvalues of the density operators p and p1 by P 

0 

and Plk,  respectively, numbering them in descending order.  If the 

operators are completely continuous, these eigenvalues fo rm discrete 

spectra.  A theorem in analysis then assures  us that the eigenvalues 

1 of p1  - hp 

l ess  than o r  equal to P 

a r e  a lso discrete,  that i ts  k-th positive eigenvalue is 
M 0 

and that i ts  k-th negative eigenvalue is greater  lk’ 

than o r  equal to - h P O k .  

beginning with the largest ,  the negative ones by beginning with the 

Here the positive eigenvalues a r e  counted by 

22 most negative . 
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If the density operators p and p commute, the eigenvalues of 
0 1 

- h p  a r e  P - h P O k ,  and these a r e  positive when 
p 1  0 l k  

plk/pOk > A .  

o r  a suitable 
0’ p l ’  

The best  procedure is then to measure either p 

operator commuting with both. When the system is found in the kth 

2 h ,  H if P / P O k < h .  lkIPOk 0 l k  common eigenstate, choose H if P 1 

This is just  the likelihood-ratio tes t  of classical  decision theory. 

Let the system be a simple harmonic oscillator, such a s  a single 

mode of the field in our ideal receiver,  and assume it  to be in thermal 

equilibrium with an average number of photons equal to N 

H ) o r  to N 

(hypothesis 0 
23 

(hypothesis H1). The density operators a r e  
0 1 

(2.10) 

m 
Pkm = (1 - v ) v  v = N / ( N k t l ) ,  k = 0, 1, 

k k ’  k k 

in terms of the eigenstates I m )  of the number operator n. It then 

suffices to measure n itself and to choose hypotheais H when 1 

where m is the outcome of the measurement. 

The Choice between Pure  States 

There are few pa i rs  of noncommuting,operators p and p fo r  which 
0 1 

I 

the eigenvalue problem in Eq. (2. 5) has been solved. One general case  
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of interest  is that in which the system is in a pure state under each 

24,25 hypo the s is 9 

(2.11) 

There are then just  two states I I,), 1 Il ) satisfying Eq.(2.5) with non- 

zero eigenvalues, and they a r e  linear combinations of I $ ) and I$ 1), 0 

) t z - . .  I$ } , k = 0, 1. 
kQ k l  1 

17,) = z  
(2.12) 

By substituting Eqs. (2. 11) and (2 .12)  into Eq. (2. 5 ) ,  a se t  of 

l inear homogeneous equations for z z is obtained. A solution kO’ kl 

exists only when the determinant of their  coefficients vanishes, which 

yields a quadratic equation fo r  the eigenvalues 7 and 7 0 1’ The solution 

is 

k 7 = Q  (1-A) - (-1) R ,  k =  0, 1, 
k 

(2. 13) 

The detection operator to be measured is II = 17 ) (T 

and detection probabilities a r e  

I , the fa lse-alarm 1 1  

2 
Q, = I (7,IJi0)I = ( I l -q) /2R,  

(2. 14) 

- 
and the minimum average cost C can be calculated by eq. ( 2 . 9 ) ,  in 

1’ 
which the suzn now has a single te rm 17 

In the choice between two coherent states l p o )  and I p l )  of a 

harmonic oscillator such as the field in a single mode of our ideal 
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receiver,  now devoid of background radiation, the parameter  q entering 

26 
Eq. (2. 13) is 

If, for  instance, p = 0, the choice is between the presence and the 
0 

absence of a coherent signal in the mode, and the probabilities of e r r o r  

depend, through q = 1 - exp(-N ), only on the mean number N = I w 1 I  

of signal photons, as in Eq. (2. 14). 

2 
S S 

The Coherent Signal in Thermal Radiation 

Let hypothesis H a s se r t  the presence, H the absence, of a 1 0 

coherent signal of complex amplitude p in a single mode of a cavity in 

thermal equilibrium at absolute temperature$ If the thermal radiation 

were  gone, the oscillator representing the mode would be in a coherent 

state I p ) .  The density operators a re ,  in the P-representation , 26 

where% = Planck's constant h/2n, R = the angular frequency of the mode, 

-hpo, as  in' The diagonalization of p 1 and K = Boltzmann's constant. 

