
N A S A  C O N T R A C T O R  N A S A  a-134 
R E P O R T  & * I  

rh 
d 

THE DESIGN OF LINEAR MULTIVARIABLE 
CONTROL SYSTEMS USING MODERN 
CONTROL THEORY (WITH APPLICATIONS 
TO COUPLED CORE REACTOR CONTROL) 

Prepared by 
UNIVERSITY OF ARIZONA 
Tucson, Ark. 

for 

IAT lONAl  AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON,  D. C. JUNE 1969 



I l l l i l l  lllll1ll11 l l i l l  Ill11 l i l l l  llill11111111 
oomsas 

NASA C R- 134 5 

THE  DESIGN OF LINEAR  MULTIVARIABLE  CONTROL  SYSTEMS 

USING  MODERN  CONTROL  THEORY  (WITH 

APPLICATIONS TO COUPLED  CORE 

REACTOR CONTROL) 

By Charles R. Slivinsky, Donald G. Schultz, 
and Lynn E. Weaver 

Distribution of this  report is provided in  the  interest of 
information exchange.  Responsibility for the  contents 
resides  in  the author or organization  that  prepared it. 

Prepared  under  Grant No. NGL-03-002-006  by 
UNIVERSITY OF ARIZONA 

Tucson, Ariz. 

for 

NATIONAL AERONAUTICS AND  SPACE ADMINISTRATION 

For  sale by the  Clearinghouse for Federal'Scientific and Technical Information 
Springfield, Virginia 22151 - CFSTI price $3.00 





TABLE OF CONTENTS 

Page 

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . .  iv 

2 . CONVENTIONAL. FREQUENCY-DOMAIN  TECHNIQUES . . . . . . . . . . .  9 

Plant  Equations and Notation . . . . . . . . . . . . . .  9 
Forms of Compensation . . . . . . . . . . . . . . . . .  1 3  
Noninteraction . . . . . . . . . . . . . . . . . . . . .  1 4  
Configuration I Design . . . . . . . . . . . . . . . . .  16 
Configuration I1 Design . . . . . . . . . . . . . . . .  21 
Conclusions . . . . . . . . . . . . . . . . . . . . . .  25 

3 . STATE VARIABLE FEEDBACK DESIGN . . . . . . . . . . . . . . .  27 

Early Design Effor t s  . . . . . . . . . . . . . . . . .  28 
The  Work of Falb and  Wolovich . . . . . . . . . . . . .  35 
The Work of  Gilbert  . . . . . . . . . . . . . . . . . .  48 
Summary . . . . . . . . . . . . . . . . . . . . . . . .  67 

4 . SERIES COMPENSATION AND STATE VARIABLE FEEDBACK . . . . . . . .  69 

Methods for Se r i e s  Compensation . . . . . . . . . . . .  72 
Decoupled  Compensation . . . . . . . . . . . . . . . . .  91 
Proof  of  the  Central Result f o r  Method C . . . . . . . .  93 
Summary . . . . . . . . . . . . . . . . . . . . . . . .  113 

5 . COMPUTATIONAL  PROCEDURES . . . . . . . . . . . . . . . . . .  117 

Step-By-Step Design  Procedure . . . . . . . . . . . . .  119 
Use of the  Phase-Variable  Transformation 

f o r  Compensation . . . . . . . . . .  : . . . . . . .  125 
Procedure  Applicable t o   t h e  Augmented System . . . . . .  136 
S u m m a r y  . . . . . . . . . . . . . . . . . . . . . . . .  151 

6 . APRACTICAL  EXAMPLE . . . . . . . . . . . . . . . . . . . . .  154 

Coupled-Core Reactor  Design . . . . . . . . . . . . . .  155 
S u m m a r y  . . . . . . . . . . . . . . . . . . . . . . . .  168 

7 . CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . .  169 

Summary . . . . . . . . . . . . . . . . . . . . . . . .  169 
Further  Research . . . . . . . . . . . . . . . . . . . .  1 7 1  

iii 



LIST OF ILLUSTBATIONS 

Figure  Page 

2.1 Conventional,  Frequency-Domain  Design 
Techniques . . . . . . . . . . . . . . . . . 17 

3.1 ExampLe3.1. . . . . . . . . . . . . . . . . 41 
3.2 Example3.2. . . . . . . . . . . . . . . 47 
3.3 Canonically  Decoupled  System  Representation . . 54 
3.4 Compensated  System of Example 3.4  . . . . . . . 66 
4.1 Example4.l.. . . . . . . . . . . . 75 

4.2 Example4.2. . . . . . 77 
4.3 First-Order  Series  Compensation . . . . . 79 
4.4 Example4.3.. . . . . . . . . . 86 

4.5 Structure of the  Decoupled  Compensation . . . 92 

4.6 Two Input, Two Output  System . . . . . . . . . 102 
4.7 Example4.4.. . . . . . . . . . 110 

4.8 Final  Design f o r  Example 4.4 . . 114 

5.1 Exmple5,1. . . . . . . . 131 

5.2 Multivariable  Phase  Variable Form . . . 141 



ABSTRACT 

Design  techniques for linear multivariable  systems 

are considered.  Both  conventional,  frequency-domain  tech- 

niques and modern,  combined  frequency-domain,  time-domain 

procedures are considered.  Noninteraction is taken as one 

of the two basic  design  requirements; the other is that 

specified  subsystem transfer functions  be  achieved. Con- 

ventional methods are quickly shown to have the disadvan- 

tage of  complexity-both in carrying out the design  cal- 

culations and in the physical  implementation of the 

compensation. 

The bulk of the attention to design is given to 

the state  variable  feedback  design  of  multivariable systems. 

All previous  work is summarized,  including  procedures  which 

make possible the identification of the fixed zeroes of 

the subsystems of the multivariable  system and the number 

of subsystem  poles  which are controlled by state  variabla 

feedback. By treating  each  subsystem  individually, the 

designer can apply  some of the previously  developed 

knowledge of state  variable feedback design of  single- 

input,  single-output  systems. 

A  topic  which has not been previously  studied is 

the addltion of dynamics to  the multivariable  system 
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before  state  variable  feedback is applied, for the  purpose 

of  improving  the  system  response.  Three  methods are  pro- 

posed  and  analyzed for adding  dynamics. The first, 

Method A, requires  that the compensation, or additional 

dynamics,  be  placed in  the  control  input  channels  of  the 

multivariable  plant  and  that all the  states  of  the  aug- 

mented  system  be  fed  back.  This  method is  the  preferred 

one  when it works,  because  of  its  simplicity.  Its  most 

serious  drawback is that  the  plant  which  results  from  the 

addition  of  compensation  by  Method A may  have lost the 

ability to be  decoupled  by  state  variable  feedback,  even 

though  it  possessed  that  ability  before  the  compensation 

was added.  Another  disadvantage is that  there  is no sure 

way of knowing  how  the  structures  of  the  subsystem  transfer 

functions are affected  by  the  added  compensation.  Thus, 

the  designer has no guide to determining  what  'to  put  in 

the  compensators. 

One  important,  practical  case of Method A is 

considered in detail:  namely,  the  case  where  first-order 

compensators  of  the  same form are  added  in all the  input 

channels.  It is shown that  decoupling is never  lost by 

this  procedure. 

The second  method,  Method B, is shown to have 

serious  practical  problems  and is given  only a brief 

treatment 
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In Method C the  problems,  of  Method A are  eliminated 

by the  intermediate  step of decoupling  the  plant  before 

the  compensation I s  added  and all the  states are fed  back. 

When  Method C is used, It is.proved that  the  structure of 

the final, compensated system is  completely detemined by 

the structure of the decoupled plant and  the  structure of 

the  added  compensation.  Unlike  Method A, the  designer  now 

knows  what  compensation to  add in order to meet  the  design 

specifications. 

Orderly  design  procedures are presented  both for 

the  case  where  additional  compensation is not  needed  and 

for  the  case  where  it is. For the  most  part,  the  design 

procedures  are  based  on  previously known techniques. 

However, a procedure  is  presented  which  allows a savings 

in computational  labor  in  certain  design  problems  where 

dynamics  are  added  to  the  multivariable  system. 

A practical  example of the application of state 

variable  feedback  design  is  given.  The  specific  physical 

system  considered I s  the  coupled-core  nuclear  reactor,  and 

a three-core  linear  model is used.  Finally,  suggestions 

are  given for further reseamh. 



CHAPTER 1 

INTRODUCTION 

In  control  engineering one s tudies  the problem of 

forcing some physical  system  such as a rocket,  nuclear re- 

actor, chemical  processing  plant, o r  even an economic o r  

soc ia l  system t o  behave in  a manner which meets prescribed 

performance  specifications. Such diverse physical systems 

as those  mentioned exhibit many similarities, once the 

mathematical models describing the i r  behavior  are.found 

and compared. . I n  fact, much of control  engineering  in- 

volves the study of the  behavior of t he  abstract system 

models, rather than the  specialized  study  of the physical 

systems.  Presumably, after the control  engineer  acquires 

a thorough  understanding of the ~ e ~ e r d  PrinbiPles and 

techniques of control  theory, he is ready t o  make useful 

contr ibut ions  to  the ac tua l  design problems i n  a var ie ty  

of f i e l d s  where physical  processes must be  controlled. 

The specific  concern of t h i s  study is the design 

( i n  the abstract  sense  discussed  above) of systems which 

have a mult ipl ic i ty  of  inputs  and  outputs, and f o r  which 

the number of inputs i s  equal t o  the number of outputs. 

Erramples of  such  systems are 



1, 

2. 

3. 

An aircraft f l i gh t  control  system where 

typ ica l   inputs  are the rudder  deflection 

and the ai leron  def lect ion,   and the outputs 

a re   t he  roll r a t e  and yaw rate of the  

aircraft. 

A turboprop jet  engine  control, where t he  

inputs are the propel ler  blade angle  and 

the f u e l   r a t e ,  and the  outputs   are   the 

engine speed and turbine  inlet   temperature.  

A set   of  coupled-core  reactors,  where t h e  

inputs   a re  the control-rod  positions  and 

the outputs are the power l eve l s  of t he  

individual  reactors.  

For each of the above  examples one input   a f fec ts  more than 

one output, In the first example, f o r  Instarice, the rudder 

s e t t i n g  affects both the  yaw of the  aircraft and i ts  r o l l  

rate. Such multivariable systems a r e  said t o  be  coupled. 

Both the terms  nonlnteraction and decoupled a r e  

used t o  describe the  s i t u a t i o n   i n  which each  input of the 

multivariable  system  affects one  and only one output, 

Since  coupling is usually  inherent  in the plant, o r  system 

before it has been  designed,  noninteraction is a condl- 

tlon which is part of the design  objective. One advantage 

of  choosing  noninteraction as a design  requirement is that  

the decoupled system appears to   func t ion  i n  the simplest 

possible manner when seen from the Input-output  point 
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of  view. A further  advantage  is  that  once  noninteraction 

is  obtained,  the  multivariable  system  is  reduced  to a set 

of  single-input,  single-output  systems, and the  well- 

established  design  techniques for such  system  are 

applicable.  Both  these  advantages  are  present  when  the 

methods  described in  this  study  are  used. 

The  first  attempts  to  formulate  design  procedures 

in  which  noninteraction  is  required  were  reported in  the 

1950's and  early 1960's (Boksenbom  and  Hood, 1949; Povejsil 

and F'uchs, 1955; Freeman, 1957, 1958; Kavanagh, 1956, 1957, 

1958; Horowitz, 1960; Chen,  Mathias, and Sauter, 1962). 

The  multivariable  system  is  assumed to be  describable by a 

set  of  linear  differential  equations  with  constant  co- 

efficients,  and  the  Laplace  transform  is  used to obtain 

the  corresponding  set  of  linear  algebraic  equations  in  the 

complex  frequency  variable S. Methods  based on this  de- 

scription  are known as frequency-domain  techniques. 

Chapter 2 discusses  notation  and  describes  two 

typical  frequency-domain  design  techniques,  designated 

Configuration I design and Configuration I1 design. Their 

basic  design  objectives are noninteraction  and  the  reali- 

zatlon  of  given  transfer  function  relationships  between 

each  input and its  corresponding  output.  The  relevant 

design  equations  are  derived In each  case,  and  the  dis- 

advantages  of  the  methods  are  pointed  out: the  latter  are 

that  it is difficult to carry  out  the  computations  which 
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the procedures require and that there is no assurance that 

the resulting  system compensation can be  implemented on 

the physical system. In a sense, the chapter is a 

"w8Zm-up"  because the succeeding chapters describe design 

techniques that are superior to those of Chapter 2, 

Chapter 3 provides a comprehensive treatment of 
the material on which the  main contributions of disserta- 

tion  are based. The modern,  state  variable  description of 

the multivariable system in both  time-  and  frequency-domain 

is used. Again, the design objectives are noninteraction 

and the realizatlon of transfer function relationships 

between input-output pairs. The design objectives are 

achieved by feeding back all the state variables of the 

system and by coupling in the system  inputs; this form  of 

compensation, known as state variable feedback, was studied 

by Morgan (1963, 1966 ) , Bekasius (1965) , Falb and Wolovfch 
(1967 a, b), and Gilbert (1968). The first two of the 

above authors present results which are superseded by the 

work of the last three authors. 

Falb and Wolovich  formulated and proved a necessary 

and sufficient  test f o r  detemining whether or not  state 

variable feedback can decouple the multivariable system. 

They a l s o  developed a standard  procedure for decoupling 

and presented a design technique in which certain of the 

system  poles are controlled, but a l l  zeroes are canceled. 

4 

" 



Gilbert  utilized Falb and Wolov'ich*s  standard 

procedure for decoupllng and changed variables in the de- 
coupled system to establish a canonical form for  the multi- 

variable system. The use of his canonical form permits 

the identification of m decoupled  subsystems, where m is 

the number of inputs  (and  outputs); it also makes it 

possible to apply the well-developed state variable  feed- 

back design technique for single-input,  single-output 

systems discussed by Schultz and Melsa (1967). If state 

variable feedback is applied to each  of the decoupled  sub- 

systems, then the subsystem  poles can be  placed  arbitrarily 

but the zeroes remain fixed, In addition, there are some 

poles  of the multivariable system which cannot  be  controlled 

by state variable feedback if decoupling is to be  preserved, 

The work of Gilbert  described in Chapter 3 is 
notable for its  completeness, All that is necessary to 

design the multivariable system by state variable feedback 

I s  given. 

The fact  that state variable feedback cannot change 

the order of the system and cannot by itsblf add new zeroes 

to the system is a disadvantage  because a common design 

specification is zero velocity-error  coefficient, and 

control over the zeroes is needed to meet this requirement. 

Other design situations require that poles  be added to the 

system, In single-input,  single-output  design, additional 

dynamics are added by inserting compensator networks. 



The extension of this technique to multivariable systems 

is the subject of Chapter 4. This chapter contains the 

main contributions of the dissertation, 

Three methods are discussed in Chapter 4 for adding 

additional dynamics to the multivariable plant. In  Method 

A compensator networks are added in the Input channels of 

the plant. This method, although it has the advantage of 

simplicity, does not always give the desired  results. Its 

most serious drawback is that the plant  which results from 

the addition of compensation by Method A may  have  lost the 

ability to be decoupled by state variable feedback,  even 

though it possessed that ability before the compensation 

was added. A further disadvantage is that there I s  no 

sure way of knowing how  the structures of subsystem transfer 

functions are affected by the added compensation. Thus, 

the designer has no guide to determining  what to put in 

the compensators. 

One important, practical case of Method A is 

considered in detail;  namely, the case In which first- 

order compensators of the same form are added In all the 

input channels; according to Theorem 4.1 decoupling is 

never l o s t  by this procedure. 

The second  method,  Method B, is shown to have 

serious practical  problems, and is best  considered as a 

step towards Nethod C. 



In Method C the problems of Method A are eliminated 

by the intermediate  step  of decoupling the plant  before 

the compensation is added, and all states are fed back. 

This fact is intuitively  plausible  but  must  be  proved; 

a proof  is  provided in Theorem 4.3. Theorem 4.3 is the 

central result  of the chapter. Although its proof is 

abstract, iix content is easily  understood.  Basically, 

the theorem shows that in designing a system by Method C, 

one knows beforehand that the structure of the final, compen- 

sated  system is completely  determined by the structure  of 

the decoupled  plant and the structure of the.added 

compensation. Unlike Method A, the designer now knows 

what compensation to add in order to meet the design spaci- 

fications; exaotly the same freedom  exists in single-input, 

single-output design problems as that provided by the use 

of  Method C. 

Progress through Chapters 3 and 4 reveals that the 
design procedures for state variable feedback design of 

multivariable systems-whether or not additional compensa- 

tion is needed-are quite complicated in comparison with 

single-Input,,  single-output  design. Chapter 5 alleviates 

the complexity in two ways. First, an orderly design 

procedure, complete with all relevant formulas, is pre- 

sented  both for  the case where additional compensation is 

not needed and for the case where it is. Second, 

computationally  efficient algorithms are presented, for 



carrying  out the design steps by digital computer. Most 

of Chapter j is not  new;  however, a new idea is presented 

which allows a savings In computational labor in certain 

design  problems  where  additional  compensation is needed, 

In Chapter 6 a practical  example of state  variable 

feedback design is given. The specific  physical  multl- 

variable  system  considered is  the coupled-core nuclear 

reactor (Weaver, 1968 1 

Chapter 7 presents the conclusions and suggestions 
f o r  further research. 



cHAlrll.ER 2 

CONVENTIONAL, F'mUENCY-DOMAIN TECHNIQUES 

In this. chapter notation and the means for  

modeling multivariable systems in both the frequenoy 

domain and the  time domnin are given. Compensation and 

the design constraint  called nonlnteractlon are introduced, 

Two frequency-domain design techniques are presented as 

typical of previous efforts to compensate multivariable 

systems. The basic  aim I s  the demonstration of their 

inadequacy, as a means for developing perspective and f o r  

leading into , I  the state variable design technique of the 

followhg chapters, 

This chapter provides essential  background material 

but,  excepk for Theorem 2.1, no new results are presented 

here. 

Plant Ecluations and Notation 

Linear,  time-invariant multivariable control 

systems have one or more Inputs and one or more outputs: 

this is the origin of the term "multivariable". The inputs 

and outputs are related by 8 set of ordinary, linear 

differential  equations with constant  coefficients, 
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It  is  assumed in what follows that the number of inputs  is 

the same as the number of  outputs. Heens f o r  augmenting 

the multivariable system so that this constraint  is  satls- 

fled are discussed in Chen et a1 (1962) , f o r  the case where 

there are fewer outputs than inputs. Very little work has 

been done on systems which have more outputs than inputs 

( keds and Cox, 1967) . 
Conventional,  frequency-domain design techniques 

require a mathematical description of the system of the 

f o m  

y ( s )  = P(s)u(s) 2.1 

Here all quantities are Laplace transformed quantities and 

are functions of the complex  frequency  variable s. 

y ( s )  I s  an m-dimensional  vector, the output 
of the system 

u(s)  is an m-dimensional  vector, the control 
input to the system 

P ( s )  I8 an m x m matrixo  the plant matrix 

Lower case letters are used for scalars  and 

vectors. When subscripts or superscripts are used, lower 

case letters refer to either scalars or elements of 

vectors which may themselves be either vectors or scalars. 

Capital letters with  subscripts or superscripts denote 

submatrloes of the matrix represented by the same capital 

letter wlthout the subsc.ript. The superscripts T and -1 

are used to denote the transpose and the inverse of a 
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matrix,  respectively, The synbol 0 is used for the 

scalar 0, the null vector,  and the null matrix, Vectors 

and matrices are  not  underlined  because for the most part 

very few scalars appear in the text and these are always 

explioitlg  pointed out, Whenever feasible the notation 

used is the same as that used in current papers on the 

subject of the design of multivariable systems using state 

variable feedback, 

As Equation 2.1 indicates, the input and the output 

are related by a transfer matrix. This is in contrast to 

single-input,  single-output systems where the Input and 

output are related by a transfer function, Each of the 

elements of the plant matrix P ( s )  (e.&, pij(s)) is-a 

transfer functlon, 

Modern,  time-domain and combined  frequency-domain, 

time-domain design techniques require the mathematical 

description of the system to have the following form 

k t )  = A X W  + Bu(t) 2.2 

y(t) = C x W  2.3 

Here the indfcates  differentiation with respect to  the 

time t and 

x ( t )  is an n-dimensional vector, the state of 
the system 

u(t)  is an m-dimensional  vector, the control 
Input to the system 



Y(t) is an m-dimensional vector, the output of 

A is an n x n matrix of constants, the system 

the system 

matrix 

B IS an n x m matrix of constants, the control 
input matrix 

C I s  an m x n matrix of constants, the output 
matrix 

(Note that y is being used as the symbol for both s 

function of time, in muation 2.3, and, in Bquation 2.1, 

for the Laplace transfoh of itself, now a function of 8. 

