
0

- -

. .c

NASA TECHNICAL NOTE N A S A TN D-5370-

e-.I 	 E d
- 0

h OAN COPY: RETURI'-m 0 - m
AFWL (WLIL-2) t-'= 311

I w-* n 	 KIRTLAND AFB, N hr N 3
N=n-9
TU-n

-cD
-" -
m E z

TAGGED ARITHMETIC

by PuuZu J. Bettingel; Andrew M . Munos,
and Betty J o Armsteud

Lewis Reseurch Center
CZeveZund, Ohio

N A T I O N A L AERONAUTICS A N D SPACE A D M I N I S T R A T I O N W A S H I N G T O N , D . C. AUGUST 1 9 6 9

TAGGED ARITHMETIC

By Pau la J. Bet t inger , Andrew M. Manos, and Betty Jo A r m s t e a d

Lewis R e s e a r c h Cen te r
Cleveland, Ohio

NATIONAL AERONAUT ICs AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information
Springfield, Virginia 22151 - C F S T l price $3.00

ABSTRACT

A special tagged arithmetic system has been developed for use with FORTRAN pro­
grams written to process experimental data. The tagged arithmetic system car r ies a
condition code with every numerical value and uses a special output to call attention to
answers computed by using questionable input data. The questionable input data may
resul t from instrumentation o r data recording system malfunctions, which can cause
ill-conditioned calculations that result in process-time faults o r e r r o r conditions.

ii

TAGGED ARITHMUIC

by Paula J. Bett inger, Andrew M. Manos, and Betty Jo Armstead

Lewis Research Center

SUMMARY

A special tagged arithmetic system has been developed for use with FORTRAN pro­
grams written to process experimental data. The tagged arithmetic system carries a
condition code with every numerical value and uses a letter code on the output to call
attention to answers computed by using questionable input data. This system eliminates
stops from process-time faults or error conditions and permits calculations to be com­
pleted with questionable data. It reduces the programing effort formerly required to
detect faulty input and thus avoid ill-conditioned calculations. Reprocessing of data is
significantly reduced, and the user's confidence in results is increased.

INTRODUCTION

Most of the experimental data processed at Lewis a re digitized quantities of physical
measurements recorded by central and remote data recording systems. Since the data
a re a result of direct measurements, some of the data recorded might lead to impossible
operations (e. g., division by zero or the square root of a negative number). For the
most part, these data a re due to instrument failures or to test point settings where a
small e r ror in data causes the calculations to be ill-defined. In many cases, such data
can produce plausible, but incorrect, results. Complete e r ror analysis of the source of
these faults is impractical to perform internally in the computer while processing the
data. Therefore, the calculations must be programed to proceed in the best manner
possible, and the questionable data flagged for analysis later. A tagged arithmetic sys­
tem was designed to aid in the analysis oi the experimental data and subsequent calcula­
tions performed with the data.

The system was first developed by Mr. L. Richard Turner of Lewis. It was imple­
mented in a special interpretive data processing system in use on the UMVAC 1103 com-

1

I

puter. The present tagged arithmetic system was written for use with FORTRAN IV pro­
grams running on the IBM 7094II/704X direct couple systems. It has been in use since !

Ithe spring of 1966. The system has proved to be extremely useful and thus was also im­
plemented for FORTRAN programs running on the 360/67 with Operating System 360.
We know of no other software system or computer designed to carry a condition code
along with the data throughout the calculations.

OVERVIEW UF SYSTEM

The tagged arithmetic system allows processing of data to proceed regardless of the
quality of the data. Questionable input data and further calculations based on it are
tagged as the data a re processed. The appearance of a letter printed immediately to the
right of the results on the output alerts the research engineer that his results may be
questionable. This letter enables him to analyze the causes of the flag and to make judg­
ment as to the validity of the results. Figure 1shows sample output from the tagged
arithmetic system.

The basis for tagging questionable data consists of one o r more of the following
elements:

(1)Instrument failure
(2) Digitizer limitations (data exceeding range)
(3) Faulty data syntax
(4) Parity e r ro r s
(5) Violation of calibration limits
(6) Programed validity test failure
(7) Impossible arithmetic operation
A word can be tagged at recording time either by the engineer's choice or by the re­

cording hardware (i.e . , parity errors). It can be tagged at execution time either by the
programer's choice or by the operating system as a result of an impossible arithmetic
operation o r an operation with a previously tagged word.

