General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

REVISED ZONAL HARMONICS IN THE GEOPOTENTIAL

Y. KOZAI

Smithsonian Astrophysical Observatory
SPECIAL REPORT-295

Research in Space Science
 SAO Special Report No. 295

REVISED VALUES FOR COEFFICIENTS

OF $Z O N A L$ SPHERICAL HARMONICS IN THE GEOPOTENTIAL

Yoshihide Kozai

February 28, 1969

TABLE OF CONTENTS

Section Page
ABSTRACT iv
] INTRODUCTION 1
2 EVEN-ORDER HARMONICS 4
3 ODD-ORDER HARMONICS 9
4 DISCUSSION 13
REFERENCES 17

LIST OF ILLUSTRATIONS

Figure Page
1 Geoid height 14
LIST OF TABLES
Table Page
1 Satellites chosen with their mean orbital elements, secular motions, and amplitudes of $\sin / \cos \omega$ terms 3
2 Equations of condition for even-order harmonics: a) Secular motions, b) $\cos / \sin 2 u$ terms 5
3 Normal equations for even-order harmonics and solutions 8
4 Equations of condition for odd-order harmonics 10
5 Normal equations for odd-order harmonics and solutions 12

Abstract

From precisely reduced Baker-Nunn observations for 12 artificial satellites with inclinations between 28° and 96°, coefficients of zonal spherical harmonics up to the 21 st order in the expression of the gravitational potential of the earth are derived.

RÉ SUMÉ

Nous avons étudié d'une façon précise les observations photographiques Baker-Nunn pour 12 satellites artificiels ayant une inclinaison entre 28° et 96°, et à partir de ces observations nous avons déduit les coefficients des harmoniques sphériques zonales jusqu'au $21^{\text {ème }}$ ardre dans l^{\prime} expression du potentiel de gravitation de la terre.

KOHCIEKT

Вывєдены коэффициенты зональных сферических гармоник до $21^{\text {ГС }}$ порядка в вырєжении гравитационного потенциала земли исходя пз точно обработанных Бэкер-Нунн наблюдений для 12 искуственных спутников с наклонами между 28° п 96°.

REVISED VALUES FOR COEFFICIENTS

OF ZONAL SPHERICAL HARMONICS IN THE GEOPOTENTIAL

Yoshihide Kozai

1. INTRODUCTION

Since Kozai's (1968) determination of the coefficients of zonal spherical harmonics for the geopotential, E. M. Gaposchkin and his colleagues at SAO have obtained, from precisely reduced Baker-Nunn observations, orbital elements of very high accuracy for several satellites. Consequently, complete analyses have been made for eight satellites in order to determine ($\mathrm{O}-\mathrm{C}$) for secular motions and amplitides of long-periodic terms, where the computed values are based on Kozai's coefficients determined in 1964. These values (Kozai, 1964) are the following:

$$
\begin{align*}
& J_{2}=1082.639, \\
& J_{4}=-1.649, \\
& J_{6}=0.646, \\
& J_{8}=-0.270, \\
& J_{10}=-0.054, \\
& J_{12}=-0.357, \\
& J_{14}=0.179, \tag{1}
\end{align*}
$$

where the unit is 10^{-6} and the following values are used for the geocentric gravitation constant GM and the equatorial radius of the earth a e_{e} :

$$
\begin{align*}
\mathrm{GM} & =3.98601 \times 10^{20} \mathrm{~cm}^{3} \mathrm{sec}^{-2} \\
\mathbf{a}_{\mathrm{e}} & =6.37816 \times 10^{8} \mathrm{~cm} . \tag{2}
\end{align*}
$$

This work was supported in part by grant NGR 09-015-002 from the National Aeronautics and Space Administration.

In the present determination, 12 satellites are chosen. Their names, as well as their anomalistic mean motions in revolutions per day, inclinations, eccentricities, and periods of observations used, are given in Table 1 , which also presents approximate values of the secular motions and amplitudes of long-periodic terms due to spherical harmonics of odd orders.

For the four satellites $1960 \nu 1,1959 a 1,1960\left\llcorner 2\right.$, and $1962 \beta_{\mu} 1$, the same observational data as those employed in the previous determination (Kozai, 1968) are used; the satellite $1962 \beta+2$, which was also used in the previous determination, has been dropped here because of the poor accuracy of its orbital elements. For the other eight satellites, additional data are used.

Of these eight satellites, 1963 26A, 196401 A , and 196581 A were not included in the previous determination. Furthermore, for the other eight satellites, the accuracy of the data used here is much higher than that in the previous paper.
Table 1. Satellites chosen with their mean orbital elements, secular motions, and amplitudes of $\left.\begin{array}{c}\sin \\ \cos \end{array}\right\} \omega$ terms