Once  understood, this usage is not a 8ource of confuslon.) 

The number of  states, n, is required to  be,greater  than o r  

equal to  the number of control inputs, m. auatlon 2.2 Is 

a set of coupled flrst-order linear differential  equations, 

and Equation 2.3 defines the m  outputs of the system a8 

linear combinations of the n states. 

Both the frequency-domain and the time-domain 

representations  given above refer to  the same  physical 

system1 they are merely two different ways of describing 

it. EQuations 2.1, 2.2, and 2.3 are taken as starting 

points. Methods for modeling physical systems in terms of 

these types of equations and state  variable  concepts are 

discussed in m m y  textbooks, such as Cannon (1967) and 

Schultz and Melsa (1967). 



Forms o f  Compensation 

The basic  problem  being  considered  is  that of 

realizing the desired  perfornanoe in a multivariable 

sy~tem. To accomplish this aim, often the fixed  plant 

must be compensated; i .e , ,  additional physical components 

such as electronic amplifiers and resistor-capaoitor  net- 

works must be used to alter the dynanic system performance, 

Here, the mathematical aspects of the compensation problem 

rather than  the "hardware" aspects are treated. 

Three forms of cornpensation are to be considered 

and all three  are defined In terms of their effect on the 

control input U. They are 

u ( s )  = D(s)Cr(s) - y(s)l 2.4 

u(s) = G(s)r(s) + L ( s ) y ( s )  2.5 

u ( t )  = F%(t) + Gr(t) 2.6 

The variable r is an m-dimensional  vector,  representing 

the system input, and should  not  be  confused with the 

control Input, U, The matrices D, GB and L are of dimen- 

sion m x m and F is m x ne Equations 2.4 and 2.5 apply t o  

the system  when it is represented as in Ejquation 2.11 i.e., 

in  the frequency-domain formulation,  Equation 2.6 applies 

to the state  variable formulation of Equation 2,2 and 2.3, 

and in this case the matrices F and G are assumed to have 

constant elements. 
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The first two control inputs  given above lead to 

Configuration I Design and Configuration I1 Design, 

respectively, These two frequency-domain design techniques 

are discussed in  this chapter. The third control input 

applies to the state  variable  feedback  design technique; 

by far It occupies the bulk of the attention in the 

chapters which follow. 

Once the control input has been  chosen, the 

relationship  between the system  input r and the output y 

can be found. This relationship  is  indicated by the 

equation 

Y ( S )  = H(s)r(s) 2 0 7  

where H ( s )  is an m x m transmission matrix. H ( s )  is a 

function of the fixed  portion  of the system  and the control 

input U. H ( s )  Is  to be chosen by the designer to satisfy 

design specifications such as bandwidths, rise times, and 

steady-state errors. 

Nonlnteraction 

The equations  representing a multivariable  system 

are coupled, This means that  if one of the system  inputs, 

say rle is changed, then not  only  output yi is  changed, 
but in general all the outputs are sffeoted, A great 

simplification in the apparent operation of the system 

would be to have noninteraction,  With noninteraction 
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each  input affects one and only one output. In terns of 

muation 2,7 noninteraction can be  defined as followsr 

Definition 2.1 A system I s  said to be 

nonlnteracting when the transmission matrix 

H defined by the equation y 3 Hr I s  diagonal 

and nonsingular, 

Nonslngularity is necessary to insure  that none of the 

diagonal elements  of H is zero. 

This definition of nonlnteractlon coinoides with 

that of Gilbert (1968) and is equivalent to  the one given 

by Falb and Wolovlch (1967a); it follows the intent of one 

of the earliest  papers on multivariable control systems: 

Boksenbom and Hood (194.9). 

Multivariable systems are inherently  interacting, 

In a Jet engine, for example, when a control input such as 

the  fuel  flow rate I s  changed,  both the engine  speed and 

the engine  temperature change. Now when the system has 

been compensated f o r  noninteractlon, a change in the input 

corresponding to the control input fuel  flow rate would 

cause all  the control Inputs to change in such a manner 

that  only the single output corresponding to flow rate will 

change, Thus from an lnput-output  point  of view the system 

possesses noninteraotion, while from a oontrol lnput-output 

point of view it is still interacting. 
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~oninteracting.multivariable systems can be 

conceiveh as consisting of a collection of individual 

subsystems,  each of which has a single  input and a single 

output. Dealing with single-input,  single-output  sub- 

systems has two advantages,  First, the problem of specify- 

ing performance  requirements is simplified,  Second,  each 

subsystem can be  treated  separately. The problem of de- 

signing t o  meet the specifications is then a more traotable 

one  because there are many design techniques for single- 

input,  single-output systems. In the design procedures 

disoussed in  the following chapters the criterion of 

noninteraction is taken as the fundamental design require- 

ment to be met. 

Conflmration I Desim 

For Configuration I the form of compensation to 

be used is that given in Equation 2.4 and  shown in 

Figure 2.1(b) (where the double lines are used to indicate 

vector quantities). The matrix D ( s )  is the unknown corn- 

pensation transfer function matrix. Configuration I has 

been disoussed by many authors, but perhaps the bulk of 

the theory Is presented in  the paper and the attendant 

discussions given in Chen et a1 (1962 ) , and the papers 
by Pove jsil and Fuchs (1955) , Mathias (1963) , Gilbert (1963) , 
and Chen (1968 a, b). 
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(a) The Fixed Plant 

(b) Compensated System for Configuration I Design 

( c )  Compensated System for Configuration I1 Design 

Figure 2.1 Conoentfonal, Frequency-Domain Design Techniques 
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Substituting  Equation 2.4 Into the plant  equation, 

2 , f ,  gives 

y ( s )  = P(s)D(s)tr(s) - y ( s ) ]  2.8 

and  solving muation 2.8 for y ( s )  yie lds  

$(s) fI + P(s)D(s)3~'P(s)D(s>r(s) 2.9  

where I I s  the m x m unit matrix, The transmission matrix 

relating the input  r(s)  and  the  output Y ( S )  I s  thus 

HW = CI + PWD(S)PP(S)D(S) 2.10 

The particular case of most  interest I s  the one 

where  noninteraction I s  given as one of the design 

criteria. In this case it is  possible to find an expres- 

sion for  H ( s )  which show8 clearly that the multivariable 

system can be regarded as a set  of single-Input, slngle- 

2.11 

For nonlnteraction H ( s )  must be a diagonal matrix. From 

the above equation H ( s )  will be diagonal if N ( s )  is a 

diagonal  matrix, In fact, If N(s) Is  given by 
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t o  
N ( s )  = 

0 0 

then EQuation 2.12 becomes 
r 

lo 0 

0 . 0  0 

0 . .  0 . . . 
2.14 

Equation 2.14 shows that the multivariable system 

consists of m subsystems,  each of which has one input, one 

output, a loop gain transfer function nli(s 1 and unity 

feedback, The nii(s) depend on both P ( s )  and D ( s )  and 

are to be  selected to give a satisfactory  response from 

Input ri to output yl. 

Once the matrix N ( 8 )  has been  selected, the elements 

of D ( s )  can be found. Let P''(S) be  expressed as 
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IS N ( 8 )  et P 8 2.16 

In terms of the elements of D(a) , muation 2.16 beoames 

or since N ( s )  is a diagonal matrix, 

24 18 

In stlmmary, when noninteraoting system6 sre to be 

designed using Configuration I, the procedure is the 

following4 First, a set of loop gain transfer funotlons 

is ohosen to give the desired  input-output  r8latiOn8hip8 

for each o t  the m input-output pairs, thereby determining 

N ( s ) ,  Thls step can be acoomplished by using the standard 

design techniques suoh as Bode plots,  root locus diagrams, 

and Nyquist  diagrams.  Second, the elements of D ( s )  are 

fOWd by using 4~ati.011 2.184 

A disadvantage of this approach can be seen by 

examining 4uation 2418, which shows that the scheme is 

bssiuallg one of cmoellation. The term diJ(s) is found 

by multiplying the desired nJj ( 8 )  by an element of PO3 ( 8 )  ; 

in effect the plant  is being "canceled  out" and new 

dyaamios are being inserted in  I t s  pl~ce. Cancellation is 
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n o n r  e u o t  beoause the plant is never known eraotly. 

The sohszae also suffers from 8 oomputational standpoint, 

a8 finding P%) reauirsa taking the inverse of a matrix 
having elements whloh are funations of the literal 
variable 

In the paper by Chen et a1 (1962) csnosllation and 

right-half plane polee in P ( s )  are di80USSad, and oon- 

8t2Sht8 on D ( s )  are given. UniortWtely, when the88 

oonstraints are incorporated the resulting D ( s )  may have 

a very complicated strueturn. The example In the last 

mferenoe oited required the capab1Uty of Spthe81Zing 

a D ( s )  having both  poles and zeroes in the right-half 

plane. Such  oompensstors have no praotical value. 

More reoently, Gilbert (1963) showed that the 

general problem of cancellation and the effeots of un- 

stable transfer functions in P ( s )  are best clarified by 

using ooncepts which are defined in  terms of the state 

variable representatfon. This dleoussion of Configura- 

tion I In terms of state variable conoepts Is aontinued 

112 the papers by Chen (1968 a, b), where 8 mean8 for 

dete i in ing  stabtlity is given. 
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Here L ( s )  and G(s) are the unknown compensation matrices. 

Configuration 11 has been  di8cussed by Kavanagh (1956, 

195b 1958) # Gibson (1963)  and Rekasius (1965). 
Substituting 4uation 2.5 into  Equation 2.1 and 

solving for y(s) yields the expression for the transmission 

matrix, as 

H ( 8 )  = [I - P(s)L(s)j'lP(~)G(s) 20 19 

Multiplying  both sides of EQzmtion 2.19 by I - P(s)L(s) 
and transposing terms gives 

H ( s )  = P(a)L(s)H(s) + P ( s ) c i ( s )  2.20 

Given the desired H ( s )  one must solve the m2 soalar 

equations In 4uatlon 2.20 (one for eaoh  element of H ( s ) )  

for the 2m2 &own elements of L(8) and G(s). 

The overabundanoe of unknouns can be oonsldered 

both a boon and a burden.  It is a boon, for example)  when 

some of the Inputs are 110389 or distarbsnoe  Inputs and 

cannot be mnnipulated: then some of the elements of G(s) 

would be  oonstrslaed to be 0 ,  reduoing the number of 

unknowns. Other sltusutlone In uhioh the number of unknown8 

IS mdUOeb are diSOUSSeb in IkVanae (1956 1 0  The OV8- 

abmdanoe of tlnknom8 l a  burbensome beoatxse It hampers 

the fornulation of exact prcroedures tor  ~01~ing for Us) 

and G(8)a the somputatlonal  problem is further oompounded 

by the faot  that  eaoh  of the so-oalled unknoma I s  Itself 

a transfer !'motion whioh may have several unknown parcuDaterr. 
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Configuration I1 design can be recast in  the 

modern, state  variable framework. This is instmotive 

because  it  shows how Conf‘fguration I1 design is related 

to the state  variable feedbaok teohniqae,  Taking the 

Laplace  transform of Bquations 2.2 and 2.3, while assmalng 

zero initial conditlons, gives 

8%(S) & ( S )  + h ( S )  2.21 

Y ( 8 )  = CX(d 2.22 

Now the oontrol  input u(s )  is given by 

u ( s )  = L(s)y(s )  + G(a)r(s)  - L(s)Cx(s) + G(s)r(s) 2.23 

If noninteraetlon is required, neoessary and 

sufficfent  oonditions can be given for the existence sf 

a norrinteraoting  control. The requirement is that P ( s )  

be nonsingular, as Theorem 2.1 indloates. (The proof 18 

adapted f r o m  the proof of a theorem given in R e ~ s i u s  

(196%) 

Theorem 2, l  A neoessary and suffioient  oondltion 

f a r  the eristenoe  of a noninteraoting oontrol for 

Configuration I1 IS that P(s)  be nonaingtdar. 

Proof. Beafl.snging terns in EIq~atiOn 2.23 yields 

L(S)cX(8) U ( S )  - G ( 8 ) d s )  2.24 

Solving Equation 2.21 top r (a )  and multiplying the result 

by L(a )C gives 
L(s)Cr(s) = L(s)C(sI - A)”Bu(8) 2.25 
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A oomparison of Bquations 2.24 and  2.25  reveals  that 

u ( s )  - G(s)r(s) - L(s)C(sX - A)"M(s) 2.26 

or n(s )  = h - L ( s ) C ( s I  - A)"B]"G(s)r(8) 2.27 

Row from the equation 

y(s )  P(s)u(s>  2.1 

and Equation 2.27 there  results 

y(s )  = P ( s ) c I  - L ( s ) C ( s I  - A )  B] G(s)r(a)  2.28 -1 -1 

so that 

H ( s )  = P ( s ) h  - L ( s ) C ( s I  - A)"B]''G(s) 2.29 

To prove necessity It must be shown that  P(s) is 

nonslngular if 8 noninteractlng  control  can be found, 

Under the  assumption of noninteraction, H ( s )  In muation 

2.29 1s a nonsingular diagonal  matrix. Taking its  Inverse 

leads to  the  desired  result; namely, that P(s) I s  

nonsingular. Sufflcienoy is proved by letting L(8  = 0 

in Rustion 2.29  and solving for the compensation matrix 

G(s) in terms of H(s) and P"(s). 

Configuration I1 suffers f r o m  the same problems of 

Configuration I; namely, it is  again  necessary to invert 

matrices  which  are  functions of 8 ,  and  there I s  no guaran- 

tee that  the  compensation  can be implemented  with a reason- 

able amount of equipment, if at all. In fact, if the  scheme 

in  the  proof of Theorem 2.1 I s  utilized, then L ( s )  = 0 and 

G ( s )  = P"(s)H(s). A glance  at Figure 2.1(c) shows that this 



Two representative oonventflonal techniques for 

deelgning multivariable systems have been presented. For 

the case of noninteraction, %ommf procedures are given 

for oarrying out the design processo BsicsfPy,  the dfs- 

advantages of these techniques are that it fs difffcult 

to perform the required computatfons and that the result- 

ing compensation matrices may be difficult OF Impossible 

to implement in a physical systemo 
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Both the Oomputational  problem and the problem of 

implementing the design arise because  of the great 

generality  of the problem  formulation, No restrictions 

are placed on the compensation m8trice8, so that the number 

of possible parameters which ootxld be  present is unlimited. 

Under these cimxmstances it is to be expected  that the 

fornulation of feasible systemstlo computational proce- 

dures would be  diffloult and that desirable  compensation 

matrices could not be expected  with any degree of 

regularitye 

In the following chapters the state  variable 

feedback design technique 1s treated. The form of oom- 

pensation is limited right at the s t a r t  to a structure 

that permits the application of linear algebra and matrix 

theory to a far greater extent than is  possible with oon- 

ventional design techniques4 As a result the problems 

of computation and ease  of physical Implementation are 

greatly  relieved, in exahange for a loss of generality 

In the fonn of the olosed loop system which can be achieved. 
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STATE VARIABLE FEEDBACK DESIGN 

This chapter is intended to provide an up-to-date 

account of the status of state variable feedbaok design 

of multivariable systems.  Exoept for computational as- 

pects, which are discussed in Chapter 5 ,  the presentation 

is  suffiuiently complete to enable one to design physical 

systems by this technique, The primary conoern of this 

dissertatlan  is the fomulation of design teohniques and 

computational procedures for  the case where state variable 

feedback alone is not  sufficient for meeting the design 

requirements. The chapter must  be  understood if the  main 

contributions  of the dissertation are  to be  understood and 

assessed,  but no new results appear here, 

The state  variable feedbaok form of oompensation 

was first  proposed by Morgan (1963,  1964);his work is dis- 

cussed in the first  section  of this chapter, Also dis- 

cussed In the same seotion are  the contributions of 

Rekasius (1965).  Only a brief  aocount  of their work is 

given because later developments have more general 

applioation, 

The second  section is a presentation of the work 

of Falb and Wolovlch (1967 a, b). These authors formulated 
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a simple  test f o r  deteminfng whether OBP plot the multf- 

Tarfable System C8n be decougled  by using state variable 

feedbacko They also provided the formulas for decouplfag 

the system Into a form In which some  of the system  poles 

can  be arbitrarily  placed, but all of the zeroes ore 

canceled. The results here are not  completely  satisfactory 

because the formulas do not provide for the greatest  pos- 

sible design freedomo Howeverp the work of Falb and 

WoPovfch  serves as the basis f o r  understanding and uslng 

the most  recent  contribution to the development of the 

design technique8 namelyp the work of Gilbert (f968), 

The third section of this chapter is devoted to 

Gilbertos resultso He provides 8 thorough  and  complete 

treatment  which  rebates the multivariable  problem to the 

design of single-input,  single-output  systems by s t a t e  

variable feedbacko This section 1s the culmination of 

all previous work on state  variable  feedback desfme system 

behavior which has previously been unaccounted for is ex- 

plained, the question of system  stabllity is made Clear, 

and the limitations of design by state  variable  feedback 

alone are giveno The chapter is conclude& with EA SUmrnra-0 

Earb Design Effo r t s  

In the state variable formulation the plant 

equations are assumed to be in the form 
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x = a x + m  3. f 
g * ex 3.2 

and the control  input 91s taken t o  be 

u = F x + G r  3.3 

the vectors x, y, and u are functions sf time, but this 

dependence is no longer  being  shown explicitly.  Recall 

that  there are n states, m inputs,  and m outputs, 

Morgan (196.3) is responsible for  the introduction 

of the form of the above control law u given  in  EQuation 

3.3. His approach  to the problem  requires  making a linear 

change of variables  that  puts the system  into the simpler 

3.5 
where I is the m x m identity  matrix  and 0 is the 

m x (n - m )  null matrix.  In order to  avoid  cumbersome 

notation, the same  symbols are being  used for  the new 

representation; the linear  transformation  relating the 

original  variables  to  the  variables  in  Equations 3.4 and 

3.5 is discussed  later. 

