General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA CR-54571 50 SEPTEMBER 1968 Allison EDR 5863

Single-Stage Experimental Evaluation of Boundary Layer Bleed Techniques for High Lift Stator Blades

III — Data and Performance of Unslotted 0.75 Hub Diffusion Factor Stator

Prepared for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Allison Division • General Motors

Indianapolis, Indiana

NOTICE

.....

This report was prepared as an account of Government sponsored work. Neither the United States, nor the National Aeronautics and Space Administration (NASA), nor any person acting on behalf of NASA:

- A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method or process di closed in this report.

As used above, "person acting on behalf of NASA" includes any employee or contractor of NASA, or employee of such contractor, to the extent that such employee or contractor of NASA, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with NASA, or his employment with such contractor.

Requests for copies of this report should be referred to

National Aeronautics and Space Administration Scientific and Technical Information Facility P.O. Box 33 College Park, Maryland 20740

NASA CR-54571 SEPTEMBER 1968 Allis n EDR 5863

Single-Stage Experimental Evaluation of Boundary Layer Bleed Techniques for High Lift Stator Blades

III — Data and Performance of Unslotted 0.75 Hub Diffusion Factor Stator

> by G. Seren and R. H. Carmody

> > **Prepared** for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Contract NAS3-7900

Technical Management NASA-Lewis Research Center Cleveland, Ohio

Lewis Project Manager: William L. Beede Lewis Reseach Advisor: L. Joseph Herrig

Allison Division • General Motors

Indianapolis, Indiana

PRECEDING PAGE BLANK NOT FILMED.

ABSTRACT

The test described in this report is part of an overall program to establish experimentally the extent to which it is feasible to increase compressor stator loading and stall-free flow margin by employing suction surface boundary layer bleed techniques. The unslotted stator vanes in this test are used with the objective of providing a basis of comparison for the blade suction surface boundary layer control using blowing and bleed techniques. During this test, the only attempt to control the flow in the boundary layer was done by means of varying hub and case wall bleeds. A secondary objective of this test was to obtain blade element data for design use.

In this test, overall and blade element performance of a row of 0.75 diffusion factor unslotted stator vanes was measured with varying wall bleed rates for boundary layer control. In addition, the vane static pressure distribution was obtained at three radial locations and for three different wall bleed rates at design speed. Overall and blade element performance was also obtained for the rotor and compared to data previously obtained for this rotor without stator vanes. Preliminary discussion of test results and correlations of data are presented.

RECEDING PAGE BLANK NOT FILMED.

I

I

I

Ι

Timme

Bar Hannerson

Chernese - -----

anne state

finingerung f

₽-

• • • •

Í.

• -

TABLE OF CONTENTS

	Page
Summary	1
Introduction	3
Symbols	4
Apparatus and Procedures	6
	6
Compressor Test Rig	6
Blading	7
Instrumentation.	7
Determination of Annulus Wall Bleed Flow for Stator Vane	
Tests	9
Hysteresis Test	10
Overall and Blade Element Performance Data	10
Data Reduction \ldots	10
Presentation of Results	19
Overall Performance of Flow Generation Boton and Stage	12
Blade Element Performance	12
	12
Discussion of Results	14
Overall Performance	14
Flow Generation Rotor	14
Complete Stage	15
Annulus Wall Bleed for Stator Test	15
Hysteresis and Rotating Stall Results Complete	10
Stage.	16
Blade Element Performance	16
Rotor	17
Stator	18
Stator Static Pressure Distributions	10
	19
Concluding Remarks	21
References	22
Appendix—Performance Equations	23

ł

LIST OF ILLUSTRATIONS

Figure	Title	Page
1	Compressor test facility	26
2	Layout of compressor test rig	27
3	Test rig flow path	28
4	Circumferential location of instrumentation viewed	
	downstream	2 9
5	Radial location of streamlines for instrumentation	
	positions	30
6	Schematics of survey instrumentation	31
7	Unslotted stator vane static pressure tap locations at 10, 50,	
	and 90% streamlines	33
8	Flow generatic rotor overall performance in stage test -	
	pressure ratio	34
9	Flow generation rotor overall performance in stage test-	
	adiabatic efficiency.	35
10	Stage overall performance – pressure ratio	36
11	Stage overall performance – adiabatic efficiency	37
12	Rotor blade element performance at optimum wall bleed -	
	stage test	38
13	Rotor blade element performance for 100% design speed with	
	varying wall bleed rates - stage test	43
14	Radial variation of rotor blade element performance with	
	optimum wall bleed.	48
15	Radial variation of rotor blade element performance with	
	mean wall bleed	49
16	Radial variation of rotor blade element performance with	
	minimum wall bleed	50
17	Rotor out radial mass flux distribution at design speed with	
	varying wall bleed rates	51
18	Rotor loss parameter versus diffusion factor	52
19	Stator blade element performance with optimum wall bleed	53
20	Stator blade element performance for 100% design speed	
	with varying wall bleed rates	58
21	Variation of wall bleed flows with stage pressure ratio	63
22	Radial variation of 0.75 De stator blade element	
	performance with optimum wall bleed	64
23	Radial variation of 0.75 D _f stator blade element	
	performance with mean wall bleed	65
24	Radial variation of 0,75 De stator blade element	
	performance with minimum wall bleed	66
25	Stator loss parameter versus diffusion factor	67
26	Stator static pressure distribution at 60% speed with	- •
 U	optimum wall bleed.	68
27	Stator static pressure distribution at 80% speed with	~~
	optimum wall bleed.	73

- 114P

Tri Heller

and a second

I

Figure	Title	Page
2 8	Stator static pressure distribution at 90% speed with	
	optimum wall bleed	78
2 9	Stator static pressure distribution at 100% speed	
	with optimum wall bleed	83
30	Stator static pressure distribution at 100% speed	
	with mean wall bleed	88
31	Stator static pressure distribution at 100% speed	
	with minimum wall bleed	92
32	Stator static pressure distribution at 110% speed	
	with optimum wall bleed	96
33	Stator wake surveys with optimum wall bleed	102
34	Stator wake surveys with mean wall bleed	107
35	Stator wake surveys with minimum wall bleed	109
36	Variation in stator wake at 10 and 90% streamlines from	
	tip during wall bleed optimization	111

I

-

tions courses

. .

n humani

[.

house the second

LIST OF TABLES

Table	Title	Page
I	Blade and vane geometry summary	112
II	Rotor incidence at minimum and maximum flow for	
	flow generation rotor and complete stage	113
III	Rotating stall results for complete stage test	114
IV	Blade element performance for complete stage	115

vii

SINGLE-STAGE EXPERIMENTAL EVALUATION OF BOUNDARY LAYER BLEED TECHNIQUES FOR HIGH LIFT STATOR BLADES

III. DATA AND PERFORMANCE OF UNSLOTTED 0.75 HUB DIFFUSION FACTOR STATOR

Вy

G. Seren and R. H. Carmody Allison Division, GM

SUMMARY

To establish the feasibility of increasing compressor stator loading and stall-free flow margin by the use of boundary layer blowing and bleed techniques and to determine the extent to which such concepts may be employed, a series of investigations were made of a single-stage compressor provided with single- and double-slotted blowing stator rows and single- and tripleslotted bleed stator rows. These stators were designed with NACA 65series airfoils and with hub diffusion factors of 0.65 and 0.75. The results of tests performed with 0.65 hub diffusion factor single-slotted blowing and bleed stators and the single- and double-slotted 0.75 hub diffusion factor blowing stators were discussed in previous reports. This report presents the results of an investigation with an unslotted stator which was carried out to provide data which could be used for evaluating the performance improvements of the blowing and bleed stators. This stator was also designed with NACA 65-series airfoils and had a hub diffusion factor of 0.75 as did the single - and double - slotted blowing stators (References 1 and To ensure an attached stator end wall boundary layer and to minimize 2). secondary flows, annulus wall bleeding was employed, starting from a point upstream of the stator leading edge and extending to a point downstream of the stator trailing edge. During these tests the rates of wall annulus bleed were varied to evaluate the effects of compressor wall boundary layer control on performance and stator blade element data. For this purpose, an optimized bleed rate and two reduced bleed rates were used. The flow into this stator row during the test was generated by the same state-of-the-art flow generation rotor as used for the tests reported in References 1 and 2.

Overall performance of the rotor and inlet guide vanes was evaluated separately for this stage test. Compared with rotor design values of 1.37 pressure ratio. 88.2 lb/sec inlet flow, and 88.8% overall adiabatic efficiency, at the design pressure ratio the corrected inlet flow was 95.0 lb/sec and the adiabatic efficiency was 93%. The overall rotor performance remained essentially unchanged while the wall bleed rates were varied. In general, this performance agreed well with the flow generation rotor performance without

stators reported in Reference 1. The stage exceeded its design requirements on both pressure ratio and efficiency at design flow. Overall performance for the complete stage with optimum wall bleed was found to have a pressure ratio of 1.315 and adiabatic efficiency of 84.0% at the 95.0 lb/sec airflow corresponding to the flow generation rotor design pressure ratio. The overall performance obtained for the mean and minimum wall bleed rates was 1.325 pressure ratio and 83.5% adiabatic efficiency and 1.333 pressure ratio and 83.0% adiabatic efficiency, respectively. Stage design values are 1.35 pressure ratio and 84.9% adiabatic efficiency at 88.2 lb/sec flow rate.

Blade element performance was obtained for the rotor blade and stator vane row. Experimental values are presented in terms of diffusion factor, deviation angle, and loss coefficient as a function of incidence for various annulus heights, with rotative speed as a parameter. Minimum loss values are determined and compared with the NACA loss parameter versus diffusion factor correlation curves. Radial variations of experimental rotor and stator blade element parameters near their design inlet flow conditions are also compared with the design values for all three of the annulus wall bleed rates employed.

Surface pressure distributions and wake surveys were obtained for the stator. A hysteresis test with acquisition of rotating stall characteristics was also obtained at 60% corrected speed for the complete stage. Hysteresis effects for the stage were observed while recovering from stall. Onset of stall was found to be abrupt at all speeds with stall cells first appearing in the hub region.

The 0.75 hub diffusion factor stator performance met or exceeded the design flow turning values at the end walls. The total pressure losses were higher than design at these loadings. Blade element performance loss correlations for these stators with suction at the end wall generally were below an extension of the existing NACA correlations at the mean and hub regions, but fell above these NACA correlations in the tip region.

Suction surface static pressure distributions along the mean line indicated a boundary layer separation at 55 to 65% chord at incidence angles greater than design. The hub and tip static pressure distributions appeared to be extremely erratic, indicating a possible separation at about 40 to 50% chord throughout the entire range of tests. There was, however, some indication of reattachment and the observed losses were much lower than would be expected under conditions of severe flow separation.

INTRODUCTION

Advanced airbreathing propulsion systems require lightweight compact compressors capable of high levels of performance. These compressors should have a broad range of operation and a large stall margin. High reliability and relative insensitivity to inlet flow distortion are generally required for all compressors. In meeting the more demanding compressor design requirements, compromises must be made that are strongly dependent on the particular application. New applications are steadily increasing the range of requirements which the compressor must meet.

Compressor technology has been advanced continuously by extending, among other parameters, the usable rotational speeds; increasing stage loadings or diffusion factors; and reducing stage length through the use of high blade aspect ratios. Whereas further advancements can be made through optimizations and improved combinations of these parameters, severe aerodynamic limitations such as increasing losses and decreased stall margin are being encountered. Significant advancements in compressor technology require the application of advanced concepts in terms of improved blading for high flow Mach numbers and application of high lift devices to extend the stall-free flow range for compressor rotors and stators. Advanced concepts in these areas may result in sizable reductions in the number of compressor stages and in improved performance.

Airfoils designed to provide high lift experience steep blade surface pressure gradients which become steeper as angle of incidence is increased. As a result, the suction surface boundary layer separates and high total pressure losses and a decrease in stall-free flow margin result. To some extent, however, separation of the suction surface boundary layer can be delayed by energizing it with high energy air. In view of these considerations, an experimental single-stage compressor rig was designed and constructed to test high loaded stators using internal blowing and boundary layer suction concepts to reduce losses and improve stall-free flow margin.

The objectives of this program are to establish experimentally the feasibility of increasing blade loading and stall-free flow margin by stator boundary layer bleed and blowing and to determine the extent to which these may be employed. A secondary objective is to obtain blade element data for design use. The stator designs were to be representative of those for middle and latter stages of highly loaded axial-flow compressors. Stator inlet flow was to be generated by a state-of-the-art flow generation rotor. This report presents the test results for the unslotted 0.75 hub diffusion factor stator. Test results of single- and double-slotted 0.75 hub diffusion factor blowing stators are presented in References 1 and 2, respectively. The performances of these stators are compared with the performance of the unslotted stators in this report. Reference 1 also includes a presentation of the flow generation

rotor performance without stators. The performance characteristics of the 0.65 hub diffusion factor blowing and bleed stators are presented, respectively, in References 3 and 4. The design characteristics of the stators that are employed in the series of tests for the evaluation of boundary layer bleed techniques are presented in Reference 5. Contractory of the

(and the second

Transform)

 \mathbf{n}

1

N

SYMBOLS

A _a	Annulus area, ft ²
Ċ	Airfoil chord, in.
D_{f}	Diffusion factor
g	Gravitational constant, 32.2 ft-lb _m /lb _f -sec ²
Н	Hysteresis loop data point
i	Incidence angle based on mean camber line, degrees
Μ	Mach number
n	Number of blades per row
N	Rotational speed, rpm
Pt	Tctal pressure, psia
р	Static pressure, psia
q	Dynamic pressure, psia
R	Radius, in.
R	Gas constant, 53.35 lb _f -ft/lb _m -°R
R _c	Pressure ratio
S	Airfoil surface pressure coefficient, Equation (A13)
т _t	Total temperature, °R
t	Static temperature, °R
t/c	Thickness-to-chord ratio

v	Air velocity, ft/sec
w _a	Compressor airflow, lb _m /sec
W _{BL}	Annulus wall bleed flow, lb _m /sec
x	Distance from blade leading edge, in.
Greek	
β	Air angle measured from axial direction, degrees
γ	Ratio of specific heats
γ°	Blade chord angle, degrees
δ	Ratio of total pressure to standard sea level pressure of 14.7 psia
δ°	Deviation angle, degrees
Δ	Incremental value
η	Efficiency
θ	Ratio of total temperature to standard sea level temperature of 518.6°R
ĸ	Blade metal angle measured from axial direction, degrees
ρ	Density, lb _m /ft ³
σ	Blade row solidity
φ	Camber angle, degrees
ω	Angular velocity of rotor, radians/sec
0	Total pressure loss coefficient
$\frac{\overline{\boldsymbol{\omega}}_{\cos}\boldsymbol{\beta}}{2\boldsymbol{\sigma}}$	Loss parameter
Subscrip	ots
0	Guide vane inlet

1 Rotor inlet

Ι

Ĩ

Ĺ

era ar off the analysis of the analysis of the article of the arti

and a second sec

antigense a

ĺ

 $\left(\right)$

- 2 Stator inlet or rotor exit
- 3 Stator exit
- θ Tangential direction
- ad Adiabatic
- m Mean or 50% streamline
- ma Mass averaged
- z Axial direction

Superscripts

Relative value, rotor property

APPARATUS AND PROCEDURES

TEST FACILITY

A general arrangement of the test facility is shown in Figure 1. Air enters the test compressor after passing through the test facility filter house, an inlet duct, plenum, and bellmouth and is exhausted to the atmosphere through a diffuser. Provisions exist for maintaining compressor inlet pressures above or below atmospheric if necessary.

Two power units can be used simultaneously to drive the test compressor. One is a T56 power turbine with combustors which burn fuel mixed with high pressure air from test facility compressors; the other is a complete T56 power section. The two units are coupled by a primary gearbox whose output shaft drives a secondary gearbox which in turn drives the test compressor. Test compressor speed is controlled by throttling the turbine air supply with a hydraulically-operated valve and by independent fuel controls for each unit.

COMPRESSOR TEST RIG

The mechanical arrangement of the test compressor is shown in Figure 2. It consists of a cylindrical inlet section, the test compressor section, and an exhaust diffuser. The single-stage rotor is supported on two bearings whose housings are linked by a vertically-split compressor case. The compressor case houses the inlet guide vanes, the rotor tip abradable coating, the stator vanes, and the case and hub bleed manifolds. The abradable coating on the

compressor cases over the rotor blade tip permits low running clearances between the blade tips and the case. The rotor is designed with an interference fit such that the rotor blade tip will run into the abradable coating at design speed. Radial growth due to centrifugal force and temperature expansion is considered. Nominal design clearances for this rotor are -0.0025 in. at 100% speed and -0.0045 in. at 110% speed. Nominal static clearance is 0.0075 in. The design of the rig allows the rapid exchange of inlet guide vanes, if ncessary, without dismantling the remainder of the compressor, and the exchange of stator vanes without disassembly of the entire test rig.

Airflow rate and pressure ratio are varied by throttle plates located in the exhaust diffuser. The throttles are linked by a ring and operated by a common actuator.

Provision is made in the rig for bleeding the wall boundary layers at stator tip and hub. This is accomplished by fabricating the stator flow passage walls from perforated sheet metal. Manifolds behind the perforated metal surfaces are connected by multiple tubes to separate vacuum headers for tip and hub wall bleeds.

BLADING

The design of the stator vanes, rotor blades, and design inlet guide vanes is described in detail in Reference 5. Selected types of airfoil sections are: (1) 63-006-series for the inlet guide vanes, (2) double circular arc for the rotor blades, and (3) 65-series thickness distribution with circular arc meanline for the stator vanes. For convenience, however, the principal geometric details of these components are repeated in Table I.

INSTRUMENTATION

Instrumentation was provided to obtain blade element performance for the rotor and stator row and to measure overall performance. The locations of instrumentation planes are shown in Figure 3; Figure 4 shows schematically the circumferential location of the instruments installed at each plane. The radial element locations at each plane were selected along streamlines passing through the 10, 30, 50, 70, and 90% annulus height stations from the tip at the stator inlet measurement plane. The streamline locations are shown schematically in Figure 5. Dimensioned sketches of the probes used are shown in Figure 6. Instrumentation was distributed so as to minimize area blockages and prevent immersion in upstream instrument wakes. Except at the inlet guide vane exit station, duplicate instrumentation was distributed so as to average out any inlet guide vane effects.

Compressor Inlet Conditions

Weight flow was measured with an ASME thin plate orifice located in each branch of the triple inlet header. Six total pressure probes and two 6element temperature rakes were located in the cylindrical section approximately three feet upstream of the test compressor inlet for measurement of inlet total pressure and temperature. See Figure 4a. Inlet static pressure was measured at the same axial station by two static taps in the inlet wall.

Rotor Inlet-Station 1

Four approximately equally spaced static pressure taps were located on both the inner and outer walls as shown in Figure 4b. An 8-degree wedge static pressure traverse probe was also installed to measure the radial static pressure distribution. Three radial traverse combination total pressure and yaw angle probes were used to measure the distribution of these parameters across the annulus. Total temperature was obtained from plenum thermocouples.

Stator Inlet or Rotor Exit-Station 2

Four approximately equally spaced static pressure taps were located on both the inner and outer walls, and the radial distribution of static pressure was measured by two 8-degree wedge static pressure traverse probes as shown in Figure 4c. Three radial traverse combination probes were installed at this station to measure the radial distribution of total pressure, total temperature, and flow angle.

Stator Exit—Station 3

Four approximately equally spaced static pressure taps were located on both inner and outer walls and two 8-degree wedge static pressure traverse probes were installed for measurement of the radial static pressure distribution as shown in Figure 4d. One traverse combination total pressure, total temperature, and yaw probe was installed primarily to measure flow angle. A 16-element total pressure circumferential rake, shown in Figure 6d, was installed at this station to measure discharge total pressure and stator vane wake. This rake spanned 1.08 vane spaces at the 10% streamline and 1.43 vane spaces at the 90% streamline. Total temperature was measured by four 5-element radial rakes. Inner and outer wall boundary layers were surveyed by fixed 5-element total pressure probes. All taps, probes, and radial rakes were located on extensions of mid-channel streamlines.

Special Instrumentation

In addition to the instrumentation enumerated for blade element and overall performance, the following special instrumentation was installed.

At the rotor exit, two fixed and one traverse hot wire anemometers were installed to signal the onset of compressor stall and to provide rotating stall data. Shaft whip was monitored by means of a whip pickup mounted in the plane of the rotor blades, and strain gages were mounted on eight rotor blades to monitor blade stresses.

The 10, 50, and 90% streamline sections of the unslotted stator vanes were each provided with 12 suction surface and 7 pressure surface static pressure taps as indicated in Figure 7. The 19 static pressure taps for each streamline section were distributed among 4 vanes.

DETERMINATION OF ANNULUS WALL BLEED FLOW FOR STATOR VANE TESTS

With the compressor operating at design speed and stage pressure ratio, the circumferential total pressure rake at the stator exit was set at the streamline station 10% from the tip. Hub and tip wall bleeds were set at a nominal flow of less than 1% of compressor flow. The stator wake pattern at this bleed flow was noted, and the tip wall bleed was then increased until no further improvement in wake pattern was visually observed on a manometer bank. This bleed flow rate was defined as the "optimum" bleed rate. One limiting consideration set as a reasonable upper value, however, was to extract no more than 2.5% of compressor inlet flow per wall at design conditions.

The circumferential rake was then set at the streamline station 90% from the tip. The tip wall bleed flow rate was reset at its original low value, and the procedure described was repeated for the hub bleed.

After hub and outer wall bleed flows had been optimized, the circumferential rake was moved to the mean position. Hub and outer wall bleeds were varied simultaneously in increments from the original nominal flow rate to optimum flow. The effects on the stator wake at mean depth were studied to check that optimum hub and tip wall bleeds coincided with an optimum wake at mid-span. The valve settings for the optimum bleed flow rate were left unchanged for all subsequent speed and flow conditions, except in the case where the wall bleed was varied to compare the effect of various bleed rates on overall and blade element performance. The hub and tip bleed rates were then set at the minimum wall bleed flow as limited by a condition of no back pressure on the perforated wall material and overall performance and blade element data were obtained for design speed. A similar investigation of overall performance and blade element data was also made with a mean bleed flow which was approximately half-way between the optimum and minimum bleed flow rates.

HYSTERESIS TEST

The following method was employed to determine the characteristics of this stage at entry into and when recovering from stall. With corrected speed set at 60%, the throttle was closed until stall cells were indicated by the three hot-wire anemometers (two of which were at the 10% and one at the 90% station from the tip) thus signalling the onset of stall. The first hysteresis point data recording was made prior to the onset of stall. At this near stalled condition, a partial data recording, which consisted of data required for air-flow and pressure ratio calculation, was obtained.

The throttle was then closed further in steps, following the onset of stall, and partial data recordings were made at intermediate points before stage pressure ratio levelled off at a lower pressure ratio and a fourth partial data recording was obtained. The throttle was then gradually opened in steps and three other partial recordings, two at intermediate points and one very close to the stall point, were made before indications of stall, as signalled by the hot-wire anemometers, just disappeared. At this point an eighth short data cycle was recorded.

Rotor blade stresses were monitored continuously during the hysteresis test to ensure that excessive vibratory stresses were not encountered.

OVERALL AND BLADE ELEMENT PERFORMANCE DATA

Overall and blade element performance data were obtained at a sufficient number of points per speed line to define rotor or stage performance between maximum flow and stall. The stage stall point is defined as the onset of a steady stall cell indication on the hot-wire anemometers. Performance at design speed was obtained for the minimum and mean wall bleed rates as well as the optimum wall bleed rate. The near-stall test points were taken as close to the rotating stall condition as could be set without actually being in rotating stall. This type of near-stall setting permitted a full data point recording. At each full data point, fixed and traverse pressure and temperature data were recorded at five radial locations corresponding to streamlines passing through the 10, 30, 50, 70, and 90% span stations at the stator inlet measurement plane.

DATA REDUCTION

and a second second

Overall performance and blade element data reduction is accomplished in one program. A second program is used to calculate pressure coefficients for the stator vanes.

In the first program, raw data from the test stand is read in and printed. The program converts wedge probe static pressure transducer readings to inches of mercury absolute and applies a Mach number correction. All yaw units are converted to degrees. Data recording system corrections, wire calibrations, and Mach number corrections are applied to all temperatures. Pressures recorded on the data recording system are corrected to standard inlet total pressure. The corrected data is then printed.

Circumferential arithmetic averages of total pressures, static pressures, total temperatures, and yaw angles are calculated and printed. Individual data readings were compared with the averages to validate the data. Any individual reading which differs from its respective average by more than the prescribed deviation (0.5 in. Hg for pressures, 3° for yaw angles, 1.5, 2, and 3°R, respectively, for reference, inlet, and all other temperatures), is not used in the final calculations. Mass-averaged values required for performance calculations are determined using the averaged and va'idated data.

