General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

COMPUTER RECOMMENDATIONS FOR AN AIJTOMATIC APPROACH AND LANDING SYSTEM FOR V/STOL AIRCRAFT

VOLUME II: EQUATIONS

By Harry T. Gaines, Robert J. Kell, Avery A. Morgan, Leo J. Mueller, James R. Peterson, Edward R. Rang, J. Patrick Redmond and E. David Skelley

June 1968

Distribution of this report is provided in the interest of information exchange and should not be construed as endorsement by NASA of the material presented. Responsibility for the contents resides in the organization that prepared it.

Prepared under Contract No. NAS 12-615 by HONEYWELL INC.

Aerospace and Defense Group
Minneapolis, Minnesota and St. Petersburg, Florida
Electronics Research Center
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

FOREW(IRI)

This computer recommendation report is; submitted in accordance with Contract NAS 12-615 with the NASA Eilectronics Research Center (ERC), Cambridge, Massachusetts. Specifically, this report is intended to satisfy item 7C2 of Phase II, Part II of the contract statement of work.

This report is published in two volumes:
Volume I - Computer Recommendations
Volume II - Equations
Volume I contains an analysis of candidate computers for use in the Automatic Approach and Landing System (AALS) plus a recommendation of suitable computers. This volume defines a baseline AALS which is represent: itive, in terms of complexity, of systems appropriate to the NASA-ERC flight evaluation program. Review and agreement on these equations was accomplished at NASA-ERC during a technical coordination meeting on 23, 24 May 1968.

CONTENTS

Page
SUMMAIRY 1
SYSTEM DESIGN AND FUNCTIONAL REQUIREMENTS 3
NAVIGATION 10

1. Accelerometer Bias and Scale Factor Computation 10
2. Accelerometer Bias and Scale Factor Compensation 11
3. Accele rometer Cross-Axis Compensation 11
4. Accelerometer Nonlinearity Compensation 12
5. Angular Environmental Compensation 12
6. Accelerometer-to-Body Axis Transformation 13
7. Angular Increment, Rate and Acceleration Computation 14
8. Gyro Drift Computation 15
9. Gyro Drift Compensation 16
10. Gyro-to-Body Axis Transformation 16
11. Attitude Matrix Algorithm 17
12. Attitude Matrix Orthonormalization 18
i3. Velocity Increment Resolution 20
13. Inertial Position, Velocity Computation 21
14. Gravity Computations 22
15. Geographic Computer 23
16. Euler Angle Computation 25
17. Preflight Attitude Alignment 26
18. Guidance Input Calculations 29
Description of Variables for Radar Input 31
UPDATE 33
Radar Position Calculation 33
Loran C Computation 36
Loran C Computation Definitions 39
GUIDANCE 41
Requirements 41
Approach Pattern 41
First Checkpoint 45
Time to Bank 46
Off-Course Displacement 48
Straight-In Approach 49
Vertical Control 50
Altitude Select 50
Speed Control 51
Final Approach 51
Flare 54
Go-A round 55
Block Diagrams 56

CONTENTS (Continued)

Page
FLIGIIT CONTROL 59
Scope 59
System Description 59
Difference Equations 64
Sampling Frequency 65
Bit. Weight 65
Alternate Inner-Loop Stabilization 66
Filters 66
Plant IJynamics 66
Optimal Control 67
Conclusions 67
DISPLAYS 68
Design Considerations 68
Display Formats 70
Candidate Parameters 70
"Eight-Ball" Display 74
Baseline System 76
DOWN LINK 77
APPENDIX A - ANALOG RATE GYRO RECOMMENDATION 79
APPENDIX B - NAVIGATION UPDATE INTERFACES 81
APPENDIX C - BASELINE AALS AUTOMATIC FLIGHT 89 CONTROL SYST EM EQUATIONS
APPENDIX D - QUADRATIC OPTIMAL CONTROL FOR THE 131 NASA LRC YHC-1A HELICOPTER
APPENDIX E - BASELINE DISPLAY EQUATIONS 145
APPENDIX F - DOWN LINK DESCRIPTION 155
APPENDIX G - NEW TECHNOLOGY 159
REFERENCES 161

ILLUSTRATIONS

Figure Page1 Baseline Automatic Aprroach and Landing System4Functions2 Automatic Approach and Landing System Simplified7Signal Flow Diagram
3
Rectangular Approach Pattern 43
Straight-in Approach Pattern 49
I‘inal Approach Flight Profile 52
Typical Performance Chart 56
7
Heading 56
8 Altitude Control 57
9
Airspeed Control 57
10
Glide Path 58ilare58
12
AFCS Pitch Axis - Hover FinAFCS Pitch Axis - 100 Knots61
14
Input/Output, Attitude Rate Damper, and Attitude/ 62 Heading / Altitude Hold Modes
15
Input/Output Velocity Command Modes 6.3Example Quickened PPI Format$i 1$
17
Example Predictor PPI Format 72

COMPUTER RECOMMENDATIONS FOR $\wedge N$ AUTOMATTC APPROACH AND IANIINI; SYSTEM FOR V/STOL AIRCRAFT

VOLUME II: EQUATIONS

By Harry 'T. Gaines, Robert J. Kell, Avery A. Morgan, Leo J. Mueller, James R. Peterson, Edward R. Rang, J. Patrick Redmond and E. David Skelley

SUMMARY

A preliminary automatic approach and landing system (AALS) definition has been completed. It is considered to be a configuration typical of that which would be suitable for V/STOL use. It is designed specifically for the designated flight test vehicle, the NASA/LRC YHC-1A helicopter, and is intended to have sufficient flexibility to evaluate a variety of technology concepts.

Design details and requirements are discussed. Includied are functional and mode requirements for navigation, guidance, control, and displays, and an evaluation of analog attitude rate gyros for an alternate analog inner-loop stabilization mechanization.

Results given are in terms of applicable equation and computation requirements for each subsystem. Navigation computations are based on the use of a strap-down inertial reference unit.

Attitude rate output from the single-axis gyros is in the form of pulserate; accelerometer output is frequency modulated. Position update methods are included. Linear control laws are used to obtain automatic control equations. Tustin's method is used to obtain the difference equations to be used in programming the digital computer. Several levels of operation or modes are defined, including both attitude control and velocity command control.

Guidance requirements are established and guidance laws are defined for the generalized V/STOL approach situation. Numerical values selected for each of the various parameters are based on the designated flight test vehicle. Guidance equations include the derivation of velocity commands. The baseline guidance subsystem is discussed relative to optimum path control.

Display requirements suitable to the baseline $A \Lambda I S$ also are defined. Display needs for both manual and automatic control are includrod. Display cquations definod are suitable to a CRT-type display mechanisation. (Display generation such as symbols, etc., was not part of th.. tat:k.)

A "down link" (or telemetry system) is considered asi pirt of the instrumentation. The discussion included herein is based entircly on information supplied by NASA/ERC.

Conclusions and recommendations are made as part of each subsystem discussion. All are pertinent to continued AALS development. Particular emphasis is placed on areas where simplifications might be made.

SYSTEM DESIGN AND FUNCTIONAL REQUIREMENTS

As treated herein, the V/STOL automalic approach and landing system includes the functions of:

- Navigation: Determination of aircraft position
- Guidance: Computation of desired path to destination
- Control: Closed-loop automatic flight control modes
- Display: Generation of typical AALS display functions

Functional requirements are limited to those specifically applicable to the automatic approach and landing problem. Specific constraints on the design and mechanization are:

- Designed for the YHC-1A helicopter
- Use of strapped-down sensors for navigation
- Use of strapped-down gyros for stability augmentation
- Use of available air data sensors
- Use of existing electrical input servo system
- Use of existing electric stick installation
- Use of GSN-5 and Loran-C to update navigation subsystem
- Use of display functions suitable to CRT-type display
- Use of an all-digital mechanization
- Inclusion of an alternate analog inner-loop stabilization system.

To obtain a system definition adequate for computer sizing purposes, a specific baseline system design was established. Figure 1 is a functional block diagram of the baseline system. In are provided by the navigational up-link receiver, strapped-down se ,, , air data and radar sensors, electric stick, rate gyros, and a pilot's s. \quad control panel (PSCP). Outputs from the system will be navigation and ss item control information on the PSCP, guidance information and aircraft flight data to the display mechanization, and automatic flight control commands. Table 1 summarizes system input/output signals.

Computation for navigation, guidance, control, and displays will be performed in the central digital computer. Mechanization and signal flow is shown in a simplified manner in Figure 2.

Additional mechanization needs are included in Figure 2. A radar altimeter (sensor block) is required for guidance. Both on-board and telerretry instrumentation are needed for flight test. An analog attitude rate gjro and

TABLE I
AUTOMATIC APPROACH AND LANDING SYSTEM INPUT/OUTPUT SIGNAL DESCRIPTION

TABLE I
AUTOMATIC APPROACH AND.LANDING SYSTEM . . . INPUT/OUTPUT SIGNAL DESCRIPTION (CONCLUDED)

Term	lnt	bencrintion	Uniln	Aucuracy	Hanye	Renntution	$\begin{array}{\|c\|} \hline \text { Sample } \\ \text { rate } \\ \text { per necont } \end{array}$	Minimum dynamic range	Typ*	Uaed by/eource
$v_{\text {ins }}$	1	trudicated air mpmed	It/ope		010300	0.1	32	3000	analog (a/b)	pilch eutiopliot
v_{*}	0	1.axal wint niped	$\mathrm{fl} / \mathrm{emc}$		010100	0.2	0	s00	digutal (D)/A)	dinplay*
ω	1	Sum of thernmental changen In $z \cdot$ onsin vilor tity	$\mathrm{n} / \mathrm{amc}$		-100. .100	0.1	1024	1000	dighal etr.	navigation
x	1	Uplate diownrange dintance to landinge	n	18/28	1200010180000		6	$\left\{{ }^{15000}\right.$,	$\chi^{\text {dictal }}$	navigation
x_{G}	\bigcirc	Predictel downrnnur ponilton	n	10715	010 12000		10	$\left\{\begin{array}{l}12000\end{array}\right\}$	dirsial (id/a)	diaplay*
γ	1		n	15/25	\$14000 0 +13000		\{ \leqslant \% $\}$	$\left\{{ }^{18000}\right\}$	\{ digltal	naviuntion
Y_{4}	0	Preolicted ercone-ranko ponition	n	10/14	010 ± 12000		10	$\left\{\begin{array}{l}18000\end{array}\right\}$	\{ digital (D/A)	dinplayn
r_{0}	0	Luteral vaiocliy command	n/ree		\$100	0.1	18	1000	digital (D/A)	dimpiay
z	1	Updnter altitude aliove lendina point	n	1	- to 7800	1	4	7500	digital	navicetion
v_{γ}	1	Cirount whal mpret	n/000	,	010100	0.2	NA	000	digith!	navisation
1	1	Vehuctor nitcalip angle	den		t 50	0.1	32	300		plich autppilot
${ }_{*}$!	Ciround wind direction	deg		$360 \mathrm{conl}^{\prime} 4$.	0.1	Na	3800	digital	nuvigntion
γ	1	Drairedianising approsen angle w. r. t. trum north	den	1	360 con' 1	0.1	NA	3800	diatal	navigntion
${ }^{18}$	1	Pilat-nalectad clieckpoimt banring	dea		$360 \mathrm{con}^{\prime} \mathrm{t}$	0.1	s	3600	RCV) sode whente	Psicp
${ }_{\text {b }}^{1 / \mathrm{C}}$	0	Tisal inmutualtinl infferemtial collective	in.		2.1	0. 0007	32	4000	Histulal (10/A)	plich autwillot
${ }^{6} \mathrm{ILC}$	0	Cyelir yow commund	in.		2	0.0008	32	4000	'llutal (ib) 1)	Tateral aintipilot
${ }^{0} \mathrm{sc}$	0	Cyelte roll commant	in.		3	0.0008		4000	digutil (1)/A)	lateral suempitiot
${ }^{\text {c }} \mathrm{COL}$	1	Hinctrie colliective atick	in.		13.8	0. 014		1000	analog (A / D)	collertivn autopilot
${ }^{5} \mathrm{~L}$	1	Pliciric atich lnput - .piteh	in.		*8.1	0.012		1000	annlog ($A / 11)$	pltch autopilot
${ }^{6} \mathrm{n}$	1	Elimetric peidal imiul--yaw	in.		\$2.6	0. 005	1	1000	enator (A / d :	lateral nutoptiot
${ }^{\text {cs }}$	1	Birctric stick Input - roll	1 a.		9.7	0.013	32	1000	malog (A / D)	Interal autopiliot
0	1	Sum of incremetical changee in pitch	dra		218	12 EEC	1024	8	dielital ctr.	nevigation
$\stackrel{ }{*}$	0	Vehieln neevation nugle w. r.t. local horirontal	dea	0.8	± 38	0.00	32	1170	digrtal (D / A)	nevigation
${ }^{*} \mathrm{COL}_{\text {c }}$	0	Collective command	in.		3. 3	0.0000	31	4000	dictal (to/a)	collective autopliot
-	1	Suem onf incremiontal changee in roll	dra		20, ver		1024	:	digital ctr.	navigation
+	-	Vahiele roll angla	dog	0.0	230	0.08	32	1870	digital (D/A)	navigation
V	1	Suin of incromentul changee in yaw	der		248 Fec	13 \% 5 \%	1024	n	digital etr.	novigation
\checkmark	0	Vathicte houlting w. r.t. true north	deg	1	$300 \mathrm{con'} 1$	0.1	16	3600	digutel	navigation
${ }^{*} r_{1}$	0	Clieckpoint heading orror	de!		20	0.01	10	2000	digitel	tutance
${ }^{*}$,	"hit-uelecterd heading	deg		$380 \mathrm{con't}$	0.1	na	3000	aCD corte wheoln	PSCP
v_{0}	0	Heading command	deE		360 con't	0.1	\cdots	3800	digutai (DfA)	diaplay"
Mode logic	1	stick force owlichen	\cdots	\cdots	- dincroten	-lectric itiok
Moda logic	1	Beep trim	...	-..	...	-..	- discreten	electric mich

analog compensation is included for the alternate inner-loop stabilization mechanization. (Appendix A contains an analog rate gyro recommendation.) Since both the strapped-down gyros and accelerometres output a pulse rate signal form, a method of converting to a whole word digital format is needed; this is labeled a "preprocessor". A "signal cond"ioner" is included to provide electrical signal matching between system i:put (sensor output, etc.) and computer subsystem input.

Complete in-flight control is provided by the PSCP. The baseline system definition includes the following functions in the panel:

- Navigation

Alignment start
Navigation engaged
Automatic update on/off
Initial position input (latitude, longitude, altitude)
Manual update input (latitude, longitude, altitude)
Automatic update (GSN-5/Loran-C)
Landing location input (latitude, longitude, altitude)
Readout of current position or any input

- Guidance

Guidance mode selection
input of pilot selectable quantities
Readout of selected input

- Control

Electric stick on/off
Stability augmentation on/off
Attitude hold engage
Velocity command engage
Automatic guidance engage
Mode status

- System Status

Power on
Instrumentation
On-board on
Telemetry on
Computer ready
Servos aligned

Bascline panel functions are defined as a result of subsystem requirements (input, control, and status indication).

Because of the need for safety-of-flight assurance, system desiofn is based on use of a safety pilot. The YHC-1A is normally diual-rontrol. The righi side has an electric stick installed for AALS evaluation pilot use. Normal controls exist on the left side for use by the safety pilot. Whenever the electric stick is activated (or automatic control modes are engaged), the left hand stick will follow all control motions. The safety pilot will be able to use the motion of his stick as a primary indication of safe automatic control system performance. Emergency electric stick and automatic control disengagement is provided to both pilots with switches mounted on each stick. Electric stick status (on/off) presented to the safety pilot will help provide control coordination between the pilots.

Baseline AALS requirements are given as part of each subsystem discussion in the sections that follow. Prior to further development, firm system requirements should be established in terms of both performance and mechanization.

Ground support concepts and equipment requirements also must be established to assure a compatible system mechanization.

NA VIGATION

This section describes inertial navigation equatıons. Navigation simply means maintaining a knowledge of vehicln position, volocity, and attitude based on the output of the inertial sensors, accelerometers and gyros, and altimeter. These equations were adapted largely from material supplied by NASA-ERC. Although useful to the baseline definition, considerable simplification can probably be made for flight test use.

The navigation equations are divided into 19 computation sections. Each section describes the equations and the frequency and precision with which they should be evaluated, and iists explanatory and critical remarks where appropriate. An attempt is nuade to keep the notation consistant with the material supplied by NASA-SRC, insofar as possible.

The calculations described by these equations begin (logically) after introduction into the computer of all initial conditions, constants, inertial sensor pulse counts, and the altimeter output. They carry the calculations through the point of computing the values of ine position, velocity, and attitude variables.

1. Accelerometer Bias and Scale Factor Computation

$$
\begin{aligned}
K_{0 i} & =K_{0 i}+\Delta K_{0 i} \Delta t \\
K_{1 i} & =K_{1 i}+\Delta K_{1 i} \Delta t
\end{aligned}
$$

Input: $\quad \mathrm{K}_{0 \mathrm{i}}=$ accelerometer bias

$$
\mathrm{K}_{1 \mathrm{i}}=\text { accelerometer scale factor }
$$

Constants: $\Delta K_{0 i}=\left|D R_{K_{0}}\right\rangle_{i}$ bias rate (constant)

$$
\left.\Delta \mathrm{K}_{1 \mathrm{i}}=\left.\right|^{\mathrm{DR}} \Delta \mathrm{~K}_{\mathrm{i}} / \mathrm{K}_{1}\right)_{\mathrm{i}} \text { scale factor rate (constant) }
$$

Output: $\quad \mathrm{K}_{0 \mathrm{i}}=$ accelerometer bias
$K_{1 i}=$ accelerometer scale factor
Frequency: Very slow; Δt could be as large as several seconds
Precision: 20-bit accuracy
2. Accelerometer Bias and Scale Factor Compensation

$$
C_{0 i}^{\prime}=C_{0 i} / K_{1 i}-K_{0 i}
$$

where $i=1,2,3$.

Input:	$\mathrm{C}_{0 i} \mathrm{i}=1,2,3=$ uncompensated acceleration
	$\mathrm{K}_{0 i} \mathrm{i}=1,2,3=$ bias (from 1)
	$\mathrm{K}_{1 i} \mathrm{i}=1,2,3=$ scale factor (from 1)
Output:	$\mathrm{C}_{0 i}^{\prime} \mathrm{i}=1,2,3=$ compensated acceleration
Frequency:	128 times per second
Precision:	20 -bit accuracy

3. Accelerometer Cross-Axis Compensation

$$
\begin{aligned}
& Q_{1}=C_{01}^{\prime}-K_{41} C_{02}^{\prime}-K_{61} C_{03}^{\prime} \\
& Q_{2}=-K_{62} C_{01}^{\prime}+C_{02}^{\prime}-K_{42} C_{03}^{\prime} \\
& Q_{3}=-K_{43} C_{01}^{\prime}-K_{63} C_{02}^{\prime}+C_{03}^{\prime}
\end{aligned}
$$

Input: $\quad C_{0 i}^{\prime}{ }_{0}=1,2,3=$ uncompensated acceleration (from 2)
Constants: $K_{4 i}, K_{6 i} \quad=$ cross-axis compensation constants
Output: $\quad Q_{i} i=1,2,3=$ compensated acceleration
Frequency: 128 times per second
Precision: 20-bit accuracy. Since the K's are small, single-precision products should suffice.
4. Accelerometer Nonlinearity Compensation

$$
\Delta v_{i}=Q_{i}\left[1-Q_{i}\left(K_{2 i}+Q_{i} K_{3 i}^{\prime}\right)\right] \Delta t_{c}
$$

where $i=1,2,3$.
Input: $\quad Q_{i} i=1,2,3 \quad=$ uncompensated acceleration (from 3)
Constants: $\mathrm{K}_{2 \mathrm{i}}{ }^{\mathrm{i}=1,2,3}=$ nonlinear compensation constants
$K_{3 i}^{\prime}=K_{3 i}-2 K_{2 i}^{2}=$ nonlinear compensation constants
Output: $\Delta v_{i} \quad=\begin{gathered}\text { incremental } \\ \text { components) }\end{gathered}$ velocity (accelerometer axis
Frequency: 128 times per second
Precision: 20 bits. Since both constants are small, single-precision products should suffice.