The simplification  is  that the m system  outputs 

are now equal  to  the  first m state variables. This fact 

is best  utilized  if the A, B, and F matrices are 

partitioned  into supatrices  as follows8 
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If the above partitioning  scheme I s  used and the control 

law of Equation 3.3 is substituted  into muation 3.4, the 

state  equations become 
7 

I A 21 +B 2 F 1 *22+BZF2 
x +  r 3.6 

Noninteraction is achieved by isolating the first 

m states.  Let 

812 + BiF2 = 0 30 7 
All + BIFl = 3.8 

C BIG = BI 3. 9 
where A!l and B1 are nonsingular diagonal matrices. "he 

F and G which  satisfy  the  above  equations are 

C 

3.10 

3.11 

G = B1 B1 -1 c 3.12 

provided  that B1 is a nonsingular matrix. For the F and G 

of Equations 3.10 - 3.12, muation 3.6 is 

. ' [A::iFi A22+B$'2 ] X  + r 3.13 
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Clearly the first m state  equations  (and thus the m output 

equations) are uncoupled  first-order  differential  equations, 

and  each  subsystem  ha6 the transfer function 

where  bii  and a:i are the ith  diagonal  elements of the 

matrices Bf and Ail, respectively. 
a 

There are two drawbacks to Morgan’s  method,  First, 

only the sufficient  condition  that  B1  be  nonsingular  Is 

given,  and  this  allows  only  first-order  subsystems to be 

obtained. In most multivariable  systems it is to be 

expected  that  such  simple  subsystem  responses  will  not be 

typical, so that Bi is singular for a typical system, and 

the method  is  inapplicable,  Second,  even  if the method 

applies, the state  equations  involving the derivatives 

xi, I = m+l, ,.., n, are  not  under the designer’s  control, . 

as Equation 3.13 indicates. The compensation  matrices F 

0 

and G are completely  determined by the specification of 

the first m state  equations8  therefore, there is  no way 

of insuring in advance  that the last n-m state  equations 

have  satisfactory  responses or are  even  stable, 

An improvement over PIorgan’s technique was developed 

by Rekasius (1965). Here, his treatment of first-order 

subsystems  is given, and  its  extensions are discussed, 
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mooupled subsgstegls  with no zeroes are being sought, 

The expression f o r  y is given by 4 m t f o n  3e2s 

differentiating  this  equation  with  respect to tins gives 
0 0 

y = cx 
0 

The  expression for x is given in EQuation 3.18 after the 

control input of Equation 303 is substituted fn EQuation 

3. f there restilts 

so that Bquatlon 30f6 becomes 

is equal to 00 

and if 

VOCBG HI 3,21 

These last two equations can be solved f o r  F and G o  as 
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nonslngufar mP;rIxr 

In order t o  show the equfvaleney of the pesu%&s 

of Morgan and  Rekasfus, It is necessary t o  reoalP that 

Horgan required the ffrst m sta.9;e  variables to be equal 

t o  the m OUtpUtSe Since most systems do not satisfy this 

condition i n  thefr original varflables, a linear change of 

variables must be made. Let the  new variables be and  Pet 

the required transformation be Geffned by 

x = Tx 
- 

= TB 

= [:*I = E:J 30 26 
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Thus the requlrement  that gi be nonsingulsr is the same as 

Bekasius' requirement  that CB be  nonsingular, The equiva- 

lence of Morgan's and Rekasius' work has been noted pre- 

viously ( F d b  and Wolovich, 1967 a) but  not shown 

explicitly. For future reference, the symbols 2 and T 
are used in  the succeeding chapters in a different  context, 

The above procedure of Bekasius has been extended 

by him in considering an unooupled  output  equation of the 

f o m  

where the superscripts  indfC8te time derivatives,  and all 

the Vi and W3 are diagonal matrices,  EQuatlon 3.28 pro- 

vides far the realtzation of higher-order  subsystem 

respons88. The Sam8 procedure  th8t was employed in the 

first-order case c m  be used to derive fomulas similar to 

those of E3quations 3.20 and 3,Zl, Such formulas again 

pr0Vid8 sufficient conditions for the realization  of the 

chosen decoupled response. The drawback is that there 

io no assurance that a realizable response has been ohosen 

or even that the system oan be deooupled at all, 
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Bekasius' procedure is one of trial-and-error,  with no 

guarantee of success. 

Both Morgan's and Bekasius' work contribute a 

certain amount of understanding to the multivariable 

design problem,  However, the developments to be desorlbed 

in  the next  two sections  relegate the earlier work to a 

position of historical value only. 

The Work of Falb and Wolovich 

In this section the work of Falb and Wolovich 

(1967 a, b) is discussed. They are responsible for find- 

ing a neoessary and sufficient condition for decoupling 

and for formulating a procedure for obtaining a less re- 

stricted class of compensated systems than  those of 

Morgan and Rekasius, 

Recognizing  that the transfer fWCtiOns of the 

different  subsystems comprising the multivariable system 

are generally  different  from one another in struoture, 

Falb and Wokovich  treat  each  subsystem  separately,  Let 

Ci denote the  ith'row of the output matrix C, and l e t  

the scalars dl, d2, .,,) be given by 

minCj t CIA 3 B 0 ,  j = 0 ,  1, ,, . , 11-11 3,29 

or dl = n-1 If CIAJ, = 0 f o r  all 3 3.30 

To find di the successive row matrices CiB,  CiAB, ..., 
CIAdiB must be formed. The scalar dl is the smallest 
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the individual output  equations  and the 

where yi is a scalar and is the Bth component of the output 

ssctor yo Equation J032 is now successively  differentiated 

until the (di+f)th derivative is reachedo and at each step 

Equation 3031 is used ts simplify the resulting expressionse 

T e i r a g  the time derivative of Equation j032 yields 
0 0 

0 

The expression for x Ps found in Bquaeion 301, but after 

state variable feedback is applied, x becomes 
0 

If EQPaation 3034 is substituted into 3e33 and auatfons 

j0Z9 and 303% are used for simp%%fication, the result is 

0 

Ya 30 35 

36 



e 

e 

matrix B9, and the m x HI. matrix A* as follows E 



Then Equation 3.38 become8 

y* = r 3.41 

so that F+ and G* decouple the system. Although these 

decoupling  matrices are not the only F and G  whioh de= 

couple the system,  they play a prominent  role in design. 

The above  development  served as the intuitive  basis 

for  the definition  of  the  matrix B+ and for the formulation 

of the decoupllng  theorem,  designated  Theorem 3.1 below. 

Theorem 3.1 has been  proved by Falb and  Wolovich (1967 a), 

and in a different manner by  Gilbert  (1968). 

Theorem 3.1 Let B* be the m x m matrix  defined 

In Equation 3.37. Then there  is a pair of 

matrices F and  G  which  decouple the multi- 

variable  system  described by Equations 3.1 and 

3.2 if and only if €9 I s  nonsingular. Further- 

more,  If the pair F,G are a decoupling pair, 

then G = W"fi where the m x m matrix 

is diagonal  and  nonsingular. 

Theorem 3.1 provides a simple  test for  determining 

whether o r  not a system can be  decoupled by state  variable 

feedback. The condition is more restrictive than  the con- 

ditfon for decoupling wlth Configuration I1 design  (where 

F and G are not  constant  matrices  but  could  be  frequency 

dependent),  discussed in  the previous  chapter, There the 

requirement was that the plant  matrix P ( 8 )  be nonslngular. 
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Gilbert (1968) finds a particular system in which P ( s  ) 

is nonsingular but B+ is singular. For that example, 

Configuration I1 design pemlts the decoupling of the 

system  while state variable feedback design does not. 

In fact,  Gilbert Indicates that  if B* is singular but 

P ( s )  I s  nonsingular, ther. states can be always added to 

the system in such a manner that the new system can be 

decoupled by state  variable  feedback, 

Several disadvantages are present when P and G* 

are used for decoupling the multivariable system. As 

Equations 3.37 and 3.41 indicate, the transfer function 

for  the ith subsystem is 

This equation Indicates that the subsystem gain has been 

made unity and that di+l  of the subsystem poles are at the 

origin. These are highly impractical features.  Not  shown 

explicitly are the canoellations of the subsystem zeroes 

by subsystem  poles; such cancellation is an inherent 

characteristic of the use of P and G*c 

Falb and Wolovioh show that  subsystem gain can be 

added and the dl+l poles not  used for cancellation of the 

subsystem zeroes can be  shifted from the origin by choosfng 

F = P + B +  9 MkCA 1 k 
k=O 

3.43 

3.44 
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State Variable Representation 

I 
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= c7 01 = [ l o  1 3  

(c) Test for Decoupling 

5= t-5 0 01 = Lo -1 -21 

0 

-1 
-2 ;i- 

G* a B*" 

(d) Calculation of F* and G* 

Figure 3.1 Example 3.1 (Continued) 
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Figure 3.1 Example 3.1 (Continued) 



output yo Hereo the cancellation of subsystem zeroes 

discussed preufous%y fs shorno After csncehlatisn, each 

subsystem has the transfer function 2, i n  agreement with 

Equation 3 42 
At this stage there is no way of t e l l ing  hot? the 

factor - in each of the diagonal elements of H ( s D P 0 W )  

came about. It appears that in either subsystem 1 or 

si1 
99 1 



subsystem 2 or in  both, a subsystem  zero is being 

canceled  by a subsysten  pole  at  the  same  location,  but 

the  use of Fr, and G* does  not  allow  the  identification 

of the  specific  subsystem or subsystems  containing  the 

zero,  This  feature is a drawback of the  approach of- 

Falb  and Wolovich  because  zeroes  influence  the  system 

response  and  one  usually  wants  the  option  of  retaining 

them or canceling themo whichever  yesults in the  better 

response 

The  most  general  transmission  matrix for this 

problem  was  worked  out  by  the  brute  force  method.’  That 

is, H(s,F,G) was  calculated for a completely  arbitrary F 

and G and  then  the  criterion of noninteraction was imposed, 

The  result is shown  in  Figure  30S(f), A careful  look  at 

the  diagonal  elements of H(s,F,G)  reveals  that  subsystem 1 

has  arbitrary  gain, a zero at s = -1, and two  arbitrary 

poles;  thus  there is a zero in subsystem 1 which  need not’ 

be  canceled.  Subsystem 2 has  arbitrary  gain and one  arbi- 

trary  pole.  The use of F* and G* has  caused  the  zero in 

subsystem 1 to be  canceled, Subsystem 2 has no zeroese 

The most  general  form  of  response  which  can  be 

realized  by  the  methods  of Falb and  Wolovich is found 

by using  the F and G of muations 3.43 and 3.44. In this 

1;Falb and  Wolovich (1967 b) give  another  method 
for carrying  out  the  procedure.  However, it is  difficult 
to  apply.  Still  another  method is discussed  in  the 
following  sectione 
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case the subsystem transfer functions, after cancellation, 

are 

A type of behavior which has not  yet  been 

enoountered is illustrated by the following example, taken 

from Falb and Wolovich (1967 b) . 
Consider the system whose block  diagram and state 

equations are shown in Figure 3.Z(a) and (b). The most 

general F which decouples the system and the corresponding 

transmission matrix are shown in Figure 3.2(c). Here each 

subsystem transfer function has  the  factor even for 

the most  general F. In  this instance state variable 
s"I 

feedback cannot  stabilize the system. 

This particular example is uncontrollable (Kalman, 

19601, but even for oontrollable systems there are 

examples in which  some  of the roots of the characteristic 

polynomial are not  effected by state variable feedback. 

If any such roots are in the right half plane, then the 
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(a) Block Diagram 

(b) State muations 

0 

47 



~ t l f t i ~ ~ E ” i ~ b l ~  system %$I UL81stable and cannot  be  stabilized 

by state  variable feedback ~ d o n 0 ~  

The features sf Falb and Wo%ov%ch’~ ~ o r k  can  OW 

be suI1I1pBab3pfz& F I P S ~ ~  the ~ U ~ ~ O P S  gave a test tkat a@- 
termines whether or not state variabl0 fesdbaak can de- 

couple the muPtivsrriable  systems this test is highly 

useful and practical because it can be  programmed readfly 

on a digital c30mputera Second, they give easily programmed 

formulas for particular P and G matrices that  decouple 

the system The use of these matrices precludes ever 

having uncanceled zeroes in any of the subsystems8 their 

use does allow  the specification of di+f poles of each 

subsystem,  but the remaining  subsystem  poles are used for 

canceling the subsystem zeroeso T h i r d o  Falb and Wo%ov%ch 

characterize the elass of‘ 811% 6 matrices in Theoren j O f  

and describe in their papers o cumbersosue method for 

characterizing the class of a%% F matrices which  decoupler 

wlth this infomation they show the class of compensated 

systems for several simple exmp%es0 Finallyo as Exbamx>le 

3.2 indicates,  state variable feedback does not in every 

case pepsnit the stabilization of the systemo 

Consider the possibility  of  decomposing the 

uncompensated  multivariable  system i n t o  m  subsystems which 
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have static coupling betwen each possible pair, Su0h a 

canonical 8ecsmposition w@n%dl be useful Ilf it wem pss- 

sible to achieve because then one could eenseeive of a 

design procedure In whlbek pa& of' the aompenerat%on was 

used to eompensate the s u b o y s $ ~ s  t o  give %ha desired re-. 

sponse, and the remaining paF& of the e0~~~8ata.ogl WBS 

used to destroy the oouplfmg Between subsystems, The 

loglcal way of achieving this structure is through EA 

change of variables. Howevere even though many eanonioaf 

forms are available for multivariable systems ($.gee 

Luenberger (1966) and Asseo (I968 ) ) e none has been found 

which accomplishes the desired  resuft$le 

Conceived in the fight of the above discussion, 

the approach of Gilbert (1968) fnvo%ves deemupling the 

system first, and then a oarmon%co% % o m  is  soughto  This 

two-step  procedure is mot equivalent t o  &B ehamge of vparfb- 

ablee (because the decouplimg pmeeess changes the system 

dynamics) although a change of variables is involved  in the 

procedure. 

Gilbertns concept of an ktegnoator DecougPed (ID) 

system is neededb 

Definition 3.1 A multivariable system fa 

Integrator Decoupled if B* =A where A 
is diagonal and nonsfng~~lar, amd C i A  = 0 0  

1 = I, 2, b e O D  no 

df+l 
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A specif ic  example of an I D  system is the system which 

results when Falb and Wolovioh's F+ and G* are used for  

decoupling. In fact, i n  t h i s  t e x t  the tern I D  system 

always means the par t icu lar  I D  system resu l t ing  from the  

use of P and G*. The proof that P and G* l e a d   t o  an 

I D  system 1s given  In  Gilbert (19681, where It I s  a l s o  

shown t h a t  

Integrator 

the subsystem t ransfer   func t ions   for  any 

Decoupled system a r e  of the form 

Suppose F+ and G* are used for decoupling the 

multlvarlable system: s ince  the system is now decoupled, 

one might conjeoture t h a t  it I s  poss ib le   to  find a set of 

s t a t e  variables i n  orhioh the fact that the system 1s de- 

coupled I s  clearly  evident. This transformation of vari- 

ables was found by Gilbert. Of oourse, the system of 

i n t e re s t  I s  not the I D  system but rather the  or iginal ,  

coupled  plant, and furthennore  the response of the I D  

system, as given by Equation 3.52, 1s not the one that I s  

desired. Gilbert shows that the I D  system  can be re- 

compensated by state variable feedbaok t o  achieve the 

desired response, and then the two sets of F and G 

matrices can be used i n  finding the compensation matrices 

for the   o r ig ina l  system which e v e  the  883118 t r ans fe r  matrix 

f r o m  r t o  y. The f o a l  development of these ideas follons. 
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Let  SCA,B,CI represent the multivariable  system 

defined by muations 3.1 and 3.2, and  let [F,G] be the 

control law or set of state  variable  feedback  compensation 

matrices for SCA,B,C]. 

Definition 3.2 The multivariable  systems 

SCA,B,CI and  SICAI,BI,CI] are uontrol law 

equivalent (CLE) if a one-to-one  corres- 

pondence  between [F,G] and [F~,GI] can be 

found such  that for this  correspondenue 

H(s,F,G) = HI(s,FI,G1), where H(s,F,G) and 

Hl(s,Pl,Gl) are the transmission  matrlces 

relating the output y to  the Input r for 

systems Sb,B,CI and S1LA1,BlrCil, 

respectively. 

In the present case SCA,B,C] represents the 

original  system and SILAlrB1,CI represents the ID system, 

found by compensating S[A,B,C] with CF*,G*]. The state 

equations for SCA,B,C] are the familiar ones of Equations 

3.1 and 3.2. The equations for  S~[AI,B~,CI are 

sz (A + W*)I + BG*u 3.53 
y - cx 3.54 

Expressions for P+ and G* are given by 4uation8 3.39 and 

3.40, When these expressions are used in muation 3.53, 
the equation  becomes 

4 = (A - BB*-~A*)~ + BB*% 3.55 
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The cmonfeail f o r a  to which the ED system can be 

tmnsfomed i s  now aisoussedo Only the case of contmllable 

systems (Kolman, '960) is  treated although Gilbert con- 
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A =  

B =  

c =  

All 0 e.. 0 

0 A22 e.. 0 
e e 

e e . 0 

0 0 e. .  

- 
0 

0 
4 

e 

e 

0 
- 

Bll I s  ni x 1 

BE Is %+I x 

Cil I s  1 x nl 

(a) Standard Decoupled Fom 

Figure 3.3 Canonically  Decoupled 
System Bepresentation 
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A l l  = 

(b) Canonically Decoupled Form 

Figure 3.3 Canonically Decoupled 
System  RepreSeIlt8tiOn (Continued) 
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f poles of subsystem i whioh 

make %he set  of rows of Qi Q basis f o r  C $ ~ O  For  %.+lo the 

rows ar0 chosen so that the collection of rows of Q Porn 

y = cx 

After substituting 4 = these equations become 
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4 = Q(A +- BF+ )Q-'x 9 QX*u . 3.68 

~ = c e  X 
- i A  

30 69 
Gilbert proved that the matrices Q(A 9 Bl?*)Q-il# QBG*, m d  

CQol have the struoture  required %SF the CD system 

representation. 

Some familiarity with the transformation can be 

gained by finding the CD representstion for Example 3,l. 

Example 3.3 
The state variable representation 18 8hom in 

Figure 3. l (b)  and the F* and G* appear i n  Figure 3.1(d). 

These equations and matrices are needed to calculate the 

ID representation . 
x = (A 9 BFqx 9 E*, 

0 O 01 
2 

7 
-1 0 x +  

3.70 

U 

3.71 Y =  

Once the ID representation has been foundo the 

calculation of the transformation matrix Q can proceed. 

The first step in calculating Q is the characterization 

of the subspaces of ~ For qi Eqlustfon 3062 becomes 

dl = c ' ( t 7 A j B 2  0 ,  j = 0 ,  1, 21 3.72 

57 



Let the  row vector ‘2 be ( 21, t2, q 3 ) .  Then 

v 2  = ?3 = 0 

‘ZSBZ = O 

~ A * B ~  = o 3.73 
Thus 

d l  = C q r 7  = ( 11, 22’ 011 3.74 

By definition the rank of is ni, or, for  this examples 2. 

The 8-8 prOC8dUre can be carried out for the subspace d,, 
to yield 

d2 = C 7 1  ‘1 = ( 0 ,  q2. 72)1 3.75 
The rank of W2 I s  1; hence n2 is 1. For this example the 

dimensions of 61 and az add up to  the dimension of &and 63 
is not  needed. 

The matrix Q is composed of Q1 and Q2. Since dl 

and dz are both OD the first r o w  of Q 1  is Cl, the first 

r o w  of the output matrix C shown in Figure 3 . l (b ) ,  and 

the first r o w  of Qz i s  C2. The second row of Q, can be 

any row vector which is independent  of Cl and whioh 

belongs to the subspace W!. Choose the row veotor 

( 0 ,  1, O),  Thus Q I s  completely  defined, as 

and Q-’ is found to be 
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' .p 1 
The  system  matrices In CD farm are found by using the 

3.77 

system matrices for the ID system  and the above transfor- 

mation matrix, and performing the computations  required 

in Equations 3.68 and 3.69. The results are shown below. 

I""" I I 

3.78 

3.79 

Note  that these matrices  satisfy the requirements for  the 

CD representation  given i n  Figure 3.3(a) and (b). 

used In Illustrating what matrices are assoulated  wlth 

each  subsystem, The two distinct  subsystems for this 

example have the state  equations 



1 
60 

UL 1 3088 

30 82 

3083 

3084 
The superscripts do not represent powem but are used to 

Indicate a partitionfng of: Go ye and u into two disjoint 

parts* each of which is associated wlth one of the systemsc 

The CD representation is the m e a n s  by which each 

subsystem 1s identiffed and iselated in a manner that 

permltrs the application si the results of state variable 

feedback as It  is formulated f o r  single-input, slngle- 

outpue systems0 This is shorn elearly in the ~ F ~ V I O U B  

exampleo The %dent%ficatlon of a set of open-loop t~T~nsfer 

functions of the ID system fs nov possible, In terns of 

the CD representation of the ID system these transfer 

functions are 

pif(s,P,G*)(s) = Cii(s1 - Aii)09Bif 3085 

where pif(s,P+,G*) is the 51th diagonal element of the 

nonsingular, diagonal transfer matrix P(s,F*~G*) relating 

the output y to the control input u of the ID systemo It 

may be help- t o  recall  that P relates y t o  u and H 

relates y to re 



These open-loop systems are to be  compensated  by 

the control law [F,G]. Gilbert shows that ̂P and G pre- 
serve noninteraction if and only if" they have the forms 

A b  A 

c 

LO 8 

where each 8, is a 1 x ni matrix, and 

3.87 
The important  point is that when compensating the 

multivariable plant, one need  only integrator decouple the 

system and then change variables to get the canonically  de- 

coupled f o m ;  from then on each  subsystem can be  treated 

separately, The transfer function for  the ith  subsystem 

is given by Equation 3.85. In keeping with the results of 

state variable feedback for single-input,  single-output 

systems(Schu1tz and Melsa, 19671, all ni of the subsystem 
poles can be  arbitrarily  placed, but the  fi zeroes of the 

open-loop  system-given by the numerator of  Equation 3*85-- 

are not affected by state  variable  feedback. 

