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ABSTRACT 

In recent years there has been much work in rough su'rface scatter­

ing. The greatest part of this has been done in the area of electromagnetics 

because of the greater possible rewards from radar. However, there has 

been much progress in acoustic wave scattering and both areas have bene­

fited from the similarity of the phenomena. This work is a study of the 

scattering of acoustic waves from randomly rough surfaces and the extent 

of the similarity to the analogous electromagnetics problem. 

A theory is developed using the method of physical optics for the 

scattering of acoustic waves from randomly rough surfaces which are im­

perfectly reflecting yet homogeneous with respect to material parameters. 

This development is made for a surface which is given by a stationary, 

ergodic process with a Gaussian distribution of surface heights. The ex­

pression for the far zone-acoustic power density is derived and the separa­

tion into scattered and reflected power components is made. For a surface 

sufficiently rough, the reflected component becomes negligibly small and 

there is near-total conversion to scattered power. For this case the average 

differential scattering cross section is computed from the scattered power 

density for the cases of exponential and Gaussian dependence of the auto­

correlation coefficient of surface heights. 

The theory is compared with the results of omnidirectional measure­

ments using surfaces constructed to satisfy the assumptions of the physical 

optics method. The statistical parameters of the surfaces were determined 

from sampled data measurements and were used in the calculation of the 
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theoretical values. The comparison of theory with experiment is favorable 

and the theory is concluded to be a valid one. 

The similarity between acoustic and electromagnetic re-radiation 

from surfaces is investigated by comparing analogous expressions for 

the re-radiated fields. The expressions for the electromagnetic field 

are derived using the method of physical optics as are the acoustic 

expressions, and the determination is valid only for surfaces to which 

this method applies. Similarities are found to exist and there are cases 

where an exact acoustic simulation can be made. in other situations 

the vector effects of the electromagnetic re-radiation dominate but some 

aspects of the re-radiation can be modeled acoustically. 



CHAPTER I INTRODUCTION 

I.A The Nature of Scattering Problems 

The analysis of the re-radiation of acoustic and electromagnetic 

waves from surfaces is a very broad problem with many different phenomena 

to be studied. The simplest form of re-radiation from a surface is reflec­

tion from an infinite plane. One of the distinguishing features of this re­
flection is that the re-radiated energy flows in a single direction which can 

be determined from the well known laws. Similar to reflection is the re­

radiation from other geometric shapes such as spheres, cones, paraboloids, 

etc. The re-radiation from these surfaces differs, however, from the reflec­
tion from a plane in that the energy flow is not in a single direction but is 

scattered in many. When the incident wave is re-radiated from a regularly 

rough surface such as a corrugated plane (for instance in the shape of a 

sinusoid), the same scattering of energy occurs but in general it is expected 
to be more diffuse (on an intuitive basis) than that for a smooth but non­

planar body. This, however, depends on the size of the structure of the 

regular roughness relative to the wavelength of the incident radiation. 

Lord Rayleigh [ 1896 ], an early investigator of scattering phenomena, 

developed a criterion for surface smoothness, now known as the "Rayleigh 

criterion, " which provides an approximate measure of the degree to which 

energy is scattered. For a plane wave of wavelength X incident upon the 

corrugated surface shown in figure I. 1, there is a phase difference 

for the two rays shown. When A i-- there is cancellation in theV , 

direction of mirror reflection (specular reflection) and energy is consequently 

flowing in other directions. Raleigh made the arbitrary choice of a V = 

to establish his criterion for delineation of rough surfaces from smooth ones 

(C = 0 ); consequently, the Rayleigh criterion for a surface to be smooth 

is 

8cs -

b-I. 
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Formulation of the Rayleigh Criterion 

Figure I. 1 

Surfaces which form a class for which the re-radiation process is 
different from that of the regular surfaces are those generated by random 
processes. The difference lies in the way in which the phase elements 
from all parts of the surface combine to produce the re-radiated power. 
For a randomly generated surface which is sufficiently rough, a linear 
superposition of the powers from the elemental surface areas is possible 
while for the regular surface a phasor addition taking into account the 
phase differences between the elements of the re-radiated field is necessary. 
For a random surface not rough enough to produce diffuse scattering, a 
division can be made between scattered power and reflected power, i. e. , 
power for which the elemental phases are important. This difference in the 
re-radiation processes for these two classes of surfaces necessitates the 
use of different techniques for the description1 both theoretical and 

experimental, of-the radiation phenomena associated with each class. 
For a wave incident upon a general surface the field.re-radiated in 

all directions from the surface must be given as a function of the parameters 
defining the media involved. For randomly rough surfaces this implies a 
statistical description of the field and also of the media. The problem of 
re-radiation from regularly rough surfaces and geometric shapes is a 
"deterministic" one and a statistical description is not required. 



3
 

I. B The Description of the Completed Research 

The goal of this study was the description, both theoretical and 
experimental, of the re-radiation in all directions (omnidirectional re­

radiation) of acoustic waves ftom randomly rough surfaces and the deter­

mination of the applicability of the results of the acoustic study to the 

similar problem of electromagnetics. There have been many investigations 
into this general area of study (see Section III A) but all with the exception 

of a few have been restricted to the case of backscattering. However, to 

make a complete investigation it is necessary to determine the character­

istics of the re-radiation from rough surfaces omnidirectionally; by doing 
this, all phenomena are observed and an opportunity is afforded to test 

theoretical work over a wider range of angles. 

There are many types of randomly rough surfaces for which the re­
radiation characteristics can be investigated. These can roughly be cate­

gorized in one way by relating the size of the surface irregularity to the 

wavelength of the radiation. The investigation was restricted to surfaces 

with structures large with respect to wavelength and that are described as 
"
"gently undulating. For surfaces of this type, the re-radiation can be in­

vestigated using the method of physical optics of the Kirchhoff method as 

discussed in Section II B. This approach has been used before and success­

fully. However, there have been questions raised recently about the use of 

the method [Hagfors, 1964] and one of the purposes of this work is to 

determine the validity of this approach. 

The re-radiation of acoustic waves from randomly rough surfaces is 
investigated by determining the re-radiated pressure in the far zone through 

the use of the Kirchhoff method. This is done for a surface which is gener­

ated by a random process which is taken to be stationary and ergodic with 

a Gaussian distribution of heights, as discussed in Section II C and 
Appendix I. The surface is not restricted to be perfectly reflecting, as is 

usually done, but is allowed to be an imperfect reflector; however, it is 

assumed to be of homogeneous material (see Sections II B and III D). From 
the re-radiated pressure field the power density is calculated and the 

separation between reflected and scattered power mentioned earlier is 
made (see Section III C). The reflected power is shown to decrease 
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to a negligibly low value for a surface sufficiently rough (as [Davies ,1954 
and other workers have shown). Making a restriction to such surfaces, 
the scattered power is then used to calculate the average differential 
scattering cross section, which is a particularly convenient and meaning­
ful quantity for the description of scattering (see Section III D). This 
quantity depends upon the form of the autocorrelation function of surface 
heights and is calculated for the cases of exponential and Gaussian 
dependences, i. e., for autocorrelation functions that take the forms 

rz ex {r f= ex'p 

To determine the validity of the theory as developed using the 
method of physical optics, the average differential scattering cross section 
was experimentally determined for surfaces specially constructed to be 
gently undulating. Measurements were made omnidirectionally for'two 
surfaces of different roughnesses and different materials; these results 
are shown graphically in Section III E, and the technique of measurement 
and the equipment used are described in Sections II B and III C. To make 
the experiments especially useful in determining the validity of the theory, 

the statistical parameters of the surfaces were measured and the sample 
probability distributions of surface heights were computed. It was found 
that the processes were close to being Gaussian and stationary with the 
sample correlation coefficients having a functional dependence lying between 
Gaussian and exponential behavior, the actual variation being closer to 
Gaussian (see Section III D). The measured values of the statistical 
parameters were used in the theoretical expression for average differential 
scattering cross section and values of this quantity were computed for 
comparison with experiment. This comparison, which is made in Section" 
III E, is a favorable one and the conclusion is reached that the Kirchhoff 
method is valid as it i s used in this work. 

The characteristics of the re-radiation of acoustic waves from 
surfaces are known to be similar in some respects to analogous electro­
magnetic re-radiation. These similarities have been utilized in acoustic 

simulations of electromagnetic problems such as scattering in turbulent 
media and radar backscattering. .To determine how closely the scalar 
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acoustic waves simulate the re-radiation of the vector electromagnetic 
waves, comparison was made between analogous expressions.for the 

two cases. The electromagnetic expressions used in the comparison 
were derived through use of the Kirchhoff method and the comparison 
made is valid only for surfaces which are gently undulating. In making 

the comparison it was found that under certain conditions an exact 
simulation of the re-radiation of electromagnetic waves is possible. 

In other situations, simulations can be made with varying degrees of 

approximation. These results are contained in Chapter IV. 
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CHAPTER II THE REFLECTION AND SCATTERING 
OF ACOUSTIC WAVES FROM ROUGH SURFACES 

II. 	A The Re-radiation from a Rough Surface; the Several Methods of 
Calculation 

A calculation of the re-radiation of acoustic (and electromagnetic) 

waves from surfaces which are randomly rough must give the. quantities 

which describe the process and relate these to the parameters which define 

it. These quantities are the probability distributions of the amplitude and 

phase of the re-radiated field, the mean and variance of the field and the 

mean of its intep.sity. This does not provide a complete description in a 

statistical sense but from the viewpoint of application it is sufficient. 

The parameters defining the process are those describing the medium in 

which 	the source and the observation point are located and those 

describing the randomly rough ,surface. The medium is taken to be an 

ideal fluid defined by its density p and compressibility K . The set of 

parameters defining the surface is composed of two sub-sets which are 

taken 	to be independent. The roughness of the surface is given by the 

statistical parameters which describe the random height process. The 

material parameters are the other set which complete the description of 

the surface. These parameters can also have a random variation; however, 

the material is taken to be homogeneous and is defined by specifying 

the Lame constants X ' and a,. For the ideal fluid, the rigidity, p., is 

zero and X ' = K. 

The acoustic field in an ideal fluid is scalar and is defined 

completely by giving the pressure 0 . This is seen from Constant[19541 

who gives the following equations which describe the acoustic field 

CD 

where v is the velocity vector which has its time derivative given by 

the gradient of the scalar pressure. From these equations, the wave 

equation for 0 is obtained; this is 
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Therefore, the solution to the re-radiation problem is a scalar quantity 

which must satisfy the wave equation; at the bounding surface of the 

fluid the situation is more complicated. A scalar wave propagating in an 

ideal fluid and incident upon the boundary of a solid excites both scalar 

and vector (shear) waves which propagate in the solid, which is taken 

to be infinte. 
The boundary conditions that the solution must satisfy are that 

the normal stresses and the normal velocity are continuous across the 

interface and the tangential stress goes to zero[Ewing, jardetsky, and 

Press, 1957]. Since the tangential stresses are zero at the surface, 
"slippage" occurs. 

The acoustic wave incident upon the rough, planar surface, 

z= (x, y), (see figure 1.1) is taken to be a plane wave 

where k 2cos E, +cos , -Otycco) ) is the 

incident wave vector, k is the wave number and fl = ' +tz. 

is the radius vector of the coordinate system. Harmonic time variation 
of the form e iLt is assumed. The total field at the observation point 

P is 

where 0 r is the field re-radiated from the surface and is the quantity 

to be determined. 

The calculation of the re-radiated field is one which has been done 

many times in many different ways, both for the acoustic case and for the 

more complicated electromagnetic case as well. In general, techniques 
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Figure II. 1
 

used for the one case are applicable for the other. These techniques 

can be roughly classed into two areas with, of course, some important 

exceptions. These two classifications are: the Rayleigh method, named 

after Lord Rayleigh, and the physical optics or Kirchhoff method. The 
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several methods of calculations falling into these two broad classifications, 

as well as others, are discussed and compared in a review paper by 

Lysanov[1958] and in a book by Beckmann [1963]'. The methods which are 

Rayleigh methods and several others are discussed here to show the rela­

tion between ihese'methods and the method of physical optics which is 

discussed extensively and used in the next section. The methods dhosen­

for discussion and comparison were selected to be illustrative and not 

because of any special relative importance. There are several other methods 

not presented such as those of TwerskyC1951a]and Ament [19561 which are 

important but are sufficiently different in approach so as not to contribute 

materially to this discussion. 

The Rayleigh Method 

The Rayleigh method utilizes a superposition of plane waves to 

express the field re-radiated from an uneven (not necessarily -randomly 

rough) surface,. The technique was introduced by Rayleigh C1896] who was 

concerned with the reflection and scattering of normally incident acoustic 

waves from periodically uneven surfaces. This method was extended to 

angles of incidence other than normal and used by La Casce and Tamarkin 

[ 1956] for the prediction of results of an experiment in which sinusoids 

were used as the reflecting surface for acoustic waves. Meecham[l956aJ 

used a variational technique to improve the accuracy of the solutions and 

Parker [ 1956] has generalized the method for the acoustic case by intro­

ducing integral transform techniques. Rice [1951], working with electro­

magnetic waves, extended the method to randomly rough surfaces and 

Lapin [19641 has done a similar thing for the acoustic case. 

The rough surface is expressed in a Fourier series
 
co
 

-5( )y) Z (nn) exrC -Lci (vvi x+ ny)} 

where a = ir/\_ and -A- is the wavelength of the fundamental 

component which is considered arbitrarily large. The field re-radiated from 

r(xy) is 
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where 

For each set of integers (m, n), there is a plane wave of amplitude A mn 
traveling in the direction given by the direction cosines 

cos-G,=0 1 c>s -E-07 OM COSeOrz Re b(wy)f) 

k k k 
For a randomly rough surface, P(m,n) and the A become statisticalmn 
quantities. At the boundary, K(x,y), the boundary conditions on the 

total field are applied; from this a set of linear equations in the unknowns 
A is obtained. In general, this set is not solvable and approximationsmn 
must be made. To obtain an approximate solution, it is necessary to. 

require that 

tx)kI y___<< y)__ <K< 

For the randomly rough surfaces, the approximate solution for fr is used 

to compute the statistical quantities which complete the description of 

the re-radiation. This is done by making use of the statistical properties 

of the P (m, n). 

The Rayleigh. method, as far as the formal technique is concerned, 

is an "exact" one; i.e. it does not require the use of approximate boundary 

conditions (as the physical optics method does). However, the method is 

restricted in its application to surfaces which are gently sloping and 

have deviations small relative to a wavelength. 



The Integral Equation Method 

The integral equation method makes use of Green's theorem to 
obtain an integral equation for the field on the irradiated surface. The 

kernel of this equation, upon solution, is integrated over the surface to 
obtain the re-radiated field. Lysanovf1956] and Meecham[1956J, 

working independently, developed this method for the acoustic case and 
the electromagnetic case when the incident wave is horizontally polarized 
and applied it to surfaces which are periodically uneven in one dimension 

and perfectly reflecting. 

The re-radiated field at the observation point P is written as an 
integral using Green's theorem [Stratton, 1941] ; this is often called 
the Helmholtz integral and takes the form 

where Q is the source point on the surface of integration S , G(PI Q) is 

the Green's function for free space, (Q) is the total field on the surface, 

V Q is the gradient operator which operates on points at the surface and n 
is the unit r )rmal of the surface. For three dimensional problems the 

Green's function takes the form 

_.s k12o- r kR. 
(p(Q) = E-e 11.2 

where R is the vector from Q to P. The total field at P is the sum of 

the incident and re-radiated fields; this is 

<P(P) = ')L(P) -+ r(P) 

- -4-4)?i(P(Q) ]4,Js 
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When the observation point becomes a surface point, eq. (II. 31 becomes 

an integral equation with the unknown being the field on S . When the 

field and its normal derivative on S are known, 0 r (P) is found using 

eq. (11. 1). 

The integral equation is greatly simplified if the surface is one 
=for which 4 (Q) 0 , or a free surface. For this case, eq. (I1. 3) becomes 

-4-T f ftP Q7 fq.cS 

S 
where t s denotes evaluation on S . The unknown for this equation is 

17Q 0 (Q) and solution for this quantity completes the problem, for again 

Sr(P) can be found using eq. (I1. 1). The solution for 17Q (Q) can be 

accomplished using a Wiener-Hopf technique[ Morse and Feshbach, 1953] , 

but it is first necessary to approximate the kernel. The approximation, 

as in the case of the Rayleigh method, leads to a restriction in the application 

of the method to moderately smooth surfaces. Meecham shows for the two 

dimensional case that the surface must be one for which 

Lysanov, quoting work not available, obtains a different condition for the 

same problem; he requires 

Also, from the above, the method is not applicable to surfaces that are 

not free. 

The Method of Small Perturbations 

The method of small perturbations is a technique by which an 

approximation to the field on the mean surface is found and used in the 

Helmholtz integral which now is an integration over this mean surface. 

Miles [19543 has used this method in studying acoustic re-radiation and 

Bass and Bocharov 19571 and Feinberg[ 1951] have applied it to the 

electromagnetic case. 
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The approximate field on the mean surface is found by making a 

transfer of the boundary conditions to the mean surface from the perturbed 

surface and then performing an iteration of solutions. The transfer of the 

boundary conditions is accomplished by expanding the total field, 0 , in 
= a power series about the mean surface z M = 0 with respect to z = 51,) 

and then substituting this series into the boundary conditions on z =,yyy), 

The series for 4 is 

The solution for the total field is taken to be 

where 4 0 is 0( °) (this is the sum of 4, and its specular reflection fromt 

the mean surface), 4 (1) is 0( ' i), etc. In the iteration of solutions in 
(1 (o) (2)

the transferred boundary conditions 4 is found in terms of 4 , 4 in 

terms of 4 m1), etc. 

The success of this method depends upon the deviations from the 
'mean surface being small; Miles found that it was necessary to require 

y< 0'50SIk' ( j&7c)y) x,y) j c r 

Therefore, this method is restricted to the same class of surfaces as the 

Rayleigh method and the integral equation method (Lysanov's class of 

surfaces is different, however) and there is, perhaps, nothing to recommend 

one of these methods over the other. The essential difference between 

the methods lies in the treatment of the boundary conditions. The Rayleigh 

method uses the exact boundary conditions and an approximation is 

required to obtain a solution. The integral, equation method and the method 

of small perturbations are techniques in which approximate fields on the 

boundary are, determined and then used in the Helmholtz integral. 
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II. 	 B The Method of Physical Optics and the Consideration of Imperfect 
Reflectivity 

The re-radiation of waves incident upon a rough surface cannot be 
determined by the Rayleigh method or by any of the other methods described 

above when the surface irregularities are not small relative to a wavelength 

(Lysanov's method is an exception). This restriction limited greatly the 
scattering and reflection phenomena that could be described and predicted 
until the development of a method by Brekhovskikh [1951) that allows the. 

treatment of large-scale roughness. This is the method of physical optics, 

often called the Kirchhoff method because of the similarity to Kirchhoff's 

postulate in diffraction theory. 

Because of its applicability to large-scale roughness, the 

Kirchhoff method has been used often in the solution of practical problems, 
mostly in the area of electromagnetic scattering with rany applications to 

scattering from the moon. An early application was that of Isakovich [1952) 
who was the first to apply the method to the scattering of acoustic and 

electromagnetic waves from randomly rough surfaces, Brekhovsklkh's 
treatment being restricted to regularly rough surfaces. Working in the 
area of acoustics, Eckart [1953] used the method to describe scattering 
from the surface of the sea. Davies [19541, in the first use of the method 

to predict radar return from natural surfaces, obtained a rough description 

of his own data on sea clutter[Davies and McFarlane, 19463. Several 
important developments in the method were made by Hoffman[ 1955blwhbse 

results are used later in this chapter. Use of the method in predicting 

radar return from the earth was made by Hayre and Moore [19613. Applica­
tions to lunar scattering have been made by Hughes [1961), Hayre [1961 3, 
Hagfors[1961, 1964], Daniels[1961, 1963), Fungi19641, Fungand 

Moore [1964) and Beckmann[ 1964J. 
The method of physical optics is based on the assumption that the 

incident field is "locally" reflected at a point on the irregular surface as 
if an infinite plane were tangent to the surface at that point; this is known 
as the "Kirchhoff Approximation. " Clearly, this fundamental assumption 

does not restrict the method to roughness of any particular size relative to 
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a wavelength; it does, however, restrict its use to surfaces which are 

"locally flat" with respect to a wavelength. Brekhovskikh's criterion for 

applicability is 

4VTP~co3s r-)>t' 

where Rc is the radius of curvature of the surface at the point, e is the 

local angle of incidence that (-kI) makes with the unit normal nt, and k 

is the wavelength. If the material parameters are allowed to vary, a 

restriction as to their variation must also be made. 
There are several complications of a fundamental nature that arise 

in the use of the Kirchhoff method. One of these is the occurrence of 

multiple scattering, or secondary reflection. The method does not deny 
the presence of multiple scattering but, at present, there is no way to. 

take it into account. All earlier applications have neglected it and this 

is done here. The other methods described above allow multiple scatter­

ing and tacitly account for it. The second complication is that of the 

over-shadowing of one part of the surface by another and the consequent 

reduction of the irradiated area, particularly at low grazing angles. 

Beckmann[1964] and Bass and Puks [1964] have recently investigated 

this. In the work here, restriction is made to surfaces smooth enough 
to allow overshadowing to be neglected. 

