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I. INTRODUCTION

The continuing trend toward production of more precise attitude pointing and

tt	 inertial devices for space applications is beginning to yield devices with
10

accuracy beyond the capability of existing test equipments Factors which were

previously somewhat secondary considerations such as seismic disturbances oh

the test slabs, and distortion of light waves in air are now primary factors

3

which must be dealt with either actively or passively. The safety pad of test

equipment an order of magnitude better than the device under test has been

t.
continually squeezed down. Previously mystic numbers such as *01 arc sec pointing

accuracy, are becoming goals.

Honeywell is acutely aware of this trend# and in fact has need today of laboratory

test devices with greater accuracy and dynamic range than any available. Nor

does it appear that any facilities are being developed either as co miss rcial or

laboratory devices to solve the problem of testing future (and some present)

precision instruments for space applications.

One approach to this problem is to provide a test base composed of the most

accurate inertial equipment available to measure all motions of the test base

(including seismic disturbances). On the same test base would be mounted the

equipment to be tested. The output of the reference inertial devices would-be

sent to a computer # the various outputs blended and filtered using extensive

calibration data $ and finally the unwanted disturbances would be subtracted from

the output data of the device under test to provide "true attitude" reference.

An extremely stable block between the inertial reference system and the device

under test, or an active alignmsat system is also required of course. In the



z

case of an active alignment system this error would also be fed to the computer

for compensation. Figure 1-1displays this approach.

This report describes and summarises a four month studyp using both hardware

and software simulations of a High Precision Attitude V* ferencs System (HPARS)

which could be used as the reference for the test base-

The features of this type of approach for a test facility are shown in Figure

1-2. The objectives of the HPARS study are shown in Figure 1-3.



W
N
t

^	 J
CL
H
N
W
F
N
W
X
t3
J

tY
W
N

OU

r
t7
0

Ci+
G7
Ci
C
0
V
a+

w
Ci
t0

W

H

f1?

.. D

W

d
N
E

W

^ N

gs

rN
N F
W

O

- 3 -

0
m Y
T
2 .^

a
W
N
NkN



-4-

•	 THE PRECISION ATTITUDE REFERENCE SENSORS MAY BE EASILY

I UPDATED OR REPLACED AS NEW LABORATORY UNITS BECOME

AVAILABLE.

•	 THE TEST BASE AND COMPUTER WILL INHERENTLY ALLOW

FURTHER STUDY OF THE HPARS SENSORS THEMSELVES.

•	 THE USE OF SCALE MODELING AND DIMENSIONAL ANALYSIS IS

PROVIDED TO MOVE AHEAD OF THE STATE-OF-THE-ART DEVICES.

•	 REAL TIME PARAMETER CHANGES BY THE OPERATOR FOR

COMPLETE ANALYSIS IS PROVIDED.

l°

Figure 1-2, HPARS Approach Features
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• TO INTEGRATE INDIVIDUAL PRECISION ATTITUDE REFERENCE DEVICES INTO A

S'INGLL SYSTEM TO STUDY A HIGH PRECISION ATTITUDE REFERENCE SYSTEM

(3-AXIS) FOR THE ERC MULTI-AXIS TEST FACILITY

• TO DETERMINE THE PERFORMANCE OF THE HPARS VIA A SOFTWARE SIMULATION

• TO DEMONSTRAic THE PERFORMANCE OF THE HPARS VIA A SINGLE AXIS

HARDWARE TEST

• BY VARYING CERTAIN PARAMETERS OF THE ABOVE SYSTEM DETERMINE WHAT

THE HARDWARE AND SOFTWARE REQUIREMENTS ARE TO ACHIEVE ACCURACY IN

THE .01 TO.1 ARC SEC RANGE AND WHAT THE OPERATIONAL LIMITS ON SUCH A

SYSTEM MUST BE.

Figure 1-3. HPARS Study Objectives
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II. SUWARY

The study was very successful in meeting the primary objectives of determining

what is achievable with existing hardware and what type of hardware is required

for .01 arc sec pointing accuracy. The best that can be done with existing

hardware, as described in this report, is approximately .1 arc sec. This is

contingent upon updates to further compensate for gyro drift occurring every 10

sec. To achieve a 901 are sec reference system will require preimarily a SDOF

gyro with a noise level near .001 0 Jhr in conjunction with an ESC to provide

update information.

The Kalman filter approach proved very successful in compensating-for bias

drifts of the SDOF gyros. The non-linearities of the hardware, however,

i
	 modify the "white noise" of the SDOF gyros sufficiently that the Kalman approach

cannot compensate for more than 70-90% of the noise generated. In addition,

the very low frequency drift of the ESG's selected is not suitable to Kalman
3

filtering. It may be that the fitter can be improved s'lightly by further

analysis and reiterations using rms data in lieu of maximum error criteria.

-	 Definite improvement to the system with regards to longer time between updates

-	 and holding accuracy for longer periods (such as days) can be made by considering

a modified .ESC system.for.update.information...With.regards to 91 or..Ol.arc

sec.the.drift of.the.simulated.ESG.platforms.becomes.significant...Also.the

non*liuearities of.the.gimbal.readout.system become a problem. A rather simple

conceptual ESG system appears feasible which would greatly reduce both of these

problems as well as providing a small system physically.



The design of the filter proved to be a formidable task even though the basic

concept was pretty well laid out from the SPARS program. The problaus came

s -	 from the need for a very precise system and the interfacing of the specific

hardware to the filter, and integrating the entire system. Once completed,

however, the total concept proved quite flexible with regards to getting

information fast as hardware and filter parameters were modified, with

experience even the filter itself can now be readily changed to meet new

hardware and new concepts.

3

{

Figures 2-1 and 2-2 further summarize some of the system performance.

s

i

3 -

f

7
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• ATTITUDE ACCURACY OF .O1 Sk APPEARS FEASIBLE WITH AN 18 BIT(. l rEC)
ESG, A GYRO OF .05 0 /HR DRIFT AND .001 0 /HR NOISE, AND GYRO UPDATES
AT 10 SEC INTERVALS

• PRESENT FILTER CAN CORRECT FOR GYRO DRIFT BUT CANNOT REMOVE
ALL OF THE ERROR DUE TO GYRO NOISE.