Gilbert shows that the zeroes of the ith subsystem 

are  the zeroes of the equation 

det(s1 - = 0 
where, according to Figure 3.3(a)  and (b), $i is an 

li x li submatrix  of Aii, the system matrix for the 
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ith subsystem. The poles  of the subsystem are deduced by 

using the previously  noted fact that the lth subsystem of 

an ID system has di+l  poles at the origin and its  remain- 

ing poles  at the locations of the subsystem zeroes. L e t  

p (s,F*,G*) be the characteristio  polynomial  of the ith 1 

subsystem  of the ID system; then 

pl(s,P+,G*) = det(s1 - A i l )  

= sdi+'det (SI - $1 ) 1 1, . . a t  m 3.89 

When the control law LF,G] is used for compensating the ID 

system, all ni poles of each  subsystem can be moved from 

the locations determined from Bquation 3.89 to arbitrary 

locations. 2 If i t in i<n,  there are additional roots of the 

characteristic  polynomial which are not  accounted for by 

muation 3.89. These roots are the zeroes of the poly- 

nomial det (sf - %+1,m+1 )I they are not  affected by state 

variable feedback.  Thus, q(8,F.G).  the characteristic 

polynomial of the oompensated ID system has 2 ni roots 

whioh are controlled by F and G; and, in addition, the 

factor det(s1 - &+l,m+i) is present. The presenoe  of 

the additional factor in q(s ,F ,G)  is deteoted during the 

oompletion of the prooedure for finding the transformation 

matrix e because  if 'qcn, then # 0 ,  s+l 0 ,  and 

L 1 , m + i  # 0. Since the factor is not affected by CF,G], 

the system I s  unstable if any of the roots of 

*et(sI %+1,m+1 ) are  in  the right  half plane. 

A A  
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This is an appropriate place to state Gilbert's 

design procedure.  First, the given multivariable system 

is tested for decoupllng by applying Falb and Wolovich's 

criterion that B* be  nonsingular.  If the test is success- 

ful  then  the system is integrator decoupled by using F* 

and G*. Next the matrix Q is found and used to change 
variables and transfom the system to Gilbert's canonically 

decoupled form. Now there are m  subsystems, the ith  sub- 

system has 11 fixed zeroes and ni poles which can be 

arbitrarily  placed by state variable feedback. The 

characterlstio  polynomial  of the system consists of the 

product of the characteristic  polynomials  of  each of the 

subsystems  and, in addition, the factor det(s1 - %+1,~+1) 
is present.  Once the individual subsystems have been com- 

pensated, the matrices F and G are completely determined. 

The corresponding compensation matrices in terms of the 

original system variables are 

A 

F = F* + B*% 3. 90 
G = B*OIG 3.91 

These formulas are  the result  of the application of the 

transformation matrix Q and &uations 3.59 and 3.60. 

Example 3.4 

The system of Example 3.1 again provides a 

convenient means .for illustrating the design procedure. 

The CD representation I s  given in Equations 3.78 - 3.80. 
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The €wo subsystems for this example are found by using 

Ruatlon 3.85. They are 

3.93 

Subsystem f has a fix& zero at 8 = -1 a d  two poles which 

can be arbitrarily  placed,  Subsystem 2 has one arbitrary 

pole. Suppose it is desired to achieve the following 

transfer functions by the proper choice of F and G, A A 

3.94 

30 95 

Techniques for calculating the F and E that  result in a 
given H(s,F,G) are discussed in Chapter 5,, Here the re- 

sults for this example are merely written down because 

this particulap system is treated again in Chapter 5 as 
Example 5.1. The compensation matrices for the ID system 

in terms of the state variables of the CD representation 

A 

A b  

The corresponding matrices for the original  system,  found 

by substituting i n  auations 3.90 and 3.91, are 

F =  36 97 
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A block  diagram of the c o ~ ~ p s m a t e d  system appears in 

Figure 3.4. 

The procedure for eharaeterisfng the class of a l l  

F matrices which decouple is now discussed and i l l u s t r a t e d  

for a m p l e  3.4. 

When the system 2s in CD formo the only F matrix 
A 

which decsuples is P, given by EQuatfon 3.86, For the 

current example, n1 = 2 and n2 = 1, so t ha t  

The corresponding F f o r   t h e   o r i g i n a l  system is found by 

using  Equation 3.90. Mter  the  matrix  calculations have 

been  performed there   resu l t s  
7 

0 1 
The work of Gilbert aeseribed in t h i s  section 1s 

notable for its completeness. ff the muftivariable system 

can  be  decoupled,  then h i s  work provfdes a means for de- 

termining the form of each component subsystem. In par t i -  

cular,  the number of subsystem zeroes and the number of 

poles are known; and,, Just  as i n  single-input,  single- 

output systems, state variable  feedback  allows the 

arbitrary placement  of a l l  the subsys.tem poles, but the 



" 1  

x2 
1 

Figure 3.4 Compensated S stem 
of Example 3. 9; 
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zeroes remain unchanged. A step-by-step design procedure 

is given in Chapter 5. 

The computations  required in finding the ID system 

and the CD representation are tedious if  performed by  hand, 

Thus the digital computer is an indispensable aid, More 

is  said  about the computational aspects in Chapter 5. 

Here,  it is sufficient to note that  explicit formulas are 

characteristic  of this section, rather than iterative 

methods, This means that the programming  job  is  simplified 

since much of the  task consists merely of  re-coding formulas 

in a form that is acceptable to  the computer. 

Stlmmaq 

In a sense, the state variable feedback technique 

has been  described from start to finish, The original work 

on the design technique is described in the early seotions 

of the chapter, The research  described  subsequently has 

caused the original work to be  relegated to a position 

of historical value only, Somewhat the same remark applies 

to some  of Falb and Wolovich's  work. However, their test 

for decoupling is highly useful and the matrices F* and G* 

are bas10 in Gilbert's  work, 

Gilbert  provides a complete theoretical treatment 

of the state variable feedback problem. His theory de- 

scribes the limitations of state variable feedback by 

providing  explicit formulas for determining the specific 

67 



At least two gmbferns yet  remain, Tke first 

pmpoblemn arises when state variable feedback alone does not 

allow the designer ensugh freedom to achieve the required 

system response. For exampleo  suppose a thffi-order sub- 

system  with  one zero is necessary for a satisfactory re- 

aponse,  but the system is capable of only a second-order 

response. If the system has one input and one  output, the 

solution to  this problem  would be to add a lead-lag 

compensatoro For the multivapiable  system a similar 

technique is applicablea The second  problem is the com- 

putational problem, For a gfoen  choice f o r  the transfer 

matrix of the compensate8  system, how does one  carry  out 

the computations requfredl to find F and G? Both compu- 

tational aspects and aaditbonaP  compensation are discussed 
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CWTEW 4 

SERIES COMPENSATION AFJD STATE VBUBILE FEEDRACK 

I n  the previous chapter the l imi ta t ions  of state 

variable feedback are discussed, The use of' Gi lbe r tos  

canonically  decoupled  representation of the imtegratoa 

decoupled  multivariable  system makes ava i lab le  the option 

of t r e a t i n g  the system as a col lec t ion  of la single-input, 

single-output  subsystems, The i t k  subsystem of the inte-  

g ra to r  decoupled  system has lf zeroes  and ni polest by 

applying state variable feedbck t o  the multivariab%s 

system a l l  the subsystem poles o m  be placed arbitrarPPllgv, 

but the subsystem  zeroes  remain fixed, 

There are design  problems i n  which state variable 

feedback  alone  does  not offer enough f l e x i b i l i t y  t o  meet 

the perf'omance  specifications, Uaual%y thess situatiome 

arise when zeroes ere required in the transfer functions 

of one o r  more of the subsystems  of the f i n a l ,  compensated 

system. The primary reason  for  wanting  zeroes  in a closed- 

loop  t ransfer   funct ion of a single-input,  single-output 

system is t h a t  the i r  presence makes it possible   to   achieve 

an   in f in i te   ve loc i ty-er ror   coef f ic ien t ,   o r  zero posi t ion 

e r r o r   f o r  ramp inputs  (Truxal, 19553 Schultz  and Me%saO 

1967) , Zeroes which are an  inherent parr% of the plant ,  
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or fixed  portion of the system, are usually  at  undesirable 

locations, and so additional zeroes must  be  added, For a 

single-input,  single-output systemo series  compensation is 

added to realize the required  zeroes;  similar  techniques 

are developed in  this chapter for multivariable systems. 

Three methods are discussed for inserting  additional 

dynamics  into the subsystems of the multivariable  system, 

The first  technique,  Method A, is directly  analogous to 

the procedure used in  the single-input,  single-output case. 

Basically, It requires  that the multivariable  plant be 

augmented  by  inserting  compensation  networks in the control 

input  channels and that all  the states of the resulting 

augmented  plant be fed back. An example is used to show 

that  Nethod A does  not  apply In many design  problems be- 

cause lt ls not  always  possible to decouple the augmented 

plant. Another  example  shows  that  even when Method A is 

applicable, there are serious  problems  associated  with its 

use. 

In Method B the plant is first  decoupled, and then 

the series  compensation is added In the control  input 

channels of the decoupled plant. No additional  feedback 

is needed  from any of the states of the resulting  augmented 

plant. In particular, the compensator  states are not fed 

back so that  parts of the final,  compensated  system have 

no feedback  at all; and noise and sensitivity  problems may 

be present. In both the matters of  utility and the amount 
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of a t tent ion  given  in  t h i s  chapter, Methods A and B do 

not  deserve  equai  ranking with Method C; rather,  they a r e  

best  considered as steps  along  the path to   t he  most 

general  technique, Method C. 

Method C is similar t o  Method B i n  t ha t  the  plant  

is first decoupled  before the se r i e s  compensation is added 

i n  the  control  input  channels of the  resul t ing decoupled 

plant. But  now, state var iable  feedback is used  again; 

and t h i s  time a l l  the   s t a t e s  of the  augmented plant,  in- 

cluding  compensator  states, are fed back around the  aug- 

mented plant as the   f ina l   s tep   in   the   des ign ,  T h i s  method 

represents   the   u l t imate   in   s ta te   var iab le  feedback  design 

because  through its use  the  designer has the  greatest  

freedom in  achieving  the  response  required  for  each of the 

subsystems of t he   f i na l ,  oompensated multivariable system. 

It is proved i n  t h i s  chapter that, when the  zeroes 

and poles  are added i n  the manner prescribed by Method C, 

the  zeroes  appear unchanged i n  the  proper compensated 

subsystem transfer  functions,  F'urtheq a l l  the  poles of 

the augmented plant are arbitrarily positioned by the 

f ina l   app l i ca t ion  of s t a t e   va r i ab le  feedback. The proof 

of t h i s  central   result   requires  the  formulation and  proof 

of several   intermediate  results.  Some of these interme- 

d i a t e  steps are   general izat ions of theorems  and lemmas 

proved by Gilbert (1968). 
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Gifber% mentions the  problem of' augmenting the 

multivariable  plant i n  such a manner that it cou%d  be de- 

coupled, but no work has been reported on the  specif ic  

pFob%m of augmenting the muftivariable system f o r  improve- 

ment i n  responseo Except where expl ic i t ly   s ta ted  t o  the 

contraryo the ppoceaureso theoremso  and  discussions 

presented  in this chapter a re  newo 

Kethods fop. S e r f e s e n s a t l o n  

In this section three methods are introduced for 

providing more flexibility in system design  than t h a t  

available  through  the  use of s ta te   var iab le  feedback  alone, 

Hethods A and B are discussed in grea ter   de ta i l   than  

Nethod C because this section is the only one in which the 

former a r e  considereds Method C is discussed i n   f u l l   d e t a i l  

i n   t h e  succeeding  sections of t h i s  chaptero 

Hethod A 

Elethod A oonsists of three  steps,  First, the 

subsystem transfer functions of the  integrator  decoupled 

( I D )  system ere ident i f ied w i t h  the aid of Gilbert's 

canonically  decoupfed (CD) representation, A t  the  comple- 

t i on  of thfs step, one learns the location of the  f ixed 

zeroes and the  number of subsystem poleso If the design 

criteria can be met by merely adjusting  the gains and the 

poles of  each  subsystem, then state variable  feedback  alone 

can be used t o  design the system. If the form of any of 
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the subsystem transfer functions does not  pennit the system 

response specifications to bo  achieved, then series com- 

pensation is needed: and it is necessary to proceed to 

the second step of Method A, 

The second  step is the insertion of compensation 

networks into the control Input channels of the multi- 

variable plmt.  The question of  exactly  what f o m  of 

compensation to insert cannot be answered a priori! there 

is no guarantee that in  the final, compensated system 

zeroes inserted in the control input channel will appear 

in the proper subsystem transfer function, or even at all. 

An even more serious difficulty is that the  type of com- 

pensation being described could lead to the loss of the 

ability of the system to be decoupled by state variable 

feedback,  However, series compensation networks with the 

_desired zeroes are added in each  of the input  channels, as 

needed. The assumptions are made that decoupling is still 

possible and that the zeroes which have been added will 

appear in the proper subsystem transfer function after 

state variable feedback, 

The final step  of the design procedure requires 

that the two assumptions made above be  tested,  First, can 

the system be decoupled, or is B* nonsingular for the 

augmented plant? Second,  do the subsystems contain the 

desired zeroes that are to apbear in the closed-loop 

system? If these assumptions are indeed  valid, then state 
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variable feedback is  used to alter  the subsystem poles 

and to introduce gain to meet the specifications. The 

following two examples are attempts to apply  Nethod A. 

Both attempts fail and by doing so illustrate the two 

basic  deficiencies  of  Method Am 

ExamDle  4.1. The plant  of  Examples 3.1, 3.3, and 

3.4 is again used.  It is  already known from EQuations 

3.92 and 3.93 that  subsystem 1 ha8 a zero at s = -1 and 

two arbitrary  poles,  and  that  subsystem 2 has no zeroes 

and one arbitrary pole. Assume that the specifications 

require  that in the final design both  subsystems' have 

third-order responses. For simplicity, no attempt is made 

to add any zeroes. 

An appropriate choice f o r  augmenting the plant  is 

shown In the block  diagram  of Figure 4ml(a) (the block 

diagram  before augmentation appears in 3.1(a) ) , and the 
state equations are shown in Figure 4ol(b)m A stralght- 

- 

forward calculation shows that dl and d2 are both 0 and 

that B+ is given by 

B+ = [1: :] 4.1 

Clearly B+ is a singular matrix, and so the multivariable 

system  cannot be decoupled by state variable  feedback. 

This example demonstrates that situations may arise where 

the addition of series compensation violates the assumption 

of decoupllng. 
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(a) Block Diagram of the Augmented System 
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Ezamle 4.2, Consider the augmented plant whose 

block diagram and state equations are shown in Figure 

4*2(a) and (b), respectively. In this example an attempt 

I s  being made to introduce a zero at s = -3 in subsystem P, 

In order to find out whether the zero does appear in the 

subsystem, the CD representation for the integrator de- 

coupled augmented system  must  be found. Then the transfer 

functions for its two subsystems can be found*  The sub- 

system transfer functions f o r  the CD system are 

4*3 

The characteristic polynomial for the system is 

p(s,P,G*) = s (s+l)(s+3) 4 4.4 

The only  place the factor (s+3) appears is in p(s,W,G*), As 

Equations 4,2 and 4,3 showo neither subsystem can ever have 
a zero at s = -30 and so the attempt to add 8 zero has 

failed, 

Examples 4.1 aad 4.2 illustrate the two defioiencies 

of Method A, In &ample 4.1 it is shown that augmenting 

the plant in the prescribed manner could  lead to loss of 

coupling,  -ample 4.2 shows that  even when the augmented 

system can be  decoupled, there is no way, except  trial-and- 

error, of knowing what to Insert in the input channels in 

order to make the subsystem have the required form. 
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Block Diagram of the Augmented System 
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Apparently some types of transfer functions can be 

inserted in the control input channels without losing the 

ability to decouple,while others cannot, The case where 

first-order  series  compensators are added is  now discussed. 

This case I s  important  because it is frequently  desired to 

insert a first-order compensator containing one pole and 

one zero in one of the subsystems 80 that the zero can be 

used to increase the velocity-error  coefficient of the 

subsystem. 

Consider the most  general  first-order  series 

compensator shown in Figure 4,3(a). If  both and are 

non-zero, then 

and the 

is 0, a 

if G is 

!& = es 
L 4.5 
U s - H  

- - e ' ;+ ;  

transfer function ha8 a zero at ZE - .i; 
e' 

. If z 
pole  is being added in the 

0, gain is being added. 

Figure 4,3(b) and (c) show 

control input  channel; 

two examples  where 

first-order compensation has been added to the control 

input channels of the plant of Example 4.1, In both  cases, 

B+ is singular, and the ability to decouple has been lost. 

These examples show that even when first-order series com- 

pensation l a  required, the  use of Hethod A could lead to 

loss of coupling. 
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I 1 

(a) General Fir::-& l.:rder Series Compensator 

U U 

Figure 4.3 First-Order Series Compensation 

79 

! 



10 
3 '  s+l 
- "2 
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(c) System  Which Cannot Be  Decoupled 

Figure 4.3 First-Order Series Compensation  (Continued) 
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There are two special cases of  first-order series 

compensation which presemre  decouplingr these are embodied 

in  the following theoreme 

Theorem 4.1 Let the multivariable plant 

y = cx 
be  compensated by the first-order series 

compensation 

L Z + G  
u = i i + s  

where 1, s, and E are m x m diagonal matrices 
having the respective diagonal elements Eli, 

611, and Zii, i = 1, ..., m. In addition, 

assume that 5 is nonsingular.  Then,  provided 
that the original plant can be  decoupled, the 

resulting augmented multivariable plant can 

be decoupled if 

Proof. The theorem is proved by finding the matrix Bs for 

case (1) and then f o r  case (ii); for each case it is shown 

to be nonsingular. 

case (i) E = o 
Let % = [;] be the state variables for the system 

augmented by first-order series compensation.  It  is  easily 

shown that the state equations for the augmented system are 
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y = I C  03s 
In order to find % the 

N 

4.6 

4. 7 

sequence of row vectors 

NOW since E is 0 ,  i5 is 

(CiAdiB + CiAdiolB + ... + CiB)B 
By assumption, B is nonsingular and diagonalr  also, by the 

definition of di, the terms CIB,  CiAB, . . , CiAdi-'B are 

zero, Thus in the sequence CiB,  CiAB, ...e Ciadk& o n l y  

C,A~IB 18 nonzero; in fact, 
e-d + CIA 'B = Cia dl BB - 

= qis i = 1, ... , m 4.8 

or 
,.# 
B+ = Wf5 4. 9 

The matrix % is nonsingular because both B+ and - 
B a m  nonsingular, and the augnented system can be  decoupled. 
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Consider the following  sequence 
” 

e Hd cr 
CIA I B  = CiAdiBE + (Cia d -1 B + ,., + CIB)B 

Again the  terms GIB, CIAB, ,, , CIA 1 B are   zero and so d -1 

f ldd  M 
CIA i B  = CIA d i  BE - 

= BfE i = ls ..,, m 4,lO 
- 

o r  
/3 
B+ = Pi3 4 , l i  

The matrix % is nonsingular  because  both B* and 2 a r e  

nonsingular, and the theorem is proved, 

By v i r tue  of Theorem 4,l the only  sure way of 

adding  first-order  compensators by Method A requires t ha t  

every control  input  channel  oontains both a pole and a zero, 

o r  that every control  input  channel  contains  only a pole. 

