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THE ALGEBRA OF PROBABILITY DENSITY FUNCTIONS

By
George C., Marshall Space Flight Center
Huntsville, Alabama

ABSTRACT

Presented in this report is a set of mathematical rules for the
calculation of the probsbility density function of a variable known as
an arbitrary function of one or more random variables.

All proofs have been inciuded.

The applicability of these rules is illustrated in a number of
examples,

ii




THE ALGEBRA OF PROBABIL.TY DENSITY FUNCTIONS

By

B. G. Grunebaum

Distribution of this report is provided in the interest of information
exchange. Responsibility for the contents resides in the author or
organization that prepared it.

Prepared under Contract No. NAS8-18405

COMPUTER SCIENCES CORPORATION
- COMPUTER SYSTEMS BRANCH
SPACEBORNE COMPUTER PROJECT
Huntsville, Alabama

For

SYSTEMS RESEARCH BRANCH
Computer Systems Division
Computation Laboratory

NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER

iii



Introduction e o s o o

The Transformation Rule

The Composition Rule . .

Examples

L [ ] L v L] L] [ ]

TABLE

OF CONTENTS

iv



THE ALGEBRA OF PROBABILITY DENSITY FUNCTIONS

SUMMARY

Formulae, proofs and examples are given concerning the solution
of the following two problems:

"

Le

2.

Let p(x) be the probability density function of a random
variable x and y(x) an analytic, uniquely valued and
otherwise arbitrary function of x. Find the probability
density function of y ;

Let py (x ), k =1,(1),n, be the probability density functions
of a set of n random variables x,, k = 1,(1),n and

=4 (x »Xps ese X ) and analytic, uniquely valued and other
wise arb}trary func%ion of these random variables. Find the
probability density function of z,.




The Algebra of Probability Density Functions

INTRODUCTION

A large portion of the systems analysis, design and simulation work that is
being oriented toward the development of hardware and software criteria for
the implementation of the concept of a general purpose gpaceborne digital
computer,will require extensive use of mathematical techniques based on the
development of probability models and the algebraic manipulation of probabi-
lity density functions, This short paper, which summarizes some of the
fundamentals of such techniques,is intended as a reference for various NASA
personnel and their subcontractors,with the intent of assisting them in the
use of probability density functions. 1In particular, those persons through~
out SFC,who are associated with the Computation Laboratory Spaceborne Com~
puter Project,are assumed to be the important readers; however, techniques
outlined herein are certainly of general applicability to the design of other
systems presently being considered by NASA. Some of the information con-
tained herein can be extracted from readily available text material. However,
many contributions to the field of statistics by the author are included, be-
cause they are believed to represent important techniques which are not widely
known, Proofs are included only when they are felt to be necessary or when

they contain techniques which are of general interest.

The Transformation Rule
Let p(x) be a probability density function, i.e. p(x,)dx represents the proba-
bility that the random variable x lies between X, and X + dx, Let y = y(x)

be analytic and uniqueiy valued, i.e. to each value of x there corresponds one




The validity of (5) is restricted by the following condition:
If 2=z, = d(xo) = constant is chosen such that R is non-empty and the

components of x , namely X10°%20°* ** %X o’ all belong to S except for

some X, where k is arbitrary but different from j, then the equation

(8) zo - d(xl’o’xZ,o’onoxk-l’o,xk’o,xk+1’0’ouoxn’o) must have

70 more than cne solution in Xk, 0 € S, for all possible choices of k.,

The preceeding restriction does not really degrade our solution. In effect,
assume (5) to be correct under the restriction imposed. Next, assume that

for some value of k, the equation (3) has more than one root belonging to S,
Then, it i8 not difficult to see that formula (5) must be replaced by a sum-

mation of the same integral over all solutions x Similarly, if there is

k’o.
more than one value of k yielding muitiple roots of (8) belonging to S, the
summation must extend over all possible combinations of solutions. Hence,

no gererality is lost if we prove formula (5) assuming the restriction (8)

to be va lid.

