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THE ALGEBRA OF PROBABILITY DENSITY FUNCTIONS

M1	 By

George C. Marshall Space Flight Center
Huntsville, Alabama

ABSTRACT

Presented in this report is a set of mathematical rules for the
calculation of the probability density function of a variable known as
an arbitrary function of one or more random variables.

All proofs have been included.

The applicability of these rules is izllustrated in a number of
examples.
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THE ALGEBRA OF PROBABILITY DENSITY FUNCTIONS

SUMMARY

Formulae, proofs and examples are given concerning the solution
of the following two problems:

1. Let p(x) be the probability density function of a random
variable x and y(x) an analytic, uniquely valued and
otherwise arbitrary function of x. Find the probability
density function of y ;

2. Let Pk (xk ), k = 1,(1),n, be the probability density functiono
of a set of n random variables xk , k = 1,(l),n and

wisebarbitrar 
"s
functi
	 analyticp uniquely valued and

 variables. Find theY
probability density function of z.

i
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The Algebra of Probability Density Functions

INTRODUCTION

A large portion of the systems analysis, design and simulation work that is

being oriented toward the development of hardware and software criteria'for

the implementation of the concept of a general, purpose spacaborne digital

computer,will require extensive use of mathematical techniques based on the

development of probability modeler and the algebraic manipulation of probabi-

lity density functions. This short paper, which summarizes some of the

fundamentals of such techniques,is intended as a reference for various NASA

personnel and their subcontroctors,with the intent of assisting them in the

use of probability density functions. In particular, those persons through-

out NSFCpwho are associated with the Computation Laboratory Spaceborne Com-

puter Project,are assumed to be the important readers; however, techniques

outlined herein are certainly of general applicability to the design of other

systems presently being considered by NASA. Some of the information con-

tained herein can be extracted from readily available text material. However,

many contributions to the field of statistics by the author are'included,be-

cause they are believed to represent important techniques which are not widely

known. Proofs are included only when they are felt to be necessary or when

they contain techniques which are of general interest.

The Transformation Rule

Let p(x) be a probability density function, i.e, p(x o)dx represents the proba-

bility that the random variable x lies between x  and x  + dx. Let y = y(x)

be analytic and uniquely valued, i.e. to each value of x there corresponds one

2
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The validity of (5) is restricted by the following condition:

If z 0 20 • 4(X0) • constant is chosen Ruch that R to non -empty and the

components of xor namely x10,x20 , ' ' •,x 
no, all belong to S except for

some xko , where k is arbitrary but different from J, then the equation

(8)	 z 	 * d(xl,0 ,x2,0 ,. SOX k-1,0'xk,0'xk+l,OP•..xn^oo) must have

no more than ene solution in xk 0 E S, for all possible choices of k.

The preceeding restriction does not really degrade our solution. In effect,

assume (5) to be correct under the restriction imposed. Next, assume that

for some value of k, the equation (3) has more than one root belonging to S.

Then,it is not difficult to see that formula (5) must be replaced by a sum-

mation of the same integral over all solutions xk 
0• 

Similarly, if there is

more than one value of k yielding multiple roots of (8) belonging to S, the

summation must extend over all possible combinations of solutions, hence,

no generality is lost if we prove formula (5) assuming the restriction (8)

to be valid.

A general and rather elegant proof of (5) can be obtained using known concepts

of differential geometry. It will be complemented later by an elementary,

but more restricted alternate proof. Consider the manifold C defined by

z a constant and the portion of this manifold which belongs to S. namely R as

defined by (6). Let R + dR be a similar manifold, corresponding to z + dz a

constant. If we denote by dS the hypervolume between R and R + dR belonging

to S, ~then p(z)dz represents the probability that a point x belongs to dS.

