5
(o

o

i
i 7 '?%‘"\\‘*1

M

i o
e

or

G

G
L

SR

BRI R
CrEa

' gw S
e

B
S

e

L S
o i

taie
i

e
LR
L

; e

i
AR

e

A

e

S

T

By
o

S it b Sl ated
p 3 \'\13,\:\.‘

i

; o : o

R

S : o i .
R i

o

‘ e R

G




RE-56
STRAPDOWN NAVIGATION EQUATIONS FOR
GEOGRAPHIC AND TANGENT COORDINATE FRAMES
by
Kenneth R. Britting
June, 1969

Approved: (“K). 0/14“J1—$5J101

Director 7
Measurement Systems Laboratory




ii

ABSTRACT

Six coordinate frames relevant to the operation of a radar-
aided strapdown inertial navigation system are defined and the re-
lationships between these frames are established. Analytic ex-
pressions for the specific force are derived for the cases of com-
putation in the local geographic frame and in the tangent coordinate
frame. An algorithm for the solution of the direction cosine matrix
is indicated. Approximate analytic relations are derived which re-
late the change in latitude and longitude to the radar coordinates.
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STRAPDOWN NAVIGATION EQUATIONS FOR
" GEOGRAPHIC AND TANGENT COORDINATE FRAMES

1. INTRODUCTION

The initial navigation system testing performed by N.A.S.A.
E.R.C. (Phase IB) utilized a space stabilized inertial navigation
system and a ground based tracking radar. It was found convenient
to perform the navigational computations in a tangent plane co-
ordinate frame which has its origin at the radar site or at the
takeoff or landing point. The Phase II test effort will involve
a strapdown inertial navigation system with, at least temporarily,
the same tracking radar. It is hoped, however, that in the fu-
ture other navigational aids can be incorporated, such as D.M.E.,
I.L.S.; Decca, etc.

The question naturally arises as to whether the tangent compu-
tational frame should continue to be used in the Phase II test ef-
fort. Since the tangent frame has been successfully used in the-
past, there is some feeling in favor of its continued use. On the
other hand, since the Phase II effort involves the development
and testing of a hybrid navigation system for a general class of
VTOL aircraft, it is desirable to have area navigation capability.
This would involve the use of a reference frame which is not di-
rectly tied into a base point. The local geographic reference
frame is a likely candidate in this regard since it is mechanized
in virtually all of the aircraft inertial navigation systems
built to date.

It is the objective of this paper, therefore, to specify the
navigational equations to be used in the Phase II test effort.
These equations will be derived for both a local geographic and
tangent plane computational frame.



2.

FRAME DEFINITIONS

It will be convenient

six orthogonal, right-handed coordinate frames:

(

(

(

(

(

(

geographic, earth, and tangent frames.

1)

2)

3)

4)

5)

6)

Inertial frame v "i" N~ Earth centered, inertially

nonrotating frame,

Geographic frame v "n" v~ local north-east-down
frame with origin at the system's location.

Body frame v "b" ~ frame mechanized by the in-
ertial sensor's sensitive axes with origin at
the system's location.

Earth frame n "e" v Barth centered frame which
is fixed to the Earth.

Tangent frame v "t" N earth fixed frame with
origin at the radar location which is aligned

with the local geographic frame at the radar
site.

Radar frame v "r" o spherical coordinate frame
defined by radar range, heading, and elevation
with origin at the radar site.

in the work which follows to define

Figure 2.1 illustrates the relationships between the inertial,

Note that at t = 0,

the

inertially fixed reference meridian, earth frame meridian, and
local meridian are coincident. Thus we have that

where

A =4 - 20 + wiet

n celestial longitude

n terrestrial longitude from Greenwich

n initial terrestrial longitude from Greenwich
n Earth's angular velocity

N time

(2.1)