Satellite (rev/day)		1	e	Periods (MJD)	$\stackrel{\dot{\omega}}{(\mathrm{deg} / \mathrm{day}}$	$\frac{\dot{\alpha}}{\text { (deg/day) }}$	A_{ω}	$A_{\Omega} \times 10^{2}$	$\mathrm{A}_{\mathrm{i}} \div 10^{3}$	$A_{e} \times 10^{4}$
60 vl	13.454	28:33	0.0166	38924-39062	8.265	-5.065	1.656	0.110	-0.88	4.80
59 al	$\begin{aligned} & 11.442 \\ & 11.480 \end{aligned}$	$\begin{aligned} & 32.88 \\ & 32.88 \end{aligned}$	$\begin{aligned} & 0.1660 \\ & 0.1642 \end{aligned}$	36620-38530	$\begin{aligned} & 5.258 \\ & 5.293 \end{aligned}$	$\begin{aligned} & -3.498 \\ & -3.521 \end{aligned}$	$\begin{aligned} & 0.156 \\ & 0.158 \end{aligned}$	$\begin{aligned} & 0.75 \\ & 0.73 \end{aligned}$	$\begin{aligned} & -6.98 \\ & -6.92 \end{aligned}$	$\begin{aligned} & 4.62 \\ & 4.62 \end{aligned}$
62 an 1	9.126	44.80	0.2428	37870-38606	1.987	-1.860	0.112	1.64	-7.79	5.23
60.2	12.197	47.23	0.0114	37192-38576	2.978	-3. 101	3.330	1.17	-0.40	6.63
63 26A	$\begin{aligned} & 14.099 \\ & 14.116 \end{aligned}$	$\begin{aligned} & 49.74 \\ & 49.74 \end{aligned}$	$\begin{aligned} & 0.0614 \\ & 0.0607 \end{aligned}$	38222-38988	$\begin{aligned} & 3.505 \\ & 3.514 \end{aligned}$	$\begin{aligned} & -4.168 \\ & -4.179 \end{aligned}$	$\begin{aligned} & 0.735 \\ & 0.744 \end{aligned}$	$\begin{aligned} & 1.18 \\ & 1.17 \end{aligned}$	$\begin{aligned} & -2.38 \\ & -2.35 \end{aligned}$	$\begin{aligned} & 7.94 \\ & 7.95 \end{aligned}$
62 pmi	13.345	50.14	0.0070	37974-38574	2.963	-3.609	6.363	1.15	-0.26	7.84
6589 A	11.968	59.38	0.0717	39074-39574	0.653	-2.247	1.008	3.76	-3. 05	12. 50
6115 A	13.870	66.82	0.0080	37548-38390	-0.695	-2.425	1.886	0.78	-0.05	2.64
64 01A	13.920	69.91	0.0015	38550-38866	-1.276	-2.133	29.000	0.04	-0.02	7.31
6464 A	13.746	79.70	0.0129	38698-39132	-2. 535	-1.078	4.850	0.07	-0.15	10.99
6581 A	$\begin{aligned} & 13.797 \\ & 13.814 \end{aligned}$	$\begin{aligned} & 87.37 \\ & 87.37 \end{aligned}$	$\begin{aligned} & 0.0747 \\ & 0.0739 \end{aligned}$	39090-39472	$\begin{aligned} & -3.042 \\ & -3.050 \end{aligned}$	$\begin{aligned} & -0.282 \\ & -0.283 \end{aligned}$	$\begin{aligned} & 0.910 \\ & 0.920 \end{aligned}$	$\begin{aligned} & 0.08 \\ & 0.08 \end{aligned}$	$\begin{aligned} & -0.23 \\ & -0.23 \end{aligned}$	$\begin{aligned} & 11.75 \\ & 11.76 \end{aligned}$
61.451	8.677	95.85	0.0121	38428-38972	-0. 978	0.210	3.760	-0.02	0.06	7.91

2. EVEN-ORDER HARMONICS

Table 2 gives equations of condition to improve coefficients of zonal harmonics of even orders. In Table $2 a$ the upper line indicates the secular motion in degrees per day of the argument of perigee; and the lower line, that of the longitude of the ascending node for each satellite identified in Table 1. The values of ($O-C$) are based on my previous coefficients given in equation (1), and the standard deviations mentioned there are from the analyses of observations.

In the computation of the weights of the equations of condition, however, the standard deviations derived from the observations are not used, since the equations of condition include coefficients only up to 20 th order. Neglect of higher order terms causes some errors in the computed values. Therefore, the standard deviations assigned are increased for some data and are given as those of the residuals v. The weight assigned to each equation is inversely proportional to the square of the increased standard deviation.

Table 2 b gives equations of condition for amplitudes of long-periodic terms with argument 2ω, ω being the argument of perigee. The first column identifies the satellite. The orbital elements are the argument of perigee, the longitude of the ascending node, the inclination, and the eccentricity, respectively.

The coefficient of J_{2} is always zero in Table 2 b , as J_{2} does not produce long-periodic terms with argument 2ω, although J_{2}^{2} terms in the disturbing function do produce them. And, since the value of T_{2} is known to at least three figures, the terms from J_{2}^{2} can be evaluated with sufficient accuracy.
Table 2. Equations of condition, residuals, and weights for even-order harmonics a) Secula: motions

