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ABSTRACT

A review. Quantum detection theory is a reformulation, in
quantum-mechanical terms, of statistical decision theory as applied
to the ;iete‘ction of signals in random noise. Density operators take
the place of the probability density functions of conventional statistics,
The optirﬁum ﬁrocedure for choosing between two hyp;)theses, and an
approximate procédure valid at small signal&o-noise ratios and called
threshold detection, are p;esented. Quantum estimation theory seeks
best estimators of parameters of a density operator, A quantum counter-
part of the Cra,mér-Rao inequality of conventional statistics sets a lower
bound to the mean~square errors of such estimate‘s. Applications at
present are pr'imarily‘ to the detection and estimation of signals of opticall

freque‘ncies in the presence of thermal radiation.
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I. Quantum Statistical Theory
Much of statistical theory can be viewed as the calculation of
expected values. Classically, a system characterized by the variables
Xis Eyy eeey X has associated \;vith it a probability density function

(p.d.f. ) P(Xl’ Xpr vons Xn)’ and the expectations of certain measurable

2’ L] Xn)y

functions f(xl, X
0 o
E[f(xl, ce ,xn)] =J:°°. . .J'—mf(xl, - ’_Xn) p(xl, ... ,gn)dxl. .. dxn, (1.1)
are required. Quantum-mechanically a system is described by a
density operator p, which is a function of the dynamical variables of
the system, and the expected value of an observable whose quantum-
mechanical operator is F is given by the trace1
E(F) = Tr(p F). (1.2)
The density operator p is the quantum counterpart of the p.d.f{.

p(xl, cee ,xn). When, as in the classical limiit, p is diagonal in a re-~

presentation based on the simultaneous eigenstates le. .. Xn> of the

operators Xl’ e ,Xn corresponding to the variables Xyseres Xn’
R N | ( lax....d 1.3
p—fw...sm xl...xn__p(xl,...,xn) Xyeo o X 1o edx (1.3)
the expectation in Eq. (l.2) reduces to Eq. (1.1), with
f(xl, , Xn) 4(x1 Xn’ FI Xl xn> (1.4)

2
Quantum statistical theory includes the classical as a special case .

Modern statistical theory also has a normative and methodological

aspect, which appears in its treatment of hypothesis testing and estimation.



It seeks the best'procedurles for making statements abgut the condition

of a system under observation, statements that are framed as decisions
among hypotheses about the system, or as estimates of numerical
parameters characterizing it. fhe statements are based on observa-
tional data subject to unavoidable random error. The best methods

are those that minimize the influence of error, and by evaluating their
quality it is possible to determine the ultimate limits imposed by statisti-
cal uncertainty on the accuracy of decisions and measurements3.

In classical physics statistical uncertainty is largely due to the
presence of ;'a;r'ldon‘n noise, which originateé primarily Iin rﬁolecular
chaos. Statistical hypothesis-testing or decision theory has been ex-
tensively applied to the detection of acpustic and elec-tromagnetic
signals in noise and permits defining the weakest signal that can be
detected with a specified j;;robabil-ity of error, as a function of the
strength of the interfering noise "7, Estimation theory has been
applied to the measurement of signal parameters such as amplitude,
carrier frequency, and time of arrival, which are important in tele-
metry and radar. The noise sets a limit to the accuracy of such
measurements.

The subject of this review is the formulation of statistical decision
and estimation theory in quantum-mechanical terms. It involves re-
placing the probability density functions that appear in the classical
theory b.y quantum-mechgnical density operators. Although the context

will be the detection of signals at optical frequencies and the estimation
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of their parameters, the application of these concepts is not ’limi‘ted
thereto. The aim of quantum detection and estirnation_theoryis to
determine how the reliability of _decisions and parameter estimates )
is affected both by random noise and by ql\iantum—mechanicall uncei‘tainty.

Clessical Decision and Estimai:ion Theory

Decision theory treats the choice among hypotheses about the
system at hand. In the simplest binary decision there are two hypo-
theses, exemplified by the absence or presence of a signal s(t) of known
form in the input x(t) to a receiver during a certain observation interval
(0, T). The hypotheses are then

HO (null hypothesis): x(t) = n(t),

Hl (alternative hypothesisl): x(t) = n(t) + s(t),
where n(f) is a random process representing noise with certain specified
statistical properties. We suppose that the decision is to be based on
n samples x, = X(ti) of the inpiit x(t) during the interval (0, T), (i=1,
2, ..., n), The p.d.f.'s pO(Xl’ cees Xn) and pl(xl, cee ’Xn) of these
data under the two hypotheses are known. The best method of deciding
between them is sought.

-The adjective ""best" is principally defined in two ways. In
"B ayesian”idecision theory the observer knows the prior probabilities

€ and (1-{) of hypotheses H

0 and Hl' and he also knows the four costs Cij

: 10
of choosing hypothesis Hi when Hj is true (i, j =0, 1) . The costs

are entailed by the actions and circumstanceés following the decision,



which is to be made in such a way that the average cost is minimum.

This so-called ""Bayes strategy'' requires H1 to be selected vvhenever11

Afx x )= 2 L LA U b T T = A 1.5
1’°°"""n -pO(Xl""’Xn) (1-{;)((301-(:”) % (1.5)

Otherwise HO is selected. The function A(Xl’ .o, xn) is called the

likelihood ratio.

Decisions among more than two hypotheses can be treated in a
similar manner. Often the 'costs associated with the various errors
can be set equal, whereupon it is the average probability of error that
is to bé minimized. The best‘strategy is thén to choose the hypothesis
whose posterior or conditional probability, given the data (Xl, e Xn)’
is greatestlz. The posterior probability can be expressed in terms of
likelihood ratios between pairs of p.d.f.'s for the data under the several
hypotheses.

The second Way of defining a '"best" binary decision procedure is

3, 14

: 1
provided by the theory of Neyman and Pearson Two kinds of

errors can occur. Choosing H1 when H_ is true is called an error of

0
the first kind, or false alarm; its probability under a given decision
strat,e'gy is denoted by QO. Choosing I—IO when H1 is true is an error
of the second kind, or false dismissal; its probability is Ql' The

complement Q‘d =1 - Q. is often called the probability of det:ection15

1
That strategy is now considered best that attains the maximum proba-

. /
bility Qd of detection for a set false-alarm pf{-obability QO. It leads
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to the same comparison of the likelihood ratio A(xl, e, .Xn) with a
decision level AO as in Eq. (1. 3),‘but with AO fixed so that the false-
alarm probability equals the pre-assigned valuelé. The Neyman-
Pearson criterion dispenses with the prior probabilities and costs
needed for the Bayesian approach, but is not easily generalized to

decisions among more than two hypotheses.

