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ABSTRACT

A measurement; of the ozone content of the mesosphere and stratosphere was

performed at Wallops Island, 'Virginia, on '16 September 1968, using a newly developed

parachute sonde released from a rocket. The sonde determines ozone mixing ratio,

4.	
in situ, as a function of altitude by means of a sensor containing a chemilumine scent

detector. The atmosphere is sampled by self pumping. as the sonde descends on a
I.

specially designed high-altitude parachute. Calibration of the ozone sensor is

accomplished immediately prior to flight by sampling known concentrations of ozone

at rates expected daring a flight. An ozone profile of approximately 2-km resolution

was obtained from 67 km to '18 km. A small secondary peak was measured at

approximately 62 km. An ozone mixing-ratio maximum of '16 µgram/gram was

measured at 34 km and a concentration peak of 5 X 10 1'2 molecules/cm3 was measured

at 25 km. The estimated error in the measurement between 57 km and 20 km is

ab.out ±20%, and about ±50% at the other altitudes. The chemiluminescent sonde

measured profile agrees well with other rocket and balloon observations flown

simultaneously with this flight in the altitude regions where the measurements

overlap.
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A.M. OZONE MEASUREMENT IN THE STRATOSPHERE

AND MESOSPHERE BY MEANS OF A r-=KET

SONDE

Introduction

In the lower stratosphere, the ozone content is a quasiconservative property

of the atmosphere and hence can be used in various meteorological studies con-

cerning the scales of atmospheric motions. At highor ,levels, because of the strong

absorption of solar ultraviolet radiation by ozone, this atmospheric constituent plays

a dominant part in the earth's radiative-thermal budget. Thus ozone measure-

ments in the stratosphere and lower mesosphere can yield valuable information

with regard to atmospheric structure and dynamics, including effects due to the

absorption and emission of radiation and the interacting chemical processes.

At the present time, ozone soundings are carried out routinely via balloon

ozone sondes at altitudes of up ' to about 30 km. (Hering,  1966; Komhyr et al., 19681.

Total ozone measurements are conducted from ground-based stations throughout the
f

world in cooperation with the World Meteorological Organization. Recently, a few

rocket measurements have been made both here and abroad, using optical and

chemical techniques [Krueger and McBride, 1968; Randhawa, 1967; Bancarel and

a
	 Vassey, 19661.

The chemilumine scent ozone sonde described in this paper allows day or night

"	 ozone measurements from about 65 km to about 20 km. The measurements may

be performed at locations where knowledge of the ozone content has significant

geophysical implications, such as the polar regions during winter and the

i	
equatorial regions at the equinoxes.
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Theory of Operation of Ozone Sensor

The ozone sensor uses the chemiluminescent principle first discussed by

Beranose and Rene [1059]. A rocket-borne sonde based on a similar principle

has been developed by Randhawa [1967], however, significant differences exist

between the sonde described in this paper and that of Randhawa.. in regard to

calibration, chemiluminescent material, and flow-rate measurement. Numerous

laboratory studies have been performed to establish the validity of the present

method and to verify the assumptions upon which it is based. These studies

have confirmed that under flight conditions the sonde will not be affected by

atomic oxygen.

Exposure of the chemiluminescent material to ozone causes luminescence

which is proportional to the ozone flux. This relationship is expressed by

L oc [0 3 )  x flow rate
	 (1)

where L is the Light intensity, and [ 0 3 ] is the ozone concentration. The linear

dependence upon ozone flux has been amply demonstrated in the laboratory over the

range of flow rates encountered by the ozone sensor in a parachute descent from

approximately 65 km to 20 lam.

In flight, air is sampled by the sensor by means of a self pumping mechanism,

depicted in Figure 1. The ballast chamber is c(Ynneeted to the ambient atmosphere
w

through an inlet pipe and is initially in pressure equilibrium with the atmosphere.

When the sensor is released at apogee and descends through the atmosphere on the

parachute, the pressure inside the ballast chamber will tend to equilibrate with the

increasing external pressure, resulting in a net flow of gas through the inlet pipe.

The detector, consisting of the chemiluminescent material and the photometer,



&s positioned :along Oic inlet pipe and is thus continuously exposed to the ambient

a,tmosphero.

An expression for flow rate of air into the ballast chamber can be derived

from the equation of state for an ideal gas, PV = nRT;

dnb d tPbvb) Vb	 dPll P dTb

dt	 dt (RTb )	 R Tb dt	 T 	 dt

Vb dpb	 d(ln Tb)
---^-- ., P ------...