The program provides a choice of two radial distributions of static pressure: (1) the distributions measured by the wedge probes and (2) a linear distribution across the flow annulus calculated from the arithmetically-averaged hub and case wall static pressure taps. Overall and blade element performances are calculated and printed using the two static pressure distributions mentioned. If a continuity check at any data measurement station is not satisfied within 5%, a simple radial equilibrium solution is provided to give an indication of the problem.

Overall performance values are calculated for the inlet guide vane and rotor and for the complete stage. The following operations were performed to determine these values.

At the inlet plenum station, two total temperatures are arithmetically averaged at each radial station. Mass flow is integrated radially, assuming that averaged wall static pressure exits over the entire cross section. Total pressures and temperatures are then mass averaged. Behind the rotor, wall static pressures are arithmetically averaged circumferentially and all total pressures and total temperatures are arithmetically averaged circumferentially at each radial station. Mass flow is radially integrated and total pressures and temperatures are radially mass averaged.

At the stator exit, four total temperatures are arithmetically averaged circumferentially at each radial station. Incremental mass flow is computed using an arithmetic average of the circumferential rake total pressure readings spanning a stator vane passage at each radial station. A radial integration is made for weight flow. For performance calculations, the total pressures at each radial station are mass averaged circumferentially and the total pressures and temperatures are mass averaged radially. The overall pressure ratio and efficiencies are obtained using the radially mass averaged values of total pressure and temperature.

The calculation of performance variables, as programmed in the data reduction programs, is delineated in the Appendix.

PRESENTATION OF RESULTS

Experimental results obtained in the test program are summarized herein in detail for the unslotted 0.75 hub diffusion factor stator vane with flow generation rotor with the design inlet guide vane set. The reduced data presented were based on a linear static pressure distribution across the annulus at each axial survey station rather than on the static wedge survey values. Comparison of results using both linear and wedge static data (Reference 1) showed that, when the wedge data were considered reliable, differences in reduced data were small; there was a tendency, however, for the wedge static data to be erratic for some test points. Use of the linear static data gives a consistent basis for comparison over the test range and with the data from other tests.

OVERALL PERFORMANCE OF FLOW GENERATION ROTOR AND STAGE

Overall pressure ratio and adiabatic efficiency are each plotted versus corrected inlet flow with corrected speed as a parameter. These are presented in Figures 8 and 9 for the flow generation rotor during this stage test, and Figures 10 and 11 for the stage.

To indicate whether the rotor or the unslotted stator caused the stage to choke or stall, rotor incidence range is summarized in Table II for the flow generation rotor test of Reference 1 and the flow generation rotor of the unslotted 0.75 D_f stator stage test.

Stage rotating stall characteristics at the stall points and hysteresis points are summarized in Table III.

BLADE ELEMENT PERFORMANCE

Rotor blade and stator vane blade element characteristics were computed 0.1 the five streamline positions previously defined. The blade element characteristics chosen to present the detailed performance of each blade row are as follows.

Blade element parameter

Incidence angle, i or i' Total pressure loss coefficient, $\overline{\omega}$ or $\overline{\omega}'$ Diffusion factor, D_f Deviation angle, δ° Inlet flow angle, β or β' Flow turning, $\Delta \beta$ or $\Delta \beta'$ Inlet axial velocity, V_z Inlet Mach number, M or M'

Rotor blade element data are plotted as a function of incidence with corrected speed as a parameter for each of the streamline stations. The blade element data obtained during the stage test are shown in Figure 12 for the points run at optimum wall bleed and Figure 13 for the points run at design speed with optimum, mean, and minimum wall bleed. For comparison and to aid the analysis of the rotor blade performance, blade element data for the rotor blade, with optimum, mean, and minimum wall bleed, are plotted versus percent annulus height in Figures 14 through 16 for the flow providing the best approximation of the design incidence angle at design speed. Design values are also plotted for comparison. Mass flux distribution out of the rotor corresponding to the design flow rate is plotted and compared with the design flow distribution in Figure 17. Rotor blade element performance is evaluated, in Figure 18, by comparing the loss parameter versus diffusion factor at the 10, 50, and 90% streamline stations from the tip with the NACA correlation curve in Reference 6.

Stator vane blade element data are also plotted as a function of incidence angle with corrected speed as a parameter for each streamline station. The blade element data for the unslotted stator run at optimum wall bleed are plotted in Figure 19. The stator blade element data for the design speed with optimum, mean, and minimum wall bleeds are presented in Figure 20. The annulus wall bleed rates plotted against stage pressure ratio are presented in Figure 21. Blade element data of the unslotted stator vane, for conditions nearest to the design incidence angle, with optimum, mean, and minimum wall bleed, are plotted against the percent annulus height in Figures 22 through 24, respectively, to aid stator vane performance analysis and comparison of the effect of varying the annulus wall bleed rates. Stator vane blade element performance is also evaluated in Figure 25 where the loss parameter versus diffusion factor for 10, 50, and 90% streamline stations from tip is compared with the NACA correlation curve in Reference 6.

The pressure distributions along the 10, 50, and 90% streamlines from the tip of the unslotted stator suction and pressure surfaces are presented in Figures 26 through 32.

Selected stator wakes are plotted in Figure 33 to show the variation of stator wakes with Mach number at fixed incidence angle, and also to show the effect of incidence angle at a fixed Mach number, at optimum wall bleed. The selected stator wakes, plotted in Figure 34, at mean wall bleed, and in Figure 35, at minimum wall bleed are used to show the effects of wall bleed in addition to the Mach number and incidence angle variations. The variation of the stator wake during wall bleed optimization, at the design pressure ratio, is presented in Figure 36.

To enable compressor designers to evaluate and apply the results of this test, detailed summaries of vector diagrams, blade element characteristics, and losses at each streamline station are provided in Table IV.

.

DISCUSSION OF RESULTS

The method of presentation using the overall and blade element parameter for evaluating the performance has been described in detail. Since the figures and tables are self-explanatory, only general observations are made.

OVERALL PERFORMANCE

Flow Generation Rotor

The design point pressure ratio and efficiency are 1.37 and 88.8%, respectively, at a design flow rate of 88.2 lb/sec with the design inlet guide vanes. Flow generation rotor pressure ratio and adiabatic efficiency measured during the test with the stator are given in Figures 8 and 9. At the design equivalent rotor speed, maximum efficiency was 96.8% with corresponding pressure ratio of 1.44 and flow rate of 90.5 lb/sec. At the design pressure ratio of 1.37 the flow rate was 7.7% higher than design, at 95.0 lb/sec with an adiabatic efficiency of 93%.

The second secon

(Herner)

Π

Ŋ

N

Л

The pressure ratio results are in good agreement with the rotor test results without stator vanes (Figure 10 of Reference 1). When the maximum value of the rotor adiabatic efficiencies are examined at a 100% corrected speed, however, a value of 96.8% is obtained from the results of the stage test, Figure 9, as opposed to 92.5% from the flow generation rotor test without stator vanes (Figure 11 of Reference 1) both at the same measured airflow rate. This apparent discrepancy is the result of a reduction in the average total temperature across the stator due to bleeding the inner and outer walls of the stator passage and the method used to compute the efficiency (See Equation (A2) in the Appendix). The mass averaged total temperature at the stator exit is, in general, lower with wall bleed than without. This reflects in a higher rotor efficiency. Figure 9 then indicates the trend in efficiency due to bleed rather than absolute level. The rotor pressure ratio observed with the reduced wall bleeds was similar to that observed with optimum wall bleed.

A prime concern during the design phase of the flow generation rotor, discussed in Reference 1, was that sufficient flow range would be available to avoid excessive limitations on the stator operating range by the rotor. In this report, Table II gives a summary of rotor incidence angles near stall and maximum flow, at hub, mean, and tip streamlines. The stall incidence angles correspond to the minimum flow rate due to either rotor or stator stall. The choke incidence angles correspond to the maximum flow rate due either to rotor choke, stator choke, or facility pressure loss limitations. Rotor incidence angle differences at stall observed between the stator test and the flow generation rotor test of Reference 1 are small, and the stage stall may be primarily due to rotor stall. The comparison of incidence angles at maximum flow indicates that the stator limited the maximum flow at 60 and 80% corrected speed. At 100% corrected speed, the approximately equal rotor incidence angles for both tests indicate that the rotor or stator is choking at nearly the same flow or the facility pressure loss was controlling. The flow at the hub may, however, be limited by the stator hub choking prior to the mean and tip regions. It is believed that the facility exit duct pressure loss is controlling at these relatively low pressure ratios with high flow rate conditions.

Complete Stage

The overall stage pressure ratio and adiabatic efficiency are shown in Figures 10 and 11, respectively. During these tests only the design inlet guide vanes were employed.

Stage design values for the pressure ratio and adiabatic efficiency are 1.35 and 85.5%, respectively, at a design flow rate of 88.2 lb/sec. At the design equivalent rotor speed, a maximum stage adiabatic efficiency of 87.9% was obtained with a pressure ratio of 1.392 and a flow rate of 90.5 lb/sec. At the flow generation rotor condition of 95.0 lb/sec corrected flow rate the stage pressure ratio was 1.315 and adiabatic efficiency was 84.0%. At this corrected flow rate the values obtained for the pressure ratio and efficiency of the stators with mean and minimum wall bleed rates were 1.325 and 83.5%, and 1.333 and 83%, respectively. For simplicity, the calculated stage adiabatic efficiency, presented herein, is not penalized by the case and hub wall bleed flows. Inasmuch as the rotor loading is not compatible with the stator loading, the stage efficiency is of secondary interest.

The stator is designed to remove all of the tangential whirl imparted by the rotor and the inlet guide vane. This tangential whirl if produced by the rotor alone would give the equivalent of a 1.66:1 pressure ratio level at the stator inlet. Maintaining the same average pressure recovery in the stator of 0.986, a 1.5- to 2.0-point increase in overall stage efficiency would be realized.

Annulus Wall Bleed for Stator Test

Annulus wall bleed over the stator row at tip and hub surface was defined at 100% corrected speed and rotor pressure ratio of 1.37 by visually monitoring the circumferential rake and boundary layer total pressure rakes at tip and hub. Except at very low wall bleed flows of about 0.5%, where stator wakes were still relatively large, the boundary layer total pressure rakes indicated an attached boundary layer. That is, total pressures increased away from the wall. Once the wall boundary layer attached, additional wall bleed essentially affected only the end regions. Optimum wall bleed was selected as the condition where increased bleed did not result in improvement of the stator wake. The bleed valves were held fixed at this setting for all testing defined as optimum bleed flow rate. The wall bleed rate was later varied, at design speed, to determine the influence of the wall bleed on the overall performance and blade element data. The wall bleed flow was first adjusted to its minimum allowable value then to a rate corresponding to approximately half the flow between optimum and minimum values. The tip and hub wall bleed rates experienced throughout this test with the fixed bleed line valve settings are summarized in Figure 21. The minimum and mean wall bleed rates at design speed are also indicated in Figure 21.

Hysteresis and Rotating Stall Results - Complete Stage

This test was made to determine whether the stall of this stage was gradual or abrupt, and whether the stall would disappear and the stage recover smoothly. The onset of rotating stall at each corrected speed was indicated by the hot wire anemometer located at the 90% streamline. Rotor stall first appeared at the hub and was abrupt at all speeds. The stall zone then progressed to the tip of the rotor with only a slight increase in back pressure.

At 60% corrected speed, an eight-point hysteresis loop test was conducted. The pressure ratio-flow rate points are shown in Figure 10. A hysteresis effect, in terms of pressure ratio and flow rate, was observed from measurements defining the path from point H_1 to H_8 .

The maximum transient blade stresses encountered during the hysteresis test were 16,700 psi. There were indications, from the frequent recurrence of stress peaks, that these maximum transient stresses prevailed for a significant period during the hysteresis test. These blade stresses were considered to be at a potentially damaging level. Their magnitudes were appreciably higher than the prescribed stress limit which was 11,250 psi.

Rotative speed, frequency, and number of stall zones are summarized in Table III. Following the onset of stall, a stall zone was recorded in the hub and in the tip regions. The rotative speeds of the cells in both span regions ranged from 27 to 47% rotor speed in the direction of rotation. Multiple stall cells at the tip and hub were recorded during rotating stall tests at design speed. In deep stall, rotative speed was approximately 44% rotor speed in the direction of rotation and the frequency was 110 cps. High rotor blade transient stresses prevented radial traversing of the hot wire probe. It appears, however, that the stall zone extended across the blade span.

BLADE ELEMENT PERFORMANCE

As reported in Reference 1, an extensive study of the inlet guide vanes was made both at design and off-design conditions. Investigation into the possible persistence of the inlet guide vane wakes through the rotor, at the design flow rate condition, indicated the attenuation of these wakes before entering the stator rows. In view of these results, repeated study of inlet guide vane flow for each test was found unnecessary.

Rotor

S

Figure 12 is a summary of diffusion factor, deviation angle, and loss coefficient data throughout the rotor operating range for the complete stage test at optimum wall bleed. Data at design speed and at all three wall bleed rates are compared in Figure 13. In general, the measured loss coefficients are found to be lower than the design values in the vicinity of the 0° design incidence angle at the 10, 30, 50 and 70% streamline stations and about equal to design values at the 90% streamline station for all the speeds tested using the optimized wall bleed. There were no significant changes in rotor losses as the wall bleed rates were reduced.

Primary rotor blade element performance for the double circular arc blade during the stator test is shown in Figures 14, 15, and 16 for the optimum, mean, and minimum wall bleeds, respectively. Rotor blade measured data for both the flow generation rotor and the complete stage tests operating near the design incidence angle at corrected speed are compared with the design values. The selection of measured data was based on the best agreement with the design incidence angle values since the rotor exceeded its design airflow rate at design pressure ratio. In general, the values obtained for the deviation angles were lower than design and those of the diffusion factor were higher than design.

Values of deviation angle and diffusion factor, differing significantly from the design values, were also evidenced in Reference 1. The lower than design deviation angles result in an effective overcambering of the rotor blades, producing an excessive amount of work on the flow. The combination of higher work input and lower axial exit velocity results in the higher than design values of the diffusion factors.

The radial distribution of mass flux at the rotor outlet for the flow generation rotor and the complete stage test is compared with design values in Figure 17. A flow shift to the tip is indicated, experimentally, with respect to the design distribution. This can be attributed to the low deviation angles in the tip region of the rotor. An additional mass flow shift was observed between the measured test values of the flow generation rotor test, Reference 1, and the 0.75 hub diffusion factor stator test.

Rotor loss parameter data at the 10, 50, and 90% streamlines are shown in Figure 18. When they could be defined, minimum loss coefficient values are indicated in Figure 18 as filled symbols. The minimum values are selected at the data point nearest to the minimum value of the curve drawn through data points in Figure 12. Minimum loss data for the tip region or 10% streamline are found to lie on the lower band of the data scatter (Reference 6). The minimum loss data for the mid-span and hub region are found to agree well with the NACA correlation curves in the test diffusion factor range.

Stator

Figure 19 presents diffusion factor, deviation angle, and loss coefficient over the entire test operating range for the 10, 30, 50, 70, and 90% streamline stations. The measured values of deviation angle are appreciably lower than design values. The tip losses are appreciably higher than the design values. A study of Figure 19 also indicates that the choke or minimum incidence angle limit may not be clearly defined except at the 90% streamline. Further study also shows, however, that the loss coefficient versus incidence angle curve is quite flat over a wide range except at the 70 and 90% streamline height. The lowest hub losses were obtained with the optimum wall bleed rates as shown in Figure 20. The losses at the tip were quite scattered and no firm conclusion could be drawn with respect to the effect of wall bleed rate on tip losses.

The radial variations of blade element data for the stator, at a point where the values of the incidence angle provided the best approximation to design incidence, is compared with the design values in Figures 22 through 24 for the optimum, mean, and minimum wall bleeds, respectively. Inlet axial velocity and incidence angle plots indicate a mass flow shift to the tip with respect to the design value. Other significant results, shown in Figures 22 through 24, are that flow turning was greater than expected or deviation angles much less than designed for over the entire span of the blade and particularly so at the tip. The apparent turning and deviation angles, particularly at the hub and tip, differ greatly from design values, and this margin of difference increases with decreasing wall bleed flow rates. The effect of the varying wall bleed is displayed more prominently at the hub and becomes even more significant as stall incidence is approached. The deviation angles obtained with optimum and mean wall bleed at the hub and tip are considerable less than the design values. The margin between measured and design values increased with decreasing wall bleed flow. This deviation angle result agrees with the measured deviation angles for the single - and double-slotted 0.75 diffusion factor stator of References 1 and 2. Measured losses, in general, were found to be greater than the design values.

Minimum loss coefficient points obtained from Figures 19 and 20 are compared with an extension of the NACA loss parameter versus diffusion factor correlation curves (Reference 6) in Figure 25 for the 10, 50, and 90% streamlines from the tip. The minimum loss coefficient points for the stator for the 10% streamline are generally greater than the values on an extension of the NACA correlation. The data for the 50% streamline agree favorably with the extension of NACA correlation curves with minimum values generally less than the values of the curve.

R

Π

R

Typical stator wake distributions are shown in Figures 33 through 35. Selected cases nearest to -3° incidence which show the increasing wake pressure depressions as inlet Mach number increases are given in Figures 33a through 33c, 33e and 33i for optimum wall bleed. The effects of incidence angle at inlet Mach number near 0.7 are illustrated in Figures 33d through 33h for optimum wall bleed, Figures 34a through 34d for mean wall bleed, and Figures 35a through 35d for minimum wall bleed. The wake surveys at high positive incidence angles, in Figures 33h and 33j, with optimum wall bleed flow show low total pressure peaks at the hub, indicated by the rake elements 6 and 7. The wakes presented in Figures 34d, for the mean wall bleed, and Figure 35d, for the minimum wall bleed, show a similar behavior at the hub region.

Wake survey data was recorded during the wall bleed optimization runs at the design stage pressure ratio of 1.35 and 100% corrected speed. The effect of reduced stator losses with increasing wall bleed rate is shown in Figure 36. It is evident in Figure 34 and from the wake surveys at design speed that increased wall bleed reduced the end wall region flow disturbance and stator losses, particularly at the hub. Higher wall bleed rates above the 30.2 and 30 in. H₂O orifice pressure differential at tip and hub, respectively, had little effect on increasing wake total pressure at these depth locations. A comparison of the tip and hub wakes during optimization also indicates that the hub total pressure losses are reduced more effectively by the wall bleeds while the improvements at the tip are less marked. This indicates that a system where the hub and tip wall bleeds are controlled independently may be desirable to further improve stator wakes by means of wall bleeds.

Stator Static Pressure Distributions

Suction surface static pressure distributions along the meanline for the stator indicate the presence of boundary layer separation at 55 to 65% chord for incidence angles greater than the design incidence angle at all the wall bleeds, as shown in Figures 26 through 32. The determination of the apparent boundary layer separation is based on the study of the static pressure dis-tribution along the 50% streamline. The reason for this choice is the difficulty experienced in analyzing the 10 and 90% streamlines for separation. These streamlines are greatly influenced by the secondary flow and end wall effects to varying degrees, depending on the bleed rates applied at the annulus walls. The pressure distributions along 10 and 90% streamlines indicate possible existence of separation further upstream along the suction surface.

The apparent separation point was observed to move upstream as the incidence angle was increased. In cases of high stator incidence angle, some of the static pressure distributions indicate almost totally detached flow at the hub. These cases also indicate separation at the tip occurring further upstream than it appears where the incidence angles are smaller.

The 10% and 90% streamline pressure distributions obtained for high incidence angles at a 110% design speed, in Figures 32e and 32f, indicate separation occurring almost at the leading edge for the hub and tip while it is retarded to about 50% chord along the 50% streamline. Some of the operating conditions indicate the existence of reattachment of the boundary layer. These observed changes in the static pressure distribution may be attributed to the existence of wall bleeds. The similarity in the pressure distributions obtained with varying wall bleed rates made it difficult to determine the direct effects the bleed technique had on the surface pressure distributions.

-

CONCLUDING REMARKS

Discussion of the experimental results has been based on the work completed to date. Analysis of the data indicates the following points.

- 1. The overall performance of the flow generation rotor agreed favorably with the results of the rotor without stator vanes in Reference 1. The stage exceeded its design requirements on both pressure ratio and efficiency. The rotor overall performance was not affected by the variations in the wall bleeds. The stage overall performance showed little change in pressure ratio but a drop in efficiency with decreasing wall bleed flow was noted.
- 2. A hysteresis effect was observed in terms of pressure ratio and mass flow rate at 60% design speed. Stall point tests indicated abrupt stall at all speeds. During the hysteresis tests at 60% speed and the stall point tests above 60% speed, rotor blade stresses frequently exceeded the prescribed stress limit which was 11, 250 psi. The maximum stress values, during the hysteresis tests, were 16,700 psi.
- 3. The wall bleed technique provided a means of controlling the boundary layer flow and reducing losses. Losses were reduced, more effectively at the hub than at the tip, by increasing wall bleed flow rates.
- 4. The blade surface static pressure distributions along the meanline gave evidence of possible flow separation at 55 to 65% chord, for angles greater than the design incidence angle. The apparent separation point was detected further upstream at the 10 and 90% annulus height locations. Flow turning and pressure loss levels did not indicate severe flow separation on the vane suction surface. Also, there was some indication of flow reattachment.
- 5. The 0.75 hub diffusion factor stator performance met or exceeded the design flow turning values at the end walls. The total pressure losses were higher than design at these loadings. Blade element performance loss correlations for these stators with suction at the end wall generally were below an extension of the existing NACA correlations at the mean and hub regions, but fell above these NACA correlations in the tip region.

REFERENCES

anastessasiatainahikihainahihinahianihinihinihi

1

N

- Miller, M. L. and Beck, T. E. <u>Single-Stage Experimental Evaluation</u> of Boundary Layer Blowing Techniques for High Lift Stator Blades, II— Data and Performance of Flow Generation Rotor and Single-Slotted 0.75 <u>Hub Diffusion Factor Stator</u>. NASA CR-54565, Allison Division, GM, EDR 5691, February 1968.
- Carmody, R. H. and Seren, G. Single-Stage Experimental Evaluation of Boundary Layer Blowing Techniques for High Lift Stator Blades, IV-Data and Performance of Double-Slotted 0. 75 Hub Diffusion Factor Stator. NASA CR-54567, Allison Division, GM, EDR 5861, August 1968.
- Miller, M. L. and Seren, G. <u>Single-Stage Experimental Evaluation of</u> <u>Boundary Layer Blowing Techniques for High Lift Stator Blades, III—</u> <u>Data and Performance of Flow Generation Rotor and Single-Slotted 0.65</u> <u>Hub Diffusion Factor Stator.</u> NASA CR-54566, Allison Division, GM, EDR 5759, June 1968.
- Seren, G. and Carmody, R. H. Single-Stage Experimental Evaluation of Boundary Layer Bleed Techniques for High Lift Stator Blades, II— Data and Performance of Single-Slotted 0.65 Hub Diffusion Factor Stator. NASA CR-54570, Allison Division, GM, EDR 5862, August 1968.
- Chapman, D. C. and Miller, M. L. <u>Single-Stage Experimental Evalua-</u> tion of Boundary Layer Bleed Techniques for High Lift Stator Blades, I-<u>Compressor Design</u>. NASA CR-54569, Allison Division, GM, EDR 5636, February 1968.
- 6. Aerodynamic Design of Axial Flow Compressors. NACA SP-36, 1965.

APPENDIX

PERFORMANCE EQUATIONS

The following overall and blade element performance parameters were calculated for the analysis of test data and the evaluation of the unslotted stator performance.

WEIGHT FLOW

Overall performance is presented as a function of corrected weight flow, defined as

$$\frac{W_a \sqrt{\theta}}{\delta}$$
(A1)

ADIABATIC EFFICIENCY

Adiabatic efficiency for the inlet guide vane and rotor combination is

$$\eta_{ad_{2}} = \frac{\begin{pmatrix} P_{t_{2,ma}} \\ P_{t_{0}} \end{pmatrix}^{(\gamma-1)/\gamma} - 1}{\frac{T_{t_{3,ma}}}{T_{t_{0}}} - 1}$$
(A2)

and for the guide vane, rotor, and stator is

$$\eta_{ad_{3}} = \frac{\left(\frac{P_{t_{3,ma}}}{P_{t_{0}}}\right)^{(\gamma-1)/\gamma} - 1}{\frac{T_{t_{3,ma}}}{T_{t_{0}}} - 1}$$
(A3)

DIFFUSION FACTOR

htylasis

For the rotor, diffusion factor is defined as

$$D_{f_2} = 1 - \frac{V_2'}{V_1'} + \frac{V_{\theta_2} - V_{\theta_1}}{2\sigma V_1'}$$
(A4)

and for the stator as

$$D_{f_3} = 1 - \frac{V_3}{V_2} + \frac{V_{\theta_2} - V_{\theta_3}}{2 \sigma V_2}$$
(A5)

These quantities are calculated using the appropriate velocity triangle values previously computed by the program.