..,X )whose
n

Estimation theory typically treats data x = (xl, .

joint p ce ; 0., ...,8 = ;
joint p. d.f. p(xl, X 91 m) p(x; ©) depends on some unknown

parameters 8 = (0 s Om) that are to be estimated. For instance,

1
the data may be samples xj = x(tj) of the input
x(t) =s(t; 8) + n(t)

to a receiver, composed of noise n(t) of known statistical properties
and a signal s{t; 0) depending on parameters f. = (91, v Sm) such
as amplitude, time of arrival, and carrier frequency. On the basis
of the n data x, the values of these parameters are to be estimated
as accurately as possible.

_Estimation theory sets up a measure of the cost or seriousness
AN N

of errors in the estimates 6 = (91, e em) of the parameters. The

most common cost function is a weighted sum of the squared errors,

N

V4
c, 2

wk(e -0.)". (1-6).

) =
1 k k
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A A
The problem is to find estimates Sk = ek(xl, e, xn) as such functions

of the data that the average cost is minimum. Of interest also are

lower bounds on the sizes of the errors, -measured usually by the mean-

AN 2 .
square deviations E(Gk - Gk) , as well as the bias of each estimate,
defined as the deviation
E® ) -0
O - 9%

of the expected value of the estimate from the true value of the pararneter1
The Generalization to Quantum Theory
Central to classical decision and estimation theory are the p.d.f.'s
po(gg), pl(;s), and p(x; 9) of the outcomes of observations of the system.
It is natural to consider analogous theories basgd instead on quantum-

mechanical density operators p

» P, p(9)of the system, a generali-

18-20

0 1

zation that leads to quantum decision and estimation theory
The system under obs;,rvatién might, for instance, be a lossless
cavity that functions as an ideal receiver of electromagnetic radiation.
The cavity is initially empty. In one wall is an aperture that faces the
source of the signal, and during an interval (0, T) ?vhen the signal., if
present in the external field, is expected to arrive, the aperture is
open. ” At time T the aperture is closed, and thereafter the cavity
contains background radiation and, possibly, a field due to the signal.

The density operator of the field will be p,. when only background

0

radiation is present (hypothesis HO) and p. when a signal of the speci-

1

fied type has arrived (hypothesis Hl). Detection involves a choice
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between these hypotheses. In particular, one would like to know the

weakest signal that can be detected with a certain probability Qd as a
function of the false-alarm probability QO and the nature of the back-
ground radiation.

If, on the other hand, the signal field is known to be present, it
may be necessary to measure certain of its parameters, such as its
amplitude or carrier frequency. These can be regarded as parameters
of the density operator p(8) = p(Ol, e Gm) of the net field in the cavity.
One would like to know the minimum mean-square errors with which
the field parameters can be estimated, as functions of the character-
istics of the signal and background fields.

Crucial in quantum decision and estimation theory is the question
of which dynamical variables of the system shall be measured. In the
classical theory it is possible in principle to measure all the variables
and to conceive of their having the joint probébility density functions
po(gg), pl(_}_c_), and p(x; 8) required for setting up the optimum procedures.
Quantum-mechanically only observables -- dynaniical variables repre-
sented by Hermitian opérators -- can be measured, and since they are
to be measured simultaneously on the same system, their operators
must commute. Different sets of commuting observables may yield
different costs in a Bayes decision or estimation strategy, and th¢
problem- remains of finding the set that entails the lowest cost of all.

If there exists a representation in which all the density operators



involved are simultaneously diagonal,f they all commute, and by working
in this representation, the decision or estimation problem can be re-
duced to one that can be handled l?y the classical theory. Quantum-
mechanical decision and estimatioh theory is presently formulated
entirely within the framework of the conventional interpretation of
quantum mechanics, and questions of the simultaneous measurability
of variables whose operators do not commute have not been treated.

II. Binary Decisions

The Detection Operator

A’choice is to be made between two hypotheses about a system,

(HO) that its density operator is p _ and (Hl) that its density operator

0

is pl. The prior probability of I—IO is { and of H1 (1-C), and the cost

attendant upon choosing Hi when Hj is true (i, j =0, 1) is Cij' Suppose

X, ..., has been mea-

‘that some set of commuting observables Xl’ >

sured, with outcomes x5 XZ’ .... The decision will be based on the

value of some function f(xl, Xyr oo .) of the outcomes. Equivalently,

it could be based on the outcome of a measurement of the operator
f(Xl’ XZ’ ...). What operator should this be?
All that we really require is that the outcome be one of two numbers,

0 and 1, and We choose HO if it is O, H1 if it is 1. The operator

f(Xl, X.,, +..) should therefore be one whose only eigenvalues are0

2’ ]
and 1, and such an operator is a projection operator. We denote it by

II and call it the detection operator.




Which of all the projection operators Il for the system is best?
To determine it we put down an expression for the average cost and
minimize it over the set of all H"s. The average cost depends on the
probabilities QO and Ql of errors of the first and second kinds. The

former is the probability under hypothesis H_that H1 is chosen, that is,

0

that measurement of II yields the value 1,

Q, = Pr fn-1] HO} = E(H]HO) =Tr:o . (2.
Similarly
Q =Trlp (L -ml=1-Tre 0, (2.

and the average cost is

C = C[COO(I-QO) + CIOQO] + (1-¢) Echl + C”_(l - Ql)] =
CCOO + (I-Q)COI- (1- C)(COI— Cll) Tr(pl-kpo)ﬂ, (2.
where )
g(c., -C_ )
\ = 10 00 _ 2.

(I-Q(C,,-C,)

Since C01 > C C will be minimum if Tr(p1 —hpo) 11 is maximum.

11’

Choose a representation in terms of the eigenstates l’nk) of the

operator Py - Ap ., whose eigenvalues we suppose discrete,

0
(0, -ro) [N =7 [n ). (2.
It is then necessary to maximize
Tr(p, - o )T =Z‘nk<nklnlnk>, (2.
and this will be accomplished if
(mmln =1, 120,
(> =0, 1 <o.

10



Hence the best projection operator to measure in order to choose

between H_ and H_ is

0 1
I =Z. In ol (2.7)
>
=0
Equivalently, oy - )\po is measured, and Hl is chosen if the outcome is
L. 19, 21
positive . .

The probabilities of error are

Q, =% My leglngd

1,20
Q =1 -Z: SHINLRY (2. 8)
1,0

and the minimum average cost is

C .::ccoo+<1-cx%”-a-m«%u-cuqzz - (2:9)

min
>
1,70

Denote the eigenvalues of the density operators p_ and p, by P
& y oP 0 177 Yok

and P1 respectively, numbering them in descending order. If the

k,

operators are completely continuous, these eigenvalues form discrete
spectra. A theorem in analysis then assures us that the eigenvalues

T]mof P, - Kpo are also discrete, that its k-th positive eigenvalue is

less than or equal to Plk’ and that its k-th negative eigenvalue is greater

than or equal to - AP Here the positive eigenvalues are counted by .