The total field at a point on the irradiated surface is written as 

the sum of the incident field evaluated at this point and the "local" 
reflection of the incident' field. This is 

c I~#( I 11.4 

where P- is the "infinite plane" or Fresnel reflection coefficient [Stratton, 

19413. In general, for a wave incident in an ideal fluid upon a semi-infinite 

solid surface, the reflection coefficient is [Ewing, lardetsky, and Press, 

19571 

{[caQ ­9 ~ +t4Cd4(+A -j4cdeJ 
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where c = 

Sir) -& 

d / %;K pJsv.}­

a = co+- e 

where the primes refer to the parameters of the solid and e is the local 

-angle of incidence defined above. The unit normal is 

-,C -ZX -rZy -- t 
n/ + 2'+ ­

where Zx and Zy are the partial derivatives of z with respect to x and. 

y, respectively, and z = ' (x,y). Since 5 (x,y) is a function of position 

on the surface, i is also and, consequently, 0 and ' Therefore, 
the reflection coefficient is a random function of the random variable
 
and, through this functional relationship and that of eq. (I. 4), the
 
total field on the surface becomes a random variable. This was first
 
pointed out by Brekhovskikh and later by AksenovE 1958] and Kovalev
 
and Pozdnyak [1961]. -


When the total field on the surface is known, the re-radiated 
field at P is given by the Helmholtz integral; using the three dimensional 
Green's function given earlier, this gives 

SS1. 

where b (Q) is given by eq. (II. 4). At this point, the analysis is usually 
specialized to a perfectly reflecting surface; i. e., one for which fl( 1. 
However, this specialization can be avoided if the dependence of r upon 
Z and Zy is brought out and made use of by expanding U in a Taylor series 
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in Z and Zy about the mean angle of incidence, a. For most surfaces 
of interest, this is the angle between (-kl) and Z . A similarthing has 
been done for the electromagnetic case by Kovalev and Pozdynyak[19 61] 
and Fung, Moore, and Parkins, [1965]. The expansion is 

f ~-)= £ c)+BI)CZx -i+ Z 4- aZ 
2±-- x , + Z a_ +I. 11.7 

where 

x /X~o8 = z ) @/CoX < a 2yZr~o Z~o z= 

The coefficients in the expression are not necessarily sniall. This is 
probably best seen by considering a surface rough inonly one dimension. 
In this case the B's are approximately the slope and higher derivatives of 
the curve of reflection coefficient against angle of incidence, which is, 
in general, complicatedEErgin, 1952] . Using eq. 's(11.4) and (II.7) in 

eq. (II. 6) and specializing to the far field where k >>1Rqi give s 

-Bjxx-B- WP~ +ZC4fiZ*~z 4s~tj 

+ -0(1-)4Bw~y+ . 8Bi(;'t 

11.8 

TRwhere It0 =-R The surface is now restricted to be an aperture of a 
size sm.all enough to permit the approximation 
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yet large enough to have sufficient variation to define the random process 
of the surface. Substitution of this approximation into eq. (II. 8) gives 

the result 

'k(P) qs+4 o 1 { L )Er )axzsz.J 
S 

- +" es ixZ×+ -- " (yZ. - 3ix Z .S 

where = - Z 1 , and the variation of R is considered to be important 

only in the exponential. Eq. (II. 9) is the far field expression for the 
re-radiated field which results from the use of the method of physical 

.optics. 
The transition from physical optics to geometric optics, and to 

some techniques of calculation[Muhleman, 1964], is made by applying 
the method of stationary.phase[Wilf, 1962] to eq. (11. 9). The integral 
for 0r(P) has a stationary point whenever the exponent 

= Kcx K2.Z/+ (K - ,'x +(k 7 - 1c9+ (koz- i-)Z 

is such that 

_-_. _ _ _, = o 

The condition for stationarity at a point is then 
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or the two conditions 

b -Oxy)_ (Lkeo -Liz) __ >,_ (koL -k) 

must be satisfied simultaneously at a point (x,y). Applying these conditions 

to the expressions for iT , eq. (II. 6), it is easily shown that the stationary 
points 'are those points that have a normal with the property that 

-:t = -t-t 
These are the points at which the fundamental laws of reflection are 
satisfied relative to the observation point P . For example, in the 
specular direction (kox= klx , koy = kly , koz + klz= 0) the conditions 

for a stationary point lead to 

03' Y '9(Thy) -o 

-or only those parts-of the surface which have tangents parallel to the 
mean surface (taken to be z = 0) contribute and the reflection coefficient­
is that for the mean plane taken at the angle a . For the backscatter case 
(ko= -Z ),, the reflection coefficient is that fdr normal incidence and only 

those regions which have normals oriented back towards the source make 
a contribution to the return. 

The method of stationary phase is not an exact one and the results 
obtained are only approximate. Wilt shows that the correction term to 

-
the first approximation is 0(k 3/ 5) while the approximation itself is 0(k-i/2 

therefore, a large value of k is needed for a good approximation. To 
apply the method of physical optics it is only required that 

4-W 2cCa -e- 2 
or 
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which can be satisfied for small k as long as the radius of curvature is 
large enough [Fung, Moore, and Parkins, 1965] . Therefore, physical 
optics 	cannot be supplanted by geometric optics except under certain 
circumstances, and methods which do so must be carefully applied. 

II. 	 C The Average Power and its Separation into Scatter and Specular 
Components 

The field re-radiated from the rough surface, ' r' is a complex 
random variable which depends upon the random process z = y(xy). 
The statistical description of the re-radiation is facilitated by a resolution 
of Or into two component fields: the specular, or coherent, field and 
the scatter, or incoherent, field[Twersky, 1963], [Moore, 1957], 
[Hayre, 19623. The specular field is defined as 

K< 	 II10 

where the brackets denote the configuration average which is taken over 
an ensemble of surfaces. The term coherent is appropriate since B 
and b are determined experimentally in the same manner as for steady, 
coherent fields. Using this definition of the specular field as a basis, 
the scatter field 4s is defined as 

4'< r) 4 s $=DS 	 11 

where < s> = 0. The intensities of the two component fields can be 

shown 	to obey the relation 

where the asterisk denotes the complex conjugate. The average far field 
power density of the re-radiated field is given by 

_ I1..12a 
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where Z. = p which is real for the ideal fluid assumed here. In 
terms of the specular and scatter intensities, this is 

<P> (..L& j- 11.13 

The expression for the far field power density is obtained by using 
eq. (11. 9) in eq. (II. 12b). This calculation is done under the restriction 
that the surface is smooth enough to neglect the second degree terms 
of the surface in the expression for Or' Using the expression for the 

differential area 

cS=dxXy I ZjZ
 

and the expression for n given earlier, the power density is, under this 

restriction 

p ZO(, fiz+ ko akP&(Loz.kiL) 

A-Z ' 1 *Ooz -kiz) +r< u>+y 6j] 

+4Z 3Z~~ -K) + 2 " )(n -ox)­
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Using the coefficients defined in Appendix I, this is rewritten as-- _ri115-r -rt +o
 
~S S'
X -AZK 7­

+ -%ZxZ' Y qa-% Z ,Zy' -4- .., 

II. 4 

The average of p is a configuration average, to be done over 

an ensemble of surfaces. The random height process, is assumed, to be 

ergodic and the mean is taken by averaging "along" the process. The 

process is assumed to be a "single" one as opposed to a composite surface 

made up of a sum of sub-processes as discussed by Isakovich [1952J and 

Beckmann [1964]. The problem of averaging is further simplified here by 

making the additional assumptions that the random height process is 

stationary and Gaussian with the parameters being the standard deviation 

of heights, a, the mean, and the autocorrelation coefficient, r . The 

mean is taken to be zero with no loss in generality. The assumption of 

a Gaussian height distribution is justified by the results of measurements 

made on the experimental surfaces, as described in Chapter III. The 

assumption of stationarity for '(x,y) is, perhaps, not wholly warranted 

in almost any practical situation but it is necessary to make it here to 

obtain tractable expressions for < p> 

The average of p is carried out using the work of Hoffman [1955b], 

the pertinent parts of which are detailed in Appendix II. Making use of the 

.assumptions of ergodicity and stationarity and the expressions in Appendix II, 

the average of the power densfty given by eq. (1I. 14) is 

<P> Z-( " j k / a., _ 2liC 
AA 

-_4 
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II. 15 

where the change of variables 

has been made and the aperture has been taken to be square with dimension 
2.1. This expression is still general in so far as no explicit assumption has 

been made regarding the autocorrelation coefficient r , except that it must 

fall off quite rapidly relative, to the dimensions of the aperture in order 
that the random process,5 (x,y),be defined and the average determined 

with high confidence. It must also, because of the stationarity assumption, 

be a function only of u and v not of x and y; i.e. , the correlation of 
the heights does not depend upon absolute position within the aperture. 

The resolution of the average power density into scatter and specular 

components is completed by determining the specular power density and 
then .using eq. (II. 15) to find the scatter power density. From eq's. (II. 10) 
and (II. 13), the specular power density, < p> sp' is 

<P>,e t K<zo I1.16 

Making the same approximations on eq. (II. 9) that were used in obtaining 

eq. (II. 14) and using the results of Appendix II, the average field is 
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Therefore, the specular power density is 

KP>sK= L( II. 17' 

for a square aperture of dimension 21. Davies [19543 has obtained a similar 

expression.
 

The effect of the roughness, as described by the parameters ar and 

r, upon the relative magnitudes of the specular and scatter power densities 

is determined using eq. (II. 17). The power re-radiated from a smooth 

aperture is 

P~~~~~-fPsf = y' 

where the integration takes place over the halfspace above the aperture 

(in the far field). The specular power re-radiated when the surface is 

rough is given by this same integral with a 0. The ratio of the latter to 

the former is not greater than 

exjF vwo- Cn. 

Therefore, as a increases and the surface becomes rougher, a smaller 

fraction of the incident power is specularly reflected and an increasingly 

larger amount is scattered. When (17Co z)_ is about 

five or greater, for most practical purposes, there is total conversion to 

scatter power. It is important to note that this conversion depends only 

upon a and not r. 

Clearly, the occurrence of 
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as the roughness increases denotes the total conversion to scatter 

power. At this point, the field is given by 

9c Kr= + D&i
 
d
 

as described above. Beckmann r1963] has shown that the amplitude D 

of the scatter field is Rayleigh distributed; i.e. 

fo D,<o 

where ( denotes the probability density function, and the phase, d 

is uniformly distributed from zero to 2 iz. The uniformity of the phase 

distribution indicates that the scatter field (now the total field) is given 
completely by its intensity which can be found from eq. (II. 15). 

The-resolution of the total power density into components is 
accomplished in a more straight-forward manner by operating directly 

on eq. (II. 15), although it is necessary to make use of eq. (11.17). The 

exponential in the integrand of eq. (II. 15) is written using a power series 

as 

e ) -- 11.18 

Similar expansions have been made but in a more specialized way by 

Clarke[1963a] and[Fung 1964] . Using this expansion in eq. (i.IS), 

the first term of the integral becomes 

-A -A x- /-. •11.19 



26 

The zeroth term in this infinite series of integrals (after interchanging 

summation and integration) is recognized from eq. (II. 17) to be the specular 
power density. The other terms in this summation beginning with n = 1 

and the remaining terms in the integral are scatter powerdensity terms. 

The terms in eq. (II. 19) starting with n = 1 comprise what is often called 

the- "quasi-specular" term primarily, it seems, because it does not 

involve the partial derivatives of the surface. 
The expression for specular power density obtained from eq. (II. 18) 

=does not contain the autocorrelation coefficient (because it is the n 0 

term); however, all other terms, the quasi-specular and the partial 
derivative terms, do. Because of this, the integrand of the integral for 

the scatter power density falls off as the distance from a point on the u, 

v surface increases as long as the partial derivatives of the auto­

correlation coefficient and their products are approximately of the same 
order as the autocorrelatlon coefficient itself. Assuming this is so, the 

integration over u and v is therefore a summation of the contributions 
made by the elements of the surface over which there is correlation of 

surface heights. Because r is a function of u and v only, the inte­

gration over u and v is a function of x and y only through the 

limits. This function, again because of the assumption of stationarity, 

is a constant function of x and y with variation only near the edge 

of the aperture. This variation constitutes only a small fraction of the 

total because the aperture is assumed to be large relative to the decay 

of the autocorrelation coefficient. Therefore, the integration over x and 

y is a linear superposition of the contributions from all parts of the sur­

face with the portions from the edges being small providing the aperture 

is large relative to the variations of the surface. This is in contrast to 
the integration for the specular power density from which it is seen that 

the re-radiation from the different regions of the surface must add in 

phase to constitute a return. Also, it is this linear superposition of 

powers from regions of the surface that marks the difference between 

scattering from surfaces that are randomly rough and those which are 

regularly rough. 
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II. D The Average Differential Scattering Cross Section and its Calculation 

When the conversion to scatter power is complete, the specular 
field being essentially zero, the re-radiation is described completely by 
giving the variation of its intensity or scatter power density as a function 

of the angle of incidence and angles of observation. This variation is 
given in a very meaningful way by introducing the average differential 
scattering cross section [Kerr, 1951] . This quantity is defined as the 
average power scattered per unit solid angle, per unit incident power 
density, per unit area of the mean scattering surface, and is usually denoted 
by cao . This definition is motivated by the fact that power is scattered on 
a per unit area basis for a sufficiently rough surface, as described above. 
Clearly, the differential scattering cross section cannot describe the 
re-radiation when both specular and scatter components are present; how­
ever, the definition can be applied to the scatter component only and a 
reflection coefficient introduced for the specular component. 

Assuming the specular component is negligible, the expression 
for ao is obtained by applying the definition to eq. (I. 15). In making 
this application it is necessary to make several approximations. These 
are best made after eq. (I. 15) is simplified through a series of partial 
integrations. *The first and second derivatives of the surface with respect 
to u and v are written as 

I. 20a 
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II. 20b 

+ 1L -V,Ca. 

9+,K-

I. 20c 

Vf70
 

11. 20d 
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II. 20e 

Substituting eq. 's (II. 20) into eq. (II. 15) and performing the partial 

integrations gives F XJ , 

e%-t 

-K q , C-CL-Q'Q-+i 4-
cl,-t* r (a- Ore
 

at- r'A444eXyd
-7 

(xQ0-.Q-k xar 
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II. 21 

In Appendix III it is shown that because of the assumption regarding the 

decay of-the autocorrelation coefficient and its derivatives made earlier, 

the "integrated out" terms are of the order of the specular term or lower 

and hence negligible. The definition for cr is now applied to eq. (II. 21) 
by dividing by the incident power density, +11) Z0° / 2 , multiplying by ­2 

Ro and taking the integrand of the integral over x and y ; this gives 

a -L al t<X 
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II. 22 

where the variation of the integral with x and y is neglected and the 

integration takes place over the aperture. 

This expression for o is put in a more tractable form if the-region " 

of integration can be made infinite. The difficulty in doing this is that 

the specular component, while small and negligible, is not zero and will 

contribute. The n = 0 term of eq. (I. 19) (the specular term) upon 

integration over infinite limits will, in fact, yield a Dirac delta function 

which is a misleading result. The problem can be resolved in two ways. 

One of these is to use the expansion given by eq. (I. 18) and then simply 

neglect the n = 0 term when the region of integration is made infinite. 

The other solution is to approximate the autocorrelation coefficient in 

the exponent by the first several terms of a power series about u = v = 0; 

a similar thing has been done by Daniels[ 1961] , HughesE 1962] and 

Fung [1964]. The approximation is 

r~fA, (t u t A~ +U- 11.23 

where A1 and A2 are greater than or equal to zero in order that Ir( < 

near the origin. Of the two possible courses, the latter is chosen to 

avoid a series solution for a 0 . Substitution of eq. (II. 23) into eq. (I. 22) 

gives 

I) 

1 
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II. 24 

This approximation for ao is recognized to be the Fourier transform 
(within a constant, depending upon definition) of the integrand with respect 

to K and K x y. 
The solution for ao is completed when a choice is made for-the 

autocorrelation coefficient, the A's evaluated, and the integration of 

eoq. (II. 24) carried out. There are a rather.large number of possible 
autocorrelation coefficients from which to choose that have been success­

ful in describing stationary -rough surfaces [Hayre, 1962] . The choice 

is limited, however, to functions which can be closely fit at the origin, 

u = v - 0, by a small number of terms and that are of such a nature that­

the resulting approximation can be integrated analytically. The integration 
of eq. (II. 29) can be done analytically only when A1 of A2 is zero. The 
functions which give this tractability and at the same time are successful 

in the description of rough surfaces are the Gaussian function 

fr =a L 11.25 

where A1 = 0 and A2 1/L2 and the exponential function 

QKL ) 5 11.26 

where A2 = 0 and A1 = I/L. The quantity L- is commonly called the 
"correlation distance. " Clearly, any other function which has a linear 
or a parabolic behavior near the origin yields a result under the 
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approximation given by eq. (II. 23) which cannot be distinguished from 

that obtained using the exponential or the Gaussian functions, respectively. 

The calculation of ao for the approximation to the Gaussian 
function is made by substituting A1 = 0 and A2 = I/L 2 into eq. (aiI 24) 

and then integrating using the tables of Bierens de Haan [1939] . The 

result is 

K'i,<yq+q+ + Q 

II. 28 

The terms are arranged in the following order: the quasi-specular or 

zero degree term is first, the second and third terms are of the first degree 

arising from the first derivatives of the autocorrelation coefficient, gnd 

the remaining terms are of the second degree. 

The relative importance of the terms of eq. (II. 28) and the behavior 

of the important exponential factor are determined primarily by the magnitude 
of the quantity 2(ar/L) 2 and the manner in which Kx, Ky, andKaper 
as well as their variation. The quantity 2(a/L) 2 is the variance of 

surface slopes as they would be measured on a profile made along any cut 
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of the surface as discussed in Section III D. As the surface becomes 

smoother and the slopes smaller the variance of the slopes decreases. 

This results in the exponential factor decreasing more rapidly as the 

angle of observation is changed from the specular direction, where K = x 

Ky - 0 and the exponential is unity. Since all terms except the quasi­

specular term have either Kx or Ky or both as a factor and are therefore 

zero in the specular direction, the quasi-specular term is the dominant 

one and it takes on the maximum value for a0 because of the behavior of 

the exponential. As the angle of observation moves away from the specular 

direction, the other terms increase in size and.diminish the -quasi--specular 

term in importance. This is so because, roughly, the numerators of 

these terms are increasing and the denominators decreasing as the angle 

moves from the specular direction and decreases from the vertical. 

Finally, as the grazing angle is approached away from the specular 

direction, it is the second degree terms which dominate. This is so to 

the extent that K does not decrease to the point that Kzz is so smallZ 

that the approximation upon which the result is based is invalidated. 

The effect of the reflectivity of the surface at any observation 

point is determined by the relative size of the terms of eq. (I. 28). The
2 

constant a1 of the quasi-specular term involves only the value of the 

reflection coefficient evaluated at the angle of incidence measured with 

respect to the mean normal Z. The constants of all other terms are 

determined in part by the rate of variation of the reflection coefficient 

with angle of incidence. This means that the power scattered in the 

specular direction is diminished by a factor determined only by the 

reflection coefficient, and the magnitude of the reflection coefficient can 

be measured in a quite straight-forward manner. As the observation point 

moves away from the specular direction, the other terms increase in 

importance and the reflection doefficient, of itself, is no longer the 

determining factor. 

It is interesting as well as important to compare the result for 

the Gaussian correlation function obtained through partial integration to 

that result obtained through a direct integration of eq. (I. 20) after the 

approximation of eq. (II. 23) is made. Making this approximation, and 
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then substituting A1 = 0, A2 = l/L'2 , and eq. (II. 25) into the approximated 

integral and performing the integration gives the result (a- straight-forward 

but tedious process) 

-1 (K+ fr i-i ) 

6­a ­t-

(K2s-(X i614( L("%-Q i)/Um 4$& Uc 
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Examination of eq. (I. 29) shows that as the phase modulation, Kz a , 

increases and becomes large with respect to unity this result tends toward 

eq. (II. 28). This is as expected because for the "integrated out" term 

to be negligible it was necessary to require exp(-Kz2a 2)to become small. 
It is recalled that this is also a necessary condition for the calculation of 

the scattering cross section. 

The calculation of u for the approximation to the exponential 

correlation function proceeds similarly to that for the Gaussian function. 

Substitution of A2 = 0 and A1 = I/L into eq. (I. 24) and the integrating 

using the tables of Bierens de Haan £1939] gives 

0H-1 +~KCL(QI14%4oC a ) 

a -L-l-a+ic 

L 
I. 30 

where the arrangement of the terms is like that of eq. (I. 28). 
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The behavior here is similar to that obtained using the Gaussian 
function in that the quasi-specular term dominates in the specular direction 
and then diminishes in importance at side and backscatter with the 
attendant effects due to the reflectivity of the surface. The quantity 
which determines the rapidity with which a0 falls off as the angle of 

observation changes from the specular direction is not the variance of 

slopes but is instead. 

This, perhaps, can be considered to be indicative of the roughness-in 
two ways: one of these is through the "slope" a/L , and the other is 

through the phase modulation Kz aa 

A very tangible difference between the two results, eq. 's (II. 28) 

and (II. 30), is in the behavior in the specular direction. The Gaussian 
result has no variation other than that due to the change in reflection 

coefficient with angle of incidence and for a perfectly reflecting surface 
would be a constant. This contrasts sharply with the result obtained 

using the approximation to the exponential function which has the variation 
of the reflection coefficient superposed on the go for a perfectly reflecting 

surfaces which increases with decreasing grazing angle. 
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CHAPTER III 

THE MEASUREMENT OF THE SCATTERING
 
CROSS SECTION AND COMPARISON WITH THEORY
 

III. A Historical Development of Measurement Techniques 

The re-radiation of waves incident upon statistically-rough surfaces 

is a problem that can be treated analytically in only a few cases. This 

is true principally for two reasons: Firstly, the present methods of 

analysis are applicable generally only when the wavelength is very large 

or very small relative to the size of the irregularities, as discussed 

earlier. Secondly, most of the naturally occurring surfaces are so complex 

that for many applications they defy analytical description, as discussed 

in Section III D. Because of these theoretical difficulties and the urgent 

need for answers to pressing practical problems, many past and present 

experimental programs have been undertaken. The vast majority of these 

programs, past and present, are to determine the characteristics of 

backscattered radar signals from a variety of rough surfaces. Despite 
this preponderance of radar backscattering experiments, there are few 

if any forms of scattering that have not received some strong experimental 

effort. 