Eq. 12. Ei), with these density operators remains an outstanding unsolved 
.- . - - - __ 

problem of quantum detection theory. By taking p as real ,  which voids 

no generality, and using the co-ordinate (9-) representation, Eq. (2.5) 

can be expressed as a homogeneous integral equation, whose kernel is 

14 



27 a linear combination of Gaussian functions . Evaluation of the pro- 

bability of detection woutd parmit specifying th 

coherent signal of kno phase in the presence 

radiation. 

When, as is most reasonable a t  optical frequencies, the absolute 

phase of the complex signal amplitude is unknown and is assigned a 

uniform prior  distribution over (0, T IT), both p and p a r e  diagonal in 0 

the number representation, and the best  detector simply measures the 

e n e r g y i n t h e  mode . 18 

If a coherent signal of random phase is present in a number of 

modes of a receiver cavity in thermal equilibrium, a l inear transform- 

ation of the mode amplitudes permits approximate reduction of the 

19 . problem to the detection of a signal in a single harmonic oscillator 

F o r  this i t  is required that the signal occupy a frequency band s o  narrow 

that the average number of thermal photons is the same for  all  the modes 

that i t  excites. In effect, the optimum processing of the field creates  

a single mode t'matched't to the signal, and it is the energy o r  the ex- 

citation level of this composite mode that is to be measured. 

- _- 
I 

o signal is present whenever the number 

d mode is less  than an integer M. The 

alarm probability is then 
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-1 
Qd = 1 - (N+1) exp(-Ns/(Ntl))  

M-1 - _ _  -1 i N / ( N t l ) j  I m  L (-N /i--N(Ntl)l), 

m=O m s  (2.16) 

19, 28 where L,(x) is the mth Laguerre polynomial 

If this receiver is designed to meet the Neyman-Pearson criterion, 

randomization will in general be necessary in order  to attain the pre-  

assigned false-alarm probability. There will then be a certain photon 

count MI for  which hypothesis H 

bability f, H with probability 1-f. Fo r  counts less  than MI, H is 

always chosen, f o r  counts greater  than MI, H1. 

f is easily calculated. 

strength for  such a receiver have been published 

(signal present) is chosen with pro- 1 

0 0 

The required value of 

Graphs of detection probability versus  signal 

29  . 
111. Threshold Detection 

The Classical Threshold Receiver 

It would be useful if a receiver s e t  to incur a fixed false-alarm 

probability attained maximum detection probability f o r  all expected 

amplitudes of the signal. This is seldom the case  with a receiver based 

on the classical  likelihood-ratio test. Only in particularly simple in- 

stances, as when the signal i s  completely known except for amplitude 

and phase and is received in Gaussian noise, is the likelihood-ratio 

test  uniformly most powerful with respect to signal amplitude. 

usually necessary to set i t  up fo r  a "standard" signal of specific ampli- 

tude. and to accept l e s s  than maximum probability of detecting signals of 

It is 
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other amplitudes. 

to generate f rom a receiver input. 

Furthermore,  the likelihood ratio is often difficult 

In a compromise that is often expedient, the likelihood ratio is 

replaced by the so-called threshold statis tic 

is the likelihood ratio, with p (x . , . , x ; A) the p. d. f. of the data 1 1’ n 

when a signal of strength A is present; p (x 9 x ) = pl(xl ,  . . . , x ; 0 ) .  0 l ” * *  n n 

The threshold statistic i s  the logarithmic derivative, with respect to A, 

of the likelihood ratio for  detecting a signal of strength A, evaluated 

in the limit of vanishing amplitude. 

level U and hypothesis H “signal present”,  is selected when U > U 
0’ 1 ’  

It i s  compared with a decision 

0’ 

The measure A of signal strength is so  chosen that the derivative in 

Eq. ( 3 . 1 )  does not vanish; it 

the signal . 30 

This threshold statistic 

is usually proportional to the energy of 

U is most  nearly optimum when the decision 

is based on data collected in, a large number M of independent tr ials.  