0k’
beginning with the largest, the negative ones by beginning with the

.22
most negative

11



If the density operators p  and p1 commute, the eigenvalues of

0
_ . h i v '
pl A po are Plk }\POk, and these are positive when
>
Plk/POk A

The best procedure is then to measure either pO, p., or a suitable

1

operator commuting with both. When the system is found in the kth

. . S .
common eigenstate, choose I—I1 if Plk/PO A, H_ if Plk/POk <A.

k 0

This is just the likelihood-ratio test of classical decision theory.
Let the system be a simple harmonic oscillator, such as a single
mode of the field in our ideal receiver, and assume it to be in therimal

equilibrium with an average number of photons equal to NO (hypothesis

HO) or to N1 (hypothesis Hl)' The density operators are 23

o]

N '
) [m>Pkm (m |,
m=0
(2.10)

P =1 -v.)v

m
K Ve vk—Nk/(Nk+1), k=20, 1,

in terms of the eigenstates |m) of the number operator n. It then

suffices to measure n itself and to choose hypothesis H1 when

(1-v,)

m

e >

TR (Vl/vo) A
0

where m is the outcome of the measurement.

- The Choice between Pure States

There are few pairs of noncommuting operators 0 and p 1 for which

. 14
the eigenvalue problem in Eq. (2.5) has been solved. One general case

i

12



of interest is that in which the system is in a pure state under each

hypothesisZ4’ 25 ,

o= l¥g2, 1, plfltlfl),(wll. (2.11)
There are then just two states |'ﬂ0>, |'ﬂ1 )satisfying Eq.(2.5) with non-

zero eigenvalues, and they are linear combinations of H’O> and N;'l),

_ _ (2.12)
|nk> =2z, H’o Y + 2’1{1”1> , k=0, 1.

By substituting Eqgs. (2.11) and (2.12) into Eq. (2.5), a set of

linear homogeneous equations for z is obtained. A solution

k0’ Zk1

exists only when the determinant of their coefficients vanishes, which

yields a quadratic equation for the eigenvalues T]O and T]l. The solution

is
1 k
’nk:g(l'}‘-)"('l) R:k_ov 1!
R={130 -0 Praql® (2.13)
‘ iLZ T q ’ .
2
The detection operator to be measured is II = IT\1><T]1 |, the false-alarm

and detection probabilities are

Q

2
o= 1M led™ = -a)/2R,

(2.14)

’ 2
and the minimum average cost C can be calculated by"‘eq. (2.9)., in
which the sum now has a single term 'ﬂl.

In the choice between two coherent states ILL()) and lul> of a

harmonic oscillator such as the field in a single mode of our ideal

13



receiver, now devoid of background radiation, the parameter q entering

Eq. (2.13) 1is
q=1-|(p ‘l" )I =1-ex (‘—px ] ] )
1’70 _ P ‘ 10 )

If, for instance, = 0, the choice is between the presence and the

"0
absence of a coherent signal in the mode, and the probabilities of error
depend, throughq=1 - eXp(—Ns), only on the mean number Ns = ||.L1| 2
of signal photons, as in Eq. (2.14).

The Coherent Signal in Thermal Radiation

Let hypothesis H1 assert the presence, H

o the absence, of a

coherent signal of complex amplitude p in a single mode of a cavity in
thermal equilibrium at absolute temperatureff. If the thermal radiation
were gone, the oscillator representing the mode would be in a coherent

state h.h) The density operators are, in the P-representation

2

Py = (ﬂN)—IIeXp (-l.Ol|;/N) 3¢ dza’,
pl_—.(ﬂN)-IJ’exp(—| oz-p,lz/N)|a><a(d2a, (2.15)

‘ -1
N :[exp(%ﬂ/‘Kﬂ:’;)-d] )
wheret: = Planck's constant h/2m, Q = the angular frequency of the mode,

and K = Boltzmann's constant. The diagonalization of p 1" Ap as in’

0'
) Eq— v{2~5)jﬂw1th these density operators remains an outstanding unsolved
problem of quantum detection theory. By taking W as real, which voids

no generality, and using the co-ordinate (g-) representation, Eq. (2.5)

can be expressed as a homogeneous integral equation, whose kernel is

14



a linear combination of Gaussign functionsZ7. Evaluation of theA pro-
bébility of detection would permit specifying the minimum detectable
coherent signal of known phase' in the presence of thermal background
radiation.

When, as is mostv reasonable at optical frequencies, the absolute
phase of the complex signal amplitude is unknown and is assigned a

uniform prior distribution over (0, 21), both p are diagonal in

and p

0 1

the number representation, and the best detector simply measures the
energy in the mode18.
If a -coherent signal of random phase is present in a number of
modes of a receiver cavity in thermal equilibrium, a linear transform-
ation of the mode amplitudes permits approximate reduction of the
problem to the detection of a signal in a single harmonic oscillatorlg.
For this it is required that the signal occupy a frequency band SO narrow
that the average number of thermal photons is the same for all the modes
that it excites. In effect, the optimum processing of the field creates

a émgle rnrizvrﬂl-‘(»)geﬁ"‘matched” to the signal, and it is the energy or the ex-
citation level of this comp;site mode that is to be measured.

The receiver decides that no signal is present whenever the number
of photons counted in the matched mode is less than an integer M. The
false-alarm probability is then

L =~i:N/(N+1):§M N
and t;l'le detection probability is

15



Q. =1 - (N+1)'1 exp(-Ns/(N+1))

d
M-1_
h H —;m -
X g:o N/ ) (P LN/ TN ), (2.16)

where L yp(x) is the mth Laguerre polynomiallg’ 28,

If this receiver is designed to meet the Neyman-Pearson criterion,
randomization will in general be necessary in order to attain the pre-
assigned false-alarm probability. There will then be a certain photon
count M' for which hypothesis H1 (signal present) is chosen with pro-

bability f, H_ with probability 1-f. For counts less than M', H_ is

0 0

always chosen, for counts greater than M', H The required value of

1
f is easily calculated. Graphs of detection probability versus signal
strength for such a receiver have been publishedzg.
III.” Threshold Detection
The Classical Threshold Receiver