DEVIATION ANGLE

Rotor blade deviation is defined as

$$\delta_2 = \beta_2 - \kappa_2$$
 (A6)

and stator deviation as

$$\delta_{3} = \beta_{3} - \kappa_{3} \tag{A7}$$

where κ_2 is the rotor blade exit metal angle based on the mean camber line for a double-circular arc airfoil and κ_3 is the stator vane exit metal angle based on the circular arc camber line for the 65-series airfoil.

INCIDENCE ANGLE

Rotor blade incidence is defined as

$$i_1' = \beta_1' - \kappa_1'$$
 (A8)

Π

7

N

and stator incidence as

$$\mathbf{i}_2 = \boldsymbol{\beta}_2 - \boldsymbol{\kappa}_2 \tag{A9}$$

where κ_1 is the rotor blade inlet metal angle based on the mean camber line for a double-circular arc airfoil and κ_2 is the stator vane inlet metal angle based on the circular arc camber line.

TOTAL PRESSURE LOSS COEFFICIENT

Total pressure loss coefficient for the rotor is defined as

$$\bar{\omega}' = \frac{\left[1 + \frac{\gamma_{-1}}{2} \frac{(\omega R_2)^2}{\gamma g \partial c T_{t_1}'} \left(1 - \frac{R_1^2}{R_2^2}\right)\right]^{\gamma/(\gamma-1)} \left[1 - \frac{P_{t_2}/P_{t_1}}{(T_{t_2}/T_{t_1})^{\gamma/(\gamma-1)}}\right]}{1 - \left[1 + \frac{\gamma_{-1}}{2} (M_1')^2\right]^{-\gamma/(\gamma-1)}}$$
(A10)

and for the inlet guide vanes as

$$\overline{\omega} = \frac{1 - \frac{P_{t_1}}{P_{t_0}}}{1 - \left[1 + \frac{\gamma - 1}{2} (M_0)^2\right] - \frac{\gamma}{(\gamma - 1)}}$$
(A11)

and stator as

ſ

ſ

at more

Internation

ſ

ſ

$$\overline{\omega} = \frac{1 - \frac{P_{t_3}}{P_{t_2}}}{1 - \left[1 + \frac{\gamma - 1}{2} (M_2)^2\right] - \frac{\gamma}{(\gamma - 1)}}$$
(A12)

PRESSURE COEFFICIENT

Pressure coefficient (S) is defined by

$$S = \frac{P_{t_2} - p}{q_2}$$
(A13)

where:

P_{t2} = total pressure at stator inlet p = static pressure at a given point on the vane surface

$$q_2 = \frac{\gamma_{p_2} M_2^2}{2}$$
 = dynamic pressure at stator inlet

.

1

9

Natural States

(organization)

In differences

Ŋ

I

I

ĺ

ľ

[

-interior

Surray .

28

THE AM AND

Printer Lines in

9

() ()

Ŋ

hallhessing

ß

]

Ŋ

Π

I

T

ſ

 $\left(\right)$

ĺ

Figure 4. Circumferential location of instrumentation viewed downstream.

ibbi Steiniuussatatoistatustaanaa ratii attiksi tilissikto-entassimpikki luoti lintuotitoisti täneaan kikki jih

point little

p Hill Plantanet in the

Î

Û

Ω

Ŋ

Î

Ŋ

Figure 6. Schematics of survey instrumentation.

31

.

Note: All dimensions are in inches

32

5691-8

Schematics of survey instrumentation.

Figure 6.

	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
x/c	19 14 18 14 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10

I

I

E

Lanalal

saithian or

1/8k@inusie

antimation of

- Alithium

I

I

	.		•		
12	96.61	4			
11	88.98	3			
10	81. 34	2			
6	73.37	1			
80	65.07	4			
2	58.43	с		19	
9	48.14	2		18	
5	38.18	1		17	10
4	28.22	4		16	
3	19. 59	3		15	11
2	11.62	2		14	00 00
1	4.98	1		13	00 00
Tap	$\mathbf{x}/\mathbf{c}-\sigma_0$	Vane No.		Tap	10 °/

ıap	61	14	10	10) T (10	5
$\mathbf{x}/\mathbf{c}-\sigma_{0}$	94.29	84.66	65.41	50.46	35.52	20.92	6.64
Vane No.	1	2	3	4	1	2	e S
Vane No.	-1	2	n	ব		~	

Figure 7. Unslotted stator vane static pressure tap locations at 10, 50, and 90% streamlines.

5863-8

Figure 8. Flow generation rotor overall performance in stage test—pressure ratio.

Flow generation rotor overall performance in stage test-adiabatic efficiency. Figure 9.

Í

Figure 11. Stage overall performance-adiabatic efficiency.

Figure 12. Rotor blade element performance at optimum wall bleed—stage test.

38

•

Figure 12. Rotor blade element performance at optimum wall bleed—stage test.

Figure 12. Rotor blade element performance at optimum wall bleed—stage test.

•

I

Ī

() 1.

1

E

ſ

Province of

in late with a

I

Figure 12. Rotor blade element performance at optimum wall bleed—stage test.

10 T

L'anno 1

Name and Address of the owner own

)

- Internet

1

ALC: BUILDER

Ange and Ange of Street of

Ì

Figure 12. Rotor blade element performance at optimum wall bleed—stage test.

I

I

) Internet

Ľ

Figure 13. Rotor blade element performance for 100% design speed with varying wall bleed rates—stage test.

t summer f

Assessing and

Ţ

1

L'Alterior

I

Figure 13. Rotor blade element performance for 100% design speed with varying wall bleed rates--stage test.

I

I

I

Ī

ſ

ſ

Constructed of

ſ

Contraction of the

[

District

Figure 13. Rotor blade element performance for 100% design speed with varying wall bleed rates—stage test.

7

Constant 1.

Contractor 2

1

internation.

Figure 13. Rotor blade element performance for 100% design speed with varying wall bleed rates—stage test.

Í

I

ſ.

1

E

onar de an

P. Station

E

Turning and

Parameter (

3

Contact.

11, 199411999d

Ŋ

Ŋ

Ŋ

Figure 14. Radial variation of rotor blade element performance with optimum wall bleed.

I

Í

ſ

ſ

10 Million - - -

Figure 15. Radial variation of rotor blade element performance with mean wall bleed.

Summer of

1100000

HISHIDU

1

Theorem of the

Figure 16. Radial variation of rotor blade element performance with minimum wall bleed.

Philippine in the

ſ

ſ

[]

ſ

ſ

ſ

ſ

Number of

Province.

in the second se

Contraction of the local distribution of the

-

Figure 18. Rotor loss parameter versus diffusion factor.

I

E

Ľ

[

[

[]

[]

ſ

Figure 19. Stator blade element performance with optimum wall bleed.

frankour, familier

(starting to be

- automotion

Vinninus V

Personal States

Menseemurd

1

Π

Ŋ

0

R

I

I

E

Ĺ

E

ſ

[

C

Ē

ſ

TO BE DESCRIPTION OF

Poto Billion

A 1999 TO 1999 TO 1999

ſ

 $\left[\right]$

Figure 19. Stator blade element performance with optimum wall bleed.

Ĩ

<u>ا</u> چ

a Purimenter d

ł

Figure 20. Stator blade element performance for 100% design speed with varying wall bleed rates.

Figure 20. Stator blade element performance for 100% design speed with varying wall bleed rates.

Cashineer (

Figure 20. Stator blade element performance for 100% design speed with varying wall bleed rates.

Figure 22. Radial variation of 0.75 D_f stator blade element performance with optimum wall bleed.

Ł

5863-40

Figure 23. Radial variation of 0.75 D_{f} stator blade element performance with mean wall bleed.

North Contraction

Figure 24. Radial variation of 0.75 D_f stator blade element performance with minimum wall bleed.

I

Ì

Figure 27. Stator static pressure distribution at 80% speed with optimum wall bleed.

- Angeleration

Figure 27. Stator static pressure distribution at 80% speed with optimum wall bleed.

in a second

Contraction of the local distance

Community of

80

.

Figure 28. Stator static pressure distribution at 90% speed with optimum wall bleed.

82

.

I

1

100

Sector 1

and the second

......

- Contraction of the local distribution of t

-

Ĩ

1

Summer State

]

1

Number of

And a state of the state of the

Ì

1

Contraction of the local division of the loc

-

1

Ī,

e del recenter de

- research

1

1

92

and the second

CONTRACTOR OF STREET

Figure 31. Stator static pressure distribution at 100% speed with minimum wall bleed.

1

1

Ĩ

A. S.Wittenson

And more than

-

Ī

Stator static pressure distribution at 110% speed with optimum wall bleed. Figure 32.

.....

author d

-

Manufacture of

1

1 mm

and a second

Comments of

Contractor

- martine

1

Province of

100

a control of

7111

1

Summer C

Contract of

And and

P. or and the second se

1

and the second

Summer S

I

-

1

5863-43

1

100

Figure 33. Stator wake surveys with optimum wall bleed.

Figure 33. Stator wake surveys with optimum wall bleed.

Ì

Figure 33. Stator wake surveys with optimum wall bleed.

Figure 35. Stator wake surveys with minimum wall bleed.

Figure 36. Variation in stator wake at 10 and 90% streamlines from tip during wall bleed optimization.

Table I.

.

Blade and vane geometry summary.

	4	IC.	00
-	ń	+	
a des (degrees)	17.80 16.25 15.16 14.36 13.30	11)11	
i ^{des} (degrees)	!	0 0 0 0 0	
\$° (degrees)	1 1 1 1	7.81 7.38 6.34 5.52 4.85	17.82 17.70 17.74 18.06 19.03
t/c	0.06 0.06 0.06 0.06 0.06	$\begin{array}{c} 0. \ 078\\ 0. \ 052\\ 0. \ 039\\ 0. \ 033\\ 0. \ 032 \end{array}$	0.10 0.10 0.10 0.10 0.10
ъ	$\begin{array}{c} 1. \ 41\\ 1. \ 26\\ 1. \ 18\\ 1. \ 18\\ 1. \ 09\\ 1. \ 02\end{array}$	$\begin{array}{c} 1.89\\ 1.74\\ 1.61\\ 1.61\\ 1.51\\ 1.42\\ 1.42 \end{array}$	$\begin{array}{c} 1. \ 65\\ 1. \ 52\\ 1. \ 41\\ 1. \ 32\\ 1. \ 24\\ 1. \ 24 \end{array}$
с (in.)	2.733 2.733 2.733 2.733 2.733	2.875 2.875 2.875 2.875 2.875 2.875	$3^{\circ}_{\circ}0$ $3^{\circ}_{\circ}0$ $3^{\circ}_{\circ}0$ $3^{\circ}_{\circ}0$
φ (κ ₁ -κ ₂)	11111	34.0 28.2 22.2 17.6 15.2	73.96 71.85 70.49 70.17 69.05
^K 2 (degrees)	1111	9.1 21.0 31.2 39.1 44.4	-17.80 -17.70 -17.75 -18.05 -18.96
<mark>ء ر</mark> (degrees)		43.1 49.2 53.4 56.7 59.6	56.16 54.15 52.74 52.12 50.09
Exit radius (in.)	10.49 11.51 12.53 12.53 13.54 14.58	10.97 11.86 12.76 13.65 14.54	11.02 11.94 12.84 13.71 14.58
Blade row	Design inlet guide vane (63-006 series)	Rotor blade (double eircular arc)	Stator blade 0.75 Df _H (65 series- circular arc meanline)

1

1

-

1

-

7

Province of

1

l

Sec.

•

Table II.

Rotor incidence at minimum and maximum flow for flow generation rotor and complete stage.

		Flow ger rotor	neration test	Comp stage	lete lest
Corrected speed $\binom{\sigma_0}{c}$	Streamline from tip (%)	i (stall) (degrees)	i ^m in (choke) (degrees)	imax (stall) (degrees)	i _{min} (choke) (degrees)
60	00 00 00	6.2 6.0 7.6	- 8, 0 -:2, 0 -13, 0	5.26 6.51 8.62	-5.40 -5.02 -6.25
80	10 50 90	4.0.8 4.40.8		5.64 5.16 7.19	-3.22 -5.02 -5.51
100	10 50 9 0	4.0 4.0 4.7	- 3.0 - 4.3 - 5.0	4.16 4.20 5.84	-5.88 -3.83 -1.54

Table III.

Stress limited, abrupt stall; maximum were above the steady state limit; wall Abrupt stall; stresses were approach-ing the transient limit Stress limited, abrupt stall; stresses Stresses 9.41 cps; stall abrupt, however, there were no high stress Abrupt stall observed with stresses of 13, 500 psi which were above the steady-state limit Hysteresis points were not dictated by stress considerations Abrupt stall; stresses were above steady state limit stresses observed were with wall Intermittent stall; stresses above steady-state limit; wall bleed at Wall bleed at mean rate; stress limited, abrupt stall bleed held at minimum rate Comment bleed at optimum rate mean rate problems Stall cell frequency 33 22 35.5 (cps) 300 350 110 37 52 55 64 62 64 67 cell speed Rotative (% rpm) 40 27 31 45 40 45 44 46 44 4644 streamline from tip Number of stali 90% cells at -- --- -6 2 -2 ٦ 10%--- -_ <u>د</u> 0 - --2 -Corrected (lbm/sec) airflow 47.3935.1143.8243.77 61.47 72.08 79.71 83.75 16.57 80.81 79.33 Corrected speed (⁰/₀) 60 60 100 110 80 06 100 100 100

Rotating stall results for complete stage test.

.

•

A State of

The second se

7

]

Table IVa.

Blade element performance for complete stage.

OPTIMUM BLEED 41 . 65 06.25 CURRECTED RUTCH SPEED = 5014.92 1.0118 ... а 11 COPRECTED METUNT FLUM PERCENT DESIGN SPEEL PRESSURE KATIC 06

01 2

30

STATION 1 - STATION

30108 1

ADIAHATIC EFFICIENCY = 80.8524

21.55 21.55 21.55 21.55 21.55 21.55 21.55 21.15 21 re 6 . 0 393.04 151.39 337.65 4P5.3 4P5.3 175.5 495.10 514.49 0.3528 0.4715 0.4453 40.064 43.426 24.724 385.30 513.16 345.87 U. 3922 19.762 0.0608 0.2076 0.9311 0.9301 23.730 0.0157 -5.81 3.524 1.7.68 4. 764 25.060 22.95.516 22.950 39.879 39.879 43.675 43.675 332.763 378.27 378.27 348.58 374.03 146.89 312.51 527.9 444.8 396.4 240.7 553.21 0.3462 0.4423 0.4423 0.4423 0.4423 0.4423 0.4423 0.4474 0.02474 0.03320 0.9320 1.5902 1.5902 1.5902 1.5902 66.25 66.25 62.73 50 27.080 27.502 36.4559 36.4559 52.4559 52.4559 36.4582 370.881 344.923 364.928 364.928 272.087 272.08 272.08 277.77 0.0134 -4.32 2.181 CORRECTED WEIGHT FLOW 29.159 29.085 19.021 34.553 34.553 364.63 364.63 354.77 354.77 354.77 243.27 118.84 243.27 618.2 387.4 632.00 630.66 0.3334 0.3389 0.5653 DOWNSTREAM OF STATOR 0.4742 8.466 0.0881 0.2237 0.8318 0.8318 0.8298 0.0209 -3.49 2.542 513.2 524.2 UPSTREAM OF STATOR 10 UPSTREAM OF ROTOR M 2 M(PR) 1 M(PR) 1 URN(PR) 1 LOSS CUEF. LOSS CUEF. EFF EFF LCSS PARA. DEV 12 JETA 1 SETA 2 Seta(PR) 1 GETA(PR) 2 U 14 1 U 14 2 90 23.874 40.664 -5.656 356.60 393.04 354.86 354.86 -35.14 0.4715 518-16 20 50

ł 0.3211 46.321 6.0430 0.5471 0.5471 STATION 2 - STATION 3 STATOR 1 30 29.164 34.550 34.550 314.03 31 10 H 3 TURN LOSS COEF. DFAC LOSS PARA. IMCID NM V-THETA BETA 2 BETA 2 BETA 3 VZ 2 VZ 3 m 2 2

12.024

Table IVb.

Blade element performance for complete stage.

CORRECTED WEIGHT FLOW = 61.17 PERCENT DESIGN SPEED = 59.97

OPTIMUM BLEED

CORRECTED ROTOR SPEED = 5017.33

= 1.1145 PRESSURE RATIO ADIABATIC EFFICIENCY = 89.7297

ROTOR 1

STATION 1 - STATION 2

						10	30	50	70	06
					DIA 1	29.153	27.080	25.060	23.020	20.988
					0 I A 2	29.089	27.302	25.516	23.730	21.944
					BETA 1	19.023	21.558	22.652	23.993	25.079
					BETA 2	47.974	42.131	44.552	45.997	47.374
					BETA(PR) 1	58.589	55.212	51.928	48.052	47.244
					BETA(PR) 2	46.982	41.169	33.271	24.588	15.927
					1 1	337.03	343.90	347.34	350.40	356.48
					V 2	430.45	448.39	473.18	495.75	511.84
					1 2 1	318.62	319.85	320.55	320.21	79.97F
					VZ 2	327.93	332.53	337.20	344.40	346.61
					V-THETA 1	109.45	126.36	133.77	142.52	1-1.10
					V-THETA 2	278.83	300.79	331. 96	356.59	37 5. 62
					V(PR) 1	611.4	560.6	519.8	479.0	443.7
					V (PR) 2	480.7	441.7	403.1	379.7	360.4
					VTHETA PRI	521.8	460.4	409.2	356.3	303.7
					VTHETA PR2	351.4	290.8	220.9	157.6	6.96
					1 1	631.62	586.77	543.00	498.79	454.77
					U 2	630.27	591.58	552.88	514.1R	475.48
	STATOR 1				1 1	0.3083	0.3145	7716.0	402 t .0	0.3267
					M 2	0.3884	0.4056	0.4286	0.4497	0.4650
STATIC	JN 2 - 51A	ITION 3			M(PR) 1	0.5589	0.5125	0.4754	0.4382	n. 4055
					M(PR) 2	0.4337	9006.0	2575.0	0.3435	0. 3274
9	30	50	10	06	T URN (PR)	11.607	14.044	18.697	23.464	27.324
					LOSS COEF.	0.0617	0.0338	0.0407	0.0529	0.0729
.164	27.422	25.672	23.874	22.034	DFAC	0.3120	0.3119	0.3356	0.3272	1105.0
.374	42.131	44.552	45.997	47.376	EFFP	0.9089	0.9550	0.9538	7670 0	0.9393
168.9	-4.956	-5.481	-6.180	-6.005	EFF	0.9074	0.9542	0.9530	0.9485	0.9340
SC. 45	448.39	473.18	495.75	511.84	LUSS PARA.	0.0148	0.0084	0.0105	0.0137	0.01 92
19.54	305.38	310.24	312.20	302.92	I NC I D	-1.01	-1.69	-1.77	-1.75	-1.76
66.73	. 332. 53	337.20	344.40	346.61	DEV	1.882	2.368	164.5	3.888	7.220
8.04	304.24	308.82	310.39	301.26						
18.93	300.79	391.96	356.59	376.62	CORI	RECTED WE	IGHT FLOW			
14.63	-26.38	-29.63	-33.61	-31.69						
3884	0.4056	0.4286	1644.0	0.4450	UPSTREAM OF	ROTOR		61.17		
2591	0.2739	0.2784	0.2802	0.2715						
.204	47.087	50.033	52.177	53.382	UPS TREAM OF	STATOR		61.17		
1271	0.0609	0.0616	0.0454	0.0738						
6419.	C. 5939	0.6131	0.6276	0.6492	DOWNSTREAM	ALTAT 2 TO		57.52		
0508	0.0229	0.0216	0.0213	0.0222						
11.11	-10.01-	-8.15	-8.00	-8.57						
9.129	13.084	12.269	11.500	11.795						

-

Bernand St.

" Altractional a

Contraction of

29.164 40.374 -5.831 -5.831 289.545 289.54 289.04 288.03 278.93 288.04 288.04 288.04 288.04 288.04 288.04 288.04 288.04 200.81271 0.5124 0.51271 0.6149 0.61271 13.1271

V 2 V 2 V 2 V 2 V-THETA 2 V-THETA 3 N 3 furn LGSS COEF. DFAC Incid Dev

DIA 3 Beta 2 Beta 3

Table IVc.

Blade element performance for complete stage.

	OPTIMUN BLEED				
man and the second	= 60.02	= 51.57	= \$021.55	= 1.1262	= 87.7723
	PERCENT DESIGN SPEED	CORRECTED WEIGHT FLOW	CORRECTED ROTOR SPEED	PRESSURE RATIC	ADIABATIC EFFICIENCY

STATCR 1

	STATIC	0N 2 - 51/	ATTON 3		
	10	30	50	70	06
01A 3	29.164	27.422	25.672	23.874	22.034
BETA 2	44.009	46.114	48.749	50.420	51.196
BETA 3	-4.255	181.4-	-5.481	-5.306	-6.529
V 2	433.39	443.89	469.88	485.93	499.53
E >	285.15	20.3.03	296.34	282.17	260.70
V2 2	311.71	307.72	3 09.82	309.62	313.03
VZ 3	284.36	292.01	294.98	280.96	259.01
V-THETA 2	301.11	319.92	353.27	374.52	389.28
V-THETA 3	-21.16	-24.42	-28.31	-26.09	-29.64
H 2	0.3899	C. 4003	0.4246	0.4399	0.4526
E H	0.2544	0.2620	0.2651	0.2523	0.2329
TURN	48.264	50.895	54.230	55.726	57.725
LOSS COEF.	0.1284	0.0547	0.0626	1670.0	0.0978
DFAC	0.6407	C. 6321	0.6549	0.6889	0.7315
LOSS PARA.	0.0514	0.0206	0.0219	0.0258	0.0294
INCID	-8.07	- 6.03	-3.95	-3.58	-4.75
DEV	14.705	13.259	12.269	12.374	11.271

. . . .

Table IVd.

Blade element performance for complete stage.

PERCENT DESIGN SPEED = 59.94 CPTINTURN GLEEC CARRECTED WEIGHT FLOM = 52.97 CORRECTED ROTAR SPEED = 5014.92 PRESSURE RATIA = 1.1438 ADIABATIC EFFICIENCY = 89.8999

ROTOR 1

STATION 1 - STATION 2

							10	30	50	10	06
						DIA 1	29.150	27.080	25.060	23.920	20.048
						0 1 A 2	29.799	27.302	25.516	23. 730	21.944
						BFTA 1	18.929	20.192	72.748	24.570	75.855
						BETA 2	48.574	+00.05	52.560	52.48r	195.53
						9ETA(P2) 1	62.855	60.02ª	56.927	53. 937	49.455
						BETA(PR) 2	45.334	39.308	31.474	79. 297	13.341
						N 1	75.145	297.58	301.32	290.65	305.73
						<pre></pre>	444.28	457.35	474.29	19.384	503.90
						V 2 1	275.52	279.29	277.98	272.30	275.17
						V 2 2	293.96	293.96	288.33	294.48	300. 5-
						V-THETA 1	64.46	102.71	116.51	125.07	17.33
						V-THETA 2	333.13	350.37	376.59	11.486	404.37
						V (PR) 1	¢.603.9	559.1	2.902	442.4	423.2
						VIPRI 2	418.2	380.4	339.1	323.0	C.00r
						VTHET & PRI	537.4	494.3	424.7	373.9	321.6
						VTHETA PR2	297.4	241.4	176.5	129.3	11.1
						11	541.47	587.00	543.22	60.004	50 ** 35
						U 2	630.53	18.162	53.10	514.39	475.47
		STATOR 1					n. 2654	3.2712	0.2746	1610.0	187C.0
						4 2	0.3995	0.4116	n.4276	10.4396	n. 4552
	STATIC	N 2 - 51A	1110N 3			4(PR) 1	0.5502	2.5095	1797.0	414 0.4714	0.3850
						4 (PR) 2	0.3752	5.3423	0.3048	1102.0	0.2797
	01	30	50	10	06	T URNEPRI	17.522	20.630	25.453	30.541	36.114
						LOSS CJEF.	0.0893	3.0412	0.0377	0.0715	0.0944
DIA 3	29.164	27.422	25.672	23.874	22.C34	DFAC	0.4477	0.4623	9.4968	0.4525	0.4210
BETA 2	48.574	50,004	52.560	52.480	53.367	EFFP	6106.0	9.9574	0.9656	1406.0	0.040.0
BE 4 3	-10.079	-0.355	- 4. 255	-5.306	-5. 306	EFF	200.992	0.9565	0.9540	780.0	0.9387
V 2	44% 28	457.35	474.29	486.81	503.90	LOSS PARA.	0.0221	0.0105	0.0049	0.0055	0.7237
K 3	283.00	300.93	10.162	265.43	226.29	1 NC 10	3.25	3.13	1.73	4.14	4.45
VL 2	293.56	291.96	288.33	296.48	300.67	DEV	0.234	965.0	0.574	2.497	4.641
VL 3	278.63	299.08	290.21	264.29	225.24						
V-THEIA 2	333.13	350.37	376.59	386.11	404.37	COR	RECTED WE	IGHT FLOW			
V-THFTA 3	-49.53	-33.31	-21.59	-24.55	-20.92						
M 2	0.3985	0.4116	0.4276	4396	0.4553	UPSTREAM OF	ROT OR		52.97		
н 3	0.2516	0. 2664	96. 40	C.2367	0.2014						
TURN	58.653	56.359	9 4.	57.786	58.674	JPSTREAM OF	STATOR		52.97		
LOSS COEF.	0.1320	C. C506	0. 26	0.0540	0.1554						
DFAC	0.7049	C. 0581	0 316	0.7306	0.8061	DOWNSTREAM C	ACTAT2 P(40.15		
LOSS PARA.	0.0522	0.0189	0.0219	0.0306	0.0449						
INCID	- 3. 51	-2.14	-c-1 :	-1.52	-2.58						
DEV	184.8	11.585	13.495	12.374	1 2.494						

anistes ----

Notes, and the

Learnine and

Pressonant.