5. Angular Environmental Compensation

$$
\begin{aligned}
\Delta v_{c 1}= & \Delta v_{1}-\left[\Delta \hat{\theta}_{1} \Delta \hat{\theta}_{2} p_{2}-\left(\Delta \hat{\theta}_{2}^{2}+\Delta \hat{\theta}_{2}^{2}\right) p_{1}-\Delta \hat{\theta}_{1} \Delta \hat{\theta}_{2} p_{3}\right] / \Delta t \\
& +\Delta \omega_{2} p_{3}+\Delta \omega_{3} p_{2} \\
\Delta v_{c 2}= & \Delta v_{2}-\left[\Delta \hat{\theta}_{3} \Delta \hat{\theta}_{2} p_{3}+\Delta \hat{\theta}_{1} \Delta \hat{\theta}_{2} p_{1}-\left(\Delta \hat{\theta}_{3}^{2}+\Delta \hat{\theta}_{1}^{2}\right) p_{2}\right] / \Delta t \\
& +\Delta \omega_{3} p_{1}+\Delta \omega_{1} p_{3} \\
\Delta v_{c 3}= & \Delta v_{3}-\left[\Delta \hat{\theta}_{1} \Delta \hat{\theta}_{3} p_{1}+\Delta \hat{\theta}_{2} \Delta \hat{\theta}_{3} p_{2}-\left(\Delta \hat{\theta}_{1}^{2}+\Delta \hat{\theta}_{2}^{2}\right) p_{3}\right] \Delta t \\
& -\Delta \omega_{1} p_{2}+\Delta \omega_{2} p_{1}
\end{aligned}
$$

Input: $\quad \Delta v_{i} i=1,2,3 \quad$ uncompensated velocity increment (from 4)

$$
\Delta \hat{\theta}_{\mathrm{i}} \mathrm{i}=1,2,3 \quad=\text { angular increment (from 7) }
$$

$$
\Delta \omega_{i} \mathrm{i}=1,2,3 \quad=\text { angular velocity increment (from } 7 \text {) }
$$

Constants: $p_{i} i=1,2,3=$ accelerometer offset constants
Output: $\quad \Delta v_{c i} i=1,2,3 \quad=$ compensated velocity increments
Frequency: 128 times per second

Precision: 20 bits. Since compensation will be small, single-precision products should suffice.

Remarks: These are the equations supplied by ERC. If all thren accelerometers are assumed offset from the vehicle-fixed reforence point, then nine constants should be used; $\mathrm{p}_{1}, \mathrm{P}_{2}, \mathrm{r}_{3}$ of the first equation describing the location of the first accelerometer; p_{1}, p_{2}, p_{3} of the second equation describing the location of the second accelerometer; p_{1}, p_{2}, p_{3} of the third equation describing the location of the ihird accelerometer. Since selection of the reference point is entirely arbitrary, one of the equations can be completely eliminated by choosing it to be the c.g. of the sensitive element of one of the accelerometers. Depending on the relative location of the accelerometers in the block and the orientation of the block relative to the body axes, up to four of the remaining six constants may be eliminated by judicious choice.
6. Accelerometer-to-Body Axis Transformation

Frequency: 128 times per second
Precision: 20 bits
Remarks: Assuming the accelerometer axes to be nominally aligned with the body axes, equations of the form of section 3 may be used. In point of fact, these calculations could be accomplished in section 3 by suitably redefiring the constants used there and this section completely eliminated.
7. Angular Increment, Rate and Acceleration Computation

$$
\begin{aligned}
\Delta \hat{\theta}_{i} & =\sum_{k=1}^{8}\left(\Delta \theta_{i}\right) k \\
\omega_{i}(t) & =\sum_{k=1}^{8} w_{1 k}\left(\Delta \theta_{i}\right) k \\
\omega_{i}(t+\Delta t) & =\sum_{k=1}^{8} w_{2 k}\left(\Delta \theta_{i}\right) k \\
\Delta \omega_{i} & =\omega_{i}(t+\Delta t)-\omega_{i}(t)
\end{aligned}
$$

Input: $\quad\left(\Delta \theta_{i}\right) k \quad k=1,2, \ldots 8=$ angular increment over $1 / 1024 \mathrm{sec}$
Constants: $\mathrm{W}_{1 \mathrm{k}}, \mathrm{W}_{2 \mathrm{k}}, \mathrm{k}=1,2, \ldots 8=$ rate filter weights (constants)
Output: $\quad \Delta \hat{\theta}_{\mathrm{i}}=$ angular increments over $1 / 128 \mathrm{sec}$
$\omega_{i}(t), \omega_{i}(t+\Delta t)=$ angular rate at beginning and end of $1 / 128-\mathrm{sec}$ interval
$\Delta \omega_{i}=$ angular acceleration over $1 / 128-$ sec interval (times Δt)
Frequency: 128 times per second
Precision: 24 bits for ω. Only about 8 bits for $\Delta \hat{\theta}$.
Remarks: It is felt that calculation of the rates is not only unnecessary but error producing. See section 11.

8. Gyro Drift Computation

$\left[\begin{array}{l}D_{1} \\ D_{2} \\ D_{3}\end{array}\right]=\left[\begin{array}{l}R_{1} \\ R_{2} \\ R_{3}\end{array}\right]+\left[\begin{array}{ccc}\mathrm{B}_{11} & -\mathrm{B}_{31} & \mathrm{~B}_{21} \\ \mathrm{~B}_{22} & \mathrm{~B}_{12} & -\mathrm{B}_{32} \\ \mathrm{~B}_{23} & \mathrm{~B}_{33} & \mathrm{~B}_{13}\end{array}\right]\left[\begin{array}{l}\mathrm{C}^{\prime}{ }_{01} \\ \mathrm{C}^{\prime}{ }_{02} \\ \mathrm{C}^{\prime}{ }_{03}\end{array}\right]+$

$$
\left[\begin{array}{lll}
0 & -M_{31}^{\prime} & M^{\prime}{ }_{21} \\
M_{22}^{\prime} & 0 & -M_{32}^{\prime} \\
M_{23}^{\prime} & M_{33}^{\prime} & 0
\end{array}\right]\left[\begin{array}{c}
\Delta \hat{\theta}_{1} \\
\Delta \hat{\theta}_{2} \\
\Delta \hat{\theta}_{3}
\end{array}\right]+\left[\begin{array}{lll}
J_{1}^{\prime} & 0 & 0 \\
0 & J_{2}^{\prime} & 0 \\
0 & 0 & J_{3}^{\prime}
\end{array}\right]\left[\begin{array}{c}
\Delta \omega_{1} \\
\Delta \omega_{2} \\
\Delta \omega_{3}
\end{array}\right]+
$$

Input: $\quad C_{0 i}^{\prime} \quad=$ acceleration (from 2)
$\Delta \hat{\theta}_{i}=$ angular increment (from 7)
$\Delta \omega_{i} \quad=$ angular acceleration (from 7)
Constants: $B_{1 i}, B_{2 i}, B_{3 i}, M_{2 i}^{\prime}=M_{2 i} / \Delta t, M_{3 i}=M_{3 i} / \Delta t$

$$
\begin{aligned}
& \mathrm{J}_{\mathrm{i}}^{\prime}=\mathrm{J}_{\mathrm{i}} / \Delta \mathrm{t}, \mathrm{C}_{1 \mathrm{i}}, \mathrm{C}_{5 \mathrm{i}^{\prime}}, \mathrm{C}_{4 \mathrm{i}^{\prime}} \mathrm{C}_{5 \mathrm{i}^{\prime}}{Q^{\prime}}_{1 \mathrm{i}}=Q_{1 \mathrm{i}} / \Delta \mathrm{t}^{2} \\
& {Q^{\prime}}_{3 \mathrm{i}}=\mathrm{Q}_{3 \mathrm{i}} / \Delta \mathrm{t}^{2}, \mathrm{Q}_{4 \mathrm{i}}^{\prime}=Q_{4 \mathrm{i}} / \Delta \mathrm{t}^{2}
\end{aligned}
$$

Output: $\quad D_{i} i=1,2,3=$ gyro drift rate
Frequency: 128 times per second
Precision: 10 bits
9. Gyro Drift Compensation

$$
\begin{aligned}
\omega_{c i}(t) & =\omega_{i}(t)-D_{i} \\
\omega_{c i}(t+\Delta t) & \left.=\omega_{i}(t+\Delta t)-D\right)_{i}
\end{aligned}
$$

where i=1,2,3.
Input: $\quad \omega_{i}(t), \omega_{i}(t+\Delta t)=$ uncompensated angular velocity (from 7) $)_{i}=$ gyro drift rate (from 8)
Output: $\quad \omega_{\mathrm{ci}}(t)=$ compensated angular velocity
Frequency: 128 times per second
Precision: 24 bits
Remarks: It is felt that gyro drift compensation could be performed at $1 / 4$ to $1 / 8$ of the above frequency with no loss of a :ruracy. This is based onl' on the assumption of gross rates of no more than $60 \mathrm{deg} / \mathrm{sec}$ and vibration that causes reasonable drift rates (say $10 \mathrm{deg} / \mathrm{hr}$). The pulse counts and their products on which the compensation is based can be accumulated over a longer period than indicated above, and the compensation can be calculated and applied at the angular level rather than the angular rate level.
10. Gyro-to-Body Axis Transformation

$$
\begin{aligned}
\underline{\omega}^{B}(t) & =T^{B G} \underline{\omega}^{G}(t) \\
\underline{\omega}^{B}(t+\Delta t) & =T^{B G} \omega^{G}(t+\Delta t)
\end{aligned}
$$

Input:

angular velocity in gyro input axis frame

Constants: $\quad 1^{3 B G} \quad=$ gyro axis-to-body axis transformation matrix
Output: $\quad \underline{\omega}^{\mathrm{B}}(t)$

$$
=\left[\begin{array}{l}
\omega_{1} \\
\omega_{2} \\
\omega_{3}
\end{array}\right]
$$

\}angular velocity in body axes

$$
\underline{\omega^{13}}(t+\Delta t)=\left[\begin{array}{c}
\omega_{1} \\
\omega_{2} \\
\omega_{3} \\
\omega_{3}
\end{array}\right]
$$

Precision: 24 bits
Remarks: Assuming the gyro axes are nominally aligned with the body axes, this function can be accomplished by suitably redefining the constants in the third term of the equation of section 8 , and this calculation eliminated entirely.

11. Attitude Matrix Algorithm

$\operatorname{TEMP}=\left[\begin{array}{lll}-\Delta t\left[\omega_{2} \omega_{2}{ }^{\prime}+\omega_{3} \omega_{3}{ }^{\prime}\right] & -\left(\omega_{3}+\omega_{3}{ }^{\prime}\right)+\Delta t \omega_{2} \omega_{1}{ }^{\prime} & \left(\omega_{2}+\omega_{2}{ }^{\prime}\right)+\Delta t \omega_{3} \omega_{1} \\ \left(\omega_{3}+\omega_{3}{ }^{\prime}\right)+\Delta t \omega_{1} \omega_{2}^{\prime} & -\Delta t\left[\omega_{3} \omega_{3}{ }^{\prime}+\omega_{1} \omega_{1}^{\prime}\right] & -\left(\omega_{1}+\omega_{1}{ }^{\prime}\right)+\Delta t \omega_{3} \omega_{2}^{\prime} \\ -\left(\omega_{2}+\omega_{2}^{\prime}\right)+\Delta t \omega_{1} \omega_{3}^{\prime} & \left(\omega_{1}+\omega_{1}^{\prime}\right)+\Delta t \omega_{2} \omega_{3}^{\prime} & -\Delta t\left[\omega_{1} \omega_{1}^{\prime}+\omega_{2} \omega_{2}^{\prime}\right]\end{array}\right]$

$$
\begin{gathered}
\text { TEMP }=\frac{1}{2} \Delta t \mathrm{~T}^{\mathrm{IB}}(\mathrm{TEMP}) \\
\mathrm{T}^{\mathrm{IB}}=\mathrm{T}^{\mathrm{IB}}+\mathrm{TEMP}
\end{gathered}
$$

Output: $\quad T^{\text {IB }}=$ body-to-inertial transformation matrix, new value
Frequency: 128 times per second
Precision: 24 bits
Remarks: It is strongly felt that basing the attitude algorithm on numerical integration of the numerically differentiated output of integrating devices (pulse rebalanced gyros) is not only unnecessarily complicated but a potential source of serious error. The basic truncation error of this algorithm is no better (and is in fact slightly worse) than that of the conventional secondorder attitude algorithm described by

$$
\begin{gathered}
\mathrm{T} \in \mathrm{~T}+\mathrm{T}\left[\Delta \Theta-1 / 2 \Delta \Theta^{2}\right], \\
\Delta \Theta=-\Delta \Theta^{\mathrm{T}}=\left[\begin{array}{ccc}
0 & -\Delta \hat{\theta}_{3} & \Delta \hat{\theta}_{2} \\
\cdot & 0 & -\Delta \hat{\theta}_{1} \\
\cdot & \cdot & 0
\end{array}\right]
\end{gathered}
$$

This algorithm has, in addition, the ineviiable error associated with differentiating quantized data by whatever method. Rate errors that are acceptable for compensation or control can easily be accurnulated into attitude errors that are entirely unacceptable. The more severe the angular environment, the more serious the problem. The derivation of rates is not necessary for maintaining attitude reference and is therefore not desirable for t'sat purpose.
12. Attitude Matrix Orthonormalization
$\left[\begin{array}{l}\mathrm{TEMP}_{11} \\ \mathrm{TEMP}_{12} \\ \mathrm{TEMP}_{13}\end{array}\right]=\left[\begin{array}{rrrr}\mathrm{T}_{22}^{\mathrm{IB}} & \mathrm{T}_{33}^{\mathrm{IB}} & -\mathrm{T}_{23}^{\mathrm{IB}} & \mathrm{T}_{32}^{\mathrm{IB}} \\ \mathrm{T}_{23}^{\mathrm{IB}} & \mathrm{T}_{31}^{\mathrm{IB}} & -\mathrm{T}_{21}^{\mathrm{IB}} & \mathrm{T}_{33}^{\mathrm{IB}} \\ \mathrm{T}_{21}^{\mathrm{IB}} & \mathrm{T}_{32}^{\mathrm{IB}} & -\mathrm{T}_{22}^{\mathrm{IB}} & \mathrm{T}_{31}^{\mathrm{IB}}\end{array}\right]$
$\left[\begin{array}{l}\mathrm{TEMP}_{21} \\ \mathrm{TEMP}_{22} \\ \mathrm{TEMP}_{23}\end{array}\right]=\left[\begin{array}{rrrr}\mathrm{T}_{32}^{\mathrm{IB}} & \mathrm{T}_{13}^{\mathrm{IB}} & -\mathrm{T}_{32}^{\mathrm{IB}} & \mathrm{T}_{11}^{\mathrm{IB}} \\ \mathrm{T}_{33}^{\mathrm{IB}} & \mathrm{T}_{11}^{\mathrm{IB}} & - & \mathrm{T}_{31}^{\mathrm{IB}} \\ \mathrm{T}_{13}^{\mathrm{IB}} \\ \mathrm{T}_{31}^{\mathrm{IB}} & \mathrm{T}_{12}^{\mathrm{IB}} & - & \mathrm{T}_{32}^{\mathrm{IB}} \\ & \mathrm{T}_{11}^{\mathrm{IB}}\end{array}\right]$
$\left[\begin{array}{c}\text { TEMP }_{31} \\ \mathrm{TEMP}_{32} \\ \mathrm{TEMP}_{33}\end{array}\right]=\left[\begin{array}{cccc}\mathrm{T}_{12}^{\mathrm{IB}} & \mathrm{T}_{23}^{\mathrm{IB}} & -. \mathrm{T}_{13}^{\mathrm{IB}} & \mathrm{T}_{22}^{\mathrm{IB}} \\ \mathrm{T}_{13}^{\mathrm{IB}} & \mathrm{T}_{21}^{\mathrm{IB}} & -\mathrm{T}_{11}^{\mathrm{IB}} & \mathrm{T}_{23}^{\mathrm{IB}} \\ \mathrm{T}_{11}^{\mathrm{IB}} & \mathrm{T}_{22}^{\mathrm{IB}} & -\mathrm{T}_{12}^{\mathrm{IB}} & \mathrm{T}_{21}^{\mathrm{IB}}\end{array}\right]$

TEMP $=1 / 2\left[\mathrm{~T}^{\mathrm{IB}}+\mathrm{TEMP}\right]$

where $i=1,2,3$.
Input: $\quad \mathrm{T}^{\mathrm{IB}}=$ body-to-inertial transformation matrix (from 11)
Output: $\quad T^{I B}=$ body-to-inertial transformation matrix (from 11)
Frequency: 16 times per second
Precision: 24 bits
Remarks: Since the second term of the last equation is a small correction, single-precision products will suffice for that equation.

The frequency of 16 times per second is much higher than necessary. Orthonormalization once every several seconds should be entirely sufficient.

The final equation above results from replacing the inverse of a square root of a quantity nominally unity by the first-order Taylor series of this function. Use of a first-order expansion is justified by the fact that the orthonormalization algorithm itself is first order. It is of interest to note that all three rows have the same scale factor error (to within first-order terms).

It can be shown that any nonsingular matrix T can be expressed as

$$
T=(I+\Phi) R
$$

where Φ is symmetric and K is a rotation matrix, the one closest to T in the sense of least squares. Applying the first three equations of this orthonormalization algorithm to T produces

$$
T E M P=[1+1 / 2 \operatorname{tr}(\Phi)] R+1 / 4 \psi R
$$

where Ψ is a symmetric matrix depending on Φ only and secondorder in Φ. It is given in tensor notation by

$$
\Psi_{i j}=\epsilon_{i m n} \epsilon_{j r s} \Phi_{m r} \Phi_{n s}
$$

so that, for example,

$$
\Psi_{11}=2\left(\Phi_{22} \Phi_{33}-\Phi_{23}{ }^{2}\right)
$$

and

$$
\Psi_{12}=2\left(\Phi_{23} \Phi_{12}-\Phi_{21} \Phi_{33}\right)
$$

13. Velocity Increment Resolution

Input:

Output: $\Delta v^{I}=\left[\begin{array}{c}\Delta v_{1} I \\ \Delta v_{2} I \\ \Delta v_{3} I\end{array}\right]$
$=$ velocity increment in inertial axes

Frequency: 128 times per second
Precision: 20 bits
Remarks: Better error characteristics result if the time intervals over which Δv^{B} is accumulated and $T^{I B}$ is updated are staggered. In that way, the incremental velocity is transformed by the matrix associated with the midpoint of the interval over which it was accumulated.
14. Inertial Position, Velocity Computation

$$
\begin{aligned}
& r_{i}=r_{i}+1 / 2 \Delta t v_{i} \\
& v_{i}
\end{aligned}=v_{i}+\Delta t G_{i}+\Delta v_{i}^{I} .
$$

where $i=1,2,3$
Input:
$r_{i}=$ inertial cartesian components of position
$\mathbf{v}_{\mathbf{i}} \quad=$ inertial cartesian components of inertial velocity
$\mathbf{G}_{\mathbf{i}} \quad=$ components of gravitatic nal acceleration (from 15)
$\Delta \mathbf{v}_{\mathbf{i}}=$ inertial components of incremental velocity (from 13)
Output: $\quad r_{i}$
$\mathbf{v}_{\mathbf{i}}$
Frequency: 64 times per second
Precision: 30 to 32 bits
Remarks: Updating position twice with first-order formulas is equivalent to updating it with second-order formulas.

Performing basic navigation in inertial coordinates has the disadvantage of a large dynamic range for the state variables and more complicated output transformations. Navigating in local vertical coordinates should be considered as an alternative.
15. Gravity Computations

$$
\begin{aligned}
r_{o} & =r_{e}+\left(r_{e e}\right)(S 2) \\
r_{G} & =r_{o}+h_{a} \\
R I & =1 / r_{G} \\
R I 2 & =(R I)(R I) \\
R I 3 & =(R I 2)(R I) \\
P_{o} & =(G)(R I 3) \\
\lambda_{0} & =(\mathrm{KJ})(R I 2) \\
\mu_{0} & =(5)(S 2) \\
P_{x y} & =1+\lambda_{0}\left(1-\mu_{0}\right) \\
P_{z} & =P_{x y}+(2)\left(\lambda_{o}\right) \\
T e m p & =\left(P_{o}\right)\left(P_{x y}\right) \\
G_{1} & =(T e m p)\left(r_{1}\right) \\
G_{2} & =(T e m p)\left(r_{2}\right) \\
G_{3} & =\left(P_{0}\right)\left(P_{z}\right)\left(r_{3}\right)
\end{aligned}
$$

Input:	r_{i}	$=$ inertial position (from 14)
	h_{a}	$=$ altitude above geoid (from altimeter)
	S2	$=$ square of sine of latitude (from 17)
Constants:	r_{e}	= equatorial radius
	${ }^{\text {ree }}$	= geoid flattening parameter
	G, KJ	$=$ gravitational parameters
Cratput:	G_{i}	= gravitational acceleration components
	r_{0}	- local earth radius
	r_{G}	$=$ gravitational radius (based on position and altimeter)

Remarks: These equations embody one approach to the problem of altitude divergence control. By basing gravity on the altimeter value of altitude rather than the inertial value of altitude, the vertical channel is given the same characteristics as the horizontal channels, that is, conditional stability and the Schuler frequency.

An alternative approach which should be considered is to treat the altimeter data as augmentation in the same way that radar or Loran data is treated. Gravity is based on the inertial position, but the altimeter altitude and the inertial altitude are compared. The discrepancy is fed back at the acceleration level for restoring and at the velocity level for damping. This approach has the advantage that a stable filter can be designed which takes altimeter error characteristics into consideration.