It would be useful if a receiver set to incur a fixed false-alarm
probability attained maximum detection probability for all expected
amplitudes of the signal. This is seldom the case with a receiver based
on thel classical likelihood-ratio test. Only in particularly simple in-
stances, as when the signal is completely known except for amplitude
and phase and is received in Gaussian noise, is the likelihood-ratio
test uniformly most powerful with respect to signal amplitude. It is

usually necessary to set it up for a '"standard' signal of specific ampli-

tude. and to accept less than maximum probability of detecting signals of

16



other amplitudes. Furthermore, the likelihood ratio is often difficult |

to generate from a receiver input.
In a compromise that is often expedient, the likelihood ratio is

replaced by the so-called threshold statistic

aA 1"",}’§n; A)lA:O’ (3-1)
where
X ,ee.,X 3 A
NCHA xn;A)=p11)((}1§ - ) ) .2)
01" " Tn :

is the likelihood ratio, with pl(xl, ey xn; A) the p.d.f. of the data
when a signal of strength A is presegt; po(xl, ces ,xn) = pl(xl, s E S 0).
The threshold statistic is the logarithmic derivative, with respect to A,
of the likelihood ratio for detecting a signal of strength A, evaluated

in the limit of vanishing amplitude. It is compared with a decision

level U, and hypothesis H

0 "'signal present', is selected when U > UO'

1
The measure A of signal strength is so chosen that the derivative in
Eq. (3.1) does not vanish; it is usually proportional to the energy of
the signa130.
This threshold statistic U is most nearly optimum when the decision

is based on data collected in a large number M of ir'ldependent trials.

Compared with the decision level U

Othenisthesuan1+U + ... +0

2 M
of the threshold statistics calculated from the data obtained in each
trial. The sum has nearly a Gaussian distribution, by virtue of the

central limit theorem, and the false-alarm and detection probabilities

are approximately

17



L
QO = erfc x = (2m) 2fexp(—t2/2) dt,

. X (3.3)

er- erfc (x ~M§D),

where D is an equivalent signal-to-noise ratio defined by

2 7 —12
D" =| E(U|H) - E(U]H) | /VarOU (3. 4)

1

with VarO U the variance of the statistic U in the absence of the signal.

In Eq. (3.3), x is related to the decision level U0 on the sum of the
threshold statistics.

The false-alarm and detection probabilities will be given approxi-
mately as in Eq. (3.3) for any stat{stic U(Xl’ cees xn) when the decision
is based on the sum of such statistics for a large number M of indepen-
dent trials. For a fixed pair of probabilities QO and -Qd and for M >> 1,
that detector is best for which the equivalent signal-to-noise ratio D is
largest, for such a detector will require the least number of M of in-
dependent trials. The threshold detector as defined in Eqgs. (3.1) and
(3.2) is best in this sense

The Quantum Threshold Receiver

The quantum counterpart of the likelihood-ratio receiver is one in
which the optimum detection operator Il is measured. It has been found
uniformly most powerful with respect to signal amplitude only for de-
tecting a known signal of random phase in the presence of thermal

noise, a detection problem in which, as we have seen; the density

operators commute and the classical likelihood-ratio test is optimum.

18



Furthermore, the mathematical problem of determining the optimum
projection operator Il presents great difficulty in most cases of practical
interest. For these reasons, a quantum-mechanical counterpart to

the classical threshold statistic is of interest.

The quantum threshold statistic IIe is defined as 18

i =ana/aA!A:

5 (3. 5)

0 3
where Ha is that operator for which the equivalent signal-to-noise

ratio D given by

2 LTrpl(A,) Ha - Tlfpo Ha_j
D = > > (3.6)
TIv‘pOHa B (TErpOIIa)

is maximum. This equivalent signal-to-noise ratio is the quantum-
mechanical form of the one defined in Eq. (3.4); p 1(A) is the density .
operator.of the observed system when a signal of strength A is present,
and po = pl(O). There is Hno loss of generality if Ha is so defined that
Tr pOIIa =0, (3.7)
since an arbitrary multiple of the identity operator 1 can be subtracted
from Ha without changing DZ.
"We define the Hermitian operator ® (A) as the solution of the
equatvion
P, (A) -0, =% (p,®+8p ), (3.8)

and we show that Ha =@, First of all,

T - = :-J—'- =
r(pl P 0 gTr(pO®+®po) Trpo@,

o)

19



so that Eq. (3.7) is satisfied. We now show that I =@ maximizes
a ;

2 T ~2 2
D" = LTr(pl po) Ha_j /Tr(pOHa).

Substituting from Eq. (3.8), we find

- T2 Ty

LTr(p1 - po) Ha__% = L-g(Trp O@Ha + TrB®p OHa)_j
- 2 2

i S =

1
2

2
o |

2

L L 1
3 < ) 2
Trpo @Hap Tr(po ® o ) Tr(IIap Ona)

2 2
= ®
Tr(p %) Tr(p 1)
by the Schwarz inequality for traces. Hence
D% < Tr(p o®z)
with equality when,ﬂa =0,
. 32
The threshold operator is thus

I, = B@(A)/BA]A _

8 0°

As the solution of the operator equation

apl(A)/BA[A _ g B O, +T

0 6”0

g

(3.9)

(3.10)

it can be regarded as the symmetrized logarithmic derivative (s.l. d.)

of pl(A), evaluated at A = 0.

-In the quantum threshold receiver the operator II

is measured

and the outcome compared with a decision level A set to yield a pre-

assigned false-alarm probability. The operator He is not a projection

operator; the equiValent projection operator is

‘fx}‘exe\de
e

20



with |9) the eigenstate of II, with eigenvalue ©, assumed here part of

e

a continuous spectrum,

Threshold Detection of a Cohgrent Signal

In the cavity that furnishes our model of a quantum receiver the
electric field at time t at point r is represented by a quatitum-mechanical
operator ¢(r, t), which is conveniently decomposed into its posiﬁve-

and negative-~frequency parts,

(+) (-)

e(r,t)=¢ (r, t)+ ¢ '(r, t),

GL(-_) (+) 1t

(r, ty=le '(z,t)

’

the one being the Hermitian conjugate of the other. In terms of the

mode eigenfunctions (r), which are solutions of the Helmholtz equation

u
I

with suitable boundary' conditions at the walls of the cavity, the positive-

frequency part of the electric-field operator is written as

i

(+)

e (r,t)=1

0

hw /2)° a
m

_— ~~

_ggl(_:g_) exp(—immt), (3.11)

A~

180~1

where wmis the angular frequency of mode m. The mode index m

—

accounts for both the spatial configuration and the polarization of the

mode.
The operator a__ and its Hermitian conjugate a__ are the annihilation

and creation operators for photons in mode m and obey the usual com-

mutation rules,

(3.12)



The number operator for modemisn =a a .
~ m m

8+

—~

Suppose that under hypothesis H_ the cavity is filled with random

0

Gaussian radiation characterized by the mode correlation matrix @ ,

whose elements are

L +
""'1553 = Tr(poam alg) (3.13)

-~

The density operator Py for L modes of the field is then, in the P-repre-

2
sentation ,

Py = ﬁ-LIdetgl -1Jj. -j‘eXP(’_‘é‘,+ E—léi)

| (3.14)
X |g><g|d2Lgl_,

where @ is a column vector of complex mode variables
o = +ia s
m o mx my

. +
g_+ is the Hermitian conjugate row vector, o ={... o e},

2L '
andd o :Hda da/my is the element of integration in the space

of theo 's. Here
m

is the Glauber coherent state for a field with complex amplitude @

—~

in mode m. In thermal equilibrium at absolute temperatureT,

‘P'lsr&: N.ls 6.1911.’