• AT LOW NOISE LEVELS (.0010 /HR) THE ANALOG REBALANCE GYRO IS CONSkDERABLY
SUPERIOR TO A PULSE REBALANCE GYRO WITH PULSE WEIGHTS OF .056 SEC/PULSE.

• A HARDWARE TEST WAS SUCCESSFUL IN DEMONSTRATING THE FILTER EFFECT BY
BOUNDING THE GG287 GYRO (. 30 /HR DRIFT AND . 30 /HR NOISE) ERROR TO
1.5 SEC MAX I MUM.

Figure 2-1. Summary
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30 MIN UPDATES
I .	 1.04

1.0

MAXIMUM
ATTITUDE
ER	

1	 10 SEC UPDATES
OR

(SE	 t	 /
ANALOG REBALANCE GYROS
18 BIT ESG
GYRO DRIFT.050/HR

.Ol d
.001	 .01	 .1

10.0 Z	
GYRO NOISE (0/1-111)

ANALOG REBALANCE GYROS
GYRO NOISE .010/HR
GYRO DRIFT .050IHR

12 BITSMAXIMUM

ATTITUDE 10
ERROR

(Ems,`)

.1	 .^ 18

.01	 .1
ESG GIMBAL RESOLUTION (SEC)

1.0

Figure 2-2. HPAR Summary Data
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III. PRECISION TEST FACILITY CONCEPT

One approach to the problem of providing a highly accurate test reference with

a wide dynamic range, is to utilize a test base composed of the most accurate

inertial equipment available to measure all motions of the test base (including

seismic disturbances). On the same test base would be mounted the equipment

to be tested (Figure 1- 1).The outputs of the reference inertial devices would be

sent to a computer, the various outputs blended and filtered using extensive

calibration data, and finally the unwanted disturbances would be subtracted

from the output data of the device under test to provide "true attitude"

reference. An extremely stable block between the inertial reference systen and

the device under test, or an active alignment system is also required of course.

3-
In the case of an active alignment this error would also be fed to the computer

for compensation.

Features of this approach are:

Full advantage of the Laboratory Test Facility concept is utilized

by having a flexible, general purpose, large capacity digital computer

in the loop. The computer functions as a flexible recursive Kalman

Filter to provide:

a) Matching of the filter to the precision attitude reference system

and the equipment under test.

b) Real timi parameter change by the operator for a complete analysis

of the system under test.

c) Extensive utilization of instrument calibration data.

This results not only in a very flexible system but accuracy one or

two orders of magnitude better than could be obtained with an analog

r



system or a small specially built digital computer located on the test

platform.

Any of the precision devices used for the test reference can be easily

exchanged or updated as better devices become available through space

program development.

More specifically the approach consists of three devices, each unique in its

own function, operating as a system to provide a wide dynamic range precision

attitude reference (figurL '°a)o

These devices area

(A) An inertial device to provide continuous three axes rate and attitude

information over a wide dynamic range.

(B) A precision reference, generally of low dynamic range to provide

update information to item (A) at selected time intervals (thus

compensating for drift).

(C) A filter to blend the outputs of (A) and (B) and further remove noise

and drift from the system. The filter function is provided by the

digital computer which also allows operator interface with the reference

system and test device and processes and compares the test device data

I
with the attitude reference.

1	 This concept approach has proved successful on the Honeywell SPARS program which

t

is designed to provide precision attitude reference for a spacecraft.
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IV- DEVELOPMENT OF HPARS

A. Requirements

The basic requirements which led to the development of HPARS are shown in

Figure 4-1. The requirements are of course not firm but rather are intended

to serve as bounds on the study and as a guide toward yielding results which

are applicable to a realistic test situation sufficient to cover several

different types of development equipment.

The rate capability of HPARS was not investigated sufficiently to define the

i required gain changes and accuracy degradation due to large input rates. The

performance figures given in the report are for rates of less than .1 rad/sec

due to the increased computation time required at larger rate inputs.

B. Use of Existing Programs

Four existing Honeywell programs were used to meet the objectives and require-

ments of the HPARS study. Each program was unique in itself with regards to

one or more of the HPARS requirements. Of particular importance was the fact

that each of the basic math models selected (with the exception of the Laser

Gyro) were proven against hardware test results. The task at hand was to modify

the programs and blend them together into a single system and in such a way as

to yield data toward the study objectives. ( fig. 4-IA )

i
The SPARS program provided the basic filter technique desired. Modifications

were required to achieve the desired accuracy and perform the blending of the

s

	 gyro programs into an integrated system*

i
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• BASIC APPROACH SHOULD BE SUFFICIENTLY BROAD AND FLEXIBLE THAT IT WOULD
NOT BECOME OBSOLETE WITHIN THE NEXT 10 YEARS

*CAPABLE OF ANGULAR RATES UP TO 10 RAD/SEC

*ALL ATTITUDE CAPABILITY

•ATTITUDE ACCURACY APPROACHING .01 ARC SECONDS

*PRECISE ATTITUDE ACCURACY NOT REQUIRED DURING MANEUVERS BUT ATTITUDE
INFORMATION MUST NOT BE LOST DURING MANEUVERS

• SYSTEM BANDWIDTH TO 25 Hz FOR SHORT PERIODS

Figure 4-1. Requirements for HPARS

t

f"
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The platforms were selected due to their very low drift to provide attitude

update information at selected intervals. Modifications here were to convert

two, two-axes platform models into one three-axes platform.

A general LASER gyro program was modified to fit the Honeywell OG1300 laser

thus providing high rate information and additional attitude information. Any

benefit of the LASER (for other than high rate information) was also to be

investigated.

The continuous attitude and rate (low rats) information for HPARS was supplied

by a Honeywell precision STRAPPED DOWN GYRO using a pulse rebalance loop to

provide pulse on demand torquing. The resultant rate output was integrated

to provide attitude information.

All four computer simulations were set up for three axes. The hardware test

was performed single axis.