16. Geographic Computer

$$
\begin{aligned}
R 2_{x y} & =r_{1}^{2}+r_{2}^{2} \\
r_{x y} & =1 / 2\left(r_{x y}+R 2_{x y} / r_{x y}\right) \\
\tan \lambda & =r_{2} / r_{1} \\
\tan L_{g} & =r_{3} / r_{x y} \\
D & =(2 e) r_{3} r_{x y} / R 2 \\
\lambda & =\tan ^{-1}(\tan \lambda) \\
L_{g} & =\tan ^{-1}\left(\tan L_{g}\right) \\
L_{t} & =L_{g}+D \\
\ell & =\lambda+l_{0}-\omega_{e} t \\
h & =r-r_{0} \\
\lambda & =\left(r_{1} v_{2}-r_{2} v_{1}\right) / R 2 x y \\
i & =\dot{\lambda}-\omega_{e} \\
v & =\left(r_{1} v_{1}+r_{2} v_{2}+r_{3} v_{3}\right) / r \\
\dot{L} & =\left(v_{3} / r_{x y}\right)-(v / r)(\tan L g)
\end{aligned}
$$

$$
\begin{aligned}
& \dot{\mathrm{D}}=(2 \mathrm{e}) \dot{\mathrm{L}}_{\mathrm{g}}[1-2(\mathrm{~S} 2)] \\
& \dot{L}_{\mathbf{t}}=\dot{L}_{\mathrm{g}}+\dot{\mathrm{D}} \\
& \dot{\mathrm{~h}}=\mathbf{v}
\end{aligned}
$$

Input:
$r_{i}=$ inertial position (from 14)
$\mathbf{v}_{\mathbf{i}}=$ inertial velocity (from 14)
$r \quad=$ magnitude of position vector (from 17)
R2 $=$ square of r (from 17)
$r_{x y}=\sqrt{r_{1}^{2}+r_{2}^{2}}($ from 16)
$S 2=$ square of sine of latitide (from 17)
$t=$ time
Constants: (2e) = geoid flattening parameter
$\omega_{e}=$ earth angular velocity
$\ell_{0}=$ reference longitude

Output:
$r_{x y}$
$\ell=$ longitude
$L_{t}=$ geodetic latitude
$\mathrm{h} \quad=$ inertial altitude from geoid
h $=$ altitude rate
$L_{g}=$ geocentric latitude
$\dot{L}_{g} \quad=$ geocentric latitude rate
$L_{t}=$ geodetic latitude rate
Frequency: 16 times per second
Precision: requirements unknown
Remarks: Precision requirements are governed principally by resolution requirements of guidance and display functions.

The second equation embodies a method of bypassing the extraction of a square root.

17. Euler Angle Computation

$R 2=\sum_{i=1}^{3} r_{i}{ }^{2}$
$r=1 / 2\left(r+\frac{R 2}{r}\right.$
$W_{i}=r_{i} / r$, where $i=1,2,3$
$\mathrm{S} 2=\mathrm{W}_{3}{ }^{2}$
$\cos L=1 / 2\left(\cos L+\frac{1-S 2}{\cos L}\right)$
$V_{i}=W_{i} / \cos L_{\text {, }}$ where $i=1,2$
$U_{i}=W_{3} V_{i}$, where $i=1,2$
$n_{j}=T_{i j}^{I B} W_{i^{\prime}}$ where $i=1,2,3$ and $j=1,2,3$
$\cos \theta \sin \psi=-\mathrm{T}_{11}{ }^{\mathrm{IB}} \mathrm{V}_{2}+\mathrm{T}_{21}{ }^{\mathrm{IB}} \mathrm{V}_{1}$ $\cos \theta \cos \psi=-T_{11}{ }^{\text {IB }} \mathrm{U}_{1}-\mathrm{T}_{21}{ }^{\text {IB }} \mathrm{U}_{2}+\mathrm{T}_{31}{ }^{\text {IB }} \cos \mathrm{L}$
$\theta=\sin ^{-1}\left(n_{1}\right) \quad-90^{\circ}<\theta<+90^{\circ}$
$\phi=\tan ^{-1}\left(\frac{n_{2}}{n_{3}}\right)-90^{\circ}<\phi<+90^{\circ}$
$\psi=\tan ^{-1}\left(\frac{\cos \theta \sin \psi}{\cos \theta \cos \psi}\right) \quad 0 \leqslant \psi \leq 360^{\circ}$
Input: $\quad r_{i}=$ inertial position (from 14)
$\mathrm{T}^{\mathrm{IB}}=$ attitude matrix (from 11)
$\mathbf{r} \quad=$ magnitude of position vector (from 17)
$\cos \mathrm{L}=$ cosine of (geocentric) latitude (from 17)

```
Output: }\quad0\quad=\quad\mathrm{ elevation angle
    \emptyset = roll angle
    \psi = azimuth angle
    S2 = square of sine of latitude
    R2 = square of r
    r = magnitude of position vector
    cos L}=\operatorname{cosine}\mathrm{ of latitude
Frequency: Roll, elevation, 32 times per second
Azimuth, 16 times per second
Precision: 16 to 18 bits
```

Remarks: The second equation bypasses the extraction of a square root. Similarly, the fifth equation calculates a cosine as the square root of the square of the cosine.

If navigation were performed in local vertical coordinates, the attitude algorithm would be arranged to produce the body-tolocal vertical transformation which would then contain all the desired attitude information.

18. Preflight Attitude Alignment

The alignment scheme outlined here is self-contained. A scheme using optical input for azimuth alignment would entail a more complicated interface with the computer and would involve somewhat more calculation. It would, however, reduce alignment error and probably require less time to accomplish. In spite of these facts, the scheme below is recommended for the first stages of AALS development.

The scheme consists of two parts, an initial alignment and a final alignment. During the initial alignment, body motion is ignored and sensor data is collected on which a body-to-local vertical transformation is based. During the final alignment, body motion is accounted for by attempting to maintain attitude reference to the local vertical. Level error is detected by. measuring the acceleration in the nominally, level channels, and azimuth error is detected by measuring the vehicle's secular rotation rate about the nominally east direction, the strap-down form of gyro compassing.

1) Sum $\Delta \theta^{\prime}$ s and ΔV^{\prime} s over time t_{1} :

$$
\begin{aligned}
& v_{i}=v_{i}+\Delta V_{i}^{B} \\
& \theta_{i}=\theta_{i}+\Delta \theta_{i}^{B}
\end{aligned}
$$

2) When complete, compute

$$
\begin{aligned}
& g_{i}=V_{i} / t_{1} \\
& \omega_{i}=\theta_{i} / t_{1}
\end{aligned} \quad i=1,2,3
$$

3) Compute direction cosine matrix, T :

$$
\begin{array}{ll}
T_{3 i}=-k_{g} g_{i} & i=1,2,3 \\
T_{2 i}=\omega_{(i+1)} T_{3(i+2)}-\omega_{(i+2)} T_{3(i+1)} & i=1,2,3 \\
T_{2 i}=k_{\omega} T_{2 i} & i=1,2,3 \\
T_{1 i}=T_{2(i+1)} T_{3(i+2)}-T_{2(i+2)} T_{3(i+1)} & i=1,2,3
\end{array}
$$

Orthonoralize T. - This procedure is described in section 12.
Final alignment. -

1) Initialize $k=0$.
2) Update T with gyros as when navigating.
3) Maintain local vertical over a Δt time by computing

$$
\left\{\begin{aligned}
\theta_{E} & =0 \\
\theta_{N} & =\omega_{N} \cdot \Delta t \\
\theta_{D} & =\omega_{D} \Delta t \\
\Phi & =\left[\begin{array}{ccc}
0 & -\varphi_{D} & \varphi_{E} \\
\varphi_{D} & 0 & -\varphi_{N} \\
-\varphi_{E} & \varphi_{N} & 0
\end{array}\right] \\
T & =T-\Phi T
\end{aligned}\right.
$$

4) Sum ΔV^{\prime} s in local vertical

$$
\left\{\begin{array}{l}
\mathrm{v}_{\mathrm{N}}=\mathrm{v}_{\mathrm{N}}+\sum_{\mathrm{j}} \mathrm{~T}_{1 \mathrm{j}} \Delta \mathrm{~V}_{\mathrm{j}}^{\mathrm{B}} \\
\mathrm{v}_{\mathrm{E}}=\mathrm{V}_{\mathrm{E}}+\sum_{\mathrm{j}} \mathrm{~T}_{2 j} \Delta \mathrm{~V}_{j}^{B}
\end{array}\right.
$$

5) Every ${ }^{t_{2}}$ seconds compute:

$$
\left\{\begin{array}{l}
\theta_{E}=\sum_{j} T_{3 j} T_{1 j} \\
k=k+1 \\
Y_{1}=Y_{1}+\theta_{E} \\
Y_{2}=Y_{2}+k \theta_{E} \\
Y_{3}=Y_{3}+V_{N} \\
Y_{4}=Y_{4}+k V_{N} \\
\mathbf{Y}_{5}=Y_{5}+V_{E} \\
Y_{6}=Y_{6}+k V_{E}
\end{array}\right.
$$

6) When $k=n$, compute:

$$
\left\{\begin{array}{l}
\varphi_{D}=k_{D 1}\left(k_{D 2} Y_{2}-Y_{1}\right) \\
\varphi_{E}=k_{V 1}\left(k_{V 2} Y_{4}-Y_{3}\right) \\
\emptyset_{N}=k_{V 1}\left(k_{V 2} Y_{6}-Y_{5}\right)
\end{array}\right.
$$

7) Correct the alignment

$$
T=T-\Phi T
$$

8) Convert to space stable

$$
T=T^{I V} T
$$

9) Initialize position, velocity, orthonormalize and navigate.

Remarks: The equations involving the running index $k, k=1,2, \cdots n$, produce the least-squares estimate of the (assumed constant) horizontal acceleration and angular rate about East.
T^{LV} is the precalculated local vertical-to-inertial transformation based on the vehicle position.
19. Guidance Input Calculations

$$
\begin{aligned}
S_{I E} & =S_{I E}+\Delta t \omega_{e} C_{I E} \\
C_{I E} & =C_{I E}-\Delta t \omega_{e} S_{I E} \\
r_{1}^{\prime} & =C_{I E} r_{1}+S_{I E} r_{2} \\
r_{2}^{\prime} & =-S_{I E} r_{1}+C_{I E} r_{2} \\
\Delta r_{1} & =r_{1}^{\prime}-R_{1} \\
\Delta r_{2} & =r_{2}^{\prime}-R_{2} \\
\Delta r_{3} & =r_{3}^{\prime}-R_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{l}
N_{A} \\
E_{A} \\
h_{U D}
\end{array}\right)=\left(T^{R N}, E\right)\left(\begin{array}{c}
\Delta r_{1} \\
\Delta r_{2} \\
\Delta r_{3}
\end{array}\right) \\
& v_{R 1}=v_{1}+\omega_{e} r_{2} \\
& v_{R 2}=v_{2}-\omega_{e} r_{1} \\
& v_{R 1}{ }^{\prime}=C_{I E} v_{R 1}+S_{I E} v_{R 2} \\
& v_{R 2}{ }^{\prime}=-S_{I E} v_{R 1}+C_{I E} v_{R 2} \\
& \left(\begin{array}{c}
\bar{u}_{G} \\
\bar{v}_{G} \\
\dot{h}_{U D}
\end{array}\right)=\left(T^{R A, E}\right)\left(\begin{array}{c}
v_{R 1}{ }^{\prime} \\
v_{R 2}{ }^{\prime} \\
v_{R 3}{ }^{\prime}
\end{array}\right) \\
& V=\frac{1}{2}\left[V+\frac{\left(\bar{u}_{G}\right)^{2}+\left(\bar{v}_{G}\right)^{2}}{V}\right]
\end{aligned}
$$

Input: $S_{I E}=\begin{aligned} & \text { sine (inertial-to-earth-fixed equatorial coordinate system } \\ & \text { angle) }\end{aligned}$
$C_{\text {IE }}=\underset{\text { angle) }}{\text { cosine }}$ (inertial-to-earth-fixed equatorial coordinate system $\left.\begin{array}{l}r_{1} \\ r_{2} \\ r_{3}\end{array}\right\}=$ angle)
$\left.\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right\}=$ inertial velocity coordinates

Output: $\mathbf{N}_{\mathbf{A}}$
E_{A}
$h_{U D}$
\bar{u}_{G}
\bar{v}_{G}
$\dot{h}_{U D}$
V = ground speed

Frequency : 2 times per second
Precision: 12 to 30 bits
Remarks: The first two equations are used to bypass calculation of high precision sin/cos and should occasionally be replaced by actual sin/cos calculations. Similarly, the last equation bypasses the extraction of a square root.

Description of Variables for Radar Input

$r_{0}=$ local earth radius
$t_{r} \quad=$ time associated with radar measurement

Constants:
$\left.\begin{array}{l}C_{R} \\ S_{R} \\ l_{t_{r}}\end{array}\right\}=$ cosine and sine of azimuth of radar coordinates
$L_{g_{0}}=$ initial longitude
$\begin{array}{ll}m_{x}^{p} \\ m_{y}^{p} \\ m_{z}^{p} \\ t_{r}^{p} & =\text { previous radar position measurements } \\ L_{r} & =\text { time of previous radar measurement } \\ { }^{1_{r}} g_{r} & =\text { vehicle latitude derived from radar }\end{array}$

This section contains preliminary equations for updating the inertial navigator by means of external data. Two sets of equations are presenied as typical of the kind of external data which might be available. The first set is based on the recepticn of position data of the form available from a GSN-5 radar receiver. The second set is based on the reception of time difference data of the form available from a Loran receiver.

Preliminary interface data for VORTAC, GSN-5, Loran-C, and DECCA navigation aids are given in Appendix B.

In addition to the data itself, the computer needs an indication of when valid data is available.

Radar Position Calculation

$$
\begin{gathered}
h_{r}=m_{x} \\
Y_{r}=\left(m_{y}\right) C_{r}+\left(m_{z}\right) S_{r} \\
Z_{r}=\left(m_{z}\right) C_{r}-\left(m_{y}\right) S_{r} \\
L_{r}=\ell t_{r}+Y_{r} / r_{0} \\
\ell_{r}=Z_{r} / r_{0} \\
r_{r}=r_{0}+h_{r} \\
r_{K}=r_{r} \cos L_{r} \\
\ell g_{r}=L_{g_{0}}+\ell_{r}+\omega_{e} t_{r} \\
r_{r 1}=r_{K} \sin \ell g_{r} \\
r_{r 2}=r_{K} \cos \ell g_{r} \\
r_{r 3}=r_{r} \sin L_{r}
\end{gathered}
$$

Input: $\quad m_{x^{\prime}} m_{y^{*}} m_{z}, r_{0}, t_{r}$
Output: $\quad \mathbf{r}_{\mathbf{r} 1}, \mathbf{r}_{\mathbf{r} 2}, \mathbf{r}_{\mathbf{r} 3}$
Constants: $\mathrm{C}_{r^{\prime}} \mathrm{S}_{\mathbf{r}^{\prime}}{ }^{\ell t} \mathrm{r}_{\mathrm{r}}, \mathrm{Lg}_{\mathrm{o}}, \omega_{e}$
Timing: 1 per second
Radar position extrapolation. -

$$
\begin{aligned}
\Delta t & =t-t^{p} \\
\Delta m_{x} & =m_{x}-m_{x}^{p} \\
\Delta m_{y} & =m_{y}-m_{y}^{p} \\
\Delta m_{z} & =m_{z}-m_{z}^{p}
\end{aligned}
$$

If

$$
\begin{gathered}
\left(\left|\Delta m_{x}\right|+\left|\Delta m_{y}\right|+\left|\Delta m_{z}\right|<\varepsilon^{2}\right) \\
t^{p}=t \\
m_{x}^{p}=m_{x} \\
m_{y}^{p}=m_{y} \\
m_{z}^{p}=m_{z} \\
\Delta r_{r}=\Delta m_{x} \\
\Delta Y_{r}=\left(\Delta m_{y}\right) C_{r}+\left(\Delta m_{z}\right) S_{r} \\
\Delta Z_{r}=\left(\Delta m_{z}\right) C_{r}-\left(\Delta m_{y}\right) S_{r} \\
\Delta L_{r}=\Delta Y_{r} / r_{0} \\
\Delta t_{g_{r}}=\omega_{e}(\Delta t)+\Delta Z_{r} / r_{0} \\
\Delta \cos L_{r}=-\Delta L_{r} \sin L_{r} \\
\Delta \sin L_{r}=\Delta L_{r} \cos L_{r} \\
\end{gathered}
$$

$$
\begin{gathered}
\Delta \cos \ell g_{r}=-\Delta \lg _{r} \sin \ell g_{r} \\
\Delta \sin \ell g_{r}=\Delta l g_{r} \cos \ell g_{r} \\
\Delta r_{K}=\Delta r_{r}\left(\cos L_{r}\right)+r_{r}\left(\Delta \cos L_{r}\right) \\
r_{r l}=r_{r 1}+\Delta r_{K}\left(\sin l g_{r}\right)+r_{K}\left(\Delta \sin l_{g_{r}}\right) \\
r_{r 2}=r_{r 2}+\Delta r_{K}\left(\cos l g_{r}\right)+r_{K}\left(\Delta \cos \lg _{r}\right) \\
r_{r 3}=r_{r 3}+\Delta r_{r}\left(\sin L_{r}\right)+r_{r}\left(\Delta \sin L_{r}\right) \\
\sin L_{r}=\sin L_{r}+\Delta \sin L_{r} \\
\cos L_{r}=\cos L_{r}+\Delta \cos L_{r} \\
\sin \ell g_{r}=\sin l g_{r}+\Delta \sin \ell g_{r} \\
\cos \ell g_{r}=\cos l g_{r}+\Delta \cos \ell \varepsilon_{r} \\
r_{K} \in r_{K}+\Delta r_{K} \\
r_{r}=r_{r}+\Delta r_{r}
\end{gathered}
$$

Input: $\quad m_{x^{\prime}} m_{y^{\prime}} m_{z^{\prime}}, r_{0^{\prime}} t, m_{x}{ }^{p}, m_{y}{ }^{p}, m_{z}^{p}, t^{p}, \sin L_{r^{\prime}} \cos L_{r^{\prime}}$

$$
\sin l g_{r^{\prime}} \cos \ell_{g_{r}}, r_{r^{\prime}}, r_{K^{\prime}} r_{r 1^{\prime}} ; r_{r 2^{\prime}} r_{r 3}
$$

Output: $\quad r_{r 1^{\prime}}, r_{r 2}, r_{r 3}, m_{x}^{p}, m_{y}^{p}, m_{z}^{p}, t^{p}, r_{r^{\prime}} r_{K^{\prime}} \sin L_{r^{\prime}}, \cos L_{r^{\prime}}$

$$
\sin \lg _{r}, \cos \lg _{r}
$$

Timing: 16 per second
Radar and inertial combining. -

$$
\begin{gathered}
i=1,2,3 \\
\Delta t_{r}=t-t_{r} \\
\Delta r_{i}=r_{r i}-r_{i}+\dot{r}_{i} \Delta t_{r}
\end{gathered}
$$

If

$$
\begin{gathered}
\left(\sum_{i=1,2,3}\left|\Delta r_{i}\right|<\varepsilon^{2}\right. \\
\Delta t_{r p}=t_{r}-t_{r p} \\
\dot{r}_{r i}=\left(r_{r i}-r_{r i}^{p}\right) / \Delta t_{r p} \\
\Delta \dot{r}_{i}=\dot{r}_{r i}-\dot{r}_{i} \\
r_{i}=r_{i}+k_{r} \Delta r_{i} \\
\dot{r}_{i}=\dot{r}_{i}+k_{\dot{r}} \Delta \dot{r}_{i}
\end{gathered}
$$

Inputs: $\quad r_{i}, \dot{r}_{i}, r_{r i}, \dot{r}_{r i}, t, t_{r}, t_{r p}, r_{r i}^{p}, k_{r}, k_{\dot{r}}$
Outputs: $\quad r_{i}, \dot{r}_{i}$
Constants: ε^{2}
Radar and inertial combining definitions. -
$\mathrm{t} \quad=$ present time
$\mathbf{t}_{\mathbf{r}} \quad=$ time at which radar data was obtained
$\mathbf{r}_{\mathrm{ri}}=$ components of radar-derived position in inertial coordinates
$t_{r p} \quad=$ time of previous radar data
$r_{r i}^{p}=$ components of previous radar position
$\mathbf{k}_{\mathbf{r}}, \mathbf{k}_{\mathbf{r}}=$ combining gains either constant or slowly varying constants (generation equations are unknown)

Loran Computation

$$
R_{e}=R_{e o}-\operatorname{Ref}\left(U_{3}\right)\left(U_{3}\right)
$$

$$
\begin{aligned}
& \cos \sigma_{1}=U_{i} U_{1 i} \\
& \Delta U_{1 i}=U_{i}-U_{1 i} \\
& T E M P=U_{i} \Delta U_{1 i} \\
& \sin ^{2} \sigma_{1}=\operatorname{TEMP}(2-\text { TEMP }) \\
& \sin \sigma_{1}=\frac{1}{2}\left(\sin \sigma_{1}+\sin ^{2} \sigma_{1} / \sin \sigma_{1}\right) \\
& \sigma_{1}=\sin \sigma_{1}\left[1+\sin ^{2} \sigma_{1}\left(\left.\frac{1}{6}+\sin ^{2} \sigma_{1}\left[\frac{3}{40}+\left(\frac{15}{336}\right) \sin ^{2} \sigma_{1}\right) \right\rvert\,\right]\right. \\
& A_{1}=U_{3}+U_{13} \\
& A_{2}=U_{3}-U_{13} \\
& A_{12}=\left(A_{1}\right)\left(A_{1}\right) \\
& A_{22}=\left(A_{2}\right)\left(A_{2}\right) \\
& A_{3}=\sigma_{1}+\sin \sigma_{1} \\
& A_{4}=\sigma_{1}-\sin \sigma_{1} \\
& A_{5}=1+\cos \sigma_{1} \\
& A_{6}=1-\cos \sigma_{1} \\
& A_{7}=\left(A_{3}\right)\left(A_{12}\right) \\
& A_{8}=\left(A_{4}\right)\left(A_{22}\right) \\
& \delta \sigma_{1}=\left(\frac{f}{4}\right)\left(-A_{7} / A_{5}-A_{8} / A_{6}\right) \\
& R_{1}=R_{e}\left(\sigma_{1}+\delta \sigma_{1}\right)+\frac{h}{2} \sigma_{1}
\end{aligned}
$$