3



and only one value of y. The converse is not necessarily true; in other

words, to each y, there may correspond a not of k values of x, namely

x (1)	x (2)	 ...* x(k)	
n

Then the probability density function p l (y) of y will be given by

(^•)	 P1(Y)	 "	 E	 P(x(i))	 dy-)	 (i)
i' l r ( l ) tk	 Y	 x	 x

In particular, if k 1, we have

(2 )	 iPI(Y)	 PWx)

Y (x

where x is assumed to be expressed as a function of y.

in order to prove ( 1) and (2), simply observe that the probability of y belong-

ing to (y, y + dy) is given by

P 1 (y) dY	 L..	 p(x(i)) dx

'	 P(x(i))	
dY x = x(i>	

dy

where the absolute value enters because density functions are positive definite

by definition.

As an example, let

Y ' x2

then x 0± r, i.e. k a 2

and dx e + 1dy _ 2, p

hence, by virtue of (1):

P
1 
(Y)'	 P WY— ) + P (-, )]

r

4



If say x E (-1,1) and p(x) • h ► we obtain pl (y) ' 2- I	 with y C (0,1).

If x C (0,1) and p(x) a 1, we have p(-N/y) 0 and therefore pl(y)

with y E (0,1) as before.

The Com osition Rule

Let x • x(xI,x2 ,.....xn) be an n-component vector and assume

(3) xkl '- xk ' xk2 t k • 1 , ( 1 ) r n	 .

The bounds xkl and xk2 are not necessarily constant and may depend on all

components of x, except xk . 'Denote by S the n•dimensional manifold of all

points x satisfying (3) and let pk (xk), k n 1 0 (1), n, represent the n

probability density functions of the variables xk. Furthermore define

(4) z ' O(x)

where z is real and p is analytic and uniquely valued in S. The question is

to determine the probability density Function p(z) f z.

Under certain restrictions, to be detailed later, the answer is:

n Pk (xk)dxk

fR	 a d	 dx .X _3 -

where the product rl is to be taken over all n values of k,j is an arbitrary
index between 1 and n and the integration manifold R is defined by

(6) R • S R C

where C is the manifold defined by

(7) O(x) m z w conztant

which has n-"1 dimensions.

1.
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n-1
Let d R be an infinitesimal portion of R such that

dS	 fit	 d- d	
do-1R

Then, from differential geometry, it is known that

do
- 1RI V A I 	 ndxk

44;	 dxj

where the product II extends fiver all n values of k, and j is an arbitrary

index between 1 and n. it fo ll4we that

dS
	 fR	

dz 11 dxk
 

aI ax,	 dx

where the integrand is an n-dimensional hypervolume (if n > 3; otherwise,

a volume, surface or line) having all dimensions infinitesimal. The probabi -

lity that a point x will belong to this hypervolum^ is

dz 17 pk (xk)dxk

...^ d
X5	

xj

if the condition (8) is satisfied, we may now integrate over R to obtain (5),

which completes the proof".

Notice that neither C nor R need to be coa"o.i.ted, The symbol V stands of

course for gradient, which is a vector so treat VO I means the magnitude of

the vector. The index j must be -.hosen so that ^ ^ p
x^

An alternate and elementary proof, restricted to two dimensions, would be"as'

follows:

Let x and y be two independent random variables satisfying

x l G x ,G. x2

Y L y ry
1	 2

6
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and

.

He nc e

(̂dx 2 + (dy1)	 dz

dz
dr

d 2 = dz

va
jd;) 2 M+ (dY)2

ay

4

and let S be the (x,y) space defined by there bounds, Le, generally a out-

face. If the bounds are constant and the coordinates rectangular, S would

be a rectangle. Nevertheless x  and/or x 2 may depend on y, and vice-versa,

so that S could be any surface, neither necessarily bounded nor necessarily

simply connected. Define p l (x) and p2(y) as the respective probability

densities and

Z - 0 On, Y)

where 0 is analytic and uniquely valued in S. We weir the probability density

P(Z) of Z.