C. Description of Gyro Packages

Precision Strapped Down Gyros

A pulse rebalance gyro is a gyro with a torquer on one and to reset the gyro to

null when an angular rate input is applied. In the pulse rebalance gyro (PRG)

the torquer is driven with a pulse train as opposed to the continuous signal

of an analog rebalance gyro. In the FRG analyzed (Figure 4-2),a ternary pulse

logic was used; i.e., the torquer could be excited with either positive,

negative or zero pulses. When the output of the reset integrator (x 2 ) exceeds

3
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the deadband (d), a pulse train Wt)) is generated. The pulse train which has

a maximma duty cycle of 50 percent (the hold is 1/2 the sample period), is fed

back to zero the reset integrator and rebalance the gyro. Each output pulse

is equivalent to an input of 0.(56 sec. The output pulses are counted for 001

second to compute rate. Typical values area

Output Scale Factor	 0.056 sec/pulse

Output sample time	 0.1 (to 0.02) sec

Input angular rate	 0-540 sec/sec

Input frequency	 0-500 cps

Maximum output pulse rate	 9600 pulse/sec

Sample period T (frequency) 	 104 us (9600 cps)

+1
Pulse Amplitude (u)	

0
-1

Deadband of level detector	 ±1 volt

This model (Figure Q N of the PRG is a nonlinear sample data system. Another

unique feature is the hold period of only 1/2 the sample period.

The basic model and design values were selected and proven on other Honeywell

programs. The output scale factor (pulse weight) was a variable for the HPARS

program.

Gimballed ESG (Electrically Suspended Gyro) Platform

An existing three-axis ESG Platform System software simulation was utilized to

i
provide low drift, long term stability to HPARS. Performance numbers used for

the software simulations are not based on specific ESG performances but are
3

considered representative of what could be obtained from future development

hardware. A gigballed system was selected to assess any significant problems
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(accuracy wise) assn=iated with the gimbal apptoach, and also because gimballed

systems to date have been able to give superior accuracy (due to readout tech-

niques) than strapped-down ESG°s.

The three axes system modeled consists of two, two axes platforms (Figure 4-4).

Since a single ESG has only two degrees of freedom, two of them are needed to

provide attitude reference for a three axis system. Two ESG o s have four

independent axes, of course, and some method of eliminating the "extra" degree

of freedom must be provided. When each of the two ESG's has its own gimballing

system the extra degree of freedom is usually eliminated in the computer

which combines the gyro outputs (typically gimbal angle encoder readings) to

produce the three reference axes.

Simulation of the compensated drift of two ESG o s in inertial space is accomplished

by conceptually considering your ESC spin vectors drifting in inertial space.

Two of the four vectors represent the "true" gyro spin vectors, while the other

two vectors represent the math model spin vectors. The two "true" spin

vectors are used to simulate the gyro readouts the gimbal angle encoder outputs.

In concept, two gimb&l assemblies each containing on ESC are mounted on a base.

Readings taken from gimbal angle encoders allow the orientations of the two

ESG spin vectors to be computed in a coordinate system fixed to the base. In a

computer, the position of these two gyroscope spin vectors in an inertial frame
f

is estimated by use of a mathematical model. Knowledge of the time and the

latitude amd longitude of the table allows the computation of the orientations

of these two "mathematical" spin vectors in an earth fixed coordinate frame.

Assuming that the spin vectors given by the gimbal angle readouts and the

spin vectors modeled in inertial space by the computer are the same, allows
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the computation of the relationship between the base coordinate from and the

earth fixed frame. This relationship is expressed both as a transformation

matrix between the two frames and as a set of Ruler angles relating the two

framese The process is "closed loop", however, since the transformation

between base and earth coordinates is needed by the math model which estimates

the spin vector orientations inertial space.

1

^!
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Laser Gyro

Three single axis triangular shaped (5 * 7 11 on a side) laser gyros were simulated

for HPARS * The object was to provide the capability of rates greater than

feasible for conventional gyros, and to determine if the laser gyro would be

beneficial to the system at lower rates * The characteristics of the system

simulates are listed in Figure 4-5o The errors included in the simulation were

quantization errors due to the resolution of the gyro output, random drift#

bias drift, and the dither subtraction error * Theoretically the dither sub-

traction error can be made zero * The drift characteristics of the laser gyro

are very similar to a conventional gyro * At present a mechanical dither to

reduce the error due to the laser gyro threshold (called lock-in rate) is used

in preference to an electrical dither * Lock-in rates are typically 250-25000/hr

which is a significant thres^ ,old for our applications*

2z
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• SCHEDULED FOR DELIVERY TO ERC IN DECEMBER, 1968

•	 LOCK I N RATE 500 - 10(10° / H R

•	 DITHER RATE 300, 000°/HR

•	 DITHER FREQUENCY 120 CPS

•	 WAVE LENGTH 6328 A°

•	 RESOLUTION 2 17 RAD (1-112 SEZ̀ ; PULSE)/4

•	 SIZE 5.7" ON A S I DE

•	 WEIGHT 15 LBS PER AXIS WITH ELECTRONICS

•	 POWER < 15 WATTS PER AX IS
28t4VDC

• TYPE OF DITHER	 MECHANICAL

PERFORMANCE
• RESOLUTION	 2-17 RAD i1-112 SE^/PULSE ► /4

• ERROR SOURCES

SAMPLING ERROR - 2 COUNTS OR 3 SEC OVER A SHORT PERIOD OF TIME DUE
TO DITHER SUBTRACTION

RANDOM DRIFT - 	 FOLLOWS A RANDOM WALK, VALVE <.1°/HR

BIAS DRIFT -	 <.1°/HR

Figure 4-5. GG1300 Characteristics



D. Description of M%AS .dicer Concept

10 General Concept

The High Precision Attitude Reference System developed during this study

program uses the same conceptual approach used by the Honeywell SPARS Program

(Space Precision Attitude Reference System). A brief description of this

concept is given below.

A.) An estimate of true motion simulator rates about three orthogonal

axes are obtained from either 3 laser gyros or 3 conventional rate

integrating gyres operating in a pulse-rebalanced mode. This

estimate is ^,btained by processing the gyro outputs using a SDS-

9300 digital computer. A description of the estimation procedure

is given i • i Appendix Be

Be) From the above rate estimate, a short term estimate of motion

simulator attitude with respect to some orthogonal reference frame

is obtained at a fast computation rate by numerically integrating

9 first ordor di i feren • ial equat i ­nn gi ,,ing attitude refsr ­ nce

dire. tion os : -ies.

Co) An independent estimate (long term) of motion simulator attitude

with respect to 3 orthogonal axes is periodically obtained at a

slower rate tha •, i- (B) from electrically suspended (low drift)

gyros mounted on the motion simulator.