Repeat bracketed equations for second station, obtaining $\mathbf{R}_{\mathbf{2}}, \sin \sigma_{\mathbf{2}}, \mathbf{R}_{\mathbf{3}}$ and $\sin \sigma_{3}$.

$$
\begin{aligned}
& T_{c 2}=K_{c 1}\left(R_{2}-R_{1}\right)+K_{c 2} \\
& T_{c 3}=K_{c 3}\left(R_{3}-R_{1}\right)+K_{c 4} \\
& \Delta T_{2}=T_{c 2}-T_{m 2} \\
& \Delta T_{3}=T_{c 3}-T_{m 3} \\
& B_{i 1}=-R I_{i 1} \sin \sigma_{1} \quad i=1,2,3 \\
& B_{i 2}=-\mathrm{RI}_{\mathrm{i} 2} \sin \sigma_{2} \quad \mathrm{i}=1,2,3 \\
& B_{i 3}=-\mathrm{RI}_{\mathrm{i} 3} \sin \sigma_{3} \quad i=1,2,3 \\
& U T B_{i}=U_{j} B_{j i} \quad i=1,2,3 \quad j=1,2,3 \\
& \text { TEMP }=\mathrm{UTB}_{1}+\mathrm{UTB}_{2}+\mathrm{UTB}_{3} \\
& \text { UTB }_{i}=\text { UTB }_{i} / \text { TEMP } \quad i=2,3 \\
& B S_{i}=B_{i 1}+B_{i 2}+B_{i 3} \quad i=1,2,3 \\
& D_{i j}=B_{i j}-B S_{i} U T B_{j} \quad i=1,2,3 \quad j=2,3 \\
& E_{i}=K_{0} \Delta T_{i} \quad i=2,3 \\
& \Delta U_{i}=D_{i j} E_{j} \quad i=1,2,3 \quad j=2,3 \\
& U_{i}=U_{i}+\Delta U_{i} \\
& U^{2}=U_{i} U_{i} \\
& \Delta\left|\frac{1}{U}\right|=\frac{1}{2}\left(1-U^{2}\right) \\
& U_{i}=U_{i}+\Delta\left(\frac{1}{U}\right) U_{i} \\
& \phi^{\prime}=\omega_{e}\left(t-t_{p r}\right) \\
& t_{p r}=t
\end{aligned}
$$

$$
\begin{gathered}
\sin \phi=\sin \phi+\phi^{\prime} \cos \phi \\
\cos \phi=\cos \phi-\phi^{\prime} \sin \phi \\
v_{1}=U_{1} \cos \phi+U_{2} \sin \phi \\
v_{2}=U_{2} \cos \phi-U_{1} \sin \phi \\
r_{L 1}=r_{G} v_{1} \\
r_{L 2}=r_{G} v_{2} \\
r_{L 3}=r_{G} U_{3}
\end{gathered}
$$

The Loran position can now be combined with the inertial position as in the radar description.

Input: $\quad h, T_{m 2}, T_{m 3}, r_{G}$
Outputs: $\quad r_{\mathrm{L} 1}, \mathbf{r}_{\mathrm{L} 2}, \mathbf{r}_{\mathrm{L} 3}$
Constants: station-dependent ($\mathrm{U}_{\mathrm{ij}}, \mathrm{RI}_{\mathrm{ij}}, \mathrm{K}_{\mathrm{c} 1^{\prime}} \mathrm{K}_{\mathrm{c} 2}, \mathrm{~K}_{\mathrm{c} 3^{\prime}} \mathrm{K}_{\mathrm{c} 4}$) ncnstation-dependent ($\mathrm{Reo}^{\circ} \mathrm{R}_{\mathrm{ef}} \mathrm{f} \mathrm{K}_{\mathbf{o}^{\prime}} \mathrm{f} / 4$)

Loran Computation Definitions

$U_{i} \quad=$ direction cosines of vehicle in earth-fixed cartesian frame referred to here as the Loran frame
$\mathbf{U}_{\mathrm{ij}} \quad=$ direction cosines of the ith station in the Loran frame, where station 1 is the master and stations 2 and 3 are the slaves
$\sigma_{i} \quad=$ the spherical range angles to the three stations
$R_{i} \quad=$ the ranges to the stations
$\mathbf{R}_{\mathbf{e}} \quad=$ earth radius corrected for flattening
f $=$ flatteni- g correction coefficient in the oblateness $^{\text {in }}$ compensation equations
$K_{c 1}, K_{c 3}=$ coefficients to convert range to time
$\mathrm{K}_{\mathrm{c} 2}, \mathrm{~K}_{\mathrm{c} 4}=$ coefficients to account for fixed time delays
$K_{0} \quad=$ coefficient to convert time to range angle
$\mathrm{RI}_{\mathrm{ij}} \quad=$ elements of matrix which is inverse of matrix whose elements are $\mathrm{U}_{\mathrm{ij}}{ }^{\circ}$. These elements are station-dependent stored constants.
$r_{L i} \quad=\quad$ Loran-derived position components in the inertial

GUIDANCE

Requirements

Definition of guidance laws appropriate to the NASA/ERC AALS mus: recognize many factors. These factors include aircraft flight capability, pilot manual control capability, environmental constraints such as imposed by geography, air traffic, buildings, etc., and operational needs such as minimizing flight time and fuel required.

There is probably no area that requires more pilot judgement than the landing phase. The word judgement implies an intelligent choice and assumes an optimum response. When the same functiors are proposed in an automatic control system, the terms are often misused.

Any automatic control system that is to duplicate pilot functions must do so in a reasonably optimum marner. But what is an optimum manner? A pilot weighs many factors and then acts in the most optimum manner. A control system only weighs the factors that are built into the system and then only in a fixed manner. There is no judgement as such in a control system and the result is always predictable.

Optimum must be built in, and every possible choice must be included. The only reason systems can be called automatic now is that the choices have been greatly reduced and the weighting iactor is constant. Most of the time this is adequate.

The automatic guidance system devised as the AALS baseline is also restricted. The choices have been reduced to the point wher iney will fit physically (as logic statements) into a digital computer. The weighting factors are constant for the most part and the results are predictable. By providing suitable displays, we still rely on the pilot for judgement to reset the automatic system. The pilot is still the most optimum controller.

Guidance laws are defined herein which are suitable for use in CRT-type displays, as well as in closed-loop automatic modes. Detailed discussions of the various computations required are included.

Approach Pattern

The guidance system as defined for the baseline AALS has the following features:

- Rectangular approach pattern

- Automatic glideslope
- Standard turns
- Automatic flare

A rectangular approach pattern was selected for the automatic guidance system. The rectangular pattern is orientated so that the landings are made into the wind. A bearing to the nearest checkpoint is computed after the guidance system is activated and when the helicopter is within the radar range. Altitude, position, speed, and heading are controlled to fly the desired path. Suitable anticipation is provided to initiate turns prior to reaching the checkpoints. Bank angles are limited to avoid stalling at the lower approach speeds.

Final approach is started at a distance of about two miles from the landing site. Speed is reduced and a constant altitude (selected by pilot) is maintained. The glideslope path (glide angle is selected by pilot) is computed on the basis of relative wind and typical helicopter performance. Speed is gradually reduced after glide-path intercept, but sufficient airspeed is maintained to avoid control problems normally associated with helicopters at low speeds.

The helicopter hegins a vertical descent at an altitude preselected by the pilot. Radar altimeter signals are used during the final flare to provide the precise control needed. The system is flexible enough so that only minor changes are necessary to evaluate alternate approaches. The automatic system has been patterned after a typical pilot approach so that the entire system can be maintained or interrupted by the pilct at any time. This feature should also simplify the display system to make it more nearly like the actual flight situation.

Several approach paths were considered for this system. A spiral path in which the helicopter descends vertically in a circular path was one of those considered. At first, this spiral descent looks promising because it is conservative of airspace in the vicinity of the landing site. However, the spiral path is extremely difficult to fly for a V/STOL since the V/STOL has more cross coupling and flies closer to the stall point. The spiral descent also involves precise control in all six degrees of freedom and would be difficult to display. Extended flight in a spiral approach without visual reference is also conducive to air sickness.

A curvilinear path tangent to the straight-line final approach was also considered. The curvilinear path can be described by a suitable mathematical expression and could be modified to provide numerous interception points. This system was discarded because of the severe requirements on bank angle. If an intercept is made close to the touchdown area, the curvilinear path is too short and requires very high bank angles. The short distance also requires high decelerations in order to enter the final glide path with the proper speed.

The rectangular pattern offered the most flexibility, safety, and simplicity of all those considered. It even provides the opportunity for a straightin approach if the vehicle is making an intercept in the proper area. This approach is shown in Figure 3, with both a left-hand and rignt-hand approach shown. The pattern is dimensioned such that the final and downwind legs are 12,000 -foot segments. The (N, E) origin is at the landing site.

-
Figure 3. Rectangular Approach Pattern

The cross-course legs are 6000 feet, with the relative orientation in a north and east direction. The checkpoints at the corners are labeled, as are the headings between checkpoints. These checkpoints retain this identification regardless of which wind orientation is user. Wind direction as referenced to north determines the orientation of the final approach, crosscourse, and down-wind legs. These dimensions are defined to be compatible with the test helicopter. The north and east coordinate system was chosen to conform to typical flight headings and navigation. Unfortunately, this is contrary to the practice of trigonometry, where angles are measured counterclockwise. The additional logic required to convert from one system to another is small, and it is better to stay in a coordinate system familiar to the pilot.

The coordinates are determined by the following equations:

- North coordinates in feet

$$
\begin{aligned}
& N_{0}=0 \\
& N_{1}=12000 \cos \gamma \\
& N_{2}=[120000 \cos \gamma+6000 \sin \gamma]
\end{aligned}
$$

```
N
N
N
```

East coordinates in feet

$$
\begin{aligned}
& E_{0}=0 \\
& E_{1}=12000 \sin \gamma \\
& E_{2}=[12000 \sin \gamma-6000 \cos \gamma] \\
& E_{3}=-6000 \cos \gamma \\
& E_{4}=[12000 \sin \gamma+6000 \cos \gamma] \\
& E_{5}=+6000 \cos \gamma
\end{aligned}
$$

where $\psi_{1}=$ approach direction, and

$$
\gamma=\psi_{1}+180
$$

These coordinates are stored in the computer and will be available for heading computations and other functions.

A sine and cosine routine will be used in the computer. This routine measures angles positive from a positive "X"-axis in a counterclockwise manner. The guidance system has angles measured clockwise from north. The additional logic will take the form of:

If $0<\gamma<90 \quad$\begin{tabular}{l}
first quadrant

sine +

cosine +

\quad

fourth quadrant

sine -

cosine +
\end{tabular}

The quau. ant identifies the sign of the term.

The (γ) angles must also be identified in a different manner:

first quadrant use	$90-\gamma$
fourth quadrant use	$[360-\gamma]+90$
third quadrant	$[360-\gamma]+90$
second quadrant use	$[360-\gamma]+90$

First Checkpoint

The helicopter's present location in terms of north and east coordinates from the landing site is designated as N_{A} and E_{A}. These coordinates are available at all times from the navigation system.

A groundrule was established not to permit guidance engagement when the helicopter is within five miles of touchdown point. This would prevent unusual maneuvering to get on the desired flight path. Again, should this prove to be a problem, additional logic can be added to permit engagements under five miles. The logic would direct the helicopter to a more distant checkpoint to avoid large bank angles. With this five-mile limit, the present location from the landing site is computed:

$$
d=\sqrt{N_{A}^{2}+E_{A}^{2}}
$$

If this distance d is less than five miles, the system will not engage. The nearest checkpoint is determined by computing the distance to all checkpoints in the rectangular pattern:

$$
d=\sqrt{\left(N_{A}-N_{5}\right)^{2}+\left(E_{A}-E_{5}\right)^{2}}
$$

The checkpoint with the smallest distance is the closest checikpoint. This checkpoint will then determine the desired course from the present location. All bearings are with respect to north and measured clockwise from north:

$$
\Delta B=\tan ^{-1}\left[\frac{E_{i}-E_{A}}{N_{i}-N_{A}}\right]
$$

where " i " refers to the nearest checkpoint. This bearing should be expressed with respect to north for the display and for the guidance. To determine the quadrant and bearing, the following logic is used:

If $E_{i}-E_{A}$ is	If $N_{i}-N_{A}$ is	Then the bearing is:
+	+	ΔB_{i}
+	-	$180-\Delta B_{i}$
-	-	$180+\Delta B_{i}$
-	+	$360-\Delta B_{i}$

The heading from checkpoint to checkpoint i. alp- determined prior to the first intercept. Since the direction if the wird is known, the respective headings are computed by:

$$
\begin{aligned}
& \psi_{1}=\gamma-180 \\
& \psi_{3}=\psi_{1}-180 \\
& \psi_{4}=\gamma-90 \\
& \psi_{5}=\psi_{3} \\
& \psi_{2}=\gamma+90
\end{aligned}
$$

Again, these are stored for future reference such as the bank-angle command. Prio: to the time the helicopter reaches the first intercept, some logic must determine whether a left or a right bank is needed to pick up the first heading:

$$
\begin{aligned}
& \text { If }\left[\Delta B_{i}-\psi_{3}\right] \text { is positive, use left bank } \\
& \text { If }\left[\Delta B_{i}-\psi_{3}\right] \text { is negative, use right bank }
\end{aligned}
$$

It was assumed in these expressions that the heading ψ_{3} was the next heading. If the helicopter had been approaching $\mathbf{N}_{2}, \mathrm{E}_{2}$, the heading would have been ψ_{2}, and so on.

Time to Bank

Prior to arriving at the checkpoint, the helicopter must start a bank. The distance to the checkpoint is continuously being computed. As the helicopter approaches the checkpoint, the time to the landing patten corner is:

$$
t=\frac{R_{i}}{V_{G}}=\frac{\left[\left(N_{i}-N_{A}\right)^{2}+\left(E_{i}-E_{A}\right)^{2}\right]^{1 / 2}}{V_{G}}
$$

where $R_{i}=$ range to checkpoint
$\mathrm{V}_{\mathbf{G}}=$ ground velocity
$N_{i}=$ coordinate checkpoint
$N_{A}=$ present coordinate
The actual bank is initiated when the time computed previously is equal to the time necessary to complete one half the turn (see following sketch):

$$
\begin{aligned}
t_{360} & =\frac{2 \pi R}{V_{G}} \\
{ }^{r_{\Delta \psi}} & =\frac{2 \pi R}{V_{G}}\left(\frac{\Delta \psi}{360}\right)
\end{aligned}
$$

The heading change for one half the turn is:

$$
\Delta \psi=\frac{\psi_{i}-B_{i}}{2}
$$

Also

$$
R=\frac{\mathrm{V}_{\mathrm{G}}^{2}}{\mathrm{~g} \tan \Phi}
$$

The bank angle \varnothing is held constant at 20 degrees to avoid stalling the helicopter:

$$
t(\text { turn })=\frac{2 \pi V_{G}}{g \tan \phi}\left(\frac{\psi_{i}-B_{i}}{2}\right)\left(\frac{1}{360}\right)
$$

The turn is held for an equal period of time before control is relinquished to the heading mode. To avoid abrupt bank angle commands, a two-second first-order lag is added to the $\mathbf{2 0 - d e g r e e ~ b a n k ~ c o m m a n d . ~}$

An alternate to "time to turn" to initiate a turn to new course would be a "distance to checkpoint" computation.

The equation to accoraplish this is easily obtained by using the previous equation for "time to turn" and combining with the present velocity:

$$
\begin{aligned}
t(\text { turn }) & =\frac{2 \pi V_{G}}{g \tan \Phi}\left(\frac{\psi_{1}-B_{i}}{2}\right) \frac{1}{360} \\
d & =V_{G}{ }^{t} \\
d & =V_{G}\left(\frac{2 \pi V_{G}}{g \tan \Theta}\right)\left(\left.\frac{\psi_{1}-B_{i}}{2} \right\rvert\, \frac{1}{360}\right.
\end{aligned}
$$

When the distance to the checkpoint is the same as the "distance to turn" the bank will be initiated.

Off-Course Displacement

The off-course displacement is needed to hold proper ground track. Below some airspeed between 30 and 80 knots, the transition speed, the system controls to lateral velocity error. Under these conditions, the off-course displacement must be converted to the required lateral velocity -error. The desired and actual position are continually computed and may be used to obtain the lateral displacement. First the equations of the present ground track are completed.

$$
\frac{N-N_{1}}{E-E_{1}}=\frac{N_{2}-N_{1}}{E_{2}-E_{1}}
$$

where N_{1}, E_{1}, and N_{2}, E_{2} are end points on the track. This will result in an equation of the form:

$$
A E+B N+C=0
$$

Here, the A, B, and C are constants.
The perpendicular distance ΔY to course is:

$$
\Delta Y=\frac{A E_{A}+B N_{A}+C}{t \sqrt{A^{2}+B^{2}}}
$$

where E_{A}, N_{A} are the present location.
The end points or checkpoints are selected on the basis of the present helicopter location. After the helicopter has passed a checkpoint, an "event marker" keeps a record of what leg is presently being flown.

Siraight-In Approach

There are times where it may be expedient to have a straight-in approach. This should only be possible if this is the shortest path to the landing site. This is the same reasoning the pilot would use.

On this basis, consider Figure 4:

Figure 4. Straight-in Approach Pattern
By drawing a line from the landing site through checkpoints 2 and 4, a feasible straight-in approach area is defined. . n ncluded angle is 53.12 degrees or ± 26.56 from the final approach direction ψ_{1}.

The actual heading at the time of interrogation is called ψ_{A} so that the difference between the true bearing to the landing site and the final approach direction must be within ± 26.56 degrees:

$$
+26.56<\psi_{1}-\psi_{\mathrm{A}}<-26.56
$$

Under these conditions, the logic will always cause the helicopter io fly to checkpoint one (the final approach) even though it may be closer to checkpoint 4 or 2.

Vertical Control

The altitude control is used to provide the proper vertical guidance. The control equation needed can be expressed as:

$$
\Delta h=\left[\frac{1}{T_{1} S}\right]\left[\pm 8 T_{1}\right]
$$

where $\Delta h=h-h_{c_{0}}$
$\mathrm{h}=$ present altitude
$h_{\mathbf{C}_{0}}=$ pilot-selected approach altitude
$T_{1}=$ integrator time constant
$\pm 8=8 \mathrm{ft} / \mathrm{sec}$ maximum descent rate (selected as a desirable and comfortable descent rate)

The pilot may select the command altitude $h_{c_{c}}$ for the downwind and crosswind legs.

Altitude Select

A nominal 800 feet is held on the approach pattern. Since the pilot can select the altitude, certain limits must be applied.

The "event marker" is used to identify the checkpoint that is being approached. The event marker determines the logic:
$h($ selected $) \leq 1500$ feet on downwind leg
h (selected) ≤ 1000 feet on base leg
h (selected) ≤ 800 feet on final approach
Once the pilot selects an altitude, the altitude is reduced on each leg until 800 feet is reached on final approach. For example, assume the pilot. selected 1500 feet on the downwind leg:

$$
\Delta h=1500-1000
$$

The 1000 feet is the desired altitude on the base leg. If the pilot had selected 1000 feet, this altitude would be retained $u_{i} . t i l$ the base leg. The "event marker" also determines the descent rate to command the final altitude.

Speed Control

 is adequate for suitable control and within the capabilities of the helicopter. If the helicopter is flying at a higher speed, the velocity is reduced through the following equation:

Final Approach

The final approach distance has been selected as 12,000 feet to be compatible with the helicopter characteristics of the flight test vehicle. This permits adequate distance for deceleration and also descent to 800 feet if the helicopier is at some other altitude. After a short period of level flight, a nominal six-degree glide path is intercepted and followed to the landing site. Glide-path angle is seleoted by the pilot.

Various research agencies have conducted tests with slopes of 6, 9, and 12 degrees. The recommendations favor the 6- and 7-degree slopes. The steeper angles (12 degrees and more) are very difficult to follow since forward speed and sink rate have to be adjusted rapidly. Also, depending on the forward speed, the steeper angles are too close to the autorotation speed. To keep on these steep paths, the helicopter has to fly very near the autorotation speed or "vortex ring" speed. The vortex-ring speed is when the downwash velocity is equal to the descent rate. This region creates severe roughness and wide variations in descent rate.

The rate of descent will vary as the helicopter flies the glide path. Descent rates are limited by the vortex ring, autorotation, flare capabilities and forward speed. Sufficient altitude must be available so that the helicopter can flare to the final touchdown without exceeding the "g" limits.