Satellite	Orbital elements	J_{2}	J_{4}	J_{6}	J_{8}	J_{15}	${ }^{12}$	${ }^{*} 14$	J_{16}	J_{18}	J_{20}	(0-C)	$\times 10^{6}$		$\times 10^{6}$
60 nl	¢	$\begin{array}{r} 7623 \\ -4670 \end{array}$	$\begin{array}{r} -5477 \\ 5167 \end{array}$	$\begin{aligned} & -2224 \\ & -2136 \end{aligned}$	$\begin{array}{r} 6040 \\ -\quad 945 \end{array}$	$\begin{array}{r} 32 \% 0 \\ 19: 2 \end{array}$	$\begin{array}{r} -1674 \\ -1070 \end{array}$	$\begin{array}{r} 3727 \\ -\quad 157 \end{array}$	$\begin{array}{r} -2042 \\ 702 \end{array}$	$\begin{array}{r} -743 \\ -486 \end{array}$	$\begin{array}{r} 1977 \\ 17 \end{array}$	$\begin{array}{r} 170^{9} \\ -125 \end{array}$	$\begin{aligned} & \pm 100^{\circ} \\ & \pm \quad 5 \end{aligned}$		$\begin{gathered} \pm 100^{\circ} \\ \pm \quad 5 \end{gathered}$
59.1	$\dot{\stackrel{\Omega}{\Omega}}$	$\begin{array}{r} 4880 \\ -3244 \end{array}$	$\begin{array}{r} -1565 \\ 2548 \end{array}$	$\begin{array}{r} -2722 \\ -\quad 201 \end{array}$	$\begin{array}{r} 2484 \\ -1100 \end{array}$	$\begin{aligned} & 412 \\ & 790 \end{aligned}$	-i93	$\begin{array}{r} 931 \\ -\quad 24 \end{array}$	$\begin{aligned} & 670 \\ & 276 \end{aligned}$	$\begin{array}{r} -1052 \\ 1+2 \end{array}$	$\begin{array}{r} 245 \\ -\quad 266 \end{array}$	32 $-\quad 9$	± 1 ± 1	0	$\pm \quad 10$ $\pm \quad 5$
62 ael	㒸	$\begin{array}{r} 1835 \\ -1716 \end{array}$	$\begin{array}{r} 1039 \\ 300 \end{array}$	-821 511	- 643	398 $-\quad 207$	$\begin{array}{r} 30 \\ 60 \end{array}$	$\begin{array}{r}-202 \\ \hline 96\end{array}$	- 177 $-\quad 31$	105 $-\quad 47$	94 16	40	$\begin{array}{ll} \pm & 6 \\ \pm & 3 \end{array}$	2	$\begin{array}{ll} \pm & 6 \\ \pm & 3 \end{array}$
60.2	$\begin{aligned} & \Omega \\ & \mathbf{\Omega} \end{aligned}$	$\begin{array}{r} 2753 \\ -2864 \end{array}$	$\begin{array}{r} 2686 \\ 261 \end{array}$	$\begin{array}{r} -1224 \\ 1168 \end{array}$	$\begin{array}{r} -2302 \\ -\quad 16 \end{array}$	$\begin{array}{r} 316 \\ -\quad 480 \end{array}$	$\begin{array}{r} 1425 \\ -\quad 37 \end{array}$	$\begin{array}{r} 49 \\ 10 \% \end{array}$	$\begin{array}{r} 763 \\ -\quad 34 \end{array}$	- 118 $-\quad 76$	$\begin{array}{r} 368 \\ -\quad 21 \end{array}$	220 -11	$\begin{array}{cc} \pm & 50 \\ \pm & 1 \end{array}$	47 4	± 50 $\pm \quad 10$
63 26A	$\dot{\boldsymbol{\Sigma}}$	$\begin{array}{r} 3248 \\ -3858 \end{array}$	$\begin{array}{r} 5112 \\ -\quad 145 \end{array}$	$\begin{array}{r} 768 \\ -2338 \end{array}$	-6159 648	$\begin{aligned} & -1787 \\ & -1338 \end{aligned}$	$\begin{array}{r} 5016 \\ -\quad 766 \end{array}$	$\begin{array}{r} 3291 \\ 682 \end{array}$	$\begin{array}{r} -3153 \\ 692 \end{array}$	-3709 -276	1390 $-\quad 547$	920	$\begin{array}{ll} \pm & 10 \\ \pm & 1 \end{array}$	$\begin{array}{r} 52 \\ -\quad 19 \end{array}$	$\begin{array}{ll} \mathbf{t} & \mathbf{8 0} \\ \pm & \mathbf{4 0} \end{array}$
$62 \beta_{\mu} 1$	$\begin{aligned} & \dot{\omega} \\ & \boldsymbol{\Omega} \end{aligned}$	$\begin{array}{r} 2740 \\ -3334 \end{array}$	$\begin{array}{r} 4130 \\ -\quad 188 \end{array}$	$\begin{array}{r} -333 \\ 1667 \end{array}$	$\begin{array}{r} -4065 \\ 489 \end{array}$	$\begin{array}{r} -1361 \\ -\quad 747 \end{array}$	$\begin{array}{r} 2596 \\ -\quad 441 \end{array}$	$\begin{array}{r} 1847 \\ 278 \end{array}$	-1187 301	-1601 $-\quad 69$	304 $-\quad 175$	600 -42	$\begin{array}{lr} \pm & 60 \\ \pm & 1\end{array}$	60 8	$\begin{aligned} & +100 \\ & \pm \quad 15 \end{aligned}$
65 89A	$\dot{\mathbf{i}}$	$\begin{array}{r} 605 \\ -2075 \end{array}$	$\begin{array}{r} 2453 \\ -\quad 976 \end{array}$	2144 260	40 562	-1392 240	$\begin{array}{r} -1096 \\ -\quad 92 \end{array}$	-111 -163	604 $-\quad 64$	438 32	- $\quad 12$	-110 -70	$\pm \quad 20$ ± 10	-26 $-\quad 7$	$\pm \quad 20$ $\pm \quad 10$
61 15A	$\dot{\boldsymbol{i}}$	$\begin{aligned} & -640 \\ & -2240 \end{aligned}$	$\begin{array}{r} 1895 \\ -2037 \end{array}$	4421 -809	4326 331	1625 811	-1623 657	$\begin{array}{r} -3302 \\ 219 \end{array}$	$\begin{array}{r} -2742 \\ -\quad 150 \end{array}$	-813 -284	1020 -211	-300 22	$\begin{array}{ll} \pm 80 \\ \pm & 1\end{array}$	65 $-\quad 3$	± 80 ± 10
6401 A	$\dot{\mathbf{i}}$	$\begin{aligned} & -1190 \\ & -1994 \end{aligned}$	$\begin{array}{r} 789 \\ -7082 \end{array}$	$\begin{array}{r} 3596 \\ -1236 \end{array}$	$\begin{array}{r} 4891 \\ -\quad 216 \end{array}$	$\begin{array}{r} 3802 \\ 475 \end{array}$	1122 684	$\begin{array}{r} -1567 \\ 521 \end{array}$	$\begin{array}{r} -2986 \\ 207 \end{array}$	$\begin{array}{r} -2771 \\ -\quad 64 \end{array}$	$\begin{array}{r} -1428 \\ -\quad 198 \end{array}$	$\begin{array}{r} 600 \\ 56 \end{array}$	$\begin{array}{r} \pm 800 \\ \pm \quad 8 \end{array}$	620	$\begin{array}{r} \pm 800 \\ \pm \quad 8 \end{array}$
64 64A	$\stackrel{\dot{5}}{\mathbf{5}}$	$\begin{array}{r} -2341 \\ -\quad 997 \end{array}$	$\begin{aligned} & -2482 \\ & -1299 \end{aligned}$	$\begin{aligned} & -1456 \\ & -1253 \end{aligned}$	$\begin{array}{r} 15 \\ -1026 \end{array}$	$\begin{array}{r} 1379 \\ -\quad 735 \end{array}$	$\begin{array}{r} 2313 \\ -\quad 454 \end{array}$	$\begin{array}{r} 2710 \\ -\quad 224 \end{array}$	$\begin{array}{r} 2622 \\ -\quad 58 \end{array}$	2189 45	$\begin{array}{r} 1574 \\ 96 \end{array}$	$\begin{array}{r} -400 \\ 90 \end{array}$	$\begin{aligned} & \pm 100 \\ & \pm \quad 10 \end{aligned}$	-110 15	$\begin{aligned} & \pm 100 \\ & \pm \quad 10 \end{aligned}$
6581 A	$\stackrel{\dot{\mathbf{8}}}{ }$	$\begin{array}{r} -2813 \\ -\quad 261 \end{array}$	$\begin{array}{r} -3980 \\ -\quad 375 \end{array}$	$\begin{array}{r} -4365 \\ -422 \end{array}$	$\begin{array}{r} -4292 \\ -43! \end{array}$	$\begin{array}{r} -3961 \\ -+17 \end{array}$	$\begin{array}{r} -3500 \\ -\quad 391 \end{array}$	$\begin{array}{r} -2991 \\ -\quad 360 \end{array}$	$\begin{array}{r} -2484 \\ -\quad 326 \end{array}$	$\begin{array}{r} -2010 \\ -\quad 293 \end{array}$	$\begin{array}{r} -1582 \\ -\quad 260 \end{array}$	620	$\pm \quad 30$ $\pm \quad 1$	-8 $-\quad 27$	± 80 \pm
61 a 61	$\dot{\dot{\boldsymbol{\varepsilon}}}$	$\begin{array}{r} 903 \\ -\quad 19 i \end{array}$	$\begin{array}{r} 637 \\ -\quad 145 \end{array}$	$\begin{array}{r} 331 \\ -\quad 83 \end{array}$	$\begin{array}{r} 144 \\ -42 \end{array}$	$\begin{array}{r} 53 \\ -\quad 20 \end{array}$	$\begin{array}{r} 15 \\ -\quad 9 \end{array}$	$\begin{array}{r} 2 \\ -\quad 4 \end{array}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	2	1	$\begin{array}{r} -\quad 35 \\ -2.9 \end{array}$	$\begin{aligned} & \pm \quad 50 \\ & \pm 0.5 \end{aligned}$	$\begin{array}{r} -47 \\ 0.6 \end{array}$	$\begin{aligned} & \pm 50 \\ & \pm 0.5 \end{aligned}$