Do) The equations of a discrete (recursive) Kalman Filter are solved

using an SDS-9300 digital computero The purpose of this filter is

to make use of the long term attitude estimate in (C) above to

24
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periodically update the rate estimate (A) and the short term

attitude estimate ( B). This updated (filtered) short term
attitude estimate ib then approximately the best estimate is then

approximately the best estimate of true motion simulator attitude

in the sense of minimum error variance.

2.) Discrete Kalman Filter

The theory of the discrete Kalman filter was presented by Kalman in reference

1. Applications of this theory are giver. in many references. Examples are

references 2 and 3. A block diagram showing the structure c. a typical

discrete Kalman filter is given it: Fi t., -6. The equations which are solved

for the Kalman filter are given in Appendix C.

As originally derived, the Kalman filter output yields a minimum variance

estimate of the true state of the system only for linear systems where

measurements are corrupted by white, 4aussian noise. In the case of HPARS,

the system or plant is nonlinear, hence Kalman filter theory does not apply

directly. However for nonlinear systems, the theory can still be applied if

the nonlinear process is linearized sing perturbations about a reference

solution ( see -eference 3, for example). This procedure has been carried out
in the application to HPARS. For example, in the HPARS filter, the state

vector is chosen to bee

sX =

S
S ^b

^ ry

(1)
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Where the first three components of X are incremental Euler angles and the

last three components are incremental rate bias correction terms.

The measurement vector is defined to be:

Y a	 S O mess

$ mess

d ^) mess

Note that three independent Euler angles have been used as measures of

attitude. In the initial stage of the HPMS study # 4 gimbal angles were

used as the state variables defining attitude and also as the measured

variables, This was done because the Electrically Suspended Gyro config-

uration consisted of two 2 degree of freedom gimbaled, ESG's. The fact that

4 gimbal angles (4 attitude state variables) do not uniquely define attitude

with respect to inertial space led to very undesirable performance of the

filter (failure to converge to steady state operation even with no disturb-

ances). For this reason, the choice of Fuler angles was made. See Figure

4-7 for a sketch of a desired =output from this filter application. This

can be compared with actual outputs shown plotted in Section V.

3.) Limitations

The chief limitation of this application of Kalman recursive filter theory

to a nonlinear system was not due to the effects of linearization about a

nominal solution. The chief limiting factor was due to the fact that the

plant noise and measurement noise were not white, gaussian noise. The

attitude measurements from the simulated Electrically Suspended Gyros are
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obtained by a nonlinear transformation operating upon the gimbal angle

readouts, which have significant quantization noise. In addition, imperfect

knowledge of ESG spin vector drift yields errors which are highly correlated

with a correlation time on the order of hours. The Kalman filter approach

is significantly degraded by this type of error. In addition, pulse

rebalanced gyros are nonlinear processes having errors which deviate markedly

from white noise.

The HPARS simulation is a valuable tool to be used to determine the degrad-

ation of the filter performance as the measurement errors deviate more and

more from white noise.

RX
,- -



E. Description of 14"AR; simulation

1) General

A broad picture summary of the HPARS simulation is shown in Figure 4-8. The

simulation is all digital and was performed on the SDS-9300 computer. fhe

three gyro package simulations were adapted from existing simulations. The

filter or BMEC is based on the SPARS Kalman filter approach (discussed in

Section D) acid the experience and data fallout from that program was most

useful. In a real facility the three gyro packages would of course be

hardware, whereas the BMEC would be a digital general purpose on-line computer.

The total simulation used up more than the entire 24000 words of memory avail-

able with the SDS-9300 computer. Because of this, the initialization portion

of the p-rogram had to be input as a separate program and its output written

on magnetic tape„ The contents of this magnetic tape were then used as an

^-	 input to the main HPARS program. A summary flow chart of the complete HPARS

program is shown in Figure 4-9.The program was written in FORTRAN IV as a

i.
series of subroutines which were called by the main controlling program in

sequence computation cycle ( 6 observation time). For example, each simulated

sensor (laser gyros, ESC°s, etc.) was a separate subroutine with its own

solution time increment„ Typical A observation times used were 1 to 2 seconds,

while the she=test Solution time increment was approximately 1 millisecond

L
for the pulse rebalance gyro subroutine. The total simulation ran about 3 to

L4 times slower than real time. The following significant parameters could

be modified on the on-line typewriter in between runs:

Filter Covariance Matrix Initial Values (P)

Filter Measurement Error Matrix Values (Q)

30
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Filter Stability Matrix Values 	 (N)

Pulse Rebalance Gyro D ift & Noise Variance and pulse weight

Laser Gyro Drift & Noise Variance

ESC Attitude Measurement Errors & Quantization

So:ution Time Incrzmentso etc.

Descriptions of the sensor subroutines are given in thr Rer,,-F*,^,e 1, A

description of the BMEC (filter) subroutine is given in Section D	 Other

4

subroutines are briefly discussed below<

2) Short Term Attitude Refe-encP Computation

Fourth order Runge-KutLa numerical integration of direction cosine first

order differential equations. Automatically orthogonalized during each

iteration.

r m	 n.	 (1)

	

i	 1	 1

	

m
1
. = P n. - r Q.	 (2)
 1	 1

n	 = v	 P m.	 (3)

	

_	 i	 1

= 1. 3

The direction cosine matrix 'L AJ is then given by the following;

	

[Ai	 1	

m l	
n 

^2	 m2 	n2 	 (4)
i
^3 m3 ^3

Orthogonaliza*ion of tht direction cosine matrix was accomplished by the

following

	

7 A o]	 = 1 ^A] + 1 [A_1]T
	

(^)

orthogonalized
2	 2

dir_ cos_ matrix
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3) True Attitude Ccm  taticn

True moti.en simulator attitude was obtained in closed form as a function of

time by sclving the following equations6

[AiO ] = [ B 1 (t) ] LB2(t)] [AIC]

	
(6)

whereo

Lb

t wswt t ^ (1 -Gwt^
w

wti

w

I _ M a y ^1

[B 2 (t)] = same as B I (t) except replace p, q, r

with p, q, ri Replace u) with u.)