'Nk=[exp(hwk/K‘T)- 1]-1. (3.15)

o~ —~

Werea coherent signal of amplitude A and known phase present

in the absence of the random radiation, the field would be in a coherent

m

—

state |Ay) , in which the complex amplitude in mode m is Ay If
this coherent signal is superimposed on the random radiation described

by p

0 of Eq, (3.14), the density operator for the field is
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p (A) = M) det gp_l'lf...fexzo [- (@ - Ag+)2-l(£-AE)J

x |o¥a]a®y (3.16)
which can also be written as 34
7 P (A) =V (A)p V(A), (3.17)
N 2+ -1
V(A) = exp [5AI, - A (I+29) ul, (3.18)
where
+ -1 + -1
He=2[}£'(£+ 29) ata (L+29) pl (3.19)

with a the column vector of annihilation operators aln” and

a+ = (A. ey am+, ... ) the row vector of the creation :perators for the
modes. I is the identity matrix.

The threshold operator for deciding whether the coherent field
with amplitudes Ap.mis present is the operator He given by Eq. (3. 18),
as can be verified by différentiating pl(A) with respect to A, setting
A =0, and comparing with Eq. (3.10). The outcomes of measurements
of the operator He have a Gaussian distribution under each hypothesis,
and the false-alarm and detection probabilities are given exactly by
Eq. (3.3), with x related (:9 the decision level Tre 'with which the out-
comes are compared. The equivalent signal-to-noise ratio D is given by

D = Tx(p 1,%) = 4a%F @+ 29y . (3. 20)
For detection in thermal radiation this signal-to-noise ratio reduces to
D2 =4NS/(2N+ 1), (3.21)

where l\is = ES/hQ is the average number of photons in the field of

23



the coherent signal and N is given by Eq. (2.15). For Eq. (3.21) to
hold it is necessary that the average numbers Nrn of thermal photons
in all modes excited by the signal 'b’e nearly equa; to N, as will be the
case when, as usually, the signal occupies only a narrow band of fre-
quencies about Q.

In the classical limit the term 2¢ dominates in the factor (Ll- 252)—1
in Eq. (3.19). and the threshold operator becomes, except for an
additive constant, proportional to the logarithm of the classical likeli-
hood ratio for choosing between hypotheses HO and Hl' The false-
alarm and detection probabilities for the classically' optimum detector

are given by Eq. (3. 3) with D2 = 2A2E+SE—11£’ or for thermal equilibrium,

D% - ZES/KT. Thus in this case the quantum threshold operator becomes
equivalent in the classicalﬂlimit to the optimum likelihood- ratio statistic35
Detection of Gaussian Radiation

If the signal field itself has the character of random Gaussian
radiation, the density operator Py has the same form as °o in Eq. (3. 14).
We suppose that under hypothesis H the mode correlation matrix,
definfe’d by Eq. (3.13), is E.O; under hypothesis Hlit is

9, =530+A‘c%, (3.22)

where Agp_s is the mode correlation matrix of the random signal com-
ponents of the field. This is the quantum-mechanical counterpart of

what is sometimes called the "noise-in-noise' detection problem, and

it corresponds to the detection of light from an incoherent source.
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The optimum detection operator Il for deciding between hypotheses
HO and H1 remains undiscovered. The threshold operator, however,

can be calculated36. It is an Hermitian quadratic form in the annihi-

lation and creation operators of the modes,

= = +bi,
HG /. %k qunam+ bi=2 Qa+hl
Kkm ~ —~ —~
-~ " (3.23)
b= - Tr%_(l_+go) 9 .=~ Tr(Q%)
where the matrix Q is the solution of the equation
29 =9 QUL+ g,) + (L+e,) Q9. (3.24)

The constant b serves to make Tr (pOHG) vanish,
The p.d. f.'s, under the two hypotheses, of the outcomes of measure-

ments of ﬂe are difficult to calculate, and only approximate forms of

the false-alarm and detection probabilities are accessible in the general

case. The moment-generating functions of the observable Q' = 3+Qg

36

are given by

! = ®

h.(z) = Tr pieZQ = exp | -Tr In (I - Qig)j, (3. 25)

i

P

—~—

i

exp (zQ) -1, i=0, I.

The p.d. f of the outcome of a measurement of Q' is the inverse Laplace
transform of hi(-s), and approximation methods, such as the method of
steepest descents, are available for calculating the false-alarm and

3
detection probabilities 7
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Reception at an Aperture

An unsatisfactory aspect of quantum detection theory is its formu-
lation in terms of simultaneous measurements of the electromagnetic
field in a closed volume. An optical instrument, such as a telescope,
is more appropriately considered as processing the field at its aperture
throughout a finite observation interval. An advantage of the threshold
operator for detecting a Gaussian random field is that it can be trans-
lated into a form involving only the field operators at the aperture of
the reqeiv’er, and it can thus be appiied to the detection of light from
an incoherent source38. This transiation is possible because the classi~
cal mode amplitudes for the cavity receiver after its aperture is closed
are linearly related to the field at the aperture itself during the obser-
vation interval (0, T).

In order for the threshold operator for detecting incoherent light
in the presence of thermal background radiation to take a simple form
when expressed in terms of the aperture fields, it is necessary that the
duration T of the observation interval be much longer than the reciprocal
of the bandwidth W of the liéht to be detected (WT >>1), and that the
diameter of the aperture 4 be much greater than the correlation length
he/ KT ofthe thermal radiation. Both these conditions are normally met,

The threshold operator is then proportional to

[ enf o

(-)

(3.26)

x ¥ (g t) G(x .t

l’f‘z” tz) w EZ’ tz)’
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in which for simplicity a scalar field

(+) (-)

We &) =y i 0+ (1)

has been assumed. Here

Glry, b5 xp0t) = Telo 4yt 4P 1) ]

is the mutual coherence function of the s_ignal field, where pS is its
density operator in the absence of the thermal background. A similar
receiver has been derived by Kuriksha on the basis of the classical
likelihood ratio39’ 40.