Compared with the decision level U 

oi the threshold statist ics calculated from the data obtained in each 

trial .  The sum has nearly a Gaussian distribution, by virtue of the 

central  limit theorem, and the false-alarm and detection probabilities 

are approximately 

then is the sum U t U t . . . 
0 1 2 
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H Qd= erfc (x -M D), 

where D is an equivalent signal-to-noise ratio defined by 

2 *- '2 D = i E ( U I  HQ - g u l  L- ( 3 . 4 )  

with V a r  U the variance of the statistic U in the absence of the signal. 
0 

In Eq. (3 .  3), x is related to  the decision level U 

threshold statist ics.  

on the sum of the 
0 

The false-alarm and detection probabilities will be given approxi- 

mately as  in Eq. (3. 3)  f o r  any statistic U(x  . . . , x ) when the decision 1' n 

is based on the sum of such statistics for a large number M of indepen- 

dent tr ials.  and Q and for M >> 1, 

that detector is  best  f o r  which the equivalent signal-to-noise ratio D is 

largest ,  f o r  such a detector will require the least  number of M of in- 

dependent tr ials.  The threshold detector as defined in Eqs. (3 .  1)  and 

( 3 . 2 )  is best  in this sense 

For  a fixed pair  of probabilities Q 
0 d 

31 . 
The Quantum Threshold Receiver 

The quantum counterpart of the likelihood-ratio receiver is one in 

which the optimum detection operator II is measured. 

uniformly most powerful with respect to signal amplitude only fo r  de- 

tecting a known signal of random phase in the presence of thermal 

noise, a detection problem in which, as we have seen, the density 

operators commute and the classical  likelihood-ratio tes t  is optimum. 

It has been found 

1 8  



Furthermore,  the mathematical problem of determining the optimum 

projection operator II presents great difficulty in most cases of practical 

interest. For these reasons, a quantum-mechanical counterpart to 

the classical  threshold statistic is of interest. 

18 The quantum threshold statistic II i s  defined as 
8 

where II is that operator for which the equivalent signal-to-noise 
a 

ratio D given by 

?2 3- 

I Trpl(A) II - Trp II 
(3 .6 )  

2 L  a o a.j 
2 2 

D =  
TrPOIIa - (moria) 

is maximum. This equivalent signal-to-noise ratio i s  the quantum- 

mechanical form of the one defined in Eq. (3.4) ;  p (A) is the density 1 

operator of the observed system when a signal of strength A is present, 

and p = ~ ~ ( 0 ) .  There is  no loss of generality if II is s o  defined that 0 a 

T r  p o l l a  = 0, (3.7) 

since an a rb i t ra ry  multiple of the identity operator - 1 can be subtracted 

Erom II without changing D . 2 
a 

We define the Hermitian operator 0 (A) as  the solution of the 

equation 

and we show that II = 0. F i r s t  of all, a 

Tr(P1 - p  ) = 0 = *  T r ( p O O  + 0 p  ) = Trp 0, 
0 0 0 



s o  that Eq. (3.7) is satisfied.  We now show that II = 0 maximizes 
a 

2 "  -c2 2 
D = t  Tr(p - p, )  II i /Tr(poIIa). 

L 1 a_i 
( 3 . 9 )  

Substituting from Eq. (3.  81, we find 

2 2 
= Tr(pO@ 1 Tr(Pona) 

by the Schwarz inequality for traces.  Hence 

2 2 D Tr(p 0 ) 
0 

= 0 .  with equality when II a 
32 

The threshold operator is thus 

II, = a@(A)/aAl A = . 
As the solution of the operator equation 

ap l (A) /aAIA = 0 = $ ( P o n e  + I I 8 P 0 ) '  ( 3 . 1 0 )  

i t  can be regarded a s  the symmetrized logarithmic derivative (s. 1. d. ) 

of p (A), evaluated at A = 0. 

In the quantum threshold receiver the operator Is is measured 8 

and the outcome compared with a decision level n 

assigned false-alarm probability. The operator II i s  not a projection 

set to yield a pre- 8 

8 

operator; the equivalent projection operator is 
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with 1 0 )  the eigenstate of n, with eigenvalue 9 , assumed here  par t  of 

a continuous spectrum. 