Replace t with t 
2

2

In the above equations	 C = Ccsine

S = Sine

2=p 2	 2	 ^+q+r

w 2= p2 + q2 + r2

It can be shown that the closed form attitude solution is given by equation

(6) for cons*-ant rate and constant acceleration inputs provided that the

following resrricrion is mete

P _	 r	
(9)

This res*_ra:tion was met in all of commanded rate profiles used in the HPARS

simulation.



4) krLit lld e E:rcr Gomput a.tion

For the tiD4R33 s r udy r_re compensated attitude output is compared to the

computed (frum p,.-ogram inputs) true attitude by taking the dot products,

Filter pa-:& tte_s or the basic filter design were iterated until the system

errors were aL a A nimum. In addition, hardware changes were made to

determine tht efiect on the total system accuracy. The desired result being

to define the hardware and filter requirements and limitations, and the

feasibility of a .01 arc sec attitude reference system.

S) Commanded Rate Inputs

Commanded rase inputs were inserted to simulate the platform moving to a new

attitude orientation, Of necessity, due to the computation time restirctions

as a function of simulated gyro saturation rates, the commanded rates used

were less r_bao X003 degrees/seconds This restriction could be relaxed in

the future by changing to a less accurate simulation of the pulse rebalance

gyros. The commanded rate profile used is giver below.

FIGURE CC-MMANDED RATE PROFILE - HPARS

-^) I-

(A) = 0,014 deg: ge-: in roll, pitch

t`	 (A) = 0-03 degisec in vaw

C
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Figure 4-5(a). HPARS Digital Simulation Program Flow Chart
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Figure 4-9(b). 	 HPARS Digital Simulation Program Flow Chart
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V, SIMULATION RESULTS

The resits cf *he software simulation along with much of the plotted data is

discusseC 0 this section. With few exceptions the data plots are for maximum

attitude a-ror vs. time. The maximum attitude error is the largest body error

(or platform error) of 0. 0, or 4) existing at the sampie time. Thus the plots

are representative of the worst 15 errors that occur in any of the three axes.

It would have been desirabl y. to have rms values but this could have enlarged the

program beyond the computer capacity.

All of-.-he runs shown here are for approximately two minute duration which is

sufficient to get good data in lig:^t of the short response time of the system and

with the system updates occuring every 10 sec. The run times were approximately

1/4 real time thus two min to data time runs were desirable. Errors due to ESC

drift over a two minute period were insigrificant. Two twenty four funs were

also performed and as expected the errors are significant with respect to our

system requirements for short term ac uracy. This data is available but being

c,assified it is not included	 this report_.

P



A. The Perfect System

Figure 5-1 shows the filter operating under ideal conditions -and giving ideal

esults. The parameter i-puts are;

Gyro Drift	 .05°/hr

Gyro Noise	 0

Analog Rebalance Gyros (Thus no deadbands, quantization errors, or non-

linearities)

Perfect ESC	 (Thus no deadbands, quantization errors, or non-

linearities)

The system behaves as expected under these conditions; reducing the gyro drift

at each successive update (every 10 sec) until t=100 sec the system error

(gyro drift) has been reduced to zero.
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B. Effect of Gyro Noise

Perhaps the most Fignificant single factor in limiting the system accuracy

is the not-.e component present in the single degree of freedom gyros. The

Kalman filter compensates quite well for gyro drift of the reaction torque

type. In fact as shown in Figure 5-1 it has perfectly compensated for it in

100 sec. However, with gyro noise f the form described in Section V is added

the filter reduces the noise less perfectly. Figures 5-2 and 5-3 are somewhat

representative of the filter effect on random noise -f .01°/hr. Comparing

Figure 5-2 which has the filter out of the system with Figure 5-3 the noise after

100 sec (after the .05 0 /hr drift is removed) has beer, reduced .0-80%. Other

factors are involved when running without any filter such as the building of

truncation err s-s in the compute- bw the figures allow a rough comparisono

Figures 5-3, 5-4;, and 5-5 show the effect of a continued buildup of the gyro

noise level (from .001°/hr to .028°/hr and figure 5-6 compares the approximate

rms values of figures 5-3 through 5-5 -<ith a zero noise systemo

Due to already using all the memory capacity of the 9300 computer it was rot

r,ossible with the present program to obtain accurate rms error plots. It may

be that further optimization of the filter could be made, thus reducing the

system error due to gyro noise, by reiterating the filter design based on rms

error values in lieu of maximum error values.
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C. Analog Vs. Pulse Rebalance

In precision systems there has been toward pulse rebalance gyros to obtain

the advantages of operations near nuli and dib:tal data processing. Analog

rebalance loops car, also he used to keep the gyro near null so that ct',er

c
factors such as scaling, reliability, component drift, size and power, and

producibility :sus*_ h a- inci ,-ided in anv trede-oifs octween the two approaches for

a specific system,,

Due primari:y to availability of thf ,nrdel a pulst rebalance loop was selected

for tie KMARS study, but bein g o software simt., lation it was	 a:;amintd as an

analog loop simp.y by decrtat c_rta thR pulse weight to zero. T'-.us we can compare

an "ideal" analog rebai minze, giro with a pulse recalanze unit.

r_
Figures 5• 7) and 5 ^ s7cw the systeim operst'-ig with low gyre: noise laveii (.001°/hr)

and a perfect ESG. The cnly diffe-ccce t•etv• en the two runs was in the gyro l,:p

closure.

Figure	 with an analog rebaiance loop shows the error bounded after 100 sec to

le-:-s thzn ,01 sec . 'igure 5.6 with a p ulse rebalance loop and a pulse weight of

.056 sec/pulse can only bound the system to about .025 sec. The error difference

is of course due to the finite deadband and quantization error present in the

pulse -ebalance loop, further study in this area is recommended to provide data

on the minimum required pulse weight as a function of gyro noise and system

accuracy. The object being to not limit the system accuracy due to pulse

weight and at the same time not require an analog loop.
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D. ESG Gimbal Resolution

The resolution of the ESG gimbals was varied from 12 BITS (1.75 sec) to a perfect

or analog system. As would be expected, the system performance improves

accordingly, but the effect of gyro noise must be taken into account before

selecting correct gimbal readout device for the system.