The four basic categories of tags a re defined as follows
(1) Input tag o r engineer's code-out: An input tag must be generated by the data re­

cording systems and/or subprograms which analyze the digitized input of experimental
data. This tag is inserted for data which exceed the limit of a digitizer, have parity
errors , or have faulty syntax. An engineer can tag data caused by faulty instrumentation
by use of the central data recording systems or remotely by use of a plugboard at the site
or through communication with the processing programs. Any calculations subsequently
based on data with an input tag would also contain the input tag.

2

I I I I I I I I -

I

(2) Programed validity test failure: This tag is generated by the programer and will
take on whatever meaning he desires. It could be used to specify that the number of
iterations has exceeded a limit or that a data point has an excessive deviation from a
curve f i t .

(3) Computer overflow or impossible operation: This tag is reserved for use by the
floating-point trap e r r o r package which resides in the system. No other source is per­
mitted to insert this tag. The e r ro r package (NASA Lewis Research Center 709411/7044
Direct Couple Monitor Program Reference Manual) in use on the Lewis direct couple
computer can establish the existence of the tagged arithmetic system within a particular
program and insert tags whenever an impossible operation occurs. For example, the
tag might be caused by dividing by zero or taking a square root or logarithm of a nega­
tive number.

(4) Calibrations outside a declared range: In processing experimental data an en­
gineer must specify calibrations for the data. A tag is generated whenever a calibrated
value falls outside the range for which the calibration has been specified as valid.

The value of tagged arithmetic depends on its proper use by the engineer and pro­
gramer. When proper precautions have been taken at the recording facility and in the
program to insert the necessary tags, data faults will naturally propagate throughout the
processing of the data, enabling the engineer to analyze the results of his experiment.
The appearance o r absence of tags on the printed results gives the engineer an easy clue
to the reliability of the processed data.

Tagged arithmetic can be used in other applications. With the exception of the im­
possible operation, the user can give his own meaning to the categories of tags and use
them to trace the effects of specific data or the flow within a program.

LIMITATIONS

The tagged arithmetic system was designed with the programer, as well as the re­
search engineer, in mind. It was considered undesirable to place restrictions on the
programer beyond those that were already part of the operating system; however, a few
minor restrictions were found necessary.

Program i n g Restr ictions

The following restrictions are placed on programs using tagged arithmetic:
(1)Library routines ATAN, ATAN2, GAMMA, ALGAMA, ERF, TANH, TAN, and

COTAN must not be referenced for any data that might be tagged. Instead, the entry

3

names TATAN, TATAN2, TGAMMA, TLGAMA, TERF, TTANH, TTAN, and TCOTAN
are provided to handle tagged arguments. All other library routines may be referenced
normally.

(2) On large jobs that require overlay, non-FORTRAN library subprograms must be
included in the main link.

(3) Output fields for numbers that may be tagged must be large enough to accommo­
date the alphameric character that represents the tag. In the field specifications Ew.d,
Fw. d, and Gw. d both w and d are reduced by 1 to write out a tagged number. In the
programer's format specification, d must not be zero.

(4) The load-time debugging package provided by IBM (IBJOB Processor Debugging
Package ($IBDBL, *DEBUG, etc.)) may be used if two rules are followed:

(a) Debug requests may only be made at the beginning of a FORTRAN statement.
(This is normal for FORTRAN programs.)

(b) Debug requests may not be made on any statement that may result in a sub­
routine CALL as its first operation (i.e. , CALL, READ, WRITE, X = SQRTK), etc.).

Requests may not be made on a CONTINUE statement which immediately precedes the

above types of statement.

Tagged numbers printed by debug requests will appear half the magnitude they are and

will not be followed by an alphabetic tag since the debug package does not make any spe­

cial provision to recognize tagged numbers.

(5) The standard method of handling arithmetic e r rors (NASA Lewis Research Center
709411/7044 Direct Couple Monitor Program Reference Manual) is slightly altered when
using tagged arithmetic. The differences are as follows:

(a) The result of all illegal arithmetic operations, except underflows, will be
tagged with a computer overflow or impossible operation tag.

(b) Division by zero will always be treated as an overflow (i.e., the result is
set to the largest representable floating-point number). Otherwise, the programer's
control of e r ro r s is not altered.

(6) FORTRAN logical expressions do not make any provision to handle tagged num­
bers. An arithmetic expression or variable which is tagged is used in comparisons as
follows :

(a)A tagged zero is not equal to zero.
(b) A tagged nonzero is half magnitude.

Storage Requirements and T iming

Routines of the tagged arithmetic system add less than 1000 words to the storage re­
quired for the basic programs. Inclusion of all the optional routines adds less than an­
other 500 words.