Inertially Fixed
Reference Meridian

Greenwich
Meridian

4¢

(N, E, D) "~ geographic
(x, vy, 2) n tangent
(X3, Yir 23) v inertial

(Xe, Yer Ze) ™ Earth

Zir2¢

Local Meridian

Earth Frame
Meridian

Figure 2.1 " Coordinate Frame Geometry



Figure 2.2 shows the relationship between the radar and tan-
gent frames. o

. "Z

Figure 2.2 ~ Radar and Tangent Frame Relationship

Thus the location of the aircraft in tangent coordinates is given
by:

p L > -
p cos 6 cos VY Px
of = |pcos 6 sin v | = oy | (2.2)
~p sin © Py
o o L 4

We now list the relationships between the various coordinate
frames:

2.1 Inertial~Geographic

an = {) cos L, -1, =i sin L} (2.3)



[ -sin L cos A -sin L sin A cos L
_? = -sin A cos A 0
-cos L cos A -cos L sin A -sin L
where: -
an n angular velocity of the geographic frame with

respect to the inertial frame
L o~ geographic latitude

n coordinate transformation matrix relating iner-
tial coordinates to geographic coordinates

n
(_) ny superscrlpt on vector denotes coordlnatlzatlon
in that reference frame

2.2 Inertial-Tangent

£t .
Wiy = {wie cos L, 0, -w, sin Lo}

> -
-sin L, cos wigt -sin Ly sin w; .t cos Lg
t _ .
E; = ~sin wjet cos Wwjet 0
-cos Ly COs Wjet ~cos Ly sin Wjet =-sin LOJ

where:

Lo Vv geographic latitude at origin of tangent plane

2.3 Tangent-Geographic

Wy, T {4 cos L, -i, -% sin L}

(2.4)

(2.5)

(2.6)

(2.7)



sin L sin L, cos (2-2,) + cos L cos L, -sin L sin(2-%4)

Ct sin Ly sin(2-2,) cos (2-2,0‘)

sin Lo cos L cos(&-%,) - sin L cos Lo =-cos L sin(f-%,)

sin L cos Ly cos(k-zo) - sin Ly cos L
cos Ly sin(k—%o) (2.8)

cos L cos Ly cos(8-24) + sin L sin Lg

The above transformation matrix can be approximated through series

expansion to apply to situations where
and geographic frames are separated by
second order approximation to equation

the origin of the tangent
only a short distance. The
(2.8) is given by:

[ _AL2 Lo AR A an L D27
l-=—=-sinLy -5 - % (sin Lg+AL cos Lg) L - =g~ sin2l,
2
92 = A% sin Lg 1- é§~ “A% cos L,
Ao 2 AT .2 2
-AL - Aﬁ sin2Lg -Af(cos Lg=-AL sin Lg) 1 - Ag - é-%-—coszLo
. 4
(2.9)
where:
AL = L - Lg
AR = & = 24

It follows that the linear approximation to equation (2.8) is given
by:

1 -A% sin Lg AL

A% sin Lg 1 A% cos Lg (2.10)

(e!
=
1K

=A% cos Lg 1
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3. GEOGRAPHIC FRAME MECHANIZATION

Strapdown systems are characterized by their lack of gimbal
support structure. The system is mechanized by mounting three
gyros and three accelerometers directly to the vehicle for which
the navigation function is to be provided. An onboard digital
computer keeps track of the vehicle's attitude with respect to
some reference frame based on information from the gyros. The
computer is thus able to provide the coordinate transformation
necessary to coordinatize the accelerometer outputs in a refer-
ence frame. Navigation computations proceed in exactly the same
fashion as for platform systems.

A functional block diagram for a strapdown system which com-
putes in the geographic reference frame is shown in figure (3.1).

Body £P ¢n | Geographic |- Velocity
Mounted — cn i N aslifgl;% jon [ Pos ition
Accelerometers 4 =b Computatlon Attitude

Physical
Coupling

Body
Mounted
Gyros

Figure 3.1 v Geographic Frame Strapdown System



3.1 Navigation Equations

The outputs of the accelerometers are equal to the nonfield
specific force coordinatized in body axes:

£ =) @t - gl (3.1)

where:

f ~ nonfield specific force exerted on the instruments

G "~ gravitational acceleration at the instrument location
i v inertially referenced acceleration

After transformation into geographic axes, equation 3.1 can

be written as a function of the geographic latitude, L, celestial
longitude, A, and the radii of curvature r1 and r; as follows:

_rLi + %rz(iz—mie) sin 2L + 2iLi - resin 2L - &g ]
. g? =1ry Acos L - ZrQﬁisin L + zizicos L + ng (3.2)

iz esi 22 2 2 rf, * 2

L-g - ¥ - ryLesin 2L + rz(x - wie) cos® L + - LJ

where:
ry = r(l - 2e cos 2L)
n radius of curvature in meridian plane
r, 2 x (1 + 2e sin?l)

n  radius of curvature in co-meridian plane
E meridian deflection of the vertical (positive about east)
n v prime deflection of the vertical (positive about north)
e n Earth's ellipticity = 1/297

g ~ magnitude of gravity



Equation 3.2 is an approximate expression which contains terms

which are greater than 2 x 10-5g for the
of vehicle motion:

following maximum values

rimax = rxmax £:0.59

fmax = Imax S 1.6 x 10-5 rad/sec (340 X velocity)
Tmax S 100 ft/sec

émax s 29

Those limits correspond to those which one would expect to en-

counter 1in an aircraft application such
ref. 1 for the detials of the derivation

Navigational information is readily
Coriolis and cross coupling compensation
then

. ..
rLL
£ = Ir Kcos L
=compensated 2
-F ~-g

o

as a helicopter. See

of eqg. 3.2.

obtained from f™ since, if
is provided in eq. 3.2,

Latitude and longitude can then be found by a double time integra-
tion of the north and east specific force measurements, respectively.

Ref. 1.

Britting, "Analysis of Space Stabilized Inertial Naviga-

tion Systems," M.I.T. E.A.L. Report RE-35, 1968.
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Figure 3.2 illustrates the computation in detail.

h.e sin2L,

- + - .
r Lq( ) —
° L . VN
L. (0) L (0) c
N rr L : +1+ L | L
c ¢ 1 ¢t c t +A T L
'?"' "”;E;fo()dt—*é} —/ 04 c
Accelerometer -1
Compensation VEq
. | cosL p——3—
) 20(0) 2 C‘zc(o)
£ rz_kccosL I B 4
£2—= S Ec'(*} - e/ O at e 10 ac > s
- L) .COSLc’ 0 o
©. + ¥+ Ao
ie
cos Lg
fD ° °
. 3 |
- Col Altitude c Aol
Computation —>h, r=S1inLe
| L —ic sin L.
1 Xc cos L,
. -ic

Figure 3.2 “ Geographic Computation Scheme

In Figure (3.2) the subscript "c" denotes a computed physical
quantity. In addition, it was noted that the Earth referenced
velocity, coordinatized in geographic axes is given by (to an
accuracy of better than 0.1 ft/sec for aircraft altitudes):
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o -
r;L - h esin 2L
n ~ . '
v = |r, 2 cos L (3.3)
-h

As is shown in Figure (3.2), the computation scheme assumes that
the effective north and east accelerometer outputs are given by
the north and east components of equation (3.2). Thus the in-
dication of latitude and longitude is found by subtracting off
the Coriolis and cross coupling terms from the components of
equation (3.2). Thus '

o 1 ) 2 . ° . oo . .
r = f_ == r, (A°=wf )sin2L -2r. L +r e sin2lL (3.4)
Lch Nc 2 20 c ie c Lc c ¢ c
rzc Ac cos Lc = fEc+2chLc X031n Lc - 2r'Qc Accos Lc (3.5)

Note that the deflection of the vertical terms cannot be included

in the above expression since no knowledge of their magnitudes is
assumed.