Figures 5-9, 5-10 and 5-11 show the effect of increasing gimbal deadband and

quantization errors on the system. However, when compared to a perfect ESU in

Figure 5-12 there is very little difference in performance between the perfect,

18 BIT (.03 sec), and 15 BIT (.33 sec) ESG's. The reason being that the gyro

^-	 noise of .01°/hr becomes the limiting factor.

c
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E. The Effect of Q and N

The major filter design variables for fine tuning control were the Q and N

matrices. They are relatively dependent upon the hardware and its error

sources and thus would require some adjustment if different hardware were

substituted for any oi th, HPARS components.

Figures 5 - 13 through 5-17 show the effect of different values of Q and N

(primarily N). Finally the value of N was decreased to 1 x 10 -30 which is the

near optimum value used during the majority of the subsequent runse

Figures 5 - 18 through 5-20 show the effect of a mismated between the ESG error

and the value of Q (the estimate of ESG error). In Figure 5-18 the value of Q

is relatively large but a perfect ESG is simulated. The result is an attitude

bias. Figure 5-19 is similar but the gyro noise is reduced thus showing more

clearly t`-	 present.

Figures 5-20, 5-21, and 5-22 again show the effect of Q/ESG mismated. In Figure

5-20 Q is small (1 x 10 -30 ) but a 12 BIT ESG is simulated, thus producing a

bias in the attitude error. In Figure 5-21 the ESG is improved to 15 BIT thus

reducing the bias error, arRd in Figure 5-22 the correct combination of Q and

ESG resolution is used and no bias error is present. In these last three runs

note the effect of using a coarse (.224 sec/ pulse) pulse weight for the strapped

down gyres.
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F. Commanded Rates

Figures 5-23 and 5-24 show system operating in response to the command rate

profile described in section IV. The errors shovm during the first 40 sec

(when the commands are present) are errors with respect to the command, not

system null. Two items are of interest:

a) The system accuracy during the maneuver is poor

b) Upon completion of the manuever the system accuracy returns to normal.

Attitude information is not lost during the maneuver but it may be advantageous

to bound this error to some practi.al value. Additional study to improve the

system dynamic accuracy is recommended.
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G. Laser Gyre Runs

Few runs were performed with the laser gyro due primarily to the HPARS simulation

being set up for low rate inputs thus not requiring the benefits of the laser.

It was anticipated that the simulation would be modified to allow larger rate

inputs but sufficient time was not available in the program to complete this

portion.

one run is included here (Figure 5-25) which has commanded rates until 40 sec.

The dynamic error is large due to the filter characteristics, not the gyro

itself. The laser for this run did not have drift or noise simulated, only

the quantization error. The performance is similar to a perfect (no noise) PRG

gyro with the exception of the error being bounded no better than the resolution

of the laser gyro (±.38 sec). This of course is the obvious disadvantage of

the laser and point out why it should be used to supplement a conventional gyro

at rates beyond the conventional gyro's capability.
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VI.	 MRDWARE TESTS

A single-axis gyro and pulse rebalance electronics were availabie to allow

a test using the newly designed Br1EC filter, thus adding confidence to the

design and concept. An autocollimotor provided the attitude update infor-

mation in lieu of the ESG, and the input rates were kept below the satura-

tion level of the gyro/electronics (.15°/Sec.), thus negating the need for

the laser gyro.

The test setup is shown in Figure 6 1. The tests were performed about the

azimuth axis of a six-foot diameter, air-bearing table. The tab?e was

balanced bottom heavy to maintain stability about the lateral axes.

Tests were performed using either of two methods:

a) The table was floated and maintained in a locked position by the

positioning ring. A null reading was taken through the autocol-

limotor and the gyro output pulses swit_hed to enter the ,.p1d nan

counter aid computer. The positioning ring was caref,-Ily :?lid

back to free the table and reaction jets on the table were man,ally

pulsed until a rare between approximately .02 and .12 deg./se:. was

established about the table azimuth axis. After moving through

approximately 15 degrees, the table rate was reversed (--sing the

reaction jets) and the table returned to a position near the nu:l

position. At this point the positioning ring was used to bring the

table (and gyro) back to the original null position as determined b,

the autocollimotor. At this point an "update" signal was programmed

and the sequence repeated starting the table in the opposite direc-

tion. A sequence of 5-10 runs and "updates" was performed per test.

70
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Figure 6-i(b). HPARS Single Axis Test



N

The eatth rate component was subtracted via the computer from

the gyro data.

bj A much simpler but less realistic test was performed by 'leaving

the table in a locked position and letting only earth-rate

process the gyro. An "update" was given at one-minute intervals.

Phis has the advantage of eliminating the autocollimotor and

mirror errors.

The autocollimotor used was:

acc•.-acy - 1 sec

mirror	 - .5 sec

The gyro was a Honeywell CC287 engineering model with the

^i

	

	 following characteristics:

Torquer-highly linear, moving coil, P.M.

Wheel Momentum - 2 x 10 5 cgs

Torque Capability - W/sec.
^l

Torque Linearity	 .057

Rate Threshold -	 10" 7 rad/se:.

i
Reaction torque - approximately .2'*/hr. max.

r'	 g-sensitive drift - approximately .3' /hr. max.

gyro noise - approximately .3 /hr. max.(.01-IOH2j
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Gyro Eiectroni--s

The pulse rebalanced gyro loop (Figure 6-2) utilizes "pulse on demand" torquing.

As the name implies, this system delivers current pulses to the gyro torquer

at a -ate which is gust sufficient to establish gimbal equilibrium with rate

input. A raze input will produce a gimbal displacement and, hence, a gyro signal

generator output. This output is a suppressed carrier signal which is demodulated

and amplified to yield a d-c voltage whose polarity indicates the direction of

rotation and whose magnitude is proportional to the rate input. A voltage-to-

frequency conversion is added which provides pulses whose rate is proportional

to the input voltage.

These pulses provide gating, in the switching bridge, for the torquing current

derived from the constant current supply. Thus, the gyro torquer receivts the

proper amount of current (amphere seconds/second) to balance the gimbal against

the rate input.
i

Amp=Demand-Amp

An error signa l. from the gyro signal generator (modulated 19.2 kc) is amplified

U	 and demudulated. The output of the demodulator is a d-z voltage whose amplitude

is proportional to the gyro displacement angle and whose polarity indicates the

direction of displacement. This d-c voltage is further ampl `ied to develop the

proper gain scale fa for for loop operation.