A period of much progress, both in terms of results and measurements 

techniques developed, began during World War II with a series of "experi­
ments performed to determine the radar backscattering characteristics of 

the sea. The initial experiments of this series were done by the Radiation 

Laboratory of the Massachusetts Institute of Technology [Kerr, 19511 [Clapp, 

19463 [Cowan, 1946] and the Telecommunications Establishment of the 

United Kingdom [MacLusky and Davies , 1945] [Davies and McFarlane, 

1946] . Later measurements over the sea were made by Wiltse, Shlesinger, 
and Johnson[1957], Macdonald [1956] and Campbell [1958, 1959] . Grant 

and Yaplee [1957J have investigated backscattering from the surface of a 

river. Experimental programs now in progress are being conducted jointly 
by the Naval Research Laboratory and the Applied Physics Laboratory of 

the Iohns Hopkins University. 
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Following closely after the initial sea clutter experiments were 

the beginnings of large scale experiments to investigate the radar back­

scattering from the generally more complicated terrestrial, lunar, and 

planetary surfaces. The terrestrial measurement programs have been 

largely devoted to obtaining data from a wide variety of naturally occuring 

surfaces. Programs were established early by the Radiation Laboratory 

[Clapp, 1946] , the Sandia Corporation dison, Moore, and Warner, 1960J 
the Goodyear Aircraft Corporation [Reitz, 1958- , the Ohio State University 

[Cosgriff, Peake, and Taylor, 1957] , the General Precision Laboratory 

[Campbell, 1958, 1959 and the Philco Corporation (no reference available). 

Later programs were established by the Ryan Aircraft Company, the U. S. 

Army, and more recently by the University of Kansas. Radar investigations 

of the moon have been made with high frequency since the end of World 

War II. The earliest lunar explorations were made by an organization in 

Hungary [Bay, 1946] and the U. S. Army [Moffensen, 1946] [Dewitt and 

Stodola, 1949 . Since these, investigations have been made by groups 

in Australia [Kerr, Shain, and Higgins, 1949] [Kerr and Shain, 1951 

the United Kingdom [Browne et al., 1956] [Evans, 1957] [Evans et al., 

1959] [Hey and Hughes, 1959] [Hughes, 1960] , and in this country at 

the Lincoln Laboratory of the Massachusetts Institute of Technology 

[Pettengill, 1960] Evans and Pettengill, 1963] , the U. S. Naval Research 

Laboratory [Trexler, 1958] [Yaplee et al. , 1958, 1959] , University of 

Texas in conjunction with the Royal Radar Establishment [Straiton and, 

Tolbert, 1960 , and the let Propulsion Laboratory. Radar contact with 

Venus has been made by the Lfncoln Laboratory [Price et al. , 1959] and 

the beginnings of an exploration program carried out by the Jet Propulsion 

Laboratory [Victor et al., 1961] 
Although most radar experiments have been restricted to the back ­

scattering mode for reasons of practical application or because of necessity 

(lunar and planetary experiments), a number of investigations of the forward 

re-radiation mode (reflection and scatter) have been directed toward the 

solution of radio communication problems. A much smaller number have 

attacked the general problem of obtaining a complete description of the 

re-radiation from rough surfaces by making omnidirectional measurements 

of reflection and scatter. The problem of radio communication over a 

rough earth is an old one that has received much attention, both theoretical 
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and experimental, since before World War. II. A discussion of the experi­

mental techniques and results is contained in the book by Beckmann and 
Spizzichino[1963]. The general problem of radar scatter and reflection 
in all directions is one that has been dealt with experimentally only 
recently. Early experiments were done in the United Kingdom by Manton 
[19581 who made measurements of radar signals re-radiated from rippled 

water in a laboratory tank. Experiments carried out over a variety of 
surfaces have been made and are continuing to be made in a program at 
the Ohio State University[Taylor, 1964]. 

Paralleling somewhat the progress made in radar measurement 
programs has been the progress made in various programs undertaken, 
mostly by the U. S. Navy, to investigate by acoustical means the natural 
surfaces which are the boundaries of the ocean. These programs have not 
been nearly as numerous nor as ambitious as the analogous radar programs, 
although often the needs of the two sets of programs have been similar as 
are the measurement techniques themselves. Much of the work done has 
been directed toward determining the characteristics of the backscatter, 
or reverberation, from the ocean bottom at sonar frequencies (100 to 

40, 000 cps). Early work which took the form of backscattering from 
harbor bottoms was done by the Naval Research Laboratory[CUrick, 1953]. 
Later work has been done by ones et al.[ 1963], Mackenzie [1961] and 
McKinney and Anderson [1963]. Of these, the latter two have obtained a 
catalog of returns from a variety of bottoms. Nolle et al. [ 19 633 have 
performed experiments under laboratory condition with sands of known density 
as the re-radiating bottoms. A smaller number of experiments have been 
made on the surface of the ocean. Urick and Hoover[1956] obtained 
backscattering data as a function of wind velocity and Mellen [19643 
and Lieberman [1963] have performed measurements on doppler-shifted 
backscattered signals to investigate the spectral density of the wave motion. 
Additional data have come as a by-product of the acoustical simulation of 

radar return. The simulation program at the University of New Mexico 

[Edison, 1961] has given much information on the statistics of the signals 
backscattered from rough surfaces and also on the return from a variety 

of surfaces by way of determining materials suitable for modeling. 
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III. B The Technique of Measurement 

An experimental investigation of the re-radiation of waves, acoustic 

or electromagnetic, incident upon rough surfaces requiresin general, the 

description of both the reflection and scatter components of the re-radiated 

field. This is done through a determination of the reflection coefficient 
and the average differential scattering cross section for all angles-of 

incidence and observation as a function of the frequency of the, incident 

radiation. For the case of electromagnetic waves, the polarization of 

the incident and re-radiated fields must also be considered, as discussed 

subsequently. The case considered here is that of re-radiation from a 
surface sufficiently rough at the frequency used that the amount of energy 

reflected is negligible. Therefore, it is sufficient to determine only the 
scattering cross section. This is done as a function of the angles of 

incidence and observation (see figure I1. 1) through performance of experi­
ments based upon the equation derived from the definition of the average 

differential scattering cross section. This equation, which is commonly 

called the radar equation, or, depending upon application, the sonar 

equation, is for the general case of bi-static scattering considered here 

______ 	 1~~Ct dAIII. 

S 

where: < P( o' 0 1' 2)> is the average of the received power obtained 
over an ensemble of surfaces. 

PT is the transmitted power. 

GT 	(9T) is the gain function of the transmitting antenna (or 

transducer) which is assumed to be circularly symmetric 

and a function of T only. 

Gr (Fr) is the gain function of the receiving antenna, also 

assumed to be circularly symmetric. 

X 	 is the wavelength of the radiation, 

S is the mean surface upon which the radiation is incident . 
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The integrand of eq. (III. 1) is written in the following order: 
the first term is the incident power density, the second term is the 
scattering cross section, and the third term is the receiving antenna 
aperture divided by the square of the distance, which is the solid angle 
subtended by the receiving aperture. The incident power density is that 
of the spherical wave front at the surface as modified by the gain function 
of the transmitting antenna. it is recalled that the scattering cross section 

is defined on the basis of a plane incident wave front, primarily for 
mathematical simplicity. As long as the region over which there is 
correlation of surface heights is small 'enough so that the spherical wave 
front is approximately plane the difference is negligible. 

It is perhaps a misnomer to call eq. (III. 1) the radar equation 
because the vector nature of the electromagnetic scattering process is 
not evident in this equation. However, this phraseology has been used 
often in the past, and it has only been fairly recently that vector scatter­
ing has received much attention EThe Ohio State University, 1963]. The 
vector nature of the scattering is brought out by introducing separate scatter­
ing cross sections for the description of the fields scattered in and norma 
to the plane of incidence for each of the two orthogonal polarization com­
ponents. Clearly, there is no difficulty encountered in calling eq. (III. i)the 
sonar equation because of the scalar nature of the acoustic scattering process. 

Bi-static measurements of the differential scattering cross section 
can be made for both acoustic and electromagnetic waves through the use 
of a transmitting or receiving- antenna (can be both) that has a beam width 
(between -half power points) only several degrees wide. This enables the 
approximation to be made that the scattering cross section is constant 
over the area defined by the intersection of the cones of the antenna 

patterns and the mean surface S , which can be called the "effective 

illuminated area. " For the bi-static measurement considered here there 

is no time variation of the amplitude of the incident radiation over the 
effective illuminated area and the steady state is assumed to exist. This 
is shown in eq. (III. 1) by treating PT as a constant. This existence of 
the steady state in pulsed radar or sonar work is referred to as "beam 
width limitation. " This is to be contrasted with "pulse width limitation" 
in which the area defined on the ground by the antenna gain functions is 
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not completely illuminated at any instant of time due to the shortness 

of the physical extent of the radar of sonar pulse [Moore and Williams, 

1957] . 

Making the restriction of high directivity, eq. (III. 1) becomes 

III. 2 

It is convenient to normalize the average received power with respect to 

the power received upon direct transmission of the power PT. This 

power is 

-
=
I~~o T4.(0)G,_(o) 


III. 3 

where r is the distance of separation between the transmitting andn 
receiving antennas and GT (0) and Gr (0) are the gains of these antennas, 

respectively. Dividing eq. (11. 2) by the normalizing power, PD , gives 

Go<, oJr-Ja CYO (r A 

s r,rr?
 

III. 4 

where gT(i) and gr ("r) are the normalized gain functions of the antennas 

and have a maximum value of unity. The integration accounts for the so­

called "aperture effect" which is the processing of the scattered signals 

by.the gain functions of the antennas. 
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The determination of u0 for a set of angles (0 ' 02 ) is 

then a measurement of the average, normalized power and an evaluation 
of the aperture effect at this set of angles. The aperture effect evaluation. 

is a straight-forward calculation which is given in Appendix IV. The 

measurement of the average, normalized power is not so straight-forward 

and it is necessary to carefully design the experiment so that an accurate 

measurement results. It is critically important that the effective area 

illuminated be large enough to permit the surface to have a sufficient 

number of variations to define the random process. Clarke[ 1963a] has 

shown that the dimensions of this area should be at least ten times the 

correlation distance of the random process of the surface. Therefore, 

it is necessary as the beam width of either the transmitting or receiving 

antenna is decreased to improve the approximation of eq. (III. 2) to 

move the antenna back from the mean surface thereby increasing the 

area of the intersection between the mean surface and the cones defined 

by the half power points of the beams. 

1II. C 	 The Description of the Experimental Facility and the Conduct 
of the Experiment 

The aim of the experimental investigation is to obtain data with 
which the theoretical results of Chapter II can be compared. The experiments 

consist of the measurement of-the average differential scattering cross 

section of surfaces with known statistical properties and surface parameters. 

A complete set of measurements to achieve this goal would be the deter­

mination of 0 for all values of the set of angles (4o , !1 2) as a 

function of wavelength for a wide range of statistical paramet&rs and 

surface properties. This, of course, is very ambitious and a compromise 
was reached which was designed to bring out features of omnidirectional 

scattering considered to be most important and at the same time provide 

experimental results that could be considered predictable-from- the assump­

tions of the theory of Chapter II. It was decided to set aside the important 

question of frequency dependence and measure at a single frequency the 

a 0 of two surfaces that are smooth enough at this frequency to be called 

locally flat. The surfaces were chosen to be highly reflecting, different 
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in their statistical properties, and, at the frequency used, sufficiently 

rough so that reflection is negligible. The description of the surfaces 

and the measurement of their properties are given in Section III D. The 

series of angles at which co is measured is a compromise between 

complete description and undue work. 

The measurement of ao, as discussed earlier, requires the 

measurement of the average of the received power over an ensemble of 

surfaces and the measurement of the antenna gain functions of the 

transducers for the evaluation of the aperture effect. These measurements 

were performed at the acoustic facility of the Remote Sensing Laboratory 

of the Center for Research, Inc. This facility consists of a system of 

two water tanks (one serving as a reservoir) with the associated pumping 

system; a mechanical system for positioning transducers and providing 

motion of the rough surface targets; and an electronic system for the 

generation, reception and processing of ultrasonic signals. The 

arrangement of the equipment about the tanks is shown in figure III. 3 

and the tanks themselves in figure III. 2. 

The mechanical system shown schematically with laboratory 

parameters in figure III. 4 and photographically in figures III. 5 and III. 6 

is really two independent systems. One of these is the equipment used 

to align and position the transducers in the tank. The operation of this 

equipment is crucially important as the receiving and transmitting 

transducers must be "looking" at the same area of the mean surface of 

the target for all relative angular positions to make the evaluation of 

aperture effect practically possible. The other system is the rotary table 

that is used to rotate the target through the intersecting beams of the 

transducers thereby providing the ensemble of surfaces necessary for 

the calculation of the average of the received power. The axes of 

rotation of the transducer positioning system and the rotary table are 

offset as shown so that the illuminated area of the target changes as the 

table rotates. 

The electronic system shown in block diagram form with the labora­

tory parameters in figure III. 7 and photographically in figure III. 8 is 

composed of three sub-systems: the transmitting sub-system, the 
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The Ac6ustio Tanks and Peripheral Equipment
 
Figure III. 3
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receiving sub-system, and the data processing sub-system. The operation 

of each of these sub-systems in conjunction with the others is discussed 

in turn below. 

The transmitting sub-system consists of a pulse modulated sine 

wave power oscillator and the transducer which it drives. It is necessary 

to use a pulsed system instead of the simpler continuous wave system 

because the tank is not "dark. " The unwanted reflections from the walls 

of the tank and the surface of the water are gated out upon reception. 

These reflections, or reverberations, manifest themselves as a type of 

noise after several bounces; however, this was not a problem here because 

of the high signal level. The pulse width (PW) of the modulating pulse 

was chosen to provide the beam width limitation necessary to the measure­

ment technique. The width of 600 microseconds gave a discernible 

steady state condition for the extreme case when the depression angle 
= 
was 0 1 70' . The pulse repetition frequency (PRF) of the modulating 

pulse was chosen to produce a time series of statistically independent 

received pulses. This was a choice made relative to the choice of 

angular velocity of the target which was the low value of 3 rpm to minimize 

turbulence of the water. For this value of 3 rpm the PRF of 5 cps was 

sufficiently low to produce independent data points for the two targets 

used in the experiment. 

The source of acoustic energy was a piezoelectric crystal transducer 

of the piston type, shown in figure 111. 9. The transducers used were supplied 

by the Branson Instruments Company and have a nominal diameter of 7/8 

inches. The antenna patterns of the transducers used (several transducer 

failures occurred) were measured and each was found to have the same 

pattern (shown in figure III. 10) within the limits of experimental error. Also, 

the mechanical and acoustical axes of each transducer were the same. 

The antenna pattern predicted by theory for a piston transducer is (Morse, 

19481 

2 f-qkasine) 
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power averaged over the ensemble of surfaces generated by the rotating 

target as each pulse in the time series is energy which has been scattered 

from a part of the rough surface sensibly different from the remainder. 

The calculation of the average of the time series of RF signals in 

this way is achieved through a conversion of the series to a continuous 

waveform from which the time average of the power is obtained. The 

series of signals and the waveform to which they are converted are shown 

in figure I1. 12 (note the effect of beam width limitation). 

The conversion process begins by detecting the RF signal and then 

sampling each detected pulse during its steady state portion, thereby 

determining the voltage samples from which the average power is computed. 

The time of sampling is determined by the arrival of a gate pulse generated 

in the oscilloscope to intensify the screen during the chosen portion of the" 

waveform. The portion chosen here is from that part of the sigrial which is in 

the steady state. The series of voltage samples is converted to a series of 

do voltage levels with each voltage level being equal to that of the 

corresponding sample from which it is derived; This series of do levels 

is then made the input to the analogue computer which computes the time 

average power of the waveformT 

__T 

0 

which is equivalent to computing the arithmetic average of the power of 

each of the voltage .samples of dc levels. 

The practical application of this scheme of calculation was made 

taken at a point physically removeddifficult by the lact that the data was 

from the analogue computer by approximately one mile. This separation 

made it necessary to telemeter.the series of dc voltage levels to the 

analogue computer and then telemeter back the resulting answer. The 

of a telemetryinformation was sent,over the telephone lines by means 


system designed for the general transmission of analogue data.
 

on a relative basis
The calculation of the average power was done 

as the system was normalized with respect to a calibration power level. 

the power received by the receiving transducerThis calibration power was 


upon transmission of a given power level by the transmitting transducer
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one meter away. The procedure used in taking data was to read all 

calculations of average power from fading (scattered) signals relative 

to the average power obtained with the non-fading, calibrating received 

signal as the input. By following this procedure, the gains of the 

transducers and the transmitted power level were eliminated from the 

calculation of a 0 , and eq. (111. 4) was used directly with rn = 1 because 

it is <Pn(oo 1' 02 ) > that was measured. 

The measurement of the average received power is clearly a 

complicated process and therefore one in which the likelihood of experi­

mental error is high. The error occurring in the measurement process can 

be put into two independent categories: those generated by the electronic 

system and those which have their origin in the mechanical system. The 

experimental error due to the electronic system is believed to be negligible 

because of the many precautionary measures that were taken. Before 

and after each measurement run the receivng and data processing equip­

ment were calibrated on the power level of the power oscillator which 

was monitored throughout the experiment. If any change in calibration 

occurred, the data was discarded. The accuracy of the data processing 

equipment was checked several times by recording the fading signal on 

film and performing a manual calculation of the average power from which 

to make a comparison check. In each instance the agreement was good. 

The greatest source of experimental error is believed to be the mechanical 

system, and this was due to transducer pointing error. It is necessary 

that the transducers "look" at the same area on the mean surface (for 

the way aperture effect is evaluated) and this requirement is difficult to 

fulfill because of the small beamwidths. The transducer mounts were 

optically aligned, and the alignment was checked before and after each 

measurement run. The post-experiment alignment was frequently found 

to be poor with always some minor deviation which had an effect which 

is difficult to evaluate. 

To insure the quality of the experimental data, runs were repeated 

until agreement within a db between two runs was obtained. It was, 

however, not possible to do this for the data on which the results of figures 

III. 23 and III. 25 of Section III E are based because the experimental 

surface became badly cracked and unusable. These results are, therefore, 

possibly in error. Other results for this surface shown in figure III. 21 

are, however, based on repeated data and presumably good. 
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III. D Description of the Rough Surfaces 

The characteristics of the re-radiation of waves from surfaces is 

determined, in general, by the properties of two random processes. These 

processes are the variation of surface heights and the variation of material 

parameters. For most surfaces, natural and artificial, these processes 

are of such complexity they can be described in only a very approximate 

way if at all. The problem of description is complicated by the lack of 

statistical independence between these two processes and their non­

stationarity in space. A further complication is introduced by the possibility 

of a variation in time. Consider, for example, the problem of describing 

farmland on a large scale. Here the lack of statistical independence is 

shown by the fact that vegetation growing in valleys- differs from that on 

the crowns of hills. The non-stationarity of both processes in space is 

evident from the variety of farm crops with different surface textures and 

material properties and the variation in time is caused by the changing 

weather conditions. Because littleis known about the nature of spatial 

non-stationarities, the effects of the weather, and the dependence of 

vegetation growth upon surface structure, it would not be possible to 

obtain a description of the terrain even if there were a way to treat the 

statistical features of vegetation. 

There are, however, natural surfaces that are more amenable to­

mathematical description. The surface of the ocean has received much 

attention [Pierson, 1960] and progress has been made to the point that a 

prediction of radar return is now possible which takes into account, to a 

degree, the statistical features of the ocean's surface*. This case is 

much less difficult because of the simpler structure of the surface and 

also because the material variation is caused, primarily, by foam on the 

surface which is probably negligible for many problems. However, the 

spatial non-stationarity and the variation in time exist, and these are 

the phenomena which are of great interest to oceanographers. Therefore, 

even in the simpler cases, there is great difficulty in obtaining a description 

of the surface which has some degree of completeness. 

* Work now in progress at the Remote Sensing Laboratory of the 
Center for Research, Inc. 
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The surfaces used in the experiments were chosen not to have 

the general complexity of a surface generated by two random processes 

and the material variation was eliminated by using homogeneous materials. 

The goal was to construct stationary surfaces of roughnesses that could 

be described mathematically and also be smooth enough so that, at the 

frequency used, the locally flat approximation would be valid. To an 

acceptable degree, this was achieved. 

Two surfaces of different roughnesses and different reflectivities 
were constructed. One of these was made by striking mild steel sheet 

(of the kind used to repair automobile bodies) randomly with the ball (of 

approximately 3/4 inches) of a ball pean hammer and then gluing this to 

an aluminum sheet using a dense paste to eliminate air-pockets. The 

other surface was made by flowing grout over a sand surface which had 

been smoothed by coating it heavily with fiberglass. The sand surface 

was made by gluing sand particles to an aluminum sheet. The presence 

of the sand destroys, to a degree, the homogeneity of the surface 

material. The reflectivities of the surfaces were not measured, and 

because the targets were not infinitely deep, the reflectivities near 

normal incidence are difficult to predict. In fact, because of the type 

construction used in making the targets, the problem is not unlike the 

layered media problem with the surface layer being rough. 