Now the computed expressions for the radii of curvature are
given by: '

K
|

rc(l - 2e cos 2Lc) (3.6)
— 3 2
r = rc(l f 2e sin Lc) (3.7)

and the calculated magnitude of the Earth radims vector is given
by:

r =r + h (3.8)

where
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r, v calculated local geocentric Earth radius magnitude

4

z re(l - e sin? Lc) [maximum error: 150 ft]

hc ~ estimated height above the reference Earth model's
surface

T v Earth's equatorial radius

The transformation from body to geographic axes is specified
by using a combination of information from the strapdown gyros
with information generated within the navigational computation
loop (see figure 3.1). The transformation is generated by solv-
ing the matrix differential equation:

sn _ b \
% = % o (3.9)

where Qb is the skew symmetric representation of the angular
veloc1ty of the body frame with respect to the geographic frame:

b b _ b
Ynp T Yip T Yin

(3.10)

{wx, wy, wz}

The angular velocity of the geographic frame with respect to the
inertial frame is just the computed version of equation (2.3):

(2 ® L

(Wb ) = {A_ cos L., -L “Ag sin L} (3.11)

=in’c e c’

Equation (3.9) can alternately be interpreted as a shorthand
way of writing nine simultaneous differential equations in nine
unknowns, as can be seen by writing it out in component form:

€11 C1a & ~C11 Ciz Cy3) | O -, Wy
€21 Cop Chul = |Cyy Cap Cas| | uw, 0 ~Wy
Ca1 Cap Gy 1C31 C3, Cjy Wy Wy Y
-Clz@z'clswy Cisw ~Ciiw, Cl1wy‘c12wx
= szwZ—C23wy Czawx-Cz1wz C21wy-C22wx
LCazwz—C“wY C33wx—C31wz C31wy-C32wx
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The solution of equation (3.9) for the direction cosines can
be done in a variety of ways. If single-degree-of-freedom, delta-~
modulated instruments are used, the gyro output angle is sampled
and passed into a zero order hold circuit. Pulse torquing is then
applied to the gyro float to null the instrument. Weiner (Ref. 2)
shows that for this mechanization each output pulse is proportional
to the integral of the input angular velocity. Thus the output of
the instrument represents an angular rotation about the input axis
equal to A6. This property can be exploited in the solution for
the direction cosine matrix if one considers a Taylor series ex-
pansion of cp in At:

C(t + At) = C(t) + C(t) At + %. C(t) At? + %.-_c_:_ at® + ... (3.12)
where Eg = C for notional simplicity.

But application of equation (3.9) yields:

C(t + At) = C(t)[I + @ At +§- (2 + Q)AE2 + ....] (3.13)

If the first two terms of the expansion are used,
C(t + At) = C(t) + C(t) AS (3.14)

where it was noted that:

and A8 is a skew symmetric matrix composed of the gyro outputs Afy,
k = x, vy, 2. The result shown in equation (3.14) could, of course,

have been shown by applying the definition of the derivative directly
to equation (3.9).

If the computational algorithm of equation (3.14) is used,
which corresponds to a rectangular integration scheme, then the

Ref. 2. Weiner, "Theoretical Analysis of Gimballess Inertial
Reference Equipment Using Delta Modulated Instruments,"

Sc.D. Thesis, Department of Aeronautics and Astro-
nautics, 1962,



- 14 -

algorithm error (truncation error) is approximately given by the
third term of equation (3.13):

8C = 5 c(? + )t (3.15)
Thus the time step, At, must be chosen such that the errors result-
ing from the vehicle angular velocity, @, and the vehicle angular
acceleration, {, satisfy the error budget. In addition, the finite
computer word length causes the occurrence of "round-off" error.

3.2 Utilization of Radar Information

In order to use the radar information to update the inertial
navigation system, the radar vector, equation (2.2), must be ex-
pressed as a function of latitude and longitude.

3.2.1 Latitude-Radar Relations

The development for the latitude relationship is motivated by
first writing the system position vector in inertial coordinates
(see figure 2.1):

cos Lg cos A Tx;

ri = r {cos L. sin A r
= g Yi
sin Lg Tzi

where:
Lg nvgeocentric latitude
Then it follows that:
Lg = sin~1 fgi (3.16)

In order to solve eq. (3.16) for Lg, it will be necessary to ex-
press the rzy component of £1 in terms of p. It is seen from figure
2.1 that:

r=rn, te
where

r ~ system geocentric position vector

r, v radar geocentric position vector

p ~ position vector from the radar (origin of tangent frame)
to the system position