RT.h dt	 b	 dt

nb = number of moles of air in ballast chamber

Pb = pressure in ballast chamber

Vb = volume of ballast chamber

R Universal gas constant

-Tb temperabare in ballast chamber

The xnass flow rate into the ballast chamber is then given by

Y	 _ M dnb MVb dPb _ P d(ln Tb)	 3dm
dt	 dt	 RTb dt	 b dt

where

m = mass of air in ballast chamber

M = molecular weight of air = 28.96

It is important to mote that Pb and Tb in equations 2 and 3 refer to conditions

inside the ballast chamber, not the ambient environment.

Equation 1 can be written as

s
3

POOMMO.O.	
gill
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n^ fair) c1̂-t -- -1 K^^ cl^	 ^^}

where

K proportionality factor, including sonsitivity of the detector

R = M(O3)/m(air) -- mass-mixing ratio of ozone to air

Substitution of equation 3 into equation 4 yields

	

MV	 d1'	 d(lnT	
(5)

)
L ^= I^^ ^ Tt ^- Pb d

b

Since Tb is nearly constant during a flight, and is measured, it is

convenient to write equation 5, to a first approximation, as

dP

	

L = K'R dP—	 Ca)

where KI K M Vb/A Tb is regarded as constant. This equation simply states that

the luminescence is proportional to the ozone mixing ratio times the rate of change of

pressure in the ballast chamber.

Description of Ozone Sonde

The ozone sensor is depicted in Figure 2 and its block diagram is shown. in

Figure 3. Ambient air enters the inlet port and flows past a light baffle that excluder,

external light from the photometer. The inlet tube conductance for air-flow

is high, the pressure time constant of the system being less than one second.

The incoming air is sampled for ozone content by the chemi luminescent

detector, which is composed of rhodamine-B dye absorbed on a porous Vycor

substrate (NASA Tech. Brief, 1965; Seiden, 1966 1 . The luminescence

produced is monitored by a photomultiplier with an 5-20 response, a light

6
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chopper, and an A. G. amplifier. A small reference lamp near the photomultiplier

provides a calibration signal every 40 seconds, Two diaphragm.-type pressure

transducers whose ranges are 0 to 5 Torr and 0 to 100 Torr are connecter;' ;j the

ballast chamber. The output of the 0 to 5 Torr (1 volt/Torr) transducer is electron-

ically processed in flight to yield dP/dt directly. A thermistor is mounted on the

ballast-chamber housing to indicate the temperature. A high voltage reference

signal is also provided to monitor the photomultiplier high voltage power supply.

The sensor outputs are telemetered to tht. ground by an in-flight calibrated FM/FM

telemetry system.

Two magnetometers (not shown) provide the sonft attitude during descent to

permit evaluation of the aerodynamic effects on the selfpum.ping mechanism. For

example, it was observed that severe osoillations in the sonde attitude can be cor-

related «ith similar oscillatio ns in the sensor da.ta_, which for the flight - -ported

are responsible for the larger measurement uncertainty assigned to the higher

altitude data.

The payload parameters P..,-. e summarized	 I. '"the payload assembly is

shown !.n figure 4, and the flight deployment sequence to F!gure 5.

Table 1

Vehicle and Payload Parameters

d

"	 Vehicle	 Nike-Cajun

Payluad weight
	

200 lb

Payload length
	

107 in.

Sonde weight
	

35 lb

Parachute
	 48 ft Disc-Gap-Band (Murrow et al., 1266)

G
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Calibration

Preflight sensor calibration is performed by exposing the instrument to an

air stream of known concentrations of ozone at known flow rates. Though earlier

laboratory experience has demonstrated the linear dependence of the luminescence

on ozone flux, it is desirable to simulate flow rates, pressures, and ozone quan-

tities expected during an actual flight. From the descent rats, of the parachute,

dhf/dt, and from the hydrostatic equation, dP/dh = - p(h)g, the rate-of-change of

the ambient pressure, P f , encountered during descent, can be written as

dP	 dh f
dt f ,. p(h)g d" t 

The profiles of P f and dPf/dt with time, using the U. S. Standard Atmosphere, are

shown in Figures 6 and 7 respectively. A good approximation of dP f/dt, as given

by equation 7, is accomplished by the ozone calibrator shown in Figure 8. The

calibrator and sensor are first preconditioned by extensive exposure to high ozone

concentrations, to remove ozone-destroying materials. This is a very critical step

in the calibration procedure if low ozone concentrations are to be measured. The

calibrator and sensor pressure is then reduced to less than 0.1 Torr (corresponding

to 70 kin altitude), and the pump is valved off. Dried air at atmospheric pressure

is moved past the ozone generator, a small mercury lamp; and the air, plus ozone, 	 .

is allowed to enter the low pressure region of the calibrator through the needle

valve, L1 . At this point the air is sampled for ozone content by a Mast-Brewer

electrochemical ozone :meter [ Brewer and Milford, 19601. The calibration begins

6
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when Tat is opened and the volumes 
V1 

and V2 fill with air plus ozone via the cali-

brated leaks, the ozone mixing ratio remaining constant throughout the calibration

process. The volume:. ;
1
 and V2 and the leaks L1 and L2 are chosen so that the

pressure rise in V 2 matches dPf/dt in equation 7 [ Seiden, 19661. The pressure

rise in the ozone sensor ballast chamber and the photometer responses are moni-

tored during the calibration, which lasts approximately 10 minutes. This operation

simulates the pressure profile encountered in a parachute drop from approximately

70 kin to approximately 30 km. The slope of a plot of the observed luminescence

vs dPf/dt at a fixed ozone mixing ratio yields the calibration constant of the ozone

sensor, by equation 6.