A general and rather elegant proof of (5) can be obtained using krown concepts
of differential geometry. It will be complemented later by an elementary,

but more restricted alternate proof. Consider the manifold C defined by

z = constant and the portion of this manifold which belongs to S, namely R as
defined by (6). Let R + dR be a similar manifold, corresponding to z + dz =
conétant. If we denote by dS the hypervolume between R and R + dR belonging

to S, then p(z)dz represents the probability that a point x belongs to dS.
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and only one vaiue of y. The converse is not necessarily true; in other
words, to each y, there may correspond a set of k values of x, namely

(1) (2) eoee (k)

X X X .

Then the probability density function pl(y) of y will be given by

i Wy | (o
N R i-E(l),k plx >|(dy> x_xu)‘ .

In particular, if k = 1, we have

(2) P () = P (x)

Iy (x)‘

where x is assumed to be expressed as a function of y,

In order to prove (1) and (2), simply observe that the probability of y belong-

ing to (y, y + dy) ie given by

(1)

P,y = ) p(x ) dx
i=1,(1),k
|
i} @, | fax
im 12.:(1),k PO (dy) =@

where the absolute value enters because density functions are positive definite

by definition.

As an example, let
y=x
then x=+ ¢y , i,e. k=2

and Qﬁ.-‘i 1

hence, by virtue of (1):

p, () = 2\}?. [p (~/y')+p(~\f5'")] .




1f say x € (~1,1) and p(x) = &, we obtain pl(y) - 571'?-"' withy € (0,1),
1f x € (0,1) and p(x) = 1, we have p(~v/y ) @ O and therefore pl(y) - .2.01,?,

withy € (0,1) as before,

The_Composition Rule

Let x = x(%{,X2 ,eeseeXy) be an n-component vector and assume

(3) X1 < X < Xpo k=1,(1),n .

The bounds x;; and x), are not necessarily constatit and may depend on all
components of x, except x,. Denote by S the n-dimensional manifold of all
points x satisfying (3) and let Pk(xk)’ k=1, (1), n, represent the n
probability density functions of the variables Xy Furthermore define

(4) z = $(x)

where z is real and p is analytic and uniquely valued in S, The question i;

to determine the probabiiity density function p(z) f z.

Under certain restrictions, to be detailed later, the answer is:

j‘ n p G dx,
(5) p(z) = Jo 5 8 .
lT,;J.- =y

where the product [ 1is to be taken over all n values of k,j is an arbitrary
index between 1 and n and the integration manifold R is defined by

(6) R=S nC

where C i8 the manifold deiined by

{(7) $(x) = z = constant

which has n-1 dimensions.




[

n-1
Let d R be an infinitesimal portion of R such that

- d n-1
ds '/; —r—via—r d” "R . .

Then, from differential geometry, it is known that
A le o 18] Dax
P

{}R dxj

where the product [l extends sver all n values of k, and j is an arbitrary

index between 1 and n. It folldws that

ds = ./‘R dz ﬂdxk .

where the integrand is an n-dimensionsl hypervolume (if n > 3; otherwise,

a volume, surface or line) having all dimensions infinitesimal., The probabi-~

iity that & point x will belong to this hypervolum. is

dz [I P, (x,)dx,

1f the condition (8) is satisfied, we may now integrate over R to obtain (5),

which completes the proof.

Notice that neither C nor R need to be ccavn=sted, The symbol V stands of
course for gradient, which 18 a vector so that i‘?dl means the magnitude of

the vector., The index j must be ~%osen so that ._%Ji. %0,
%

.mAn a{;ernate and elementary proof, restricted to two dimensions, would be as

follows:

Let x and y be two independenﬁmrandom variables satisfying




and let S be the (x,y) space defined by these bounds, i.e, generally a sur-
face, If the bounds are constant and the coordinates rectangular, S would
be a rectangle, Nevertheless X1 and/or X, may depend on y, and vice~versa,
so that S could be any surface, neither necessarily bounded nor necessarily
simply connected. Define pl(x) and pz(y) as the respective probability
densities and

z=¢ (x,y)
where ¢ is analytic and uniquely valued in S. We s&ek the probability density

p(z) of z.