The differences in the materials used to make the targets appear 

as differences in the critical angles for the two surfaces. The critical 

angle is the angle beyond which all energy is reflected and none refracted. 

At this angle the quantity 

in eq. (II. 5) becomes zero and with a further increase in e becomes imaginary 

causing I- i to become unity. Estimates of the critical angles for the 

two surfaceswere made by estimating the value of the phase velocities of 

the shear waves, ,F-j-p' , in the materials by using representative values 

of the phase velocities of the longitudinal waves, V ()'' , and 

assuming the Poisson relation, ( ')' to hold. P' The representative 
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values for the phase velocities of the longitudinal waves were taken from 

the Handbook of Physics and Chemistry [1960-1961] and are 5000 

meters per second for steel and 4000 meters per second for the rock­

like grout. Using a phase velocity of 1500 meters per second for 

water, the critical angles are (. = 30* (measured from the vertical) for 

the steel and O = 40* for the grout. 

The properties of the surface roughnesses of the two targets were 

investigated by making estimates of the probability distribution function 

of surface heights, the autocorrelation function of surface heights as a 
function of lateral distance, and the stationarity of the processes. These 

estimates were computed from series of sampled height measurements 
that were taken along profiles of each target. The measurements were 
made using a depth gauge mounted on a machined surface and driven by 

a lead screw mechanism which allowed the sampling interval to be 

varied. This apparatus is shown mounted over a target surface in figure 

111.13. 

Apparatus for Making a Profile of a Rough Surface
 
Figure 111. 13
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The sampled height measurements were made along several 
profiles of each target. The profiles were separated a distance sufficient 
(several correlation distances) to insure independence of the data points 
of separate measurement runs. The probability distribution function and 
autocorrelation function were computed for each of these runs as well as 
the mean, m, and standard derivation of heights, a. Similarity of the 

computed results from different parts of the same surface then gives an 
indication of the stationarity of the process over the surface. A serious 
difficulty encountered in making an estimate of the stationarity and the 
other functions as well was caused by the presence of large scale irregular­

ities created in the construction of the targets. These irregularities, which 

created what are called "regional slopes, " were of a lateral extent large 
relative to the variations of the surface and had the effect of causing the 
deformation of the mean plane into some other unknown surface. The 

"regional slopes" were not great enough to cause serious error in the 
measurement of the scattering cross section but did prevent, for some 

discarded profiles, an accurate determination of the small scale structure 

superposed on them. 

The estimate of the correlation function was calculated using the 

statistical estimator (the overbar indicates sample function) 

w-A-
N 

xlI. 5 

where: hi is the Ith height in the series of N points. 

1 isthe lag. 

A x is the sampling interval. 
N 

m = hi is the sample mean. 
t=1
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-2 
The denominator of eq. (III. 5) is the sample variance, a , or the square 

of the sample standard deviation. The maximum lag used in the calculation 

of r , as recommended by Blackman and Tukey[1958] , was N/1 where 

N was made sufficiently large for the particular sampling interval used 

to adequately define r . The criterion for the selection of the sampling 

interval, according to the sampling theorem EBendat, 1958 3, is that it 

must not exceed half the period of the highest frequency present in the 

record of the profile. For the surfaces used in the experiment, the value 

of Ax = 0.01 inches amply satisfied this criterion. The number of points 

taken in the measurement of both surfaces was 1000 which corresponds to 

a record length of ten inches. This provided a maximum lag of one inch 

which is sufficient to adequately define the falls of the sample autocorrelatlon 

coefficients. The one exception to this was a measurement made over the 

steel surface with a lag of 0.1 inches and a record length of 17 inches. 

This measurement was made to investigate the behavior of the autocorrelation 

coefficient at longer lag distances. The sample autocorrelation coefficients 

computed (by machine calculation) are shown together with the sample 

variances for each of the surfaces in figures 111. 14 and III. 15. 

The behaviors of the sample autocorrelation coefficients indicate 

by the smooth falls and following rises that the surfaces are gently 

undulating and, to a degree, periodic. The rises could not be thoroughly 

investigated in the case of the steel surface because of the regional 

slopes difficulty. The periodicity is evidence of the artificiality of the 

surfaces as the estimated period of the low frequency components was 

approximately the spacing between the surface variations. This estimate 

very gross for the steel target but easily made for the grout surface.was 

The presence of the periodicity indicates that the sample autocorrelation 

coefficients are probably not well described by any simple function[ Pierson, 

1960] . However, since this low frequency behavior is dominated strongly 

by the falls of the autocorrelation coefficients from the origin it is this 

region of the curves near the origin that was investigated. It was found 

that near the origin the sample autocorrelation coefficients are closely 

approximated by the function f_(_)3/ } 

although this is not shown in the figures. However, away from the origin, 
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all the curves but one fall off more rapidly than this and a better overall 

approximation is the Gaussian function 

t-=ex 

The probability distribution functions of the sampled heights were 

determined for each of the profiles for which a sample autocorrelation 

function was calculated. However, no calculation was done for the 

profile of the steel target .made with the larger sampling interval. These 

results are shown in figures 111. 16 through 111. 19 together with plots 

of the Gaussian distribution function 

H Xh-ni)la 

2 

obtained using for m and a values of the sample mean. m , and the-2 
sample variance, a . Comparison of the experimental curves to those 

calculated shows the near-Gaussian nature of the random height process 

as sampled from the four profiles. 

The estimates made of the autocorrelation function and probability 

distribution function are very similar from profile to profile for both of the ex­
perimental surfaces and the processes are considered to be, for practical ptir­

poses, stationary. Therefore, because of the Gaussian behavior of the sample 

distribution functions, the joint probability density function is, for 

both surfaces, approximately [Middleton, 1960] 

m;­

where, because of stationarity, m1 m2 = m, a 1 aa 2 = a and r depends 

only upon the relative distance between (x1 , yl) and (x2 , y 2 ). The values 

of a, m, and r used in this expression are averages of the values obtained 

from the measurements of each profile. 
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Since the random height processes for the two surfaces are, for
8h
 

the purposes at hand, Gaussian and stationary, the surface slopes, .­

where 1 is the distance along a profile of the surface, are, according 

to Middleton (1960) , normally distributed with mean zero and variance 

For a Gaussian autocorrelation function, the variance is 

Although, the sample autocorrelation coefficients are clearly not fit 

well by the Gaussian function, especially near the origin, the variance 

of slopes can be estimated by using the values of sample variance and 

the calculated L's, as given on figures 11. 14 and 1II. 15. For the steel 

surface, the values of the variance of slopes for the two profiles made 

with the shorter sampling interval are estimated to be 

3 3.72 x 10 3 
4.89 x 10 

with the average of these being 4.30 x 10- 3 . For the grout surface 

this estimate is more difficult to make because one of the curves is 

closely fit by the three halves power function. The problem is circumvented 

by sending a Gaussian function through the point r = l/e , and using the 

corresponding value of L (0. 26 inches) in the calculation of the variance 

of slopes. Doing this and proceeding as above for the other experimental 

curve gives the results 

33 6.84 x 1012.16 x 10 

with the average being 9. 5 x 10- 3 . Therefore, on the average, the grout 

surface is approximately twice as rough as the steel surface using the 

variance of slopes as a criterion. 
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III. E The Experimental Results and Comparison with Theory 

The experiment to determine the average differential scattering 
cross section as a function of the angles (0o, 1' 0 2) was performed in 
a way designed to show the characteristics of two distinct features of 

rough surface scattering. One of these is the nature of the scattering 
when the transmitter and receiver depression angles are held equal 

=throughout their variation (0 1 0 2) " This includes scatter in the specular 
0°direction (00 = ) and also backscatter ($o = 1800 ). The measurement 

of scatter in the specular direction as a function of depression angle is 

important because the differences in surface properties, both material 
and roughness, are so strongly evident there. Backscatter is, of course, 
important for practical reasons and also because of the large amount of 
accumulated data with which comparison can be made. The other feature 
of omnidirectional scattering which influenced design of the experiments 
is the nature of the scattering for one transducer held fixed in angular 
position (0 1 = constant) and the other variable. The behavior in the plane 
of incidence (0 0 = 00 ) under this condition is of interest because a 
comparison can be made between the results of La Casce and Tamarkin 
[19561 for scattering from regularly rough surfaces and those obtained here 
for randomly rough surfaces. 

The results of the measurements made with the receiver and 
transmitter depression angles equal are shown in figure III. 20 for the 
steel surface and figure II. 21 for the grout surface. These are curves 
with a 0 plotted against 40 with 0 1 = 0 2 varying parametrically. Comparison 
of the results for the two surfaces shows, at least on an intuitive-basis, 
that the grout surface is rougher than the steel. This is seen from the 
smaller values of a measured in the specular direction and also from the 
slower decrease of o with depression angle for angles away from the 
specular direction, although this is not as evident. The values in the 
specular direction for both surfaces are seen to be nearly constant with 
no discernible pattern to the small (on the db scale) changes. The results 
for the steel surface have an anomaly that is not present in the grout 
surface results. This is the crossing of the curves for angles 1 = 4 2 

.50* , 600 by the curves for lower depression angle i = 6 2 = 30 ° , 40 
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This is not believed to be the result of an experimental error because the 
experiments were repeated several times to observe this phenomenom. 

The experimental results for 0 1 held constant at 400 and 0 2 
variable are shown in figures III. 22 and III. 23 for the steel and grout 
surfaces, respectively. For these curves, c o is again plotted against 

o with 0 2 as the parameter. To show some features of these results 
with greater clarity cuts of q0 = constant were made in figures 111. 22 
and 111. 23 to obtain plots in which u is plotted against *2 with 00 as 
the parameter. These curves are shown in figure III. 24 for the steel 

surface and figure III. 25 for the grout surface. The results given in 
figures III. 22 and III. 24 for the steel surface are seen in greater per­
spective in the three dimensional representation of these results shown 
photographically in figure III. 26. The three dimensional figure is 
formed by the radius vectors emanating from the intersection of the 
principal rays of the antennas, which is the origin of the coordinate 
system of figure III. 1. The length of a radius vector is proportional to 
the a0 in db for the angles of observation (00, *2) in which the vector 
is oriented. The principal ray of the transmitting antenna which defines 

=the angle of incidence k 1 400 relative to the normal of the mean plane 
of the rough surface is depicted by the shaft piercing the figure. The 
view of figure III. 26a is that seen from the sidescatter position, 0 1 = 90r. 
The views of III. 26b and III. 26c are those seen from 0o = 450 and 
0o = 1350 , respectively. The results for the grout surface are not shown 
three dimensionally because of their similarity in form to those for the 
steel surface. The principal difference between the results for the two 
surfaces is that the peak of a. in the specular direction is more pronounced 
for the steel surface which indicates that the grout surface is the rougher 

of the two. The relative roughness is shown in another way by the 
vertical extent of the curves of figures III. 22 through III. 25; for the steel 
surface the values of ao vary over a 35 db range while the variation for 
the grout is only about 20 db. A peculiar feature which distinguishes the 
curves of figure III. 24 from those of figure III. 25 is the behavior far 
away from specular (0o > 600 ). For the steel surface there is an increase 
and then slight decrease as the depression angle increases while the 
grout surface has a general decrease with depression angle with a hint 
of an increase near 0 2 = 30° . It is recalled that these results for the 



72
 

grout surface are suspect (see Section III C) and perhaps no great amount 

of credence should be placed in this peculiar difference in the curves. 

However, considering the anomalous behavior of the steel target results 

mentioned above it is not unlikely that this is a similar phenomenom. 

The experimental results shown in figures I1. 20 through I1. 25 

were computed using values of re-radiated power that were assumed to 

be predominantly scatter. It is recalled that this is, in fact, a condition 

for computing a differential scattering cross section. The degree to which 

the power was being reflected was not determined and a separation into 

scatter and specular components is not possible. However, from Section 

II C it is seen that the factor of the specular power density 

111.6exp &-kt&} 
can be used to indicate to what degree reflection is occurring. Using 

average values of the variances given for the two surfaces in figures 

111. 14 and III. 15, the factor 111. 6 becomes 

exp( C1.5 (CO' tck&j 111s0,II.7a 

for the steel surface and 

O o z for the grout surface, where the conversion 0 2 = ' 1 = 180° - Olz 

has been made. For the depression angles 01 = 0 2 = 0 it is seen that the 

quantities Ill. 7 are quite small. However, for larger depression angles 

they increase in size and at 0 1 = 0 2 = 700 (the limit of the range of 

angles over which data was taken) become 

-4. 23 
e 

for the steel surface and 

-1.44 e 

for the grout surface. The factor for the steel surface is still quite small; 

http:111s0,II.7a
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Figure III. 26a
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Figure f.26c
 

Three Dimensional Representation of Omnidirectional Scattering
 



81 

e- X- axp s(-%1® -c~~s 6rj.z 

From this it is seen that the range of bracketing must extend from the 
origin where r = 1 to a point where r is small enough to make the 
quantity negligible. The values of a used in III. 8 in the determination 

of the range of r and those calculated for It. 6. Substituting these 

gives 

exp {r)Cs~cs> >n III.9a 

for the steel surface and 

Q2XP§t-&. (cs wcs# 7l III.9b 

for the grout. It is seen that the range of bracketing depends upon the 
angles of incidence and observation. To insure bracketing over the range 
of angles for which there is experimental data, the angles for the steel 

=surface are chosen to be 0 1 02 = 700 , and III. 9a becomes 

exp f-4.23 (1-r)} III. I0a 

A similar choice cannot be made for the grout surface because the 
factor of (l-r) becomes too small (from earlier, it is 1. 44) for even r = 0 
to make the exponential negligible, as required. It is this inability of 
the exponential to become negligible that leads to the appreciable specular 
component at these angles, as discussed earlier in this section and in 
Section II D. A marginal choice for the grout surface is 0 1 2 = 60; 
for this set of angles III. 9b then becomes 

exp {-3.1 (l-r} III. 1Ob 
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For the exponents of III. 10, the range of bracketing is chosen to be from 
r = 1 to r = 1/e; this choice is motivated in part by the fact that the 
Gaussian functions of figures III. 14 and III. 15 pass through these points. 
Therefore, the correlation distances for both the exponential and Gaussian 
function are those lag distances corresponding to the points r = l/e on 

the curves of sample autocorrelation function; for the two profiles made for 
each surface, these values are 

L= 0.26, 0.23 inches 

for the grout surface and 

L= 0.55, 0.70 inches 

for the steel. 

The other difficulty encountered in applying the theory is that 
the reflection coefficient is unknown near normal incidence, as mentioned 
above. Away from the vertical, past the critical angle, the reflection 

coefficient approaches unity and as it does so the surface becomes 
perfectly rigid. Because of this, the results of Chapter II are used under 
the condition that the surface is perfectly reflecting, and comparison is 
made between theory and experiment for angles past the critical. 

The expressions used in the comparison are eq. 's (I1. 28) and (I. 29) 
after specialization to the condition of a perfectly rigid surface. This 

specialization is made through the a's which become for r 1 

aI = 2k cos06z 

a 2 =-2k cosE ox 

a 3 ---2k cose oy 

Substituting these values and the expressions for the K's which are 

K = k(cosEox- cose k) 

Ky = k(cose oy - cosE91y) 

Kz = k(coseoz - coseiz ) 

into eq. 's (I. 28) and (I1. 29) and manipulating gives the results 
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+ -­{oCo 
<Tj- + Cose-ce a 

(ws e0 )-C eo.) 

C s &oz cos ' - q 

(Cos eox -Cos -&,x)W&ox 

+ (COS 0 
(C'±eo - '-' z01Z­

-4; (Wos eOX - W~S exj(COS&oS~-CPDi)coZ 

(ocs 00a ­ co-S z-a 

(COS -e0Y- C-s1 jxYZ, (CLSo-Ws0 

SCP ~ wa-e-, 4s (cos-04s&t 

fLt o 

e­-

~ XW& 

for the Gaussian autocorrelation coefficient and 
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9 0 -{cos&Oz= - (Los -eot- Ex ) cO's -eo S-eox.°s z- ++ ..('cos -eo-cOs CO>o-o cos eiz_) 

--(- (os 5 xz- ) cO.S 0 1)
 
(cos- -oz
-oS 0, 

-4- (co tx- COs e:ix
 
_-a,


aoZ4 Ds(cos - cos 

+ (ocseo)-O--- 0' 

4r 
coal&C - ag)(Cos (ox'Co.-eyOCos W4sGU}e lox 

r C 02- cOSo I 

cos~=F ' c. se cO~o c snD1in -Si 111.12 

for the exponential autocorrelation coefficient. The conversion from thefrrcos tz- -osg icSeos singo2 
direction cosines of the directional angles (Eox o epx' 0 auzz Ely 
to the spherical system (rt, upo venty
 

case) x coseoz cosO 2
 

case = - Ocase) cio40 sin4in z oy 0 

The values for the variance of slopes used in the expressions for a0 for 

the Gaussian autocorrelation function are those average values determined 

in Section III D for the two surfaces. The cr0for the exponential auto­

correlation function depends upon the quantity 
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The values of this quantity used in eq. 111. 12 are averages obtained using 
the variances for each surface given in figures III. 14 and I1. 15 and the 
correlation distances given above. These average values are 

x 1032.54 

for the grout surface and. 

x 1031. 872 

for the steel surface. 

The theoretical results for the exponential correlation function are 
shown, together with the experimental curves, in figure I1. 27 for the 
steel surface and figure I1. 28 for the grout surface for the angles 0,, = 

° , °210 3G , 50, 70'. Forthe angles 1 = 0 2= 20 ° , 4%° , 60' 
the results are shown in figures I1. 29 and 111. 30 for the steel and grout 
surfaces, respectively. A comparison between the experimental and 
predicted values for the steel surface shows that there is closer agreement 
for the angles I= 0 2 = 50' , 600 , 700 with the best agreement occurring 

for the two larger depression angles. For all smaller depression angles the 
agreement is not close especially in the neighborhood of the specular 
direction. As backscatter is approached, the agreement improves with 
the only serious difference occurring for the anomalous curves for the 
angles 1 2 = 300 , 400 . A comparison for the grout surface shows 

fair agreement between the predicted and experimental results but near 

specular there are wide differences especially for the larger depression 
angles where agreement should occur. It is clear that for both surfaces 
the theoretical results obtained using the exponential autocorrelation 

function do not generally give accurate predictions of the experimental 

results for angles in and near the specular direction. This is not surprising 
as the sample autocorrelation functions are not fit closely at all by the 
exponential function. What is surprising is the closeness of the agreement 
between theory and experiment away from the specular direction near 

backscatter. 
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The predictions of the experimental results made using the 

Gaussian autocorrelation function are shown in figure III. 31 for the steel 

surface and figure II. 32 for the grout for the angles I = 2 - 100 , 30, 

500 , 700 .- The results for the angles 1 = 22 = 200 , 400 , 60' are 

shown in figures III. 33 and III. 34 for the steel and grout surfaces,respectively. 

The predictions for each of these surfaces are shifted downward; for 

the steel surface each curve is smaller by the factor 0.5 than that calculated 

and for'the grout surface the factor is 0.22. It is seen that by doing this 

close agreement is obtained for both surfaces for angles that do not differ 

greatly (about 250 ) from the specular. However, far away from the 

specular direction, the theory disagrees greatly with the experimental 

results and is of little value. For angles less than the critical angle it 

is expected that the predicted values for C = 1 would have to be shifted 

downward. However, for angles beyond the critical this should not be 

necessary and there should be agreement on an absolute basis. Since 

the agreement is only relatively close, the use of the Gaussian auto­

correlation function is seen to lead to error in the specular direction as 

well as away from it, although to a much lesser degree. Also, the error 

is greater by about the factor two for the results for the grout surface 

than for those of the steel surface, which is expected as the steel surface 

is, from Section III D, described more closely by the Gaussian auto­

correlation function than is the grout surface. 

The theoretical results for k 1 constant at 40' are shown in figures 

III. 35 and III. 36 for the steel and grout surfaces, respectively, for the 

exponential autocorrelation function. The general agreement for both 

surfaces is clearly not good. The results for the steel surface give rather 

close agreement for the angles 0 2 = 500 , 60 0 , 70' ,but elsewhere there 

are wide differences. It is recalled that the agreement in figures III. 27 

and III. 29 is also closer for these angles than for others. The theoretical 

results for the grout surface would be closer to the experimental values 

if they were to be shifted downward by 5 db. A shift in either direction 

would bring no improvement to the results for the steel surface. It is 

important to note that the theory predicts for the grout surface the general 

decrease of cr0 with increasing depression angle, 0$2 , for angles far 

away from the specular direction, as discussed earlier in connection with 
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figures III. 24 and III. 25. The increase of a0 with depression angle 
observed for the steel surface is not accounted for by the theory. 