Thus the system position vector, coordinatized in the inertial frame,
is given by:
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R . R S -
r=cy lx; +p7] (3.17)
Now from equation (2.2)
' pt = {o_, 0, 0.} (3.18)
B x!' Py’ Pz o

and from figure 2.1

t .
r, = {-r, sin D, 0, -r  cos D1 (3.19)

where

D, n~ deviation of the normal at the base point

D0 = e s:.nZLo

Thus substitution of equations (2.6), (3.18), and (3.19) into equa-
tion (3.17) yields the desired expression for Tzt

rzi = ro sin Lg, + px €O0s Lo - Pz sin Lo (3.20)

We solve for r in equation (3.17) by noting that from the expression
for r in tangent coordinates, equations (3.18) and (3.19),

r2 = (p, = Iy sin D)2 + py2 + (p, - Ty cOs Dg)?
or
2 . 2 2 - - i
r? = r 2+ p 2r, o, 2r, py © sin2L,
Thus:
-1 . _ -1 _1p2 Pz | Px .
r = ’ro (1 -2- roz + -f; + E_—; e SlIlZLo) (3.21)

Substitution of equations (3,21) and (3.20) into equationi(3.16)
yields: '

P - -p "1 52 Py P
sin Ly = (sin L, + =% cos Ly - =% sin L) (1 - 5 &— + 2 + % e sin2L )
do r, o T, o 2 ro? r, r, o

We can expand the above equation as a function of AL, where
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AL

]
=
i
[l

by noting that:

L =1L_ + AL,
g

9 95
Lg=L—D,
D = e sin2lL,
which yields:
P P p
- = X _Z in?L - L+ X
AL [1 + e(1 3 cos2Lo)] 7 (1 + T + 2 e sin Lo 5 T tan Lo)
o] o o
p,” 1 Py” 1
_ 37z =1 2
3 ;;7 tan L 5 ;it tan L, + 3 AL“tan Lo

The presence of the tan Lo terms in the above equation points out
the well known fact that geographic frames are inappropriate for
use in polar applications. We see that except for operation in the
polar regions, thezdominant term is the north component of p. Thus
if we let AL? = px~,

rOZ
L Px Pz 1 py>
AL = -]:—'— (1 + -f'—_ + 2e cosZLo) - 5 ;y;z- tan LO (3.22)

o] o] (o]
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We note that for |p| < 10 n.m., we can calculate AL using

Px

AL = —EB (3.23)

with a maximum error of only about 4 Sec.

3.2.2 Longitude~-Radar Relationships

The derivation of the longitude relationships is again moti-
vated by geometrical considerations. From figure 2.1, consider the
projections of r,, p, and r in the equatorial plane:

Figure 3.3 ~ Equatorial Plane Projections

We see from the sketch that:

sin (g - 2,0) = -1-:_—-(-:—6—5-—-]:-— (3.24)
g
Letting
L = o = AR
and
Ly =L =-D=1Lo+ AL =D
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then
_ -1 Px ,
AL = x Py sec Lo [1 + (_?; - e sin2L,) tan LO]

But from equation (3.21),

r = r (1 + = + —— e sin2Lk = &5 =—w) (3.25)
o r, Yo o) 2 r,
Thus
A% = L sec Lo [1 - 2e sinzLo + — tan Lo + — - 3 —7]
rO o ro 2 ro
(3.26)

Note that for Py and Px < 10 n.m., the change in longitude can be
calculated using:

_ Py
AL = —?5' sec LO (3.27)

. . P
with a maximum error of about 4 sec.



- 19 -

4, TANGENT FRAME MECHANIZATION

The functional block diagram for a strapdown system which
computes in tangent coordinates is shown in Figure (4.1).

Body EP t Et nggﬁgt Jeoe
Accﬁggzgxigters £:-b | Navigation [ rosition
: Computationf———pin i + 5 tude
Physical b
Coupling Yip
P L
— wie cos Lg
Body ( ' t o=
Mounted - it °
Gyros i
Wi S1n Lo
L. -l

Figure 4.1 ~ Tangent Frame Strapdown System

We note, of course, that the instrument outputs are identical to
the geographic frame mechanization discussed previously since the
body frame is instrumented by both systems. We also note that the
angular velocity computation is independent of the navigation com-
putations since the angular velocity of the tangent frame with res-
pect to the inertial frame is a constant vector (see equation 2.5).