During this descent the helicopter is operating near or in the region of the back side of the power-required curve. This means that a decrease in forward velocity means an increase in power required. This also means the autopilot will control rate of descerit almost entirely by power changes.

The final approach is nominally started at an altitude of 800 feet and a speed of 100 knots. The checkpoint on the final approach is 12,000 feet from the landing site. The $\mathbf{8 0 0}$-foot altitude is maintained while the speed is reduced to 50 knots. At a distance of about 8000 feet from the landing site, ...e helicopter will intercept the six-degree glide path. It will descend along the path as it decreases the speed to 25 knots. At an altitude of 100 feet it will continue to decrease the speed to almost zero. At a pilotselected altitude above the landing site (about six feet), the helicopter will make a vertical descent to touchdown. This is summarized in Figure 5:

Figure 5. Final Approach Flight Profile

Altitude less than 800 feet should not normally be considered for the approach, since certain minimum altitudes are recommended over congested areas. The 800 to 1000 feet altitudes are ideal from the standpoint of the approach. With such an altitude there is some margin for small variations in approach speed, over shoot on the initial entry to the glide path, and some time for update of the inertial reference.

On the final approach, speed is reduced to 50 knots. The equation is then:

$$
\bar{u}_{c}=\left[\frac{\left[\pm 3.3 \mathrm{ft} / \mathrm{sec}^{2}\right]}{K}\right]\left[\frac{\mathrm{K}}{S}\right]\left[85-\bar{u}_{c}\right]
$$

where $85 \mathrm{ft} / \mathrm{sec}=50$ knots. A switch must be made from airspeed to inertial speed. It is assumed that inertial speed is introduced gradually so that upon transfer there is no transient.

In manual systems, pilots have had difficulty in capturing the glide path. Generally, the overshoot is large since the pilct has insufficient warning that the glideslope intercept is near. With the inertial system some warning should be available so that a descent rair command can be given prior to the intercept. The lead time will depend on the glide path chosen. The effective angle of the glide path in turn will depend on the wind velocity.

To provide proper anticipation of the glide path, a high-passed descent rate command is used. This command is initiated about 1.5 seconds prior to glide-path intercept. The exact time depends on system response, magnitude of the step, the high-pass time constant, and other factors:

$$
t=\frac{\pi R}{60 \mathrm{~V}}
$$

where $\quad \mathbf{R}=$ radius of maneuver

$$
R=\frac{V^{2}}{A_{n}}
$$

$$
A_{n}=0.1 \mathrm{~g}=3.2 \mathrm{ft} / \mathrm{sec}^{2}
$$

The descent rate is $8 \mathrm{ft} / \mathrm{sec}$ nominal:

$$
\dot{h}_{\text {input }}=\left[\frac{-8 \mathrm{ft}}{\sec }\right]\left[\frac{20 S}{1+20 S}\right]
$$

At a time " t " a step input of $2 \mathrm{ft} / \mathrm{sec}$ through a 20 -second high pass should provide the proper anticipation for glidepath intercept and control. The range is simply:

$$
R=\frac{800}{\tan E_{g}}
$$

where $\quad \mathrm{E}_{\mathrm{g}}=$ glideslope angle.
To follow the glideslope, the system requires an appropriate altitude rate as a command input:

$$
\dot{\mathbf{h}}=\mathbf{V} \tan \mathbf{E}_{\mathbf{g}}
$$

where $E_{G}=6$ uegrees
V = true ground speed
$\dot{\mathrm{h}}=$ altitude rate
After the glide-path iitercept, the speed is reduced to 25 knots by the following command:
where $42 \mathrm{ft} / \mathrm{sec}=25$ knots.

Flare
The final flare is assumed to start at an altitude of about 100 feet. At this point the rate oif descent and forward speed have been reduced to small values. The final 100 feet is sufficient to flare to a landing without exceeding any " g " limit and is reasonably comfortable for passengers. The last 100 feet may also be used to correct for some deviation in fore and aft position. It is definitely preferable to have a slight forward speed at touchdown, since there is less chance for sideslip. (The helicopter has more directional stability although very small.)

At this time, the radar altimeter is used to provide the necessary altitude (accurately). The required deceleration is 0.25 g if the speed is 25 knots at 100 feet. The descent rate is $6 \mathrm{ft} / \mathrm{sec}$ or less. The equation:

$$
\bar{u}_{c}=\left[\frac{-12 \mathrm{ft} / \mathrm{sec}^{2}}{\mathrm{~K}}\right]\left[\frac{\mathrm{K}}{\mathrm{~S}}\right] \quad\left[0-\bar{u}_{c}\right]
$$

will reduce forward speed to zero. At an altitude of about 6 feet, as measured by the radar altimeter, the wings-level command is given. Altitude rate is then commanded:

$$
\dot{h}_{c}=-3 \mathrm{ft} / \mathrm{sec}
$$

Touchdrwn will nermally occur within two seconds after the time wings level is commanded. The final touchdown command will not be given if:

$$
\bar{v} \geq 2-3 \mathrm{ft} / \mathrm{sec}
$$

where $\bar{v}=$ lateral speed w.r.t. ground.
This will ensure that the sideload on the landing gear will not be excessive.

Go-Around

An additional consideration is the need for an automatic "go-around". A helicopter will have less need for a go-around than a conventional aircra: With a helicopter, the approach speeds are much less, the deceleration capabilities are greater, and the required landing area is less. With a suitable presentation or display, the pilot should be able to perform instrument go-arounds.

The following information must be considered regardless of the method used to accomplish the go-around.

It will be assumed that the go-around will be initiated only during the approach, where the altitude will be 800 feet or less. The go-around maneuver should not apply to anything at an altitude more than thr 800 -foot approach. If something is necessary at 800 feet or more, a "loiter" or "standard turn" mode can be provided.

In the event of a go-around, a safe exit heading must be provided. This could take the form of "previously stored" obstructions with respect to the landing site or a clear heading provided by the ground. If the go-arourd is initiated because of some inertial difficulty, the location of obstructions with respect to the landing site would remain doubtful. If heading is provided, with update from the ground, the system is more reliable. In the go-around suggrsted, a safe exit heading is provided.

A safe climb angle must also be provided. This safe climb argle must be within the physical capabilities of the helicopter and also provide terrain clearance. It could be provided by the ground station at the same time as the safe heading information.

If a display is provided, the safe heading and climb angle should be shown with the present position of the helicopter. The pilot will be asked to fly above the safe climb angle consistent with the vehicle's potential rate of climb and forward speed. The amount of collective pitch required is dependent on weight, wind velocity, altitude, temperature, and rate of climb. Some of these parameters are related to the helicopter so that a universal solution is out of the question. Applicable performance charts are better stored in the computer with allowable rate of climb as the output. Typically, these charts take the form shown in Figure 6.
'ihe gross weight must be known to determine the allowable rate of climb. Gross weight can be computed if the takeoff gross weight is recorded in the computer and fuel consumption is monitored. The computer could determine the performance via a table lookup or by direct solution of the equations represented by these charts.

As a result of these considerations, no automatic go-around computations are included as part of the baseline system definition. In addition, since a manual go-around probably can be provided with very little added system complexity, it is recommended that functional requirements be defined and mechanization be accomplished during the flight test program.

Figure 6. Typical Performance Chart

Block Diagrams

Some of the modes have been described in block diagram form (Figures 7 through 11.) These block diagrams are primarily used for sizing of the digital computer. The shaping networks and time constants will have to be determined from subsequent analysis. The block diagrams are intended to command velocities as required by the automatic flight control system. All of the functions shown in the block diagrams have been previously described in the text.

Figure 7. Heading

Figure 8. Alt itude Control

Figure 9. Airspeed Control

Figure 10. Glide Path

Figure 11. Flare

FLIGHT CONTIROL.

Scope

This section describes the baseline digital flight control system synthesized for the computer sizing task of the NASA-EIRC AALS program.

The equations and diagrams in Appendix C deacribe the software for the baseline digital flight control system for the YIIC-1A helicopter. This digital control system was "flown" on an SDS 0300/PACE $231 /$ hybrid computer in all of its modes of operation. Results of typical flights are shown in Figures 12 and 13.

Underlying the synthesis of the digital controller was a concept of flexibility. To obtain this flexibility, four modes of flight control were synthsized: a rate damper, an attitude/heading hold, an altitude hold, and a velocity command or fully automatic guidance mode. Figures 14 and 15 show vehtele response in each of these modes for a specific input (pilot's pedal/stick or auto guidance command).

Additional studies were also performed in the areas of effects of quantitization of sensor output signals, filtering requirements, sampling rates and multi-sample rate systems, and alternate mechanization of the system using analog rate gyros and an analog inner-loop stabilization system. The results of these studies are presented in the conclusions and recommendations and/or described in the discussion paragraphs.

System Description

The overall goal of the program is to develop concepts for an automatic approach and landing system for V/STOL aircraft which will utilize a strapdown inertial navigator with radar update and a central digital computer to perform digital flight control computations. The guidance output will be in the form of velocity commands to the flight control system.

The first task was to synthesize a digital flight control system which would enable the vehicle to respond to velocity commands and result in a plausible computer requirements estimate. In addition, an attempt was made to incorporate the greatest possible flight control system flexibility so that system development, ground checkout, and flight testing would be simplified. The overall goal of the system was envisioned as applied research, and therefore a need existed for a flight control system with wide capability.

Also, a goal was established that the automatic flight control system would be operable over the entire flight envelope of the NASA/LRC YHC-1A test vehicles.

Figure 12. AFCS Pitch Axis - Hover

Figure 13. AFCS Pitch Axis - 100 Knots

Figure 14. Input/Output, Attitude Rate Damper, and Attitude/ Heading/Altitude Hold Mod:s

Figure 15. Input/Output Velocity Command Modes

The flight control system which evolved from this stady was "nown" on the hybrid simulation. Figures 12 and 13 show typical vehicle responses for the specified inputs. Two flight conditions are shown, allhough a $60-\mathrm{knot}$ fight condition was also examined. Note that vehicle response to commanded inputs is smooth and overshoots are acceptable.

The system involves four modes of control: rate damping, altiturde hold, velocity command, and automatic guidance. Figures 14 and 15 show vehicle response for cach of these modes for specified inputs. The rate damping mode is a stability augmentation system and would not be normally used other than to flight check the mest basic elements of the system. The attitudel heading hold mode would normally be used for pitch control with or without altitude hold waenever the velocity command (or auiomatic guidance and navigation) system is not used. A unique frature of the attitude/heading hold mode is that, at hover, stick inputs result in a vehicle attitude, while, at cruise, stick inputs result in a vehicle aftitute rate. This control foature has been used in other IIoneywell VTOL systems, and test pilotr have indicated that this cype of response, particularly in gust conditions, is most desirable.

The altitude hold mode which is used in conjuntion with the attitude/ heading mode is self-explanatory. Stick inputs result in an altitude rate through use of an input integrator. Altitude control is obtained entirely through collective pitch. No use is made of the cyclic stick for controlling vehicle attitude to obtain altitude changes. This is in keeping with previous Honeywell helicopter studies which indicate that altitude is best controlled by collective at speeds up to about 100 knots. If other types of vehicles which will have speeds in excess of 100 knots are to be studied, then a blending of altitude to attitude control may need to be performed. However, this should not increase the complexity of the computations to any great degree.

The velocity command mode is used in conjunction with the attitude/ heading hold mode and the altitude hold mode. Guidance commands in the form of velocity commands are generated by the guidance equations and input to the flight control system. Also, stick inputs result in a velocity command to the system. At the present time, stick iuputs are superimposed upon velocity commarids from the guidance equations. However, it may be desirable to inhibit the guidance signals whenever the stick is activated. This question of whether the stick signals should be superimposed upon or inhibit the guidance inputs should be resolved early in future studies.

The method by which various vehicle responses are obtained for various commands is obtained by logic equations and by adjusting certain gains. These gains and logic equations are described in Appendix C, which is a complete software description of the flight control system.

Difference Equations

The difference equations described in Appendix C were obtained through Tustin's method (Ref. 1). This method was used since it provides the flexibility desired in the system. With this method, the complete flight control system is divided into individual blocks. Difference equations are then
written for these individual blocks. The system ean then be mathematically reassembled in any desired order simply by cascading the appropriate difference equations. Hence, logic equations may then be writien to exclude or include those blocks which will give the desired response.

Sampling Frequency

The software description is based on sample rates of up to 30 samples/ sec. This was determined by hybrid simulation of the flight control system. Vehicle attitude and attitude rate loops require 30 samples/sec. Ioncywell, in the absence of vehicle bending data, has considered the fundamental rotor frequency (268 rpm) and the third harmonic (3 blade passages/revolution) to possess significant residues in the S domain. This would place underdamped poles at approximately 4.5 and 13 Il . Since half the sampling frequency should be greater than 13 Hz , the sampling frequency for the attitude control loops was chosen at 30 samples/sec.

The sampling rates of the altitude loop were highly dependent on flight condition. At hover, an altitude loop sample rate of 1 sample/sec would suffice (but not be satisfactory), while at 100 knots a sample rate of 5 samples/sec was required. Consequently, a sample rate of 10 samples/sec for the altitude control loop was sclected.

For the velozity command loops, 1 sample/sec was adequate, but a smoother and morr satisfactory performance was achieved with a sample rate of $2 \mathrm{samples} / \mathrm{sec}$. In addition, it is envisioned, but not confirmed by computer results (the lateral guidance problem was not simulated), that heading guidance commands should be as high as 10 samplesisec since they would form part of the attitude hold loop. All other velocity command sample rates, as well as the altitude and attitude control system have been verified by hybrid computer simulation. Actual computer sizing was $-u n-$ ducted for sample rates which are powers of 2 . Thus, a simulation sample rate of $30 / \mathrm{sec}$ becomes $32 / \mathrm{sec}$ for the sizing model, $10 / \mathrm{sec}$ becomes $16 / \mathrm{sec}$, and $2 /$ sec remains the same.

Bit Weight

The baseline system for this study has no rate gyro signal. Instead, attitude rate is derived from the change of attitude signal by a first-pastdifference equation in the software. The computation of this rate signal from quantitized attitude signals has the same effect as that of resolution in a rate gyro in that it introduces a limit cycle oscillation. The limit cycle can be objectionable depending upon whether or not the pilot detects it. Pilot detection of the oscillation is a function of many factors including vehicle vibration, turbulence, frequency and amplitude of the oscillation and the individual pilot himself. The amplitude of the oscillation obtained in this hybrid study was on the borderline of being objectionable. As the bit weight (attitude change per pulse) is increased, so is the amplitude of the limit cycle. Currently, a bit weight of $0.0035 \mathrm{deg} / \mathrm{pulse}$ is used, although a bit weight of 0.00875 degree/pulse is desired.

Other analng signals quantitized in this study were altitude, altitude rate, and velocity feedback. Bit weights of 0.25 feet ($0.25 \mathrm{ft} / \mathrm{sec}$) per pulse were used and performance was only acceptable. If the expected in-flight deterioration of these signals takes place, abit weight of 0.1 feet ($0.1 \mathrm{ft} / \mathrm{sec}$) would be desired.

Altornate Thner-I mop Stabilization

In lieu of deriving an attitude rate signal, two alternate mechanizations were cxamined. These consist of using an analog rate gyro with a digital inner-loop stabilization system and an analog rate gyro with an analog inne:loop stabilization system.

The inner-loop stabilization system for the pitch and roll axes consists of the attitude rate signals which are shaped but do not pass through the integrators. For the yaw axis, the inner-loop stabilization system consists of the yaw attitude rate signal, sideslip signal, and roll rate-to-yaw signal. These signals are designated as $\delta_{L_{C_{1}}},{ }^{\delta} \mathrm{S}_{\mathrm{C}_{1}},{ }^{\delta_{\mathrm{R}_{\mathrm{C}_{1}}}},{ }^{\delta} \mathrm{R}_{\mathrm{C}_{2}}$, and ${ }^{\delta_{\mathrm{R}_{\mathrm{C}}}}$ on the block diagrams in Appendix B. The rate gyro with digital inner loop reduced limit cycle oscillation by approximately a factor of five but did not reduce the minimum sample rate. With an analog inner-loop stabilization system and an analog rate gyro, the same improvement in limit cycle oscillation was noted as well as a reduction in minimum sampling of 25 percent.

Filters

The need for filtering was also examined. Previously it was stated that Honcywell, in the absence of vehicle bending data, was assuming significant residues associated with the main rotor frequency and the third harmonic. Based on this assumption, a notch filter at the main rotor frequency was included in the software. A second-order roll-off filter one octave below the third harmonic frequency was also incorporated in the software. This will reduce the gain of the system at the frequency of the third harmonic by 12 dB and in addition will serve as a noise filter.

Plant Dyna:nics

An examination of the analog portion of the plant was also conducted. This consisted of studying the math modeling of the servos and actuators on the CH-46 aircraft. Previous velocity command studies considered the actuators and the rotors as a $20-\mathrm{rad} / \mathrm{sec}$ lag plus a $14-\mathrm{rad} / \mathrm{sec}$ lag (see Ref. 2).

Previous studies at Honeywell on the CH-46D resulted in an actuator and rotor model of greater lag and complexity. Reference 3 states that the actuator/controls model is a 15 -cycle, 0.6 -damped, second-order lag. Since this value also seemed optimistic, it was agreed with NASA-ERC that an adequate model for the actuators plus control linkage would be a $15-\mathrm{rad} /$ sec, 0.6 -damped, second-order lag and that the rotor could be modeled by
a 27 -rad/sec, 0.67 -damped, second-order lag. This is the model which was used in this study.

Optimal Control

In addition to the baseline system definition studies, an independent control system synthesis was performed using optimal control techniques. This optimal control study is discussed in Appendix D.

Conclusions

As a result of the control study it was concluded that:

1) Λ digital autopilot can be synthesized for an unstable vehicle such as the YHC-1A and can control the vehicle for an automatic landing.
2) An analog rate gyro provides a negligible reduction in sample rate requirements. An analog inner-loop stabilization system reduces sample rate requirements by approximately 25 percent.
3) The effects of quantitization of sensor output signals results in the general deterioration of the system in the form of introducing potentially objectionable limit cycle oscillations.
4) Tustin's method of mechanizing difference equations has been verified by induction.

Results obtained, however, should be treated as preliminary. Further studies are necessary to define a flightworthy system. In particular, the following should be done:

1) In leiu of reducing gyro and accelerometer pulse weight, methods of compensation suitable for software implementation should be studied as a means of minimizing limit cycles.
2) Filtering requirements are more stringent than ever with a sample data system due to the frequency folding (aliasing) phenomenon. Therefore, analysis including vehicle structural mode feedback is recommended.
3) It should be resolved whether, while in the velocity command mode, stick inputs should inhibit guidance command signals or whether they should be superimposed.
4) Optimal control studies should be conducted and the resulting control functions evaluated by simulation and flight test.

DISPLAYS

Included in the total effort for the definition of the baseline automatic approach and landing system is the task of defining relevant navigation/ guidance/flight control parameters to be displayed to the aircraft crew. This task requires specification of parameters to be supplied by the $1 \Lambda L S$ central computer to a display subsystem (display generator and displays). The listing of recommended parameters to be provided by the AALS central computer is fairly long. This is because of the need to retain flexibility of display design (which will depend upon final system design and operational characteristics and which should be developed analytically) at this phase of the AALS development program.

Design Considerations

Several system operational and design considerations influence the scope and size of the recommended set of parameters to be provided by the AALS central computer to the display subsystem as part of the baseline system. These considerations are discussed below.

Multi-regime operation of the aircraft. - The AALS is being developed for ultimate use in a V/STOL-type aircraft. This type of aircraft will operate in at least two different fiight regimes. In one, it will operate like a conventional aircraft, with the aircraft/local-air-mass relationships being of prime importance. In the other, it will operate as a V/STOL aircraft, with the aircraft/ground relationships being of prime importance. In addition, there will be a transition zone in which the aircraft is changing from one regime to the other.

This multi-regime operational capability requires the aircraft to operate in different reference systems at different times. The relevant parameters for control will differ depending upon the current reference system. Since parameters for display must be compatible with those ${ }_{n}$ for control (if the displays are to be meaningful), they will also differ depending upon the current reference system.

Multiple flight-phase operation. - In addition to operating within several different reference frames for different flight regimes, the current reference frame will vary by flight phase. The total flight profile for the aircraft will consist of several phases (e. g., take-off and departure from an initial field, enroute navigation and flight management, initial approach into the landing pattern, final approach, and terminal landing operations). As the relevant reference frame changes, the appropriate parameters for display will also change.

Multiple firibt control method. - The flisht control method and laws used for the syatom could be of several types (e. g. , command flight path, command allitude/airspeed, command velocity vector, etc.). Fior different methods of flipht control, the resulling reference frame and appropriato parameters for display will vary.

Human operator functions. - Under nominal operating conditions, the pilols fumetons may consist primarily of uplating and adjustings nulomatio subsystoms, solecting atumatic operating modes and functions, and monitorin: automatic system operation. However, in the event of allomatic system failures or performance degradations, the pilot may be required to assumo manual control over one or more functions. In addition, the pilot may desire fo operate the system manually even if fully automatic operation is possible. 'lo permit the pilot to "get into the loop" for manual control, he must be provided with sufficient, relevant information reffardinfs systom operation and its responses to his control inputs. This information will not necessarily be the same as that he will need for monitoring automatic system operations. For this reason, the capability to provide different displays of information for the manual control and the monitoring, of automatio operation may be required.