The predictions made using the Gaussian autocorrelation 
coefficient are shown in figures III. 37 and III. 38 for the steel and grout 
surfaces, respectively, for 1 a constant of 400 . The values for both 

surfaces are shifted downward by the same factors used for the results 
shown in figures 111. 31 through III. 35. By doing this, fairly close 
agreement is found for angles that are near the specular but elsewhere 
there are great differences; this is the same result as found earlier for 
the Gaussian function. The values for the steel surface compare more 
favorably with experiment than those for the grout. The predictions for 
the grout surface would be in closer agreement if all values were shifted 
downward an additional 3 db; that this is so indicates the possibility of 

experimental error, which is suspected for these results. 
In the comparison of the experimental results shown in figures 

11. 20 through III. 25 to the predicted values for both the exponential 
and Gaussian functions, several important features of the agreement 
between theory and experiment become apparent. The results based on 
the exponential autocorrelation function are seen to agree with experiment 
over a wider range than do those for the Gaussian function. It is 
surprising that this is so considering how well the curves of sample 
autocorrelation coefficient are fit by the Gaussian function. It'is true, 
however, that the Gaussian-based predictions give a better description 
of the experimental results in and near the specular direction, especially 
for the steel surface which has a sample autocorrelation coefficient more 
closely fit by the Gaussian function than the grout. It is this goodness 
of fit in and near the specular direction which is the principal success 
in the use of this function; its most disappointing failure is its inability 
to predict the experimental results at other angles of observation. It 
is in these directions, those away from the specular, that the results 
for the exponential autocorrelation function are most successful. These 
agreements (and disagreements) of theory with experiment are seen more 
clearly in figures III. 39 and 11. 40 in which the theoretical curves for 
both autocorrelation functions are plotted against the experimental results 
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=for both surfaces for 0 1 02 = 400 ; the results for the Gaussian function 
are shifted downward as before. Comparison is made for the steel surface 
in figure III. 39 and the results for the grout surface are compared in 
figure III. 40. The results for the two autocorrelation functions are seen 
to bracket the experimental values for the full range of azimuthal angles 

with the exception of the results for the grout surface in and near the 
specular direction for which the experimental values fall below the 
theoretical ones. This bracketing, which occurs for other polar angles, 
gives strong evidence from the viewpoint of comparing theory with experi­
ment that the true autocorrelation coefficient lies between the exponential 
and Gaussian functions. Since this is the case, it is concluded that 
the theory as based upon the Kirchhoff approximation is a valid one. 
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CHAPTER IV 

APPLICATION OP THE ACOUSTIC RESULTS 
TO ELECTROMAGNETIC SCATTERING 

Many of the radiation phenomena associated with different physical 
phenomena possess a high degree of similarity. A phenomenon such as 
diffraction is common to fields as diverse as acoustics and quantum 
mechanics. Advantage can be and has been taken of such similarities 
if they are sufficiently alike to permit analogue study. It is not even 
necessary for this to be -true to benefit, for if theories for two (or more) 
physical processes have a common foundation then a verification of the 
theory for one process implies general applicability. The principal 
reason for performing model experiments whether for the verification of 
theories or for making analogue studies is economy of effort. 

Acoustic model experiments have long been used to study a variety 
of electromagnetic problems. Jordan [19413 ; in an early application, 
made model studies of the properties of antenna arrays and Maestri [19611 
has modeled antenna radiation patterns. Meyer [1958] made use of the 
technique to study microwave surface reflection losses and Edison[1963] 
has used it to investigate scattering in turbulent media. Recently, 
Ayiku and Moore[19 653 have performed model experiments on knife edge 
diffraction in which both single and double edges were used. Probably 
the greatest amount of activity has been in the area of simulation of 
radar backscatter, the reason for this being the difficulty and expense 
incurred in performing full scale measurements [Moore, 1962]. 'Much 
of this work has been and is being done at the University of New Mexico 
where a number of simulation studies have been carried out. These 
studies include simulations of radar backscattering from several types 
of terrain including cities[ Warner et al. , 19621 [ Edison, 19613 , a 
simulation of the lunar radar echo[Hayre, 1962] and the modeling of 
the radar cross section measurement of geometric shapes [Koepsel and 
Ahmed, 1962]. A complete description of the modeling techniques used 
for radar backscatter as well as other electromagnetic problems is 
contained in the dissertation of Edison- 1961]. 



104 

A major difficulty in making acoustical analogue studies of some 
electromagnetic problems has been that the limits of applicability were 
not clearly defined. The reason for this is that the extent to which the 

scalar acoustic wave simulates the vector electromagnetic wave had not 
been fully described. In some-problems the vector nature of the electro­
magnetic wave is not imp6rfan't and can be neglected, a case in point 
being scattering in a turbulent inedium [Edison, 1961, 1963] . However, 
in other problems this is not possible. Consider the reflection of a 
plane electromagnetic wave of arbitrary polarization from a plane surface. 
The reflection is a vector phenomenon as the two polarization components 

are reflected unequally [Stratton, 1941] . A simulation can be made of 
the reflection of the separate components but it is not possible to model 

directly the generally oriented vector reflection. 
The problem of the applicability of the analogue scalar measurements 

does not arise when the model experiments are being performed for the 
purpose of verifying electromagnetic theories that are based on assumptions 

identical to those of the analogous acoustic theory. This application of 
acoustic model experimentation is especially important for the study of 
the re-radiation of electromagnetic waves from rough surfaces as all 
electromagnetic theories have bases that allow the development of the 

simpler acoustic form. 

The applicability of the results of model experiments of acoustic 
wave re-radiation from homogeneous, rough surfaces to the analogous 
electromagnetic problem is determined through the use of theory based on 
the Kirchhoff approximation. Of course, this determination is accurate 
only for situations for which this approximation applies. The limits of 
applicability are determined by comparing the expressions for the acoustic 
re-radiation field with the expressions for the analogous electromagnetic 
re-radiation field and determining under what conditions the vector re­
radiation differs enough from the scalar to destroy the similarity. The 
acoustic expressions used in the comparison are those developed in 
Chapter II; the electromagnetic expressions are developed below. 

The derivation of the expressions describing the re-radiation of a 
plane electromagnetic wave from a rough, homogeneous surface proceeds 
similarly to that for the acoustic case, the principal difference being the 
complexity caused by the vector re-radiation at the rough surface. A 
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form of the vector Helmholtz integral is used with values of the electric 

and magnetic fields tangent to the surface being determined through the 

use of the Kirchhoff approximation. This problem has been treated in this 

way before and the presentation here is similar to that of Kovalev and 

Pozdnyak [ 1961] , the difference here being the inclusion of a two 

dimensional rough surface. 

The re-radiated electric field, E (P), at the far field observation 

point P (see figure IV. 1) is given by the form of the Helmholtz integral 

-Ai -" 


J~.
 

IV. 1 

where r is the unit vector in the R0 direction, [ 1 and E 1 are the per­

meability and permittivity of the medium, respectively, S is an aperture 

of the size discussed in Section II. B and n is the unit normal to the 

surface. This formis derived in Appendix V; a derivation apparently 

appears in the Russian literature[ Frandin, 1957] but this was not available. 

For the purpose at hand, the factor of 7 in the second term of the inte­
r0 

grand is neglected as components of the fields aligned in this direction 

of propagation carry no power in this direction. 

The Kirchhoff approximation is used to determine the values of 

n and n xlH at each point of the rough surface z =(x,y). This 

is done by resolving the incident plane wave into local polarization 

components parallel and normal to a local plane of incidence and treating 

the reflection of the two components separately. The incident electric 

and magnetic fields are given by 
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t44 =-S 
p IV. 2a 

"x IIV. 2b 

where -a is the polarization vector and i. is the unit vector in the 

direction of propagation; i. 1 = n.k . The resolution of E.1 and H. intoi~ 1 

local polarization components is facilitated by the establishment at 

each point of the surface a local coordinate system based on the plane 

of incidence formed.by 1i and W. The unit vectors of this system are 

(see figure IV. 2) 
n 

IV. 3 

where e is the local angle of incidence and a function of (x,y) through 

n, as described in Section II. B. Resolving the incident field into 

local polarization components using the local coordinate system gives 

IV. 4a 

Ca- IV. 4b 

for the normally polarized components and 

IV. 4c 

J'i!EIV. 4d 

http:formed.by
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for the parallel polarized components. 

z =T(x,y) n
 

The Local Coordinate System 

Figure IV. 2 

With the resolution into polarization components, the tangential fields, 
n x H and n X E , 'are determined following Stratton [ 1941] . Beginning 
with the normally polarized component, the expression for the total 
tangential electric field for this component at the surface is 

m -Lx( D) IV. 5a 

where the reflection coefficient -PL is 

a. ­

and the subscripts 2 denote the parameters for the homogeneous medium 
upon which (Ei, Hi) is incident. The total tangential magnetic field for 
the normally polarized component is given by the following calculation 

n X - X S.Y) XP-L=+ i x.H x E -i VI 

nxk 1X - - v Trxr 

V*Zj1 /6 
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V14V)..; .0 

IV. 5b 

where (E , r ) is the reflected field, nr is the reflected wave vector 

and 

n. n=-n. n1 r 

The parallel polarized components are treated similarly. The expression 
for the total tangential magnetic field is for this polarization component 

I tR tQPax IV.5c 

where 

za t"SY -fte a& k- kts-tw 

The total tangential electric field for this component is given by 

xIV r. 

n L+ ~X(V$4~H X/e 

-~x tA4H~ //H,, AY).1/c 

IV. 5d 
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The total tangential electric field is given by'the sum of the tangential 

fields of the two polarization components, or 

itxE= YEE + nx-E IV. 6a 

and similarly the total magnetic field is 

nxH '-H- +n// IV. 6b 

where the right hand sides are given by eq. (IV. 5). 

The solution for the electric field at the observation point P is 

obtained by substituting eq. (IV. 5) into eq. (IV. 6) and substituting this 

result into eq. (IV. 1). The expression which results from these sub­

stitutions is quite lengthy for the general case and is not given. Instead, 

expressions are developed-for special cases under several conditions of 

approximation for' comparison With the analogous acoustical expression. 

These cases are those of normal and parallel polarization relative to the 

plane of incidence defined by the mean, normal, r, and ni . The acoustical 

quantity with which comparison is made is the pressure and the expression 

used is obtained from eq. (II. 9)-by neglecting second order partial 

derivatives of the surface and writing the reflection coefficient in closed, 

form. This is 

-+ 4Vk(I0oj
4TPQ' 

K. n 

IV. 7 

It is recalled that eq,. (II. 9) was obtained under the condition of a plane 

wave incident upon 'a rough aperture of homogeneous material. 

The acoustic quantity used in the comparison is chosen to be the 

pressure for reasons of convenience. The particle velocity can, of course, 

be used; however, by judiciously choosing the analogous electromagnetic 

quantity, this calculation can be spared. Edison [1961] has shown that 

for the case of parallel polarization the tangential component of the incident 

electric field and the normal component of the incident particle velocity 
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both vary as coso and, therefore, are necessarily analogues. The 
analogy is complete for this case because the incident magnetic field 
and the incident pressure do not vary with E) (except in the phase factor 
which is common to all quantities). For normal polarization the situation 
is reversed and the pressure is analogous to the electric field. Therefore, 
for the case of parallel polarization the expression for the re-radiated 
pressure field is compared with that for the re-radiated magnetic field 
(to be developed subsequently) and for normal polarization with the 
electric field. 

The incident field for polarization normal to the y-z plane is 

where ni = rcoseiy +k coselz For i in the y-z plane the unit vectors. 

are, at a point (x,y) on the surface 

&V 
~. -I1­

~t:?s 2- +t Z , 

t-CV.B+ 7 '42XC __SGX __- e_ 

z, tz=±(-? 0s+zcv)-~Z~ G,1_ +I+ 
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P nA 2 zx C-os a +Z 

03S ±Z/c~ CA:),%k47 
4-t[Z at/+ Z/c o a + 44110 eitl\ 

IV. 8b 

and 

-- 2 	 4-t 

I4-2~+2~IV. 8c 

as before. These expressions are clearly complicated; to obtain a simple 
first order approximation, Zx and Zy are set equal to zero (smooth surface). 

Then 

t=T 	 - =T -A=Z 

as expected and, therefore, from eq. 's (IV. 4) 

- A­

)t t F0/t 
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From eq. 's (IV. 5) and (IV. 6) 

t 'txc.x aj0 ('±29
IV. 9a 

and 

vi HIV. 9b 

Substituting eq. 's (IV. 9). into eq. '(IV. 1) and neglecting the factor of 

r0 gives for the electric field at P 

-~ 'a~k'Off{~ 

IV.10 
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where, as before, K= 'k - i and = , = k. Comparison of
0 1 1 i 0 0

this expression with the analogous acoustic expression given by eq. (IV. 7) 
shows that when the observation point P lies in the plane of incidence 
the integrals are identical since i>. io = 0 . For this case, the electro­
magnetic re-radiation is essentially scalar; there is no depolarization of 
the incident wave and it is necessary to give only the single reflection 
coefficient f1. . Out of the plane of incidence, there is a change of 
polarization which is a vector effect that cannot be simulated by scalar 
means. However, it remains to investigate the possibility of simulating 
the amplitude of the vector field. To do this it is necessary to examine 
only those components of E(P) normal to r , the direction of propagation.

0 
These components vary as the sine of the angle between-ro and E(P). For 
the first two terms of the integrand of eq. (IV. 10), there is a difference 
in the variation of sine(ox from the similar terms in eq. (IV. 7). For the 
last term in the integrand of eq. (IV. 10) for which there is no comparable 
acoustical term, the power producing components vary as the sinesof 
their respective angles with - timesT. o , which causes the disappearance

0o 0 
of this term in the plane of incidence. Therefore, the exactness of the 
simulation of the re-radiated field becomes less as the vector r0 moves 
away from the plane of incidence whether polarization is considered or 
not. The degree to which this occurs is determined by the variation of 
sino and t. I = coSeox ox 0 o 

The expression for the electric field given by eq. (IV. 10) was 
developed under the approximation that the fields were re-radiated as if. 
the surface were smooth. The effect of the surface roughness on the 
vector re-radiation is brought out through consideration of the simpler case 
of re-radiation in the plane of incidence ( coselx = coSOox = 0). This is 
done under the less severe restriction that Zx, Zy << . The unit vectors 
are approximately from eq. (IV 8) 

itn IV. lla 

+_ 2 ZE 1/ -+C'Osl IV. l1b 
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The resolution of the normally polarized field into local polarization 

components gives, from eq. (IV. 4) 

Etz sE 7+Kas"a V 4 
F-1At (o-S,x+9 " 