Threshold Detection of a Coherent Signal 

In the cavity that furnishes our model of a quantum receiver the 

electric field at time t at point 5 is represented by a quantum-mechanical 

operator - c (r  -7 t) ,  which is conveniently decomposed into i ts  positive- 

and negative-frequency par ts  , 

the one being the Hermitian conjugate of the other. In te rms  of the 

mode eigenfunctions u 

with suitable boundary conditions at  the walls of the cavity, the positive- 

( r ) ,  which a r e  solutions of the Helmholtz equation 
--m- - 

33 
frequency par t  of the electric-field operator is written as 

(3.11) 

where w 

accounts for  both the spatial configuration and the polarization of the 

is the angular frequency of mode ,m. The mode index 
m 
5 

mode. 

t 
m The operator a and its Hermitian conjugate a a r e  the annihilation 
5 

m 
c 

and creation operators for photons in mode and obey the usual com- 

mutation rules,  

t t t 
a a - a  a = [ a , a  I = &  

?2! E ? ?  E E  E.2, 

[ a  , a ] = [ a  , a t ]  =o. t 
s . 2  % -  n 

( 3 . 1 2 )  
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t The number operator for mode m is n = a a . - E %  3r 

Suppose that under hypothesis H the cavity is filled with random 

Gaussian radiation characterized by the mode correlation matr ix  CJ , 
0 

whose elements a r e  

(3. 13) 

The density operator p 

sentation , 

f o r  L modes of the field is then, in the P- repre-  0 
26 

(3.14) 

where 5 a is  a column vector of complex mode variables 

= c c  t i a  
5 p x  Q?Y ' 

4. t t *r 

CY is the Hermitian conjugate row vector, a = . . . CY . . . 3 ,  m - - - 
d a  dcr is the element of integration in the space 

2L 
and d E 

E X  E Y  

of t h e a  ' s .  
E 

Here 

is the Glauber coherent state f o r  a field with complex amplitude cc 
F 

in mode ,m. In thermal equilibrium a t  absolute t empera tu re r ,  

(3 .  15) 
-1 

N =[exp(hwk/K-g-  1 3  . - k 
PI 

Were a coherent signal of amplitude A and known phase present 

in the absence of the random radiation, the field would be in a coherent 

State 14) , in which the complex amplitude in mode m - is 4 

this coherent signal is superimposed on the random radiation described 

If @ 

by p of Eq, (3.  14), the density operator for the field is 0 



34 which can also be writ ten as 

where 

(3. 16)  

(3.17) 

( 3 .  18) 

(3 .  19) 

with 2 the column vector of annihilation operators a and m 
c 

. . . ) the row vector of the creation operators for the 
t t 

a = (..., a 

modes. 

m '  - - 
I- is the identity matrix. 

The threshold operator for  deciding whether the coherent field 

with amplitudes A p  is present is the operator II given by Eq. (3. 18), 

as  can be verified by differentiating p (A) with respect to A, setting 

A = 0, and comparing with Eq. (3.  10). The outcomes of measurements 

F? 8 

1 

of the operator TI 

and the false-alarm and detection probabilities a r e  given exactly by 

Eq. (3 .  3), with x related to the decision level 7~ 

have a Gaussian distribution under each hypothesis, 
8 

with which the out- 
0 

comes a r e  compared. The equivalent signal-to-noise ratio D is given by 

(3.20) 
2 2 t  D2 = T r (  p B ) = 4A (I-t Zz)-'k. 0 0  

For  detection in thermal radiation this signal-to-noise ratio reduces to 

(3.21) 
2 

D = 4 N  /(2N t l) ,  
S 

where N = E /hQ is the average number of photons in the field of 
S S 
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the coherent signal and N is given by Eq. (2.15). For  Eq. (3.21) to 

hold i t  is necessary that the average numbers N of thermal photons 

in all modes excited by the signal be nearly equal to N, as will be the 

case when, as usually, the signal occupies only a narrow band of f re -  

quencies about 0.  

m - 

In the classical  l imit  the te rm 2cp dominates in the factor (It 2g)-l 
z - 

in Eq. (3.19). and the threshold operator becomes, except for an 

additive constant, proportional to the logarithm of the classical  likeli- 

hood ratio for choosing between hypotheses H and H 
0 1' The false- 

a la rm and detection probabilities for  the classically optimum detector 

a r e  given by Fq. (3 .  3 )  with D = 2A 2 2 E, o r  for thermal equilibrium, 

D Thus in this case the quantum threshold operator becomes 

equivalent in the classical  limit to the optimum likelihood- ratio statistic 

Detection of Gaussian Radiation 

If the signal field itself has the character of random Gaussian 

2 2 t -1 

2 
= 2E /KT. 

S 

35  . 

radiation, the density operator p has the same form as  p in Eq. (3 .  14). 