•

Table IVe.

Blade element performance for complete stage.

í,

Thursday of the local division of the local

adultication of

and a second

TRANSPORT

Comparison of

Interaction of

animation (see

inclusion (

and a second second

PERCENT DESILVA SPEED = 59.91 CURRECTED WEIGHT FLOM = 48.75 CORRECTED ROTOR SPEED = 5012.28 PRESSURE RATIO = 1.1525 ADIABATIC EFFICIENCY = 82.0855

L ALTOR

STATION 1 - STATION 2

	10	30	50	10	0.
I VIC	23.153	27.080	25.040	23.020	P94.04
014 2	29.089	27.302	25.516	23. 730	21.944
3ETA 1	10.024	21.095	72.647	24.757	25.752
BETA 2	54.833	53.510	515.515	54.517	55.043
BETA(PR) 1	55.86 3	53.215	\$0.207	57.351	53.674
BETA(PR) 2	46.591	39.960	001.55	27.784	12.227
1 7	259.24	265.63	271.89	271.56	274.70
V 2	441.73	454.03	469.57	F2. CP4	500. 71
1 7 1	245.08	247.93	250.84	244.60	26.7.75
VZ 2	254.57	270.04	265. 30	244.04	18.010
V-THFTA 1	94.53	95.40	104.46	113.77	119.22
V-THETA 2	950.99	365.37	396.23	477.20	414.55
V (PR) 1	599.3	549.9	504.8	1.7.24	416.5
V (PR) 2	1.70.4	352.3	313.2	298.K	284.7
VTHETA PRI	545.3	6-064	449.1	194.0	135.4
VIHEIA PR2	263.	226.3	156.4	111.0	40° 4
1 0	631.35	586.53	542. TR	4.78.57	454.59
2 0	630.02	591.34	552.55	513.97	475.23
	0. 7359	0.2418	0.2475	0.7472	0, 7494
~ #	1405.0	0.4077	4144.0	7.4766	0.4515
M.PRI 1	0.5453	0.5005	0.4594	9.4162	1. 1773
4(P2) 2	0.3303	7.3163	0.2417	0.7601	1.7584
I URN(PH)	19.273	23.254	29.107	34.562	PCF.12
LUSS COEF.	0.1845	7.0747	0.0858	0.0460	0.0914
JFAC	0.5454	0.5182	0.5447	9.5 184	0.4R44
EFFP	0.9259	4166.0	1050.0	6.354.3	n. 9457
EFF	0.9219	9.929.0	2020.0	1.9537	1.9454
LOSS PARA.	0.0447	0.0199	0.0223	5. U. D.	FF 20.0
I NC I D	6.24	6.31	1.5.4	7.55	9.62
ŋĒV	184.1	1.140	1.300	2.044	3.577
COR	RECTED ME	IGHT FLOW			
UPSTREAM DF	ROTOR		44.76		
UPSTREAM OF	STATUR		49.76		
JUNSTREAM	OF STATOP		00.44		

STATOR 1

	STATI	ON 2 - 51	ATION 3		
	CI.	36	50	70	06
01A 3	45 i * 62	27.422	25.672	23.874	22.034
BETA 2	54.803	53.510	55.515	56.517	55.98 R
BETA 3	-11.515	-13.679	-10.439	-7.534	-7.756
K 2	441.73	454.09	468.57	482.23	500.23
6 7	296.61	258.28	275.75	271.06	265.93
VZ 2	254.57	270.04	265.30	266.04	279.81
VZ 3	290.64	250.95	271.19	268.46	263.49
V-THE A 2	360.99	365.07	386.23	402.20	414.65
V-THETA 3	- 59.21	-61.CB	-49.96	-37.42	-35.89
M 2	7.4 45 . 0	C. 4077	0.4214	0.4346	0.4515
K 3	0.2627	0.2292	0.2452	0.2412	0.2365
TURN	66.324	67.189	65.953	64°451	63.744
LOSS COEF.	6.1019	0.1669	0.0923	0.0747	0.0745
DFAC	0.7100	C. 7848	0.7388	0.7360	0.7405
LCSS PARA.	0.0429	0.0611	0.0319	0.0242	0.0223
INCLO	2.13	1.37	2.82	2.52	0.04
DEV	7.445	4.361	7.312	9.746	10.044

Table IVf.

		Bla	de eler	nent pe	rforman	ce for com	iplete s	stuge.		
				PERCE	NT DESIGN S	PEED = 79.9	0	UPT II	LADLA	OLEEO
				CURRE	CTED WEIGHT	FLOM = 84.2	7			
				CURRE	CTED ROTOR	SPEED = 4684.7	0			
				PRES	SURE RATIO	= 1.157	5			
				ADIA	ATIC EFFICI	ENCY = 82.641	2			
								108	1 1	
							s	TATION 1	- STATION	2
							10	30	50	۲,
						DIA 1	C\$1.62	27.080	25-040	020.55
						0 IA 2	29.044	205.72	25.516	23. 730
						BELA :	101.02	126-12	29: UT	211.42
						AUTA(PR) 1	56.378	52.71	49.678	43.9.5
						BETAIPRI 2	47.341	40.699	\$10°EE	23. ".
							499.35	06.103	512.74	524.23
						V 2 1	42.134	455.61	469.00	175.35
						V 2 2	473.03	\$63.35	. 76	519.27
						V-THETA 1	173.01	187.37	1	221.78
						V-IHEIA Z	10.000	7-0-245	108.802	440.1
						VIPRI 2	698.5	650.6	599.6	547.8
						VTHETA PRI	598.4	612.9	532.3	454.5
						VTHETA PR2	514.1	124-24	326.7	4.024
						0 2	859.58	906.80	754.02	101.25
		S TATOR	_			T	0.4412	0.4530	0.4527	0.4743
						1 2	0.5195	0.5552	0.5842	0.5276
	STATIO	N 2 - 511	VIION 3				0. 7453	0.6946	0.5345	0.5972
	10	30	50	10	0 ú	TUNNEPRI	169.4	12.047	15.665	20.11
	1				!	LOSS COEF.	0.0815	0.21	1640.0	0.0745
01A 3	23.164	21-422	25.672	23. 874	\$E0.52	UFAC	0.2293	0.2356	1142.0	0.7389
BETA 2	36.146	37.796	40.365	42.249	43.638	EFFP	5150.0	4566.0	5516.0	0610.0
	585. 7H	+2 + 3 +	104-02-	701.50	01.227	I DS S PARA.	10.0195	10.0105	0.176	
6 7	426.70	466.56	484.66	498.16	431.53	I NC I D	-3.22	-4.17	-5.02	-5. 84
2 27	473.03	493.35	502.76	519.27	522.74	DEV	182.2	1.848	2.213	3.152
1.3	421.44	.04.81	482.45	495.67	428.69					
V-THETA 2	345.51	382.42	421.36	471.65	498.40	C 08 8	FCTED MET	GHT FLOW		
N 7	1.6185	C 555.7	0.5882	0.6276	0.6470	UDSTRFAM OF			10.48	
	0.3729	0.4098	0.4259	0.4376	0.3758					
TUKN	45.151	152.152	45.846	47.905	48.744	UPSTREAM OF	ST AT OR		84.27	
LOSS COEF.	0.11.0	0.0552	0.0439	0.0703	1.1814					
DFAC	0.5542	C. 50H0	0.5179	0.5327	0.6291	DOWNSTREAM O	F STATOR		A1.03	
LOSS PARA.	0.0462	C. U207	4510.0	0.0229	0.0546					
LINCEU C	62.021-	13-084	12.269	12.024	12.494					

20.05 20

90

1 International

- 1

- marganetica

n n

•

Table IVg.

I

Blade element performance for complete stage.

DTIMUM GLEED					01.04
80.00 O	19.51	6693.23	1.2133	91.2435	æ
PERCENT DESIGN SPEED =	CORRECTED NEIGHT FLOW =	CORRECTED ROTOR SPEED =	PRESSURE FATIO	ADIABATIC EFFICIENCY =	

STATION 1 - STATION 2

	10	30	c 0	52	ίο
1 10	29.153	27.043	25.040	23.020	20.940
DIA 2	PF0. P5	27.332	25.516	23. 730	776.10
BETA 1	19.291	71.647	23.124	74. 457	75.576
BETA 2	41.702	44.193	44.412	47.700	F15.83
BETA(PQ) 1	58.572	55.262	51.778	47.745	\$10.7
RETAIPH) 2	45.855	40.270	32.578	23.450	15.511
V 1	24.624	\$ 58.42	4.54.69	46.044	474.43
V 2	54.42	\$15.61	633.87	\$55.20	£87.34
V 2 1	424.61	• 5 6 • 0 9	427.75	63.254	429.57
12 2	437.99	434.29	437.00	20. 144	444.69
V-THETA 1	149.62	169.17	187.49	197.31	705.51
V-THETA 2	330.75	422.09	459.09	11. 194	539. 17
V (PR) 1	814.3	747.7	690.7	4.57.4	5 47.5
V (PR) 2	6.923	569.2	519.6	4.07.2	471.0
VIHETA PRI	6.409	514.5	542.5	444.0	4 ° L O 4
VTHETA PR2	451.4	367.9	2.975	193.9	126.7
n 1	843.47	783.59	725.13	654.10	A07.30
0 2	841.53	190.09	738. 22	594.F4	45.454
- L H	0.4139	0.4220	9.4279	0.4324	0.4394
4 2	0.5273	3.5464	0.5735	0. 6 735	0.6201
Y(PK) 1	1641.0	9.6893	1464.0	9. 435	1.5414
M(PR) 2	0.5654	0.5136	0.4693	0.4420	C#24.0
TURNEPR 1	12.705	14.932	19.200	24.297	27.504
LOSS COEF.	0.0475	2160.0	0.0322	9.0374	0.0899
DFAC	0.3330	0.3476	0.3662	1.754.0	7. 31 95
EFF	0.9373	0.9620	4440.0	0.0670	1.0297
EFF	0.9353	£ 690°C	0.9453	0.3660	AT 20.0
LOSS PARA.	0.0117	0.0080	E . 00 ° 0	0.0099	0.0275
I NC 10	-1.03	-1.64	-1.02	-0.0-	-1.99
DEV	3.765	1.470	1.778	9.759	6.811
CORP	RECTED WE	GHT FLOW			
UPSTREAM OF	RO" 06		15.21		
UPSTREAM OF	ST ATOR		19.51		
DOWNSTREAM C	DF STATCE		75.89		

STATOR 1

	STATIC	N 2 - 51	ATION 3		
	10	30	50	70	06
6 VI0	29.164	27.422	25.672	23.874	22.034
BETA 2	41.702	44.183	46.412	47.790	48.213
BETA 3	-11-875	-7.052	-5.481	-4.956	-5.131
V 2	586.62	605.61	633.92	665.20	682.34
K 3	379.03	411.50	421.84	421.34	402.15
VL 2	437.98	434.29	437.00	446.92	454.69
VZ 3	370.92	408.38	419.91	419.76	400.54
V-THETA 2	390.26	422.08	459.09	492.71	508.77
V-THETA 3	- 78.00	-50.52	-40.29	-36.40	-35.97
M 2	0.5273	0.5464	0.5735	C.6035	0.6201
M 3	0.3358	0.3661	0.3758	0.3752	0.3572
TURN	53.577	51.235	51. 894	52.746	53.344
LUSS COEF.	0.1913	0.0901	0.0657	0.0787	0.0848
DFAC	0.6745	C. 6146	0.6115	3.6267	0.6518
LOSS PARA.	0.0752	0.0337	0.0230	0. C 56	0.0255
INC 10	-10.38	- 7.96	-6.29	-6.21	-7.74
DEV	7-085	10.988	12.269	12.724	12.669

•

Table IVh.

X

Blade element performance for complete stage.

OPTIMUM BLEED

79.96

PERCENT DESIGN SPEED = Corrected Weight flow =

				CORRE	CTED ROTOR	SPEED - 4682.	22				
				PRESS	URE RATIC	= 1.23	50				
				AD I AB	ATIC EFFICI	ENCY = 90.93	6.9				
								RUT	1 I		
							Ś	I NOLIAT	- STATION	2	
							10	0 E	50	11	60
						1 410	29.153	27.080	25.060	23.120	0.04
						0 1A 2	29.089	27.302	25.515	23. 730	21.9
						BFTA 1	19.203	21.196	23.2:0	24.497	
						BETA 2	44.733	47.013	49.050	50.661	52.0
						BETALPRI 7	01.014 45.674	166.95	32.178	24.147	
							414.22	423.59	437.89	16.764	44.7
						< 2	587.85	505.77	431.45	548.37	464
						VZ 1	391.17	394.94	397.86	397.96	400
						V Z 2	417.61	413.03	413.45	10.114	·0.05
						V-THETA 1	136.24	153.15	170.60	141.20	
						V-THETA 2	413.73	112	476.5	501.46	5 N N
							2.105			0.00	6.6.4
						VTHETA PRI	706-1	4.629	5.53.5	0.584	1
						VTHETA PR2	426.8	345.9	240.4	184.7	- C
	,					1 1	842.33	782.51	724.14	665.19	606.
						0 2	840.54	788.93	737.32	685.71	634.
		STATOR	_			 1	0.3799	0.3888	0.3976	0.4JIR	0.40
		:				M 2	0.5761	0.5444	0.5603	0.5361	
	STATIC	115 - 2 NC	E NOIL			M(PR) 2	0.5344	0.4841	1070-0	2204-0	
	10	90	50	70	06	TURN(PR)	15.390	17.954	22.115	26.420	. 16
						LOSS COEF.	0.0412	0.0152	0.0155	0.0187	0.06
E VIO	29.164	21.422	25.672	23.874	22.034	DFAC	0.3822	0107.0	0.4146	0.4170	0.0
BETA 2	CE L. 44	41.013	49.050	100.00	980.55		6266 O	5 7 8 6 ° 0	7980.0	1044.0	
	587.83	605.77	54-164	448.37	666.39	LOSS PARA.	0.0102	9500 C	0-00-0	0.00	0.0
- N	372.53	387.48	390.12	372.40	345.30	[NC I D	1.41	0.99	0.59	71.0	-
VZ 2	417.61	413.03	413.85	411.01	409.48	DEV	0.524	1.137	1.379	3.4.7	
VZ 3	366.99	384.69	388.55	370.59	340.87						
V-THETA 2	413.73	443.12	4 16.92	201.46	\$1.62¢	CUR	RECTED WEI	GHT FLOW			
V-THETA 3	-04°0-		- 34 - B4	-30.10	11.00-	ILDE T DE AM CIE			76 61		
4 M	1020-0	0.46.0	0.7456	100 3 2 9 7	0.3052				1		
TURN	54.633	53.890	54.181	56.317	01.270	UPSTREAM OF	STATOR		15.51		
LOSS COEF.	0.1725	0.1087	0.0911	*060*0	0.1064						
DFAC	0.6927	C. 6648	0.6672	0.6571	0.7452	DOWNSTREAM	DF STATCR		71.72		
LOSS PARA.	0.0682	04040	9160.0	4670 °0	1160.0						
INCID		C1•C-	- 3.07	12 024	-3.60						
VEV	1.000	707.17	4.70.077	130.37	010.00						

No. of the local division of the local divis

Constantingenerative

1.1 Automation

Contractional Press

A TOTAL CONTRACTOR

TAXABLE PARTY

 $\left(\right)$

Table IVi.

-

Turning of the local division of the local d

Blade element performance for complete stuge.

PERCENT DESIGN SPEED = 7°.9°. OPTIMULT OLOGIO CURRECTED WEIGHT FLOM = 70.36 CORRECTED RUTCR SPEED = 5688.98 PRESSURE RATIO = 1.2574 ADIA:DALIC EFFICIENCY = 86.7177

P:

STATION 1 - STATION

AUTOR 1

70.994 71.044 74.157 56.811 56.811 Cc 634. 0. 1726. 0. 1726. 0. 1726. 0. 1726. 0. 1726. 0. 1726. 0. 1726. 0. 1726. 0. 1726. 0. 1726. 0. 1726. 0. 1726. 1726. 0. 1726. 1726. 0. 1726. 1726. 1726. 1726. 1726. 1726. 1726. 1726. 1726. 1726. 1726. 1726. 1726. 1726. 1726. 1726. 1726. 1726. 1726. 1727. 1726. 1727. 1726. 1727. 172 54. 087 100.15 27. 693 54. 63 548. 42 367.59 614.4 403.3 2° . 0 . 11. . 22 654.10 1 = 5.4 10.112 5 440.1 770.0 770.0 778.1 778.1 778.1 778.1 778.1 778.1 725.1 72 25.516 27.540 53.450 56.809 33.469 402.67 615.79 371.58 367.31 155.13 155.13 92.01 35.01 64.43 4.016 2.449 ŝ 537.0 53 27.090 27.302 21.435 21.435 51.015 551.015 557.803 371.13 382.71 145.71 145.71 145.71 145.71 145.71 145.71 145.71 145.71 145.71 145.71 CORRECTED MEIGHT FLOW 30 DOWNSTREAM OF STATOR 29.153 29.089 19.200 6.2112 6.2112 6.229 4.4.644 4.4.644 395.644 395.444 132.984 453.639 453.639 453.63 1.52.1 713.1 1.817 74.2.8 941.64 0.36349 0.5349 0.5349 0.4923 17.655 0.4929 0.4929 0.9215 0.9215 0.0191 2.73 -0.455 UPSTREAM OF STATUR 2 UPSTREAM OF RITTR VZ 1 VZ 7 V-THETA 1 V-THETA 2 V(PR) 1 V(PR) 1 VTHETA PR1 VTHETA PR1 VTHETA PR2 M 2 M (PR) 1 M (PR) 2 T JRN(PR) L 355 COEF. 3FAC EFFP EFF LOSS PARA. INCID DEV - 2 014 1 01A 2 861A 1 861A 2 811A 2 811A(0k) 1 614(0k) 2 7 1 7 2

STATOR 1

06 23. 874 54. 587 -4. 956 0.2 25.672 53.450 616.750 371.08 371.08 367.31 367.31 367.31 367.31 367.31 367.31 367.31 367.31 367.31 367.31 367.31 367.31 367.31 367.31 367.31 367.31 371.08 370.09 0.0555 0.0198 0.0198 12.795 m 0 4 STATICN 2 - STATION - 10,438 60.438 373.24 372.85 372.85 372.85 372.02 472.02 65433 6.5433 6.5433 6.5433 6.5433 6.1120 0.1120 0.1123 7.602 7.602 7.602 27.422 30 10 M 2 M 3 Turn Loss Coef. Loss Para. Loss Para. Inc:D NM DIA 3 BETA 2 BETA 2 BETA 3 V 2 V 3 V-THETA 3 V-THETA 3

Table IVj.

Blade element performance for complete stage.

PERCENT DESIGN SPEED = 79.90

OFTIMUM GLOW

			CURR	ECTED WEIGHT	FLOW = 64.	56				
			CORR	ECTED ROTOR S	PEED = 6685.5	57				
			PRES	SURE RATIO	= 1.27	74				
			AIDA	BATIC EFFICIE	NCY = 82.91	82				
							ROT	1 80		
							STATION 1	- STATION	~	
						10	30	Û,	70	06
					DIA 1	29,153	27.080	25.060	21.020	20.990
					DIA 2	29.089	27.332	25.516	23. 730	21.944
					BETA 1	19.927	21.914	22.895	25.070	75.669
					BETA 2	53.623	53.744	169.55	56.632	51.753
					HETA(PR) 1	65.236	62.496	59.865	54.157	57.197
					BETALPRI 2	45.187	40.325	33.426	23.438	12.741
					V 1	354.36	363.38	366.75	375.12	380.40
					V 2	599.93	503.45	615.90	634.47	660.73
					1 7 1	333.15	337.12	337. P6	339.7R	40°67E
					2 Z X	355.92	356.48	347.16	350.04	367.24
					V-THETA 1	120.79	135. 52	142.69	154.95	144.85
					V-THETA 2	483.02	486.41	509.74	531.55	567.54
					V (PR) 1	795.3	730.0	673.0	610.1	559.4
					V (PR) 2	504.3	468.1	416.0	382.7	3-11.E
					VTHETA PRI	7.2.2	647.5	582.0	504.7	442.1
					VTHFTA PR2	358.2	302.9	229.1	154.7	R2.0
					L D	842 . 96	783.10	724.69	665.70	60 ° 90 93
					U 2	841.17	789.52	737.97	696.23	424.59
	S TATOR	1			Γ	0.3237	0.3371	0.1353	1545.0	0.3447
					- I	0.5309	0.53R4	0.5511	0.5712	0.5949
TATI	TS - 2 NC	ATION 3			M(PR) 1	0.7265	3.6672	5515.0	0.5580	0.5120
					M(PR) 2	0.4467	0.4174	0.3722	0.1435	0. 3344
•	30	50	70	06	T URNIPR)	20.043	22,171	26.439	32.319	942 PE
					LOSS COEF.	0.1759	0.05A7	0.0601	0.0740	0.0794
164	27.422	25.672	23.874	22.034	DFAC	0.5266	0.5145	0.5427	0.5367	0.5034
623	53.744	55.691	56.432	56.750	EFFP	0.8447	4846°C	0.9574	0,0445	16 36 .0
916	- 10.617	-19.460	-23.960	-11.335	EFF	5958.0	7.9464	0.9506	0.0476	0.951 a
.93	603.45	615.90	636.47	660.70	LOSS PARA.	7540.0	0.0148	0.0154	2010.0	0.9207
. 25	338.50	354.32	356.90	345.27	1 NC 10	5.64	5.60	6.16	4.36	1 13
. 82	356.88	347.16	350.06	362.26	DEV	7.00.C	1.525	2.626	3.138	140.4

 STATION 2 - STATION 3

 10
 30
 50
 70
 90

 BETA 2
 53.744
 55.672
 23.874
 22.034

 BETA 2
 53.744
 55.672
 23.874
 22.034

 BETA 2
 53.744
 55.672
 23.874
 22.034

 BETA 2
 53.744
 55.671
 55.672
 55.750

 BETA 3
 -10.017
 -19.460
 -23.960
 345.27

 V2
 396.93
 603.45
 615.90
 636.47
 600.70

 V2
 355.82
 356.88
 347.16
 350.06
 345.27

 V2
 355.82
 356.88
 347.16
 350.06
 345.27

 V2
 355.82
 356.88
 347.16
 350.14
 336.75

 V2
 355.82
 356.88
 347.16
 350.14
 336.75

 V2
 355.82
 356.88
 347.16
 350.14
 336.75

 V2
 355.82
 356.88
 347.16
 356.14
 336.75

 V2
 403.77
 232.11
 356.14
 356.14
 356.754

 V2
 403.77<

64.95 54.95

CORRECTED WEIGHT FLOW

\$0.05

UDWNSTREAM OF STATOR

UPSTREAM OF ROTOR UPSTREAM OF STATOR 10.000

Territoria de la competitione

Sector 1

And a state of the state of the

alline prints of

PHEROMONIC .