se -2 gz ­

~~~l (-ycnS 01yCA>z&ii 

'-2 2Co' iy-t-zxcos s--: J -Z 3, 

b±t2!z 
+ w I., &-t c z

[t - 2czx Z9 Di <t 

±to+&-o- +2,yni*Siz.)] 

L'-Q- + zCo.jeix'0 Ze.1 
t(xwz zc~ 7 >Z tx*OO+2 7w0 
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t{2s- - 7 . . 
CvtsC, ±Z-

i4 -zClos wzxc+ 

,4A' - eia -) CO' 'EtZ/CA2 

9s +v 
y =u&4,cose*xZx-' ,---) . -,­

oos &v Q21 yx C=o se 7 2-x ccs 

+LO el"_(ZZose--.. ,d ,, -, ­212 , ,-)zSubstituting into eq. 's (IV. 6) and (TV. 5) gives 

k- x E/Sevw ) R~kX 0 - E&y±H ,yt-2 (-,yoe AC.Se j 

A-ZX CADSE Z_la1'ZCJPD-3&
 

A-(cvs- &i$(xZyc-s&ixZcSS'avf)~
 

c~t~oseyx(-z Zccx ziz)1
 



L+Z+2 tza- (-2 4 cos a[ + c se-GZ~ 

I (COG tzxCo's eit4 

ZY 7 x co, E41 Z-- W (-) 

t(COZ &I7 +ZyCw. Gte34(TZxwOSE)ia) ±t(zxGOSehy) 

Substituting into eq. (IV. 1) and neglecting the factor of?>r as before gives 
the result 

@2x~xco.ye yco eazZ~+ -4YOcotzo z a azws 
4ZxLos- ts.,,)- e t cas; 7 Zyo~sor Y'7 -45 

-o . 1 ((1J,, + w. wcz SoaG+ Zx
C' 

z 
x 7(i --? 
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-4- Sz. G Qzxz:-y G+Z -1s SZ + G ) t ­
"-)o( ey.) zxw0+ (co" e/ Itcs oJe/x,~ _i_)zti-
y~~S (/I-LW3'61) 

(COSs -Zt/oeI, ) (I/ - )>/ 

- CO'S &IaZ.&'e,ycJS 19j t C-S5 Z_++ XCoVaDz)07 (-zxCZcse> 

I? c'e )cose(ZQ . Cz(I-4 ZzcAoE?.G (-akzV cosa 

-4-ZXcvs&Ia_) + (ztw.;X Wo6 Zu cvdea01Gy + Oyz 

~ O)d i~~ss-z~ajIV. 12 

The comparison of this result, eq. (IV. 12), with eq. (IV. 10) indicates 

the severity of the approximation made in developing this latter equation, 

thereby illustrating the effects of the vector re-radiation. One of these 

is the depolarization of the incident radiation by the rough surface; this 

is seen by the presence of the non-zero factors of T and I, which are the 

cross polarized components relative to the polarization vector E of the 

incident wave. However, the depolarization components all have Z orx 
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Z or both as factors which indicates their smallness relative to the 
polarized component which has terms that do not depend upon the slope 
of the surface. These slope independent terms also depend only upon 

-P_ and not upon -PI/ , as expected. For backscatter at normal incidence 
(coselz = -1, cOSo = 1, cose 1 y = coseo = 0) eq. (IV. 12) reduces 

(considerably) to 

ZX-+Z/
 
IV. 13 

At normal incidence, the reflection coefficients have the same magnitude 

but differ in sign, and their slopes with respect to angle of incidence are 

zero[Stratton, 1941] ; therefore, the cross polarized component disappears. 
The same result is obtained for the case of perfect conductivity of the 

rough surface for which £%= i, fj= -i 

The field re-rediated from a perfect conductor is obtained more 
generally by using the boundary conditions 

nxE= 0 
n x H = x H. 

1 
IV.14 

which are obtained from eq. 's (IV. 5) using _P = 1, Z = -1. For the 
case of normal polarization, substitution of eq. (IV. 14) into eq. (IV. 1) gives 

e IV. 15 

which has a depolarization component in the plane of incidence in that the 

factor of Z I is not zero; however under the approximation iT= Z this result 
readily reduces to eq. (IV. 13) for the case of perfect conductivity. 
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Comparison of the acoustic results given by eq. (IV. 7) with 
eq. (IV. 13) shows that a simulation is possible for the case of back­

scattering at normal incidence from an imperfectly conducting surface 

under the approximation t= Z. Under the same approximation, it is 

seen that the re-radiation from a perfectly conducting surface can be 
simulated but as before only in.the plane of incidence because of 
depolarization effects. In considering the possibility of simulation out 
of the plane of incidence for the case of a perfect conductor, the same 
conclusion is reached as earlier. However in this case, the quantity 
which has no comparable acoustic term, (n • i ) k vanishes only upon 

approximation and not as cosOox 
The incident field for the case of polarization parallel to the y-z 

plane is 

-- e 

H-:= E r 

where n.1 is the same as earlier as are n, t , and , the unit vectors 
of the local coordinate system. The re-radiated magnetic field which 

contributes to the power flow in the direction of r is determined from 
____ 0 

(P) X 1 

Substituting eq. (IV. 1) into this expression gives the result 

Hl(b)= f {4x /'6 . 

-II 

IV. 1 6
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The factor of-70 in eq. (IV. 14) is neglected here as it was in eq. (IV. 1). 
Making the same severe approximation 

that led to eq. 's (IV. 9) results in 

Using these in eq. 's (IV. 6) and (IV. 5) gives the tangential electric and 

magnetic fields at the surface; these are 

v<EJ- E.Q rI)E [V.17 

l[V. 17b 

Substitution of eq. 's (IV. 17) into eq. (IV. 16) gives, again neglecting the 

factor of 70 

Re- o ¢_
.. _4- S 
W~× (
Ft .)- __- x_,'F141,
 

-~ (I -4 (It (tt-+il 
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IL-\'Ou V/ j 

IV. 18 

Comparison of eq. (IV. 18) with eq. (IV. 7) leads to the same conclusion 

that was made in connection with the comparison of this equation and 

eq. (IV. 10); i. e. , the similarity exists exactly only in the plane of 

incidence where no depolarization is present and the electromagnetic 

re-radiation process appears to be scalar. The degree of approximation 
in simulation out of the plane of incidence is the same in both cases. 

The approximation made in obtaining the tangential electric 
and magnetic fields at the surface is just as severe in this case of 
parallel polarization as it was earlier. The calculation of the re­

radiation in the plane of incidence made earlier is not done for this 
case; however, the conclusion made with respect to simulation of normal 

incidence backscattering is still valid since at normal incidence there 
is no difference in polarization. It remains to determine the magnetic 

field re-radiated from a perfect conductor for the case of parallel polarization. 

Using 

n x E == 20rxHnx i 

in eq. (IV. 16) gives 

IV. 19
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which differs in form with the corresponding result for normal polarization 

given by eq. (IV. is). A result of these differences is that there is no 

depolarization of the parallel polarized incident wave in the plane of 
incidence (7

0 
-

0 
= 0 ) while, it is recalled, there is for the case of 

normal polarization (however, under the approximation n = . the depolariza­

tion disappears). These differences in form appear again and must be 
taken into consideration in the simulation of the re-radiation of electro­

magnetic waves from perfectly conducting surfaces. Comparison of 
eq. 's (IV. 15) and IV. 19) with eq. (IV. 17) shows that simulation of a 

parallel polarized wave requires a perfectly rigid surface (c = 1) while 
an inelastic or pressure release surface ( .2 = -1) is required for the 

normally polarized case. 

The use of the Kirchhoff approximation has enabled a determination 
to be made of the conditions and the degree of approximation under which 
an acoustic simulation can be made of the re-radiation of electromagnetic 

waves from rough, homogeneous surfaces. Comparison of the analogous 

acoustic and electromagnetic expressions derived under this approximation 

shows in what way similarity exists and the manner in which the vector 
nature of the electromagnetic re-radiation creates the difference existing 

between these two phenomena. For the case of a perfectly conducting 

surface on which both local polarization components are re-radiated equally 
and for the case in which one of the local polarization components was 
ignored (smooth surface approximation) it was found that in the plane of 

incidence the electromagnetic re-radiation is essentially scalar (the 
minor exception to be noted is in connection with eq. (IV. 15)), and an 

acoustic simulation is possible. Out of the plane of incidence for these 
two cases a change in polarization and a difference in form from the 
acoustic occur, but it is still possible to make an approximate simulation. 

From the general investigation of re-radiation in the plane of incidence 

from an arbitrary (yet isotropic) homogeneous surface, it was found that 
the vector re-radiation process creates dependencies on both reflection 
coefficients, _PJ_ and _// , which shows that even in the plane of 

incidence, the re-radiation is in general a vector process. However, the 
dependence of the polarized component on the reflection coefficient of 
its orthogonal component is only through the slope dependent terms which 

are also the only terms contributing to depolarization. For backscatter 
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at normal incidence for the general case, there is no dependence upon 
slope terms under the approximation n= k with the result that the 
vector nature of the re-radiation disappears and an acoustic simulation 

is possible. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

A theory ha 

waves from rough surfaces of the type for which the method of physical 

optics is applicable. The theory was developed for surfaces which are 

generated by stationary, ergodic random processes and which have a 

Gaussian distribution of surface heights. The surfaces are allowed to 

be imperfectly reflecting but are restricted to be homogeneous with 

no variation, random or otherwise, of the material parameters. The 

far-zone power density re-radiated omnidirectionally from the rough 

surface ,was calculated from the far zone pressure field and the separation 

made between reflected and scattered power densities. The average 

differential scattering cross section, 0 , was calculated from the 

scattered power density under the condition that the surface was suffi­

ciently rough to neglect the reflected power. g 0 was then determined 

for the cases of Gaussian and exponential dependence of the auto­

correlation function, and the results of these calculations were seen to 

have strong differences in variation which demonstrates the heavy 

dependence of g- on the functional form of the autocorrelation coefficient. 

The expressions for ua0 are composed of a sum of terms all but one of 

which, the quasi-specular term, have their origin in the first partial 

derivative of the surface under the approximation made. These slope­

derived terms depend upon the rate of variation of the reflection coefficient 

with angle of incidence, whereas the quasi-specular term depends upon the 

reflection coefficient alone. In and near the specular direction, the quasi­

specular term was seen to dominate; in other directions, the scattering, 

depends more on the slope-derived terms and consequently on the rate 

of variation of the reflection coefficient with angle of incidence. 

The theoretical values of 0 have been compared with the results 

of experiments that were specially designed to allow a determination of 

the usefulness of the Kirchhoff method. To make the comparison more 

valid, the measured statistical parameters of the surface were used in the 

calculation of the theoretical results. The comparison was made using 

results for ao which were calculated for Gaussian and exponential 
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autdcorrelation functions which bracketed the true autocorrelation co­
efficient. The evidence obtained by proceeding in this indirect manner 
is sufficiently strong to justify making the conclusion that the theory is 
a valid one. 

In making the comparison of theory with experiment, the closeness 
of the agreement between the results for the exponential autocorrelation 
function and the experimental data at backscatter is to be noted. If the 
experimental, observations had been restricted to backscatter, it would 
be tempting to conclude that the surface is described by an exponential 
autocorrelation function. However, the -poorness of the fit given by the 
use of this function in the specular direct-ion shows that this is not the 
case as do the measurements performed on the rough surfaces. This 
illustrates the necessity of making omnidirectional measurements. It is 
important to note that to achieve this fit at backscatter it was not necessary 
to use "unreasonable" values for the parameters in the exponential func­
tion, i. e. , the parameters used-do describe the surface with some accuracy. 

To determine the similarity of acoustic and electromagnetic re­

radiation from surfaces, comparison was made between analogous expres­
sions for the two cases. The electromagnetic expressions were obtained 
by an applicat-ion of the Kirchhoff method which is a derivation similar to 
that used to arrive at the acoustic results. It was found that in some 
cases the vector nature of the electromagnetic re-radiation does- not 
appear and for these cases aii exact acoustic simulation is possible. In 
some other cases where vector effects such, as depolarization and depend­
ence upon both reflection coefficients, -P and '// , are present, it 
is still possible. to make an approximate simulation. 
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CHAPTER VI 

RECOMMENDATIONS FOR FURTHER WORK 

In making this study many unsolved rough surface scattering 

problems common to both acoustic and electromagnetics were found. 

The most important of these are the following: 

First and foremost is the development of an approach that will 

yield solutions, even approximate ones, for scattering from surfaces 

of arbitrary roughness. At present, there is -no way to treat surfaces 

with irregularities neither small nor large with respect to wavelength. 

An experimental study of the frequency dependence of rough 

surface scattering is badly needed as there has been very little 

verification of the theoretical predictions in hand. A study like this is 

best accomplished acoustically because of the ease with which 

experimental parameters can be varied. 

Th6re. is need for an experimental and theoretical investigation 

of the effect of a layer of different material beneath a rough surface. 

This is another case in which an experimental acoustical study would 

be especially applicable; the experimental results of this work provide 

a starting point for this study. 
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APPENDIX I
 

DEFINITION OF CONSTANTS
 

The coefficients used in obtaining eq. (I. 14) are defined as 

follows: 

a =.(k1 z + koz)+ r(a)(koz -kIz)J 

a = [Blx(koz - klz ) +P()(ix- ko)- (klx + ko)] 

*a3 =B ly(k oz - klz) + 9( (kly k ly + koy)]koy ) -,(k 
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APPENDIX II 

CALCULATION OF THE MEANS OF TERMS 
CONTRIBUTING TO THE AVERAGE OF THE RE-RADIATED POWER 

In obtaining the ensemble average of eq. (II. 14), use is first 
made of the ergodicity assumption and, following this, the mean of 
the terms in the integrand is taken. This is done by making use of the 
Karhunen-Lo~ve theorem [Karhunen, 19473 and the method of character­
istic functions [Davenport and Root, 1958] . This calculation was first 
made by Hoffman1955b] who was one of the first to make a definitive 
study of the statistical difficulties of the scattering problem. 

The Karhunen-Loeve theorem states that a random process 
z = ' (x,y) which is continuous in the mean over a finite region D has 
a representation 

zt n LZniv. q5 vwCX()Z))mnA1.1 

where<Z mnZpq> = mp6 nq and KZmn> =0 if and only if the 

x mn are the eigenvalues and the 0 mn (xy).the orthonormal eigenfunctions 
of the integral equation 

D 
Here R = ra 2 is the un-normalized autocorrelation function. It is noted 
that R is- a function of both x, y, and x', y' and stationarity is not 
assumed at this point. 

This theorem enables the functions of the integrand of eq. (II. 14) 
to be written in terms of the 0mn with the properties of the random process 
being given by the expansion coefficients, the Zmn. As an example, 

consider 
zeikzZ 
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This is written as 

Kz-- VZ. 
~~v 15Y)xmn QxPZ~ 2~ Zj-OM+n k~ZjjM('/YAM 7-Mvi 

M4 1 O VA) A 

The average of this quantity is given by 

W)fl Ox WVfl 

A II. 2 

To carry the calculation further, the method of characteristic 
functions is introduced. The characteristic function M [r(x,y)] of the 
function F(x,y) with respect to the random variable Zmn is defined to be 

M [P(x,y)] = <exp [iF (x, y)Zn,] > 

Therefore, it follows that 

T. ..- om_€,,.,, (xx) 

and consequently 

Assuming the random process z = (x,y) is Gaussian with mean zero, 

the characteristic function of the function K X -1/2 man, isz min A 

n nt t e
 

In obtaining this, the relation 



131 

KZmn- 2 = 1 

which is obtained from above, is used. Therefore 

< > <PF-n ~AKt4 

The factor of the exponent 

is seen to be
Kz- <z>S - -Kill L ?\pt_ AwvY)PC$Ya×ii 

VVIJVI I 
. ~(XY b/_v_/g q 

L-IV q (t)X)StpIII g 

2 

which is the variance a (x,y) (not a constant) of the process. 

Therefore 

<ee 
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and finally 

K2~~e ,tk2Md~iv %- e) a 

Substituting this result into eq. (A II. 2) gives 

A factor of this is recognized to be the first partial derivative of the 

variance with respect to x ; i. e. 

0 AMP1 Y)Y%,) 10 

So finally 

o _Lo Yt-Ay),t
<zx,7> 

Which, for a stationary process, is zero because a 2 (x,y) is a constant. 
The evaluation of the means of the terms in the integrand of 

eq. (II. 14) is accomplished by following procedures similar to that used 
above; the calculations are lengthier, however, due to the additional 
complexity of the functions to be averaged. For a stationary, Gaussian

2 
process with variance a and normalized autocorrelation coefficient r , 

the results are, using a and p to represent x or y or both 

<eA§ k(7-z' 

Qee~1<a~Zt)</O X § N-) 



133
 

ex~ EKOt-c')]1<-r 
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APPENDIX III 

CALCULATION OF THE ORDER OF MAGNITUDE OF
 
THE PARTIALLY INTEGRATED TERMS OCCURRING IN THE
 

EXPRESSION FOR RE-RADIATED POWER
 

The partially integrated terms appearing in eq. (I. 21) are of 
two types; these are 

A -A ) 

and . + Y,
 

rPI 2_700A dX/
 
r: dy A 111. 2- -Ax-.-n. 

and there are similar terms in which the first integration is performed 

with respect to u . 
The variations of the autocorrelation coefficient and its partial 

derivative in the integrands of the above integrals are given by 

rQ(Ay+R) r(y)~ OrQ{er &r( p) 

By the assumptions made earlier that the autocorrelation coefficient and 
its partial derivatives decay rapidly relative to the dimensions of the 
aperture, it is clear that these quantities are sensibly zero when the 
variation with respect to y is neglected. Making use of this in 
eq. (A III. 1) yields the result 
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_x 

_ 

K% -1 A 111. 3 

and the integral A III. 2 is zero. 

The result A III. 3 is, neglecting the constants involving the 

material parameters, within a factor of 1/Ky of equalling the specular 

power density given by eq. (I1. 17). It is because of this factor of 1/K 
=that A 11. 3 goes to zero in directions for which K 0 (one of which isY 

the specular direction) and the specular power density does not. There­

fore, the variation of A 111. 3 is not the same as the specular power density 

due to the factor 1/K and also due to the constants involving the 

material parameters, but both vanish in the same way as the surface 

roughness increases. It is important to note that the result A I1. 3 

is similar to the "edge effect" terms found by Beckman 1963 

Similar results are obtained for the terms in which the partial 

integrations are first performed with respect to u . 
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APPENDIX IV 

CALCULATION OF THE APERTURE EFFECT 

The aperture effect is evaluated by calculating the integral 

of eq. (111. 4) 

S9TOT) Sr(bPr) A 

T l A IV.1I 

for the measured laboratory parameters as a function of the set of angles 

( o' 01' 02)" 

The normalized gain functions, gT(,FT) and gr(Tr) , are given by 

the square of the normalized antenna voltage patterns shown in figure 

III. 10. Because of the close fit to the experimental curves obtained with 

the theoretical pattern, the gain functions are, to a very good approximation 

' TOPT .r- 13- (Loi, "-
T Lr- k) I AIV. 2a 

LA<L s1 A IV. 2b 

where ka = 34 Substitution of eq. 's (A IV. 2) into (A IV. 1) and use of 