Consider the curve C given by z = constant and let R be the poriion of C be-
ionging to S. Similarly, let R '+ dR be the position of the curve z 4 dz = con-
stant belonging to S. Denote by d§ tinn area between R and R + dR belonging

to S. Then p(z)dz represents the probabilicy that a point (x,y) belongs to
dS. 1In order to calculate this probability, let

d’s = a1 dr

where d£'is an infinitesinal line element of R and.dr is the distance between
R and R + dR of that point. Now, assuming rectangular coordinmates, which does

not impair generality, we have

af = \J@? + (ay)?

and dz

Hence

V(a2 + (dy)?

T

d%s = T%:.T YVx)2 + (@y)° = dz



But on R:

dz = 0 = _g..,g. dx +._3_.>gi. dy

i.e. EX: '
© - Jx
dx = d0
dy

Substituting in the expression for dZS, we obtain

dg = d;dx - szd
T:;i_g‘ .9 &
d vy dx
The probability that the point (x,y) wiil belong to d2s is now
d
p, ) p, () d®s = p, (x) p, (¥) _‘_éx[, dz
B¢

where the meanings of x and y may be interchanged. If the equations z_ = d(xo,y)

and z, = 6(x,yo) are single rooted in S, we integrate the preceding expression

over R, obtaining:

(9) p(z) = fR Py ) P, ) T%_\-
ox

where x 18 of course a function of z and y. The meanings of x -and y can again

be interchanged., This is the 2~dimensional equivalent of (5). If the equations

z, ™ d(xo,y) and z, = d(x,yo) are not single rooted in S, additional terms

must be added for all combinations of roots. Of course, —9¢_ or g must
5 —45

be distinct from zero.

In practice, the main difficulty in the use of formula (5) is a merely geometri~-
cal one, namely, the determination of the boundaries of the manifold R, 1In
addition, if formula (5) is to be used numerically, straight quadrature.pro-
cedures may be conducive to serious computational difficulties, in the sense of

excessive machine time requirements. The recommended method to circumvent

these difficulties will become apptrent in the forthcoming examples and it should




perhaps be added that the author has successfully used this method for

several years in purely numerical and multi~-dimensional applications,

The boundary situation can be illustrated with the following simple example.
Consider the case of 3 random variables, bounded by constants, so that 8§ is
3~dimensional and actually, assuming a tri-orthogonal coordinate system, &
rectangular parallelepiped. 1In this case, C will be a surface and let us
assume that it is a plane so that formula (5) applies without multiple root
complications. Then R will be the intersection between this plane and S,
that is, anything from a triangle to an irregular hexagon, depending on the

position of C.

Notice that, in the particular case when
z=6 (X,y) =x+y
then formula (9) becomes
p(z) = Jppy (2 -Y¥)p, (y) dy
i.e., the well known and classic convolution formula.

Examples

We start with some simple, Z~diinensional cases.

PROBLEM 1

Given x € (0,1) , Py (x) =1
y € 0L , p, =1
z®2x+y

Find p (2)

Using (9)

P (z)-fRdy



Now, 1f z € (0,1) theny € (0,2)
and 1f z € ('1,2) theny € (z - 1,1)

Hence z ’
p(z)-f dy m 2z 1if0sz2 =1
0 :
and 1
p(z)-f dy = 2 -~z if 1 £z 52
z~1

Verification:
2 1 2
o f p (z) dz = f zdz + f (2 - 2z) dz =1
o o 1
PROBLEM 2
Given * € (0,1) ’ p1 (x) =1
y € (0,1) ’ Pz (y) =1
zZ®mx -y
find p(z).
We have
z) = d
p(z) /;{ y
Now, 1if z € (-1,0) , theny € (-z,1)
and if z € (0,1) » then y € (0,1-z)
Hence
1
p(z)-/ dy =1 +2z if -1 =250
-2
and

i=2
p(z) = f dy = 1 -z if 0=Sz=1
o

10




Verification:
1 0 1
/ p(z)dz-/ (1 +z) dz + / (1 ~2)dzwl
-1 1 ()

The next problem is 3~-dimensional.