ATTARNEY STATE

THEFT I

Table IVk.

Contraction of the local division of the loc

Transmitter (Theorem

Blade element performance for complete stage.

OPTIMUM BLEED					KUTAK 1	STATION 1 - STATION 2
19.98	92.13	7528.34	1.1340	15.7506		
	н	н	й			
PERCENT DESIGN SPLEU	CORALCTED WEIGHT FLUM	CORRECTEL ROTOR SPEED	PRESSURE RATIC	AUTABATIC EFFICIENCY		

00

10

50

30

10

2					c	~	-		-	_	1	4	۲	s	4	-	~	•	-	~	-	~	~	~	9	_	•	2	•											
50.93		1	05.53	10.15	16.55	584°)	1.52	52 °. 4	574.3	2 9	544.9	£ 63 .	601.	· 11 7	172.	6H 5.2	717.5	0.544	0.725	0.633	0.55.0	22.48	0.025	0.218	0.9750	0.975	0° 00 %	-5.8	7.95											
23.020	1162 66		6-1-1-2	44.364	24.621	581.42	764.35	533.67	564.10	230.75	514.45	746.5	622.6	522.0	259.5	752.71	275.93	0.5384	0.6995	0.6912	0.5685	19.743	0.0302	0.2056	0.9657	0.9645	0.078	-5.44	3.92											
25.060	26 614	23 476	242.04	666.84	32.876	572.75	730.20	524.53	552.91	230.02	475.56	789.0	658°3	589.4	357.4	819.42	834.33	0.5299	0.6639	0.1300	0.5966	15.457	0.0492	0.2558	0.9363	0.9344	0.0127	-5.37	2.076				92.13		92.13		A9.C3			
27.080	27 40.2	700 10	34-169	51.236	+0.505	563.67	0 92 . 2 %	522.91	544.25	210.47	427.80	A 53. 9	715.8	675.0	404.9	14°5°47	892.73	0.5210	0.6263	0.7893	0.6481	11.731	0.0712	0.2429	0.8935	0.8904	0.0179	-4.65	1.705		GHT FLOW									
29.150	660 0C	20.447	39.151	55-645	47.844	554.09	641.87	519.11	518.29	193.75	378.05	6.919.9	172.2	759.4	572.5	953.15	951.13	0.5117	0.5775	0.4495	0.6949	1.801	0.1249	0.2322	0.7906	0.7851	0.0236	-3.96	2.744		ECTED WEI		RUT UR		STATOR		L STATUK			
I AIC		HFT. 1	del A 2	SETALPR) 1	deTa(PK) .	v 1	V 2	V Z 1	VL 2	V-THETA 1	V-THETA 2	V (PK) 1	V (PR) 2	VIHETA PRI	VINETA JK2	ר 1	n 2	- T R	~ ¥	M(PR) 1	M(PR) 2	T URN (PK)	LCSS COEF.	UFAC	FFP	E F F	LCSS PARA.	I NC 10	DEV		CURH		UPSTREAM GF		UPSTREAM UF		DCWNSTREAM C			
																						0.6		22.034	43.399	-9.542	793.17	462.85	576.31	450.44	544.97	-76.12	0.7261	0.4095	52.941	0.2148	J. 533	0.0640	-12.55	8.258
																						70		23.874	42.369	-5.306	700.35	538.34	566.19	536.03	510.45	-49.79	C.6555	C.4795	47.675	0.0523	C.5391	C.0301	-11.63	12.374
																				TICN 3		50		273.672	40.783	- 5. 656	730.20	535.83	552.91	533.22	476.96	-52.81	C.6634	0.4777	46.439	0.0699	C.5213	0.0244	-11.92	12.094
																		STATUR 1		N 2 - STA		ЭU		27.422	:3.169	-5.481	£92.20	512.40	244.25	51C.06	427.80	56° R5-	C. 6268	C.4561	43.050	U. C923	L. 5193	C.U346	-13.97	12.559
																				STAT IL.		2		.164	.151	er 0.	1.87	t.20	t. 29	00.5	6.65	1.59	5176	4126	062.	1297	5617	C513		.88.

29.164 10.179 10.171 10.177 466.20 466.20 516.29 516.29 516.29 61.45 10.1297 0.1297 0.1297 0.1297 0.1297 0.1297 1.25 1.2 0.1297 0.1

ULA 3 BETA 2 BETA 2 V 2 V 3 V 2 V 1 HETA 2 V 1 HETA 3 M 2 LUSS CCEF. LUSS CCEF. LUSS PAKA. LUSS PAKA.

Table IV1.

Blade element performance for complete stage.

0 OPTIMUM BLE	00.	۵. * •	23	510	
0.5	4 J	3647 :	1.2	3 9 .5	
FERCENT LESICA SPECC	COMMECTED #ETCHT FLLT =	CURRECTED FUTCR SPELN =	FRESSURE RATIC	ADTANATIC EFFICIENCY =	

3610k 1

STATION 1 - STATICN 2

						10	UE	50	10	06
					1 110	29.150	27.093	25.060	23.020	486.04
					5 110	21.048	27.302	25.516	23.730	21.944
					5ETA 1	19.649	21.244	23.753	25.205	56.4.30
					3EIA 2	42.795	43.009	46.379	43.211	C69.84
					DETALPA .	53.363	179.42	51.208	47. J34	47.450
					BETACPHI 2	44.021	+0.625	32.923	24.18-	16.523
					- I - V	510.84	522.90	531.29	534.40	54 6. 13
					~ ~	640.25	080.58	712.34	742.17	750.21
					V 2 1	441.10	487.29	446.28	41.14	52 . F 43
					2 7 N	444.47	492.29	491.43	494.57	14.6 8.41
					V-THEIA 1	171.77	139.43	214.00	229.2°	234.41
					V-14E1A 2	440.57	40.964	515.68	553.37	573.70
					V (PK) 1	5.71F	844.9	176.2	714.7	1 28.5
					VIPH) 2	1.198	640.6	585.5	542.2	F. U4.2
					VINETA PRI	780.3	695.2	0.004	523.0	451.3
					VINETA PK2	502.1	422.3	318.2	2.2.1	143.4
					1 0	452.64	844.99	814.98	752.31	6.5.4J
					U 2	930.67	942.25	833.AB	175.51	717.15
	STATUR 1				M L	0.4705	0.4822	0.4962	1764.0	0. 50 45
					4 2	0.5835	0.6106	0.6419	0.6714	0.6803
STATIC	N 2 - 514	1110N 3			1 (PR) 1	1.3447	0.7827	0.7162	0.6590	0.6177
					7 (He)h	0.6229	J.5820	0.5276	300 t 0	7.4577
10	36	50	10	5.0	I NANI PH J	12.342	14.346	18.265	22. 445	75.030
					LUSS COEF.	0.0564	0.0399	0.0245	0.0155	0.0554
.164	21.422	25. c72	23. 874	22.034	UFAC	0.3465	0.3421	1966.0	0.3610	0.3657
·156	43.069	46.379	48.211	49. 6 c Z	0. T T T	0.4295	1.9541	0.9757	0.9861	U. 7539
.950	-6.678	-5.131	-5.481	-10.258	ë Ft	0.9257	0.9523	1474.0	7.9855	1.30.0
.c. 25	coC.58	712.34	742.17	750.21	LCSS PARA.	0.0134	0.0100	0.0063	5.0043	0.0141
66.93	447.15	463.90	458.C5	429.08	I NC I U	-1.24	-1.93	-2.49	-2.17	- 2.54
14.41	492.29	64.124	494.57	433.41	OEV	126.6	1.825	2.123	3.4HB	7.829
16.54	43.50	462.04	45.464	422.22						
16.51	465.54	515.68	53.37	573.70	CURI	FCTED WE	IGHT FLOW			
14.39	-53.55	64.14-	-43.75	-76.41						
5985	C.61C6	0.6419	C.6714	J.6503	UPSTREAM OF	KUT OR		87.50		
1915	0.3936	0.4693	C+24.0	U.3779						
1153	54.547	51.51C	53.692	60.140	UPSTREAM CF	STATUR		97.50		
, 18 Su	C. 11 84	C.0877	0.0530	0.C758						
6003	(.e328	0.6238	C. 6459	0.6899	UCHNSTREAM (CF STATUR		83.86		
6724	C. L443	U.03U7	C. U 3U3	0.0226						
.5. 28	- 6.47	-0.32		-6.07						
+00	11.162	12.619	12.199	7.542						

01A 3 8ETA 2 8ETA 3

V 2 V 2 V 2 V 2 V - TFETA 2 V - TFETA 3 M 2 M 2 M 2 M 2 TUSA CUE4. UFAC ULCSS CUE4. ULCSS ULCSS ULCS

-

Internet Action

A number of the second second

A subscription of

Constraints of the

(demanded in the second secon

Print Strengthering

Televenteer of the

THE RELEASE OF

Constants of Caseson

P OPPOSITE CONTRACTOR

Table IVm.

I

T-----

Classification of

Talitatestation

T-assessments

-

Construction of

Partition in the

Transmission of the local division of the lo

.

Constanting of

-

-

Blade element performance for complete stage.

. D	OPTIMIN BLEED				
	06.99	82.70	: 7522.33	1.3084	44-2544
	PERCENT DESIGN SPECU =	CORRECTED WEIGHT FLOW =	CUMMECTED RUTCH SPEEN =	PRESSURE RATIC	ADIANATIC FFFICIENCY =

R010K 1

STATION 1 - STATIOL 2

	10	30	. 50	10	05
UIA 1	29.150	27.0HD	25.050	23.020	20.94
0 IA 2	29.089	27.302	25.51t	23.730	21.944
BETA L	19.652	21.459	23.769	25.265	26.048
BETA 2	40.414	48.869	51.132	51.585	52.627
BETALPRI 1	63.457	57.431	54.028	50.011	45.555
BELA(PR) 2	45.115	39.607	32.037	23. 304	15.394
<pre></pre>	475.93	464.59	491.24	20° 464	505.06
V 2	659.32	686.38	105.01	730.98	744.24
1 7/	448.21	450.96	65.644	451.22	453.57
2 71	461.90	451.49	442.45	454.19	451.41
V-THEIA 1	160.06	177.36	194.00	212.95	222.19
V-THE TA 2	495.18	516.98	543.96	572.75	14.123
1 (HA) A	0.909.0	837.7	765.4	702.1	£ 47.7
V (PR) 2	454.4	580.0	125.4	9 6 4	4.36.4
VIHETA PRIV	5.09T	706.0	619.4	536.0	4+2.4
VIHETA PA2	463.7	373.6	283.4	201.3	124.4
11	950.30	RB3.34	A17.45	750.90	4+4.62
u 2	948.84	330.58	H32.32	774.06	11 5. 31
	0.4373	0.4456	0.4520	0.4593	0.4052
л г	0.5955	U.6130	0.6326	0.4583	C174.0
4(PK) L	J.8352	0.7703	0.7042	0.6464	J. 59%
3 (PK) 2	0.5815	J.5234	0.4714	0.4474	1.22.0
TUKN(P+1	15.341	17.324	21.391	26.107	141.05
LUSS UJEF.	0.0595	0.0233	0.0232	0.0253	0.0674
UFAC	0.4070	0.4314	0.4492	0.4284	0.4174
EFFP	0.5363	0.9766	J. 97CB	1069.0	0.9525
E.F.C.	0.9340	0.9755	0.4749	9212.0	7.050 °C
LCSS PARA.	0.0145	0.006.0	0.0060	0.0064	0.017)
I NL IU	0.36	6.53	0.33	0.21	0.55
JEV	0.015	0.407	1.637	3.204	£.694
CURP	SECTED NET	WUJI IHO			
UPSIKEAN UF	KCT OR		52.70		
UPSTREAV DF	STATOR		82.70		
UCHAS LEAN (CF STATUR		79.4Z		

SIATUR 1

	STALIC	N 2 - 511	ATICN 3		
	10	90	5 С	7.0	96
5 VIG	29.164	1.462	270.072	23.674	22.034
JETA 2	46.414	48.604	51.132	1.586	52.4.26
BETAJ	-13.760	-1-400	-4.781	- 5. 206	- 3.184
2 7	605.42	646.30	10.001	730.95	744.24
5	4.12. 50	22.163	426.50	413.37	335.41
11 2	4¢1.30	451.49	442.45	454.19	451.81
12 3	384.46	398.20	425.07	411.60	334.11
1-THETA 2	465.10	516.58	540.96	572.75	14.142
I-THETA 3	-116.38	-51.72	-35.55	-38.23	-53.53
12	0.5955	1.6130	U.6320	C.6583	0.5719
~ +	0.3510	C.23J8	0.3740	C.3624	0.2528
LUHN	03.174	56.209	55. 513	50.892	01.ECC
-CSS CGEF.	0.5033	C. 1556	0.0813	6120.0	J.1527
CEAC	J.7581	C. 7272	0.0805	C. 7176	J-8111
LSS FARA.	0.170	L.C581	C.U285	C.0257	J.U455
INCIC	-5.57	-3.27	-1.57	-2.41	-3.33
JEV	6.2.3	10.040	14.969	12.374	8. e16

Table IVn.

Blade element performance for complete stuge.

OPTIMUM GLEBO 78.50 PERCENT DESIGN SPEED = 89.87 CORRECTED ROTOR SPEED = 7519.79 CORRECTED WEIGHT FLOM =

= 1.3355 PRESSURE RATIO

ADIABATIC EFFICIENCY = 97.9055

ROTOR 1

STATION 1 - STATION 2

U6	20.984	21.944	25.545	54.163	48.858	14.510	465.72	16.157	420.13	107.71	FP.000	607.45	638.7	420.4	C.182	175.4	AP1.79	717.94	rc 27 "U	0.6600	0.5887	A076 .0	34. 343	0.0615	C. 4545	3.9605	0. 75A9	0. 11 SE	3.95	5.817											
7.0	23.020	23.730	25. 970	54. 115	52.653	25. 29A	\$62.73	70. 00	416.00	F0.114	202.63	576.58	6P5.8	454.6	545.2	194.7	747.70	770.45	0.4254	0.6373	0.6319	2607.0	27. 255	24E U.O	0.4 HZ4	0.0741	0.9730	6000°U	2.85	4.598											
50	25.060	25.516	23.195	52.934	56.475	33.413	457.01	75.569	420.07	418.89	190.00	552.53	760.6	501.8	1.263	276.3	A14.06	P28.97	0.4210	0.6221	0.7006	0.4502	23.043	0.0202	0.4945	7189.0	0.9329	0.0052	2.78	2.613				78.50		78.50		74.52			
30	27.080	27.302	21.738	51.670	59.674	40.541	440.20	674.48	417.26	418.31	166.37	529.10	826.4	550.5	713.3	9.72E	979.68	386.89	7.4135	7.6072	0.7507	+164.0	19.133	1040.0	0.4759	0.9580	0.9560	0.0114	2.77	1.741		GHT FLOW									
10	29.150	29.089	19.543	49.872	62.505	46.332	441.37	655.13	415.93	430.91	147.73	19.564	6.006	524.1	1.991	451.4	26.446	CE.446	0.4061	0.5813	0.8288	0. 5537	16.173	6060.0	5644.0	6606 0	0.9055	0.0221	2.91	1.232		ECTED WEI		ROTOR		STATOR		F STATAR			
	DIA I	014 2	BETA 1	BETA 2	BETA(PR) 1	BETALPRI 2	< 1	V 2	1 2 1	VZ 2	V-THETA 1	V-THETA 2	V(PR) 1	V (PR) 2	VIHETA PRI	VTHETA PR2	1 0	U 2		M 2	M(PR) 1	M(PR) 2	T URN (PR)	LOSS CJEF.	DFAC	EFFD	éFF	LOSS PARA.	1.001.00	JEV		CURRI		UPSTREAM OF		UPSTREAM OF		D DWNSTREAM D			
																							06		22.034	56.163	-6.529	15.167	357.25	12.764	354.94	607.45	-40.62	0.6600	0.3125	62.692	0.1161	2PTT.C	J.0349	0.21	11.271
																							10		23.874	54.515	-5.481	708.09	403.59	411.03	401.74	576.58	-38.55	0.6373	0.3541	100.997	0.0696	0.714:	0.0226	0.52	12.199
																					110N 3		50		25.672	52.834	-5.656	693.37	419.48	418.89	417.83	552.53	-41,38	0.6271	0.3680	58.490	0.0892	0.6956	0.0312	0.13	12.094
																			STATOR 1		N 2 - 5TA		30		27.422	51.670	-15.129	674.48	38 7.20	418.31	373.79	529.10	- 101.05	C. 6U22	C. 3379	66.798	0.1735	C. 7779	C.C.31	-C.47	2.912
																					STALIO		10		29.164	48.872	-17.840	655.13	42C.49	430.91	400.28	493.47	-128.82	0.5913	0.3660	66.712	0.1559	0.7396	0.0596	- 3. 21	1.120

-

+-----

-

L'equiper l'encage d'autorité l'autorité l'autorit

Transferrage &

No. 11. Conjunction

Firmerun

the profiler

I

1

DIA 3 BETA 2 BETA 2 V 2 V 3 V 2 V 1 HETA 3 V 1 HETA 3 1 UR LOSS COEF. LOSS PARA. LUCS PARA. DEV

Table IVo.

Blade element performance for complete stage.

PERCENT DESIGN SPEED = 89.90 OPTIMUM GLEED CORRECTED WEIGHT FLOW = 74.43 CORRECTED ROTCR SPEED = 7521.53 PRESSURE RATIO = 1.3515 PRESSURE RATIO = 1.3515 ADIABATIC EFFICIENCY = 82.9921 ROTOR 1 STATION 1 - STATION 2 STATION 1 - STATION 2

6 23.020 23.730 26.953 56.986 55.986 55.736 432.83 700.43 5.44 10 5.8
5.8
5.8
5.8
5.8
5.8
5.8
5.6
5.8
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6 22.895 70.40 64.43 14.43 25.060 25.516 50 227.030 531.030 531.030 551.050 561.050 561.050 561.050 561.050 560.035 575.03 535.040 CORRECTED WEIGHT FLOW 4.75 30 578.8 809.1 809.1 947.1 945.1 0.37838 0.37838 0.37838 0.37838 0.37838 0.3785 0.1395 0.1395 0.1395 0.0851 0.0851 14.41 DOWNSTREAM OF STATOR 29.153 29.099 19.292 552.917 552.917 674.013 47.159 417.98 417.98 417.98 417.98 3394.41 3394.41 3393.59 1380.05 520.75 UPSTREAM OF STATOR 2 UPSTREAM OF ROTOR U 1 U 2 M 2 M 1 M 2 M (PR) 1 TURN(PR) 1 TURN(PR) 2 LGSS COEF. EFF LGSS PARA. INC 10 DEV

STATOR 1

 STATION 2 - STATION 3

 I0
 30
 50
 70
 90

 DIA 3
 29.164
 27.422
 55.6172
 23.8174
 22.034

 BETA 2
 52.917
 53.925
 55.050
 55.936
 57.632

 BETA 2
 52.917
 53.925
 51.617
 51.632
 57.632

 BETA 2
 52.917
 55.050
 55.936
 57.632
 57.632

 V 2
 3.12.235
 -11.515
 700.63
 72.330
 72.330

 V 2
 3.95.16
 393.44
 31.73
 317.75
 391.72

 V 2
 3.95.16
 393.44
 317.73
 317.75
 391.72

 V 2
 3.95.18
 401.26
 393.44
 317.73
 317.75

 V 2
 3.95.19
 393.19
 344.82
 324.62

 V 2
 3.95.19
 993.19
 344.82
 324.62

 V 2
 3.95.19
 993.19
 344.82
 324.62

 V 2
 3.95.19
 993.19
 944.82
 324.62

 V 2
 3.95.19
 993.19
 944.82
 324.62

 V 1

Table IVp.

3lade Mement performance for complete stage.

Dutto							96	20.989	21.944	25.438	44.065	
LUCLAIL						2	1,	23.020	23.730	25.316	43.161	
õ					1 90	- STATEON	50	25.060	25.516	23.478	41.954	
					ROI	STATION 1	30	27.080	206.75	22.166	40.477	
2	2	61	-2	13			10	29.153	29.089	20.766	37.253	
66.	96.1	. A360.3	1.247	16.093						1	2	
ENT DESIGN SPEED =	ECTED WEIGHT FLOW =	ECTED RUTOR SPEED =	SURE RATIC	BATIC EFFICIENCY =				014 1	DIA 2	BETA	BETA	
PERCI	CORRI	CORRI	PRES	AIDA								

						29.153	27.080	25.060	020-62	20.989
					BETA 1	20.766	22.166	23.478	25.316	25.438
					BETA 2	37.253	40.477	41.954	43.161	44.065
					BETA(PR) 1	53.715	50.249	49.869	47.832	43.460
					BETA(PR) 2	53.096	41.520	32.817	24.749	16.276
					1 1	16.1.98	671.59	623.45	596.97	603.72
					V 2	645.93	763.20	921.67	859.86	896.20
					1 2 4	618.91	\$21.96	572.01	539.64	545.19
					V 2 2	514.16	540.54	611.06	627.21	643.97
					V-THETA 1	234.68	253.38	247.98	255.27	25.9.32
					V-THETA 2	390.97	64.204	549.31	588.20	623.29
					V (PR) 1	1345.8	972.7	867.5	803.9	1-1-1
					V (PR) 2	956.1	175.4	727.1	690.6	£70.9
					VTHETA PRI	C.648	747.8	678.5	505.8	516.5
					VTHETA PR2	684.5	514.0	394.1	289.1	184.3
					1 7	1077.72	1001.19	926.51	951.09	775.94
					0 2	1075.43	1009.40	75.649	FE.778	01.114
	STATOR 1					0.6064	0.6160	0.5688	0.5432	0.5497
					M 2	0.5653	0.6776	0.7336	A177.0	0. 9077
STATIC	N 2 - 571	1710N 3			M(PR) 1	0.9542	0.8921	0.80°7	0.7315	0.6839
					M(PR) 2	0.7499	0.6814	0.6492	0.6196	0.6045
9	90	20	10	6	T URN (PR)	0.629	8.730	17.052	23.043	27.141
					LOSS COEF.	0.3495	0262.C	0.1028	-0-0027	-0.0473
29.164	27.422	25.672	23.874	22.034	DFAC	0.2347	0.2822	0.2790	0.2492	n. 220A
37.250	114.04	41.954	43.161	44.065	EFFP	+10+-0	0.6518	0.8764	1.0032	1.0432
-10.258	-5.481	-4.080	-6.180	-15.128	EFF	0.3917	0.6427	0.8718	1.0033	1.0451
645.93	763.20	F21.67	859.86	996.20	LOSS PARA.	0.0743	9.0573	0.0265	-0.0006	-0-0120
496. 39	656.98	±21.59	607.27	524.29	1 10 10	-5.89	-6.63	-3.83	-1.97	-1-54
514.16	580.54	¢11.06	627.21	643.9	DEV	7.985	2.720	2.017	4.049	7.575
48 6. 46	(53.97	620.01	403.74	506.12						
390.97	495.43	16.945	548.20	623.28	COR	RECTED WE	IGHT FLOW			
-88.40	-62.75	-44.22	-65.37	-136.03						
0.5658	0.6776	0.7336	+111-0	0.8077	UPSTREAM OF	RGTOR		94.12		
0.4296	C.5771	0.5420	0.5291	0.4529						
47.508	45.558	46.031	49.342	59.192	UPSTREAM DF	STATOR		96.12		
-0.0765	-C.1465	0.060 2	0.1219	0.2566						
0.5296	0.4147	0.4975	0.5423	0.6712	DOWNSTREAM	JF STATOR		93.14		
-0.0302	-0.0550	0.0211	0.0396	0.0749						
-14.83	-11.66	-10.75	-10.84	-11.89						
8.702	12.559	13.670	11.500	2.672						

1. THE PARTY OF

Contraction of the

Tretana treb

11-01000000000

t-mining

And States and

C. TURNNER (S.

THE SHOULD

]

Print and a second

Comment

Publishing .

putation of

Approx 1

Contraction of

(internet

N 3 TURN LOSS COEF. Desc Desc Incid Dev

V2 2 V2 3 V-THETA 2 V-THETA 3

2

011A 3 061A 2 061A 3 7 2 7 3 Table IVq.

AND DODO

I

I

time i

hummi

humilital

hundered

Number

1

Transformer.

[]

 $\left\{ \right\}$

1

- million

Blade element performance for complete stage.