Basic parameters. - In addition to the special navigation/guidance/fligat control parameters which should be aisplayed for differont flight regimes, flight phases, flight control mothods, and human operator funcions, certain parameters are considered basic by pilots and must be available for display if the system is to be considered adequate. Such parameters as attitude, altitude, altitude rate, and heading fall into the "basic" category.

Special signal conditioning. - Depending upon the flight regime, flight phase, fight control method, human operator functions, and aircraft dynamics existing at a particular time, it may be necessary to provide special conditioning of certain parameters prior to their presentation via displays. Such special conditioning would be required for quickened or predictor' displays to provide a "lead" on system responses for the pilot. In general, efficient manual control of high-order control systems is not possible without some "lead". For example, for a V/STOL aircraft, the commanded pitch rate may be proportional to fore-aft stick displacements. If the pilot is attempting to control the aircraft X-position via a pitch rate control, he is operating a fourth-order control system. Unless cortain related parameter derivatives ($\mathrm{e} . \mathrm{g} . ; \dot{X}, \dot{X}, \theta$) are added to the display of position, it is unlikely that the pilot will be able to control aircraft position. Thus, these parameter derivatives (which would perhaps never be displayed in their "raw" form) need to be combined, with appropriate relalive gains, and added to position information.

Display formats

Two example display formats are discussed below to illustrato tho use of quickened or predictor displays. Both displays are of a plan posilion indicator (PlPI) form. However, related information could be presented via vertical situation indicators or head-up displays.

Figure 16 presents a PPI format reforenced to aireraft heading. It displays actual aircraft position $\left(X_{\Lambda}, Y_{\Lambda}\right)$ as a fixed symbol (triangle). Quickened aireraft position (X_{0}, Y_{0}) is presented as a moving symbol (asterisk). Netual landing site location (X_{o}, Y_{O}) is presented as a moving symbol (diamond). Command track is presented as a moving symbol (line intersecting the landing site in this case). loints of interest on the command flight path (e.g., glideslope intercept) are presented as tic marks on the command track. Nltitude and allitude error can be presented on the linear seale and pointers at the left margin of the display. It should be noted that the diamond, command track, and tic-mark symbols could represent elements of the approach landing pattern other than landing site location, final approach command track and glideslope intercept location.

Lquations for calculating the quickened aircraft position symbol paramcters are given below the display drawing.

Figure 17 presents a PPI format which uses predicition. Again, the fixed diamond symbol presents actual aircraft position. The "string" of dots extending from the actual aircruft position represents the predicted X, Y path for the aircraft under present pitch, roll, wind velocity and direction, heading and airspeed conditions. The solid line represents a selected command path (e.g., the base leg of the landing pattern). The display indicates that an overshoot to command path acquisition will occur if aircraft flight conditions remain unchanged.

The cquations under the figure define the terms used in calculations. These equations are integrated ahead for differing amounts of time to present the predicted path data on the display. The incremental prediction interval τ and the number of intervals n can be varied as a function of range to the selected reference point, altitude, etc.

Helicopter dynamics are assumed in each display such that airspeed is varied oy pitch attitude variations and heading is varied by bank angle changes.

Candidate Parameters

It is recommended that the following navigation/guidance/flight control paramzters be provided by the AALS central computer for display. This preliminary selection of recommended parameters is based on the consid-

$X_{Q}=X_{A}+K_{\bar{u}}(R) \bar{u}+K_{\theta}(R)_{\theta}+K_{\theta} \dot{\theta}^{\prime}$
$r_{Q}=Y_{A}+K_{g} \dot{Y}_{A}+K_{\phi} \phi+K_{\dot{j}} \dot{\phi}$
$\bar{u}=$ AIRCRAFT GROUND SPEED ALONG TRACK
$\theta=$ AIRCRAFT PITCH ATTITUDE
$\phi=$ AIRCRAFT ROLL ATTITUDE
K_{u}, K_{H}, ETC = GAINS SCHEDULED WITH RANGE TO LANDING SITE
$\left.X_{A}=\right\}$ position of aircraft W.r.t. LANDING SITE
$\left.Y_{A}=\right\}$
Figure 16. Fxample Quickened PPI Format

ASSUME SMALL ANGLES AND CONSTANT PITCH AND ROLL OVER THE PREDICTION TIME

$$
\begin{aligned}
& \dot{u}+D=-g \neq \\
& \Delta \dot{\psi}=g \phi / u \\
& \dot{x}_{P}=u+V_{w} \cos \left(\psi_{0}-\gamma\right) \\
& \dot{Y}_{P}=u \Delta \psi+V_{w} \operatorname{SIN}\left(\psi_{0}-\gamma\right)
\end{aligned}
$$

$$
\begin{aligned}
& u=\text { AIRCRAFT VELOCITY } \\
& D=\text { AIRCRAFT DRAG } \\
& g=\text { ACCELERATION OF GRAVIi }, \\
& \theta=\text { PITCH ATTITUDE } \\
& \phi=\text { ROLL ATTITUDE } \\
& \psi_{0}=\text { PRESENT AIRCRAFT HEADING } \\
& X_{A}, Y_{A}=\text { PRESENT AIRCRAFT POSITION } \\
& V_{w}=\text { WIND VELOCITY } \\
& y=\text { WIND DIRECTION }
\end{aligned}
$$

Figure 17. Example Predictor PPI Format
orations discussed above and on the desire to rotain display desisen floxibility at this stase of the $\mathcal{A} \mathbb{S}$ development program. Final decisions rogarding the appropriate parametors for display will depend upen actual systron operational and design characteristics.

The candidate parameters are categorized by the sysiom functions to which they relate:

1) A AISoporation parametors
a. Output to cyclic and differential collective control servos
b. Output to collective thrust control servo
2) Flight condition parameters
a. Meading
b. Elevation angle
c. Roll angle
d. Nltitude
c. Nltitude rate
f. Airspeed
3) Command error parameters
a. I ongitudinal velocity error in horizontal plane
b. Velocity error normal to command ground track
c. Altitude rate error
d. Heading error (w, r.t. command course)
4) Situation parameters
a. Longitudinal velocity command
b. Lateral velocity command
c. Lateral velocity command (w, r.t. command course)
d. Command heading
e. Command altitude
f. Command altilude rate
g. Landing site location
h. Present aircraft location
i. Command course intersection locations
j. Horizontal range to specified location
k. Ground speod
1. Bearing to specified location
m. Local cross-track wind velocity
n. Final approach heading
o. Predicted aircraft position

> "Eight-Ball" Display

For carly $\wedge \wedge I S$ evaluation flights it is anticipated that an "eight-ball" display be used to present relevant navigation/guidance/flight control information 10 the pilot. It is assumed that the "eight-ball" display used will be the (iemini flight directorlattitude indicator. This indicator has tho following display elements:

- Three-axis ball (used to display vehicle orientation Euler angles for Gemini)
- Roll needle (used to display vehicle roll angle for (iemini)
- Two cross-pointers (used to present pitch and yaw attitude errors or angular rates about the three vehicle axes for Gernini)

At the present time, it is uncertain how the Gemini indicator will be configured to display relevant $A \wedge L S$ information for various flight phases. Because of the limited number of display elements available on the Gemini indicator, additional instruments may be required to display sufficient navigation/guidance/flight control information for adequate performance monitoring or manual control.

Also, the particular physical location and orientation of the several display clements on the Gemini indicator, and their resultant direction-ofmotion characteristics, may not be suitable for the display of certain paramcters (c. g., displaying altitude error on a horizontally moving crosspointer).

For the reasons stated above, the Gemini indicator above may not be fully adequate (or fully appropriate) as the display device to be used with the $\triangle \wedge \mathrm{I}_{1} \mathrm{~S}$.

The preliminary suggested pararieters for display for the initial approach, final approach, and terminal landing phases are presented below. It should be notind that, whereas basic parameters are listed, they may have to be presented in combined, quickened, or predictor form to ensure good performance with man-in-the-loop.

The parameters lis ed are in addition to the following basic parameters which should be displayed at all times (or be available for display at the pilot's descretion):

- Actual heading
- Actual elevotion angle
- Actual roll ancle
- Actual altitude
- Actual altitude rate
- Actual airspeed

Initial approach phase - For initial approach (i. e., all operations including acquisition of the initial command track up to the furn onto the final approach), the following parameters should he displayed (or he availathe for display at the pilot's discretion):
a. X-deviation from the sclected command path
(e.g., downwind leg or base leg)
b. Y-deviation from the selected command path
r. X-deviation rate
d. Y-deviation rate
e. Range to selected command path intersections
f. Relative bearing to selected command path intersections.
g. Heading error
h. Nltitude error
i. Nltiiude rate error

Final approach phasc. - For final approach (i. .. , all operations from the turi. unto the final approach to near touchdown), the following parameters should be displayed (or be available for display at the pilot's discretion):
a. X-deviation from the commanded path
b. Y-deviation from the commanded path
c. X-deviation rate
d. Y-deviation rate
e. Range to "glideslope" intercept
f. Range to landing site
g. Altitude error
h. Altitude rate error
i. Heading error
j. Local wind direction
k. Local wind velocity

Terminai landing phase. - For terminal landing (i. e., operations just prior to touchdownt the following parameters should be displayed:
a. X-deviation from the commanded path
b. Y-deviation from the commanded path
c. X-deviation rate
d. Y-deviation rate
c. Range to landing site
f. Range rate to landing site
g. Altitude error
h. Altitude rate error
i. Heading error
j. Local wind direction
k. Local wind velocity

Baseline System

Baseline system display functions as defined are intended to be suitable for use with an "eight-bull"-type display, with expansion to a CRT situationtype display as a goal. As such, all functions potentially useful to both the "eight-ball" and the CRT display are defined.

The form of each display function is estimated. Firm quantitative expressions require detailed analysis which is not within the scope of the present effort. It is assumed that normal flight condition information such as airspeed, sideslip, servo command, etc., will be supplied to the pilot in conventional displays. Airspeed, and other appropriate data, may also be incorporated in the CRT display. However, there will be no need for central computer involvement in this type display function.

It is anticipated that all displays will require an analog signal. Therefore, a digital-to-analog converter will be needed for display function outputs. In addition, a display generator (impedance matching, filtering for smoothing sampling ripple, symbol generation for the CRT display, etc.) will be required. The display functions which must be obtained from the central computer or computed digitally are discussed in Appendix E.

DOWN LINK

Instrumentatio, rovisions include a "down link" (or telemetry system) to the ground. NASA/ERC intends to use modified Gemini equipment for the down link. A description of the equipment and a list of quantities for transmission has been provided by NASA/ERC. Appendix F is based on NASAsupplicd information. It can be expected that the quantities transmitted on the down link will change with the purpose of specific flights. The baseline system definition includes the list given in Appendix E. However, instrumentation needs are not specifically included in the design description such as the AALS input/output signals description of Table I.

SG PAGE BLANK NOT FLLMED.

APPENDIX A
ANALOG RATE GYRO RECOMMENDATION

Mechanization of the alternate analog inner-loop-stabilization function requires an analog output attitude rate gyro. The Gemini rate gyro package (lloneywell device GG246B) should be usable in the mechanization. However, there are two areas in which care must be used. They are range available and vibration sensitivity.

Full-scale gyro output occurs at $35 \mathrm{deg} / \mathrm{sec}$ minimum. This rate may be marginal in roll and possibly in yaw. Effects should be apparent only when maneuvering at high attitude rates when in the stability augmentation mode. It is not expected that full-scale output would be reached during automatic guidance. If it does occur, it would mean only that some damping would be momentarily lost in most cases. No problem exists for manual control maneuvering, since the gyros can withstand $500-\mathrm{deg} / \mathrm{sec}$ inputs.

Vibration tests made on the Gemini rate gyro package (RGP), which NASAERC intends to use for instrumentation purposes, disclosed that the gyros have resonant points near the rotor frequencies. (See Honeywell report 20987-TR1, "CH-46 Attitude Control System Design Recommendation and Analysis Summary" dated 20 March 1968.) When output traces from the NASA/LRC YHC-1A test vehicle become available, they should be examined for evidence of resonant responses. The required inner-loop compensation networks will need filters for the resonances if the resonances are present as expected. The one-per-revolution frequency would be the most severe problem. A notch filter probably would be required. Roll-off filters would be satisfactory for the higher frequencies. Whether or not the gyros are usable depends on the amplitude of peaking obtained (and degree of filtering required). Whether or not it is practical to use the gyros will depend on the wear induced by the resonant response and the added complexity needed in the inner-loop compensation circuits.

Substitution of a different rate gyro is an alternate solution. Again, however, particular attention would have to be paid to vibration characteristics. It would be well to impose a vibration acceptance test in the procurement of a substitute gyro. This test should consist of base motion input vibration of ± 0.05 inch amplitude from 4.0 to 20 Hz and $\pm 2 \mathrm{~g} \mathrm{~s}$ amplitude from 20 to 500 Hz . Input should be a 15 -minute scan in each axis. No resonances should be permitted at rotor or blade frequencies or harmonics of the blade frequencies or at helicopter structural frequencies. (It is assumed that any gyro procured would be qualified to MIL-E-5400 or equivalent.)

As a result of the above considerations, it is recommended that:
i) The Gemini rate gyro package be flight tested on the NASA/LRC YHC-1A helicopter. Gyro output in all three axes should be continuously monitored during start-up, take-off, cruise, maneuvering, let-down, hover, and shut-down.
2) A preliminary analog inner-loop stabilization design be made based on in-flight gyro output characteristics.
3) If a complex filter is needed, then the ability of alternate off-the-shelf "autopilot grade" rate gyros to meet the vibration requirements should be established. (Most available rate gyros will meet the functional requirements needed.)
4) If an acceptable alternate gyro(s) is found, then a decision can be made for the preferred mechanization: complex filtering versus new gyros.

APPENDIX B
 NAVIGATION UPDATE INTERFACES

VORT1C INTERFACE

The VOR'TAC ras'io navigation system is a combination of the VOR (Very IIigh Frequency Omnidirectional Range) system operating in the vhf band (around 100 MIIz) and the TACAN (Tactical Air Navigation)system operating in the uhf band (around 1000 MHz).

In the VORTAC system, a TACAN station is crected to supplement an existing VOlf station. The VOlR station provides bearing information usinef a phase-difference technique, ard the TACAN station provides distance information using travel time of radio waves (propagation delay). This system, when interfaced with a central airborne guidance computer, could provide range and bearing information of the aircraft from any of the many VCRTAC stations located throughout the world. This will provide bearing information within two degrees and range information to about 0.1 nautical mile. This information could be used either for updating position or application to overall guidance for steering to the target station.

INTERFACE INFORMATION

The following information can be received from the VORTAC system:

- Range
- Bearing
- Station identification

Range information on the TACAN airborne system is displayed on a Veeder counter. This is a motor-driven device, and a potentiometer, encoder, or synchro could be added to the shaft to give analog, digital, or synchro information to the computer.

The present system has a variable resistor which might be used to provide a variable de signal to go into an A / D converter of the computer.

The bearing indicator is also a motor-driven output and could easily be adapted to the outputs listed under the range information. The existing system has a synchro output which could be put into a synchro-to-digital converter of the computer. This would give 360 -degree bearing information through one rotation of the synchro. In addition, an output is available in the form of a discrete level which tells whether the aircraft is heading away or toward the VORTAC transmitter. If needed, this signal could be a discrete input to the cornputer.

Station identification is in international morse code transmitted along with distance information. With special equipment, station identification could be converted into an address code and interfaced with the computer. With this input the entire system could be automated to provide nonambiguous position information based on VORTAC inputs.

GSN-5 INTERFACE

This section is concerned mainly with the airborne digital command system (DCS) interface with the system computer. There is no direct interface of the GSN-5 with the computer; however, the GSN-5 interface with the overall system does have a bearing on the computer interface. Therefore, in this discussion those overall characteristics of the system interface which affect the computer interface will be considered.

Inputs

DCS ready (DCS to computer), - This is a discrete signal which sets "true" after the DCS receives a set of up-link data. The total duration will not exceed 110 msec . If the computer fails to reply to this signal within the first 100 msec , the DCS will automatically reset in preparation for receipt of the next transmission.

If the computer does reply to this signal stimulation, the "true" state will prevail for the subsequent transmission of data from DCS to computer. Therefore, in this situation, the duration of "DCS ready" at the computer interface is greater than 5 and less than 10 msec subsequent to receipt by the DCS of the first data clock pulse from the computer.

Data input (DCS to computer). - Data from DCS to computer is transmitted on a serial binary line. One serial word will consist of 24 bits in an NRZ format. Frequency of transmission is 500 kHz , with a bit duration of $2 \mu \mathrm{sec}$.

The data is transmitted only if a data clock is presented to the DCS, which event is contingent upon computer acceptance of the "DCS ready" discrete described above.

Outputs

Data clock (computer to DCS). - If a "DCS ready" discrete is received and accepted by the computer, the computer will issue 24 clocking pulses to the DCS to allow clocking of data into the computer. The clock repetition rate is 500 kHz ; pulse duration is $1.0 \mu \mathrm{sec}$. The computer must provide the first clock pulse to the DCS within 100 msec after receipt of a 'DCS ready, " or else the "DCS ready" will go low, and a new transmission from the ground will occur.

IORAN CINTURFACE

This section desuribes typical interface signals with a Joran C receiver. It is assumed that the receiver processes the rf input and provides to the computer the applicable data in a digital format, and that the compuier provides data and control to the receiver in a digital format. The signals and their associated characteristics are described below.

Inputs

Time difference (from recoiver). - The 10, 000-usec-to-0. 1-usec time difference information is transmitted in a BCD code on 24 parallel wires. The $0.025-\mu \mathrm{sec}$ time difference information is sent in a standard binary code on two wires. Format is as follows:

This data is available to the computer for the "A" and "B" slaves (assuming a Loran triad consisting of a master and two slaves) in accordance with the receiver-computer timing diagram, Figure B-1.

Time difference identification (from receiver). - The " A Gate" and " B Gate ${ }^{-\pi}$ waveforms are used to gate the time-difference information as shown on the timing diagram, Figure B-1. These signals are pulse format and require two wires.

Velocity advance (from receiver). - This is a trigger pulse which instructs the computer to transmit the next word of velocity aid information to the receiver: The velocity aid information is transmitted sequentially in order: Master, Slave A, Slave B. Timing is shown in Figure B-1. This signal requires one wire.

Supply initial M velocity (from receiver). - This discrete signal instructs the computer to insert the M initial velocity information into the receiver. When this data is desired, the signal will switch to the "true" state. When the signal returns to the "false" state, normal M acceleration data is supplied to the receiver. This signal requires one wire.

Loran status (from receiver). - Four alarm signals are generated in the receiver to indicate Loran status. Typical status indications are:

- Transmitter malfunction
- Jammed receiver
- Ground wave available
- Receiver searching

Figure B-1. Receiver - Computer Timing

In the application with which we are familiar, each indication is trancmitted on ar individual line, requiring a total of four wires. llowever, line number of indications could be increased or the number of wires decreased by coding the discretes, if desired.
('ontrol inputs (from control panel), - l3ecause of the variety of modes in which the system is expected to be operated, and to allow versatility in selection of loran station pairs, allowance should be made for control inputs from the main system control point. These signals would most likely be in the form of coded discrete levels which assume either a "true" or "false" logic state depending on operator preference. Acceptance of these discretes at the computer could efficiently be accomplished on the "sense switch" inputs using an STW- orSKS-type instruction, as typified in the ALERT and SIGN-III computers. Approximately 10 to 15 input discretes should be reserved for these functions. Among the functions to be handled by these discretes are:

- PRRR basic select
- Plir specific select
- Slave A or B coding delay select
- Search mode select
- Power control

Outputs
Basic rate (computer to receiver). - Provision should be made to allow selection of the basic PRR. Thesc are switched discrete outputs changing under operator control. There are six basic rates possible; therefore, three coded discrete output lines should be reserved for this purpose.

Specific rate (computer to receiver). - Provision should be made to allow selection of the specific PRR. These are switched discrete outputs changing under operator control. There are eight specific rates possible; therefore, three coded discrete output lines should be reserved for this purpose.

Coding delay (computer to receiver). - The coding-delay information is transferred to the receiver on 16 wires in a FCD code. These signals will define the $10,000-\mu \mathrm{sec}$ and $1000-\mu \mathrm{sec}$ time difference for slaves A and B. Levels of these signals will be unchanging during the time that a particular station group is being tracked.

Vclocity aid (computer to receiver). - Three kinds of velocity aid information are supplied to the receiver: slave time difference velocity aid, master acceleration aid, and master initial velocity. The information is computed from non-Loran sensors and passed to the receiver on 12 parallel lines in a binary code. The most significant bit is sign, true being positive and false being negative.

Normally, these signals are transmitted sequentially to the receiver in a master acceleration aid, slave Λ velocity aid, and slave 13 velocity aid order as instructed by the "velocity, advance" waveform. During master lock-on, the receiver will request the "master initial velocity" information (see 1•igure 13-1):

- Slave time difference velocity aid - The LSBl (least significant bit) will have dimension $0.025 \mu \mathrm{sec} /(32)$ (PRH) with accuracy to one bit.
- Master acceleration aid - The LSB will have dimensions 10 $\mu \mathrm{sec} / \sec /(1024)(128)(\mathrm{P} R \mathrm{R})$ with accuracy of ± 5 percent.
- Master initial volocity - The LSSl3 will be weighted at 0.0098 wisec/sec with accuracy of ± 5 percent. This information is supplied to the receiver when requested by the "supply initial M velocity" sifrnal.