PROBLEM 3

Given a € (0,1 > p1 (a) = 1
b € (0,1) ’ p, (b) = 1
c € (0,1) ) Py (c) = 1
z - b2 - Gac

find p(z)

In this case, z ¢ (-4,1), There i8 no multiple root problem, since the
second root in b would be negative and thus does not belong to S. Applica-
tion of formula (5) would require the determination of the intersection R
between the unit cube representing S and the surface b2 - 4ac = z = constant,
This is rather tedious and can be circumvented as follows:

Substitute X, = bz . Then, since b € (0,1), we can apply formula (2) so that

- 1 ~ 1
P, ;) 7b 2 J%

The problem is now reformulated in the form

z = xl - 4ec .

Next, we substitute X, = 4ac, Then, by virtue of formula (9), we have

Y - da
P5 (XZ) ,/; ba

where R is the intersection between the proper unit square and the hyperbola

bac = X, = constant, Hence, for all values of x2, a varies from 1 to X2

Z

L




and therec¢.’ore
x./4
v - 2 da - - X
Pg (xz)‘- X [ <8 ¥ 1n +

-%an-%lnxz .

The problem is now reformulated as

z-xl-xz

where

1

3 € (0,1) ’ Py (xl) - E—-v=;1= '

x, € 0,4) , P, (xz) =% 1n2 ~ % lnx2

and therefore, by virtue of formula (9):

[; Vz-i-x 8 -/1; ;;z+x2 dxz

*

p(z) = % 1ln2

where R is the intersection between the rectangle formed by the values of Xy
and X, and the straight line z = X, - x2 = constant. Hence the following
integration limits apply:

if z € (=4,-3) X, € (-z,4)

If z € (-3,0) , x, € (-2,1-2)

If z € (0,1) ) X, € (0,1-2) .

For reasons of briefness, we shall calculate the result only for positive z,

i.e. in this case, z € (0,1). We obtain

12




Q/ﬁ dx, 1-2 d
: - X = 2(1" z )
*R z + X, o V z +x Ve

Lnx 1-2’
-/; 2 dx, = _/ A0d% ot (1-2) - 4 VT ) -
-2 yz ln(lbz %—%) .

p(z) =% (1-yZ') (1 + 1n 2) = %ln (1-z)+Vf_;_- ln(l&z__l_'_fz..)
A 1 +VFE-

for z € (0,1) .

Hence

In particular:
p (0 =% (1 +1n2) ~ .8466 ,...
p (5 ~ .2321 ....
p (1) =0 .
The reader may easily find the probability density p(z) for the remaining

range of z.

The preceding problem establishes the guidelines for a general procedure
to circumvent the difficulty of determining the manifold R when the latter

has more than one dimension.

The following problem sheds some light on the variety of possible applications

of the preceding theory.

13



PROBLEM 4

Given the second order equation
ax2 +bx +c=0

where a, b, ¢ € (0,1) with uniform distribution, what is the probability

that the equation has real roots?

The results from the preceding problem can obviously be applied here, The
roots are real if b2 - 4ac = 0 and therefore, if p(z) is taken from Problem

(3), the answer is

1
P = f p(z)dz .
o

Using the fact that
» 1
f Yz 1n (Az _L_E)dz-- __1§Q_
o

we find

1
M - +6 ~’ . seoe
P T (5 In 2) 2544

This result has been found independently by S. Karlin of Stanford University.
The preceding problem is more than just academic; in fact, it is of consider-
able interest in certain aspects of logical computer design. This problem
was solved, several years ago, at the request of an engineering staff which
was reluctant to accept the answer, Subsequently, a Monte-Carlo type deter~
mination of P was programmed by simply random generating three numbers a, b
and ¢ in (0,1) and checking the sign of b2 - 4ac, This program ran in 1964
on a Burroughs B-5000 computer and confirmed the theoretical result beyond

reasonable doubt,
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The following example illustrates a simple application in the analysis of

the probabilistic behavior of information systems.