4.1 Navigation Equations

As before, the output of the accelerometers is given by:
4£P - 9?‘2} _,El) (4.1)

The computer transformation matrix, gt, is then used to transform
the specific force into tangent axes:

t _ toed Lt i
gf=ciit-cle (4.2)
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We can navigate with respect to the tangent frame origin by noting
from Figure (2.1) that:

r=xr,+p (4.3)

Substituting equation (4.3) into equation (4.2) yields:

t _ At =i i t i
=G, g e -¢Ci ¢ (4.4)
Since
i . .
r_=r, {cos Lgocos w; t, cos Lgo sin w, t, sin Lgo},

after differentiating twice with respect to time and transforming

the resulting expression to the tangent frame using equation (2.6),
we get:

sin LO cos L

o]
=r w? 0

cos L0 cos L
o

Expansion of cos Lgo in terms of L, and Dy, the deviation of the
normal at the base point, shows that:

cos Lgo = cos Ly (1 + 2e sin’Lg).

But the radius of curvature in the co-meridian plane at the base
point is given by:

rg = rg (1 + 2e sin?Lg)
o
Thus: :
sin Lo

= ry wi_ cos Lg 0 (4.5)
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An analytic expression for gg_él is found by differentiating the

quantity,‘_g1 = Et BF,,twice with respect to time, noting that Qt =

i Tt .
gt ﬂit and that Qit = 032
t Wi _ <t ot ot t. £t t
Cip =po *t20: 0 ¥ Q¢ 8¢ 0 (4.6)

We expand the above equation in component form by noting that:

2 = logr pyr 0yl
ot . .
and Wi = {wjq c0s Ly, 0, -w;, sin L},
Thus:
. . . 1 . "
o - 2 2 el
104 + Zwie py sin LO _(uie(px sin ‘Lo + 50, SanLo)
t el _ . _ . . . - n
Ci o = Py 205,(p, sin L_ + p, cos L) wie Py (4.7)
- 1 .
2 -2 2
va + Zwie py cos LO Wi (-z- Px sin 2LO + o, cos LO)‘

Since G takes on a convenient form when coordinatized in the geo-
graphic frame, we let

t i _ Ct n

Ei..G_=_.n§.
Now
n _ n n n n
.(_;._E-'-.Slieg_ief.'
But since
n .
g = {&9, -ng, g9}

and

=
]

"{-r sin D, 0, -r cos D},
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it follows that:

-

2 .
ro;, sin L cos Lg + Eg

G = -ng (4.8)

2
+ . s L
g rwi, cos L co

L

We next want to transform equation (4.8) into the tangent frame

such that we retain only terms which are greater than 2 x lO‘Sg.

The question then arises as to which version of the CR matrix should
be used. If we assume that |p| < 10 n.m., then AL and A% are on

the order of 1/344 rad. Thus, for this case, equation (4.8) can

be transformed using the linearized version of C% (egq. 2.10) since
the error terms will be on the order of AL®*g or 0.5 x 10-3g. Also,

the centrifugal terms in eqg. 4.8 will be %ffectively cancelled by
the similar terms in eq. 4.5. In addition, the deflection of

the vertical terms which have a maximum value of about 3 x 10-4g
can be neglected when multiplied by either AL or A%. Taking into
account the above considerations, we find that for the case of
|| < 10 n.m., that:

-&g + gAL
t t i _
Cixr, -~ C/ G = ng + gAf cos Lg (4.9)
)

where it was noted from equation (3.25) that:

2
r Zrg - Pz - pgesin2hL + % %— (4.10)

o

For the case of |p| < 100 n.m., eq. (4.9) is modified to read:

. ASLZ . . -
-£g + g(AL + - sin2Ly) + rg mieAL s:.n2LO ;
Ct ?i - CtGi = + gAf(cos Lo - AL sin L,) + T wé A% cos L
£ o T & ng * g9 0 o} o Yie o
AL? L AR? 2 1 2 .
g+ g (55— + =5 cos’Ly) + 5 r  wi, AL sin2Lg

(1.11)
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If we now substitute eq. (4.9) and (4.7) into eq. (4.4), we have
the desired expression for the specific force in tangent coordinates
for the case of |p| < 10 n.m.