Velocity identification (eomputer to receiver). - Velocity identification information should be supplied to the receiver indicating which velocity aid information is being provided. This function could be part of the parailel bus output and would require two lines. Rate of occurrence would be in accordance with the timing diagram of Figure B-1.

Start search (computer to recciver). - Three discretes (output or two coded output discrete lines) should be made available to allow the receiver to initiate master, slave A, or slave B search.

Summary

The following summarizes the expected interface requirements for Loran C:

- 26-bit parallel input bus
- 14-bit parallel output bus
- 4 pulsed discretes (input)
- 20 switched discretes (input)
- 22 switched discretes (output)
- $\quad 2$ pulsed discretes (output)

DEOCA INTHRHACF:

 position) io delermine position fixes. In certain respects, DECCA combines fratures of botin Ioran and ()mega; however, the application of these features difiers in the two cited systems. Very little, if any, applications have been made where i) $: C \cdot C: \Lambda$ was interfaced wilh automatic navigation. N rmally, die end ou; put is eather three visual indicators or a strip-chart-type flight log. for the aplication under consideration the input from receiver will have to be buffered as the input/output (I/O) to produce digital data for computer processing.

Inputs

Phase difference - 'lhese ac mputs will be processed in pairs. © . . we threce are three pairs, a iotal of six uires will be required. The pairs are designated red, green, and purple. The difference in phase between two wires of a pair represents the position within a lane, and is generated as a result oi compurisin between transmassions from the master and one of the slaves; i. e., red, green, or purple. One line of each of the pairs is the reference for that pair.

Input frequencies are:

$$
\begin{aligned}
0 \quad \text { Green } & =255 \mathrm{kHz} \\
0 \quad \text { Hed } & =340 \mathrm{kHz} \\
0 \quad \text { rurple } & =425 \mathrm{kHz}
\end{aligned}
$$

The phase difference will vary from 0 degree to 360 degrees for each of the pairs; as a lane is traversed.

The $/ /(0$ should be capable of converting this ac phase difference int. a digital signal for computer processing. The input to the computer centrul processor could then be either a serial or parallel binary interface.

Lanc identification. - Three input discretes from the receiver are required for lane identification. These discretes occur at the rate of one per minute in the following order (L. I. = lane identification):

- Red I.I. occurs every whole minute
- Green L. I. occurs 15 seconds after red L. I.
- Purple L. I. occurs 15 seconds after green L. I.

Control inputs (from control panel). - Provision should be made for selection of mode of operation of DECCA. These would be in the form of coded discretes and would operate in conjunction with the control inputs described in the Loran C discussion. Among the functions of these discretes would be:

- Eintry into IDECCA mode
- DECCA test mode
- Reset DECCA oscillator

Outputs
Mode discretes. - These discretes are outputs to the receiver and are used to control the DECCA receiver as necessary to conform with the input controls described above.

APPENDIX C
 BASELINE AALS AUTOMATIC FLIGHT CONTROL SYSTEM EQUATIONS

1) Initialization of the difference equations is implied.
2) Bookkeeping terms for the difference equations are implied.
3) Two fader subroutines are to be included:
a) $\frac{s+1}{s(2 s+1)}$
b) $\frac{1}{2 S+1}$
4) If a stick signal inhibits velucity commands from the guidance system, two velocity syachronizers will be required.

Function:
lapur to AFCS

Punction:
Ioput To AFC,

Function:

Input To AFC,S

Function:
Ouspur from Afes

Function:

$$
\text { Pitc h: Axis } A / p
$$

Math Description:

$$
\begin{aligned}
& G_{\dot{\theta}}=\text { corstant } \\
& K_{\dot{E}}=\text { consta }
\end{aligned}
$$

$$
K_{s_{i 2}}=\text { consitant, } \quad V_{9,}<50.7 \mathrm{pt} / \mathrm{sec}
$$

$$
=\text { covit. } t-\left(V_{3,}-507\right), 355,50.7-1 \%<101.4 \mathrm{ft} / \mathrm{sec}
$$

$$
=\text { corsits } \quad Y_{r} \geqslant 101.4 \mathrm{ft} / \mathrm{sec}
$$

Function:
Pitch Axis A/P

Math Description:

$$
\begin{aligned}
K_{\theta_{c}} & =\text { Constont } \\
K_{\delta_{L}} & =\text { Constont } \quad V_{\text {ras }}<50.7 \mathrm{ft} / \mathrm{sec} \\
& =\text { Constont }-\left(V_{w o}-50.7\right) \cdot 0.38 \quad 50.7<V_{\text {Ins }}<101.4 \mathrm{H} / / \mathrm{scc} \\
& =\text { Constant } \quad V_{x}, .3>101.4 \mathrm{ft} / \mathrm{sec} \\
K_{h} & =\text { Constont } \\
K_{h^{\prime}} & =\text { Conitont }
\end{aligned}
$$

Function:

$$
F_{1}+i \quad F \times i=\quad F / p
$$

Math Description:

$$
\begin{aligned}
& \chi=\text { cerri\%.st } \\
& K_{\bar{u}}=1.0 \quad V_{\text {Ias }}<67.6 \mathrm{Higce}
\end{aligned}
$$

$$
\begin{aligned}
& K_{i i} \quad 6 \cdot i \quad 1,2!\%<V_{3,1} \\
& K_{a+1:}: \quad \text {,: ind } \\
& \text { 'rent }=\text { Censtent }
\end{aligned}
$$

Function:

Math Description:

$$
\begin{aligned}
& \bar{u}=K_{i i} \bar{u}_{1}+\left(1.0-K_{\bar{u}} ; \bar{\mu}_{A}\right.
\end{aligned}
$$

$$
\begin{aligned}
& E=\bar{u}+\bar{u}_{c}
\end{aligned}
$$

Function:
Fitch Axis F / P

Function:

$$
\text { int cr } \therefore, \cdots \quad i i_{r}
$$

Math Description:

$$
\begin{aligned}
& \Delta E_{R}(N)=t_{R}(N)-e_{R}(N-1) \\
& \dot{\dot{\theta}}=\Delta \dot{(N)} / T \\
& \dot{h}_{b_{y s}}=\dot{h}_{I}
\end{aligned}
$$

$$
\begin{aligned}
& \left.-h_{h r b}(1 \mu-1)\left[2 b-2 \frac{4}{T^{2}}\right]-h_{h r b}(1-a)^{-} \frac{4}{T^{2}}-2 \frac{1}{T}+b_{-1}^{-1}\right\} /\left[\frac{4}{T^{2}}+a \frac{2}{T}+b^{-1}\right.
\end{aligned}
$$

Punction:

Pitch Axis A/P

Function:

$$
\text { Pfc: } \because \because:-\dot{\prime \prime}
$$

Math Description:

$$
\begin{aligned}
& \left|f_{2}\right|=A B, S\left[f_{2}\right]
\end{aligned}
$$

Function:
Pitch fires A / P
Math Description:

$$
\begin{aligned}
& \left.S_{c_{c}^{\prime \prime}}^{\prime \prime}=\left\{G_{B}\left[\left(1 . n^{n}, 14-\frac{3}{T}\right) f_{2}(\omega)+\left(10-: 48: \frac{2}{\tau}\right) f_{2}(N-1)\right]-\left(1.0-1.59 \frac{z}{T}\right) \delta_{L_{c_{1}}}^{(N-1)}\right\}\right] \\
& {\left[1.0+1.59 \frac{2}{7}\right]} \\
& \delta_{1}(\omega)=\left\{K_{c_{2}} \cdot\left[\left(1.0+\frac{2}{7}\right) f_{2}(\omega)+\left(1.0-\frac{2}{T}\right) f_{i}(\nu-1)\right]+K_{\theta_{R}}\left[\left(1.0+\frac{2}{T}\right) f_{3} \cdot\left(\omega+\left(1.0-\frac{2}{T}\right) f_{f}(\omega \cdot 1)\right]\right.\right.
\end{aligned}
$$

Function:

$$
\text { Pitch Arris } A / P
$$

Math Description:

Function:
Fitch Axis Alp

Math Description:

$$
\begin{aligned}
& {\left[.0013 \% \frac{9}{92}+.03 \% \frac{2}{7}+1.07\right]}
\end{aligned}
$$

$$
\begin{aligned}
& +100]\left\{\left[.0005 \% 5 \frac{11}{-2}+.02 \% \frac{2}{7}+1.0\right]\right.
\end{aligned}
$$

Function:
Collective Ax iss

Math Descriptions

Function:
Collective Axis:

Function:
Collective Axis

Math Description:

$$
\begin{aligned}
& h_{e}^{(\omega)}=\left\{\frac{2}{T} h_{h r b}^{(\omega)}-\frac{2}{T} h_{(\mu-1)}^{(N)}-\dot{h}_{c}(\omega)-\dot{h}_{e}(\omega-1)-\varepsilon_{c \omega}^{(\omega)}-\varepsilon_{c o}(\mu \cdot 1)-\left[K_{f}-\frac{2}{T}\right] h_{e}^{(\mu-1)}\right] /\left[\frac{2}{T}+K_{f} \overrightarrow{]}\right. \\
& \dot{h}(\mu)=f_{s}^{(\nu)}+f_{0}^{(0)}+\dot{h}\left({ }_{y_{1}}^{(\mu)}+K_{h} h_{c}^{(\nu)}+\theta_{c 0}(\omega)\right. \\
& \theta_{c_{0}}(\omega)=-k_{c} \quad h_{e}^{\prime}(\omega) \\
& h(\omega)=\left\{\varepsilon_{c}(\omega)+\varepsilon_{c}\left(\omega_{1}-1\right)+\dot{h}_{c}^{\prime}(\omega)+\dot{h}_{e}(\omega-1)+\frac{2}{F} h_{c}(\omega-1)\right\} / \frac{2}{\bar{T}}
\end{aligned}
$$

Function:
Lateral A/P

Math Description:

$$
\begin{aligned}
& K_{\phi_{R}}=\text { Constant } \\
& V_{\text {IAS }}<50.7 \mathrm{ft} / \mathrm{sec} \\
& K_{\phi_{R}}=\text { Constant }-.435\left(V_{I A S}-507\right) \\
& 50.7 \leq V_{215} \leq 101.4 \mathrm{ft} / \mathrm{sec} \\
& K_{\phi_{R}}=\text { Constant } \\
& k_{\phi_{s}}=\text { Constant } \\
& K_{\beta_{s}}=\text { Constant } .0435\left(V_{21 s}-50.7\right) \\
& K_{i_{s}}=\text { Constant } \\
& V_{\text {IAS }}>101.4 \mathrm{ft} / \mathrm{sec} \\
& V_{\text {IAS }}<50.7 \mathrm{ft} / \mathrm{sec} \\
& 50.7 \leq V_{\text {Ins }} \leq 101.4 \mathrm{ft} / \mathrm{sec} \\
& V>101.4 \mathrm{ft} / \mathrm{sec} \\
& G_{\text {doh }}=\text { Constant }
\end{aligned}
$$

Function:
Lateral A/P
Math Description:
$G_{\dot{\phi}}=$ Constant
$K_{\dot{\phi}}=$ Constant
$K_{\delta_{s}}=c_{\text {constant }} t$
$V_{\text {th s }} \leq 50.7 \mathrm{f}^{+} / \mathrm{sec}$
$=$ Constant $-.0277\left(V_{\text {IAs }}-50.7\right) \quad 5 a 9 \leq V_{\text {IA }} \leq 101.4 \mathrm{ft} / \mathrm{sec}$
$=$ Constant
$G_{\psi}=$ Constant

Function:

$$
\text { !eti..: } A / \because
$$

Math Description:

$$
h_{y_{2}}=0.0
$$

$$
V_{2} \cdot \because \quad \because \quad \therefore-1
$$

$$
K_{v_{4}}=.3 \% \%: \pi
$$

$$
\therefore r+i: ~ \because \because . t \because s
$$

$$
\therefore,: \quad i 0
$$

$$
\begin{aligned}
& V_{\text {gf, }} \because \therefore \because, \cdots \quad \because \because
\end{aligned}
$$

Punction:
L.t.in! H/F

Math DescriptiBn:

$$
\begin{aligned}
& \therefore \because=0.0 \\
& V_{\text {Ta.s }}<50.7 \mathrm{ft} / \mathrm{s}^{\prime} \mathrm{ec} \\
& K_{v_{c}}=k V_{T A, S} \\
& V_{\text {Ias }} \geq 50.7 \mathrm{ft} / \mathrm{sicc} \\
& K_{\delta_{R}}-C \ln =t \operatorname{tant} \\
& K_{\psi}=\text { Constant } \\
& V_{\text {IHS }}<50.7 \mathrm{ft} / \mathrm{sec} \\
& \dot{K}_{\psi_{2}}=0.0 \\
& K_{v_{c}}=\text { Conitont } \\
& \text { Vtas } \geq 50.7 \mathrm{ft} / \mathrm{sec} \\
& V_{\text {Jas }}<50.7 \mathrm{ft} / \mathrm{sec} \\
& \begin{array}{l}
K \psi_{e}=0.0 \\
X^{\prime} X^{2}=\text { conirat }
\end{array} \\
& \text { Vroo } \geq 50.7 \mathrm{ft} / \mathrm{dec} \\
& \begin{aligned}
\because \because & \text { Cor: } \\
\because & =\text { constant }
\end{aligned}
\end{aligned}
$$

Function:
Lateral A/P
Math Description:

$$
\begin{aligned}
& \Delta \phi_{k}(\omega)=\phi_{0}^{\prime}\left(\omega ; \hat{H}_{k}(\nu-1)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \phi_{c}=\bar{v}_{z}-\overline{v_{c}}
\end{aligned}
$$

Function:
Lateral A/P

$$
\begin{aligned}
& \text { Math Description: } \\
& \dot{S}(y)=\Delta \phi(v) \cdot T \\
& \Delta \psi_{R}(N)=\psi_{R}(N)-\psi_{R}(v-1) \\
& \varphi(\omega)=\Delta \psi_{K}(N) / T
\end{aligned}
$$

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR.

Function:
Lateral A/P

Math Description:

Function:
Laterea. $1 \mathrm{~A} / \mathrm{P}$

Math Description:

Punction:
Lataral A/P

Math Description:

$$
\begin{aligned}
& f_{j}^{(\omega)}=\left\{\left[\varepsilon_{11} \frac{2}{\tau}+1.0\right] \dot{\psi}(\omega)+\left[1.0-\varepsilon_{1,} \frac{2}{\tau}\right] \psi(\omega-1)-\left[1,0-\varepsilon_{12} \frac{2}{T}\right] f_{7}(\omega-1)\right\} /\left[1,0+\varepsilon_{12} \frac{2}{7}\right]
\end{aligned}
$$

Punctions

$$
\text { Laterrel } A \cdot / P
$$

Math Descriptions

Function:

$$
\text { Latrol } A
$$

Math Descriptien:

$$
\begin{aligned}
& \psi_{B} \stackrel{\psi}{\therefore}-f_{P} \\
& \text { Yri } \\
& 4: \frac{1}{j}+4
\end{aligned}
$$

Punction:
Latean A / P

Math Description:

$$
\begin{aligned}
& -K_{j_{c}}\left[\varepsilon_{j_{0}}(\omega)\left[\frac{2}{T}+1.0\right]+\varepsilon_{y_{c}}(\mu-1)[2.0]+\delta_{p_{c}}(N-2)\left[1.0-\frac{2}{7}\right]\right]+\delta_{j_{c}}(N-1)\left[\frac{4}{T^{2}}\right] \\
& \left.\cdots \delta_{5(y)}^{(N-2)}\left[5 \frac{4}{7^{2}}-\frac{1}{7}\right]\right\} /\left[\cdot 5 \frac{4}{7^{2}}+\frac{2}{7}\right]
\end{aligned}
$$

| Terran | Desoription | Unita | Aocuracy | Range | posolutidn Sample |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Rate | | | | | |$|$

Punction:
Latcral A/p

$$
\begin{aligned}
& \text { Math Descriptiens }
\end{aligned}
$$

$$
\begin{aligned}
& \delta_{R_{C}}(N)=\left\{G_{\dot{\psi}}\left[f_{N}(N)\left[2.41 \frac{2}{7}\right]-\delta_{(N-2)}\left[2.41 \frac{2}{7}\right]\right]-\delta_{R_{c_{2}}}^{(N-1)}\left[2.0-.482 \frac{4}{72}\right]\right. \\
& \left.-\delta_{\delta_{e_{2}}(i \cdot 2)}\left[.241 \frac{4}{9_{2}} \cdots 2.51 \frac{2}{r}+1.0\right]\right\} /\left[.241 \frac{4}{r^{2}}+2.51 \frac{2}{r}+1.0\right] \\
& \delta_{R_{c}}(N)=\left\{G_{3}[\Omega(\nu)+R(N-1)]-\left[1,0-.3 \frac{2}{T}\right] \delta_{R_{c}}(N-1)\right\} /\left[1.0+.3 \frac{2}{r}\right] \\
& \delta_{R C_{i j}}\left(\mu j=\zeta_{R}(\nu)\right.
\end{aligned}
$$

Punotion:
Lateral A / P

Math Descriptiens

Function:

Lateral A/P

Math Description:

$I_{i}\left[\begin{array}{rl}\text { aw } \\ \text { Switch } & \left.O_{N}\right]\end{array} \xrightarrow{N_{0}} I_{s}\left[\varepsilon_{s}> \pm x x\right] \xrightarrow{\text { Yes }} \delta_{\alpha_{3}}=0.0, \delta_{s_{e y}}=0.0\right.$ Yes \downarrow

$F \delta_{A_{6}}=-\delta_{c_{c_{1}}}-\delta_{R_{c_{2}}}-\delta_{R_{c_{5}}}-\delta_{R_{c_{4}}}-\delta_{R_{c_{5}}}$

Function:
$!a t c r o l A / P$

Math Description:

$$
\begin{aligned}
& \left.-G_{\delta_{j}(N 2)}\left[0.01375 \frac{4}{72}-.037 \frac{2}{7}+1.0\right]\right\} /\left[.001325-\frac{4}{72}+.037 \frac{2}{7}+1.0\right] \\
& G_{\delta_{R_{c}}^{\prime}(\mu)}=\left\{F_{\delta_{R_{c}}(\mu)}\left[.001375 \frac{4}{T^{2}}+.0037 \frac{2}{T}+1.0\right]+F_{\delta_{c}}(\omega \cdot 1)\left[2.0-.00275 \frac{4}{T^{2}}\right]\right. \\
& +F_{\delta_{R}}(N-2)\left[.001375 \frac{4}{72}-.0037 \frac{2}{7}+1.0\right]-G_{\delta_{R}}(\nu-1)\left[2.0-.00275 \frac{4}{74}\right] \\
& \left.-\sigma_{\delta_{x}^{c}(v-2)}\left[.00137-\frac{4}{72}-.037 \frac{2}{7}+10\right]\right\} /\left[.001375 \frac{4}{7}+.037 \frac{2}{7}+1.0\right]
\end{aligned}
$$

Function:
Lateral A/P

Math Description:

$$
\begin{aligned}
& \delta_{s_{c}}(N)=\left\{G_{\delta_{S_{c}}}(N)+2.0 G_{\delta_{S_{c}}}(N-1)+G_{\delta_{j_{C}}}(N-2)-\delta_{S_{C}}(N-1)\left[2.0-.00119 \frac{4}{72}\right]\right. \\
& \left.-\delta_{s_{6}}(v-2)\left[.000555 \frac{4}{7^{2}}-.0244 \frac{2}{7}+1.0\right]\right\}:\left[.000545 \frac{4}{r^{2}}+.0244 \frac{2}{7}+1.0\right]_{d} \\
& \delta_{R_{c}}(N)=\left\{G_{\delta_{R_{c}}}(N)+2.0 C \cdot \delta_{R_{c}}(N \cdot 1)+G_{\delta_{R_{c}}}(N \cdot 1)-\delta_{R_{c}}(N-1)\left[2.0-.00119 \frac{4}{7^{2}}\right]\right. \\
& \left.-\delta_{R_{c}}(2-2)\left[.000595 \frac{4}{7^{2}}-.0244 \frac{2}{7}+1.0\right]\right\} /\left[.000595 \frac{4}{7^{2}}+.0244 \frac{2}{7}+1.0\right]
\end{aligned}
$$

Figare C-2. AFCS Eoil Aris Mechanization Elock Diagrem

Figure C-3. AFCS Yaw Axis Mechanization Elock Diagreni

PRECEDING PAGE BLANK NOT FILMED.

APPENDIX D

QUADRATIC OPTIMAL CONTROL TOR TIE NASA LRC YHE-1A HELICOP'TER

SUMMARY

Cuadratic optimization methode were applied to aynthemize a velocity control system for the YIIC-1A helicopter. The resulting syatem wise found to be tolerant of errors introduced by quantizitig pitch angle and velocity algnaly which simulate measurements from a strapped-down inertial platform with pulse-rebalanced instruments.