If t h i s  consistency i n  the choice of f i r s t -order  compen- 

sators I s  abandoned, then l o s s  of  decoupling  could  result, 

as shown in Figure 4.3 (b) and (c ) , Even when the con- 

s is tency is maintained and decoupling I s  assured, there I s  

a danger of “losing”  the compensator  zero, This was 

observed  .in Example 4,2 where the  zero  inserted i n  the 
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control input channel for ui did  not appear in the 

transfer function for subsystem 1, 

Nethod A is best understood as a trial-and-error 

approach. The ouestanding feature of  Method A is 

simplicity, and for some problems it may prove to be 

satisfactory,  When  it does not  yield  satisfaotory  results, 

Bletlnod B or Hethod C should be usedo 

Method B 

In Method B the multivariable plant is decoupled 

before additional compensation is added in the control input 

channels. The steps in the design procedure are 

The CD representation of the ID plant is 

found and used in determining the locations 

of the fixed zeroes and the number of poles 

for each subsystemo 

State variable feedback is used to decouple 

the plan% so that the resulting transfer 

function for each  subsystem is by itself 

a factor of the desired transfer function 

of that subsystem. 

Compensator networks are inserted in the 

control input channels of the decoupled 

plant, The transfer function for each 

series compensator is selected so that 

its product with the transfer function 
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of the corresponding subsystem of the 

decoupled  plant is equal to  the desired 

tranafer function for that subsysteme 

Here the problems associated with Nethod A are no 

longer present  because the plant is decoupled before com- 

pensation is added and because there is no feedback around 

the compensation. In fact, the chief disadvantage of the 

method is that no feedback is used around the series 

compensation. As a result, the augmented system is sensf- 

tive to changes in the parameters In  the compensation, and 

the system  is  likely to  perfom poorly in  the presence of 

noise. Both of these considerations are discussed in the 

following examplee 

Example 4.3. The block  diagram for the given Plant 

is shown in Figure 4.4(a). After completing step (1) it 

is learned that subsystem 1 has a zero at s = -2 and two 
poles which can be controlled by state variable feedback8 

subsystem 2 has two arbitrary poles. Suppose it is desired 

to achieve the transfer matrix - 
* F F %  s+10 s+ 
H ( S , F , G )  = 

0 
L 

7 

0 

4.12 

where H(s,F,G) I s  the transmission matrix from r to y of 
N 

the final,  compensated  system, and F and G are  the 

compensation matrices for that systeme 
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(a) Block Diagram 

(b) Intermediate Step 

r2 1 5+4. 1 
( c )  Final Design 
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The first  step toward this end is  the decoupling 

of the given plant,  Let the plant  be  compensated so that 

as much as possible  of the desired transmission matrix is 

achieved, or let r 1 

(Here, p is  used  instead  of H because P(s,F,G) relates 9 

and u rather than y and r), The compensation matrices 

that  result in the above P(s,F,G) are 

F = [-; -1 
0 -10 0 O] = [-: 1 0 

and the block diagram for this intermediate form of the 

system  is shown in Figure 4,4(b), Now compare the diagonal 

elements of the matrices in Equations 4.12 and 4.13. For 

subsystem 1 the additional factor &#- is needed to 
realize the desired transfer function; for subsystem 2 

a gain  of 18 is  necessary, The additional compensation 

is added as shown in Figure 4,4(c), 

12 s+ 

The deficiencies of Method B are clearly  evident 

from a study of the block diagram  of Figure 4,4(c), Any 

noise occurring at  the points  labelled dl and M 2  on that 

diagram passes through the subsystems and appears un- 

attenuated at the outputs,  Furthermore, there is no 

feedback around the series compensation networks to reduce 

the effects  of parameter changes, 



There is a variation  of  the  procedure of Method B 

t h a t  is similar t o  Configuration IS: design,  discussed hn 

Chapter 2. State var iab le  feedback and series compensation 

a r O  used t o  develop a set of subsystems suoh that when t h e  

Bth output is f ed   d i r ec t ly  back t o  the i t h  input,   the  . i th 

subsystem exhibits the required  response. The similarity 

t o  Configuration 11 l ies  i n  the fact t h a t  In  both  cases 

the open-loop  subsystem  must be a l t e r ed  in a manner such 

that the closed-loop system meets the design  specificationse 

The advantage  of  using t h i s  var ia t ion  of Method B 

is tha t  feeding back the outputs  insures tha t  there  is 

feedback around both the decoupled  plant and the series 

compensation, On the other  hand, s ince the plant  states 

have already been  measured  and s ince the compensator 

states a r e  presumably easy t o  measure, why not feedback 

a l l  the states insteed of merely  the  outputs? This is 

exactly w h a t  is done in Nethod C, 

Hethod C 

The steps i n  the t h i r d  design  procedure are 

(I) The CD representation of t he  I D  p lan t  is 

found  and  used in determining  the  locations 

of the  f ixed  zeroes and the number of poles 

f o r  each  subsystem. 

(2 )  State variable  feedback is  used t o  decouple 

the plant. 
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( 3 ,  

(4) 

Based on the knowledge gained in  s tep  (1) 

and the design  specifications,  appropriate 

compensator networks are Inserted In the  

control  input  channels of the  decoupled 

p l a t  0 

State VaPfable feedback, ineluding  feedback 

of the compensator s t a t e s ,  is used t o  add 

gain and  put the subsystem poles in the  

required  locations, 

The following  questions  arisee Does the plant 

remain decoupled when se r i e s  compgnsatfon fs added i n   t h e  

control  input clkame%s  and a l l  the   s t a t e s   a r e   f ed  back? 

If so1 what can be said about the  form of the subsystems 

of the augmented system in t e rns  of the known st ructure  

of the  or iginal  decoupled  plant  and %he adder3 compensatfon? 

The answer t o  the first question is reasonably 

obvlous.  There are two ways of' determining  whether  the 

augmented system  can be decoupfed, First, the  matrix Bs 

can be found f o r  the  augment&  system  and t e s t e d   f o r  noa- 

singular i ty;  o r  secondo a par t icu lar  F and G can be found 

which decouples  the augmented systeme The second method 

is by far the   eas ie r  one t o  apply i n  t h i s  caseo Before 

adding  the  compensation the plant is decoupled, so t ha t  

the  matrix P(s) re la t ing  y t o  u is diagonal, Now a f t e r  

the compensation is added in the  control  input  channels, 

the  control.  input  ui, i = I, o a o s  m, is effect ively changed 

89 



t o  Gii (s )cf where gii(s) is the transfer function of the 
fth compenseBtoro Thus P ( s )  is replaced by P(s)?(s) and 

is still diagonal, Since the  new plant matrix is diagonal, 

the matrices F = 0 and G = I are a suitable choice for 

decoupling the system and so the augmented plant can 

indeed be decoupled, 

The answer to the second question agrees with one's 

expectationso Unlike Method A, in Method C zeroes added 

fn the compensator networks always appear in the proper 

subsystem transfer functions after all the states are fed 

back. If the fth subsystem of the  decoupled  plant has lf 

zeroes and ni poles and if 1% zeroes and poles are 

contafnedl in the series compensator added In the ith control 

input  channel, then In the final, compensated systemo  the 

1% 9 If zeroes appear unchanged in the f t h  subsystem 

transfer function, and the nf 0 poles of that transfer 

function are controlled by the state  varfable feedbacko 

The proof of this central result fs the main contribution 

of this dissertation, 

cp 

The proof of the central result  stated above 

requiyes several stepso In the following section addl- 

tlonaf notation and a precise formulation of the state 

equations are givens then in the next  section the central 

result is proved, 
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Decoupled Compensation 

It is now necessary to be more precise than 

previously in describing the oompensatfon to be placed 

In the control Input channels of' the mu%tBvarBable system, 

State variable equations are mitten to describe the con- 

pensation f o r  each channel and then these sets of equations 

are combined to give a single set of system  equations to 

describe all the compensatione Coupling between the 

channels Is purposely  omitted and so the term decoupfed 

-nation is appropriate f o r  describing the compensation 

addea to the control input channels of the plant, 

The state equations fop %he decoupled compensation 

take  the form 

4.314 

4, a5 

where the structure of and the various matrices is given 

In Figure 4.5e The matrix E is needled when 8 first-order 
" 

compensator having both 8 pole and 8 zero is to be added 

to the system  because in such a situation the control input 

Is fed directly forward to the subsystem  output! see 

Figure 4.3(c) for an example where fs needede 

Recall that the system  equations for the orfEgina% 

system are 
e 

x = L L x + % L l  

y = ex 

4,16 

40 17 



0 0 e o 0  - 

L 

0 

0 

L m  - 

0 0 0 

e 0 0 

0 0 0 

0 - 0 e o 0  cm- 

Figure 4.5 Structure of 

- 
B =  

B 

E =  

0 & 0 0 0  

0 0 

0 0 

0 0 

0 0 0 0 0  - 

- 
0 

0 0 0 0  

0 e22 o o o  
- 

0 0 

0 0 

0 a 

0 0 0 0 0  - 

the  Decoupled Compensation 

92 



Let  the  states of the  original  system and the  decoupled 

compensation be combined  into  the  single  vector 3, with 

4.18 

Then  the  state  equations for the  augmented  multivariable 

system  are  written 
3 , = s i ; ; + %  

/u .J 

y = cx 

4.19 

4.20 

In terms  of  the  matrices in Equations 4.14 - 4.17, these 
system  equations  have  the  form 

" 

4.21 

Y = LC 032 4,22 

The  control  input for the  augmented  system is 

i i = S + + r  4,23 

Equations 4.18 - 4.22 provide an exact  description  of  the 

multivariable  system  in  terns  of  the  original  plant  matrices 

and  the  matrices  of  the  decoupled  compensation. 

Proof  of  the  Central  Result for Method C . 

The purpose  of this section is to present the proof 

of the  central  result for Method C. then  Method A is used 

to  add  dynamics  to  the  multivariable  system,  there is a 

danger  that  decoupllng is lost and that  the  compensator 

zeroes  do  not  appear  in  the  transfer  functions of the 

compensated  augmented  system. For Method C it is already 
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Clear that  decoupling is never lost by the addition of 

decoupled  compensation, The structure  of the augmented 

subsystems is now discussed  and  proved to be valid, 

The Zeroes and the number of  poles of the sub- 

System  transfer  functions  of the decoupled  plant are 

presumed knowno This implies  that the designer has ob- 

tained the CD representation for  the original,  coupled 

plant and from  It has determined the number of  fixed  sub- 

system  zeroes and subsystem poles? then he has used  state 

variable  feedback to decouple the plant and move the 

subsystem poles to some known locations, The form of' the 

subsystems in the decoupled  compensation are certainly 

known because they are added to the system  by the designer, 

The central  result  (Theorem 4,3) to be shown is that the 

subsystems of the augmented  plant can be  treated  indi- 

vidually,  each having an "open-loopR  transfer  function 

whose zeroes are the zeroes of the added  subsystem  com- 

pensation and the zeroes present in the subsystem  before 

compensation,  and  whose poles are under the control of 

state  variable  feedback, The number of subsystem  poles 

for the ith subsystem is 51 + ni and  the number of' fixed 
zeroes is zi + li, where ni and Ei and lf and Pi arep 
respectivelyo the  number of zeroes and poles of the 

component parts of the ith open  loop subsystemc 
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The  demonstration  of the central  result  requires 

several steps, so an outline of the proof is helpful, The 

steps are 

(1) Show that a decoupled  multivariable 

plant can always be  put in standard form 

by a linear change of variables 

(Theorem 4.2 ) 

Show that the central result is true 

when a system  in  standard  form is aug- 

mented  with  decoupled  compensation. 

(Lemma 3 )  
Show that the system  described  in (2) 

and the original  augmented  system are 

relatea by 8 linear change of variables. 

Show that  the two systems  are  Control L a w  

EQuivalent  and thus prove the central 

result  (Theorem be3 

Before the theorem  accompanying  step (I) (Theorem 

4.2) is  proved, two subsidiary  results are needed. The 

required  results are properties of decoupled  systems;  they 

are  important  because  in forming the augmented plant, 

decoupled  compensation is added to a decoupled plant, 

Lemma 1 For a decoupled  multivariable  system 

C,A~B =: Pi3Ii i = I, 0 0 . 9  m; j 0, e a . )  n-1 4a24 

where Ii is the ith pow of the m x m identity 
matrix and  at  least  one of the m(m x n) numbem 
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9 11s nonzer~~ Furthemore, the matrix 
ga I s  diagonal and normsingulapo 

and  the following formula,  taken from Gantmacher (1959) 

and  used by Morgan (1963) and  Gilbert (1968) can be used 

to calculate Pi(s)a 

where 

0 

0 

0 

4,28 

Substituting the expressions  for the RJ I n t o  muation 4e27 

gives 

Pi(s) = ~p(s)]"fCCiBsnof + Ci(A - p1I)Bs n-2 + 

Since  the system is decoupled, B ( s )  is diagonal 

and  nonslngular, and 



where pli(s)  is the ith diagonal element  of P(s)m In 

order that  Equations 4.29 and 4*30 be compatible,, the 

following relationships must  hold6 

CIAB = yilIi 

At  least  one of the Til, j = 0 ,  1, .. . , n-1, I s  

nonzero because  otherwise P, ( 8 )  would  be 0 and P ( s )  would 
L 

be singular. In addition,  recall 

defined to be r- 1 

that the matrix B+ l a  

so that W I s  diagonal and nonsingular, and the proof I s  

complete, 

Another property  of  decoupled systems is given In 

the following lemma, 

Lemma 2 For a decoupled, controllable system 

the following conditions are satisfied. (C& 

is defined by Equation 3e62) 

(1) Cf" is a row invariant subspace of A; 

i.e,, Z C g i  Implies fACCio 
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Q =  E+ 
1 1 

where the pi, 3 = 1, . * e o  niq a r e  rows of the  n x n  matrix 

Qi and a re  a basis f o r  ai. The first row of Q,, I = 1, ..., 
m, is always chosen t o  be C i ,  the  i t h  row of the C matrix. 

This row vector is a member of the invariant  subspace Q; 

because of Lemma 1. The matrices i, g, and 6 are  considered 

i 

In turn. 

(a) To show that 2 has the  required form. The matrix A 

is assumed t o  represent a l inear  transformation e. Let 

the rows of A be the  n-tuples which represent  the images 

of the basis vectors of Q', under C Let the rows of B, 

the  9: as defined above,  be the  sets of n-tuples  repre- 

senting the new basis of @ i n  terms of the  or iginal  basis. 

In  order t o  f ind  2, the  image of each p+ i n  terms I 
/ J  

of the   se t  of a l l  8: ( i n  terms of [f ) must be  found. 

Consider  Since the vectors i n  cl a r e  transformed by 

P back in to  the same subspace is an  invariant sub- 

space by Lemma 21, the first "1 rows  of A must have the 

form LAll 0 ... 03,  where +1 is an  nl x 111 matrix. 

The second  group of row8 of A must take  the form 

[O bZ 0 e . . 01 and so on f o r  a l l  but  the last 

group  of rows. Nothing is known about how the   vec tors   in  

A 

A 
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c$sl are transfomned by eo so that no special  structure 

can be  ascribed to the Past rows of do When the ma% 

groups of POWS are put together to form A, the matrix is 

h 

A 

found to have the structure 

representation, 

(b) To shoes that has the 

5 QBe The first row of ^B 

required for  the standard form 

required f o m ,  Recall  that 

is the  kth column of Be From the definition of $le 

f i% = 0 POF k # 1 so that the first row of 9 has the 
required forms shown in Figure 3.3(a) ,  In the s m e  way, 

remaining rows of B are found to have the required form. /r 

To show  that C has the required forme Recall  that A 

i CQ-' op EQ = Ce Since the ?io f = 1, o r n o  m, were 
A 

chosen to be the Cit f = 1, o o o o  ms C must satisfy  the 

requirements for the output matrix of the standard form 

representation i n  omler to satisfy the Past  equation, 

The proof  of  Theorem 4.2 is now complete, 

The second  step leading to the central  result f o r  

Itlethod C is now considered? the requirements of step (2) 

are embodied  in  Lemma 38 

Lemma 3 Augmenting a decoupled  multivariable 

plant  which is in  standard form leads to a 

design problem in which there are m open-loop 

subsystems,  each  having a transfer function 

which is the product of the transfer function 
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for the fth subsystem and the transfer function 

introduced  into  ith  control  input  channel, When 

state  variable  feedback is applied, the sub- 

system zeroes remain  fixed and the subsystem 

poles can be placed arbitmrf%y, 

Proof, The required  result is demonstrated for  the case 

of two inputs and two outputs, Figure 4,6 (a), (b), and 

(c) shows the state  equations f o r  the original  plant, the 

decoupled  compensation, and.the augmented  plant, 

respectively,  Change  variables by defining 2% = x 

2 = x z3 = x z = x and 5: = x a ~ [ n  terms of the 2 4 -2 5 3  
1 

2 -1 

z variables the system  equations are 

z =  

Y =  

0 A l l  
- 

0 0 

0 0 

0 0 

0 0 

422 B22h2 

0 x22 

0 
- 

0 

0 

0 

AS - 

E 9  0 &2&: 

0 
c) 

B22 

3332: 

2 

2 2 n - 
4a33 

4,34 



%l 0 0 

O A22 O 
0 

X 

- 
0 

B22 U 

(a) Original System in Standard Form 

(b) Decoupled Compensation 

0 

A22 

4 
0 

0 

0 

c22 
O O "1. 
0 0 0  

x +  

(c ) Augmented  System 

0 

B22622 

&22 
- 

0 

s22 O I  

Figure 4,6 Two Input, Two Output  System 
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The equations for subsystesn f are enclosed i n  boxes i n  the  

matrices above. Let g11(s) be the transfer function f o r  

subsystem 1 which relates and ylpo Then 

where pll(s) is the t ransfer   funct ion which relates ul and 

yl and fjll(s) is the t r ans fe r  function from t o  u1, It 

I s  known from single-input,  single-output  theory that the 

use sf state variable  feedback  allows all n1 8 iil poles 

of the system t o  be  placed at arbitrary posit ions mdl tha t  

the zeroes of the compensated system a r e  the zeroes of 

pll(s)Bll(s)e Thus the lemma is proved for subsystem f and, 

i n  the same manner, for subsystem 2, The proof for m > 2 
is S t ~ i g h t f O l W a s p d e  

In  step (2) the originaf system is assumed to be 

i n  standard form. For step (3 )  it is shorn tha t  the or igi-  

na l  system need  only  be dee0Uphdc The augmented systems 

i n  both cases are related by a change of variables.  Let 

x be the state variables for the augmented plant  i n  which lu 

the origiml plant I s  decoupled,  but is not  necessarily In 

standard form; thus, 5 = The state equations f o r  
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th i s  system are  gfven i n  Equations 4.21 and 4,22 and are 

symbolized by SCA,B,Clo Let f be the  state  variables  for 

the augmented plant i n  which the original plant is in  

standard forms thus f = [f land  the system I s  represented 

/v cr N @  

Now change variables  in  the system SCA,B,Clo  Let 
e # - & +  

z = 6 where 

T = E  I 1 4,36 

In terms of the z variables,  the system is represented by 

b 

L O  I O 1  E 

Similarly, 

“I A - f;‘ 

4,38 

4e39 

I 

L - i  

and 
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T h i s  development shows t ha t  s[TzToP, T:, CT 3 fs fdentfcaf 

with ~ c & & E l ,  o r  t ha t  the two augmented p lan ts  are related 

by a linear change of state variables, and the plants are 

similar. 