We suppose that under hypothesis H 

defined by Eq. (3.13), i s2  under hypothesis H it  is 

1 0 

the mode correlation matrix, 
0 

0' 1 

where A2 

ponents of the field. 

is the mode correlation matr ix  of the random signal com- 

This is the quantum-mechanical counterpart of 

S 

what is sometimes called the "noise-in-noise" detection problem, and 

i t  corresponds to the detection of light f rom an incoherent source. 
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The optimum detection operator II f o r  deciding between hypotheses 

H and H remains undiscovered. The threshold operator, however, 

can be calculated It is an Hermitian quadratic form in the annihi- 

lation and creation operators of the modes, 

0 1 
36 . 

where the matr ix  Q is the solution of the equation - 
z9s = 9,a_cr+ To) f (p 20) Qg0* 

The constant b serves  to make Tr  (p TI ) vanish. 
0 '  e 

(3.23)  

(3.24) 

The p. d. f. ' s ,  under the two hypotheses, of the outcomes of measure-  

ments of I'i 

the false-alarm and detection probabilities a r e  accessible in the general 

case. 

a r e  given by 

a r e  difficult to calculate, and only approximate forms of e 

t The moment-generating functions of the observable Q' = 2 QA 

36 

(3.25)  

- P = exp (zQ) -2, i = 0, 1. 

The p. d. f of the outcome of a measurement of Q' is the inverse Laplace 

transform of h.(-s), and approximation methods, such as  the method of 

steepest descents, a r e  available for calculating the false-alarm and 

37 
detection probabilities . 

1 
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Reception at an Aperture 

An unsatisfactory aspect of quantum detection theory i s  i ts  formu- 

lation in te rms  of simultaneous measurements of the electromagnetic 

field in a closed volume. An optical instrument, such as a telescope, 

is more  appropriately considered as  processing the field a t  i ts  aperture 

throughout a finite observation interval. 

operator fo r  detecting a Gaussian random field is that i t  can be trans- 

lated into a form involving only the field operators a t  the aperture of 

the receiver,  and i t  can thus be applied to the detection of light from 

an incoherent source 

An advantage of the threshold 

38 . This translation is possible because the classi -  

cal  mode amplitudes for the cavity receiver af ter  its aperture i s  closed 

a r e  linearly related to the field at the aperture itself during the obser- 

vation interval (0, T). 

In order  fo r  the threshold operator for  detecting incoherent light 

in the presence of thermal background radiation to take a simple form 

when expressed in terms of the aperture fields, it i s  necessary that the 

duration T of the observation interval be much longer than the reciprocal 

of the bandwidth W of the light to be detected (WT >> l) ,  and that the 

diameter of the aperture  fl be much greater  than the correlation length 

h c / K r o f  the thermal radiation. Both these conditions a r e  normally met. 

The threshold operator is then proportional to 

( 3 . 2 6 )  
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in  which fo r  simplicity a sca la r  field 

(+I ( -1  $(E, t)  = J I  (5, t )  + $ (x, t)  

has been assumed. Here 

is the mutual coherence function of the signal field, where p 

density operator in the absence of the thermal background. 

is its 
S 

A similar  

receiver has been derived by Kuriksha on the basis of the classical 

likelihood ratio 39,  40 

The moment-generating function of the threshold statistic can also 

be expressed in te rms  of the mutual coherence function of the signal 

field at the aperture by similarly translating the form given in Eq. 

(3.25), and from this the false-alarm and detection probabilities can 

be approximated. Details a r e  presented elsewhere . 38 

IV. Choices Among Many Hypotheses. 

The choice among M hypotheses, of which the kth a s se r t s ,  "The 

system has the density operator p I '  k = 1, 2 , .  . . M, can be based k '  

on the outcome of a measurement of M commuting projection operators 

* .  .. , i3 forming a resolution of the identity operator - 1 
n , ,  n2, m -  

n ,  t n  t. .. ti3 = l .  2 m -  (4.1) 

Quantum logic was formulated in terrns of projection operators by 

von Neumann 

that the decision among the M hypotheses can be made with minirnurn 

average cost. It will ar ise ,  for instance, in designing and evaluating 

41 . Our problem is to pick such a se t  of operators II k 
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the best  receiver f o r  a communication system in which messages a r e  

coded into analphabetof more  than two symbols, a different signal be- 

ing transmitted for  each. 