The moment-generating function of the threshold statistic can also
be expressed in terms of the mutual coherence function of the signal
field at the aperture by similarly translating the form given in Eq.
(3.25), and from this the false-alarm and detection pl;obabilities can
be approximated. Details are presented elsewhere38

Iv. Choices‘.Among, Many Hypotheses.
The choice among M hypotheses, of which the kth asserts, ""The

system has the density operator pk”, k=1, 2,..., M, can be based

on the outcome of a measurement of M commuting projection operators
I, HZ,'. .., forming a resolution of the identity operator 1,
1 ) m o

+... +0_ =1, (4.1)
Hl + HZ m_ L
Quantum logic was formulated in terms of projection operators by
von Neumann4l. Our problem is to pick such a set of operators Hk

that the decision among the M hypotheses can be made with minimum

average cost. It will arise, for instance, in designing and evaluating
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the best receiver for a communication system in which messages are
coded into an alphabet of more than two symbols, a different signal be-

ing transmitted for each.

Let gk be the prior probability of hypothesis Hk and Cij be the cost

incurred upon choosing Hi when Hj is true. The average cost per

decision is

_ M M
C=)  C.C.. Tr(p1.), (4.2)
R R R I

which is to be minimized by a set of commuting projection operators

m that satisfy Eq. (4.1). If in particular Cy=0 Cpy=1, i#], C

equals the average probability of error. This problem of minimizing

C remains unsolved for M >2, except when the M operators p, commute,
J

whereupon it reduces to a standard problem in classical decision theory.

If under each hypothesis the system is in a pure state, L | tlrk) (wkl ,

the projection operators will have the form
no= o
where the I'ﬂj> are linear combinations of the states I\kk).
To find what linear combination minimizes C is also, for M> 2, an
unsolved problem, although one that appears simpler than the general
problem.
V; Estimation Theory

Bayesian estimation theory determines a strategy 9(x) =6(x1, X

for estiniating a parameter 6 of the p.d.f. p(x; 0) =p(X1, x cer XS 8)

2’
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of the data x = (x,,x_,... ,xn) by minimizing the average cost

1" 2

— N
C=jdn_>5fd9z(9) C (9 (x), 8) p(x; 0), (5.1)

where z(6) is the prior probability density function of the parameter

A
8 and C(8, 6) is the cost associated with a discrepancy between the

A
estimate ® and the true value of the parameter

Quantum-mechanically the parameter 6 of a density operator p(6)

: 4
is estimated by means of a resolution of the identity 1

JdE(G’)=1 ) (5.2)
where dE(6') is a projection operator corresponding to the statement,
"The value of the parameter 8 lies between 8' and 8' + d6'."

Equivalently we can define such an operator

N
8 =J9'd_E(G') (5.3)
A
that the outcome of a measurement of 6 yields the value of the estimate

of the parameter 8. Corresponding to Eq. (5.1), the average cost

associated with the estimate is

C =sz(e) ce', 8) TrLo(e) ame")] do. (5. 4)
The best estimator of the parameter 6 is that resolution of the identity
dE(0'), or the associated operator /6\, for which the average cost Cis
minimum. How to find it remains an unsolved problem, If estimation
is viewed as a choice among a continuum of hypotheses about the system,

Eq. (5. 4) is the counterpart of Eq. (4.2). If there is a representation

in which the density operators p(8) are simultaneously diagonal, they
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all commute? and the problem reduces to the classical one of minimizing
C of Eq. (5.1).

Even in classical statistical estimation the full apparatus of the
Bayesian theory is seldom called upon, for prior probability density
functions of thé parameters are usually unknown. Instead, estimators
are sought that have small or zero bias and at the same time incur a
sfnall mean-square error over a broad range of true values of the para-
meters. In quantum-mechanical terms the bias of an estimateg of a
parameter 6 of the density operator p(€) is defined by

| b(6) = E (8 ;9.)=Tx;-[6p(9)]-6', (5. 5)
where 5 is the operator Whose measurement yields the value of the

estimate of 6. (Parameters are c-numbers,) The mean-square error
is n 2 R 5 ‘
E=E(® -9 =Tr [o(®) (5-01)"]. (5. 6)
An estimate that has zero bias and attains the minimum value of € for
all values of the parameter 8 is said to have uniformly minimum variance.
The Cramér-Rao Inequality
. s . . . 43 44

In classical statistics an inequality due to Cramer ~ and Rao
sets a lower bound to the mean-square error attainable by any estimator
of a parameter 6 of a p.d.f. p(x; 9),

E® - 9)2 =
9 1
[1 460 {E[ 2 1n p(; 9)121 (5.7)

where b'(6) = db(0)/d® and b(p) is the bias. For unbiased estimates
b'(e) = 0..

Furthermore, equality is achieved in Eq. (5.7) by an estimator

A - .
6 (x) satisfying the equation
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2 1npix 0) =k(e) [ - o, (5.8)

with k(8) independent of the data x, provided that such an estimator
exists. If it exists, it is unbiased and a sufficient statistic, and it is
called an efficient estimator,
A :
In order for a function 6(x) to be a sufficient statistic for estimating
8, it must be possible to factor the density function p(x; €) into a part
. /\ L3
depending on the data x only through 6(x)and a remainder that is inde-
pendent of the parameter 6,
n .
p(x; 6) = g(8(x); 6) r(x).
Such a factorization is seldom possible.
An analogous lower bound exists in quantum estimation theory
~
Let © be an operator, the outcome of a measurement of which provides

an estimate of a parameter © of the density operator p(8). Then the

mean-square error is bounded below by

N
55 - 0) = TeL o) - 01)%]

El +b‘(6)12 (Tr pLZ)—1=[1 +’o'(9)32(Tr —g-g—L)-l, (5.9)

where L is the symmetrized logarithmic derivative (s.1.d.) of p(9)
with respect to 6, defined by
oL, + Lp = 23p/20. (5.10)
The inequality becomes an equality if
L:k(e)(g - 01), (5.11)
with k(e) a mumerical function of the true value 6 only. This requires
the density operator p(6) to have the form
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+A A
p(®) =V (8;89) PV 9), (5.12)
where Py is independent of the parameter 6, and V(6; 6) is an operator
satisfying the equation
1 1 A
OV/36 =5VL = 5k(6) V(6 - 61) (5.13)
and depending on the dynamical variables of the system only through
the operator 6, of which it is a function. If such an estimator é exists,
it is unbiased, attains the minimum variance [k(e)] —1, and is termed
an efficient estimator,
An example is the estimation of the amplitude A of a coherent

field in the presence of incoherent Gaussian radiation. The density

operator p (A) is then given by pl(A) of Eqs. (3.16) and (3.17), with
o of Eq. (3. 14) taking the place of Py Comparing Egs. '(3. 18) and
(5. 13), we find the s.1.d.

Lot - an’ (1429
where He is the threshold operat or for detecting the field with mode
amplitudes Ap.m in the presence of the same type of background radi-
ation. This threshold operator is given in Eq. (3.19).