Voltage-to-Frequency Converter

The equivalent attitude error signal from the ampademod-amp is sensed by she

Jaltage-to-frequency convertero The converter is a pulse -reset=integrator which

generates p:alses on the positive or negative lines corresponding to the polarity

:f the input attitude error and at a frequency proportional to its magnitude.

t
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Switching Bridge

The switching bridge receives the command pulses from the voltage-to-frequency

converter and gates the torquing pulses through the gyro torquer in the proper

direction When no torquing pulse is needed, the precision current is gated

through the dummy load. This technique is employed to keep a constant load cn a

pulse amplifier. To ensure accuracy, the energy content of the torquer current

pulses is carefully controlled. By the use of clocked drive pulse and a

constant current supply, the energy input into the bridge can be closely controlled.

To maintain accuracy, the switches must neither add nor subtract from the energy

injected into the bridge.

Oscillator and Countdown and Clock Pulse Generators

A crystal oscillator provides the basic time base for the system. Frequency

stability is achieved by maintaining the oscillator circuit at a near constant

temperature by mounting it on the gyro block. The oscillator runs at 19.2 kco

The clock pulses are derived from the crystal by digital (countdown) techniques

to obtain maximum accura-yo



Seismic Disturbances

Seismic sensors were mounted on the air bearing table to determine the frequency

and magnitude of disturbances on the table. Figures 6-3 and 6-4 shaw the

results for the table not floated (Figure 6-3) and floated (Figure 6-4)o

Surprisingly no significant difference in frequency or magnitude car. be  detected

between the floated and non-floated modes in either the azimuth or la:eral axes.

The dominate frequencies are 5 cps and .8 Hz about the azimuth axis and .8, 5,

and 29 Hz about the lateral axis.

r
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Results

Figures 6-5, 6-6 9 and 6-7 show representative results from the hardware tests.

Figure 6-5 was performed .under test .sequence .a) .moving .the .table .off .null .and

returning again.. The error was bounded to .23 are sec which.was.not.satisfactory.

The values of Q and N .were modified .and .the .tests .rerun .with .sequence .b).. Figure

6-6 shows.the results.. The updates.ware made frequently.and.the.system.errors

were bounded to approximately 1 .arc .sec.. The filter .was .slightly .modified .and

the test .b) rerun .with .the updates .at .longer .intervals .(60 sec) as .shown .in

Figure 6-7. The system.was.bounded to 195 arc sec which.is.considered.good.for

the.drift.and noise present-in the.gyroo
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VII. Recommended Fuv-.re Work

Figure 7-1 briefly summarizes the recommended follow on work to the

HPAR3 study. The study has proved very useful in getting some real feel

and numbers for what can be done. The real work was in setting it up

and from this point on the system will be very efficient with regards

to performing hardware and parameter tradeoffs toward obtaining high
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• LONGER RUNS SUCH AS 1 HOUR SHOULD BE MADE TO OBTAIN BETTER DATA ON
UPDATE TIME INTERVAL VS. ACCURACY AND MORE DATA ON HARDWARE PARAMETER
TRADEOFFS.

• FURTHER OPTIMIZATION OF THE FILTER SHOULD BE INVESTIGATED USING RMS
RESULTS IN LIEU OF MAXIMUM ERROR CRITERIA.

• INVESTIGATE A DIFFERENT FILTER STRUCTURE TO REDUCE DYNAMIC ERRORS WHILE
THE PLATFORM IS IN MOTION.

• A SMALL GIMBALLESS ESG/ STRAPPED DOWN GYRO SYSTEM SHOULD BE SIMULATED
TO DETERMINE THE FEASIBILITY OF THIS APPROACH. PERFORM A TRADEOFF OF
SYSTEM ACCURACY VS. UPDATE TIME VS. ESG ACCURACY AND DETERMINE THE
BEST FORM FOR THE MEASUREMEIIT ERRORS (E.G., GAUSSIAN, UNIFORMLY
DI STR I BUTED, AND CORRELATED ERRORS).

• PERFORM RUNS USING A SMALLER PULSE WEIGHT TO DETERMINE THE POINT
WHERE THE PERFORMANCE IS LIMITED BY FACTORS OTHER THAN PULSE WEIGHT.

• THE LASER SIMULATION SHOULD BE RE-RUN USING AN IMPERFECT LASER BASED
ON LATEST LASER HARDWARE 'TEST DATA.

Figure 7-1. Recommended Future Work
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APPENDIX A

ESG FOR
HPARS

Ai ESC is a two degree of freedom attitude gyroscope. The attitude sensed

by an ESG is usually expressed by the direction cosine coordinates of a

unit vector along the gyro spin axis in an inertial reference frame.

The orientation of an ESG spin vector with respect to an inertial reference

frame is nearly constant, that is, ESG°s have low d_itt i- "ner y al space.

What drift they do have is closely described by a mathematical model for

gyro drift. The mathematical model contains several imperical constants

which are ietermined by testing the gyro under controlled conditions. The

model is then used operationally, often in real time, to partially compen-

sate for the "raw" drift of the gyroscope. The difference between the

actual ;: or raw, gyro drift and that drift generated by the math model is

termed the "compensated" drift of the gyro. The operational accuracy of an

ESG is a function of its compensated '.rift.

U-
Since  a single ESG has only two degrees of freedom, two of them are needed

U51,	
to provide attitude reference for a three axis system. Two ESG a s have four

independent axes, of course, and some method of eliminating the 'extra" degree

fs!	of freedom must be providedo When each of the two ESG°s has its own gimballing

system the extra-degree of freedom is usually eliminated in the computer

which combines the gyro outputs (typically gimbal angle encoder readings) to

produce the three reference axes.

Simulation of the compensated drift of two ESG's in inertial space is accom-

plished by conceptually considering four ESG spin vectors drifting in inertial

t
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space. Two of the four vectors represent the "true" gyro spin vectorsn while

the other two vectors represent the math model spin vectorso The two "true"

spin vectors are used to simulate the gyro readout, the gimbal angle encoder

outputs.

Errors enter the process at two points. One, the math model estimates of

gyro spin vector orientations in inertial space differ from the true orient-

ations, and, two, errors are made in computing the spin vector orientations

in table coordinates from gimbal angle outputs.