Let 5 be the pr ior  probability of hypothesis 3 and C 
k i j  

be the cost 

incurred upon choosing H. when H. is true. The average cost per  
1 J 

decision is 

which is to be minimized by a set  of commuting projection operators 

II that satisfy Eq. (4. 1). 

equals the average probability of e r ro r .  

C remains unsolved for M > 2 ,  except when the M operators p 

If in particular C.. = 0,  Cij  = 1, i # j ,  k 11 

This problem of minimizing 
s 

commute, 

cal decision theory. 

j 

whereupon it  reduces to a standard problem in class 

If under each hypothesis the system is in a pure 

the projection operators wil l  have the form 

where the 171.) a r e  l inear combinatiom of the states I $  ). 

To find what l inear combination minimizes C i s  also, for  M > 2,  an 

k 
- 

J 

unsolved problem, although one that appears simpler than the general 

problem. 

V. Estimation Theory 
A A 

Bayesian estimation theory determines a strategy 0 ( ~ )  = O(xl x2, . . . , xn) 

for estimating a parameter  0 of the p. d. f. p(5; 0 )  =p(x l ,  x2,. . . , x ; 0 )  n 
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. . . ,x ) by minimizing the average cost 
1' x2' n of the data z = (x 

where z ( 8 )  is the pr ior  probability density function of the parameter 

8 and C(8 ,  8 )  is the cost  associated with a discrepancy between the 
n 

42 A 
estimate 8 and the t rue value of the parameter  . 

Quantum-mechanically the parameter  8 of a density operator p ( 8 )  

41 is estimated by means of a resolution of the identity 

dE(8')  = A  , J (5.2) 

where dE(0 ' )  is a projection operator corresponding to the statement, 

"The value of the parameter  8 lies between 8 '  and 8 '  t d8 ' . "  

Equivalently we can define such an operator 

8 = 8 '  dE(8')  (5 .3 )  " 1  n 
that the outcome of a measurement of 8 yields the value of the estimate 

of the parameter  8. Corresponding to Eq. (5. l ) ,  the average cost 

associated with the estimate is 

(5.4) 

The best  estimator of the parameter  8 is that resolution of the identity 
A 

dE(8'), o r  the associated operator 0 ,  fo r  which the average cost is 

minimum. How to find i t  remains an unsolved problem. If estimation 

is viewed as a choice among a continuum of hypotheses about the system, 

Eq. (5.4) is the counterpart of Eq. (4.2). If there  is a representation 

in which the density operators p(8)  are simultaneously diagonal, they 
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all commute, and the problem reduces to the classical  one of minimizing 

of Eq. (5.1). 

Even in classical  statist ical  estimation the full apparatus of the 

Bayesian theory is seldom called upon, for  pr ior  probability density 

functions of the parameters  a r e  usually unknown. Instead, estimators 

a r e  sought that have small  o r  zero bias and a t  the same time incur a 

small mean-square e r r o r  over a broad range of t rue values of the para-  

meters .  
n 

In quantum-mechanical te rms  the bias of an estimate 8 of a 

parameter 8 of the density operator p ( 0 )  i s  defined by 

(5.5) 
A 

where 8 is the operator whose measurement yields the value of the 

estimate of 8. (Parameters  a r e  c-numbers. ) The mean-square e r r o r  

An estimate that has zero  bias and attains the minimum value of e f o r  

all values of the parameter  8 is said to have uniformly minimum variance. 

The Cramgr-Rao Inequality 

In classical  statistics an inequality due to Cram&r43 and Rao 
44 

sets  a lower bound to the mean-square e r r o r  attainable by any estimator 

of a parameter  8 of a p.d.f. p(z; e) ,  
2 A 

E(8 - 8 )  2 

where b'(0) = db(Q)/d8 and b(8) i s  the bias. 

b '(8) = 0.. 

For unbiased estimates 

Furthermore,  equality is achieved in Eq. (5.7) by an estimator 
n 
0 (2) satisfying the equation 
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with k(8)  independent of the data - x, provided that such an estimator 

exists. If i t  exists, i t  is unbiased and a sufficient statistic, and it i s  

called an efficient estimator. 

n 
--- 

In o rde r  for  a function 0 ( ~ )  

0 ,  i t  must  be possible to factor 

to be a sufficient statistic for  estimating 

the density function p(3; 0 )  into a par t  
A 

depending on the d a t a 2  only throughV0(%)and a remainder that is inde- 

pendent of the parameter  8 ,  

Such a factorization is seldom possible. 