4

~- .~ ~ -. ~~ .._.._. ,

A typical data processing job may require twice as much execution time with the
tagged arithmetic system. The disadvantage of a longer run time is more than over­
come by the advantages of being able to complete a run in spite of questionable data and
to evaluate the results with any er rors automatically propagated to the resulting output.
This reduces the necessity for reprocessing because of questionable data.

IMPLEMENTATION

The tagged arithmetic system is implemented for use with programs written in
FORTRAN IV. Several modifications were made to the operating system to accommo­
date tagged arithmetic. To further facilitate the scanning and alteration of programs,
the system library was ordered to separate routines which need to be scanned from those
which do not. These changes in no way affect execution of jobs which do not use the
tagged arithmetic system.

Tagged Fo rmat

The sign and characteristic portions of tagged and untagged data words a re the same.
However, a tagged data word in machine memory is always unnormalized by shifting the
mantissa portion one bit position to the right. This gives the tagged data word a unique
form.

The four low-order bits of a tagged data word a re used to express four categories of
faults, as shown in appendix A. Each bit position in the four-bit tag represents a differ­
ent category of fault. The tag is then the logical OR of the faults which appeared in op­
erands that produced this data word. There are 22 bits to express the significant man­
tissa, which is considered sufficient for questionable data. Untagged data words suffer
no loss of precision. The tagged arithmetic system uses only single-precision (36bit)
floating-point words.

Instruction Alteration and Recognition

The tagged arithmetic system inserts a mask into every floating-point operation
(addition, subtraction, multiplication, and division) and calls to certain mathematical
functions. The first octal digit of each of these commands is 0 and is changed to 5.
When this changed command is executed, the location of the operation is stored, and
control is transferred to a fixed location in the core (i.e., a STORE AND TRAP occurs).

5

I

This fixed location then sends control to the arithmetic portion of the tagged arithmetic
system. The system removes the mask to recover the original floating-point operation.
Control is thus transferred to the system before each floating-point operation to check
for the existence of a tagged operand. If there is no tagged operand, the operation is
performed normally (after removing the mask). Otherwise, the special tagged arith­
metic operations must be used to preserve and propagate the tags, as well as to perform
the arithmetic operation specified.

Tagged Ar i t hmet i c Subprograms

The tagged arithmetic system includes 13 subprograms. A description of each of
these subprograms is given in appendix B. One subprogram is available to the pro­
gramer for invoking the tagged arithmetic system. Eight subprograms are available to
the programer for examining the tags of numbers, for inserting tags, and for special
entries to library routines that would not otherwise be able to handle the tagged numbers.
The remaining subprograms are called automatically and do not need to be known by the
programer.

The programer must call the subprogram TAGSCN to activate the tagged arithmetic
system before executing any other instructions. This subprogram determines the areas
of core storage to be scanned for floating-point arithmetic operations. Two areas a r e
scanned, the object program loaded by the programer and all standard library subpro­
grams. TAGSCN calls the SCANTG subprogram, which scans the necessary portion of
the core and replaces floating-point operations and certain library subprogram calls so
that they will be tested for tagged arithmetic when executed. The replaced operations
are addition, subtraction, multiplication, and division, or any of the transfers to the
functions SIN, COS, EXP, SQRT, ASQRT, ALOG, and ALOGIO.

During execution, the TAGOPE subprogram is entered when an operand is a tagged
number. Floating-point arithmetic operations and transfers to the functions SIN, COS,
EXP, SQRT, ASQRT, ALOG, and ALOGlO are examined by this subprogram. The tag o r
tags of the operands a re removed, the indicated operation is performed, and the result
is flagged with the combined tags of the operands. The subprogram TAGPF is called for
the special library routines TATAN, TATAN2, TGAMMA, TLGAMA, and TERF written
to replace routines that operate on the characteristic and mantissa of a floating-point
argument separately rather than using the standard machine floating-point operations.

Operating System Modif icat ions

Several modifications were made to the operating system to accommodate the tagged

6

arithmetic system. These in no way affect the execution of jobs which do not use tagged
arithmetic. The modifications were as follows:

(1)Reference points were inserted so that information available to the operating
system could also be referenced by the tagged arithmetic system.

(2) The standard e r ror package in use at Lewis reports arithmetic e r rors that cause
a machine overflow, underflow, division by zero, or an attempt to use an illegal argu­
ment to a standard library arithmetic function The standard e r ror package was modi­
fied so that it would insert the appropriate tag into the result of an impossible operation.
Error reports are not given if an operand was previously tagged.

(3) Output conversion of floating-point numbers was mxlified to recognize a tagged
number. The conversion normalizes the number and adjusts the field specification to
include an alphameric character to represent the appropriate tag.