PERCENT CESIGN SPEEU = 49.96

CATIMUM BLEED

CURREUTED NEICHT FLC# = 93+23

CURRECTED FUTCH SPEEU = 4363.01

FRESSURE #ATIC = 1.3594

PDIAGATIC EFFICIENCY = 47.1155

1 40104

STATION 1 - STATION 2

	10	30	50	10	06
1 110	24.150	27.080	25.040	020.12	20.939
0 1A 2	FE0.12	21.302	25.516	23.730	21.944
HETA I	204.05	22.420	100.05	25. PO4	25.933
AETA 2	45.752	47.039	654.64	\$40.024	52.175
367419411	54.325	1-0-50	51.543	47.469	43.644
SETVIPAL 2	161.64	39.255	32.664	24.051	14.553
<pre></pre>	570.03	11.015	546.43	61.648	01-105
~ >	149.73	736.19	792.02	44.416	CF.45P
1 7 1	61.462	535.44	67.464	534.00	51.15
2 7 1	522.48	516.27	515.08	515.53	505.54
V-THE11 1	194.73	\$21.09	241. 20	258.14	A
V-THETA 2	534.37	506.13	¢01.45	616.14	01.134
V (PKI 1	1 Icl	430.4	5.048	100.1	734.5
2 (20)2	141.4	\$12.5	6.11.9	345.46	4.152
VINETA PRI	105.4	767.9	613.9	542.4	4.10*
VINETA PA2	0.420	U.16+	5.066	230.5	150.1
1 7	10.401	10.954	915.24	9+0.74	744.57
7 0	1052.35	21.740	191.44	79.45.	·•• · 101
	0.5243	7666.L	0.5402	0.5464	E 7443
	0.4607	1040.0	0.7064	0.7336	1661 .1
1 (14)6	9425.0	1.9621	J. 7924	0.7245	611-0
4 (P4) 2	0. 65-1	0105.0	1245.0	0.5064	0.4737
I UANIPA I	ci 1.61	15.235	110.61	23.430	2134
LLSS CULF.	0.0545	1660.0	0.0315	E1+0.0	10.60 .0
OFAC	1181.0	\$004.1	0.4112	601-0	5+0+*0
CHF P	2069.0	0.9640	0.9715	4544.0	11 60.0
11	0.9327	0.9621	3.9702	0° 0° 0	efitt.0
L055 Para.	0.01+5	. 600°C	0.00e2	0.0123	5220.0
1 MC 1.0	-1.27	18.1-	-2.12	16.5-	11.1-
JEV	1-0-6	1.755	1. 1	146.6	1.44.7
***	RECTEN AF	GAT FLOW			
UPSTREAM UF	10109		62.66		
UPSTAEAN UF	514104		62.66		
JUN151 - E AM	CF STATIA		44.44		

I NUTAIS

	STAT 10	N 4 - 51	E NULLA		
	. ;	50	90	11	30
CIA J	29.164	11.460	25.672	23.674	22.634
SETA 2	+5.112	41.036	E	\$25.05	52.175
GETA 3	-11.515	-9.300	181	-4.721	-14.620
2 2	748.70	744.15	20.261	019.44	\$24.39
	426.23	10.100	450.71	475.62	420.40
2 74	5 8	15.312	515.40	110.53	\$05.50
16 34	442.10	450.54	00.284	468.74	+4.40+
V-IFEIA 2	524.37	506.13	ec1.65	436.14	651.18
V-THETA 3	- 96.27	86.30-	-+0.4-	-80.31	24.161-
M 2	0.6667	(.esul	0.7044	(.7:36	U.13.7
	0.2585	C. 29e1	U. 4261	6.4129	1.3691
L+N	51.207	**** 75	\$ 4 . 6 1 4	¢0. c 4 5	10.195
LLSS COEP.	J	(.1767	C.1032	0.1(65	C.10L7
UFAC	1961.0	1101.1	0.6057	C. 7C 55	1.7157
LUSS FAMA.	0.643.0	C.LeeJ	C.0362	L. C343	1.0734
INCLU		50	-3.21	-3.08	- 3.77
JEV	1 5	14.13.	14.569	1.054	-0.220

Table IVr.

Blade element performance for complete stage.

PERCENT CESIGN SPEEU = 99.71 Coraected Weight Flom = 49.67 Coraected Rotor Speeu = 434.2.53

COTIMUM BLEO

ССИАЕСТЕЙ ИСТСК УРЕЕЦ = 3342.733 Риеболае RATIC = 1.3482 ACTABATIC EFFICIENCY = 07.7407

RUTUR 1

STATION 1 - STATION 2

							10	30	50	62	06
						1 41	051.90	080-74	040-20	24-020	20.04
						2 410	24.088	27.302	25-516	23.730	21.944
						DETA 1	23.290	22.346	24.350	25.301	25.14
						UETA 2	46.472	+6.771	792.10	53.189	54.43
						ALTAIPH) 1	5 282	50.963	53.752	154.04	16.34
						BELALPAD 2	40.824	40. 74.9	742.65	26.143	16.774
						1 1	544.04	5 49. 55	544.12	552.44	554.77
						2 7	728.95	143.24	755.41	16.077	797.4
						1 7 7	510.29	498.71	495.69	497.55	502.1·
						2 7 7	502.04	2 H - 6 H -	476.63	456.70	46. 1. 4.
						V-THETA L	148.62	205.42	224.40	240.54	2:5.5.5
						V-THETA 2	528.52	86.965	599.14	623.62	649.51
						V (PR) 1	0.976	915.4	5.956	154.7	721.
						VIPR) 2	720.4	040.0	572.8	51 9.9	484.
						VINCTA PRI	H58.8	761.0	676.1	545.6	518.
						VINELA PH2	516.7	422.1	317.7	1.1.22	1 19.1
						1 0	1047.44	113.06	14.004	927.17	754.16
						2 7	1045.21	60.1E6	914.86	852.64	749.51
		SIATUK 1	_			1 4	9905.0	0.5013	0.5065	0.5140	0.5150
						~1 T	U. 65U3	J.6564	0.0445	0.7045	0.72 .0
	STATIC	N 2 - 514	111UN 3			4 (PK) 1	0.4294	1.8517	0.7804	0.7166	·1.+72.
						A(PK) 2	0.6427	1.5747	0.515H	0.4704	0.437
	01	20	50	70	50	TURN(PR)	13.458	15.241	20.055	23.554	20.1 4
						LUSS CUEF.	0.0477	0.0204	FT 10.0	0.0173	0.0332
UIA 3	29.164	224013	25.672	23.674	24.034	UFAC	10. 1994	1.4143	0.4474	0.4342	J. +65
DLTA 2	46.472	111.4.	169.10	53.16V	54.430	LTTV	0.9502	1046.0	0.9359	1794.0	0.972
BEIA 2	-1.0.30	577.2-	-4.430	-7.750	-14.5.84	L FF	-1+1-0	1-19.1	2CH6.0	0.946F	0.4714
2 2	128.96	743.24	14.001	15.871	191.47	LLSS P1 14.	0.0117	0.0052	4700.0	0.0044	0. JU7
• •	458.33	435.56	474.30	450.33	400.¢2	1111	-0. 12	f0.0	0.05	-0.10	
VL 2	502.04	69.485	410.03	466.70	80.50.	1) C V	0.724	1.449	2.947	5.443	H.074
4 7 A	440.71	13.10	416.34	4.45.21	39 55						
V-IHEIA 4	520.22	35.b23	59.14	623.62	e48.60	(LLA)	ACCED AL	IGHT FLOW			
V-THEIA 3	-146.67	14.54-	-30.64		-102.13						
H 2	50620	G.ccc4	C.0895	6.7648	J. 7.2 % O	UPSTREAT OF	RULCK		14.65		
н 3	0115.0	C. J754	6614.0	1435.07	2436-1-						
TLKY	02 . 20	54.776	55. 527	cU. 546	-413-PL	UPSTACAN IF	STATOR		49.47		
LUSS UUEF.	0.1365	c c o l o J	U.U 174	0.0r19	J.L 844						
UFAC	U. 7314	2026.1	0.0725	L.7052	001100	ULANSI - EAM	CF STATOR		H5. 76		
LCSS FAHA.	U.C728	1.6020	0.0271	C.0200	1.0247						
INCLU	-5.01	- 3.37	-1-20	-0.41	-1.52						
Ucv	6.124	12.035	13.320	1.524	3. 415						

tradition of

-minher-

Contraction of

F. RUMMUL

printing in

1 manufacture of the

1.1.quintin 1

partition and

1170000011

Comparison of the second second

purinterio de

Conservation of the local data

Constanting of the

himminstead

L march line

marvelet.

Trinsing and

K. ABI

in the second

Table IVs.

Constant of the local division of the local

I

The second

Blade element performance for complete stage.

84.27 69.66 LURKECTEU KUTUR SPELU = 9357.45 CURRECTED WEICHT FLCA = FERCENT LESIGN SPEED =

OPTIMUM BLEED

1.4239 PHESSURE AATIC

.

ACIANATIC EFFICIENCY = 84.4486

ROTOR 1

STATION 1 - STATICA 2

	10	30	50	10	0 c
1 410	29.150	090-72	25.040	21.020	FPP-05
0 1A 2	29.048	27.302	25.516	23.730	21.944
BELA L	20.465	22.472	23.415	25.047	24.040
3ETA 2	49.435	51.500	53.879	50.195	-7.339
BETALPA) 1	61.798	59.155	55.474	52.009	4E.076
AETA(PR) 2	47.642	41.774	36.267	24.762	14.939
1 1	500.33	505.07	514.28	520.02	57 4.71
V 2	710.75	733.49	740.40	764.35	78 4. 85
V 2 1	458.75	466.72	470.49	467.22	471.45
VZ 2	462.21	456.92	436.26	427.47	423.57
V-THETA 1	174.94	193.05	207.66	224.322	230.35
V-THETA 2	539.94	574.42	598.23	635.45	660.75
V (P.R.) 1	6.196	910.3	834.6	700.6	705.5
VIPRI 2	0.96.0	612.7	1.1.2	478.4	442.8
VTHETA PRI	974.2	761.5	094.2	500.2	525.0
VTHETA PR2	506.9	406.2	320.1	215.6	129.3
1 1	1049.09	974.59	901.89	928.49	755.35
2 2	1046.86	982.58	918.31	854.03	749.75
τ	0.4640	0.4680	0.4775	0.4431	0.4877
2 W	9.6304	0.6551	0.6633	0.6922	0. 7049
M(PK) 1	6616.0	0.8445	0.7767	0.7056	0. 6558
MIPRI 2	0. 6044	0.5469	0.4848	0.4313	0. 4070
TURNIPR)	14.150	17.391	19.607	25.338	761.15
LUSS COEF.	0.0502	0.0131	0.0296	0.0040	0.0531
DFAC	0.4339	0.4623	0.4917	0.5142	0.5186
EFFP	0.9514	1696.0	0.9762	0.9980	0.9659
cFF	0.9445	0.9884	0.9749	6100.0	1+96.0
LCSS PARA.	0.0114	0.0032	0.0073	0.0010	0.0132
I NC ID	2.20	2.26	2.17	2.30	3.08
DEV	2.542	2.974	5.407	6.062	9.239
CURI	RECTED WEI	GHT FLOW			
UPSTREAM OF	ROTOR		86.27	î.	
UPSTREAM OF	STATOR		86.27		
DCHNSTREAM	CF STATOR		82.15		

STATUR 1

06 385.81 427.47 427.47 433.412 633.45 65.25 6.3353 6.1538 6.1538 6.1538 6.1538 6.25 6.258 6.5886 6.5886 23.874 -7.534 10 25.67 25 STATILN 2 - STATICN 3 50 21-422 51-50U 733.95 456.95 456.92 574.42 -73.66 -73.66 C.4177 60.326 C.4177 60.326 C.4177 60.326 C.4177 60.326 C.4177 60.326 C.4177 C.6551 C.6552 C.6551 C.6552 C.6551 C.6552 C. -8.8.7 30 29.164 149.453 1525.88 525.85 525.88 525.88 525.85 525.88 525.85 9 M 3 TLRN LCSS COEF. LCSS FARA. INCID n n V 2 V 3 V2 2 V2 3 V-THETA 2 V-THETA 2 N 2 01A 3 8eta 2 8eta 3

Table IVt.

Blade element performance for complete stage.

.

26.46 PERCENT DESIGN SPEED =

OPTIMIUM BLEED

84.61 CORRECTED MEIGHT FLOW =

CORRECTED AUTCH SPEEU = 3360.14 PRESSURE RATIC

= 1.4135

ADIABATIC EFFICIENCY = 30.6/06

RuTur 1

STATION 1 - STATION 2

	10	50	50	1 0	00	
I AI U	29.150	27.040	25.000	23.020	+65.00	
2 IA 2	29.083	27. 302	25.516	23.730	776°12	
SETA 1	19.739	22.113	23.949	75.340	04.530	
HETA 2	\$16.25	52.832	55.403	54.274	151.65	
BETALPRI 1	63.760	61.105	57.8.18	54.471	50.445	
SETALPRI 2	40.140	+1.135	35.842	21.431	16.2.19	
1 1	471.44	478.96	10.984	4.32.55	493.56	
2 2	741.75	149.20	751.62	767.70	00.107	
1 7 1	443.77	443.73	16.944	24.144	441.34	
V 2 2	447.23	452.63	426.77	403.67	16 .204	
V-THETA 1	159.24	1 90. 50	198.50	219.55	270.93	
V-THETA 2	61.195	597.02	613.71	653.00	679.61	
V(PA) 1	1003.7	5.619	940.9	750.51	C. 994	
V (PK) 2	5.640	601.0	526.7 .	454.8	422.7	
VTHETA PRI	6.006	0.+0H	712.4	613.2	E 42.0	
VINETA PR2	465.5	195.3	309.7	205.5	118.0	
1 1	1059.53	434.29	910.h6	836.72	752.85	
U 2	1057.27	932.36	927.44	862.52	19.767	
1 4	0.4319	0.4390	0.4446	0.4520	0.4529	
M 2	0.6470	0.6596	0.6650	0. 6323	0. 7047	
M(PR) 1	+616°0	0.8417	0.7714	0.6970	0.6414	
A(PH) 2	1695.0	0.5291	0.4600	0.4.342	0. 3763	
TURNIPH)	17.61+	19.970	22.015	27.039	36.4.45	
LOSS CUEF.	0.1025	J.0432	0.0426	10+0*0	0.1203	
OFAC	0.5095	0.4424	0.5209	0.5541	0.5532	
EFFP	0.9105	0.9647	0.9576	6519.0	1620 .0	
ËFF	1406.0	0.9625	0.9657	312 5.0	0.9253	
LUSS PARA.	0.0251	U.0107	0.0106	0.0101	10.00.0	
I NC I O	4.16	4.21	4.20	4.67	5.84	
DEV	1.040	2.335	5.082	6.731	7.509	
CCR	RECTED AFI	IGHT FLOM				
UPSTREAM OF	ROTUR		82.01			
UPSTREAM GF	STATOR		92.61			

STATOR 1

	STATI	ON 2 - 51	ATION 3		
	01	30	50	10	05
01A 3	29.164	27.422	25.672	23.874	22.034
BETA 2	52.914	52.832	55.403	58.276	59.151
BETA 3	-13.660	-12.956	-10.976	-12.776	-20.000
¥ 2	741.76	149.20	751.62	767.70	191.60
K 3	544.91	484.83	432.63	369.01	316.47
V2 2	447.29	452.63	426.77	403-67	405.91
VZ 3	525.05	472.49	424.72	359.88	297.38
V-THETA 2	591.73	557.62	618.71	653.00	679.61
V-THETA 3	-130.53	-108.70	-82.37	-61.60	-108.24
H 2	0.6476	C.6596	0.6650	0.6823	0.7647
	0.4662	C.4160	0.3718	0.3162	0.2710
TURN	411.99	65.789	66.379	71.052	79.151
LOSS COEF.	0.1396	0.1865	0.1886	0.2171	0.2330
DFAC	0.6564	C. 7078	0.7524	0.8322	6006*0
LOSS PARA.	0.0544	C. C685	0.0651	0.0693	U.0662
INCID	0.83	0.69	2.70	4.28	3.20
DEV	5.100	5.084	6.774	4.904	-2.200

(insurfs

Company of

-

(maining

Community of

Transient B

Contrast of the local division of the local

Contraction of the local division of the loc

-

1

(mining)

Connection of

THREE CO.

(interior)

M

1

76.46

UCWNSTREAM OF STATUR

Table IVu.

I

I

ſ

0

0

[

0

D

0

0

0

0

[

[

[

0

Blade element performance for complete stage.

19.93 PERCENT CESIGN SPEED =

BLEED

MUMMIN

94.45 CORRECTED WEIGHT FLCM =

CURRECTED FOTCH SPEEN = 3361.12

= 1.2249 FRESS JRE RATIC ADIABATIC EFFICIENCY = 33.4738

I GUIDA

STATION 1 - STATION 2

	10	C.	20	22	Ot
1 110	24.150	27.030	25-060	23.020	20.944
111 /	29.034	27.302	25-516	23. 730	21.944
	007 00				
1 1 1		211.22	C	++1 .07	H6 +
BELA 2	36.705	39.452	42.459	41.474	44.659
BELA(PK) 1	55.795	53.533	161.64	45.430	40.854
SETAUPPI 2	51.326	+1.527	34.220	24.752	10.752
1 1	589.44	\$38.25	605°504	614.76	65 ** 29
~ ~	055.19	745.53	780.99	830.29	P62.04
1 7 7	552.83	554.02	551.10	553.75	54 4. 03
Vi 2	525.23	575.67	16.515	592.47	613.22
V-T-HETA 1	205.60	225.78	250. 83	257.04	264.24
V-THETA 2	391.60	413.74	527.52	591.70	605.94
V (P.K) 1	10001	932.2	853.7	703.2	745.7
V (24) 2	9.046	169.0	696.5	652.4	£ 40.4
VINETA PRI	844.4	749.8	6.129	502.2	4.87.4
VINETA PR2	054.3	8.908	1.196	273.2	184.5
11	1050.11	975.54	902.77	829.28	755.08
0 2	10:7.83	483.54	919.20	854.84	70.52
1 .	J. 5514	0.5597	0.5669	0.5742	0. 5860
4 2	0.5922	1679.0	0.7148	0.7639	0.7952
1 (HA) 1	0.9435	0.6722	0.7903	0.7396	9465.0
4(PR) 4	0.7599	0102.0	0.6374	0.6002	0.5915
TURN(PA)	5.450	12.011	15.571	20.683	24.102
LCSS CUEF.	1621.0	0.1049	0.0980	0.0624	0.0495
JFAC	0.2323	0.2601	0.2776	0.2774	1745.0
EFFU	0.6933	0.8514	0.8613	0.4365	0.9550
EFF	0.6852	0.8463	0.8770	0*6.5*0	0.9532
LCSS PARA.	5660.0	0.0259	0.0249	0.0141	0.0124
1 NC 10	-2.91	-3.36	15.6-	-4.36	-4.15
UEV	0.226	2.721	3.420	** 052	°20.92
COR	RECTED WEI	GHT FLOW			
UPSTREAM OF	ROTOR		95.46		
UPSTREAM CF	STATOR		94.46		
DCHINSTREAM	CF STATUR		95.03		

		STATOR	-		
	STATIC	115 - 2 N	ATILN 3		
	2	30	50	76	0.6
CIA 3	24.164	21.422	25.672	23.174	22.034
BETA 2	36.705	39.452	42.489	414.474	44.658
BETA 3	-14.403	-4.606	-4.080	-1.534	-21.380
2 1	625.19	745.53	760.99	830.29	862.09
5 1	505.95	576.51	08.550	612.42	16.12+
2 7 7	525.24	575.67	16.515	592.47	613.22
£ 7A	490.05	574.65	632.19	600.56	442.19
V-THETA 2	351.60	472.74	561.52	04.182	46.500
V-THETA 3	-125.65	-46.25	50.44-	-84.54	-229.01
H 2	0.5922	1210.0	0.7148	C.7639	0.7562
H 3	C 6 4 4 9 3	6.5153	0.5680	C.5485	0.4402
TUKN	801-1C	44.058	44.568	52.409	72.038
LCSS COEF.	U.C87J	1901.0	0.0062	0.1244	0.3087
DFAC	0.5450	C. 4655	C.4463	C.5248	0.7150
LCSS PARA.	0.6339	0.440	0.0022	C.04C3	0.6828
INCID	-15.38	-12.65	-10.21	-9.53	-11.29
UEV	4.557	13.434	13.670	9.140	-9.580

Table IVv.

Blade element performance for complete stage.

MIMMON BLEO

66.99	10.44	1+.1465	1.3460	34.6850
	9			
SIGN SPEEC	WEIGHT FLOW	RUTCH SPEED	ATIC	EFF ICLENCY
FERCENT DI	CCRRECTED	CONNECTED	PRE SSURE	AC1 4HA LIC

40TUR 1

STATION 1 - STATION 2

	10	30	C:	01	00
1 4 1	19.150	27.060	25.060	23.020	20.943
014 2	29.033	27.302	25.516	23.730	21.944
HETA L	21.007	24.405	24.190	25.627	25.800
SEIA 2	43.930	+5.835	44.141	49.088	52.545
SETALPHI 1	54.082	55.074	51.416	47.352	186.54
B=14(P4) 2	46.837	41.230	34.354	26.669	19.729
1 1	505.49	572.19	581.36	547.65	504.03
V 2	716.94	740.74	765.44	788.23	790.50
V 1 1	16.125	529.00	530.36	529.84	18.956
V4 2	216.31	516.10	510.38	516.22	480.51
V-THETA 1	202.72	218.10	238.12	254.16	254.54
V-THETA 2	84.1.6+	531.36	570.44	545.68	627.70
V (PH) 1	5.866	924.0	850.4	782.1	730.5
V (PK) 2	154.8	686.2	518.2	1.1.2	507.4
VIHETA PRI	347.5	757.0	554.R	515.2	4.7.64
VINETA PR2	5.0c5	452.3	944.9	259.3	162.9
1 1	1050.24	315.65	902.48	82c.3P	756.17
0 2	10+8-00	983.66	16.919	854.96	790.51
1 1	0. 5273	0.5339	0.5429	1575.0	0. 5555
× 2	0.6430	0.6678	0.5734	0.7161	0. 71 94
4 (P.4) 1	0.9310	0.8621	2461.0	0.7308	0.5831
4(P4) 2	0.6769	J.6167	0.5500	0.5248	0.4614
TURNIPH)	11.245	13.843	11.0+2	29.682	24.203
LCSS COEF.	0.0245	0.0054	-0.0073	0.0160	0.0777
JF4C	0.3490	J.3663	0.3970	0.3741	0.4249
EFFP	0.9655	0466.0	1.00+3	0.9470	0.9375
±,	0.9648	8466.0	1.0087	0.9863	0.9349
LUSS PARA.	0.0059	£100.0	-0°0019	1+00*0	0.0192
11610	-1.52	-1.63	-2.78	-2.45	-2.04
750	1.737	2.430	3.554	5. 949	10.027
СОКК	HCTED .EI	IGHT FLOW			
UPSIRCAM OF	KUTUR		10.45		
UPSTREAM OF	STATOA		10.46		
O WASTAGEN	PUTATO 3		02.20		

STATUK 1

	STATIC	N 2 - 51	11CV 3		
	2	90	50	210	96
14 3	\$91.22	27.422	45.072	23.674	22.034
ETA 2	43.430	45.0.35	44.181	49.638	52.506
Jela J	-11.515	-4.255	-6.00	-3.184	-35.120
2	716.90	746.74	105.44	798.23	190.50
	528.25	535.62	546.22	473.80	983.30
12 4	516.31	514.10	510.38	516.22	14.06+
12 3	517.62	:38.14	12.345	407.73	313.52
I-THETA 2	64.1.44	\$31.36	570.44	80.342	527.70
I-IHETA 3	-165.45	*0.0*-	-57.36	-75.62	-220.51
12	0.6430	6.6670	6.0534	0.7161	0.7194
	0.4031	C.4762	168+.0	0.4169	0.3351
LAN	154.55	161.15	54.166	212.50	87.680
.CSS COEF.	0.1352	6.1316	C. U675	0.1764	0.6277
DFAC	0.6009	1.5024	0.5722	C.0774	0.6353
CSS FARA.	0.032	6.6283	u.U230	C. 0550	J. U563
NCIC	-6.14	-6.31	-4.52	15.4-	-2.38
LEV	7.445	13.185	11. 745	4.440	-11.320

1

(internet)

(main)

1

(interest

R

1

1

R

1

B
Table IVw.

1

T.

1

0

0

0

D

0

0

0

[

[

[

[

1

i i

•

Blade element performance for complete stage.