Sutellite	Orbital element	J_{2}	J_{4}	J_{6}	$\mathbf{J}_{\mathbf{B}}$	J_{10}	J_{12}	${ }^{14}$	J_{16}	J_{18}	3_{20}	F_{1}	($0 \cdot \mathrm{C})$	v	\mathbf{C}	F_{2}
89 al	ω	0	-45	86	-38	- 54	82	-23	-47	53	- 5	2	3 ± 5	-3	84	\pm
	n	0	- 4	-1	14	-13	- 5	17	-9	- 7	13	2	-2 ± 2	-2	5	4
	1	0	-20	33	- 9	-21	24	-2	-14	11	1	1	-3 ± 6	-5	37	-5
	e	0	13	-21	$+$	15	-17	2	12	-10	-1	0	0 ± 1	1	-25	-6
$62 \mathrm{ar1}$	$\stackrel{\omega}{6}$	0	-64	22	70	-29	-47	22	29	-14	-17	2	-1 ± 3	-2	85	-4
	0	0	- 7	-17	11	17	-8	- 12	5	7	-3	2	-1 ± 1	1	-7	-4
	1	0	-40	5	34	-6	-18	4	8	- 2	-4	1	4 ± 4	4	43	-5
	-	0	27	-4	-23	4	12	- 3	- 6	1	3	0	0 ± 1	0	-29	-6
60.2	ω	0	-10	- 2	13	2	- 9	- 2	5	2	- 3	3	-3 ± 4	-2	$\therefore 8$	-3
	e	0	2	0	- 3	0	2	0	- 1	0	1	0	0 ± 1	0	-2	-6
6326 A	ω	0	-13	- 9	26	19	-24	-26	16	27	- 6	3	-6 ± 2	0	4	-3
	0	0	-1	-4	0	8	4	- 9	-9	7	11	2	2 ± 2	3	- 5	-4
	1	0	- 4	- 3	8	6	-7	-8	4	B	-1	1	-1 ± 3	1	1	-5
	-	0	14	10	-27	-20	24	26	-15	-26	5	0	3 ± 2	-3	-	-6
62 Prl	ω	0	-13	- 9	20	15	-14	-16	6	13	0	3	3 ± 6	6	3	-3
	\bullet	0	2	1	- 3	- 2	2	2	-1	- 2	0	0	1 ± 1	0	0	-6
6589 A	ω	0	-21	-52	-15	34	37	5	-20	-17	-1	2	6 ± 2	2	-26	-4
	n	0	- 5	-24	-19	4	20	15	-1	-10	- 8	2	4 ± 2	0	-12	-4
	1	0	-6	-16	- 5	10	11	2	- 5	- 5	0	1	5 ± 5	4	- 8	-5
	-	0	26	65	19	-41	-44	- 7	22	19	,	0	-4 ± 1	1	32	-6
61154	ω	0	0	8	11	6	-3	-10	-9	-3	3	4	-1 ± 2	0	2	-2
	-	0	- 1	-11	-16	-9	5	14	13	5	+ 4	0	1 ± 2	1	-3	-6
6464 A	ω	0			0	1	2	2	2	2	2	4	0 ± 2	0	1	-2
	*	0	3	2	1	- 2	- 4	- 5	- 5	- 5	- 3	0	$4 \pm$	3	-2	-6
6581 A	ω	0	-13	-21	-25	-26	-25	-22	-20	-17	-14	3	7 ± 3	3	17	-3
	0	0	0	-1	-2	- 3	- 5	- 6	-7	-8	-9	2	1 ± 1	0	1	-4
	1	0	0	$\cdots 1$	\cdots	- 1	-1	-1	0	0	0	1	-2t8	-2	0	- 5
	e	0	16.	27	31	32	30	26	22	18	14	0	-6 ± 2	-1.	-24	-6