Simulating the above process is straight forward. Two "true" ESG spin vectors

are simulated in inertial space, just as the two estimates are simulated,

except that instead of using the computed transformation from table coordinates

to earth fixed coordinates as input to the process a "true" simulated trans-

formation is used. The true spin vectors are transformed to earth fixed

coordinates just as the estimates are, but then the true spin vectors are

further transformed to table coordinates, again using the true transformation

matrix. Once in table coordinates, the spin vectors are used to simulate

gimbal angle outputs, complete with readout errors, and the gimbal outputs

L	
are then used to regenerate the spin vectors in table coordinates, but now

with the effect of readout errors added. Drift errors show up as the difference

between the simulated true spin vectors in inertial space and the estimated

spin vectors.

The process diagram given previously is altered only in that the gimbal angle

f

4
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outputs block is replaced by the more complex diagram below.

Simulated "true" Transformation
From Table to Earth Fixed Coord-

Math Model Simulates Two "tru
Gyro Spin Vectors in Inertial

Transform to Earth Fixed Coord- 	 Latitude
inates	 Longitude

ITransform to Table Coordinates i

(Simulate Gimbal Angle Outputs

(
Regenerate Two Gyro Spin Vectors I
In Table Coordinates

As was discussed previously, four ESG spin vectors must be considered in

inertial space to simulate the operation of a two gyro system. Each of

tt

	 the four spin vectors has three components, making twelve "state variablea".

While there is no interaction between spin vectors in inertial apace, all
t'

four spin vectors must be updated at the same time, and so all twelve

components are regarded as one state vector when solving the differential

equations of motion. The same math model, the one given earlier, is used

for each of the four spin vectors. Also, all four gyros are assumed to

have the same principle moment of inertia value and the same rotor spin speed

profiled
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Drift

A	 A
Assume that S is a unit vector along the spin axis of an ESG. Let F x, Fy, and

A
F  be an orthonormal triad of vectors conceptually attached to the SSG case.

A	 ^	 n
The gimballing arrangement acts to keep Fs coincident with S. and, if T is a unit

vector (called the train vector) along the outer gimbal or train axis of the

gimbal structure, it always happens that

A n n
F s T X S

IT X GI

with

x = F 
y 

X F z = F 
y 

X S

n
of course. Additionally, let G represent a unit vector in the direction of

the earths gravity field, positive downward.

In terms of the above vectors, and in terms of the empirical torque coefficients

(,q ' v- ' Y109 x13 9 x20 9 Y23) and the gyL -otor principle moment about its

spin axis, I, and rotor spin speed U) , nominally 500 rps, the drift model may be

written as:

.a

dS/dt = 1 /(21T ILO ) [,^ +^ (W/500) 2] (S R G)

+ [ d l0 + Ir (G .S) ]Fx
s

+ X20 + r23 (G . S)] F 

The above equation, even though it is in vector form, is valid only when the

C derivative is taken in an inertial reference frame. Units are as follows

^'	 Is	 gram centimeters2

	

WS	 revolutions per second



A s'

Torque Coefficients:	 dyne centimeters

Thus:

Torque coefficient

is a pure number.

Experience shows that actual ESG drift may be "fitted" extremely well by the

math model, but predicted less well. That is, the actual gyro drift may be

represented at all times by a model of the above form, but the coefficients

in the model are subject to change with time. This fact is very useful in

simulating ESG operation. A "true" gyro may be drift simulated by using the

above model with a set of "true" coefficients, while the compensation process

is simulated by the same model with slightly different coefficients. The

differences between the coefficients used in the two models are chosen to

represent the expected changes in the coefficients from the time of gyro

calibration to the time of drift prediction.

More complex models have been used to approximate ESG drift, but the model

Iabove contains all of the important terms, especially those which experience

has shown to undergo significant change with time.

Rotor spin speed, the parameter in the model, is not constant in time The

gyro rotor slowly runs down from its original value. Even though the rotor

contracts very slightly as its spin speed decreases, the principle moment, I,

is taken to be constant in the model

The earth's gravity unit vector, G, varies with time in an inertial frame.
A

Also, the two ESG case fixed unit vectors, Fx and Fy, vary with time, both

because q itself varies slowly in an inertial frame and because the gimbal
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APPENDIX B

DISCRETE KALMAN FILTER EQUATIONS SOLVED

Measured Variable Vector Equations

State Variable Vector Equations

a^

^w

m^

Measurement Geometry Matrix (M) Equations

^X

ors	
M ^ XS

whores

I—I o a o 0 0

M	 p 1 o o 0 
O

O 0 l 0 0 0

(1)

(Z)

(3)

(4)

(5)
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Transition Matrix (I) Equationss

X = A x	 (6)
(7)

where:	 c ^,)	 s	 o

^10 sip -r	 GwX^-0 sac 0) o	 (perp-I S 7')^4	 Cs^iS•^.0)	 C.	 0	 D

rb G#, t r, syr)(Seeo)	 O	 (^G	 -1st) ti.,^gb	 (t1M l• ^/^	 'r 41--0	 1

b	 C	 p	 ^	 ^	 O

O	 p	 O	 p

O	 Q	 G	 p	 p	 p

(
j=A	 (8)

(9)

Covariance Matrix (P) Propatation Equations
^l

r	 (10)
Al

Weighting Matrix (K) Equations

K = P M T[M PM r♦ Q —^	 (11)

Covariance Matrix ,W Update Equations

P	 1	 (12)
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state Vector Update Equations

(13)

X t^K> = X ,, ►., 4x) + K L (jK)J

In the above equations, P is a 6 x 6 covariance matrix of state variable

errors, Q is a 3 x 3 matrix of mean square measurement variable errors, K

is a 6 x 3 matrix, f is a 6 x 6 matrix, M is a 3 x 6 matrix, and N is a

6 x 6 matrix. The N matrix (given in equation 10) is a matrix of approx-

imate mean square errors which have been neglected in modeling the system

(e.go, computation truncatiois and roundoff errors, etco). It is further

discussed in references 4, 5, and 60

In addition to the above equationse the transformation between direction

cosines and Ruler angles was solved ' as well as the inverse transfttmation

from Ruler angles to direction cosines, A pitch-roll-yaw rotation sequel

was arbitrarily assumed for the transformationso
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