45  
An analogous lower bound exists in quantum estimation theory . 

A 

Let 0 be  an operator, the outcome of a measurement of which provides 

an estimate of a parameter  8 of the density operator p ( 0 ) .  Then the 

mean-square e r r o r  is bounded below by 

where L is the symmetrized logarithmic derivative (s. 1. d. ) of p(0 )  

with respect to 0 ,  defined by 

The inequality becomes an equality if 
A 

L = k(8)(0 - 02), (5.11) 

with k(8) a numerical function of the t rue value 0 only. This requires 

the density operator p(0) to have the form 
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(5.12) 
A 

where p is independent of the parameter  8, and V(0; e )  is an operator 
b 

satisfying the equation 

A av/ae = +VL = $+(e) v(e - e g  (5.13) 

and depending on the dynamical variables of the system only through 

the operator 0 ,  of which i t  is a function. 
A h 

If such an  estimator 0 exists, 

it is unbiased, attains the minimum variance k(e)]-', and is termed 
. ,  

46 an efficient estimator,  

An example i s  the estimation of the amplitude A of a coherent 

field in the presence of incoherent Gaussian radiation. The density 

operator p (A) is then given by pl(A) of Eqs. (3. 16) and (3. 17), with 

p of Eq. (3. 14) taking the place of p Comparing Eqs. (3. 18) and 

(5. 13), we find the s. 1. d. 
0 b' 

t L = II - 4Ap- ( I t  ZCJI-)-~~, e 
where II is the threshold operat o r  for detecting the field with mode 

8 

amplitudes A p  

ation. This threshold operator is given in Eq. (3.19). 

in the presence of the same type of background radi- m 
z 

An efficient estimator of the amplitude A of the field i s ,  by virtue 

of Eq. (5. l l ) ,  the operator 

and i t  attains the minimum variance 

(5. 14) 

(5.15) 

For  background radiation of the thermal variety and a narrow-band signal 

field, this estimator provides a relative variance 

(5.16) 
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where N is the mean number of photons in the signal field and N is the 
S 

mean number of thermal photons p e r  mode. In the classical  limit this 

minimum relative variance becomes equal to (2E /K ) , which is the 
. ~ .  

-1 
S 

same as for  a classical  efficient estimator of the amplitude of a coher- 

ent signal of energy E 

temperature 2'. 

and known phase in thermal noise of absolute 
S 

. -  .. . -  

Efficient estimators can be expected to be at  least  as r a r e  in 

quantum estimation theory a s  in the classical  theory, and no general 

method has been found for producing estimators that come close to 

the lower bound set by the quantum counterpart, Eq. ( 5 . 9 ) ,  of the 

C ram6r - Rao inequality. 

Sufficient Statistic s 

The density operator ~ ( 8 )  can sometimes be factored as in Eq. 

n 
(5.12) into two par t s ,  V(8;  8 )  and its  Hermitian conjugate, that depend 

on the dynamical variables of the system only through the operator 8 ,  
A 

and a third par t  p 

operator 8 might then, in analogy with the classical  terminology, be 

independent of the unknown parameter 8 .  The b 
A 

called a sufficient 

The operator A in 
A 

of the signal field. 

estimator,  o r  a sufficient statistic for  estimation. 

Eq. (5. 14) is sufficent f o r  estimating the amplitude 

In classical  detection theory the sufficient statistic for  estimating 

the amplitude of a coherent signal in Gaussian noise is also sufficent 

for detecting the signal; that is ,  the likelihood ratio for  detection 
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depends on the input to the receiver only through that statist ic,  and the 

optimum decision about the presence of the signal can be  based upon it. 

In the corresponding quadtum-detection problem, the amplitude esti-  

mator  A does not provide the optimum detection operator, as is evident 
A 

f rom the treatment of detection in the absence o f  thermal noise, given 

in Section II. Fo r  a coherent signal in Gaussian noise the efficient 

estimator of signal amplitude is related rather  to the threshold statistic 

for  detection. The concept of a sufficient statist ic does not, therefore, 

s eem t o  have the range in  quantum-mechanical decision and  estimation 

46 
Bheory that it possesses i n  the classical  theory. 

Multiple Estimation 

Thus f a r  we have treated only the estimation of a single para- 

me te r  of the density operator of the system. In the classical theory 

the CramAr-Rao inequality has been generalized to cover the simulta- 

neous estimation of several  unknown parameters , and a cor res -  43, 44 

ponding generalization is possible in quantum estimation theory as 

well 
47 . In discussing it we res t r ic t  ourselves for simplicity to un- 

biased estimates. 