Table 3. Normal equations for even-order harmonics and solutions

J_{2}	J_{4}	J_{6}	J_{8}	J_{10}	J_{12}	J_{14}	J_{16}	J_{18}	J_{20}	$(\mathrm{O}-\mathrm{C}) \times 10^{6}$
2423892	-1115747	219058	1_{453420}	-372931	88518	96540	-146869	45329	61548	24440
	1645749	-287517	- 345531	455945	-190250	-115665	156890	-60303	-12813	-30401
		435391	72410	-221373	115324	- 2248	- 70616	71054	- 3678	3527
			205370	- 36346	- 23218	54573	- 13535	-10516	15391	896
				220668	- 60669	- 24932	63869	-35976	- 7157	-10217
					117932	- 368	- 46066	36686	- 6278	6638
						38110	83	-13204	7171	1819
							37724	-13985	- 2606	- 4832
								28673	- 3143	757
									7268	9
										1299
$\begin{array}{r} -0.009 \\ \pm 5 \end{array}$	$\begin{array}{r} 0.037 \\ \pm 14 \end{array}$	$\begin{array}{r} -0.108 \\ \pm 25 \end{array}$	$\begin{array}{r} 0.082 \\ \pm 37 \end{array}$	$\begin{array}{r} -0.179 \\ \pm 40 \end{array}$	$\begin{array}{r} 0.152 \\ \pm 37 \end{array}$	$\begin{array}{r} -0.056 \\ \pm 30 \end{array}$				216
$\begin{array}{r} -0.008 \\ \pm 6 \end{array}$	$\begin{array}{r} 0.033 \\ \pm 17 \end{array}$	$\begin{array}{r} -0.101 \\ \pm 33 \end{array}$	$\begin{array}{r} 0.072 \\ \pm 49 \end{array}$	$\begin{array}{r} -0.166 \\ \pm 56 \end{array}$	$\begin{array}{r} 0.139 \\ \pm 54 \end{array}$	$\begin{array}{r} -0.046 \\ \pm 43 \end{array}$	$\begin{array}{r} -0.011 \\ \pm 31 \end{array}$			216
$\begin{array}{r} -0.011 \\ \pm 2 \end{array}$	$\begin{array}{r} 0.056 \\ \pm 7 \end{array}$	$\begin{array}{r} -0.144 \\ \pm 14 \end{array}$	$\begin{array}{r} 0.152 \\ \pm 20 \end{array}$	$\begin{array}{r} -0.301 \\ \pm 24 \end{array}$	$\begin{array}{r} 0.318 \\ \pm 25 \end{array}$	$\begin{array}{r} -0.255 \\ \pm 22 \end{array}$	$\begin{array}{r} 0.192 \\ \pm 18 \end{array}$	$\begin{array}{r} -0.234 \\ \pm 15 \end{array}$		33
$\begin{array}{r} -0.011 \\ \pm 2 \end{array}$	$\begin{array}{r} 0.056 \\ \pm 7 \end{array}$	$\begin{array}{r} -0.144 \\ \pm 14 \end{array}$	$\begin{array}{r} 0.152 \\ \pm 20 \end{array}$	$\begin{array}{r} -0.300 \\ \pm 25 \end{array}$	$\begin{array}{r} 0.315 \\ \pm 27 \end{array}$	$\begin{array}{r} -0.252 \\ \pm 28 \end{array}$	$\begin{array}{r} 0.187 \\ \pm 26 \end{array}$	$\begin{array}{r} -0.231 \\ \pm 22 \end{array}$	$\begin{array}{r} -0.005 \\ \pm 22 \end{array}$	33