A 4  -1 
4 N N n ,  

The final step,  step (41, leading t o  Theorem 4,3 
is the demonstration tha t  similar systems are control law 

equivalent, This  pa r t i cu la r   r e su l t  is due to   G i lbe r t  

(1968); the proof is repeated here f o r  the sake of 

completeness, 

Let S6A,B,C] and S ~ C A I ~ B I ~ C ~ ]  be similar systemst 

i e e o e  the state variables x of the system S[A,B,CI a r e  

related to the state variables v of SfCA1,B1,Cl] by 8 non- 

singular  transformation matrix T I D  as v = T1xe For 

S[A,B,C] t h e  transmission  matrix after compensation by 

state variable feedback is 

H ( ~ , F , G )  = C(SI A - BF)"BG 4,40 

Control law equivalency between ScA,B,C]  and 

S1[Al,B1,C1] will hold if an FI and 8 GI can be found  such 

that Hl(s,Fl,GI) is i d e n t i c a l   t o  H(s,F,G), Since v = Tix, 

A 1  =t T1ATl-', Bi = TJB, and Cf = CTlml. Thus, 



Choosing F1 = PTfsf and GI = G causes H1(~eFIPG1) to be 
equal to H ( s ~ F ~ G ) ~  the desired  conclusion, 

The goal of this development  is the proof of the 

central result  that the use of  Method C permits the multi- 

variable system to be treated as m  single-input,  single- 

output systemse In step (1) it I s  shown that any decoupled 

plant  is similar to a decoupled  plant in standard form, 

This fact and the simplicity  of the standard  form  repre- 

sentation are  the motivation for considering the aug- 

m8ntatlon of a plant  in  standard form with  decoupled 

compensation, 

In step (2) it is shorn  that such a configuration 

leads to m subsystems each of whose forms is completely 

determined by a knowledge of the structure  of the original 

plant in standard form and the structure  of the decoupled 

compensation, This is the result  which is being  sought 

f o r  the more general case of the compensation of decoupled 

plant with decoupled  compensation, and  the keys to its 

proof are given in steps ( 3 )  and ( 4 )  Steps (3) and (4) 

establish the conclusion that the  two aumented plants can 

be made  to have the same transfer matrices by the proper 

choices of the respectllve compensation matrices! thus the 

result proved for  the aumented plant whose original system 

is in standard form is also true for the augmented  plant 

In which the plant is decoupled but not  necessarily i n  

standard form. 
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By this line of reasoning the following theorem 

has been proved. 

Theorem 4.3 Let  decoupled compensation be  used 

to  aupent a decoupled multivariable plant, 

Then  for the purpose of compensating the re- 

sulting augmented  plant, the system consists 

of m  decoupled subsystems; the ith  subsystem 

has nb + poles which can be  arbitrarily 

placed by state variable feedback, and Pi 9 li 

zeroes which are not affected by the feedback, 

The chofce of Method C avoids the problem of loss 

of coupling trhieh plagues Plethod A. The arbitrariness of 

Method A I s  also elfminateds one can be certaine for 

example,  that  if 1 zero and f pole are needed %n sub- 

system 1, then the Insertion of the corresponding com- 

pensation network in channel f leads to the appearance of 

the zero and an arbitrarily  positioned pole in the transfer 

function for This simple illustration is the 

essence  of Theorem 4.3, even though the proof  of the 

theorem is quite absttmct and requires the introduction 

of a fomal representation for the  two parts of the 

augmented plant. 

The first step in the application of  Method C 

requires that the fixed plant be decoupled. The matrices 

F* and G* always decouple the plant,  but the subsystems 

resulting from these compensation matrices have poles at 
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the orfgin and at  the focatfons of the zeroes of the plant, 

A slf&t change in the system pasmeters may cause the s u b  

system Poles to move i n t o  the right half plane, A fufiher 

disadvantage is that the subsystem gain is reduced to unityo 

As far as the theory is concerned it makes no 

difference how the system %s decoupled or what the gain OF 

subsystem poles are made. A practical method f o r  deter- 

mining the compensation needed to  decmple the plant in- 

volves the characterization of the class of a l l  F and G 

matrices which decouple the systemc According to Theorem 

3.10 all G matrices which decoupfe are of the form 

G =I 4,42 

where A Bs diagonal and nonsin@;ular, This equation shorn 

that the diagonal elements of G can always be chosen to 

be I and that the elements of the columns of G are multiples 

of the diagonal element  contained in the column, The 

choice of 1 is recommended f o r  the diagonal  elements of G 

because this choice assures that no system gain is being 

deliberately  canceled, 

The class of F matrices which decoupfe is given by 

Equation 3.908 repeated below 

F = + B-Bol$Q 4043 

The easiest compensation matrices to Implement are those 

with the maximum number of elements  which are 0, This 

criterion and Equation k 4 3  form the basis f o r  the 

selection of F, as shown in Egample 404 belowo 
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Example 4.4. Consider the application of Method C 

to  the  multfvmiable plant  considered in the first two 

examples of this chapter. In Example 4,l the addition of' 

decoupled compensation leads to loss of eouplfng,and in 

Ekample 4,2 the required zero st s = -3 could  not be 
obtalnede In the present case Theorem 4,3 guarantees the 
required  result s . 

The block diagram for the p l a t  is shorn in 

Figure 4,7(a). This particular system was discussed in 

Chapter 3, In Examples 3.1s 3.3, and 3e4, The class of 
G matrices which decouple is defined by 4uation 4.42 
which, fn this instanceo is 

Let each  of the diagonal elements e 

= 7, x22 = 1, and 

4.44 

G be ID so that 

4.45 

The class of F matrices for this example is discussed In 

Chapter 3, 4 ~ a t i o n  3.99# repeated for convenience as 

I 7 7  
i + ~  e,, 0 

F =  1 4.46 

109 



(b) Deooupfed Plant 
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, = 2 ,  
s+l 

(c ) Augmented System 

Figure 4.7 Example 4.4 (Continued) 
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The decoupfed  plant is shorn in Figurs 407(b)o By 

inspection, the transfer matrix for the decoupled  plant is 

-*r S+ 1 0 
P(S,F,G) = 4,48 

0 f - s4-2 

Let the desired transfer matrix be 

0 f ] 4049 
s2+6s+f8 

The form of the decoupled  compensation  required for the 

System is found b~ comparing  Equations 4,48 and 4,490 For 

subsystem f 8 second-order  compensation  network  with a 

zero at s = -3 is needed and f o r  subsystem 2 a first-order 

network must be added to the decoupled plant. All the 

poles of the compensation  network are arbitrary.  One 

possible  choice f o r  the decoupled  compensation I s  shown 

in Figure 407(C)o The design is complete when the 

conpensation matrices F and G are found for the decoupled 

plant.  Plethods for finding F and G are  the subgect of 

Chapter 5 ,  For this example, 
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The block  diagram for the final design appears in Figure 

4e80 

SunImam 

The need for the techniques of this chapter is 

present whenever state variable feedback by itself does 

not  provide  enough  flexibility for meeting the design 

specifications, Method A, in which compensation is added 

to the control input channels of the plant, does not appear 

to be widely applicable because in this procedure the aBdi- 

tlon of  decoupled compensation may lead to loss of the 

ability of state variable feedback to decouple the aug- 

mented system,  Also, the task of choosing the compensation 

is complicated by the uncertainty of" the form of the stmc- 

ture of the subsystems  of the augmented system;  Examples 

401, 4,2, and 4,3 illustrate these aspects of the method, 

Method B does not suffer from either of the  two 

disadvantages of the previous method  because the decoupled 

compensation is added after the fixed plant has been 

decoupled, Its chief drawback is that the states of the 

decoupled compensation appear unchanged in the transfer 

functions of the compensated  system, and there is no 

feedback around the decoupled  compensation. Thus the 
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method is simiSlar to the much maligned open loop design 

technique in which the compensation is used to caneel the 

system dynamics and to insert the require& dynamics in 

their placeo 

In Method C the plant is decoupfed  before  decoupled 

compensation is added, and then  aPP states,, including con- 

pensator states, are fed back. The method is amenable to 

a rather abstract analysis which culminates in Theorem 4,3. 

The significance  of Theorem 4,3 is that it opens up the 

field of multivariable systems design to those engineers 

who are familiar with only  single-input,  single-output 

systems. All  the techniques used in the design of  single- 

input,  single-output systems are  now applicable to the 

multivariabfe system design probleme In particular, the 

state variable feedback technique is applicable, and this 

is one which is emphasllzed, 

The first step in Nethod C fs the decoupling of the 

fixed plant, In Emnple 4,4 the criterion used in deciding 
how  the step should be carried out was the simplicity of 

the matrix of feedback coefficientse Other orfteria suoh 

as system  sensitivity, gain requirements, and other effects 

of the relative positions of the poles of the aumented 

system and the compensated  system  could be considered. 

The development of design procedures has now reached 

the stopping point for this dissertation.  Other developments 

may follow but the remainder of this work is devoted to  the 
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development of design  procedures for implementing the 

techniques already known and t o  solving h practfcal  problem, 

Chapters 5 and 6 are reserved for these purposes. 
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CHAPTER 5 

COMPUTATIONAL PROCEDURES 

The theory  needed for  the design of multivariable 

systems by state  variable  feedback is discussed in 

Chapters 3 and 4, The canonically  decoupled  (CD)  repre- 

sentation  of the integrator  decoupled (ID) system is the 

means by which the subsystems are isolated and their 

structure I s  identified.  If the form  of the subsystems 

is unsatisfactorg,decoupled compensation Is used to change 

the structure to one f o r  which  state  variable  feedback 

design  permits the design  specifications to be met, 

In this chapter  procedures are discussed f o r  'the 

calculation of the numerical  values of the compensation 

matrices F and G, The first part of the chapter  contains 

a step-by-step design  procedure  which  applies in design 

problems  where the addition of decoupled  compensation is 

not neededc The  relevant fomulas from  Chapter 3 are 
repeated and used in describing aPP but  one of' the steps 

in detail, The step,given a brief  treatment  at this stage, 

is that  of  calculating F and G, the compensation  matrices 

for  the canonically  decoupled  representation of the 

A /c 

integrator  decoupled plant, 
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by taking the two examples  of this chapter from Chapters 

3 and 4. 

Step-by-SteP Desim Procedure 

The presentation  of the computational techniques 

is srmplified by making reference to the following design 

procedure. This design procedure is applicable for design 

problems in which decoupled compensation I s  not needed. 

(1) Find the matrix B*g if it I s  nonsingular, 

the multivariable system can be  decoupled, 

(2) Calculate F* and G*, the compensation 

matrices which put the system in integrator 

decoupled forme 

(3) Calculate the matrix Q and use fP; to chm& 

variables and find the canonically  decoupled 

representation of the integrator decoupled 

systemc 

(4) Identify  subsystems and note the ffxed 

zeroes ana number of poles for eacho 
( 5 )  Select the desired transmission matrix 

and eompensate the canonfcably  decoupled 

system by finding the numerical P and G 

matrlces which cause the resnlting  com- 

A f i  

pensated  subsystems to have transfer 

funotions that  meet the desagn requirements, 
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usea for compensating the original srystexn 

so that it  exhlbfta the response  achieved 

in step ( 5 ) @  

The first two &eps are straightforward and are 

easily  programmed on a digital computero The multivariable 

system is described by the equations 

;=tAx+Bu 50 f 
y = cx 5 0 2  

and W is defined by r 1 

G* = gS"1 

and  the ID system representation is 

= (A Q BF*)x $. BG*u 

y f cx 

where dlo i = 1, o o o o  m0 is the smallest nonnegative 

integer for which the POW matrix CiAdiB # 0, In addition, 

504 

5 0  5 
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In step (3) the matrix Q % ~ l  needed in f inding the 

CD representation of the Integrator  decaupled system. The 

rows of Q a r e  grouped together inn m+f blocks label led Qi 

and having ni ,  i = I, . e e 0  m + f ,  rows. For Qt, f = I, o o o g  

m, the  first dl+l rows a r e  Ci8 CIA@ CIAdi and the last 

ni-di-l rows a re  any r o w  vectors whfoh, together with the 

first di+l mwsC form a basis for the  (row) vector spaoe 

q1, defined by 

1 

For each I, I = 1, . e . #  me muation 5.8 defines 8 set of 

n l i n e a r  algebraic equations whose unknowns a r e  the com- 

ponents of the row vector 7. The solutfons of the equa- 

ti ns form the   vector  space sf ei of' dimension  n% and 

the row vectors Cis Ciao e e CiA are %Bnesrrfy 

Independent members of qim 

4 //- 

d 

Once n i ,  the number of poles of subsystem I, I s  

known, the number of zeroes of the subsystem, li0 can be 

calculated. The relevant  equation, as discussed in 

Chapter 3, I s  

li = ni - dl1 - 1 f = 2, m 5 9 
The problem of extending the r o w  vectors Cfo 

C ~ A ,  be. , C ~ A ~ I  t o  form a basis for ~ t ;  is sfmpfiflea by 

the use of the  Hemite normal fonh (Nering, I963Ie The 

Hermite  normal form is  defined and its existence is  
~~ ~ 

1. The matrix A is the  system rnatrix f o r  the  I D  
systeme 
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assured by Theorem 5.1 belowe This theorem I s ,  by 

cofncldence, Theorem 5.1 In Nering (1963). 
Theorem 5.1 Given any m x n matrix D of rank 

e, then by a sequence of elementary row 

operations on D a matrix Do can be formed, 

where D' has the  following  structure: 

(1) There is at feast one non-zero element 

i n  each of the first  rows of D', and the 

elements fn all remaining rows am zeroe 

(2) The first non-zero element  appearing In  

row 1 (i 5 d )  I S  a 1 appearing i n  column 
ki, where kl< k2 4 4 k d e  

(3) In columoz kio the  only non-zero  element 

I s  1 in row lo 

The form of Do I s  uniquely  determined by D, Thus 

ehe matrix D' has the form 
co9umn column 

k l  %2 - 
* e *  doleka+l e * *  del,k2+f 0 . 0  

. e o  0 0 0 0 . 0  I dg2,k2+1 0 . 0  

. p .  0 0 0 0 . .  0 0 0 0 0  

0 0 

0 0 

0 0 

. e .  0 0 0 o e e  0 0 e.. - 
In the present discussion D I s  the coeff ic ient  

a m y  for the set of linear algebraic equations found from 
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Equation 5.8. The matrix De is found from D (with the 

aid of a digital computer) and then used in obtaining 

a standard basis for Each of the vectors i n  the 

standard basis is checked for linear dependence on the set 

Ci,  CIA, ..*, CIA dl . If the vector is linearly  lndepen- 
dent of that set , It is added to el,  CIA, . e CiAdis if 

if I s  dependent, the vector is discardede This procedure 

is always successful (Theorem 3.6 In Nering (1963)) and 
in addition is easily  programmed. 

m 

1 4  
If x ni< n the basis vectors for bi, I 3 1, ..., m, are not sufficient to span the n dimensional space 

of r o w  vectors. The remaining rows of Q are  then found by 

choosing as rows the n tuples representing the vectors 

which are needed to form a basis for @I these vectors are 

not unique. After Q I s  found, the CD representation can 

be computed, as 
0 

2 = Q(A + W*)Q x d. BBG*u 

y = CQ'le 5.11 

-=fA 
5 e  10 

The special structure  of the matrioes of the CD 

representation is used In step (4) In Identifying the form 

of the subsystems, According to Figure 3.3(s) the fth 

subsystem has  the state equations 



The transfer fhnction ~ii(s,F*~G*), relating the output 

yi to the control input ui haa di+l poles at  the origin 

and 1% poles at  the same locations as the zeroes of the 

Btk subsystemo The subsystem zeroes are  the zeroes of 

the chasacteristfe equation of $is 

det(sf - = 0 50  14 
where fs a submatrfx of the matrix Aii and is defined 

in Figure 303(b), An efficient computer program for 

finding and factoring the characteristic equation of a 

matrix is available in  the report by Nelsa (196710 

In step ( 5 )  the CD representation is used, and the 
A 

matrices F and e are found which cause the compensated 
system to exhibit a response which satisfies the design 

requirementso This step is best oarried out with the aid 

of a phase-variable transformation and is  discussed in 

detail in the next sectiono 

The firm% step in the design procedure 1s the 

calculation of the matrices F and G to be used in compen- 

sating the original system, The matrices F and G^ are  the 
known compensation matrioes for  the CD system. Now 

Ir 

A A  A 
UL = Fx + Gr 50 15 

But since $ = &x, Equation 5.15 can be written 

u = m + & r  
A 

which shows that the compensation matrices F1 and GI for 

the ID system are %2 and Go respectivelx. The ID system 
A 
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and the original system are control law equivalent, so 

that the matrices F and G can be found which apply to the 

original system. The required formulas relating F t6 F1 

8nd 9, and G to GI and B+ appear in muations 3.59 and 

3.60, For the Fi and GI found above, these equations give 

F = rW + B.”h 5.17 

G = Po% 5.18 

The remaining topic to  be discussed is that of 

f indlng F and 8. Once this has been done, F and G are 

calculated from 4uations 5.17 and 5.18,and the design 

is ready to be inlplemented on  the physical system. 

A 

Use of the Phase-Variable Transformation for Conmensation 

Consider a controllable,  single-Input,  slngle- 

output  system  described in  the state equations 

x = A x + b u  5.19 

y = cx 5020 

where x is an n-vector, u and y are  now scalars instead  of 

A well-known system  representation, the phase-variable 

representation, takes a form in which the n coefficients 
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pi and the 1 coefffoients 8 3  appear  directfye  If X o  

denotes  the  phase  variables9 then the  system  equations  are 
O 

x' = A o x o  =+ b*u - 
f 0 D o e  0 

0 1 6 0 0  0 
0 

0 

0 

xo 0 U 5.22 

y = C'XQ 

= k h l  81-1 e o e  ai 0 e o e  03xa 5.23 

Let  state  variable  feedback be used for  compensating 

the  system  in  phase-variable fom, as 

u = foxo + g'r  5.24 

where fa is a 1 x n row vector  having  elements fi, and 

g' and r are  scalars.  Then muation 5,22  becomes 

0 

x' = 

and muation 5.22 is unchanged.  The  transfer  function 

relating g and r for  the  compensated  system  h(s,feog') 

is gfven by 

126 



If the  desired  character is t ic  polynomial is 

q ( s )  =I sn - qlS" m q2sn-2 - 0 0 .  - qn 

then  the  elements of fo should be ohosen as 

lar matrix To as 

x = Txo 5.29 

and so the  matrix f for   the   o r ig ina l  system which corres- 

ponds t o  f' is  

f f o T g 3  

The change  of var iables  is concerned with the s t a t e  

var iables  x and x., and not the input  variable rt thus. 

g and g o  are   re la ted  directly,  as 

8 = 5' 5.31 
The input gain g o  is selected from the requirement t h a t  

the   fac tor  g'k i n  Equation 5.26 be equal t o  the required 

subsystem gain, 

An algorithm  for  calculating T is given by Johnson 

and Wonham (1966). Let 

T CT1 T2 0 . 0  TnI 5.32 
where T i  a r e  n x 1 column matrices. The algorithm is 
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0 

0 

0 

5 0  33 
Note that the coefficients of the cbrscterfstio polynomial 

p(s) are required in using the algorithm, The discussfon 

for single-input,  single-output systems is now completes 

Next, the multivariable system is considered, 

Once  step (4) of the design  procedure is 

accomplished,  m  decoupled  subsystems are in evidence.  Each 

subsystem can be  treated as 8 single-input,  single-output 

systemb For the fth subsystem, the state  equations  of the 

subsystemD Equations !je12 and 5013D replace  Equations 5.19 

and 5,208 and the transformation, 

$f = ~ f ~ o f  B = I, e o o o  m 50 34 

where the subscripts are used to designate the subsystem, 

replaces EQuation 5.2ge Since the system I s  integrator 

decoupled, the ith subsystem has di+l poles at the origin 

and li poles at the locations of the zeroes of that sub- 

system, as found from EQuation 5.14, Thereforee the 

characteristic polynomial for the fth subsystem, 

P (sDF*,G*), is i 

pi(~,F*,G*) = sdi+'deP;(sI - s j f )  50 35 
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There are now m separate design problemss  in  each 

one the fixed zeroes and the number of poles are knowna 

After  the desired gain and characteristic polynomial are 

selected for a subsystem, the required  input gain and 

feedback ooefficients are calculated. For the lth sub- 

system the input gain gib is found by setting it' equal to 

the required  system gain stipulated by the design speclff- 

cations because the ID subsystems have unity gain. In 

accordance with  Equation 5.31 the corresponding input gain 

$,, for the CD rather than  the phase-variable  representa- 

tion I s  just gil. The matrices GI and 8 are thus identbcal; 
they are diagonal matrices because the multivariable system 

I s  decoupled when it is put in integrator decoupled forme 

The  row vector of feedback coefficients for the 

ith subsystem is labelled fsi; it is found from p'(s,F*,G*) 

and qi(s,F,G) , the desired  SUbSySt8m  characteristiu 
polynomial.  Equation 5.28 is  used for  this purpose. After 

f is found, the corresponding row vector for  the CD 

representation is calculated.  Recall from Chapter 3 that 
A 
F must  be  of the form 
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A 
F =  

0 0 . 0  0 0 

e 0 

0 . 
0 . 
0 0 - 

0 0 

0 0 

e 0 

e m  0 

where  each dl, I = 1, e a e la, is a f x ni matrix. Each 

0 i is found  from f * ' and Ti by using the equation 
corresponding to Equation 5.30; namely, 

6 1  = fBi(Ti)ol 5.37 
At the completion  of the design of all m  subsystems, 

all m rows of and all diagonal  elements of G are known. 