The Flight

On September 16, 1968 at 1:00 p.m. , EST, a chemiluminescent ozone sonde

was launched from Wallops Island, Virginia. (Two sondes were also flown at Point

Barrow, Alaska, 7f N, in January 1969. This data will be reported at a later date.)

An ozone profile was obtained despite a partial parachute failure which resulted in

a descent rate approximately twice that expected. A Naval Weapons Center optical

rocket ozone sonde (ROCOZ) of the type described by Krueger and McBride [1968],

and electrochemical ozone balloon sondes of the Air Force Cambridge Research

Laboratory Mast-Brew^,r type [ Hering, 19661 and the Environmental Science Ser-

vices Administration type [Komhyr et al.. 19641 were flown in support of this flight.

A Dobson total ozone measurement was also performed at the ESSA station at

Wallops Island in conjunction with the balloon flights. A rocket grenade experiment

7
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(Nordberg et al. , 19641 and two meteorological arcasondes were also flown for

meteorological support data.

Results

Figure 9 shows the results of this flight. Note the mixing ratio maximum of

the 16 µgram/gram at 34 km, whereas balloon data have generally indicated a con-

stant mixing ratio above 30 km, and the small secondary peak at about 62 km. Since

the measurement yields ozone mixing ratio by equation 6, rather than ozone density,

it is necessary to determine the ambient air density independently. The air density

data used to calculate the ozone density were obtained from both the rocket grenade

experiment and the two meteorological arcasondes. The resulting ozone-number

density profile is shown in Figure 10, indicating excellent agreement with the ROCOZ

flight (details of which are to be published independently by A. J. Krueger) and the

ESSA and AFCRL balloon sondes. The agreement between the balloon sondes and

the chemilumines cent rocket sonde above the ozone peak is also very good. The

somewhat poorer agreement below 20 km is attributed to inaccuracies in the flow

h	 rate measurement of the chemilumines cent sonde, and to a small amount of residual

glow of the chemilumines cent material.

In regard to the data above 57 km, the comparison with the airglow measure-

ment performed in 1960 at night [Reed, 19681 is for illustrative purposes only.

Chemilumines cent sonde data quality was considerably degraded because of

excessive sonde oscillations in this altitude region due to the partial deployment 	 {

of the parachute as mentioned above. High altitude resolution. was also lost because

z	 8
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of the rapid descent rate, and thus, measurement of fine structure in the ozone

profile, if any, was not possible. Altitude resolution was approximately 2 to 3 km

above 57 km and a little greater than 1 km below this region. The estimated error

of the mixing ratio data is d20%Q between 57 km and 20 km and about +50% outside

this region, including a :h5% error associated with the electrochemical ozone meter

used in the sensor calibration. Error bars are shown as horizontal lines in Figure 9

and are directly transferred to figure 10, that is, no additional errors were assigned

to the air density measurements.

Although the data shown in Figure 10 generally agree with Reed's nighttime

measurement in indicating a secondary peak at 60 km, these data, because of the

large uncertainty of the measurement in this region, should not be construed as

supporting the existence of a secondary peak in the daytime. However, such a

peak or inflection in the ozone profile has been calculated by London [1966] for a

simple oxygen atmosphere in photochemical equilibrium in the summer at 150

latitude. Within the indicated error, the data presented here are also in agreement

with the ozone profile calculated by Hunt [1966] for a nonequilibrium moist atmos-

phere at noon in the 35 km to 60 km region. On the other hand, Weeks and Smith

[1968] have recently reported optical measurements of ozone which included re-

sults for altitudes between 59 km and 65 km that are lower by a factor of four

than our data.

P
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Summary and Conclusions

The success of this flight not only demonstrates the validity of the

calibration, in that the chemilumine scent detector displayed excellent

stability with respect to ozone sensitivity, but also the large altitude 	
4

range that can be covered by the ehemilumineseent ozone sonde. Because

of this versatility, ozone measurements can be performed at various

latitudes and seasons, day or night, during the significant geophysical events
F

such as the D-region anomaly, the solar eclipse, and the breakdown of the

winter polar stratospheric circulation vortex.
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