Consider the curve C given by z constant and let R be the portion of C be-

longing to S. Similarly, let R •!- dR be the position of the curve z + dz a con-

stant belonging to S. Denote- by da thn area between R and R + dR belonging

to S. Then p(z)dz represents the probability that a point (x,y) belongs to

dS. to order to calculate this probability, let

d 
2 
S - d! dr

where dk is an infinitesinal line element of R and dr is the distance between

R and R + dR of that point. Now, assuming rectangular coordinate ,r, which does

not impair generality, we have

d9 n (dx) 2^+( dy)



But on Rt

dz04	 x dx + aY dY

e. ad
... ax

ay

Substituting in the expression for d2 S, we obtain

Z

A	 dzdx	 dzd'

	

Y	 d ^c

The probability that the point (x=y) will

Pi (x) P  (Y) A .I, p 1 (x)

where the meanings of x and y may be irate

belong to d2S is now

p  (Y)	 dz

^ ax
rchanged. It the equations z o • O(xo,y)

and z o - i(x,yo) are single rooted in S, we integrate the preceding expression

over R, obtaining;

( 9 )	 P (z) fR P1 (X) P2 (Y) d
a

The meanings of x and y can againwhere x is of course a function of z and y.

be interchanged. This is the 2-dimensional equivalent of (5). If the equations

zo M O (xo ,y) and zo M O(x,yo) are not single rooted in S. additional, terms

must be added for all combinations of roots. Of course, -a  — or 	 must
Y

be distinct ` from zero.

In practice, the main difficulty in the use of formula (5) is a merely geometri-

cal one, namely, the determination of the boundaries of the manifold R. In

addition, if formula (5) is to be used numerically, straight q uuadrature $ pro-

cedures may be conducive to serious computational difficulties, in the sense of
j

excessive machine time requirements. The recommended method to circumvent 	 ^yy
f

these difficulties will become appe rent in the forthcoming examples and it should 	 ►

8
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perhaps be added that the author has successfully used this method for

several years in purely numerical and multi-dimensional applications.

The boundary situation can be illustrated with the following simple example.

Consider the case of 3 random variables, bounded by constants, so that S is

3-dimensional and actually, assuming a tri-orthogonal coordinate system, a

rectangular parallelepiped. in this case, C will be a surface and let us

asstnme than it is a plane so that formula (5) applies without multiple root

complications. Then R will be the intersection between this plane and S,

that is, anything from a triangle to an irregular hexagon, depending on the

position of C.

Notice that, in the particular case when

Z ' 4 (x :Y) • x + y

then formula (9) becomes

P 	 " fR p y (z - Y) P (Y) dY

i.e. the well known and classic convolution formula.

Examples

We start with some simple, 1-dimensional cases.

PROBLEM 1

Given	 x E (0, 1)	 ,	 p1 (x)	 1

y E (0 1, 1 )	 P2 (Y) - 1

z x + Y

Find p (z)

Us ing (9)

p (z ) " 
fR dy

9-



Now, if z E (0,1)	 then y E (0, z)

and if z E (1,2)	 then y E (z

Hence	 z
p (z) 

fo
dy • z if O z <1

and	 1p (z) •f dy 2- z if 1 z=2
Z-1

Verification:

f 2

	 1
R

p (Z) ' Az	 J	 zdz + J	 (2 - z) dz 1
b	 o	 1

PROBLEM 2

Given

find p(z).

We have

Now, if

and if

Hence

and

x E (0 a 1)	 ,	p 1 (x) 0 1

y C (0 1 1 )	 1	 p 2 (y) - 1

Z • X - y

p (Z) - dy
R

z E (-1,0)	 ,	 then y E (-z„1)

z E (0 9 1)	 ,	 then y E (0,1-z)

1
p ( Z) -	 dy • 1 + z if -1 :-5z :50

f-z

1 -oz

p (Z) ”	 dy - 1 - z if 0,-5z!51fo

x

10



Verification:

f

1 	 0	 1
p(z)dz	 ( 1 + z) dz +	 (1 - z) dz • 1

-1	 -1	 0	 .

The next problem is 3-dimensional.

PROBLEM 3

Given	 a E (0 9 1)	 ,	 p  (a) • 1

b E (O v l )	 ,	 p2 (b) • 1

c E (0 , 1 )	 y	 p3 (c)	 1

z • b 2 - 4ac

find p(z)

In this case, z (:(-4,1).  There is no multiple root problem, since the

second root in b would be negative and thus does not belong to S. Applica-

tion of formula (5) would require the determination of the intersection k

between the unit cube representing S and the surface b2 - 4ac = z = constant.