.. o ) -
px + 2wie py sin Lo - &g + g AL
t - (1) - * . P
£f- = py Zwie (px sin L0 + p, COS LO) + ng + g AL cos Lo (4.12)
e, + 2wie py cos Lo - g ]

where it was noted that pmiez terms in equation (4.7) are less than
2 x 10—59 for p = 10 n.m.

The appropriate expression for |p| < 100 n.m. is obtained by
substituting eq. (4.11) and (4.7) into eq. (4.4), which yields:

. . . ARZ .
Py + Zwiepy sin Lo £Eg + g (AL + 7 51n2LO)
t — ' - . . . _ .
£~ = py 2wie(px31n Lo + p,COS Lo) + ng + glAf{cos L, AL sin LO)
oe L] ALZ . Azz 2
o, *+ Zwie py cos LO g+g (—5— + —5— cos LO)
L. J

(4.13)

P p
where it was noted that AL = ;x and A% = El sec Lo‘
o o

. The procedure to be used in solving for p is now quite straight-
forward. The transformation from body to tangent coordinates is
computed by solving the matrix differential equation:

st _ ot b
S =% & (4.14)

where the angular velocity between the tangent and body frames is
computed from the relationship:
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b _ b _ b
Yepb = Lib T Yit (4.15)

The computation scheme is based on the assumption that the oﬁtput
of the accelerometers is given by eq. (4.12) or (4.13), depending
on the magnitude of g. For the Tpl < 10 n.m, case, if we let the

computed specific force coordinatized in tangent axes be denoted
by:

t_

then

Bxc = fxc - 2wie L.)yc sin LOC - g AI—'-C (4.16)

Pye = fyo + 2wie (pxc sin Lo

c +_ch cos Lg) - g AL, cos Lo,

(4.17)

=K
N
It

o = fzg = 20je Py, cos Lo, + g (4.18)

One then performs a double integration of each of these equa-
tions. But for this case we have from equations (3.23) and (3.27)
that ALg = ro~t Pxo and Mg = ral Py Sec Lo,. Thus:

do » . —
.. gC - . I . . =
Py ¥ f; Pye 20ie (pxc sin Loc * Pz cOS Loc) fYc (4.20)
Pze = Jc + 2Wig Py, COS Lo, = £z, (4.21)

It is seen from the above equations that the gravity field
vector magnitude, g, must be calculated. We therefore proceed to
define an analytical expression for this quantity: ‘
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From equation (4.8),
(4.22)

2
- r W4 cos L cos L
wle g

g = GD
Now the vertical component of the gravitational field vector can
5 g using the fol-

be calculated with an accuracy of about 2 x 10~
lowing expression (see Ref. 1):
(4.23)

[1 - J(1 - 3 cos2L)]

HJF‘.\

GD =
where
E ~ product of the Earth's mass with the universal gravita-
tional constant
J =
We can substitute eq.
expression in the region around the base point, yielding:

2
OX sin2L, - %.-,] + py w5, 2sin2Lg (4.24)

.f_

0.82 x10-3
(4.23) into (4.22) and expand the resulting

Pz + 2(e - 3J7)

g = gpll +I2
(o) rO

where
go v gravity magnitude at base point

If |p| < 10 n.m., then the above expression can be simplified to:
(4.25)

g = do (1+2%§)

Thus in equations (4.19) and (4.20), the gravity field magnitude
(4,25) ¢

can be calculated using eq.
(4.26)

9e = Yo (l+2'§‘_z_c)
o
(4.21), equation (4.24) must be used:

while in eq.
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: 2
gc = go [1 + 2 o + 2 (e - 37J) E;g sin2Lg ;;7] + px Uie s:.nZLoc

(4.27)

Note that an external indication of p,, i.e., pz*, is necessary in
order to obtain a convergent calculation of Pzge

The radar information is, of course, very easily related to
the navigation system's output:

loxor Pyer 0zchs

since these quantities are identical to the radar coordinates de-
fined by equation (2.2).