the coordinate system of figure III. 1 to define the integration gives the 

result 

f F C __L_____ kqsiV'r d.SIC1t'%^T Q TI (kCA Idy 
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The illuminated area S is usually defined, for reasons of convenience, 
on the half power points of the antenna beam and this gives a finite 
illuminated area. It is not necessary to do this here and the limits of 
integration are infinite. The quantities sinwT, sinWr , ar-d rr arerT 

functions of (x,y), the coordinates of the point on the mean plane. 

These functions are 

rT = (xTo - X)2 + (yTo- y)2 + ZTo
 

2 2 2 2
 

rr = (Xr -x) 2 + (Yro -y) 2 + Zro
 

sin 2WT = 1 - cos2 T 

sin 2 1r = 1 - s2T r 

where 
2 2 2 

2 rTo + r - r
1T=
Cos 'I 2rTorT
 

2 2 2 

coS2 rFro + rr - r 

Co 'r= 2 r r
 
ro r
 

2 2 2 
and r = x + y 

The rectangular coordinates giving the locations of the transmitting and 
receiving antennas are converted from the spherical co-ordinates (rTo 
rro ' 1 2 ) by the transformation 

XTo 0 (principal ray of the transmitting antenna chosen to lie in the 

y-z plane) 

YTo =rTo"S0 1 

ZTo rTosinl 1 
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Xro = rosin 0 2 sin e o 

Yro = rro sino 2 coso 0 

Zro = rro coso 2 

The integral proved to be too complex to be done analytically and 
it was necessary to resort to a numerical technique of integration which 
was done by machine calculation. The technique is based on the method 

of Gaussian quadratures and is described in the book by Krylov [1962] . 
The results of the machine integration are too lengthy to be included 
here; however, a similar calculation has been performed by the workers 
at the Ohio State University and is available in report form [Barrick, 

19641 . The results are not the same due to a difference in antenna 
patterns; however, the variation as a function of (0 o , 01 , 2) is 

'similar and representative. 
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APPENDIX V 

DERIVATION OF A VECTOR FORM 
OF THE HELMHOLTZ INTEGRAL 

Stratton E1941J has shown that the el'ectric.field E(P) at-an 
observation point P (see figure IV. 1) due to an electric field r and 

a magnetic field H distributed over an area S enclosed by a contour 

C is 

( 2)zWe 141 V 1­

.' 

AV.1 

where the time variation has been changed from e iwt to elot The 

Green's function for this time variation is 

AV. 2 

as before and 

AV. 3 

approximately for the far field case, k>> . In eq. (AV. 3) R1 , is the 

unit vector in the R dire6tion. Stratton has further shown that a surface 

current 

K= - x H AV.4 
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and a surface charge 

= . E AV. 5 

can be introduced and used; these two quantities are related through the 
continuity equation 

-iKo AV. 6 

Combining eq. 's (A V. 6) and (AV. 5) and then using eq. A V.4 gives 

-(v HN 

Using this and eq. (A V. 3), the last integral on the right hand side of 
eq. (A V.1) becomes 

IISL 

AV. 7 

Using the identity 

in eq. (A V. 7) yields 

4-fwlwE s 
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Reducing the first integral on the right hand side using Gauss' 

-wo dimensions, this becomes 

Law in 

4-r 

J-r 
S 

4--r i 6 

where it' is the normal unit vector pointing outward from C. 

Since 

n - i' = x . 

and since 

n' x n= - T1 

the result is finally 

S 

4V~w 

AV. 8 

Substituting eq. 's (A V. 8), (AV. 2) and (A V. 3) into eq. (A V.1) gives 
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AV. 9 

Making S an aperture of the size discussed ih Section I. B and manipulating, 

eq. (AV. 9) becomes 

A V. 10 



143 

BIBLIOGRAPHY 

Aksenov, V. I., "On the Scattering of Electromagnetic Waves from 
Sinusoidal and Trochoidal Surfaces of Finite Conductivity,"
Radio Engineering and Electronic Physics, vol. 3, p. 459, 1958. 

Aksenov, V. I., "Experimental Investigation of the Scattering of Electro­
magnetic Waves by Periodically Rough Surfaces, " Radio Engineering 
and Electronic Physics. vol. 5, pp. 782-795, 1960. 

Aksenov, V. I., "Application of the Kirchhoff Approximation to the Problem 
of the Scattering from Periodically Rough Surfaces of Finite 
Conductivity, " Radio Engineering and Electronic Physics, vol. 6, 
pp. 307-314, 1961. 

Alpert, 	 Y. L., V. L. Ginzburg, and E. L. Feinberg, The Propagation of 
Radio Waves, Gostekhizdat, Moscow, 1953. 

Ament, 	 W. S. , -"Toward a Theory of Reflection by a Rough Surface, " Proc. 
IRE, vol. 41, pp. 142-146, 1953. 

Ament, 	 W. S. , "Application of a Weiner-Hopf Technique to Certain 
Diffraction Problems, " Naval Research Laboratory Report No. 4334,
May 1964. 

Ament, 	 W. S. , "Forward and Backscattering by Certain Rough Surfaces, 
Trans. IRE AP-4, pp. 369-373, 1956. 

Ament, 	 W. S., "Reciprocity and Scattering by Certain Rough Surfaces,
Trans. IRE AP-8, pp. 167-174, 1960. 

Anatolsky, M. L., "The Reflection of Waves from a Rough Perfectly Reflecting
Surface, " Dokl. Akad. Nauk SSSR, vol. 62, p. 302, 1948. 

Andronov, A. and M. Leontowica, "Zur Theorie der Molekiilaren Lichtzerstren­
ung an Flussigkeitsoberflachen, " Z. Physik, vol. 38, p. 485, 1926. 

Archer-Thomson, H., N. Grooke, T. Gold, and F. Hoyle, "Preliminary
Report on the Reflection of Nine Centimeter Radiation at the Surface 
of the Sea, " ASE Report No. M-542, 1943. 



144
 

Artman, K., "On the Theory of Anomalous Reflection of Periodic Structures, 
Z. Physic, vol. 119, p. 529, 1942. 

Ayiku, 	 M. N. B. and R. K. Moore, "Acoustic Simulation of Knife Edge 
Diffraction, " Spring Meeting International Scientific Radio Union, 
1965. 

Bachynski, M. P., "Microwave Propagation Over Rough Surfaces, " RCA 
Rev. , vol. 20, pp. 308-335, 1959. 

Barantsev, R. G. "Plane Wave Scattering by a Double Periodic Surface of 
Arbitrary Shape, " Soviet Physics-Acoustics, vol. 7, p. 123, 
Oct. 1961. 

Barrick, D. E. , "Normalization of Bistatic Radar Return, " The Ohio 
State University Antenna Laboratory Report No. 1388-13, 1964. 

Bass, F. G., "Boundary Conditions for the Mean Electromagnetic Field on 
a Surface with Random Irregularities and Fluctuations of Impedance, 
Izv. Vyssh. Zav. Radiofiz. , vol. 3, pp. 72-78, 1960. 

Bass, F. G., "Onthe Theory of Combinational Scattering of Waves by a 
Rough Surface, " Izv. Vyssh. Zav. Radiofiz., vol. 4, pp. 58-66, 
1961. 

Bass, F. G., and V. G. Bocharov, "On the Theory of Scattering of Electro­
magnetic Waves from a Statistically Uneven Surface, " Radiotekhn. 
iElektr., vol. 3, p. 251, 1958. 

Bass, F. G. and I. M. Fuks, "Allowance for Shadows-in the Scattering of 
Waves by a Statistically Uneven Surface, " Institute of Radiophysics 
and Electronics, Academy of Sciences, UkrSSR, pp. 147-164, 1964. 

Bay, Z. , "Reflection of Microwaves from the Moon, "Acta Phys. Hungar.,
 
vol. 1, pp. 1-22, 1946.
 

Beckmann, P. , "Shadowing Functions for Random Rough Surfaces, " Univ.
 
of Colorado Elec. Engr. Report No. 3, Sept. 1964.
 

Beckmann, P. , "Scattering by Composite Rough Surface, " Univ. of
 
Colorado, Elec. Engr. Report No. 4, Nov. 1964.
 



145
 

Beckmann, P. , "The Depolarization of Electromagnetic Waves Scattered 
from Rough Surfaces, "Acta. Techn. CSAV, vol. 6, 1961. 

Beckmann, P. , and A. Spizzichino, The Scattering of Electromagnetic 
Waves from Rough Surfaces The MacMillan Co. , New York, 1963. 

Bendat, J. S., Principles and Applications of Random Noise Theory, 
John Wiley and Sons, Inc., New York, 1958. 

Bennet, H. E., "Specular Reflectance of Aluminized Ground Glass and the 
Height Distribution of Surface Irregularities, " J. Opt. Soc. Am., 
vol. 53, no. 12, Dec. 1963. 

Biot, M. A., "Reflection on a Rough, Surface from an Acoustic Point Source, 
J. Acoust. Soc. Am., vol. 29, pp. 1193-1200, 1957a. 

Biot, M. A., "Some New Aspects of the Reflection of Electromagnetic 
Waves on a Rough Surface, " J.Appl. Phys. , vol. 28, pp. 1455­
1483, 1957b. 

Biot, M. A., "On the Reflection of Electromagnetic Waves on a Rough 
Surface, " I. Appl. Phys. , vol. 29, p. 998, 1958. 

Blackman, R. B. and J.W. Tukey, The Measurement of Power Spectra,
Dover Publications, Inc. , New York, 1958. 

Blake, 	 L. V., "Reflection of Radio Waves from a Rough Sea, " Proc. IRE, 
vol. 38, pp. 201-304, 1950. 

Blevis, B. C. and J. H. Chapman, "Characteristics of 488 Mc/s Radio 
Signal Reflected from the Moon, " J.Res. NBS, vol. 64, pp. 331­
334, 1960. 

Bocharov, V. G. and F. G. Bass, "Onthe Scattering of Electromagnetic
Waves by a Statistically Rough Surface, " Radiotekhn. i Elektr., 
vol. 3, pp. 577-578, 1958. 

Bouix, 	 M., "Study of the Electromagnetic Field in the Vicinity of a 
Reflecting Surface, " Compt. Rand. Acad. Sci., vol. 240, pp. 1763­
1765, 1955. 



146
 

Branely, E. N., "The Diffraction of Waves by an Irregular Refracting 
Medium, " Proc. Roy. Soc., vol. A225, p. 515, 1954. 

Braude, S. Ya. , "The Fresnel Coefficients for a Rough Surface, 'Izv. 
Vyssh. Zav. Radiofiz. , vol. 2, pp. 691-696, 1959. 

Braude, S. Ya, N. N. Komarov, and I. E. Ostrovsky, "On the Statistical 
Character of the Scattering of Centimetre Radio Waves by the 
Rough Surfaces of the Sea, " Radiotekhn. i Elektr. , vol. 3, 
pp. 172-179, 1958. 

Brekhovskikh, L. M., "Diffraction of Sound Waves by a Rough Surface, 
Dokl. Akad. Nauk. SSSR, vol. 79, p. 585, 1951a. 

Brekhovskikh, L. M. , "Diffraction of Electromagnetic Waves by a 'Rough 
Surface',"Dokl. Akad. Nauk SSSR, vol. 81, p. 1023, 1951b. 

Brekhovskikh, L. M. , "The Diffraction of Waves by a Rough Surface, 
Part I and Part IF, Zh. Eksper. i Teor. Fiz., vol. 23, pp. 275­
304, 1952.
 

Briggs, 	 B. H., "Roughness of the Moon as a Radar Reflector, " Nature, 
vol. 187, p. 490, 1960. 

Brown, 	 W. E., "A Lunar and Planetary Echo Theory, "T. Geophys. Res., 
vol. 65, p. 3087, 1960. 

Browne, I. C. and J. V. Evans, "The Moon as a Scatterer of RadioWaves, " Radio Astronomy, University Press, Cambridge, pp. 408­

409, 1957.
 

Browne, I. C., J. V. Evans, J. K. Hargreaves, and W. A. S. Murray, 
"Radio Echoes from the Moon, " Proc. Phys. Soc. London,' vol. 69, 
pp. 901-920, '1956. 

Bullington, K. , "Reflection Coefficients of Irregular Terrain, " Proc. IRE, 
vol. 42, pp. 1258-1262, 1954. 

Bullington, K. , "Radio Propagation at Frequencies above 30 Mc/s, 
Proc. IRE, vol. 35, p. 1122, 1947. 



147
 

Bullington, K., "Radio Propagation Variations at UHF and VHF, " Proc. IRE, 
vol. 38, p. 27, 1950. 

Burke, J. E. and V. Twersky, "On Scattering of Waves by the Grating
of Elliptical Cylinders, " Sylvania Electronic Defense Laboratories 
Report EDL-E44, 1960. 

Burrows, C. R. and S. S. Atwood, Radio Wave Propagation, Academic 
Press, New York, 1949.
 

Bussey, H. E. , "Suppressing Microwaves by Zonal Screens, "Tele-Tech. 
vol. 10. p. 45, 1951. 

Campbell, J. P. , "Backscattering Characteristics of Land and Sea at 
X -Band, " Proc. of National Conf. on Aero Elect., May 1958. 

Campbell, J. P. , "Backscattering Characteristics of Land and Sea at 
X-Band, " Trans. of the 1959 Symposium on Radar Return, Univ. 
of New Mexico, NOTS TP 23338, May 1959.
 

Carlson, J. F. and A. E. Heins, "The Reflection of an Electromagnetic 
Plane Wave by an Infinite Set of Plates, " Quart. Appl. Math. , 
vol. 4, pp. 313-329, 1946 and vol. 5, pp. 82-88, 1947. 

Chu, C. M. and S. W. Churchill, "Multiple Scattering by Randomly

"
Distributed Obstacles--Method of Solution, Trans. IRE, vol. AP-4, 

p. 142, 1956. 

Clarke, R. H. , "Theoretical Characteristics of Radiation Reflected 
Obliquely from a Rough Conducting Surface, " Proc. IEE, vol. 110, 
p. 91, 1963a. 

Clarke, R. H. , "Measurements on Radiation Reflected Obliquely from a 
. Rough Surface, " Proc. IEE, vol. 110, p. 1921, 1963b. 

Clapp, R. E., "A Theoretical and Experimental Study of Ground Return, 
MIT Rad. Lab. Report No. 6024, April, 1946.
 

Cockroft, A. L. , H. Davies, and R. A. Smith, "A Quantitative Study of 
Sea Returns at Centimeter Wavelengths for Moderately Small Angles 
of Elevation, " Proc. Phys. Soc. , vol. 58, p. 717, 1946. 



148 

Constant, F. W., Theoretical Physics, Addison-Wesley Publishing Co., 
Cambridge, Mass. , 1954. 

Cosgriff, R. F., W. H. Peake, and R. C. Taylor, "Terrain Scattering 
Properties for Sensor System Design, Terrain Handbook II," 
Engr. Exp. Sta., Ohio State Univ., May, 1960. 

Cowan, E. W., '"-Band Sea Return Measurements, " MIT Research Lab­
oratory Report No. 870, 1946. 

Cox, C. and W. Munk, "Measurement of the Roughness of the Sea Surface 
from Photographs of the Sun's Glitter, "I. Opt. Soc. Am. , vol. 44, 
pp. 838-850, 1959. 

Cox, C. and W. Munk, "Statistics of the Sea Surface Derived from Sun 
Glitter, " 1. Marine Res. , vol. 13, pp. 198-227, 1954b. 

Crawford, A. B., D. C. Hoggs, and W. H. Kummer, "Studies in Tropo­
spheric Propagation Beyond the Horizon, " Bell Syst. Tech. Tour., 
vol. 38, pp. 1067-1178, 1959. 

Crawford, A. B. and W. C. Jakes, "Selective Fadings of Microwaves, 
Bell Syst. Tech. jour., vol. 31, p. 68, 1952. 

Daniels, F. B., "A Theory of Radar Reflection from the Moon and Planets, 
T. Geophys. Res., vol. 66, p. 1787, 1961. 

Daniels, F. B. , "Radar Reflections from a Rough Moon Described- by a 
Composite Correlation Function, "I. Geophys. Res. , vol. 68, 
p. 6251, 1963. 

Daniels, F-. B., "Radar Determination of the Root Mean Square Slope of 
the Lunar Surface, "I. Geophys. Res., vol. 68, p. 449, 1963. 

Daniels, F. B., "Radar Determination of the Lunar Slopes: Correction for 
the Diffuse Component, "I. Geophys. Res. , vol. 68, p. 2864, 1963. 

Davenport, W. B. and W. L. Root, An Introduction to the Theory of Random 
Signals and Noise McGraw-Hill Book Co. , Inc. , 1958. 

Davies, H. , "The Reflection of Electromagnetic Waves from a Rough 
Surface, " Proc. IEE, Part III, vol. 101, pp. 209-214, 1954. 



149
 

Davies, H. , "The Reflection of Electromagnetic Waves from a Rough 
Surface, " Proc. IEE, Part III, vol. 102, p. 148, 1955. 

Davies, H. and G. G. MacFarlane, "Radar Echoes from the Sea Surface 
of One Centimeter Wavelength," Proa. Phys. Soc., vol. 58, 
p. 717, 1946.
 

De, A. 	 C. "Reflection of Microwaves from Earth's Surface, " Indian T. 
of Meteorol. Geophys. vol. II, pp. 45-49, 1960. 

Deryugin, L. N., "The Reflection of a Laterally Polarized Plane Wave 
from a Surface of Rectangular Corrugations, "Radiotekhn., vol.- 15, 
no. 2, pp. 15-26, 1960a. 

Deryugin, L. N. , "The Reflection of a Longitudinally Polarized .Plane 
Wave from a Surface of Rectangular Corrugations, " Radiotekhn., 
vol. 15, no. 5, pp. 9-16, 1960b. 

DeWitt, I.H. and E. K. Stodola, "Detection of Radio Signals Reflected 
by the Moon, " Proc. IRE, vol. 37, pp. 229-242, 1949. 

Dye, J. E. , "Ground and Sea Return Signal Characteristics of Microwave 
Pulse Altimeters, " Trans. of Symposium on Radar Return, Univ. 
of New Mexico, NOTS TP 23338, 1959. 

Eckart, C. , "The Scattering of Sound from the Sea Surface, "1.Acoust. 
Soc. Am., vol. 25, pp. 566-570, 1953. 

Edison, A. R., "An Acoustic Simulator for Modeling Backscatter of 
Electromagnetic Waves, " Univ. of New Mexico Engr. Exp. Sta. 
Tech. Report. No. EE-62, 1961. 

Edison, A. R. , D. Bliss, and G. Policky, "Acoustic Wave Propagation in 
*a Random Medium, " Fall Meeting International Scientific Radio 

Union, 1963. 

Edison, A. R., R. K. Moore, and B. D. Warner, "Radar Terrain Return 
Measured at Near-Vertical Incidence, " Trans. IRE. vol. AP-8, 
pp. 246-254, 1960. 



150 

Ergin, K., "Energy Ratio of the Seismic Waves Reflected and Refracted 
at a Rock-Water Boundary, " Bull. Seism. Soc. Amer., vol. 42, 
pp. 349-372, 1952. 

Evans, 	 J. V. , "The Scattering of Radio Waves by the Moon, " Proc. Phys. 
Soc. London, vol. 70, pp. 1105-1112, 1957. 

Evans, 	 J. V., "Radar Methods of Studying Distant Planetary Surfaces, 
Proc. of the Conf. on Physics of the Solar System and Re-Entry 
Dynamics, pp. 237-259, 1962, in Va. Poly. Inst., Blacksbury. 

Evans, 	 J. V., S. Evans, and J. H. Thompson, "The Rapid Fading of the 
Moon Echoes at 100 Mc/s, " Paris Symp. on Radio Astronomy, 
Stanford Univ. Press, 1959. 

Evans, 	 J. V. and G. H. Pettengill, "The Scattering Behavior of the Moon 
at Wavelengths of 3.6, 68, and 784 Centimeters, "T. Geophys. 
Res., vol. 68, p. 423, 1963. 

Ewing, 	 W. M., W. S. Jardetsky and F. Press, Elastic Waves in Layered 
Media, McGraw-Hill Book Company, Inc., New Yqlck, 1957. 

Feinberg, Ye. L.., "The Propagation of Radio Waves along the Surface 
of the Earth, "Izd. Akad. Nauk SSSR, Moscow, 1961. 

Feinstein, J., "Some Stochastic Problems in Wave Propagation, Part I, 
Trans. 	IRE, vol. AP-2, pp. 23-30, 1954.
 

Felsen, 	 L. B., "The Scattering of Electromagnetic Waves by a Corrugated
" Sheet, 	 Can. I. Phys. , vol. 37, p. 1565, 1959. 

Fishback, W. T. and P. 1. Rubenstein, "Further Measurements of 3 and 
10 Centimeter Reflection Coefficients of Sea Water at Small 
Grazing Angles, " MIT Research Laboratory Report No. 568, 
May, 1964. 

Frandin, A. Z. , "Antenny Suerkhuysokikh Chastot, "Izd. Sovetskoe 
Radio, 1957. 

Pricker, F. I., R. P. Ingalls, W. C. Mason, and M. L. Stone, "UHF 
Moon Reflections, " Spring Meeting International Scientific Radio 
Union, 1958. 



151 

Fung, A. K., "Theory of Radar Scatter from Rough Surfaces, Bistatic 
and Monostatic, with Application to Lunar Radar Return, " 
J. Geophys. Res., vol. 69, no. 6, pp. 1063-1073, Mar. 1964. 

Fung, A. K., and R. K. Moore, "Effects of Structure Size on Moon and 
Earth Radar Returns at Various Angles, " 1. Geophys. Res., 
vol. 69, no. 6, pp. 1075-1087, Mar. 1964. 

Fung, A. K., R. K. Moore, and B. E. Parkins, "Notes on Backscattering 
and Depolarization by Gently Undulating Surfaces, " Geophys. 
Res., pp. 1559-1562, Mar. 1965. 

Goldstein, H. , "The Frequency Dependence of Radar Echoes from the 
Surface of the Sea, " Phys. Rev. , vol. 69, p. 695, 1946a. 

Goldstein, H. , "Frequency Dependence of the Properties of Sea Echo, 
Phys. Rev., vol. 70, pp. 838-846, 1946b. 

Gourt, 0. W. , "Determination of Reflection Coefficient of the Sea, 
Proc. LEE, Part B, vol. 102, pp. 827-830, 1955. 

Grant, C. R. and B. S. Yapplee, "Backscattering from Water and Land 
at Centimeter and Millimeter Wavelengths, " Proc. IRE vol. 45, 
pp. 976-982, 1957. 

Grasyuk, D. S., "Scattering of Sound Waves by the Uneven Surface of 
an Elastic Body, " Soviet Physics-Acoustics, vol. 6, pp. 26-29, 
1960. 

Gulin, E. P., "Amplitude and Phase Fluctuations of a Sound Wave 
Reflected from a Statistically Uneven Surface, " Soviet Physics-
Acoustics, vol. 8, pp. 335-339, 1963. 

Gulin, E. P. , "Amplitude and Phase Fluctuations of a Sound Wave 
Reflected from a Sinusoidal Surface, " Soviet Physics-Acoustics, 
vol. 8, pp. 223-227, 1963. 

Gulin, E. P., "The Correlation of Amplitude and Phase Fluctuations in 
Sound Waves Reflected from a Statistically Rough Surface, 
Soviet Physics-Acoustics, vol. 8, pp. 335-339, 1963. 



152 

Gulin, E. P., and K. I. Malyshev, "Statistical Characteristics of Sound 
Signals Reflected from the Undulating Sea Surface, " Soviet 
Physics-Acoustics, vol. 8, pp. 228-234, 1963. 

Hagfors, T., "Some Properties of Radio Waves Reflected from the Moon 
and Their Relation to the Lunar Surface, "T. Geophys. Res. , 
vol. 66, no. 3, p. 777, Mar. 1961. 

Hagfors, T., "Backscatfer from an Undulating Surface with Applications 
to Radar Returns from the Moon, "1. Geophys. Res., vol. 69, 
pp. 3779-3784, 1964. 

Hargreaves, J. K., "Radio Observations of the Lunar Surface, " Proc. Phy 
Soc., vol. 73, pp. 536-537, 1959.
 

Hayre, 	 H. S., "Radar Scattering Cross-Section Applied to Moon Return, 
Proc. IRE, vol. 49, p. 1433, 1961. 

Hayre, 	 H. S. , "Lunar Backscatter Theories, " Ph.D. Thesis, University 
of New Mexico, 1962. 

Hayre, 	 H. S., and R. K. Moore, "Theoretical Scattering Coefficient 
for Near Vertical Incidence from Contour Maps, "I. Res. NBS 
D. Radio Propagation. vol. 65-D, pp. 427-432, 1961. 

Heaps, 	 H. S. , "Reflection of Plane Waves of Sound from a Sinusoidal 
Surface, "I. Appl. Phys. , vol. 28, pp. 815-818, 1957. 

Heaps, 	 H. S., "Nonspecular Reflection of Sound from a Sinusoidal 
Surface, "1. Acoust. Soc. Am. , vol. 27, pp. 698-705, 1955. 

Hewish. A., "The Diffraction of Radio Waves in Passing Through a 
Phase-Changing Ionosphere, " Proc. Roy. Soc, yol. A 209, 
p. 81, 	 1951. 

Hey, J. S. and V. A. Hughes, Paris Symp. on Radio Astronomy, Stanford 
Univ. Press, 1959. 

Hey, J. S. , I. I. Parsons, and F. Iackson, "Reflection of Centimeter 
Electromagnetic Waves over Ground and Diffraction Effects 
with Wire Netting Screens, " Proc. Phys. Soc. , vol. 59, p. 847, 
1947. 



-153
 

Hiatt, R. E., T. B. A. Senior, and W. H. Weston, "A Study of Surface 
Roughness and its Effect on the Backscattering Cross Section of 