-		-	~
•	-	5	-
5	~	-	m
9	'n	3	-
		m	
-	3	0	
LL.	3	-	
2	+	2	
in	E		
2	5	č	J
2	-	-	-
S		ž	1
LL L			æ
13	E	E	u
-	-	-	3
î,	E H	E.	S
2	Ĩ	ž	5
i.	ů	ō	ä
a.	U	5	đ

MINIMUM BLEED

ADIABATIC EFFICIENCY = 32.1879

R0108 1

STATION 1 - STATION 2

	10	30	20	10	06
014 1	29.150	27.083	25.060	23.070	20.994
UIA 2	29.043	27.302	25.516	23.730	21.944
HETA I	20.047	22.115	23.757	25. 905	25.743
3ETA 2	47.673	50.300	53.507	54.805	54.869
SETAIPAI 1	61.518	53.301	55.271	51.961	48.051
SETA(PR) 2	45.569	41.059	37.235	29.137	19.494
V 1	517.72	\$31.64	535.75	536.11	538.25
1 2	751.39	158.04	748.47	757.80	792.33
1 2 4	436.36	492.53	490.35	482.65	414.43
VL 2	505.96	484.50	445.14	441.83	433.09
V-THETA 1	177.47	200.15	215.84	233.39	233.78
V-THETA 2	555.51	543.70	601.72	627.93	663.57
VIPRI 1	6.6101	937.3	860.7	781.5	725.3
V (P4) 2	722.7	542.7	559.1	505.8	456.7
VIHETA PAL	4.956	797.5	707.4	614.7	÷ 39.4
VTHETA PR2	516.1	422.1	334.3	246.3	144.9
11	1073.90	49.16¢	923.23	849.07	773.21
12	1071.52	1005.82	940.02	874.23	808.43
1 1	0. 4695	0.4827	0.4866	0.4870	0.4890
4 2	1159.0	0.6019	0.6558	0.6754	1665.0
M(PK) I	0.9240	0.8510	0.7818	0.7099	6454.0
M(PK) 2	0.6249	0.5507	0.4899	0.4450	r. 4029
TURNEPH)	676.51	17.242	18.036	22.724	29.556
LUSS COEF.	0.0722	9640*0	0.0410	0.0251	0.0422
OFAC	0.4228	0.4465	0.4820	0.4 P67	0.5120
EFFP	0.9310	4456.0	0.9653	0.9818	0. 3726
e FF	0.9269	0.9530	0.9535	905 P.C	0.9712
LCSS PARA.	0.0175	0.0124	0.0100	0.0062	0.0104
010VT	1.92	1.40	1.57	2.06	3.05
UEV	0.469	2.259	6.435	4.437	0.79%
COM	RECTED ME	IGHT FLOW			
UPSTREAM OF	ROT CR		97.15		
UPSTREAM UF	STATOR		87.15		
DCANSTREAM (CF STATOR		95.34		

-

STATUR

	STATIC	15 - 2 NO	ALLUN 3		
	10	30	50	10	96
014 3	29.104	1.422	25.672	23.674	22.034
BETA 2	41.073	50.300	53.507	54.668	56.859
841A 3	-7.226	054.4-	-9.721	-23.300	-34.720
	751.39	758.64	143.631	767.80	794.39
5 1	514.60	139.72	517.82	314.80	315.66
2 7 7	505.90	484.60	445.14	441.83	433.08
×4 3	510.57	138.11	510.39	351.39	246.28
V-THETA 2	15-555	583.7C	£C1.72	65.7.53	663.57
V-THETA 3	-64.74	-41.05	- 67.43	-130.40	24-141-
M 2	0.6517	C.6019	0.0558	C.6754	1659.0
H 3	0.4364	1.4617	0.4436	C.3183	0.2674
TUKN	54.639	14.730	¢ 3. 240	75.228	95.589
LUSS CUEF.	0.2343	C.1376	0.0750	C.2640	0.3054
UFAC	0.6466	2555.0	0.0319	C. 8348	6575.0
LUSS PAKA.	0.6930	C. C517	G.0462	0.0F11	0.0720
INCID	-4.41	-1.64	18.0	C. 67	C. 52
Ucv	11.734	13.610	8.029	-2.680	-21.520

Table IVx.

Blade element performance for complete stage.

 PERCENT LESIGN SPEEU = 100.04

 CURRECTED WEIGHT FLUM = 83.50

 CURRECTEU RUTCR SPEED = 4370.58

 PRESSURE RATIC
 = 1.4159

 PRESSURE RATIC
 = 1.4159

 AUIABATIC EFFICIENCY
 = 78.2805

Minmun Bueso

RESSURE R	1 ABATIC	
đ	Ā	

ROTOR 1 Station 1 - Staticn 2 30 60

	10	30	20	10	00
JIA I	29.150	27.080	25.060	23.020	.86 ° 0c
014 2	29.098	27.302	25.516	23.730	21.944
BETA 1	20.236	22.360	23.937	25.447	25.67
BETA 2	50.242	52.383	55.753	57.632	64.09
BETALPRI 1	63.122	00.555	57.557	54.333	50.431
SCTA(PR) 2	45.936	41.579	38.466	30.141	19.700
1 1	499.7	41.564	501.73	503.41	508.4
V 2	751.02	755.62	739.42	759.03	773.47
1 2 1	459.29	457.91	458.58	454.57	459.47
VZ 2	480.31	461.22	416.11	18.204	391.145
V-THETA 1	109.77	188.36	203.57	216.31	219.87
V-THETA 2	577.35	598.53	611.22	640.26	673.49
V (PR) 1	1015.9	931.5	854.8	179.6	119.7
V (PK) 2	060.1	616.6	531.5	469.3	*0**
VTHETA PRI	906.2	811.2	721.4	633.4	554.
VTHETA PR2	496.3	409.2	330.6	235.6	136.5
۲	1075.94	666.53	924.98	849.68	774.65
2 0	1073.65	1007.73	18.140	875.88	90 °608
M 1	0.4427	0.4478	0.4540	0.4556	. 0.4604
M 2	0.6472	0.6558	0.6442	0.6629	0.6784
M(PR) 1	0.9184	0.8424	0.7735	0.7056	0.4516
M(PR) 2	0.5952	1 58 5 . 0	0.4630	0.4104	0.354
TURN(PK)	17.183	18.976	19.091	24.152	30.731
LCSS COEF.	0.1030	094000	0.0433	0.0317	0.0623
DFAC	0.4624	0.4805	0.5185	0.5430	0.5899
EFFP	0.9087	0.9621	0.9662	0.9786	0.3620
ĒFF	0.9029	1959.0	0.9043	+116.0	0. 359
LCSS PARA.	0.0253	0.0113	0.0104	0.0078	0.0153
I NC I D	3.52	3.66	3.86	4.53	5.43
DEV	0.838	2.779	7.666	1++-6	11.000
COR	RECTED WE	IGHT FLOW			
UPSTREAM GF	ROTOR		83.50		
UPSTREAM OF	STATOR		93.50		
UCWNSTREAM	CF STATOR		81.65		

		SIATOR	_		
	STATIC	IN 2 - 51	ATICN 3		
	Io	36	50	16	96
014 3	29.164	27.422	25.672	23.674	22.034
BETA 2	50.242	52.383	55.753	57.632	60.492
BETA 3	-7.400	158.631	-12.055	-32.560	-41.780
V 2	751.02	155.62	735.42	758.03	773.87
6 >	576.24	556.07	457.31	299.10	260.73
V2 2	480.31	461.22	416.11	405.81	381.16
VZ 3	571.44	553.20	447.22	250.96	194.43
V-THETA Z	511.35	556.53	611.22	640.26	673.49
V-THETA 3	-74.22	-56.49	-55.51	-162.72	-173.72
H 2 -	0.6472	C.6558	0.6442	C.6629	0.6784
	0.4877	0.4736	0.3381	C.2519	0.2198
TURN	57.042	58.214	¢7.808	50. 552	102.272
LCSS CUEF.	0.1865	C.1746	0.2406	0.4280	0.4097
DFAC	0.5811	C.55C7	6.7176	C.9518	8655.0
LOSS PARA.	0.0751	C.C655	0.0827	C.1174	0.0923
INCIO	-1.84	-C.24	30.6	3.63	4.54
DEV	11.560	12.209	5.695	-15.280	-23.580

Lindenter

ß

Table IVy.

I

I

transmer.

[

1

0

0

0

[

[]

1

Blade element performance for complete stage.

PERCLAT LESION SPEEJ = 99.94 Corrected melgat flom = 97.01

MEN BLEED

ננגאלנדנט אנדנא איבנט = 3302.00

PRESSURE RATIC = 1.2293

AUTABATIC EFFICIENCY = 59.4006

ROTOR 1

STATION 1 - STATION 2

	10	30	50	70	Uo
ula l	29.150	27.080	25.060	23.020	0.994
2 410	24.043	21.302	25.516	23. 730	21.944
3614 1	20.227	22.172	24.056	25.32.	25.443
UETA 2	36.973	39.279	42.122	43.798	44.139
BETA(PA) 1	56.886	53.548	49.453	45.257	40.843
BETA(PA) 2	52.040	41.665	34.289	25.156	16.665
<pre></pre>	589.6%	549.26	610.09	620.17	625.35
V 2	645.93	745.44	782.83	833.52	849.47
V 2 1	553.28	56**95	557.10	540.57	554.97
VZ 2	516.69	577.03	580.63	606.43	624.30
V-THETA 1	203.97	226.16	248.49	265.26	269.79
V-THETA 2	387.63	+11-94	525.06	571.62	005.17
1 (24)	1012.8	934.0	860.5	794.4	747.0
V (PR) 2	940.0	172.4	702.8	670.2	651.7
VINETA PRI	148.3	151.3	655.8	56 3. 6	4.88.4
VTHETA PH2	562.3	513.5	395.9	244.9	1 96.3
1 1	1052.15	877.43	904.52	830. P9	757.54
5 5	10+9.91	985.44	920.98	856.51	792.05
1 4	0.5501	0.5596	0.5704	0.5504	0.5859
2 5	0.5825	0.6784	0.7152	0.7560	0. 9022
M(PR) 1	8448.0	0.8722	0.3045	0.7453	9669 0
A(PA) 2	0.7575	0.7030	0.6+20	0.6159	0.6012
TURN(PR)	4.845	11.881	15.364	20.101	24.198
LOSS CUEF.	0.1918	0.1128	0.1151	0.0546	0.0464
DFAC	0.2354	0.2570	0.2760	0.2585	0.7329
EFFP	0.6650	0.838 J	0.8586	6120.0	0.9531
EFF	0.6565	0.8335	1534.0	0.5245	0. 9564
LLSS PARA.	0.0415	0.0278	20.0292	0.0179	0.0114
INC D	-2.71	-3.35	-4.05	-4.54	- 4.14
UEV	046.6	2.806	3.459	4.456	7.965
0.04	RECTED WEI	GHT FLOW			
UPSTREAM OF	RUTOR		10.19		

		SIATUR	_		
	ST AT LC	Ch 2 - 511	ATIGN 3		
	10	30	50	10	36
6 MU	29.164	27.422	25.672	23.674	22.034
BETA 2	36.678	51.2.4 5	42.122	43.298	44.109
ULTA 3	-11-655	-4.761	-4. LBU	-7.226	-20.540
V 2	645.93	745.44	782.83	833.52	369.47
K 3	477.80	551.50	c16.20	84.645	96.500
V2 2	51c. 69	577.03	580.63	00.03	624.30
VZ 3	467.83	549.58	614.63	594.72	471.94
V-THEIA 2	347.63	471.54	525.06	571.62	605.17
V-THETA 3	-56.85	15-34-	-43.84	-75.40	-176.83
M 2	0.5825	L.6784	0.7152	C.7+60	0.8022
M 3	0.4230	C.4915	0.5505	C.5353	0.4454
TURN	610.64	44.060	46.202	50.524	04.649
LLSS COEF.	0.0755	C.1162	0000.0	0-1117	J.2716
DFAC	0.5615	C. 5220	0.4684	C.5346	1269.0
LCSS PANA.	0.0257	C. L436	0.0002	C.0362	J. J768
INCIO	-15.20	-14.66	-10.58	-10.70	-11.64
DEV	7.265	13.259	13.670	10.454	-2.740

10.79

UPSTREAM CF STATOR JCWNSTREAM CF STATUR

5

Table IVz.

Blade element performance for complete stage.

MEAN BLEED

93.74 CURRECTEL FOTCH SPELD = 4356.00 96.99 = 1.3554 CURRECTED WEIGHT FLCM = H PERCENT DESIGN SPEEU FRESSURE RATIC

ADIABATIC EFFICIENCY = 95.9968

R010H 1

STATION 1 - STATICA 2

06

10

20

30

10

20.999 21.9948 22.9469 23.9469 24.9469 29469 201.955 2949 201.955 25.947 201.9552 25.947 25.952 25.9 245.4 830.08 855.69 0.5486 0.7242 0.7242 0.5170 21.969 0.0.161 0.5927 0.5971 23.020 23.730 25.564 49.884 47.378 47.378 587.96 587.96 587.96 5514.20 5514.20 5514.20 5514.20 5514.20 5514.20 5514.20 5514.20 554.71 659.71 569.72 659.71 0.0041 -2.42 4.510 576.4 0.9965 25.060 25.516 25.516 24.352 44.132 3314.352 511.122 514.75 514.75 514.75 514.75 93.74 93.74 619.4 90.81 664.0 J.6129 14.105 0.0065 J.3753 J.9935 J.9936 J.9936 CCRRECTED WEIGHT FLOW 27.083 976.48 0.6701 -1.8-759.3 J.5334 446.2 681.1 554.7 1051.13 1048.89 0.5251 0.6426 0.9405 DUNNSTREAM CF STATUR 29.150 29.088 19.827 43.494 43.494 45.314 554.15 554.15 554.15 554.15 554.15 554.15 1494.21 191.37 0.681U 11.515 0.0269 0.9685 0.9685 0.9670 0.9670 1.0065 -1.29 760.4 8.95 B UPSTREAM CF STATOR UPSTREAM OF RUTOR
 361A
 1

 361A
 2

 361A(2A)
 2

 961A(2A)
 2

 1
 2

 1
 2

 1
 2

 1
 2

 1
 2

 1
 2

 1
 2

 1
 2

 1
 2

 1
 2

 1
 2

 1
 2

 1
 2

 1
 2

 1
 2

 1
 2

 1
 2

 1
 2

 1
 2

 1
 2

 1
 2

 1
 2

 1
 2

 1
 2

 1
 2

 1
 2
 4 1 4 2 4 (PK) 2 4 (PK) 2 1 UKN: PK) 1 UKN: PK) 2 HFP 2 HFP 2 HFP 2 HFP 2 HFP 2 HFP 2 UKC10 2 UKC100 2 UKC 1 VIO 2 VIC 22.034 -21.640 -21.440.17 491.66 491.66 491.66 491.65 144.22 -144.67 -144.67 -144.67 -144.67 -144.67 -144.67 -146.63 -146.73 -146.75 -146.75 -146.75 -146.75 -146.75 -146.75 -146.75 -0.6 23.674 49.686 -10.079 798.05 441.52 514.20 474.09 C. 7242 C. 4233 59. 565 C. CE74 L. 0 F12 -64.27 C.C281 -4.11 7.601 10 25.672 4.6.182 74.182 74.182 74.182 54.21 54.21 54.21 54.21 54.21 54.21 54.21 54.21 54.21 54.21 54.21 54.21 54.21 54.21 54.21 55.25 55.555 STATION 2 - STATION 3 50 STATUN 1 61.422 40.29U 744.65 483.65 614.55 614.55 462.09 550.25 550.25 C. 4240 50.655 C.1455 4.000 (.0701 C. 6425 30

PULLINGUIGH

Linument.

THE OWNER OF THE OWNER OWNER OF THE OWNER OWNER

annunutri i

(interesting)

(indexis)

Committee and

finantini (

(dimmin)

Summing

(internet)

Comparison of

2

anature .

Contrastico -

Time of the local division of the local divi

1

1

-5.65

C. C 471

M 2 M 3 Turn J LLSS CUEF. LLSS PARA. INCIC PARA.

29.164 43.454 11.515 718.04 476.85 526.90 467.25 467.25

01A 3 667A 2 667A 3

N m

V 2 V 3 V2 3 V2 3 V2 3 V-THETA 2 V-THETA 2

Table IVaa.

I

the statement of

factoria .

Interest of

(hourseline)

Concession of the local division of the loca

L.

Contraction of the local division of the loc

Transformer, Juni

-

The second second

Blade element performance for complete stage.

PERCENT DESTON SPEEU = 95.88

MEAN BLEED

CCARECTED WEIGHT FLCM = 87.35

CLARCCTED RLTCA SPEED = 3357.16

PRESSURE RATIC = 1.4772

ACTANATIC EFFICIENCY = 35.7154

1 H010H

STATION 1 - STATION 2

00

6.2

50

50

10

1 410	091.62	27.080	25.060	24.320	20.999
2 410	29.084	21.302	25.516	0 . 7 . 6 6	21.944
HETA L	21.048	22.964	24.357	25.745	568 . 3C
SELA 2	49.344	161.14	53.596	55.103	56.830
SELA(PA) 1	40.H34	£ 68.7c	54.728	51.95E	21.135
BETALPAL 2	114.04	411.501	34.240	25. 835	15.415
 I I	524.19	533.36	539.29	545.20	54 1. 32
~ ~	149.72	702.15	15.041	67° 102	41.1.14
1 7 1	22.964	90.164	62.124	90. [t 4	·5.154
7 7 7	498.41	47H.2A	454.56	452.77	45.3.13
V-INETA 1	L38.75	206.10	222.41	236.42	734.57
V-THEIA 2	555.RU	143.40	619.18	11.048	576.5%
V (PK) 1	1305.4	1.320	450.6	179.4	7.22.4
V (P4) 2	9-65°	527.1	554.4	503.0	4 75.7
VINCTA PAL	+10.4	182.8	534.6	66.5.5	4.953
VINETA PAZ	40404	405.6	314.5	219.2	126.3
u 1	1055.55	16.096	56°c10	R42.34	741. 39
U 2	10.4.34	£0.99.	93 J. CR	9-4.32	15.000
1 1	0.4784	J.4475	1.4732	0.4995	0000-0
C2 N	0.6549	0.4701	5.010.0	02-1-20	0.7274
4(PK) .	J. 9163	J.8447	1-11-0	0.7134	1140-0
4(PK) 2	0.6079	J.5514	0.4955	0.4442	0.4231
I UNAL PRI	10.467	17.547	20.147	25.125	1.709
LUJS CUEF.	0.0533	0.0377	0.0448	0.P 444	0.0545
UFAC	0.4422	1464.6	0.4 PF 4	0.4955	0.4975
CFFP	0.9379	J.9465	0.3634	0.4575	0.3614
L U	1460.0	J.9647	0.9614	0.9457	0.4592
LLSS PAHA.	0.0102	3.0045	0.0113	0.0114	0.0147
1 50 10	1.24	1.00	1.03	1.16	21.12
VSU	116.0	1.501	3.760	5.135	A.715
503	RECLEC AFT	ICHT FLOW			
UPSTREAM OF	ROTOR		97. P5		
UPSTALAN CF	SLATUR		47.45		

SIATUR 1

	STATIC	N 2 - 51	ATICN 3		
	10	07	Uć	10	3 n
01A 3	401.45	122	25.012	23.674	22.034
SETA 2	49.340	161.12	53.596	55.105	55.840
SEIA 3	-19.240	-0.878	-4.606	-9.542	-14.460
	149.72	764.15	769.51	24.147	81.1.15
í J	436.20	465.30	481.63	432.70	345.24
12 2	44 6.41	416.20	426.50	452.77	458.13
()	455.23	465.52	440.21	420.71	363.23
I-THETA 2	566.30	04.593	£19.18	649.11	016.64
I-IFEIA 3	-155.24	-56.20	- 38.69	-71.73	-126.34
12	0.6549	1.6761	5.6792	L.7C20	J.7276
	0.4104	0.2015	0-4144	L. 3716	C.3300
URN .	03.020	50.619	5e. 202	64.645	15.359
.CSS ULLT.	0.2124	C.1743	C+80.0	1.1231	1:51.0
UFAC	10+1-0	C. 7354	C.6744	C.7111	C. H262
CSS FARA.	0.0035	C. Ue 5 2	0.U294	L. U248	J. 4 - 36
NCIU	- 2.13	-1.11	0.90	1.10	65
) E V	-0.520	11.162	13.144	e.138	-1. + 60

J4. 73

ULANSTARAM LE STATUH

i

Table IVbb.

Blade element performance for complete stage.

66.99 43.75 FERCENT FESTON SPEED = CC4ReCTED METCHT FLCm =

MEAN BLEED

CURRELIEC HUICE SPEED = 33JI.24 = 1.4376 PHESSURE HATIC ALLABATIC EFFICIENCY = 83.0526

1 40104

STATION 1 - STATION 2

						-0.00	100.2	6 34 3	10000	
						1.45	18.2	2.34	18.0	C. 50
						0.0404	0.0439	0.0401	C.C706	C++3
		80.53		UF STATUR	UCHNSTREAM	C.8352	C-7753	G.7C17	C. 7110	6450
						0.1453	0.1353	C.1154	0.1960	1140
		91 75		CT AT OD	IDSTREAM CC	0.3274 a3 a78	C. 3627	C.4010	C. 405C	4772
		83.75		RUTOR	UPSTREAM CF	0.7088	C.6E56	0.6645	C. 66CT	2633
			IGHT FLOW	KECTED #L	CUR	-170-75	-114.47	616.02	-76-29	1.94
						342.77	407.79	461.93	467.23	1.04
6°041	6.539	5.197	2.329	0.395	UEV	425.88	424.12	432.06	453.71	6.20
4.7	3.73	3.47	3.15	3.17	I NC IU	382.95	423 . 54	467.47	472.91	5.05
0.024	0.0194	0.0146	0.0136	0.0267	LCSS PARA.	797.65	774.774	754.07	752.56	0. 39
0.936	0****	0.9514	2156.0	0.8996	ËFF	-25.480	-15.673	- 6. 427	-9.031	•98.
0.9399	0.9469	0*66*0	0.9539	1406.0	ĒFFP	57. 398	56. 609	55.043	52.946	.583
0.5182	0.5291	0.5112	\$064°C	0.4851	UFAC	22.034	23.674	25.672	27.422	.164
0.0591	0.0767	0.0590	3.0547	0.1079	LCSS COEF.					
32.993	26.296	21.169	18.917	11.279	I UR V(PR)	0.5	70	50	30	2
. 193	0.4221	0.4706	0.5285	0.5730	A(P2) 2					
0-648	0-704H	0.7716	0.8418	0.9175	M(PA) I			ATION &	N 2 - 51	STATIC
0. 1046	0.6456	0-6645	109990	0. 55 32					TOTALC	
	866.67	931.89	51.12	1062.35	7 0					
766.5	840.74	915.24	10.686	1054.51	I N					
129.	218.3	913.9	396.2	474.4	VIHETA PR2					
- 1 - 5	619.9	709.4	798.4	9-69P	VTHETA PRI					
448.	477.0	534.0	602.4	565.2	V (PR) 2					
709.1	770.8	6.448	921.5	1004.9	V (PR) 1					
677.1	649.34	618.02	500.92	587.34	V-THETA 2					
225.44	220.88	205.80	190.61	171.32	V-THETA 1					
479.3	424.12	432.06	453.71	400.28	V. 2					
454.34	454.09	457.FO	400.10	459.76	1 7 1					
797.8:	774.74	754.07	752.96	750.39	< 2					
510.75	504.54	501.43	498.02	400.044	<pre>1 ></pre>					
14.741	27.239	35.947	+1.129	45.4.45	BETALPHI 2					
61.94	53.535	57.166	50.046	62.774	RETALPHI 1					
at E . 1 2	56. HO9	55.343	52.945	51.543	JETA 2					
24.191	25.742	24.206	22.503	20.434	HETA 1					
21.94	23.730	25.516	27.302	29.035	UIA 2					
20.93	23.020	25.060	27.080	29.150	1 410					
07	2	2								
06	7.0	50	3.)	10						

Communities and the second

With Street, S

protocology

(included)

1 manual a

Number of

1. (International of the second secon

piters mail

111100-00111-1

environmente

haren fra

fur second second

addiname!

(install)

1

Contraction of the local division of the loc

1

M 3 Turn LCSS COEF. DFAC LCSS PARA. INCIC DEV

-C.50

29.164 151.589 151.589 150.384 150.384 555.65 557.65 557.95 561.92 0.4532 0.4532 0.4532 0.4532 0.4532 0.4532 0.45532

V Z V 3 V2 2 V2 3 V-THETA 2 V-Theta 3

N 2

U LA 3 BETA 2 BETA 3

Table IVcc.

I

1

The statements

THINK IS NOT

a de la constante de

ſ

Ľ

and the second sec

1

Blade element performance for complete stage.