This is rather tedious and can be circumvented as follows:

Substitute x  ® b 2 	Then, since b E (0,i), we can apply formula (2) so that

p4 (xl)	 I	
o	 1

2 xl

The problem is now reformulated in the form

z=xl-4ac

Next, we substitute x2 • 4ac. 'then, by virtue of formula (9), we have

x	 •	 da
p5 ( 2^	 R	 4a

where R is the intersection between the proper unit square and the hyperbola

4ac - x2 • constant. Hence, for all values of x2 , a varies from 1 to 2
4



x /4	 x2	 da ^ -^ In	
2I	

a	
"T+^"-P5 (x2 ) `- -k

and them."ore

In 2 - In x2

The problem is now reformulated as

zMx1-x2

`a	 where

x  E (0 1 1 )	 f	 P4 (x1) " 2 1x	 ,

x2 E (O r 4)	 ,	 P5 (x2 ) = h ln2 - ' lnx2

and therefore, by virtue of formula (9):

	

dx2 	I	 lnx2
p (z)	 1n2	 ----	 --	 dx

$fR
2

R	 z+x 	 z+x2

where R is the intersection between the rectangle formed by the values of x 

and x2 and the straight line z = x  - x2 .. constant. Hence the following

integration limits apply:

If z E (-4p-3)	 ,	 x2 E (-z,4)

If z E (-3 9 0)	 ,	 x2 E ( -z,1-z)

if z E (0, 1)	 ,	 x2 E (0,1-z)

For reasons of briefness, we shall calculate the result only for positive z,

i.e. in this case, z E (0,1). We obtain

12
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dX	 1-z

• R z +X2 	fo	 ;=z +x

inx 1-z

	

^^..^ L dX	 ~..,.^'	 U n ( 1- z) 4 (1-T Y	
wR T77x2 2	 0	 z+x

-2 rz In 4z 

Hence

p (z)	 (1- fz— ) (1 + In 2) kln (1 - z) + ^T In 4z 1
4	 1 +

for z E (0, 1)

in particular:

p (0)	 (1 + ln2)	 .8466

p (k) ;z, .2321 ....

p (1) W 0

The reader msy easily find the probability density p(z) for the remaining

range of z.

The preceding problem establishes the guidelines for a general procedure

to circumvent the difficulty of determining the manifold R when the latter

has more than one dimension.

The following problem sheds some light on the variety of possible applications

of the preceding theory.

13



PROBLEM 4

Given the second order equation

ax  + bx + c • 0

where a, b, c C (0,1) with uniform distribution, what is the probability

that the equation has real roots?

The results from the preceding problem can obviously be applied here, The

roots are real if b 2 - 4ac > 0 and therefore, if p(z) is taken from Problem

(3), the answer is
1

P	 p (z)dz
O

Using the fact that

l
In 4z 1 - z	 dz . - - 0	 .

o	 1+	 9

we find

P	 36 (5 + 6 In 2) N .2544 ...

This result has been found independently by S. Karlin of Stanford University,

The preceding problem is more than;'^,tst academic; in fact, it is of consider-

able interest in certain aspects of logical computer design. This problem

was solved, several years ago, at the request of an engineering staff which

was reluctant to accept the answer. Subsequently, a Monte-Carlo type deter-

mination of P was programmed by simply random generating three numbers a, b

and c in (0j) and checking the sign of b2 - 4ac. This program ran in 1964

on a Burroughs B-5000 computer and confirmed the theoretical result beyond

reasonable doubt.

14



The following example illustrates a simple application in the analysis of

the probabilistic behavior of information systems.

PROBLEM 5

Assume that the sole purpose of a system is to perform the matrix multiplica-

tion M w AB, each multiplication process starting inetantly after the pre-

ceding one has terminated. The matrices A and B have dimensions m x n and

n x .9 respectively and these dimensions are considered to be discrete random

variables with known density functions p 1 (m), p2 (n), p3 U), and fixed

greatest lower and least upper bounds. Notice that since m, n and R are

integers, the density functions are not analytical. Several questions may

be posed, such as:

x.	 If the computer has sufficient capacity to handle all possible

sizes, what is the average number of multiplication programs executed per unit

of time?