Let there  be  m parameters  = (8 1 9  . . . , 8 ) of the density m 
A 

operator p (e) to be  estimated, and let 8 .  be the operator whose measure-  

ment yields a number that is taken as the estimate of the parameter 8 

Since the estimates a r e  assumed to be unbiased, 

J - 
j' 
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we define 

as  the operator providing the e r r o r  in the estimate of 8 

variance of simultaneous estimates of the parameters  8 and 8 .  is then 

The co- 
j '  

i J 
n n  

(5. 17) 

These covariances form an m x m matrix l3, whose diagonal elements 

a r e  the variances of the e r r o r s  in the estimates. 
n 

If the operators 0 
i 

a r e  to be measured on the same system, they must commute in order  

for the covariances B.. to have a clearly defined physical meaning 
48 . 

The s izes  of the e r r o r s  and their  correlations a r e  conveniently 

1J 

visualized in te rms  of the concentration ellipsoid in an m-dimensional 

N 

space with Cartesian co-ordinates ,Z = ( z  z . . . , z ); its equation 

is 

1, 2' m 
49 

-1 
5- ZB _ Z = m t 2 ,  (5. 18) 

N 

where ,Z is a column vector, 5 i ts  transposed row vector. The la rger  

this ellipsoid, the grea te r  the mean-square e r r o r s ,  and an elongation 

of the ellipsoid in a direction aslant to the co-ordinate axes indicates 

a correlation among the estimates. 

The generalized Cram6 r- Rao inequality for  multiple estimation 

places this concentration ellipsoid outside the ellipsoid 

N --- ZAZ = m t 2, (5. 19) 
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A.. = S T r  ~ ( L . L .  t L.L.) = Tr(ap/aei)Lj (5.20) 
1J 1 J  J 1  

with L. the s.1.d. of p(5 )  with respect to e. ,  defined as in Eq. (5.10). 

That is, for  any column vector ,Z of m rea l  elements, 

1 1 

A1 t e rna tiv ely , for  any column vector of real  elements, 

(5.21) 

by picking appropriate values of 2 = (y,, . . . , y 

bounds to variances and covariances of unbiased estimates of the 

), one can set  lower m 

unknown parameters .  In particular,  
h 

A 2 - 1  
B.. = V a r 8 .  = Trp(0. - 9.1) 2 (,A )ii, 
11 1 1 1- 

(5.22) 

-1 
which is the i-th diagonal element of the inverse matr ix  A . - 

The symmetrized logarithmic derivatives needed in the e r r o r  

bounds on both single and multiple estimates can be worked out for 

parameters  of coherent fields and random Gaussian fields observed 

in the presence of random Gaussian background fields. The density 

operators have then the forms given by Eqs. (3.14) and (3.16). 

have been presented elsewhere . 
Details 

47 

VI. Conclusion 

We have omitted from this review the analysis of actual receivers 

in which quantum effects are significant and the extension of information 

theory to channels embodying such receivers. Optical heterodyne 

receiver’s and optical detectors of incoherent light have been extensively 
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studied, the types of noise encountered in them have been classified 

and measured, and methods and data required for  their  design have 

been compiled. To simplified models, such a s  the photon-counting 

receivers,  classical  detection and estimation theory have been applied 5 0 - 5 9  

Capacities and information rates of communication channels embodying 

such receivers have been calculated in order  to extend into the quantum 

domain the results of classical  information theory 60-70 

A review of quantum detection and estimation theory itself can 

at  the present time be little more  than a recital of unsolved problems. 

Indeed, a collection of ideas in which suchfundamental matters as  

optimum Bayes estimation and optimum multiple- hypothesis testing r e -  

main unresolved can hardly be called a theory at all. Nevertheless, 

i t  is eminently reasonable that such a theory should exist. If i t  can 

be elaborated sufficiently, it will permit us to specify the ultimate 

limits that the thermal and quantum properties of nature se t  to the 

reliable detection of signals and to accurate measurement of parameters 

of physical systems. 
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