Spheres, " Proc. IRE, vol. 48, pp. 2008-2016, 1960. 

Hoffman, W. C. , "Backscatter from Perfectly Conducting Doubly­
trochoidal and Doubly-sinusoidal Surfaces, "Trans. IRE, vol.AP-3, 
p. 96, 1955a. 

Hoffman, W. C., "Scattering of Electromagnetic Waves from a Rough
Surface, " Quart. Appl. Math., vol. 13, p. 291, 1955b. 

Hughes, V. A. , "Roughness of the Moon as a Radar Reflector, " Nature 
vol. 186, no. 4728, pp. 873-874, 1960. 

Hughes, V. A. , "Radio Wave Scattering from the Lunar Surface, " Proc. 
Phys. Soc. , vol. 7&, pp. 988-997, 1961. 

Hughes, V% A., "Discussion of Paper by Daniels 'A Theory of Radar 
Reflections .from the Moon and Planets, '"I. Geophys. Res.,
voL. -67; pp. 892-894;, 1962. 

Ingalls, R.- P. L. E. Bird, and J.W. B. Day, "Band Pass Measure of 
a Lunar Reflection, " Proc. IRE, vol. 49, pp. 631-'632, 1961. 

Isakovich, M. A., "The Scattering of Waves from a Statistically Rough 
Surface, " Zhurn. Eksp. Teor. Fix. , vol. 23, pp. 305-314, 1952. 

Jacobson, A. D. , "Luneberg-Kline Analysis of Scattering from a Sinusoidal 
Dielectric Interface, "'IRE Trans. Ant. and Prop., vol.' AP-10, 
pp., 715-721, 1962. 

Jones, J.L., C. B. Leslie, and L. E. Barton, "Acoustic Characteristics
of Underwater Bottoms, "I. Acoust. Soc. Am. , vol. 36, pp. 154­
163, 1964.
 

Jordan, E. C. , "Acoustic Models of Radio Antennas, " The Ohio State 
University Engr. Exp. Sta. Bull. #108, 1941. 

Kalinin, A. I. , ."Approximate Methods for Calculating the Field Strength
of Very Short Waves with Respect to the Effect of the Terrain Relief, 
Radioteckhn., vol. 12, no. 4, pp. 13-23, 1957. 



154
 

Karhunen, K., "Uber lineare Methoden in der Wahrscheinlichkeitsre­
chnung, "Ann. Acad. Scient. Fenincae (A), vol. 37, pp. 1-79, 
1947. 

Katsenelenbaum, B. A., "Onthe Problem of Normal Incidence of a Plane 
Electromagnetic Wave onto a Periodic Boundary Between Two 
Dielectrics, " Radiotekhn. i. Elektr. , vol. 5, pp. 1929-1932, 
1960. 

Katz, I. and L. M. Spetner, "Polarization and Depression Angle 
Dependence of Radar Terrain Return, "I. Res. NBS, vol. 64-D, 
pp. 483-486, 1960. 

Katzin, 	 M. , "Backscattering from the Sea Surface, " IRE Convention 
Record Part I, pp. 72-77, 1955. 

Katzin, M. , "Recent Developments in the Theory of Sea Clutter, 
IRE Convention Record, Part I, p. 19, 1956. 

Katzin, 	 M. , "On the Mechanism of Sea Clutter,," Proc. IRE, vol. 45, 
pp. 44-54, '1957. 

Kay, I. 	 and R. A. Silverman, "Multiple Scattering by a Random Stack 
of Dielectric Slabs, " Nuovo Cimento. vol. 9, pp. 626-645, 
1958. 

Kaydonovsky, N. L. and A. E. Salomonovich, "Determining the Charac­
teristics of the Surface of the Moon from the Observations by
Radio-telescopes with High Resolving Power, " Izv. Vyssh. Zav. 
Radiofiz., vol. 4, pp. 40-43, 1961. 

Kerr, D. E., Propagation of Short Radio Waves, McGraw-Hill Book Company, 
Inc., New York, 1951.
 

Kerr, F. J., "Radio Echoes from Sun, Moon and Planets, "Encycl. of 
Phys. , vol. 52, pp. 449-464, 1959. 

Kerr, F. J., C. A. Shain, and C. S. Higgins, "Moon Echoes and Pene­
tration inthe Ionosphere, "Nature vol. 163, pp. 310-313, 1949.
 



155
 

Kerr, F. J. and C. A. Shain, "Moon Echoes and Transmissions Through 
the Ionosphere, " Proc. IRE, vol. 39, pp. 230-242, 1951. 

Kiely, D. G. , "Measurements of the Reflection Coefficient of Water at 
=
X 8.7 mm, " Proc. Phys. Soc., vol. 63, pp. 46-49, 1950. 

Kobrin, 	 N. M. , "Radio Echoes from the Moon in the X and S Band," 
Radiotekhn. i Elektr. , vol. 4, pp. 892-894, 1959. 

Koepsel, W. W. and N. Ahmed, "Radar Cross Section of a Geometric 
Shape Using Acoustic Simulation, " University of New Mexico 
Engr. Exp. Sta. Tech. Report EE-80, 1962. 

Kovalev, A. A. , and S. I. Posdnyak, "The Scattering of Electromagnetic 
Waves by Statistically Rough Surfaces with Finite Conductivity, 
Radiotekhn., vol. 16, pp. 31-36, 1961. 

Krylov, 	 V. I. , Approximate Calculation of Integrals, The MacMillan 
Company, New York, 1962. 

Kur'yanov, B. F.',- "The.Scattering of Sound at a Rough 'Surface.with Two 
Types of Irregularities, " Soviet Physics-Acoustics, vol. 8, 
pp. 252-257, 1963. 

LaCasce, E. 0. and P. Tamarkin, "Underwater Sound Reflection from a 
Corrugated Surface," I. Appl. Phys. vol. 27, pp. 138-148, 1956. 

Lapin, A. D., "The Scattering of a Plane Wave at a Serrated Surface, 
Soviet Physics- Acoustics, vol. 9, pp. 37-38, 1963. 

Lapin, A. D., "Sound Scattering at a Rough Solid Surface, " Soviet 
Physics-Acoustics, vol. 10, no. 1, p. 58, July 1964.
 

Lapin, A. D., "Note on the Scattering of a Plane Wave'on a Periodically 
Uneven Surface, " Soviet Physics-Acoustics,, vol. 8, pp. 347-349, 
1963. 

Leadabrand, R. L. et. al., "Radio Scattering from the Surface of the
 
Moon, " Proc. IRE, vol. 48, pp. 932-933, 1960.
 



156
 

Leadabrand, R. L. et. al., "Evidence that the Moon is a Rough Scatterer 
at Radio Frequencies, "J. Geophys. Res. , vol. 65, pp. 3071­
3078, 1960. 

Leporskii, A. N., "Experimental Study of the Diffraction of Acoustic
 
Waves at Periodic Structures, " Akust. Zhurn. , vol. 1, no. 1, 
pp. 48-57, 195-5. 

Leporskii, A. N., "Study of the Scattering of the Sound Waves at Uneven 
Surfaces, "(Dissertation) Acoustics Inst. Acad. Sci. USSR, 1955. 

Leporskii, A. N., "On the Scattering of Sound Waves at Sinusoidal and 
Sawtooth Surfaces,"Akust. Zhurn., vol. 2, pp. 177-181, 1956.
 

Lieberman, L. N. , "Analysis of Rough Surfaces by Backscattering, t 

T.Acoust. Soc. Am., vol. 35, p. 932, 1963. 

Lynn, V. L., M. D. Sohigian, and E. A. Crocker, "Radar Observations 
of the Moon at a Wavelength of 8.'6 millimeters, "T. Geophys. 
Res., vol. Q9, no."4,1-9_64. 

Lysanov, Iu. P., "On the Problem of the Scattering of Electromagnetic 
Waves at Uneven Surfaces, " Dokl. Akad. Nauk SSSR, vol. 87, 
pp. 719-722, 1952. 

Lysanov, Iu. P., "On the Theory of the Scattering of Waves at Uneven 
and Inhomogeneous Surfaces, " (Dissertation) Acoustics Inst. 
Acad. Sci. USSR, 1955. 

Lysanov, Iu. P., "On the Field of a Point Radiator in a Laminar-
Inhomogeneous Medium Bounded by an Uneven Surface, " 
Soviet Physics-Acoustics, vol. 7, no. 3, pp. 255-257, 1962.
 

Lysanov, Iu.P. "OneApproximate Solution of the Problem of the Scattering 
of Sound Waves at an Uneven Surface, "Akust. 'Zhurn., vol. 2, 
no. 2, pp. 182-'87, 1956. [see Soviet Physics-Acoustics, p. 190,
195 6] . 

Lysanov, Iu. P., "Theory of the Scattering of Waves at Periodically Uneven 
Surfaces, " Soviet Physics-Acoustics, vol. 4, no. 1, pp. 1-7, 
Jan.-Mar. 1958., 



157
 

Macdonald, F. D. ' "The Correlation of Radar Sea Clutter on Vertical 
and Horizontal Polarization with Wave Height and Slope, " IRE 
Convention Record, Part 4, pp. 29-32, 1956. 

Mackenzie, K. V. , "Bottom Reverberation for 530 and 1030 cps Sound 
in Deep Water,"T. Acoust. Soc. Am. . vol. 33, pp. 1498-1504, 
1961. 

MacLusky, G. S. R. and H. Davies, IRE Report No. T1933, 1945. 

Maestri, A.', "Hydroacoustic Simulation of Antenna Radiation Charac­
teristics, " Melpar, Inc. , Falls 'Church, Va. , Tech. Report. No. 
TP-1-26, 1961. 

Magnus, W., "On the Scattering Effect of a Rough Plane Surface, 
Research Report EM-40, Inst. Math. Sc.., New York University, 
1952. 

Manton, R. G., The Reflection of Radio Waves from Rough Surfaces, 
Ph.D. thesis;1 LondonUniversity, 1958. 

Marsh, 	 H. W. , "Exact Solution of Wave Scattering by Irregular Surfaces," 
I.Acoust. Soc. Am vol. 33, no. 3, pp. 330-333, Mar. 1961. 

Marsh, 	 H. W., "Sound Reflection and Scattering from the Sea Surface, 
T.Acoust. Soc. Am. , vol. 35, pp. 240-244, 1963. 

Marsh, 	 H. W., "Nonspecular Scattering of Underwater Sound by the 
Sea'Surface, "UnderwaterAcoustics, pp. 193-197, 1962. 

Marsh, H. W. , M. Schulkin, and S. G. Kneale, "Scattering of Under­
water Sound by the Sea Surface, "T. Acoust. Soc. Am. , vol. 33, 
no. 3, pp. 334-340, Mar. 1961. 

McGavin, R. E. and L. 1. Maloney, "Study at 1. 046 Mc/s of the Reflection 
Coefficient of Irregular Terrain at Grazing Angles, "T. Res. NBS, 
vol. 63D, pp. 235-248, 1959. 

McKinney, C. M. and C. D. Anderson, "Measurements of Backscattering 
of Sound from the Ocean Bottom, " T. Acoust. Soc. Am. , vol. 36 
pp. 158-163, 1964. 



158
 

McPetre, J.S., "The Reflect-ion Coefficient of the Earth's Surface for 
Radio Waves, t I.IEEE, vol. 82, p. 214, 1938. 

Meecham, W. C. , "Variation Method for the Calculation of the Distribu­
tion of Energy Reflected from a Periodic Surface, "I. Appl. Phys. , 
vol. 27, pp. .361-367, 1956a. 

Meedham, W. C. i "A Method for the Calculation of the Distribution 
of Energy Reflected from a Periodic Surface, " Trans. IRE, vol. AP-4, 
p. 581, 1956b. 

Meecham, W. C. , "Fourier Transform Method for the Treatment of the 
Problem of the Reflection of Radiation from Irregular Surfaces, 
J.Acoust. Soc. Am. , vol. 28, p. 370, 1956c. 

Mellen, R. H. , "Doppler Shift of Sonar Backscatter from the Sea Surfade, 
J. Acoust. Soc. Am. , vol. 36, pp. 1395-1396, 1964. 

Men', A. V.. ,S. Ya. Brande, and V. I. Gorbach, "Experimental Investi­
gation of the Phase Fluctuations of Centimetre Radio Waves over 
the Surface of the Sea, " Izv. Vyssh. Zav; Radiofiz. vol. 2, 
pp. 848-857, 1959. 

Meyer, E. , "Experiments on CM Waves with Acoustic Techniques Made 
- in Gottingen, "T.-Acbust. Soc. Am. , vol. 30, pp. 624-632, 1958. 

Middleton, D., An Introduction to Statistical Communication Theory, 
McGraw-Hill Book Company, Inc. , New York, 1960. 

Miles, 	 J. W. , "On Nonspecular Reflection at a Rough Surface, I. Acoust. 
Soc. Am. , vol. 26, pp. 191-1:99, 1954. 

Millman, G. H. and F. L. Rose, "Radar Reflections from the Moon at 
425 Mc/s, "J. Res. NBS vol. 67D, p. 107, 1963. 

Millington, G., "The Reflection Coefficient of a Linearly Graded Layer, 
Marconi Rev., vol. 12, p. 140, 1949. 

Mitzner, K. M. , "Theory of the Scattering of Electromagnetic Waves by 
Irregular Interfaces, " Antenna Laboratory, Calif. Inst. Tech. , 
Tech. Report No. 30, Jan. 1964. 



159
 

Mofensen, j. , "Radar Echoes from the Moon, " Electronics, vol. 19, 
pp. 92-98, 1,946. 

Moore, R. K. , "Acoustic Simulation of Radar Return, " Microwaves, 
vol. 1, pp. 20-25, 1962. 

Moore, R. K. , "Resolution of Vertical Incidence Radar Return into Random 
and Specular Components, " Univ. of New Mexico, Albuquerque, 
Engr. Exp. Sta. Tech. Report E.E, 6, July 1957. 

Moore, R. K. and C. S. Williams, "Radar Terrain Return at Near 
Vertical Incidence, " Proc. IRE vol. 45, pp. 228-238, 1957. 

Morse, P. M. , Vibration and Sound, McGraw-Hill Book Company, Inc. 
New York, 1948. 

Morse, P. M. and H. Feshbach, Methods of Theoretical Physics, 
McGraw-Hill Book Company, Inc., 1953. 

Muhleman, D. 0. , '"Radar Sdatieriftg frbm Venus and the Moon," 
Astronomical I. , Feb. 1964. 

Nolle, 	 A. W., W. A. Hoyer, J. F. Mifsud, W. R. Runyan, and M. B. 
Ward, "Acoustical Properties of Water-Filled Sands, " . Acoust. 
Soc. Am, vol. 35, pp. 1394-1408, 1963. 

The Ohio State University, "Theoretical and Experimental Analysis of 
the Electromagnetic Scattering and Radiative Properties of Terrain, 
with Emphasis on Lunar-Like Surfaces, " Antenna Laboratory 
Report No. 1388-12, 1963. 

Ornstein, L. S. and H. Van der Burg, "Reflectivity of Corrugated Surfaces, 
Physica, vol. 4, p. 11-81, 1937. 

Oxehufwud, A., "Tests Conducted over Highly Reflective Terrain at 
4,000, 6,000, and 11,000 Mc.," Trans. Amer. IEE, vol. I, 
no. 78, pp. 265-270, 1959. 

Parker, 	J. G. , "Reflection of Plane Sound Waves from an Irregular Surface, 
J. Acoust. Soc. Am. , vol. 28, pp. -672-680, 1956. 



160
 

Parker, 	 J. C. , "Reflection of Plane Sound Waves from a Sinusoidal 
Surface, "I. Acoust. Soc. Am. , vol. 29, pp. 377-380, 1957. 

Patterson, R. B. , "Backscatter of Sound from a Rough Boundary, J. Acoust. 
Soc. Am., vol. 35, no. 12, p. 2010, Dec. 1963. 

Pettengill, C. H. , "Measurement of Lunar Reflectivity Using the Millstone 
Radar, " Proc. IRE, vol. 48, pp. 933-934, 1960. 

Pierson, W. J. Jr., "The Directional Spectrum of a Wind Generated Sea 
,as Determinedfrom Data Obtained by the Stereo Wave Observation 
Project, " Meteoroloqical Papers, vol. 2, no. 6, New York Univ., 
1'960. 

Price, R., P. E. Green, 1. I. Goblick, R. H. Kingston, L. T. Kraft, 
G. H. Pettengill, R. Silver, and W. B. Smith, "Radar Echoes 
from Venus, " Science, vol. 129, pp. 751-753, Mar. 1959. 

Proud, J. , "Refl6ctioh of Sound from-a Surface of Saw-tooth, ".Ap.
kbxgy . , ol..28, p'.:1298, 1,957.' 

Proud, J. M. , R. T. Beyer, and P. Tamarkin, "Reflection of Sound from
 
Randomly Rough Surfaces, "J. Appl. Phys. , vol. 31, pp. 543­
553, 1960.
 

Rayleigh, Lord, The Theory of Sound, 3rd ed. MacMillan, London, 1896. 

Rea, D. G. , N. Hetherington, and R. Mifflin, "The Analysis of Radar
 
Echoes from the Moon, " I. Geophys. Res. , vol. 69, no. 24,
 
pp. 5217-5223,, Dec. 1964.
 

Redheffer, R. , "The Dependence of Reflection on the Incidence Angle,
 
Trans. IRE, vol. MIT-7, pp. 423-429, 1959.
 

Reitz, "Development of Airborne and Laboratory Equipment, " Contract
 
NORD 16165, Goodyear Aircraft Corp. , Sept. 1958.
 

Rice, S. 0. , "Reflection of Electromagnetic Wave from Slightly Rough
 
Surfaces, " Comm. Pure Appl. Math vol. 4, pp. 351-378, 1951.
 



161
 

Richter, R. , J. Bessis, and P. Catella, "Application au Radar du Phenomene 
de Rflexion des Ondes Electromagnetiques par le Sol, " L'Onde 
Electrique, vol. 40, pp. 392-410, 1960. 

Saxton, I. A. and J. A. Lane, "Electrical Properties of Sea Water. Reflec­
tion and Attenuation Characteristics at VHF, " Wirel. Eng. , vol. 29, 
pp. 269-275, 1952.
 

Schooley, A. H. , "A Simple Optical Method for Measuring the Statistical 
Distribution of Water Surface Slopes, "I. Opt. Soc. Am. , vol. 44, 
pp. 37-40, 1954. 

Schooley, A. H. , "Radar Reflections from Sea Waves, " Tele-Tech. 14, 
pp. 70-71, 1955
 

Schooley, A. H. , "Some Limiting Cases of Radar Sea Clutter Noise, 
Proc. IRE, vol. 44, p. 1043, 1956. 

Schouten, I. P. and A. T. de Hoop, "Sur la Reflexion d'une Onde 
Electromagnetique Plane par une Surface Rugueuse Parfaitement 
Conductrice, "Ann. Telecomm. , vol. 12, pp. 211-214, 1957. 

Schulkin, M. and R. Shaffer, "Backscattering of Sound from the Sea 
Surface, "T. Acoust. Soc. Am. , vol. 36, No. 9, p. 1699, 
Sept. 1964. 

Semenov, A. A., D. K. Kvavadze, L. G. Nazarov, and I. I. Zvyagintseva, 
"Investigation of the Reflecting Properties of Some Systems with 
a Periodic Structure, " Vyest. Mosk. Univers. Ser. Matem. , 
Astron. , Fiz., No. 1, pp. 107-114, 1958. 

Senior, 	 T. B. A. , "The Scattering of Electromagnetic Waves by a Corrugated 
Sheet, " Canada J. Phys. , vol. 37, pp. 787-797, 1959; also 
correction Canada I. Phys. vol. 37, p. 1572, 1959. 

Senior. 	T. B. A. , "Radar Reflection Characteristics of the Moon, " Paris
 
Symposium on Radioastronomy, Stanford Univ. Press, 1959.
 

Senior, 	 T. B. A. and K. M. Siegel, "A Theory of Radar Scattering by the
 
Moon, "I. Res. NBS, vol. 64D, pp. 217-229, 1960.
 



162 

Sherwood, E. M. , "S Band Measurements of Reflection Coefficients for 
Various Types of Earth, " Sperry Gyroscope Co. Report No. 5220­
129, Oct. 1943. 

Sherwood, E. M. , "Reflection Coefficients of Irregular Terrain at 10 cm, 
Proc. IRE, vol. 43, pp. 877-878, 1955. 

Shulman, L. A. , "The Reflection of Electromagnetic Waves from a Semi-
Infinite Periodic Layer Structure, " Uch. Zap. Tadzh. Univ., 
vol. 10, pp. 103-109, 1957. 

Sofaer, 	 E. , "Phase-coherent Backscatter of Radio Waves at the Surface 
of the Sea, " Proc. IEE, Part B, no. 105, pp. 383-394, 1958. 

Spetner, L. M. , "A Statistical Model for Radar Terrain Return," Trans. 
IRE, vol. AP-8, pp. 242-246, 1960. 

Spizzichino, M. A. , "La Reflexion des Ondes Electromagnetiques par 
Une Surface Irreguliere, " Research Report No. 549T, Centre 
National d'Etudes des T616communications, 4.11.1959, 1959. 

Straiton, A., "Reflection of Centimeter Water Waves from Ground and 
Water, " Trans. IRE. vol. AP-4, Aug. 1955. 

Straiton, A. W. , J. P. Gerhardt, A. H. LaGrone, and C. W. Tolbert, 
"Reflection of Centimeter and Millimeter Radio Waves from the 
Surface of a Small Lake, " Elec. Engr. Res. Lab. Univ. of 
Texas, Report No. 63, May 1952. 

Straiton, A. W. and C. W. Tolbert, "Moon Reflection Studies with 
Bistatic Radar at 3000 Mc/s, " Comm. and Electr. , vol. 50, 
pp. 436-460, 1960. 

Stratton, I. A., Electromagnetic Theory, McGraw-Hill Book Company,
 
Inc., New York, 1941.
 

Tai, C. T. , "Reflection and Refraction of a Plane Electromagnetic Wave 
at a Periodical Surface, " Harvard Tech. Report No. 28, Cruft 
Lab. , Jan. 1948. 

Taylor, 	 R. C. , "Terrain Return Measurements at X, Ku, and Ka Band,
 
IRE Convention Record Part I, vol. 7, 1959.
 



163
 

Taylor, 	 R. C. , "The Terrain Scattering Problem, " Radar Reflectivity 
Measurements Symposium, Space Surveillance and Instrumen­
tation Branch, Rome Air Development Center Research and Tech. 
Division, Air Force Systems Command, Griffiss Air Force Base,
New York, Tech. Report RADC-TDR-64-24, April 1964. 

Tonakanov, 0. S., 'Sound Fluctuations in Double.Reflection from an 
Undulating Water.Surface, "Soviet Physics-Acoustics, vol. 10, 
no. 2, p. 211, Oct. 1964. 

Trexler, J. H., "Linar'Radio Echoes, " Proc. IRE. vol. 46, pp. 286-292, 
1958. 

Twersky, V. , "On the Non-specular Reflection of Plane Waves of Sound, 
T. Acoust. Soc. Am. , vol.. 22, pp. 539-546, 1950. 

Twersky, V. , "On the Non-specular Reflection of Sound from Planes 
with Absorbent Bosses, "J. Acoust. Soc. Am. , vol. 23, 
pp. 336-338, 1951a.-

Twersky, V. , "On the Nonspecular Reflection of Electromagnetic Waves,"
J. Appl. Phys. , vol. 22, pp. 825-835, 1951b. 

Twersky, V. , "Reflection Coefficients for Certain Rough Surfaces, 
J. Appl. Phys. , vol. 24, pp. 569-660, 1.953. 

Twersky, V. , "Certain Transmission and Reflection Theorems, "T. A . 
Phys. , vol. 25, pp. 859-862, 1954. 

Twersky, V. , "Scattering Theorems for Bounded Periodic Structures, 
I. Appl. Phys., vol. 27, pp. 1118-1122, 1956. 

Twersky, V., "On the Scattering and Reflection of Electromagnetic Waves 
by Rough Surfaces, " Trans. IRE vol. AP-5, pp. 81-90, 1-957a. 

Twersky, V. , "On the Scattering and Reflection of Sound by Rough Surfaces,
J. Acoust. Soc. Am. , vol. 29, pp. 209-225, 1957b. 

Twersky, V. , "Calcul des Coefficients de Reflexion et des Sections 
Droites Diff4rentielles de Diffraction pour les Surfaces Irregulieres,
Ann. Telecomm. vol. 12, pp. 214-216, 1957c. 



164 

Twersky, V. , "Scattering by Quasi-periodic and Quasi-random Distribu­
tions, " Trans. IRE, vol. AP-7, pp. 307-319, 1959. 

Twersky, V. , "Signals, Scatterers, and Statistics, " Trans. IRE, AP-Il, 
pp. 608-680, 1963. 

Urick, 	 R. I. , "The Backscattering of Sound from a Harbor Bottom, 
1. Acoust. Soc. Am., vol. 26, pp. 231-235, 1954. 

Urick, 	 R. J. , "The Processes of Sound Scattering at the Ocean Surface 
and Bottom, "T. Marine Research. vol. 15, pp. 134-148, 1957. 

Urick, 	 R. J. and R. M. Hoover, "Backscattering of Sound from the Sea 
Surface: its Measurement, Causes, and Application to the 
Prediction of Reverberation Levels, "T. Acoust. Soc. Am., 
vol. 28, p. 1038, 1956. 

Urusovskii, I. A. , "Sound Scattering by a Sinusoidally Uneven Surface 
Characterized by Normal Acoustical Conductivity, " Soviet 
Physics-Acoustics, vol. 5, pp. 362-369, 1960. 

Urosovskii, I. A. , "Diffraction of Sound on a Periodically Uneven and 
Inhomogeneous Surface, " Soviet Physics-Doklady, vol. 5, 
pp. 345-348,, 1960. 

Urusovskii, I. A. , "Diffraction by a Periodic Surface, "Soviet Physics-
Acoustics, p. 287, fan. 1965. 

Victor, 	 W. K., R. Stevens, and S. W. Golomb, "Radar Exploration of 
Venus, " Goldstone Observatory Report for March-May 1961. 
let Propulsion Laboratory, Calif. Inst. Tech. , Pasadena, Calif. 
Tech. Report No. 32-132, Aug. 19.61. 

Warner, B. D., R. K. Moore, and A. R. Edison, "Acoustic Simulation 
of Radar Altimeter Signals from Cities, " University of New 
Mexico Engr. Exp. Sta, Tech: Report EE-77, 1962. 

Wilf, H. S., Mathematics for the Physical Sciences, John Wiley and 
Sons, New York, 1962. 

Wiltse, 	I. C., S. P. Schlesinger, and C. M. lohnson, "Backscattering 
Characteristics of the Sea in the Region from 10 to 50 kMc, 
Proc. IRE, vol. 45, pp. 220-228, pp. 244-246, 1957. 



165 

Winter, D. F. , "A Theory of Radar Reflection from a Rough Moon, 
I. Res. NBS, vol. 66D, p. 215, 1962. 

Yapplee, B. S., R. H. Bruton, K. J. Craig, and N. G. Roman, "Radar 
Echoes from the Moon at the Wavelength of 10 cm, " Proc. IRE, 
vol. 46, pp. 293-297, 1958. 

Yapplee, B. S., N. G. Roman, K. J. Craig, and T. F. Scanlan, "A 
Lunar Radar Study at 10 cm Wavelength, " Paris Symposium on 
Radio Astronomy, Stanford Univ. Press, 1959. 