The corresponding  matrices for the original  system are 

then found  from muations 5.17 and 5.18s these last  com- 

putations  complete  step (6) of the design proceduree The 

design  procedure is now illustrated  by  Example 5 o 1 0  

h 

Example 5.1 

As an example of the step-by-step  design  procedure 

consider the system used for Examples 3.1, 3.3, and 3.4, 
Steps (11, (21, and ( 3 )  have already  been  carried  out In 

Chapter 3; f o r  convenfence the results  of these steps are 

shown In Figure 5. l (a ) ,  (b), and ( 0 ) .  In step (3 )  only 

one r o w  of Ql, namely C1 = I 1  0 01 is known directly 

because di = 0. The set of linear equations  associated 

130 



% =  
i 

(a) Step (11, Test for Decoupling 

-.[.. 7 1 O 

x +  

G* = 
1 "1 

(b)  Step (2),Integrator Decoupled  System 

0 

1 

Qz = LO 1 11 

( C )  Step (31, Canonically Decoupled  System 

Figure 5.1 Example 5.1 



with @’ is fo-aa f r o m  Equation 5 8  with i = 1, These 

equations are 

4% ‘Y3 = 0 

? + P O  

~ A ~ B ~  a o 4.38 

so that a suitable basis for is {cl, OD 03,  LO, 1, 0 

The dimension of g1 is Z 8  indicating that another 

row veotor is needed in forming the matrix Q i Q  A suitable 

choice for this sector is LO, is 03, the basis sector 

which is linearly independent  of Ct. In this example 

the coefficient array f o r  muation 5.38 is 

[: 0 : 0 :] 
0 

which is already in Hermfte n o m 1  forme For more 

complicated  examples it is necessaw  to reduce the co- 

efficient array to Hemfte norma% as an aid in finding a 

basis for the subspaceo 

Step (4) has also been carried out f o r  this errample 

in Chapter 30 and the subsystem transfer functions Were 

found to be 

Again, subsystem 1 has a fixed zero at s = -1 and two 

arbitrary poles: subsystem 2 has one arbitrary pole. 

5.39 

5.40 
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Choose as the transfer functions relating the 

Inputs to the outputs 

1 k22(ssF*G) = x 5042 

These are the same choices as in Example 304 of Chapter 3e 

Step ( 5 )  is the calculation of the numerical 
matrices $ and e. Consider subsystem la comparing 

P~I(s,F*,G*) in  EQuatlon 5.39 with the tmnsfer PuDction 

of  EQuatlon 5,21 and the phase-variable representation of 

and 5.23, one arrives at  the following 

representation 

y = I1 flxef 5044 
For convenience the superscript 1 is dropped from y and U. 

The compensation matrix f O f  and the scalar gQl 

needed to achieve the response required by Equation 5,41 

are found by using Equation 5,28: fi4 =-20 fix =-lQ OF 
fa1 = c .  -1Ie The scalar gil must  supply the required 

gain; thus g i l  2.  

In order to find 81, the compensatllon matrix 

corresponding to fB1, but which applies to the CD system 

representation rather than  the phase-variable  representation, 

the matrix T relating ̂ x1 and x,' must  be found by the 

algorithm of Equation 5e330 The required calculations are 

1 
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= [;I 
or 

Ti 1 f AT2 1 + Ti = [i] 
!z 
7 'I 5.45 

Now step (5) is completed for subsystem 1 by calculating 
e, from fw1 and TI using muation 5.37, as 

C-2 -13 1-2 5.46 

Subsystem 2 is already In phase-variable form. Its 

pole is required to be  placed  at 8 - -1; the required  value 
of the feedback  coefficient is found  from  EQuation 5.28 

to be = -1, The gain for subsystem 2 is un'lty, or 

The complete  compensation  matrices P and G are 
Ir A 

6*2 = 1, 

found by putting together the rows  found  In the design of 

the Individual  subsystems, in conformity with 4uatlon 

5.368 they are 

* F =  I+ 
LO 0 -1 G = E  :] 5.47 

The final design step,  step (61, is the calculation 

of F and G from  Equations 5.17 and 5.18, as 
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F =  

J 

F * + P  FQ -la 

L 

c 

= I  3 1 1 

" 1  0 -1 

- q 
- 1  - 7 
20 

P a r t s  of the design procedure  which have not 

5.49 

been 

discussed are design specifications and the selection of 

the transfer functions to meet the specifications. These 

subjects have been treated by many authors (Truxal,  19551 

Bower and  Schultheiss, 1959). Exoept tor this tasko the 

design procedure 1s amenable to digital oomputer computs- 

tion; In connection with this dissertation working programs 

have been written and used to check the numerical examples, 

The computer programs are not included in the text because 

further usage is needed to be  sure that the programs are 

reliable. An excellent  program for  the state variable 

feedback design of  single-input,  slngle-output systems I s  

described by Melsa (1967) I this pgram has definite utility 

in .P;he multivariable  system  design, 

13 5 



Procedure A"he Auamented System 

In this section the modifications of the design 

procedure and the associated  computational  procedures are 

presented f o p  the case where series compensation is added 

to the multivariable plant,  Flethods A,, B,, and C are used 

when additional  dynamics are  neededo 

Both Flethod A and Hethod B are similar to design 

by  state  variable  feedhack alone as far as the computational 

requirements are concernedo In Method A steps (I) - ( 4 )  

are completed fop the given planto and the subsystems are 

identified, Then series compensators are placed in  the 

control  inputs of the plant,, and steps (1) - (4) are 

repeated, The repetftion of steps (I) - (4) is necessary 

because there is no guarantee that the augmented  plant can 

be decsupled OF that z e ~ o e s  added in the compensation  will 

appear in the appropriate subsystemso If the augmented 

plant can be  decoupled and the forms of the subsystems 

of the augmented  plant are satisfactory, then steps ( 5 )  

and (6) of the design  procedure are completed, 

For Method B steps (I) (4) are completed f o r  the 

given  plant,  and the subsystems are identffied--just as  in 

Method A, But now the plant is compensated  by  state 

variable  feedback in order to realize as much of the 

transfer  matrix as possible. Steps (5) and (6) are re- 
quired to calculate the compensation  matrices  at this  stagee 

The design is completed  by  inserting the serfes 
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compensators in the  news decoupled  plant  which cause the 

system  specifications to be met. 

The computational  procedures f o r  Plethod C are  now 

discussed in detailo The first four steps of the previous 

design  procedures  (checking  decouplfng, finding the ID 

system and the CD representation, and identifying the 

plant  subsystem8) apply in  the present casee Af'ter the 

subsystems  have  been  Identified, the designer has two 

new tasks. He must  decide  what  additional  compensator 

netmrks are needed to meet the design requirements; 

cornonlye lea&=%ag networks are necessary for increasing 

the velocity-error  coefficients or one or more poles are 

used to cancel unwanted  plant zeroeso It must also be 

decided how  the plant is  to  be Becoupled, 

One  suggestion for deolding how to proceed in 

decoupllng the plant I s  discussed in Chapter 4. The 

criterion used for determining F is costg and. the lowest- 

cost  design 1s assumed to be the one in which the largest 

number of entries of F are  zeroo The use of this scheme 

requires  that the class of all decoupling F matrices be 

found from the equation 

F = F * + B *  FQ - l* 5.50 
Here, F*, PO1, and Q are numerical matrices and F has 

the form 

A 

I 
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n 
F =  I: 81 0 

0 

0 

0 

0 

0 

0 

0 0 0  

0 0 0  

0 0 0  

0 

0 

0 

0 

0 

j 0 

0 

where  each a,, i = 1, ..., m e  is a 1 x ni matrix. After 

F has been found in terns of the elements of the e,, as 

many of  its  elements are made zero as possible. 

The recommended G is  the matrix in which the diago- 

nal elements are 1, and the off-diagonal  elements  satisfy 

the equation 

G 9 B ~ A  5.52 

where A is a diagonal matrix whose diagonal elements are 

nonzero. The above G matrix is simple and requires a 

minimum amount of gain. 

The equations  describing the deooupled compensation 

are 

and the augmented  system has  the equations 
g = g + g &  

f 3 ;; + r;]c 

y f cx e& 

= IC 03s 
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The CD representation for  the integrator  decoupled 

form  of the original  system I s  no longer  applicable be- 

cause  the  plant is now described by Equations 5.55 and 5.56, 
rather than Equations 5.1 and 5 , Z ,  Therefore, the com- 

pletion of step ( 5 )  of the design  procedure  (calculating 

F and 6 ) ,  In Its present  form,  requires  finding the ID 
plant  and the CD representation for  the augmented system. 

Except for this change,  steps (5)  and (6) are exactly the 

Iy 

Same as in the case  where no decoupled  compensation is 

needed. 

If the designer  proceeds In the manner described 

above,  the CD representation  must  be  found  both for the 

plant  and the augmented plant, The CD representation of 

the plant is needed to determine the plant's structure,  and 

the CD representation  of the augmented  plant is used in 

steps (5) and (6) for finding F and and then F and G. 
f i  

There is 8 special  case In which the second CD 

transformation is not needed, By Theorem 4,3 the form of 

the augmented  system is known from the form of the de- 

coupled  plant and the decoupled  compensation.  Once the 

augmented  plant is integrator  decoupled, the ith  subsystem 

has di+l  poles  at the origin and Zi known zeroes  which are r, 

canceled by poles. The important  conclusion I s  that the 

characteristic  polynomial for  the subsystems are known 

because all of their pole  locations are known. 
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The special case referred to above is the one i n  

which the matrix &+lPm+1 is not  needed in the CD repre- 

sentation of the ID plant. For  the special  case, Am+l,m+l 

1s also unnecessary in the  CD representation of the  ID 

aumented plant  because of Theorem 4.3, Thus each  of the 

poles of the ID augmented  plant is associated with  one 

and only one subsystem, This fact makes possible a change 

of state variables for which the A, B, and C matrices 

have the form shown in Figure 5.2 (a) and (b) . 
The structure in part (a) of the figure can  be 

achieved by 8 linear change in the state variables of the 

ID augmented  plant  because that system is decoupled and 

because h+l,m+l is assumed not to be  needed in the CD 

representation, The structure of  part (b) indicates m 

subsystems esch  of  which is in phase  variable form. The 

fact that this structure can be achieved is proved by 

giving a procedure for constructing the required  trans- 

formation matrix,  but  first the representation is defined 

formally, as followsr 

Definition 5.1 A decoupled multivariable 

system is in multivariable phase  variable 

form if the matrices in the equations 
e 

x' = A'x + B'u 
y = C'X' 

take the form  shown in Figure 5.2(a) and (b), 
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B1 = 

- 
*il 
0 . . . 
0 

0 . 
a . 
0 

0 

Ai2 . . 
a 

0 

0 

B;2 . . . 
0 

0 

0 

A& 

:j . 
B' mm 

. . . . i = 1, m 

0 0 . a .  J 
(a) Structure of A ' ,  B 1 ,  and C' 

Figure 5.2 Multivariable Phase Variable Form 
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f 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

o o a  

0 0 0  0 

0 

0 

0 

1 

(b) Structure of Aglie Beile and C e l l  

Figure 5.2 ~lultivarlable Phase Variable Form (Continued) 
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In  the present case the numbers pi, j = 1, e , , , 
j 

ni, are the coefficients  of the characteristic polynomial 

of subsystem 1 of the augmented ID plant! lee.,,  

I Similarly, the numbers aj, j = 1, 11, are  the 

coefficients of the numerator polynomial of subsystem 1, 

Both sets of numbers are known because the structure  of 

the augmented  plant is known from the structures of the 

decoupled  plant and the decoupled  compensation, 

An algorithm  is now developed for finding the 

multivariable phase variable representation from the 

integrator decoupled,  augmented  plant  representation. 

The intermediate  step of finding the CD representation 

Is being by-passed. 

Let the augmented  plant be integrator decoupled 

Define x' as  the state vector for  the multivariable phase 

variable representation for the system  of muations 5.58 

and 5.59, The state vector is related to x' by the 

nonsingular matrix T, as 

x = Tx' rr 

In terns of x' the state equations are 

. ". 



The unknown in these equations is  the transformation matrix 

To An algorithm analogous to that of Equation 5.33 is 

being sought,  but i n  the present  case the change of vari- 

ables is being made f o r  the entire  system rather than for 

each subsystem  considered sepamtelyo This is  necessary 

because the matrices 2 + e%+, %& and E haQe no special 
structure Nhen considered separatelyo 

Let T be  partitioned into n columns in the 

following way 

where each T is an n x 1 c o l m  matrix. i 
3 

Consider Equation 5.66. Beoause of the special 

structure of B' shown in Figure 5e2(a )  and (b), the left- 
hand side  of  Equation 5,66 is 

TB' = [T T 3 I 2  
"1 n2 nm 
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Substituting this expression f o r  TB in muation 5.66 give8 

an expressior f o r  m of the n coPurans of To as 

A 

where I s  the ith column of %*. Next, consider 

Equation 5.65. The matrix TAe has a special form  because 

A' has a special form. For simplicity consider Just  the 

first nl columns of TA'I in ordero they are 

The use of these expressions in Equation 5.65 gives 

When the rest of the columns of 'E are considered, 

equations of the  form  of muations 5.71 result,  with  the 

superscript 1 replaced by 1, f = ZD o a o D  m. 

The recursion relationship f o r  the columns of T is 

found  from  Equations 5.70 and 5.71. In  EQuatfon 5.71 the 

last  equation  is  solved for Tn in terms of Tn and then 

the next  equation  is  solved for T, in terms of Tn 

and Tn and so on. In compact  form the resulting 
1 

algorithm is 

1 1 
loll I1 

1 1" 1-1 
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f, = ( BG*)i 

These equations are easily  programmed on a digital computero 

Once the ID auguented system has been put  into the 

multivariable phase  variable form, step ( 5 )  (calculating 

E" and G') is easily  carried out. The matrix Fo has the 

following form 

F o  = 

- 
f'1 0 e. .  0 

0 f '2 . .e 0 
e . 
e 

5.73 

where  each f a i ,  i = f o  m is a f x ni matrix. For the 

ith subsystem the characteristic  polynomial is pi (s) and 

the desired  characteristic  polynomial is qi(s). The 

elements of f are given by the equations  corresponding 

to  muation 5.28; namely, 
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The matrix G' is diagonal  and  its  ith  diagonal 

element  is  equal  to  the  required  gain of the  ith  subsystem 

of the  final,  compensated  system. 

For the aumented system  expressed  in  terms of its 

physical  variables,  the  corresponding 5 and G matrices A 

(step 6 are 
e n #  
F = F* + B* F'T- /=l " 1  

rJ -1 
G = P  G' 

5.75 

5.76 

The discussion of the  computational  procedures for 

design  problems  which  require  the  addition of dynamics I s  

now complete, The following  example  illustrates  the  appli- 

cation of the  particular  procedure  which I s  given  the  most 

attention  in  this  section;  namely,  the  one  in  which  Method 

C I s  needed  and  in  which  the  matrix  Am+p,m+l  does  not 

appear  in  the  CD  representation  of  the  Integrator  decoupled 

plant 

a m p l e  5.2 

Consider  the  example  which  is  used to illustrate 

Method C In Chapter 4: namely,  Example 4.4, Steps (1) = 

(4) have  already  been  carried out and  the  augmented  system 

is  shown in Figure 4.7(c). Only steps (5) and (6) remain 

in  the design. 
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The state equations for  the augmented plant are 

0 0 7 0 0 

0 -1 0 10 0 0 

;= 1; - 

cy 0 -1 -2 -10 0 1 

0 0 -2 -1 0 

0 0 0 -4 0 

0 0 0 0 0 -5 - 

#4 x +  

Y = [' 0 1 0 1  f 
0 0 0 0 

1 0 0 0 

11 0 0  

0 

U 
.) 

5.77 

With the a id  of a digital computer 9, F9, and G*, are 

found t o  be 

and the state equations for  the integrator  decoupled, 

augmented system are 

59 78 

5.79 
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L o  
Y =  

- - 

PU 

cx 

Subsystem 

0 

0 

-2 

0 

0 

-4 

0 

1 

7 
10 

-10 

5 

7 
0 

0 

0 

0 

0 

-3 
0 

0 0 I;+ 
2 

0 0 OJ 

- 
0 

0 

0 

0 

0 

1 - 

1 has two zeroes, one at  s = -3 and one 

at  s = -1, In  the I D  augmented plant two of the  four   poles  

are used for  canceling the zeroes and the remaining two a r e  

a t  the  origin,  Thus the charac te r i s t ic  polynomial is 

51(s,+,g*) = s2(s+l) (s+3)  

= s4 4- 4s3 + 3s2 5 ,  82 

$2(s,F*,&) = s 2 5*83 

In  a similar fashion Z 2 ( s )  is found t o  be 

Enough information has been  given so t h a t  T can be 

calculated from Equation 5.72, as 



T =  5o 84 

The desired transfer matrix for  the compensated 

aumented system is given by muation 4,49, From this 

equation the characteristic  polynomials of the compensated 

system are Identified as 

<'(SI) = (s2+4s+8)(s+4)(s+l) 

= s4 + 933 + 32s2 + 56s + 32 5085 

G2(s) = s2 + 6s + 18 5.86 

The characteristic  polynomials of the subsystems 

of  both the ID augmented plant  and the final,  compensated 

system are  now knowno The coefficients of these  poly- 

nomials are used to calculate the rows of the compensation 

matrix F', For this purposes Equation 5.74 is useds and 

the resulting F' is 

I o  0 0 O -18 -6 I 5.87 

The compensation matrix F, which applies to the 

augmented  system  expressed in terms of its physical 

variableso is found from Equation 5 7 5  to be 
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0 - 0  50 3.50 0 

0 -10 -10 0 0 I 
1 5.88 

According to the design  specifications  embodied 

in Equation 4.49, no additional  gain  beyond  that  already 

present in the plant is required, The gain of the ID 

system has been made unity so that the plant  gain  (repre- 

sented by the diagonal  elements  of B* in Equation 5.79) 

must  be  restored by the matrix G'. Thus, 

and G is calculated  from  Equation 5.76s as 
G = Buo1G8 

= E  :] 5.90 

The design is now completeo A block  diagram for 

the designed  system  appears in Chapter 4 as Figure 4.8@ 

Summam 

There are two parts to this chapter. In the first 

part  complete  oomputational  procedures are described for 

performing the calculations  required in the design of a 

multivariable  system by state  variable feedback. The 

relevant  design  fonnulas  from  Chapter 3 are organized as 
part  of an orderly  design  procedure, and the phase  variable 
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transformation is introduced  and  utilized  for  the 

calculation  of  the  compensation  matrix F, The discussion 

is complete  in  the  sense  'that  the  designer can  use  the 

design  procedure in going  from  the  start  (the  system 

equations) to the  finish  (the  compensation  matrices F and 

G I o  For all but  simple  examples  the  use of the  design 

procedure  requires  the  aid  of a digital  computero  In  fact, 

the  procedure is fomulated with  this  requirement  in  mind, 

The second  part  of  the  chapter  extends  the  first 

part to  cover  the  case  where  series  compensation  is  needed 

in order  to  meet  the  design  specifications, 

Methods A,, B, and C, presented in the  previous 

chapter, are now discussed  from a computational  point  of 

view,  The  first two methods  are  given a brief  treatment 

because  their  computational  aspects  are  similar to those 

already  described,  Method C is treated in more  detail, 

Two applications  of  state  variable  feedback  are 

needed  in  the  design  of  control  systems by Method C, The 

calculation of the  feedback  coefficients for each  appli- 

cation  could  require a separate  transformation to the 

CD representation, For  the  special  case  where  each of the 

plant  poles is assigned  to  one  and  only  one  subsystem a 

technique is given for avoiding  one  of  the  transformations 

to the CD representation, The technique  employs  the 

multivariable  phase  variable  representation, a concept 

which is introduced in  the  chapter, 
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The  comments on the computational procedure of 

the first part of the chapter apply to  the second parto 

Again, the procedures are complete and especially  tailored 

for  digital computer usage. 
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CHAPTER 6 

A PRACTICAL, EXAMPLE 

The theory and design  procedures for the state 

variable feedback design of multivariable  systems  is 

presented in  the preceding chapters. The present chapter 

is concerned  with the application  of the state  variable 

feedback  technique to a practical example. The physical 

system  chosen is a coupled-core nuclear reactor  (Weaver, 

1968) .  The inputs to the system are the reactivities for 

each cores  as determined  by the positionsof the core 

control  rods, and the system  outputs are the power levels 

of the individual cores. The total power for the system 

is obtained  by adding the powers for each of the cores. 