3. ODD-ORDER HARMONICS

In order to determine corrections to coefficients of odd-order harmonics, the 46 equations of condition given in Table 4 for the amplitudes of the longperiodic terms with argument ω are used. The same system of numbering the equations is employed as in Table 2 b . All the coefficients must be multiplied by the F_{1} th power of 10 ; and $(O-C)$ and v, by the F_{2} th power of 10 .

The weight for each equation is computed from the standard deviation assigned to ($O-C$); when the standard deviations derived from the observations are different from these values, they are given in the last column.

Table 5 gives the normal equations and solutions. The equations are solved with $7,8,9$, and 10 unknowns, and the equations with $\Sigma_{v}{ }^{2}$ are given. After the inclusion of J_{21}, the value of Σ_{v}^{2} is reduced to 22 . However, the standard deviations computed for the solution are not small enough, because of correlations among the coefficients.
Table 4. Equations of condition, residuals, weights, and scale factors for odd-order harmonics (degrees except for eccentricity)

Satellite	Orbital element	J_{3}	J_{5}	J_{7}	J_{9}	J_{11}	J_{13}	J_{15}	J_{17}	J_{19}	J_{21}	F_{1}	$(\mathrm{O}-\mathrm{C})$	v	F_{2}	Alternate standard deviation
$60 \nu 1$	ω	-654	575	- 68	-293	289	- 76	- 98	123	- 47	- 29	3	40 ± 10	- 1	-4	
	Ω	- 7	- 8	21	- 15	- 4	16	- 12	0	8	- 7	2	0 ± 3	0	-4	
	i	3	- 3	0	1	- 1	0	0	- 1	0	0	2	0 ± 3	0	-4	
	e	-187	164	- 19	- 84	82	- 21	- 28	35	- 13	- 8	0	16 ± 10	6	-7	
59 al	ω	-646	473	114	-421	225	132	-246	78	116	-132	2	-17 ± 6	0	-4	± 3
	Ω	- 53	- 97	137	- 12	- 96	73	17	-61	29	21	2	- 2 ± 3	2	-4	± 2
	i	288	-143	- 71	114	- 33	- 38	39	- 4	- 19	14	1	1 ± 5	- 4	-5	
	e	-193	95	48	- 76	22	25	- 26	3	13	- 9	0	-31 ± 5	-1	-7	
62 acl	ω	-507	- 79	364	37	-213	- 19	119	10	- 66	- 5	2	- 1 ± 2	- 1	-4	
	Ω	-45	-195	- 9	110	12	- 57	- 8	30	4	- 15	2	2 ± 3	3	-4	
	i	319	98	-123	- 31	45	11	- 18	- 4	8	2	1	- 2 ± 3	- 4	-5	
	e	-215	- 66	83	21	- 30	- 7	12	3	- 5	- 1	0	-15 ± 8	2	-7	
60.2	ω	-136	- 83	70	45	- 27	- 22	9	10	- 3	- 4	4	-24土 10	-10	-3	± 3
	Ω	- 2	- 15	- 4	10	5	- 5	- 4	2	2	- 1	2	0 ± 10	3	-5	
	i	16	10	- 8	- 5	3	3	- 1	- 1	0	1	1	-6士 6	- 6	-5	
	e	-271	-165	138	90	- 53	- 44	18	2 C	- 6	- 9	0	-26 ± 12	3	-7	± 6
6326 A	ω	-293	-312	182	283	-60	-220	-16	155	54	- 99	3	-17 ± 4	- 1	-3	± 2
	Ω	- 12	-127	- 74	99	118	- 43	-119	- 6	96	36	2	-6 ± 4	1	-4	± 1
	i	9	10	- 5	- 8	2	6	1	- 4	- 1	2	2	14 ± 15	10	-5	
	e	-311	-332	179	283	-49	-201	- 20	127	47	- 72	0	-12 ± 3	2	-6	± 1
$62 \beta \mu \mathrm{l}$	ω	-245	-253	110	179	-17	-102	- 17	50	23	- 18	4	-59 ± 15	0	-3	± 4
	Ω	- 1	- 13	- 8	8	10	- 2	- 8	- 1	5	3	2	-2 ± 2	- 2	-4	
	i	1	1	- 1	- 1	0	0	0	0	0	0	2	0 ± 1	0	-4	
	e	-301	-311	136	220	- 20	-126	- 21	62	28	- 21	0	- 8 ± 2	- 1	-6	± 0.8
6589 A	ω	-252	-809	-392	152	292	120	- 63	-101	- 37	25	3	3 ± 2	0	-3	± 1.5
	Ω	$-\quad 9$	-642	-532	- 96	195	200	56	- 58	- 71	- 24	2	10 ± 2	2	-4	
	i	77	249	120	- 40	- 78	- 32	14	23	8	5	1	-8 ± 8	-7	-5	
	e	-314	-1019	-489	164	321	131	- 57	- 93	- 34	- 19	0	- 4 ± 2	- 2	-6	± 1.0

Table 4 (Cont.)