PROBLEM 5

Assume that the sole purpose of a system is to perform the matrix multiplica-~
tion M = AB, each multiplication process starting instiintly after the pre~
ceding one has terminated., The matrices A and B have dimensions m x n and

n x X respectively and these dimensions are considered to be discrete random
variables with known density functions Py (m), Py (n), Py (Q), and fixed
greatest lower and least upper bounds., Notice that since m, n and £ are
integers, the density functions are not analytical. Several questions may
be posed, such as:

I. If the computer has sufficient capacity to handle all possible

sizes, what is the average number of multiplication programs executed per unit

of time?
iT. Same question 1f some limit is imposed on m, n and 4.
ITI. If some limit is imposed on m, n and £, what is the percentage

of multiplication requests which will be satisfied?

In order to answer question I, it is necessary to find first the probability
density function p(z) of execution time z., Now, it is known from computer
theory, that very approximately

z=~kmund
where k is a constant which may be assumed known, depending on the type of
computer and the choice of the time unit, Formula (5) must be applied now,

taking into consideration that m, n and £ are integers, so that integrals

-

15




become summations. Following the process outlined in problem (3), we define
x = nf
and obtain the corresponding density function in the form

P, = D, & %

where the summation extends over all values of n such that the inequalities

A
UA

'ﬂl n

£

)

£

2

A

= X
= n

1
are both satisfied, where (nl,nz) and (ﬂi,Xz) are the greatest lower and

least upper bounds of n and £ respectively and therefore known.

The density function p(z) can now be obtained in the form

j=

p(z) = -11; Zpl(m)pa (% )m

where the summation extends over all values of m such that the inequalities

m < m =m

1 2

=2 =
xelnl_;m = /qznz
are both satisfied, where my and m, are respectively the greatest lower and

least upper bounds of m, It follows that the average execution time wiil be

kn,m
T = zp(z)dz
knlmrﬂl

and it should be noticed that the preceding quadrature can be performed

numerically WITHOUT truncation error, since the number of distinct values of

16




zp(z) is finite, namely
(m2 - my + 1)(n2 - n + 1)(‘2 -_11 + 1) .

The average number of executions per unit of time will be

L
T

and this answers question I,

Assume now that limits m, N, and j% are imposed on m, n and 4, This means
that whenever m = m, or n = ng or 4 > Kos the program is rejected, one
possible reason being that the computer does not have the necessary capability.

These limits must of course ye smallei than the corresponding least upper

bounds, The probability that a request will be executed is

m0 no 1{1 0 ,
p - E Pl(m) E Pz(“) E Pl(f)
m = m n=n g = 4

and 100 P/, is the answer to question III.

I oxder to answer question iII, we assume rejection ?ime to be negligible.

Next, we calculate the probability density function q,(z) of execution time
z , subject to the condition that an execution actually takes place, This
function dé(z) is obtained following exactly the scheme conducive to p(z),

the only differences being the substitutions,.

m by m

2 o
n, by ng
pZ by o

1 N
Pl(m) by 5 'Pl(m/




1
pz(n) by '1’2"'"2(")
Py (L) by ’Ei'" Py(4) '
where
Mo
o
Py :ia Py (m
m = m
1
Do
—
B, By ()
n-nl
and '10
Pam D pd) :
=4

Once q,(z) has been obtained, the new probability density function q(z) of

execution time z will be

q(z) = Pq,(z) .

The new average execution time is
knomofb

T = zq(z)dz

(o]
k R
™M

and the average number of executions per unit of time is

L
1

O

This answers question II.

18
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Notice that if we change the rejection criterion, such g3 limiting the vaiue
of the product m n {4, the technique for answering question II and III must
be redesigned. Nevertheless, th¢ composition rule i.e., formula (5), con-

tinues to be useful as a basic¢ tool.

Another important application of the preceding theory lies in the field of
error analysis, The standard formulatica of a typical problem could be as
follows:

An information system has a number of inputs, each one affected by an error
with a known probability density. What are the probability densities of the
different output errors? Although the literature contains a number of
methods for solving such problems, the transformation and composition rules
of fer the noteworthy advantage of being able to handle any input distributibn,
.ny type of error such as random, bias, etc, and not to require the system
to be analytical, that is, not necessarily differentiable with respect to all
input variables, Such error analysis has been efficiently computerized in

the past,
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CONCLUSIONS AND RECOMMENDATIONS

The preceding procedures are claimed to be superior to approximate
methods presently in use., Their computerized implementation is recommended,

20
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