Coupling  between the cores  exists  because of neutron 

leakage  between the cores.  Thus,  if the reactivity  input 

to one  core is changed, then  the power levels of all  the 

cores are affected. 

The mode of operation  desired  is  that in which all 

cores are given the same  input and are required to respond 

in an identical manner. This goal is achieved by using 

state variable  feedback to decouple the system and to cause 

each subsystem of the compensated  system to exhibit the 

same  kesponse as  the other subsystems. The advantage of 
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this mode of operation is that all cores share  equally the 

task of providing the power output. 

Without the addition of series compensation, the 

desired  subsystem responses cannot  be  realized. One of 

the methods of Chapter 4 I s  needed to supply the addi- 

tional dynamics required. Method A is well suited for 

this example  because the addition of a single  pole to each 

subsystem allows the design specifications to be met. 

Theorem 4.1 assures that  dec.oupling is not lost by the 

addition of the series compensation: the loss of zeroes is 

not a concern (as it turns out) since no zeroes are being 

added in the compensation. 

The values of the parameters used in the description 

of the physical  system are  the same as those used by 

Weaver and Vanasse (1967). Three cores are assumed, and 

so the multivariable  system has three inputs and three 

outputs . 
Coupled-Core Reactor Design 

A coupled-core nuclear reactor I s  a critical 

reactor consisting of two  or more subcritical cores 

(Weaver, 1968). There is a mutual exchange of neutrons 

among the cores due to  the neutron leakage of the cores, 

It is this neutron leakage between cores which makes the 

entire  system capable of sustaining a nuclear chain 

reaction. Because  of the neutron leakage, the behavior 



of each core is influenced by the behavior of all other 

cores; in other words, the system is coupled. 

The specific case of three  coupled  cores is 

considered. In the plant  equations, the effect  of  delayed 

neutrons and controller  dynamics are excluded, and the 

cores are assumed to be  identical  with the same neutron 

coupling  coefficient.  Even SO9 the equations are still 

nonlinear and must be linearized  about the steady-state 

reactivity and power levels. These matters are discussed 

fully in  the reference  cited  above. Here the linearized 

equations are assumed to be given, as 

0 

x2 = Kfxf 0 ax2 . D "0 D 
x3 = pi - $x3 = 7 x 4  + =x5 

where xi = neutron density or 

6.1 

power in core 1 

x2 = temperature in core 1 
x3 = neutron  density or power in core 2 
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x4 = temperature in   co re  2 

x5 = neutron  density o r  power in   core  3 
x6 = temperature in   co re  3 

u1 = reac t iv i ty   input  from cont ro l le r  1 

u2 = reac t iv i ty   input  from cont ro l le r  2 

u3 = reac t iv i ty   input  from cont ro l le r  3 

yi = t o t a l  neutron  density o r  power of core 1 

92 = t o t a l  neutron  density  or power of core 2 

y3 = total   neutron  densi ty  o r  power of core 3 

Assume the  following  values for the system 

parameters (Weaver and Vanasse, 1967) 
no = 105 watts Xi = lo-5 degree/watt-seo, 

a = sec-1 = 0 ~ 1  sec 

P( = loo3 degree -1 D = O e 1  

Then the  s ta te   equat ions,   In  matrix notation, I '  

a 
x =  

157 

x 9  

are - - 
106 0 0 

0 IO6 0 

0 0 lo6  

0 0  0 

0 0  0 

0 0  0 

6.2- 
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The plant  equations are now known,and the  step- 

bg-step  design  procedure  of the first section of Chapter 5 

is  applicable. The first s t e p   i n  the design  procedure 

i s  t h e   t e s t   f o r  decoupling. To carry  out  the tes t ,  the  

matrix B* must be formed and  checked for  nonsingularity. 

For  the  present example, B* i s  eas i ly  formed because  each 

row matrix CIB,  i = 1, 2 ,  3, is  non-zero. Thus each dl, 

i = I, 2, 3, is 0, and, In accordance with muation 5.31 

6.4 

Clearly, B* is nonsingular,  and  the  system  can be decoupled 

by state variable feedback. 

In  step (2 )  of the design  procedure P and G*, the  

compensation matrices which put the system in   in tegra tor  

decoupled form, are calculated by using  Equations 5.4 and 

5.5. They are 

G* = 6.6 
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The  state  equations for  the ID plant are 

0 0 0 0 0 1  

x = / o  0 10-5 40-2 0 
O I  

l o  0 0 0 0 O I  

LO 0 0 

u 
0 

1 

0 I 
6.8 

In  step (3 )  the matrix Q is needed In finding the 

canonically  decoupled  representation of the ID plant. Here, 

the first ni rows of Q are  discussed  in detail. In order 

to find these rows the subspace  is  considered. The 

vector space C$i is the set  of all row vectors  which 

satisfy the relation 

= {Aj& = 0, j = 0, 1, 0 . 0  9 5 ,  IC = 2, 33 6.9 
where A and B are the matrices  .in  EQuation 6.7. As usual, 

the row vector is  written 72 ... 7.1, and the 

coefficient  array f o r  the equations  resulting  from' 

muation 6.8 I s  formed, 8 s  

159 



7 

0 0 1  

0 0 0  

0 0 0  

0 0 0  

0 0 0  

0 0 0  

0 0 0  

0 0 0  

0 0 0  

0 0 0  

0 0 0  

0 0 0  - 0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

6,10 

With the a id  of a digital computer, the Hermite 

normal form of the above array i s  found t o  be 
- 
0 0 1 0 0 

0 0 0 1 0 

0 0 0 0 1 

- 0 0 
0 0 

0 j 6. f l  

where the all-zero rows are  deleted. The 4 x 6 a m y  

yie lds  the  following  relationships among the  elements o f t t  

7 3 =  ? 4  ' IS' f'6 = 6.12 

and so a suitable basis f o r  g1 is  { L l  0 0 0 0 01, 

10 f 0 0 0 013 The rank of e is nl or 2, 
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and the number of zeroes of subsystem  1 is n1 - dl + 1 
or 1, 

The first r o w  of Q1 is CIS which is also a member 

of the above basis, and the second row is taken as the 

subsystem  equations are identical because the cores are 

assumed to be  identical, A comparison of the matrices of 

Equation 6.7 with those in Figures 3*3(a) and (b) reveals 

that 

m, = L10-23 i = 1, 2 ,  3 6.14 

and so each  subsystem has a fixed zero at s = -.01 and 

two poles  which are  under  the control of state variable 

feedback.  Step (4) is now complete, 

The remaining steps of the design procedure  require 

that a suitable  response  be  selected for each  subsystem and 

that the compensation matrices be found that give the de= 

sired responseD Suppose  that the desired  dynamics of 
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each  subsystem are embodied in the following transfer 

functions  (Weaver and Vanasse, 1967): 

The presence  of the fixed  zero  close to the origin 

must  be taken into  account.  Only two poles are present 

in each  subsystem so that  if one of them  is  used for can- 

cellation, a first-order  response  results.  Apparently,  one 

additional  pole is needed in each  subsystem:  then  one  pole 

can be used for cancellation  and two poles are left to 

achieve the second-order  subsystem  response.  This  technique 

Is  the one used below. 

It is desired to add one pole to each  subsystem. 

Method A applies, and by Theorem 4.1 decoupling is not 

lost. Let the three,  identical  series  compensators  each 

have unity  gain and one  pole  at s = -1. The equations for 

the compensation are 

6.16 

Using Equations 5.55 and 5.56 the state  equations for the 

augmented  plant are found to be 
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* 0 0 0 

-103 

-loo2 
0 

0 

0 

0 

0 

0 

0 

1 0 1 

0 0 0 

-1 -10 3 1  

10-5 -10-2 0 

1 0 -1 

0 0 10-5 

0 0 0 

0 0 0 

0 0 0 

+ 

0 

0 

0 

0 

-103 

- 10'2 

l o 6  0 q 
0 0 0  

0 106 0 

0 0 106 

0 0 0  

0 0 0  

-1 0 0  

. o  -1 0 

0 0 -1 - " 0 0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 1 .o 
0 0 1  - 

ii 6.18 

0 0 0 0 0 0 0  

0 1 0 0 0 0 0  1 X 6.19 

0 0 0 1 0 0 0  

The basic  design procedure I s  now applied t o  the augmented 

plant. The compensation matrices F* and G* required to  

form the I D  augmented plant  are 
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10-3 

1 d  

ioD6 10-3 

10-3 2 -1 -7 

6.21 

and the system  matrices for the ID augmented  plant are 

found by forming A d. BF* and BGS, 

Each subsystem has three poles and one fixed zero, 

or di =I 1, for i = 1, 2, 3@ This means that the matrix Q, 

which is needed to find the CD representation, has Ci and 

CIAo i = 1, 2, 3 as rowso A simpler Q is obtained by 

using the standard bases for Q1, Q2, and 63 found by using 

the Hermite normal form, The Q resulting  from this Procedure 

is 
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Q =  

l o  1 0 0 0  0 0 0 0  

0 0 10-6 0 10-6 0 1 0 0 

0 0 1  0 0  0 0 0 0  

0 0 0  1 0  0 0 0 0  

10-6 0 0 0 lo-6 0 0 I 0 

0 0 0  0 1  0 0 0 0  

0 0  0 0  

k - 6  0 0 0 0 0 0  lool  
In  terns of the new state variables f o r  the I D  

6,22 

' _  

augmented system  the  system matrices are i n  block  diagonal 

form with the following matrices along the diagonals 

r -l -10 

*I1 = I 10-5 -10'2 

For ' t he  i t h  subsystem the   des i red   t ransfer   func t ion  

which takes into  account the f ixed zero is 
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The set  of feedback  coefficients 19, and  the  gain gil 
must  be  found to realize the above  subsystem  response. 

This task was accomplished by using  the  computer  program 

of Melsa (1967), a program  which uses the phase  variable 

transformation  discussed in Chapter 5. The  results are 

shown in the following  compensation  matrices  which  apply 

to  the system  expressed in terms of the  state  variables 

corresponding  to the matrices of Equations 6.23 - 6.25. 
o 2=10°3  -2 o 
0 0 0 0  

0 0 0 0  - 

F =  

Lo O 

- 
0 0 0  0 0 

2x1~-3 -2 o o 0 

0 o o 2x1003 -2 

10 1 
6.27 

6.28 

In terms of the state  variables for  the original 

augmented  plant,  the  compensation  matrices F and G are 

obtained  from  Equations 5.17 and 50189 repeated as 

F = F++ W-lFQ 6.29 
G = B*-~G 6.30 

All of the quantities  on the right-hand  sides of Equations 

6.29 and 6.30 have  already  been  calculated (B*O1 is just 

G*). Performing the required matrix multiplications  and 

addition  yields 
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- 10- 6 

-10- 6 10-3 -1 O -1 6.31 

2 . 99x10'~ 9. ~ X I O - ~  -1  -1 0 

G =  

0 0  

6.32 

With  these  compensation  matrices  the  multivariable  system 

I s  decoupled  into 3 noninteracting  subsystems,  each of which 

has  the  transfer  function  of  Equation 6.26. 

As a practical  matter  it is noted  that,  because a 

simple  reactor  model I s  being  used, all the  states  can  be 

measured. As a result  the  design,  though  complicated,  can 

be  physically  implemented. 

This  example  has  been  worked for the  case  where  the 

following  subsystem  transfer  function is desired 

6.33 

In this  instance  the form of the  response is the  same as in 

the  previous  case,  but  the  system  bandwidth  has  been  in- 

creased  by a factor of 10. The corresponding F and G 

matrices are 
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G =  I 6035 

The  first  stage of the  design  process is now 

complete.  Still  needed  before the  process is finished  are 

simulation  studies  to  verify  noninteraction  and  the  sub- 

system  responses  and a sensitivity  investigation, One 

would  be  especially  interested  in  determining  what  effect 

changes in or the  removal of some  of  the  feedback  co- 

efficients  has  on  the  response,  These  studies  are  best 

carried  out  by  those  who  are  directly  responsible for the 

design of the  physical  system, 

Summary 

The  example  of  this  chapter  is  taken  from a 

recently  published  textbook on reactor  dynamics  and  control 

(Weaver, I968 , It is a problem  that  has  some  engineering 

significance,  Although  the  design  has  not  been  carried to 

completion  (physical  implementation),  the  results  which  are 

given  indicate  that  the  design  techniques  presented  in  this 

dissertation  should be considered  when  designing 

multivariable  systems, 
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CONCLUSIONS 

In this chapter a11 previous  results are 

summarized,and  suggestions are given for further research, 

Summary 

The study of design techniques f o r  multivariable 

systems is the topic  of this reporto Both  conventional, 

frequency-domain  technfques and modems combined  frequency- 

. domaino time-domain  procedures are considered, 

Noninteractfon is taken as one of the two basic  design 

requirements3 the other is that specified  subsystem 

transfer functions be achieved,  Conventional methods are 

quickly  shovm to have the disadvantage  of  complexity-- 

both in carrying  out the design calculations and in the 

physical  implementation  of the compensationo There are9 

however,  some  problems for which the conventional  methods 

yield  satisfactory designse and research  continues In this 

area (Chen, 1968 a, bl0 

The bulk of the attention to design is given to 

the state  variable  feedback design of multivariable systemso 

After its introduction by Morgan in 1963* several authors 

studied the technique,  with the most  recent and complete 
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treatment  being  given  by  Gilbert (1968). Gilbert's 

results  make  possible  the  identification  of  the  fixed 

zeroes of the  subsystems of the  multivariable  system  and 

the  number of subsystem  poles  which  are  controlled by 

state  variable  feedback, By treating  each  subsystem in- 

dividually,  the  designer  can  apply  some  of  the  previously 

developed  knowledge  of  state  variable  feedback  design of 

single-input,  single-output  systems. 

A topic  which  has  not  been  previously  studied is 

the  addition  of  dynamics to the  multivariable  system  before 

state  variable  feedback  is  applied, f o r  the  purpose of im- 

proving  the  system  response.  Three  methods  are  proposed 

and  analyzed  in Chapterbfor adding  dynamics,  The  first 

method,  Method A, requires  that  the  compensation  be  placed 

in the  control-input  channels of the  multivariable  plant 

and  that all the  states  of  the  augmented  systen!  be fed 

back, This method is the  preferred  one  when  it  works, 

because  of  its  simplicity,  However,  its  use  could  lead 

to loss  of  coupling or loss of zeroes. An alternate  ap- 

proach,  Method B, is  shown  to  have  serious  practical 

limitations , 
Method C applies In every  case  in  which  the 

multivariable  plant  can  be  decoupled,  According to 

Theorem 4.3, the  use  of  Method C makes  it  possible to 

apply  the  same  techniques f o r  the  multivariable  plant as 

are  applied  in  single-input,  single-output  design. 
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In Particular,  zeroes and poles  can  be  added  with  the 
assurance  that  decoupling is not  lost,  the  added  zeroes 

and  plant  zeroes  appear  unchanged in the  proper  subsystem 

transfer  functions, and both  the  added  poles and the  plant 

poles can be  arbitrarily  positioned  by  state  variable 

feedback. 

Chapter5is intended to serve as a clear  outline of 

what  must  be  done to apply  the  state  variable  feedback de= 

sign  techniques  of  Chapters 3 and 4. The  presentation is 

oriented  toward  digital  computer  usage  because  practical 

multivariable  design  problems  are  frequently  of  high  order 

and  require  tedious  calculations  that  are  most  accurately 

performed  by  the  computer, In the  case  where  dynamics  are 

added  to  the  decoupled  multivariable  plant, a short-cut is 

given to cut  down on computer  time. 

The  practical  application  of  Chapter 6 shows  that 

the  design  techniques  of  the  previous  chapter  do  indeed 

have  value  in  control  system  design. 

Further  Research 

Although  the  design  techniques  presented  here  are 

sufficiently  complete to  be  used  in  practical  design 

problems,  there  are  several  topics  which  merit  further 

research. Among these are 
1. The  decoupling  of  multivariable  systems for 

which FP is singular. 
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Further s t u Q  of Nethod A, 

Rmbher study of the considerations  involved 

i n  the initial  decoupling  step  of  Method C, 

The application of the techniques of gain- 

insensitivity to multivariable  systems, 

The relationship  of the design  methods to 

those involving  integral  performance indices,, 

Multivariable  system  design  by  state  variable 

feedback  where  noninteraction is not requiredo 

State  Estimation in multivariable  systems, 

Each of these topics is now discussed  briefly, 

For topfc 1, Gilbert (1968) mentions  that as long 

as  the plant matrix P ( s )  is nonsingular,  dynamics can be 

added to the multivariable  system so that the resulting 

augmented  system can be  decoupled  by  state  variable 

feedback, The practical  implications of this  procedure 

have not  been  reported, In particular,  one needs to know 

how  to find the added compensation and whether it is 

physically  realizable, In the present  study,  dynamics are 

added to make it  possible to meet the design  specifications, 

In problems  which  cannot be decoupled  by  state  variable 

feedback unless dynamics are added,  it  would  be  desirable 

to be able to choose the dynamics  which  permitted 

decoupling and also contributed to a good design, 

For topic 2, more work is needed to 

series  compensation  causes loss of  coupling 

find  out  when 

and loss 
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Of zeroes. Theorem 4.1 provides answers f o r  the simplest 

form  of  series  compensation, but other situations have ye% 

to be  consideredo 

For topio 3, the best  way  of  decoupling the plant 

before adding decoupled  compensation I s  not known,, nor is 

it  even known what  criteria f o r  defining the best  way 

should  be  used, Perhaps sensitivity  theory  could be of 

value here. 

Topic 4 appears to be related to  the previous 

topic because,  according to Herring (1967), systems are 
made gain-insensitive by conditioning the plant before the 

final application of state  variable  feedback, Herring's 

results  apply to single-input,  single-output  systems; the 

multivariable  case has yet to  be studied, 

In topic 5 performance  indices are mentioned as 
an alternate means for specifying the desired  system 

response. In fact, the idea of  using  state  variable  feed- 

back  originated in connection with design for minimizing 

a particular  Integral  performance  index  (Schultz and 

Melsa, 1967). This dissertation uses desired transfer 

matrices as the performance  specification,  Relations 

between the designs  resulting  from the  two different types 

of  specifications are known for single-input,  single- 

output  systems,  but  not for multivariable systems. Here 

the constraint  of  noninteraction  should  prove  useful, 
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For topic 6, study  of the design  situation in which 
noninteraction is not a requirement  needs to be  conducted, 

In an aircraft, for example, the plane  rolls  when making 

turns, so that  changes in yaw are accompanied  by  changes  in 

roll, and these changes are tolerated,  One  would  like to 

be able to choose a specific,  non-zero  transfer  function 

between ri and y (i # 3 ) , and realize  It by state  variable ' 
feedback. At present, no results are available in this 

3 

area. 

The final topic is concerned  with the very  important 

practical  problem of estimating  state  variables  which  cannot 

be measured  directly, Due t o  the large number of state 

variables in a typical multivariable  system, the need for 

estimating  states is great, For the case  where  no  noise 

is present the work of Luenberger (1964, 1966,  1967) and 
others  (Singer, 1968) should  be  investigated as a basis 
for developing the theory for the case where  decoupled 

multivariable  systems are being  designed, 

With the increasing  complexity  of the design 

problems  being  considered  by  control  engineers, the 

continued  development  of  multivariable  system  theory  seems 

assured. State  variable  feedback  design  should  share in 

this development, 
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