An efficient estimator of the amplitude A of the field is, by virtue

of Eq. (5.11), the operatoi'

AT+ 1 -1
A=[4’E, (L+ 20) E] I, (5.14)

and it attains the minimum variance

,E(?x - A% <[ 4g+(_J; + 29)'1_;3]'1. (5..15)
For background radiation of the thermal variety and a narrow-band signal
field, thi’s estimator provides a relative variance

E(X -A)Z/AZ: (2N + 1)/4N_, (5.16)
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where Ns is the mean number of photons in the signal field and N is the
mean number of thermal photons per mode. In the classical limit this
minimum relative variance becqrnes equal to (ZES/K’I’)-{ which is the
same as for a classical efficient estimator of the amplitude of a coher-
ent signal of energy ES and known phase in thermal noise of absolute
temperature .

Efficient estimators can be expected to be at least as rare in
quantum estimation theory as in the classical theory, and no general
method has been found for producing estimators that come close to
the léwer bound set by the quantum counterpart, Eq. (5.9), of the
Cramér-Rao inequality.

Sufficient Statistics

The density operator p(f) can sometimes be factored as in Eqg.
(5.12) into two parts, V(/g; 0) and its Hermitian conjugate, that depend
on the dynamical variables of the system only through the operator /9\,
and a third part Py independent of the unknown parameter 6. The
operatorg might then, in analogy with the classical terminology, be
called a sufficient estimator, or a sufficient statistic for estimation.
The operator /I\X in Eq. (5.14) is sufficent for estimating the amplitude
of the signal field.

In classical detection theory the sufficient statistic for estimating

the amplitude of a coherent signal in Gaussian noise is also sufficent

for detecting the signal; that is, the likelihood ratio for detection
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depends on the input to the receiver only through that statistic, and the
optimum decision about the presence of the signal can be based upon it.
In the corresponding quantum-detection problem, the amplitude esti-
mator 2 does not provide the optimum detection operator, as is evident
from the treatment of detection in the absence of thermal noise, given
in Section II. For a coherent signal in Gaussian noise the efficient
estimator of signal amplitude is related rather to the threshold statistic
for detection. The concept of a sufficient statistic does not, therefore,

seem to have the range in quantum-mechanical decision and estimation

theory that it possesses in the classical theory.

Multiple Estimation

Thus far we have tréated only the estimation of a single para-
meter of the density operator of the system. In the classical theory
the Cramér-Rao inequality has been generalized to cover the simulta-

. . 43, 44.
neous estimation of several unknown parameters , and a corres-
ponding generalization is possible in quantum estimation theory as
47 : L : o
well” . In discussing it we restrict ourselves for simplicity to un-
biased estimates.
Let there be m parameters 6 = (0 17 v Gm) of the density
c A
operator p(0) to be estimated, and let Gj be the operator whose measure-

ment yields a number that is taken as the estimate of the parameter ej.

Since the estimates are assumed to be unbiased,
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¢ 5. p@]=0
£6)=Tr [0, p@] = 0,;

we define

A A
86.=6.-0.1
J J J )
as the operator providing the error in the estimate of ej. The co-
variance of simultaneous estimates of the parameters Oi and 6. is then
N A A A A .
B,,={g,,9,}=%Tr [p(69_69.+6e.66_)] (5.17)
1 1) 1] J 1
These covariances form an m x. m matrix B, whose diagonal elements
A
are the variances of the errors in the estimates. If the operators Gi
are to be measured on the same syétem, they must commute in order
. . . .4
for the covariances Bij to have a clearly defined physical meaning
The sizes of the errors and their correlations are conveniently
visualized in terms of the concentration ellipsoid in an m-dimensional
space with Cartesian co-ordinates Z = (z

.49
is

1 %y - zm); its equation

7B 'z =m+2, (5.18)
- where Z is a column vector, Z its transposed row vector. The larggr
this ellipsoid, the greater the mean-square errors, and an elongation
of the ellipsoid in a direct£on aslant to the co-ordinate axes indicates
a cor:;'elation among the estimates.

The generalized Cramer-Rao inequality for multiple estimation
places this concentration ellipsoid outside the ellipsoid

ZAZ =m + 2, (5.19)

where 4 = |4 |,
; 1}
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A . =%T L.L, + L.L,) = Tr(dp/30,)L, .
y = BTr P(L,L, + L.L) = Tr@p/30,)L, (5. 20)
with Li the s.1.d. of p(9) with respect to Oi, defined as in Eq. (5.10).
That is, for any column vector Z of m real elements,
7r"'z =74z,

Alternatively, for any column vector Y of real elements,

IBY 2 ':Y.éfl!; (5.21)
by picking appropriate values of:{( = (y-l, vess ym), one can set lower

bounds to variances and covariances of unbiased estimates of the

unknown parameters. In particular,

~

A ~1
B, =Vare = Tro@, - 0.1)% = a7, (5.22)
which is the i-th diagonal element of the inverse matrix é_l.

The symmetrized logarithmic derivatives needed in the error
bounds on both single and multiple estimates can be worked out for
parameters of coherent fields and random Gaussian fields observed
in the presence of random Gaussian background fields. The density
operators have then the forms given by Eqgs. (3.14) and (3.16). Details
have been presented elsewhere4
VI. - Conclusion

We have omitted from this review the analysis of actua.l‘ receivers
in which quantum effects are significant and the extension of information

theory to channels embodying such receivers. Optical heterodyne

receivers and optical detectors of incoherent light have been extensively
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studied, the types of noise encountered in them have been classified
and measured, and methods and data required for their design have
been compiled. To simplified models, such as the photon-counting
receivers, classical detection and“estimation theory have been applied
Capacities and information rates of communication channels embodying
such receivers have been calculated in order to extend into the quantum
Vdomain the results of classical information theory 0—70.

A review of quantum detection and estimation theory itself can
at the present time be little more than a recital of unsolved problems.
Indeed, a collection of ideas in which such fundamental matters as
optimum Bayes estimation and optimum multiple-hypothesis testing re-
main unresolved can hardly be called a theory at all. Nevertheless,
it is eminently reasonable that such a theory should exist. If it can

be elaborated sufficiently, it will permit us to specify the ultimate

limits that the thermal and quantum properties of nature set to the

reliable detection of signals and to accurate measurement of parameters

of physical systems.

37

0-59



Footnotes

*This paper was prepared under grant NGR-05-009-079 from the
National Aeronautics and Space Administration.
1. For a review of the theory of density operators, see

U. Fano, Revs. Mod. Phys. /%2, 74 (1957),

D. Ter Haar, Reports on Progress in Physics (Institute of

Physics and the Physical Society, London) 24, 304 (1961).
2. The word "classicalis used here to mean ""nonquantum-mechanical',
It does not indicate venerability, most of what is here called
"classical statistical theory' being younger than quantum
mechanics itself.

3. E. Lehmann, Testing of Statistical Hypotheses (John Wiley & Soas, Inc.,

New York, 1959).