Satellite	Orbital element	J_{3}	J_{5}	J_{7}	${ }^{5} 9$	${ }_{11}$	J_{13}	J_{15}	J_{17}	J_{19}	J_{21}	F_{1}	$(\mathrm{O}-\mathrm{C})$	v	F_{2}	Alternate standard deviation
6115 A	ω	-265	746	1049	654	48	-346	-397	-216	7	134	4	-19 ± 8	- 8	-2	± 2
	Ω	- 1	-123	-126	- 39	47	75	46	- 2	- 32	- 33	2	-3 ± 4	0	-4	
	i	7	- 20	- 29	- 18	- 1	9	11	6	0	- 4	1	0 ± 5	0	-5	
	e	-370	1039	1461	910	67	-481	-552	-299	9	185	0	-11 ± 5	4	-6	± 1
6401 A	ω	-156	131	291	268	137	- 2	- 86	-101	- 68	- 19	5	-200 ± 10	1	-2	
	e	- 380	320	710	654	335	5	-211	-247	-166	- 47	0	-58 ± 9	- 9	-6	± 1
64 64A	ω	-174	-111	- 37	17	47	58	55	45	32	20	4	-11 ± 2	3	-2	
	Ω	- 1	- 11	- 19	- 21	- 19	- 14	- 8	- 2	3	6	2	6 ± 3	1	-4	
	i	5	3	1	- 1	- 2	- 2	- 2	- 1	- 1	- 1	1	0 ± 8	0	-5	
	e	-394	-252	- 85	38	107	131	124	101	72	44	0	-34 ± 5	- 2	-6	
6581 A	ω	-310	-300	-255	-210	-169	-135	-107	- 83	- 64	- 49	3	60 ± 5	3	-3	± 2
	Ω	- 1	-15	- 29	- 41	- 49	- 54	- 57	- 57	- 56	- 53	2	20 ± 2	2	-4	± 1
	i	1	1	1	1	0	0	0	0	0	0	2	-1 ± 1	-1	-4	
	e	-401	-376	-308	-241	-185	-139	-103	- 76	- 55	- 39	0	60 ± 3	- 2	-6	
61 a 1	ω	-139	- 64	- 24	- 8	- 2	- 1	0	0	0	0	4	- 3 ± 5	- 4	-2	
	Ω	0	2	2	2	1	1	0	0	0	0	2	- 2 ± 2	- 2	-4	
	i	- 29	-14	- 5	- 2	- 1	0	0	0	0	0	1	-6 ± 7	- 6	-5	
	e	-293	-134	- 51	- 17	- 5	1	0	0	0	0	0	30 ± 15	0	-7	

Table 5. Normal equations for odd-order harmonics and solutions

J_{3}	J_{5}	J_{7}	J_{9}	J_{11}	J_{13}	J_{15}	J_{17}	J_{19}	J_{21}	$(\mathrm{O}-\mathrm{C}) \times 10^{6}$
1056315	- 203228	-121575	118951	-227689	73704	108788	-78523	42882	41860	4038
	1145266	331106	-252115	71494	-103646	- 94328	83108	- 8421	- 1992	- 3584
		475160	184061	- 91128	- 95821	- 41380	-16921	1724	6304	-13588
			313258	- 43573	- 26609	- 9473	-69117	- 2513	11732	-11222
				195767	18057	- 59236	6503	-25212	- 9945	- 3515
					63109	22273	-18615	- 722	2583	- 641
						49541	8139	8041	3144	916
							46461	7827	- 6118	871
								14785	3287	- 336
									7083	- 126
										1367
$\begin{aligned} &-0.021 \\ & \hline 021 \end{aligned}$	$\begin{aligned} & 0.026 \\ & 0 \end{aligned}$	$\begin{array}{r} 0.097 \\ \pm 32 \end{array}$	$\begin{aligned} & 0.030 \\ & \pm 36 \end{aligned}$	$\begin{array}{r} -0.120 \\ \pm 32 \end{array}$	$\begin{array}{r} -0.007 \\ \pm 26 \end{array}$	$\begin{array}{r} -0.102 \\ \pm 20 \end{array}$				223
$\begin{gathered} 0.010 \\ \pm 6 \end{gathered}$	$\begin{array}{r} 0.027 \\ \pm 9 \end{array}$	$\begin{array}{r} 0.002 \\ \pm 15 \end{array}$	$\begin{array}{r} -0.113 \\ \pm 18 \end{array}$	0.026	$\begin{array}{r} -0.197 \\ \pm 18 \end{array}$	$\begin{array}{r} 0.073 \\ \pm 16 \end{array}$	$\begin{array}{r} 0.179 \\ \pm 13 \end{array}$			38
$\begin{gathered} 0.010 \\ \pm 6 \end{gathered}$	$\begin{array}{r} -0.029 \\ \pm 9 \end{array}$	$\begin{array}{r} 0.007 \\ \pm 17 \end{array}$	$\begin{array}{r} -0.122 \\ \pm 22 \end{array}$	$\begin{aligned} & 0.040 \\ & \pm 25 \end{aligned}$	$\begin{array}{r} -0.217 \\ \pm 31 \end{array}$	$\begin{array}{r} 0.097 \\ \pm 34 \end{array}$	$\begin{array}{r} -0.203 \\ \pm 34 \end{array}$	$\begin{aligned} & 0.021 \\ & \pm 26 \end{aligned}$		38
0.008	$\begin{array}{r} -0.020 \\ \pm 7 \end{array}$	$\begin{array}{r} -0.028 \\ \pm 15 \end{array}$	$\begin{array}{r} -0.047 \\ \pm 23 \end{array}$	$\begin{array}{r} -0.100 \\ \pm 35 \end{array}$	$\begin{array}{r} -0.009 \\ \pm 49 \end{array}$	$\begin{array}{r} -0.174 \\ \pm 61 \end{array}$	$\begin{aligned} & 0.085 \\ & \pm 65 \end{aligned}$	$\begin{array}{r} -0.216 \\ \pm 52 \end{array}$	$\begin{array}{r} 0.145 \\ +29 \end{array}$	22