Equations of Motion

The computer program (RAO1'T) used to calculate the quadratic-optimal feedback gains accepls the equations of motion as a mytem of firut-order eçuations written in the form

$$
\begin{equation*}
\dot{\mathbf{X}}=\mathrm{FX}+\mathrm{G}_{1} \mathrm{U}+\mathrm{G}_{2} \mathrm{~N} \tag{D-1}
\end{equation*}
$$

The feedback control J is found to be linear in the state wo that $\mathrm{U}=\mathbf{K X}$. The program calculates the gain matrix K. The term $\mathbf{G}_{2} \mathbf{N}$ represente a white-noise disturbance input. It is not used in the problem at hand mo we put $\mathrm{G}_{2}=0$. The response of the mymtem is defined to be

$$
\begin{equation*}
R=H X+D U \tag{D-2}
\end{equation*}
$$

The matrices H and D must be chosen to give proper meaning to the optimization of the quadratic integral

$$
\begin{equation*}
J=\int_{0}^{\infty} \mathbb{R}^{\prime} Q R d t \tag{D-3}
\end{equation*}
$$

with suitable choices for elements in the weighting matrix Q. (Note that we may change H, D, and Q in ways which will not alter the performance index J.)

The simplest procedure is to consider the actuctors as integrators, and hence their outputs are variables of the state of the ustem. The method then puts feedbacks around these integrators and converts them into simple lags. Whether the actual actuator dynamice alters the performance in ar ousential manner must then be determined on the simulation.

The vectory for the aywtem atate and the ayatem responas for the helicopter were taken as

$$
x=\left[\begin{array}{c}
u \tag{D-4}\\
w \\
\dot{\theta} \\
\theta \\
\theta_{L} \\
\theta_{C}
\end{array}\right], \quad B=\left[\begin{array}{c}
\dot{\theta} \\
\theta \\
\dot{x} \\
\dot{h} \\
{ }^{{ }_{L F}+\theta_{L A}} \\
\theta_{C F}+\theta_{C A}
\end{array}\right]
$$

where

$$
\left\{\begin{array}{l}
\dot{x}=u+\theta_{0} w \tag{D-5}\\
\dot{h}=\theta_{0} u-w
\end{array}\right.
$$

and $\delta_{\mathrm{LFF}}+\theta_{\mathrm{LA}}{ }^{\theta}{ }_{\mathrm{CF}}+{ }^{-} \mathrm{CA}$ reprewent the total feedbacky mplit into two parte to deolate the contributions of the dynamical variables u, w, θ, θ from those of the actuator outputa δ_{L} and $\theta_{\mathbf{C}}$. In detail, the equation of motion are:

The feedback-control vector in then

The expresemons DU, DW, DTD, etc., are FORTRAN symboly for the gain constanta computed by the optimization program. Matrices F and G_{1} are displayed in equation (D - 6). To get the response vector R, H, and D are taken as

$$
H=\left[\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & \theta_{0} & 0 & 0 & 0 & 0 \\
\theta_{0} & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right], D=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]
$$

and then Q may be the diagonal matrix:

$$
Q=\left[\begin{array}{lllll}
\text { QrD } & & & & 0 \\
& \text { Qr } & & & \\
& & & \text { QXD } & \\
\\
& & & \text { बDL } & \\
0 & & & & \text { बIC }
\end{array}\right]
$$

Control Configuration:

The resulting system is diagrammed in Figure D-1. Two notch filters of the form

$$
\frac{s^{2}+(30)^{2}}{\mathrm{~s}^{2}+2(0.3) 30 s+(30)^{2}}
$$

wore added as shown to see if they reduced the system performance, ('They did not.)
For simplicity it was ducided to command u and w rather than \dot{x} and \dot{h} as called for in the response vector 1 . This introduced a small diserepancy and it should be removed on further study. Feed-forward terms DWC and TUC shown in Figure D-1 were added to re-establish the proper steady-state valuss. In spite of this, qualitative conclusions of the study are valid.

Optimal Gains:

Gains computed for various choices of the elements of the weighting matrix Q are listed in Tuble D-1. It takes between 10 and 20 seconds for RAOPT to compute a set of gains for this sixth-order system on the Honeywell H1800 computer.

The step size for the difference uuation corresponding to equation (D-1) was taken as 0.05 or 20 steps a second, The simulation was run at 30 steps a second. It was found that the gains computed at 10, 20 and 50 steps did not differ greatly, 80 this inconsistency is ignored.

The basic weighting of the variables, Cases 1, 9 and 12 in Table D-1, were chosen from the analog scalings (Figur o D-2) which seemed to give uniform signal levels in the analog simulation. The gains of these cases were found to be satisfactory. The assumption leading to this choice fe that the optimal gains will make all terms of the performance index of the same order of magnitude.

The Simulation:

The aircraft was simulated on an analog computer and the control computation was pexformed on the SDS 9300. Figure D-2, Table D-2 and Figure D-3 record the analog diagram, potentiometer mettinge used, and the digital FORTRAN program.

The pitch angle was quantized to 0,0035 degree of arc, horizontal and vertical velocities to 0,25 feet per second. Pitch rate, when quantization on pitch was usod, was computed as the shange in pitch divided by the time for a cycle. In a separate study, Lagrangian polynomials of second, third and fourth orders were used to calculate the derivative of pitch angle. The FORTRAN formulas

TABLE D-1

Care	$F C$	Ste	Q10	PT	P×D	QHD	$Q D$	QTC	D	Du	DTO	DT	DES DTC	72	$7 w$	73	77	702	7π
1	10,	. 05	1000	1000	1	. AF	1	1000	. 59	-. 23	-37.	-42.	-5.0 -54.	. 018	0007	60	-1.5	ds	-23
2	100k		1000	1000	1	. 04	5	1000	. 17	-. 13	-15.7	-0.9	-3.0-24.	. 024	-0027	1.1	-2.0	-. 12	-3.2
3	100k		1090	1000	1	. 04	10	190	. 082	- 10	-10.1	-8,4	-2.3-15.	. 026	-ar	63	-2.1	-15	-3.5
4	Rase		1000	1000	1	. 01	1	1000	. 64	-. 17	-35.	- 56	-4.7-62.	. 016	ano	65	-1.3	. 068	2.0
5	200ct		100	1000	1	1	1	+00	50	-. 79	-51	-35.	-6.7-27.	.021	. 013	. 47	-1.7	2	e
6	1e2s		kese	10000	1	1	0	leo	. 887	-. 34	-30.	-10.	-4.3-20.	. 022	:00,	2.3	-35	12	-5.31
7	cres		expo	1000	1	1	10	1890	. 098	-34	-29.	-6.3	-4.3-19.	. 084	-408	205	-2.5	19	-5.0
8	Res		190	1000	1	1	10	1000	. 086	-. 33	- 35.	-4.9	-4.1-15	. 036	. 00×2	11	-2.2	14	-3.81
9	60k		1000	1000	1	. 04	1	1000	. 67	-. 22	-36.6	-45.6	$-4.7-48$.	. 018	. 0014	. 58	-1.3	-0,	-2.2
10	60k		1200	1000	?	.04	5	1000	. 22	-14	-15.6	14,5	-2.9-21.	.025	-0a3	-1.c3	-18	cle	-3.3
4	60K		1000	1000	1	.04	10	1000	. 12	- 11	-123	-7.7	-2.3-13.	.027	-.0.3	1.2	-2.0	1	-3.1
12	Hibr		1000	1000	1	. 04	1	1006	. 76	. 085	-44.	-62.	-5.0-17	. 002	.0048	- 20	-28	-0.07	-1.6
13	Hor		1000	1000	1	. 09	5	1090	. 33	. 021	-23.	-30.1	-3.6-9.9	. 000	Os	4	-. 63	-94\%	-67
18	for		nood	Pro	1	. 04	10	160	. 21	. 0020	-12	-21.	$-3.1-7.6$. 2003	.ans2	-. 64	-. 56	-. 036	-68
15	1005			pore	\%	Gaci	5		. 7	-.	-40	-50	$-5,40$.cW	.a0s	- 6	-8.5	0	-2.0
16	Hor								. 7	-2	-40	-50	-5 0	. 95	.ans	-. 6	-7	0	-2.c

Figure D-2. Analog Diagram

TABLE D-2
POTENTIOMETER SETTINGS

Pusumity	8,	-ituer	602	1001
- $X_{\text {m }} / \mathrm{m}$	Po	0252	0325	$\therefore 152$
5xaym:	P11	21.35	3205	3185
	22	0175	$\therefore 200$	ocre
$-\left(x O_{m}-4, \alpha_{0}\right) / 100$	Pis	0000	2360	0535
9/100	F/4	3220	Saño	$\because \because 20$
$x_{s_{c} / m}$	P15	$i 750$	2130	\therefore -
Xa/100m	\because	4361	2507	2047
$-1 \angle M_{\mu} / I_{y y}$	P_{7}	0000	051/	0299
$10 \mathrm{mu} / \mathrm{Tyy}$	18	0407	0000	voro
$50 \mathrm{mw} / \mathrm{I}_{y y}$	P19	0888	9000	9100
$-M \dot{0} / 10 T_{y y}$	Q10	0590	1093	$1 / 75$
$N_{\mathcal{L}} / I_{y y}$	911	2950	3140	38.5
$M_{x x} / 10 I_{y y}$	$\varphi / 2$	$15: 0$	6260	7200
zu / m	4/3	0457	0000	0338
$-z_{k} / m$	P/4	0000	0283	0000
$-Z_{w} / m$	Q15	2830	5790	7120
$\left(z_{\dot{\theta}} / m+u_{0}\right) / 500 \mid$	Q16	0007	2027	3372
$9 \theta_{0} / 100$	$\varphi 7$	0526	0282	0/34
$z_{\Sigma_{L} / 5 m}$	9	0101	0738	0420
$-z_{\theta_{c}} / 500 \mathrm{~m}$	419	5176	5614	6490

Figure D-3. Digital Program

Figure D-3. Digital Program (Concluded)
compared were:

```
TlD = CT * AN (difference)
TD = (3. *CT - CTP) * AN/2. (second)
TI) = (11. * CT - 7. * CTP + 2. * CTPP) * AN/6. (third)
TD = (25. * CT - 23. * CTP + 12. * CTPP - 3. * CTPPP) *AN/12.
    (fourth)
```

(CT, CriP, etc., represent changes in theta in the current and past cycles. AN is the frequency in cycles per second.)

The higher-order formulas did not improve the performance of the system.

Results:
Computer traces are shown in Figures D-4, D-5, and D-6. The system with optimal gains from Case 12 at hover is represented in Figure 1)-4. The effect of the quantization of all three signals and of the notch filters may be seen by comparing the first and third traces with the second and fourth. The response to a step vertical gust is shown in the fifth trace. The optimal gains of Case 1 were found to give satisfactory results at the 100 -knot fight condition. The corresponding traces are omitted.

In Figures D-5 and D-6, the performances of the system with the gains of Case 16 at hover and with the gains of Case 15 at 100 knots are represented. Again, the system without or with quantization and filters may be studied. These gains were found by slightly modifying the $100-k$ not optimal and then trying to maike the gains at hover as close as possible to the 10 c ot casc.
 two gains change. These are DTC and TT. The change of DTC most likely can be eliminated on another iteration of the study, and it is possible that the change in TT may be removed, also. However, the transient coupling of the u - and w-commands is somewhat high, particularly at hover, and this may be improved at the expense of more gain changing.

The system is tolerant to the effects of the signal quantization used in the study. It may be too slow in its response to step commands, and a further study with different Q-weightings may be necessary to achieve the system desired.

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

Figure D-4. Optimal Control No. 12 at Hover

Figure D-5. Compromised Control No. 16 at Hover

Figure D-6. Compromised Control No. 15 at 100 Knots

APPENDLX F

BASELINE DISPLAY EQUATIONS ${ }^{1,2}$

Function:
Displays

Math Description:

Quantities listed are obtained from navigation, guidance, or AFCS computations.

Term	Description	Units	Accuracy	Range	mesolutio	n Sample
\bar{u}_{c}	Longitudinal Velocity Comimand	Knots				8 Hz
\bar{V}_{c}	Lateral Velocity Command	konots				,
$\varepsilon \dot{j}_{c}$	Lat. Vol. error w.r.t. Course	knots				
$h_{c_{1}}^{\circ}$	Altitude rate Command	$\mathrm{ft} / \mathrm{sec}$				-
N_{A}	Aircraft Position-Nortl	feet				,
E_{A}	Aircraft Position-Easr	feet				V
N_{i}	\} North \& East Coord.	feet				
E_{i}	\} of Command Course intersections					

[^0]
Punction: Displays

Quantities listed are obtained from navigation, guidance, or aFCS computations.

Torm	Dosoription	Unito	Aseuray	Rango	fosolutto	$\operatorname{sen}_{\substack{\text { sanplo } \\ \text { Rato }}}$
\mathscr{L}	Aetwal Hoeding	deg				$8 \mathrm{Hg}_{8}$
1	Eleratiou Angle	\log				16 Hz
¢	Roll Angle	dog				$16 \mathrm{H}_{3}$
his	Altitude	A				$8 \mathrm{Ho}^{\text {\% }}$
h_{4}	Altiticre Rate	${ }^{4} \mathrm{~S}$ Se				16 Hz
h_{R}	Altitude-Koder	$f t$				$8 \mathrm{H}_{3}$
俋	Attitade Rete-Moder	f/1/uc				$1 \mathrm{H}_{3}$
h_{D}	Altitude Commenslic,	ft				8 Hz
B_{i}	Secring	deg				
V_{5}	Ground fpeed	/rusts				
IF	Final fprrochlddy	deg				
p_{6}	Raugh start turn	$f+$				
t_{6}	Fime to start turn	See				\checkmark
${ }^{\prime}$	Louding lite Wind	dey				\checkmark
$\bar{u}_{\text {Ap }}$	Pilor selected airsped	kmot				const
he.	Pibot hlorted aproaechalt.	fout				1
E_{6}	piket solectod glik ayle	dey				,
$h_{\text {c }}$	Pibt isplated horer olt.	foet dey				
Brp H_{c}		dey				\checkmark

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR.

Function:
Forward velocity error

Math Description:

$$
\begin{aligned}
& -k \frac{T\left(\dot{\theta}_{H}+\dot{\theta}_{m, 1}\right)-\left(T-, \tau_{1}\right)\left(\Delta \bar{u}_{D_{1,1,1}}\right.}{T+2 \tau_{2}}
\end{aligned}
$$

| Term | Description | Units | Accuracy | Range | Resolution Sample |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rate | | | | | |$|$

Function: Lateral velocity error

Math Docestiptions

Function: Altitude rate error

Math Description:

Math Description:

$$
\begin{aligned}
& -k_{1} \frac{T\left(\dot{\psi}_{n}+\dot{\psi}_{n-1}\right)-(T-2 t)\left(\Delta \bar{\psi}_{D}\right) /(\cdots 1}{T+2 i_{2}}
\end{aligned}
$$

Function: Range to course intersection/landing site

Math Description:

$$
\begin{aligned}
& \Delta N=N_{A}-N_{i} \quad \Delta E=E_{A}-E_{i} \\
& \mu h=h_{C_{0}}-h_{N_{A V}} \\
& R_{H}=\sqrt{(\Delta N)^{2}+(\Delta E)^{2}}
\end{aligned}
$$

Function: Local wind

Math Description:

$$
\begin{aligned}
& V_{\text {c.7. }}=-i_{A} \sin \left(\Psi_{A}-\Psi_{S}\right) \\
& V_{u_{t}}=V_{i}-i_{A} \operatorname{Cos}\left(K_{A}-V_{i}^{S}\right) \\
& V_{\text {wo }}=\sqrt{\left(V_{u t}{ }_{(0, Y}\right)^{2}+\left(V_{\mu \sigma_{t}}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d_{\mu}}{4}=4: \therefore!
\end{aligned}
$$

Function: Predicted position

Math Description:

$$
\begin{aligned}
& N_{\varphi}=N_{A}+\Delta \bar{X} \cos \Psi \bar{L}-\Delta Y \sin \bar{X}
\end{aligned}
$$

> APPENDIX F DOWN LINK DESCRIPTION

The baseline AALS is defined as using the Gemini PCM programmer as the link with the computer subsystem. It has the capability for operating as a self-contained data-handling unit. Internally it provides the functions of analog data multiplexing, anolog-to-digital conversion, and digital-data multiplexing, including the required timing to perform these functions. The outputs of this programmer consist of two PCM data signals: 51.2 kilobits/second (kbps) data in N $3 \mathrm{Z}-\mathrm{C}$ form and 5.12 kbps data in RZ form. A frame of data from the PCM programmer consists of the following channels:

No. of channels	Type of signal	Sample rate, samples/sec	Bits per sample
6	$0-20 \mathrm{mV}$	640	8
6	$0-20 \mathrm{mV}$	160	8
9	$0-20 \mathrm{mV}$	80	8
3	0-5 V	40	8
3	0-5 V	20	8
6	0-5 V	10	8
32	0-5 V	1.25	8
$\begin{gathered} 40 \text { (corr. to } \\ 5 \text { ea. } 8- \\ \text { bit words) } \end{gathered}$	Bilevel	10	1
24	Digital (computer)	r) 0.416	24
1	Time	10	8

The basic sample rate of the commutator is 40 samples per second. The main frame consists of 160 word slots with 8 bits per word. Six of the 160 words are used for frame synchronization; thus 154 word slots are available for data. The complete Gemini DTS system provided for over 300 input channels by using low-speed subcommutation.

The airborne computer and time reference system (TRS) supply the digital data inputs to the programmer. The Gemini computer output is 21 words of 24 bits length each, and the TRS output is 3 words of 24 bits each. These digital data words are transferred serially from the computer into a bufser storage register internal to the programmer. This serial transfer is accomplished as follows. At the proper time for sampling the computer data, the PCM programmer sends a request pulse to the computer for a data word. The computer provides 24 clock pulses to the programmer to transfer into the buffer storage register the 24 -bit computer data word available to the programmer. The Gemini computer clocke this data into the programmer at
a $500-\mathrm{kHz}$ rate The programmer unloads the buffer storage register in 8bit groups at a $51.2-\mathrm{kbps}$ rate. The programmer sends request pulses to the computer for a 24 -bit word every 75 milliseconds until 21 computer words have been read into the programmer. The computer clock and data output lines are isolated from the programmer by transformers located in the computer.

The Gemini PCM programmer has some flexibility in the areas of increasing the number of digital channels, increasing the frequency of sampling the digital channels, or increasing the length of the digital words. There are some basic constraints which are applicable to any PCM system used in a vhf transmit link. The most severe limitation is the bit rate for an NRZ code which is 150 kbps maximum. This means the present frame format could be increased by a factor of 3 either in number of word slots or in sampling speed. If the length of the computer words is increased above 24 bits, then the buffer storage register will require additional shift registers, and the format will be changed to 32 bits per digital word (the next multiple of 8). As an example, if the computer word were increased from 24 to 28 bits, the number of computer words were increased from 21 to 40 , and the sample rate were increased from 0.416 sample/sec to 40 samples/sec, the computer data words alone would require 160 main frame word slots. This exceeds the 154 words available at 40 samples/sec in the present PCM system. Thus, it is apparent that the number of words in a frame would have to be increased or some other tradeoff between sample rate and the number of computer words read out would be necessary. Another consideration in the computer/PCM programmer interface is the rate at which the computer must clock data into the programmer storage register. The present clock rate of 500 kHz can be increased to 1.0 MHz .

Based on data requirements known at this time (Table F-1), it does not appear feasible to modify the existing Gemini PCM programmer to satisfy these requiremerts. The digital and analog data requirements must be defined in light of the constraints cited above. Consideration should be given to supplying the digital data signals to the programmer in serial form rather than parallel form.

TABLE F-1
DIGITAL SIGNALS FOR DATA TRANSMISSION
FROM CENTRAL COMPUTER

Signal	No. of words	Transmissions per second
Direction cosine matrix	9	computation rate
Sum of XYZ accelerometer counts	3	$1 / \Delta t$
Sum of XYZ gyro counts	3	$1 / \Delta t$
Flight time	1	$1 / \Delta t$
Computation cycle time	1	computation rate
XYZ position and velocity (radar frame)	6	1
XYZ position and velocity (IMU frame)	6	1
XYZ position and velocity (estimator frame)	6	1
Latitude and longitude	2	1
Gyro scaling (bilevel)	1	$1 / \Delta t$
Altimeter output	1	5
XY area/navigation (Z sources)	4	1
Euler angles	3	5
Body-axis angular rates	3	5
Guidance velocity commands	3	5

APPENDIX G

NEW TECHNOLOGY

After a diligent review of the work performed under this contract, no new innovation, discovery, improvement, or invention was made.

REFERENCES

1) Fryer, W. D. and Schultz, W. C. : A Survey of Method for Digital Simulation of Control Systems. Cornell Aero. Lab. No, Xf.-1681-E-1, July 1964.
2) Anon. : Advanced Flight Control System Concepts for VTOL Aircraft. Phase I Technical Report, TRECOM TR 64-50, October 1964.
3) Garren, Jr., J. F. and Kelly, J. R. : Description of ar Analog Computer Approach to V/STOL Simulations Employing a Variable Stability Helicopter, NASA TN D-1970, January 1964.

[^0]: ${ }^{1}$ Accuracy, range, and resolution are per navigation, guidance, and control requirements.
 ${ }^{2}$ All outputs are read out at 64 Hz .