Same question if some limit is imposed on m, n and •^

III.	 If some limit is imposed on vi, n and is what is the percentage

of multiplication requests which will be satisfied?

In order to answer question Is it is necessary to find first the probability

density function p(z) of execution time z. Now, it is known from computer

theory, that very approximately

z = k m n-Q

where k is a constant which may be assumed known, depending on the type of

computer and the choice of the time unit. Formula (5) must be applied now,

taking into consideration that m, n and t are integers, so that integrals

1S
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"become summations. Following the process outlined in problem (3), we define

xmnrf

and obtain the corresponding density function in the form

p4 (x)	 p2 (n) p3 & it

where the summation extends over all values of n such that the inequali.tics

Ili == n - n2

^ { x
1 ^" n	 2

are both satisfied, where (n l ,n2 ) and Q1 ,S2 ) are the greatest lower and

least upper bounds of n and 1f respectively and therefore known.

The density function p(z) can now be obtained in the form

?( Z ) ' 
kFa

p i (m) p4 ( ,,m ) m

where the summation extends over all values of m such that the inequalities

ml !C-- m '5 m2

ln1 RE ^2n2

are both satisfied, where m l and m2 are respectively the greatest lower and

least upper bounds of m. It follows that the average execution time will be

f
kn2m2

T -	 zp (z)dz

fknlmlA1

and it should be noticed that the preceding quadrature can be performed 	 j

numerically WITHOUT truncation error, since the number of distinct values of

f

16_.
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zp(z) is finite, namely

(m2 -m 1 +1)(n2 - n 1 +1)(42 - '(1 +1)
.

The average number of executions per unit of time will be

1

and this answers question x.

Assume now that limits m o no and.4 are imposed on m, n and ,e. This means

that whenever m > , m,  or n > no or / -z- ,0o, the program is rejected, one
possible reason being that the computer does not have the necessary capability.

These limits must of course oa smaller than the corresponding least upper

bounds. The probability that a request will be executed is

mo	 no	 -eo

p "	 PI(m)	 p2(n)	 p1("^}

mMm l 	 nwn1	 YW'P1

and 100 P%q is the answer to question III.

in order to answer question U, we assume rejection time to be negligible.

Next, we calculate the probability density function qo(z) of execution time

z', subject to the condition that an execution actually takes place. This

function q,,(z) is obtained following exactly the scheme conducive to p(z),

the only differences being the substitutions..

m2	 by	 mo

n2	 by	 no

P 2	 by	 Po

p 1 (m) by p P1 (m)
1

17
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p2 (n)	 by

P3 (1')	 by

where

Zr-- P 2 (n)
2

^^,--- P3
.,3

x

P
r
F

.

I

mo

P°i '"	
Pi (m)

m•m1

no

F 2 ^.	
P2 (n)

n n 

and	 v10

P 3 `	 `	 P3 (^')

Once qo (z) has been obtained, the new probability density function q(z) of

execution time z will be

q (z ) ° Pga,(z)

The new average execution time is

knemoko

To a

	

	 zq(z)dz

knim1Ji

and the average number of executions per unit of time is

I

This answers question 11.

18
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Notice that if we change the rejection criterion, such as limiting the value

of the product m n -, the technique for answering question II and III must

be redesigned. Nevertheless, tht: composition rule i.e. formula (5), con-

tinues to be useful as a basic tool.

Another important application of the preceding theory lies in the field of

error analysis, The standard formulation o2 a typical problem could be as

follows:

An .information system has a number of inputs, each one affected by an error

with a known probability density, What are the probability densities of the

different output errors? Although the literature contains a number of

methods for solving such problems, the transformation and composition rules

offer the noteworthy advantage of being able to handle any input distribution,

.ny type of error such as random, bias, etc. and not to require the system

to be analytical, that is,not necessarily differentiable with respect to all

input variables. Such error analysis has been efficiently computerized in

the past.

11
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CONCLUSIONS AND RECOMMENDATIONS

The preceding procedures are claimed to be superior to approximate
methods presently in use. Their computerized implementation is reconinended.

20
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