4., D. Middleton, An Introduction to Statistical Communication Theory

(McGraw-Hill Book Company, Inc., New York, 1960), chs. 18 - 23,

5. I. Selin, Detection Theory (Princeton University Press, Princeton,

N. J., 1965).

6. J. C. Hancock and P. A. Wintz, Signal Detection Theory (McGraw-

Hill Book Company, Inc., New York, 1966)

7. A, V. Balakrishnan (ed.), Communication Theory (McGraw Hill

Book Company, Inc., New Yo;'k, 1968), chs. 3, 4.

8. C. W. Helstrom, Statistical Theory of Signal Detection (Pergamon

Press, Ltd., Oxford, England, 1968), 2nd ed.

38



9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

H. Van Trees, Detection, Estimation, and Modulation Theory

{Tohn Wiley & Sons, Inc., New York, 1968), vol. 1.

The Bayes whose name figures so largely here was the Rev. Thomas
Bayes (1702 - 1761), whose paper, "An Essay Toward Solving
a Problem in the Doctrine of Chances,'" Phil. Trans. Roy. Soc.
(London) 53, 370 (1763) proposed basing decisions on posterior
or conditional probabilities. It has been rei)rinted in Biometrika
45, 293 (1958).

Ref. 8,. pp- 82, 91; ref. 9, p. 26.

Ref. 8, p. 194; ref. 9, p. 46.

J. Neyman and E. Pearson, Proc. Camb. Phil. Soc. 29, 492 (1933).

J. Neyman and E, Pearson, Phil, Trans. Roy. Soc. (London) A23],
289 (1933).

The notations QO = o and Qd =B are common in the statistical liter-~
ature, where these probabilities are termed the size and the
power of the test, respectively.

Ref. 8, pp. 87, 93; ref. 9, p. 33.

Ref. 8, ch. VII, p. 249; ref. 9, §2.4, Pj 52.

C. W. Helstrom, Information and Con7/;ol 10, 254 (1967)

C. W. Helstrom, Int. J. Theor. Phys. 1, 37 (1968),

C. W. Helstrom, Information and Cgntrol 13, 156 (1968).

A derivation taking into account the/possibility that randomization

may be necessary is given in fref. 18.

39



22. F. Riesz and B. Sz.-Nagy, Functional Analysis (F. Ungar Publishing

Co., New York, 1955), p. 238. I am indebted to Professor
E. Masry for pointing out this theorem.

23. W. H. Louisell, Radiation a_nd Noise in Quantum Flectronics

(McGraw-Hill Book Company, Inc., New York, 1964), p. 242,

24. Ref. 20, §8.

25. P. A. Bakut and S. S. Shchurov, Problemy Peredachi Informatsii 4,
no. 1, 77 (1968).

26. R. J. Glauber, Phys. Rev. 131, 2766 (1966)

27. Ref. 19, p. 45.

28. G. Lachs, Phys. Rev. E_Zi, B1012 (1965).

29. C. W. Helstrom, Trans. IEEE AES-5, (1969).

30. D. Middleton, Trans. IEEE IT-12, 230 (1966).

31, Ref. 18, p. 273.

32. Ref. 18, p. 275.

33, Ref. 23, p. 153.

34. Ref. 20, p. 165f.

35. Ref. 8, Ch. IV.

36. Ref. 18, p. 284ff.

11
37. G. Doetsch, Handbuch der Laplace-Transformation (Birkhauser
Verlag, Basel and Stuttgart, 1955) vol. 2, ch. 3.

38. C. W. Helstrom, submitted to J. Opt. Soc. Am.

40



‘39. A. A. Kuriksha, Problemy Peredachi Informatsii 3, no. 1, 42 (1967).
40. A. A. Kuriksha, Radiotekhnika i Elektronika 13, 1790 (1968)

41. J. von Neumann, Mathematische Grundlagen der Quantenmechanik

(Springer Verlag, Berlin, 1932) p. 130.
42. Ref. 8, ch. VIII; ref. 9, §2.4, p. 52.

43, H. Cramér,‘ Mathema’cical Methods of Statistics (Princeton University

Press, Princeton, N, J., 1946), p. 473ff.

44, C. R. Rao, Bull. Calcutta Mathf Soc. 37, 81 (1945).

45, CW Helstrom, Phys. Letters 25A, 101 (1967).

46. Ref. 20, pp. 164ff,

47. C. W. Helstrom, Trans. IEEE IT-14, 234 (1968).

48, H. Maréenau and R. N. Hill, Progr. Theoret. Phys. (Kyoto) 26,
722 (1961).

49, L. Schmetterer, Mathematische Statistik (Springer Verlag, New York,

1966), p. 63.

50. B. Reiffen and H. Sherman, Proc. IEEE 51, 1316 (1963).

51. C. W. Helstrom, Trans. IEEE IT-10, 274 (19‘64).

52. J. - W. Goodman, IEEE J. Quant. Elec. QE-1, 180 (1965).

53. J. W Goodman, Trans., IEEE AES-2, 526 (1966).

54. P. A. Bakut, V. G. Vygon, A. A, Kuriksha, V. G. Repin, G. P.
Tartakovskii, Problemy Peredachi Informatsii 2, no. 4,39 (1966).

55. V. L: Stefanyuk, ibid. 2, no. 1, 58 (1966).

56. P. A, Bakut, Radio Engrg. & Electr. Phys. 11, 551 (1966).

4]



57.
58.
59.
60.
61.
62.

63.

64.

65.

66.
67.
68.
69.

70.

S. A. Ginzgburg, ibid. 11, 1972 (1966).

P. A. Bakut, ibid. 12, 1'(1967)

I, Bar-David, Trans. IEEEE:_I_Q, 31.(1969),

T. E. Stern, Trans. IRE IT-6, 435 (1960)

J. P. Gordon, Proc. IRE 50, 1898 (1962)

B. E. Goodwin and L. P. Bolgiano, Jr. Proc. IEEE 53, 1745 (1965)

L. F. Jelsma and L. P. Bolgiano, IEEE Ann. Commun. Conv.
Record, 635 (1965).

L. B. Levitin, Problemy Peredachi Informatsii 1, no. 3, 71 (1965).

H. Takahasi, Advances in Communication Systems (A. V. Balakrishnan,

ed., Academic Press, New York) 1, 227 (1965).
D. S. Lebedev and L. B. Levitin, Information and Control 9, 1 (1966).
V. V. Mityugov, Problemy Peredachi Informatsii 2, no. 3, 48 (1966).
R. L. Stratonovich, ibid. 2, no. 1, 45 (1966).
S. I. Borovitskii, V. V. Mityugov, ibid. 3, no. 1, 35 (1967).

G. Lachs and G. Fillmore, Trans. IEEE IT-15, (1969).

42