HALLAT CESTEN SPEED = 109.38 OPTIMUM BLEED

נראאברוכה אבויאן דורא = 100.30

CCARECTED RUTCH SPELU = 9201.30

PRESSURE #ATIC = 1.2506

AUTASHTIC OFFICIENCY = 42.2562

1 XC 10X

STATION 1 - STATION 2

ŝ

1.1

5

30

10

1 41 4	151.94	OH0-14	25-060	24.620	949 . 10
2 410	840.42	21.302	910.62	23.130	1.1.544
SETA 1	208.12	22.564	74.350	25.690	24.855
JEIA 2	050.76	39.134	43.423	45.02A	144.34
OETA(PA) 1	51.413	54.234	50.475	44.707	106.74
BETALPRI 2	618.64	640.44	35.253	24. 523	15.329
× 1	633.33	643.31	1+0-41	654.3H	467.74
2 2	701.14	16.687	941.08	06.119	941.11
1 7 1	588.02	592.33	598.91	591.50	59.6.40
VL 2	407.23	607.60	604.P3	544.50	574.25
V-THETA 1	235.25	250.99	200.05	244.54	20.042
V-THETA 2	458.92	494.464	532. 29	545.13	10.435
V (PKI 1	1091.9	1013.4	935.3	962.6	FU6.4
V (P4) 2	922.1	345.3	1.647	104.01	1.99.1
VINETA PRI	920.1	822.3	720.0	\$27.P	542.3
VTHETA PH2	C. +69	587.6	423.9	295.4	134.8
1 1	1155.34	1073.29	62.29	912.38	A31.84
2 0	1152.98	1082.00	1011.21	940.52	B4 9. 73
-	0.5950	0.6050	0.5082	0.6183	0.6247
2 K	0.6836	3.7147	0.1700	0. A4U4	1164.0
H(PA) 1	1.0258	1649.0	0.8799	0.6125	0.7602
4(PK) 2	0.8342	0.7712	J.6803	0.6534	0.6487
TUAN(PK)	9.605	10.190	15.721	22.084	24.979
LUSS COEF.	0.2043	0.1542	0.1648	0.1295	0.0873
UFAC	0.2285	0.2423	1606.0	0.2876	16+2.0
EFFP	0.6929	1111-0	0.8024	1679.0	0.9270
L FF	0.682*	0.7640	0.7948	0.4580	0.9234
LLSS PARA.	4140.0	0365	0.0413	0.0334	0.0219
I MC I U	-2.18	- 2.67	-2.13	-3.09	-2.59
UÉV	3.713	5.243	4.453	9.923	¢.629
COR	RECTED WE	IGHT FLOW			
UPSTKEAN DF	FUT OR		100.38		1
UPSTREAM CF	STATOR		100.35		
UCHNSTREAM	CF STATUR		47.56		

STATUR 1

	STATIC	N 2 - 511	VIICN 3		
	3	30	50	70	06
(V)	25-164	224.15	25.672	23.674	22-034
ETA 2	1.040	54.134	43.823	45.C28	45.449
E 1 3	636.9-	-5.306	-5.481	-8. 627	-24.320
~	761.14	762.37	841.08	06.112	11.102
-	546.65	533.6H	633.85	634.50	531.89
77	507.23	£07.6C	6C6.83	644.50	674.26
	535.37	561.18	54.056	\$27.39	484.69
-THETA 2	45E.92	44.40	562.39	645.13	16.+64
-THETA 3	-66.33-	-52.58	-60.54	-47.42	-219.05
12	0.6080	(.1147	C. 770C	C.84C4	0.8511
-	0.4630	C. 51 93	0.5640	0.5642	0.4676
UKN	46.443	C++++>	40F 144	\$3.655	501.26
CSS COEF.	U-1740	0.6455	L.0582	C.1638	0.3325
FAC	0.570	C.5187	0.5152	C.5700	0.7367
CSS PARA.	0.010.0	C.C336	0.0204	C. U529	0.0515
NCLU	-15.00	-13.00	-8.84	-8.97	-10.50
EV	192.2	12.734	12.269	b. £53	- 0.520

Tatle IVdd.

Blade element performance for complete stage.

CATIMUM PERCENT DESIGN SPEED = 104.95 CCRRECTEC MEIGHT FLUM = 99.45 CCRRECTED RCTCR SPEED = 9199.41

BLEED

= 1.4298 FRESSURE RATIC

ADLABATIC EFFICIENCY = 82.4708

STATION 1 - STATION 2 ROTOR 1

20.944 21.944 25.944 25.944 25.944 25.944 25.947 25.93 25.93 25.94 25.94 25.94 25.94 25.94 25.94 25.94 25.94 25.94 25.94 25.94 25.94 25.94 25.94 25.94 25.94 25.94 25.94 25.94 20.94 0 0.5465 23.407 0.0507 0.4237 0.4237 0.9600 0.9577 0.0132 3.110 23.410 655.62 900.87 \$°609 924.44 953.47 0.4073 0.4073 0.8073 0.8073 23. 730 23. 730 26. 164 51.726 588.44 558.02 289.03 707.23 866.4 6.75.8 246.2 2 1006.91 1025.23 0.8749 0.8749 0.8749 0.8749 18.718 18.718 0.8749 0.8749 0.9194 0.0194 0.0194 1.2.319 1.2.319 1.2.319 1.2.319 0.0194 25.010 25.516 25.516 25.516 50.416 51.369 32.0369 351.369 587.117 5867.117 5867.117 5724.08 647.117 5724.08 658.1 69.60 54.45 7.44.7 355.1 95.66 50 1068.07 1096.99 0.5887 0.7512 0.9437 0.9437 0.6357 15.795 15.795 0.0877 0.4179 0.9120 0.9120 -1.63 0.471 27.080 23.302 24.302 24 583.68 556.55 252.44 641.93 1019.3 718.9 CURPECTED MEIGHT FLOW 455.1 50 29.150 29.150 29.150 56.051 56.051 56.051 57.252 55.255 57.25 55.25 55.25 55.25 55.55 57.75 55.55 55.55 57.75 55.5 UCANSTREAM CF STATOR 0.0297 -1.12 -0.475 UPSTREAM OF STATOR 10 UPSTREAN OF POTOR 01A 1 01A 2 8eta 1 8eta 2 8eta 2 8eta(pr) 1 0eta(pr) 2 VZ 1 VZ 2 V-THETA 1 V-THETA 2 V(PR) 1 V(PR) 2 V(PR) 2 VTHETA PR1 VTHETA PR2 1 2 7 22.034 53.625 -21.625 -21.625 -21.62 -22.62 -22.62 -22.62 -22.62 -22.62 -22.62 -22.62 -22.63 -22.63 -22.63 -22.63 -22.63 -22.63 -22.63 -22.63 -22.63 -22.63 -22.63 -22.63 -22.63 -22.63 -23.65 -23.55 -25.55 -25.55 -25.55 -25.55 -25.55 -25.55 -25.55 -25.55 -25.55 -25.55 30 23.674 51.725 51.725 51.725 51.725 5590.977 5592.455 558.052 558.052 107.223 107.23 10 2 25.072 0.0344 50 STATCH 1

STATION 2 - STATION 3 30 20 - 47 - 20 M 3 Turn LCSS COEF. UCSS FARA. Incil Dev Nm V 2 V 3 V2 2 V2 3 V-THETA 2 V-THETA 2 ULA 3 Beta 2 Beta 3 V 2 2

Firstnastress

And and a second

Support of the second second

humana

funning .

(fitunistic)

handling

(indiant/htt

presentation

introduced a

THURSDAY IN THE OWNER

husered is.

Commission of

141201-0111-0

111214/1111

Table IVee.

I

in the second se

-

-

[]

1

Ì

The second se

I

Blade element performance for complete stage.

PERCENT DESIGN SPEED = 109.90 OPTIMUM GLEED

. CURRECTED MEIGHT FLCW = 97.61

COMPECTED ACTCH SPELU = 9195.19

PRESSURE HATIC = 1.4714

ADIAJATIC EFFICIENCY = H4.14.1

RUTOR 1

STATION 1 - STATION 2

	10	30	50	7.0	01
1 41 0	29.150	27-080	25-060	23.020	20.94
2 410	29.099	21.302	25.516	23.730	21.94
BETA L	21.495	23.147	25.111	24. 383	21.94
BLTA 2	44.Lo5	50.354	52.617	54.217	54.48
1 (24)2170	181.62	30.166	52.623	165.544	43.82
SLTALPRI 2	44.552	39.237	33.495	2 5. 94 3	17.20
1 1	6U7.44	015.45	524.84	631.29	1.43.7
< >	633.72	146.74	10.456	670.25	0.149
1 7 7	505.19	15.66.27	555. 79	10.145	414.4
× 2 ×	545.15	541.54	519.72	510.85	664
V-THET. 1	222.54	242.09	265.17	245.46	21.1.5
V-THETA 2	430.74	053.55	580.14	705.98	7.4.1
V (PK) 1	1103.2	0.1101	932.0	F51.3	105.
V (P4) 2	705.0	5.44.2	523.2	505.4	.22.
VTHETA PHI	4.7.4	544.4	740.6	333.5	. 50.
VTHETA PAL	536.1	442.2	343.9	244.5	154.
1 1	16.9211	1046.937	1005.81	60.250	H42.3
u 2	1107.44	1945.80	1024.11	54.2.96	980.7
1 F	0.5610	1.5693	J.57H2	0.5045	0. 594
7 4	0. 7242	U.7451	0.7549	1.755	0. 7P7
1 (20)2	1.0194	2044.0	0.9524	0.7983	1.137
2 (24)W	0.0632	1.6163	0.5525	0.5027	0.467
[NYA (PK)	14.623	16.929	19.128	22.740	19.45
LLSS CUEF.	9560.0	J.0424	0.0354	10. n494	0.113
UFAL	0.4373	J . 4+32	0.4019	7.34.20	3.472
- ++ -	0.9112	0.9520	0.94.0	0. 1535	0.921
E FE	0.9050	0.040.0	0.96 50	- 14t °C	616.0
LCSS PARA.	0.0241	0110.0	1010.0	0.0126	9.024
1 NC IU	-()-42	-0.73	- 1.º 0H	-1.21	-1.1
JEV	-J.543	754.0	2.445	·. 143	1.5.1
CCH	KEUTED AF	IGHT HEOM			
UPSIREAM CF	R01 LH		116		
UPSTREAN UF	STATOR		13.74		
ULANST LEAM	STAT		93.55		

STATCR 1

	STATIN	N 2 - 511	11 Lun 3		
	ŋ	٩٤	ů C	٦٢	90
014 3	29.164	27.4.62	25.072	23.674	22.034
OLTA Z	44.105	+46.03	52.017	54.217	25.487
BEIA 3	-11.170	101-4-	- 4.044	- 16.400	- 24. 660
: >	d33.14	64d. 70	850.01	£10.25	481.22
6 A	51c. 5U	511.76	564.73	+0: :0+	430.72
2 7 7	545.15	541.54	51.9.72	54.85	67.664
V2 3	513.71	505.57	523.70	442.36	340.31
V-IFETA 2	034.17	¢5:•53	6 20.18	105.54	724.15
V-THEIA 3	-114.22	-44.65	- 79.65	-130.34	-181.08
M 2	0.7292	1941.)	0.7585	C.1753	0.7879
E H	77620	L.4372	0.4551	u.3550	J.3681
TURN	120.10	261.65	c1.265	70.617	30.347
LLSS CUEP.	0.2542	1402.3	U.1171	C.1537	0.1223
UFAL	0.7394	1.1161	6.6 533	L.7238	J.8222
LUSS FARA.	0.1003	(.C7t)	C.0407	C.0462	0.0335
INC LD	15.2-	-1.75	-0.03	0.22	-0.46
DEV	0.194	13.254	5.102	1.230	-7.140

Table IVff.

Blade element performance for complete stage.

FERCENT DESLUN SPLEC = 105.35 OPTIMUM BLAND CCRRECTEU = EICHT FLLE = 95.01 CCRRECTEU ACTER SPEED = 9191.52 PRESSURE PATIC = 1.4351

#DIABATIC EFFICIENCY = 32.9948

RDTOR 1

STATION 1 - STATION 2

			10	05	50	٢,	Uc
		1 410	29.150	27.JRU	25.360	25.020	30° 046
		014 2	23 .049	27.302	25.516	21.730	21.944
		hETA 1	21. PU3	22.547	25.017	24.585	C+0+2
		BETA 2	548° n5	51.580	169.42	55. 927	£7.921
		3ET4(P2) 1	61.223	57.396	54.115	50.042	44.433
		JETA(PR) 2	44.185	39.274	34.128	24.122	15.342
		V 1	11.955	61.465	600.34	10.008	F.04. 13
		2 N	840.49	846.33	647.93	841.49	RF5.40
		V Z 1	544.74	549.32	544.02	545.42	544.57
		VI 2	530.13	527.20	490.094	470.11	470.30
		V-THETA 1	217.91	228.07	253.98	272.55	267.05
		V-THETA 2	652.22	69.400	50.169	721.90	741.14
		V (PR) 1	1096.9	1019.5	1.829	849.3	193.6
		V (P2) 2	739.3	681.0	592.1	523.5	6.98.3
		VTHETA PRI	952.1	858.8	151.9	651.0	575.3
		VTHETA PR2	515.3	431.1	332.2	230.5	129.5
		1 1	1109.97	1086.69	1005.81	56.120	F42.34
		J 2	1157.48	1095.80	1024.11	952.43	PP0. 75
		1 4	0.5405	0.5484	0.5539	0.5632	0.5617
		4 2	0.7316	1241.0	U. 7489	0.7650	0.7904
		M(PR) 1	1.0106	0046.0	0.9562	0.7843	1327
		4 (PR) 2	0.6435	J.5986	0.5229	0.4550	0.4354
70	06	TURN(PR)	16.038	14.122	19.987	23.920	31.074
		LCSS COEF.	0.0935	0.0298	2010.0	0.0485	0.0691
. 674	22.034	JFAC	0.4664	0.4704	0.5008	0.5241	0.5309
. 527	57.921	EFFP	0.9182	J.9752	0.9655	0.4654	1550.0
. C 80	-3J.C30	eFF	0.9121	0.9734	0.9675	0.9632	0.9523
1.48	686.49	LCSS PARA.	0.0235	0.0075	0.0100	0.0124	0.0174
4.60	372.04	1 NC 1 D	0.52	0.50	0.41	0.24	1.47
11.0	470.90	DEV	-0.915	0.474	3. 32H	5.422	£. £ 32
16.85	321.94						
1.50	751.14	COR	RECTED WE	IGHT FLOW			
9.12	-186.47						
7450	¢*15C*	UPSTREAM OF	ROTCR		95.01		
3530	0.3160						
.001	98.CO1	UPSTREAM CF	STATOR		95.01		
2226	1612.0						
6454	C. 6999	DCHNSTREAM	CF STATOR		05.06		

STATOR 1

23.674 22.034 56.527 57.921 -21.680 -3.5392 861.48 866.49 414.60 372.04 470.11 470.80 372.04 751.550 3751.14 -149.12 -186.47 751.550 0.7554 751.191 0.7554 0.3191 78.007 98.007 78.007 98.007 78.007 98.007 78.007 98.007 78.007 98.007 78.007 98.007 78.007 98.007 78.007 98.007 78.007 98.007 78.007 98.007 78.007 98.007 72.53 1.97 2.53 1.97 2.53 STATICN 2 - STATICN 3 05 C.Co79 -C.56 12.559 . 500 558.10 c4.65 1.061 . . 561 .481 .4791 46.31 .181. 141 30 23.164 -17.8895 -17.8895 -17.8895 536.13 556.13 557.13 557.13 557.13 557.13 557.13 557.13 557.13 557.13 557.13 557.13 657.23 0.7219 0.7219 1.68811 1.68811 1.68811 1.68811 1.68811 1.68811 1.68811 1.68811 1.68811 1 2

Fittingstrate

Transferring (

Summary .

http://interg

autoppersonal .

Conservation of the local data

The second second

Area (a) (a)

heriten and here

furning land

Thursday and a second

AUNTRALISTICS

And a statement

and a second sec

Manufacture of

and the second second

Thursday.

Ŋ

Table IVgg.

L

I

ľ

I

ſ

C

Blade element performance for complete stage.

FERLENT GESTUN SPELL = 109.48 OPTIMUM GLEED

CCRRECTED #FICHT FLC4 = 92.45 CORRECTED RCTCR >PE03.41

PHESSURF RATIC = 1.5125

AGIABATIC EFFICIENCY = 37.3659

RCTOR 1

STATION 1 - STATICN 2

	10	30	50	0.1	ίe
1 410	29.150	27.080	25.040	23.020	20.940
2 410	23.096	27.302	25.516	23.770	21.944
SETA 1	21.024	2 3.49 5	25.044	26. 259	24.394
BETA 2	51.730	52.857	55.927	54.275	50.95
SETALPRI 1	01.030	59.303	55.1 JA	51.343	47.711
SETAIPRI 2	43.813	39.514	34.181	26.127	25.785
V 1	572.30	576.99	582.48	59.60	58 J. 34
2	846.41	346.04	847.22	859.21	2t .174
1 7 1	513.94	529.15	527.72	525.99	52 7. 94
V ¿ 2	524.24	510.84	474.56	451.80	450.91
V-THETA 1	205.24	£0.045	240.57	261.39	262.32
V-T-1ETA 2	604.52	674.41	701.77	730.83	753.29
V(PR) L	1102.7	1007.1	924.6	842.1	794.5
V(PK) 2	726.5	002.2	573.8	503.2	4.68.6
VTHETA PRI	964.7	856.9	159.2	557.6	4.043
VTHETA PR2	503.0	421.4	322.3	221.0	127.5
1 1	1109.97	1066.49	1005.61	623.95	H4.2.39
U 2	1167.48	1095.30	1024.11	052.43	9P.0. 75
1 W	0.5264	0.5312	0.5365	0.5435	0.5432
4 2	0.7344	0.7416	0.7463	0.7610	0. 7809
A (PA) L	1.0145	0.9271	0.9517	0.7762	0.7231
M(PR) 2	0.6303	0.5805	0.5054	0.4457	0.4159
T URNEPH I	17.223	18.784	21.017	25.216	31.925
LCSS COEF.	0.1115	29E0.U	0.0470	0.0541	0.0752
OFAC	0.4833	0.4452	0.5244	0.5495	0. 4530
C FF P	6506.0	0.9536	0.9648	U.9632	0.9530
EFF	0.899 5	0.9663	0.9624	0.9606	0.9501
LCSS PARA.	0.0294	0010.0	0110°u	0.0138	0.0146
1 NC 10	1.44	1.40	1.50	1.54	2.71
DLV	-1.297	0.719	3.341	5.427	1.035
CORP	RECTED WE	IGHT FLOW			
UPSTREAM GF	RUTCR		92.55		
UPSTREAM CF	ST AT UR		92.95		
DCWNSTHEAM C	JE STATOR		86.76		

STATOR 1

	STALIC	CN 2 - 51	ATICN 3		
	2	30	50	70	3 6
E VIO	29.164	224-22	25.672	23.674	22°C34
BETA 2	51.733	7 49 . 23	55. 527	58.275	59.095
BETA 3	-14.564	-6.529	-13.137	-24.680	- 30.440
V 2	846.41	E46.C4	847.22	E59.21	877.92
6 7	581.25	:72.83	482.67	376.37	342.31
V2 2	524.24	51C.84	474.66	451.80	15.044
VZ 3	562.52	565.11	470.04	341.99	295.13
V-THETA 2	664.52	674.41	701.77	130.63	753.28
V-THETA 3	-146.36	-65.13	-109.70	-157.15	-173.43
M 2	0.7344	(.7416	0.7463	C.7610	0.7809
	U-49C7	C.4882	0.4109	C.3188	0.2698
TURN	60.314	·9.386	69.064	E2.555	89.535
LCSS COEF.	0.2512	C. 1754	0.2166	C.2784	0.2457
CFAC	0.4580	C. 6523	C.7671	C. 8559	0.9290
LCSS FARA.	0.0976	C. C658	0.0742	0. 0 827	0.0640
INCIC	-C.35	C.72	3.23	4.28	3.15
DEV	4.376	11.511	4.613	-7.000	-12.640

Table IVhh.

Blade element performance for complete stage.

PERCENT DESIGN SPEEU = 109.93 OPTIMUM BLEED CCRRECTED ALIGHT FLUA = 90.80 CCRRECTED ADTOR SPEED = 9197.78

PRESSURE #ALIC = 1.5276

ACTANATIC EFFICIENCY = 78.3408

ROTOR 1

STATION 1 - STATION 2

	10	30	50	7.0	0e
1 410	29.150	27.060	25.060	23.020	20.994
UIA 2	24.044	27.302	25.516	23.730	21.044
HETA 1	21.070	104.65	25.044	25.456	24.750
RETA 2	120.62	013.510	57.043	58.884	54°03
DETA(PK) 1	52.510	59.516	56.47H	52.775	4c.103
SCIAIPRI 2	4231	40.427	076.46	25.755	14.236
<pre>< 1</pre>	5+3.51	553.85	551.60	509.21	544.45
2 >	845.38	336.13	930.47	54. 23 B	971.35
1 7 1	5.17.34	508.30	508.PO	506.903	501.75
V 2 2	497.67	+97.25	452.05	440.64	441.59
J-THELA L	194.95	219.97	237.74	256.14	255.03
V-T 4614 2	6.6.240	412.214	697.25	730.16	741.71
I (HA) A	1.99.1	1004.9	5.156	430.0	775.4
V(PR) 2	0.496	651.2	H-15C	3 ° E C 7	4.50.2
VINETA PHI	975.0	900.9	168.1	5+7.2	6.95.0
VINETA OK2	494.5	423.0	320.0	272.3	1.94.1
1 1	11.9.97	1046.43	10.05.81	£6.529	447.34
U 2	1167.48	1095.80	1024.11	53° - 54	380.75
1 4	0.4940	J.5050	0.5165	0.5229	7.5233
4 2	0. 7304	11114	0.7301	0.75.35	0.774.0
A(PR) I	1.0092	J.9235	U. 8473	0.7712	9512 0
4(PK) 2	U. 6003	0.5714	2794.0	1452.0	0.4045
I JAN (PH)	14.277	19.189	20.409	24,007	22. A23
LLS CUEF.	1061.0	+0+0-0	0.0500	0.0+06	0.170
UFAC	0.5254	0.4950	0.5414	0.5019	0.56.73
GFFP	0.8950	1.9544	0.9564	0.4401	0.3570
С Fr	U. 4807	J.9060	9.95 24	0. 4575	0.9547
LUSS PANA.	0.0329	1010.0	1+10.0	0.0154	0610.0
I NC I U	2.91	2.72	2.74	15.4	4.11
OEV	+6 H. L-	1.56.1	5.070	5. JF F.	7.54
COF	AFCTED #E	IGHT FLOW			
UPSTALAN UF	FUTOR		90° ¥0		
UPSTREAM UF	ST ATCHA		90.60		

STATUH 1

	I I E IS	N 2 - 5 N	ATILN S		
	Ŋ	υć	0.4	70	9.0
6 010	29.104	27.422	22.672	23.674	22.034
dela 2	126.56	:3.510	5 7. U4 5	50.681	5 5 62
BETA 3	-12.435	-7.934	-10.218	-23.180	-32.960
××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××<l< th=""><th>045.04</th><th>E3c.13</th><th>79.060</th><th>652.82</th><th>671.66</th></l<>	045.04	E3c.13	79.060	652.82	671.66
e >	10.984	565.44	414.77	944.53	346.99
2 7 2	457.61	447.23	452.05	440.64	441.69
V 2 3	574.71	500.03	Bb.cc+	30.CB	291.14
V-THETA 2	682.11	676.21	651.25	730.15	151.71
V-IHEIA 3	-124.03	-78.L5	-132.60	-187.67	-138.76
M 2	0.730+	c.1314	0.7301	c. 7535	0.7740
н 3	1.4947	L.46L4	0.4023	C.3254	J. 2433
TURN	00.155	61.444	72.261	68.(09	12.522
LLSS CCEP.	1003.0	U.1760	0.2052	C.2713	0.2446
UFAC	U.c3/3	U. tela	U. 1796	C.9CC6	9122.19
LLSS FAMA.	0. 6944	1.1004	6.0063	L. L775	U- UE 20
1NC10	1.84	1.37	4.34	4.54	3.61
DEV	c.725	10.100	1.532	-11.500	-13.150

Truntante

Anternation of

Research

Permananta (

h itili itipatete

Conservation

(International of

No. of Contemporation

1+1151704911111

HANGED BEARING

Contraction of the local division of the loc

Internet of

86.55

JCALSTREAM JE STATCH