4. DISCUSSION

The coefficients determined in the present analyses are as follows:

$$
\begin{aligned}
& \mathrm{J}_{2}=1082.628 \quad, \quad \mathrm{~J}_{3}=-2.538 \\
& \begin{array}{r}
\mathrm{J}_{4}=\begin{array}{r}
-1.593 \\
\pm 7
\end{array}, \quad \mathrm{~J}_{5}=-0.230 \\
\pm 7
\end{array} \\
& J_{6}=\begin{array}{r}
0.502 \\
\pm 14
\end{array}, \quad J_{7}=\begin{array}{r}
-0.361 \\
\pm 15
\end{array} \\
& \mathrm{~J}_{8}=\begin{array}{r}
-0.118 \\
\pm 20
\end{array}, \quad \mathrm{~J}_{9}=-0.100
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{J}_{12}=\begin{array}{r}
-0.042 \\
\pm 27
\end{array}, \quad \mathrm{~J}_{13}=\begin{array}{r}
-0.123 \\
\pm 49
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& J_{16}=\begin{array}{r}
0.187 \\
\pm 26
\end{array}, \quad J_{17}=\begin{array}{r}
0.085 \\
\pm 65
\end{array}, \\
& \mathrm{~J}_{18}=\begin{array}{r}
-0.231 \\
\pm 22
\end{array}, \quad \mathrm{~J}_{19}=-\begin{array}{r}
-0.216 \\
\pm 53
\end{array},
\end{aligned}
$$

where the unit is in 10^{-6}.

The geoid height computed by the coefficients equation (3) with respect to the reference ellipsoid with the flattening $1 / 298.25$ is shown as a function of geocentric latitude in Figure 1.

Figure 1. Geoid height with flattening 1/298. 25.

Although 12 satellites are chosen in the present determination, it can be said that essentially 10 satellites are used, since the inclinations of three satellites, $1960\left\llcorner 2,196326 \mathrm{~A}\right.$, and $1962 \beta \mu \mathrm{l}$, are near 50°. Two high satellites, $1962 a \in 1$ and 1961 a $\delta 1$, cannot contribute to the determination of higher order coefficients.

In the determination of even-order coefficients, the equations of condition for the secular motions for the argument of perigee and for the longitude of the ascending node are independent of each other; therefore, the number of independent equations is twice as large as the number of satellites.

Of the equations of condition for determining odd-order coefficients, the equations for the inclination and for the eccentricity are not independent of each other, since the amplitudes of $\sin \omega$ for the two elements are proportional. If the eccentricity is small, the equation for the argument of perigee is not independent of that for the eccentricity, and the amplitude for the longitude of the node is small and can contribute little to the determination. In reality, of the 12 satellites chosen, 10 have small eccentricities.

Therefore, although nearly 50 equations of condition are used ia each determination, the number of equations that can really contribute is not large enough to permit the solution for more than 10 unknowns, especially for oddorder harmonics.

To reduce standard deviations for the solutions, more data and the inclusion of much higher order harmonics are necessary. There are gaps in the inclination around 40° and below 25°. Particularly, satellites with inclinations less than 25° are needed to reduce correlation among coefficients in the equations of condition.

In effect, when the number of changes of sign for the coefficients in Tables 2 a and 4 is counted for each satellite, it can be noticed that the lower the inclination is, the larger the number becomes. For example, the sign changes six times and seven times, respectively, in the equations for $1960 v 1$ in Table 2 a and it changes three times for 196589 A , although the signs are
always negative for 1965 81A. This means that the corrclations, especially among higher order cocfficients, are quite strong without low-inclination satellites.

To reduce correlations in the present analyses, weignts to the data for $1960 \nu 1$ and 1959 al are increased artificially. But the correlations are still quite strong.

However, it is certain that the coefficients given in equation (3) are quite reliable up to 12 th-order harmonics.

REFERENCES

KOZAI, Y.
1964. New determination of zonal harmonics coefficients of the earth's gravitational potential. Smithsorian Astrophys. Obs. Spec. Rep. No. 165, 38 pp.
1968. Improved values for coefficients of zonal spherical harmonics in the geopotential. In Geodetic satellite results during 1967, ed. by C. A. Lundquist, Smithsonian Astrophys. Obs. Spec. Rep. No. 264, pp. 43-56.

BIOGRAPHICAL NOTE

YOSHIHIDE KOZAI received his doctorate from Tokyo University in 1958. He has been associated with the Tokyo Astronomical Observatory since 1952, and has held concurrent positions as staff astronomer with that observatory and consultant to SAO since 1958.

Dr. Kozai specializes in celestial mechanics, his research at SAO being primarily in the determination of zonal coefficients in the earth's gravitational potential by use of precisely reduced Baker-Nunn observations. He is also interested in the seasonal variations of the earth's potential.

DATE
FILMED
JUL 151969