(4) The routine which overlays links or large jobs was modified to call for a scan of
the appropriate area each time a new link is read into the memory. A table of subrou­
tine locations and link numbers is preserved in lower memory by the loader. The loader
has been modified to save this table for the Lewis e r ror package.

(5) To further facilitate the scanning and alteration of programs, the system library
was reordered to separate routines which need to be scanned from those which do not.

CONCLUDING REMARKS

A special tagged arithmetic system has been developed at Lewis Research Center
for use with FORTRAN programs written to process experimental data. The tagged
arithmetic system carries a condition code with every numerical value and uses a letter
code on the output to call attention to answers computed using questionable input data.

The programing restrictions for use of the tagged arithmetic system with FORTRAN
programs a re relatively minor. Considerable programing time is saved by use of the
system. The system performs decisions and flags results which otherwise would have
to be programed for each experimental test. The disadvantages of the longer run time
are more than overcome by the advantages of being able to complete a run in spite of
questionable data and to evaluate the results with flags automatically propagated to the
resulting output. This reduces the necessity for reprocessing because of questionable
data.

7

The tagged arithmetic system has applications other than processing data which a r e
the results of physical experiments. The bit structure which includes a tag and propa­
gates it through calculations is useful in tracing and general program debugging.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, June 9, 1969,
129-04-06-03-22.

8

APPENDIX A

BIT STRUCTURES OF TAGGED REAL NUMBERS USED IN FORTRAN

PROGRAMS WITH FLOATING ARITHMETIC TRAPS

Let S, E, N, and F represent the sign, exponent, numeric, and fault bits of the
real number, respectively. The effect of tagging on the zero and nonzero bit structures
can be represented as follows:

s 00000000 00000000000000000000000 0 0 0 0

S O O O O O O O 1 0O O O 0O O O O 0O 00O O 000O O O O O FgFqF2F1

S EEEEEEEE 1-m- N N N N

S EEEEEEEE 0 1NNNNNNNNN"NNNNNNN"N FgFqF2F1

The interpretation of the fault bits is as follows:

F8 Input tag or engineer's code-out

F4 Failure of programed test for validity

F2 Computer overflow or impossible operation

F1 Data word outside declared range

Example:

Untagged zero data

Tagged zero data

Untagged nonzero data

Tagged nonzero data

201400000000 Octal representation of a floating-point untagged 1

201200000005 Floating-point 1tagged with F1 and F4 bits

Tagged data output can warn the engineer that a data word is doubtful or faulty. The
output of a FORTRAN program using F, E, o r G format conversion for real single-
precision tagged data words will yield a literal tag appended to the right of the printed
result. An example of this output using 016, F16.6, E16.6, and G16.6 on a normal zero,
a zero with an input tag, a normal 1, and a 1with both an input and an out-of-range

~tag is illustrated as follows:

9

Tagged zero Untagged-1 - Tagged 1
..- ~ . . - .

001000000010 201400000000 201200000011

F16.6 0.OOOOOH 1.000000 1.00000s

E16.6 0 00000E-38H 0.lOOOOOE 01 0.lOOOOE 01s
G16.6 0.00000E-38H 1.000000 1.00000 -s~-

The tag letters that can appear in the output, such as H and S in the previous illustra­
tion, can be interpreted by means of the following key:

rag value Tag meaning Tag letter
I

A B
~~

8 Input tag

4 Failure of programed test for validity

2 Impossible operation *

1 Out of declared range *

10

APPENDIX B

SUBROUTINES USED WITH TAGGED ARITHMnIC

The subroutines used with tagged arithmetic a re given in the following table:

Subroutine

NTAG

TAG

TAGSCN

UNTAG

TATAN

TATAN2

TERF

TGAMMA

TLGAMA

ISCANTG

a~~~~~~

- .- -___
Finds tag of tagged number,

if any
rags a number

Sets a l l floating-point oper­
ations for possible tagged
arithmetic; determines
proper e r r o r conditions

Removes tag from tagged
number

Calls ATAN for argument
that may be tagged

Calls ATANZ for argument
that may be tagged

Calls ERF for argument that
may be tagged

Calls GAIvIMA for argument
that may be tagged

Calls ALGAMA for argu­
ment that may be tagged

Changes floating-point oper­
ations to tagged operations

Tests operands for tagged
numbers and performs
normal arithmetic opera­
tions; s e t s up output for
tagged numbers

Performs tagged arithmetic
Provides linkage to function

subprograms for tagged
arguments

-
Call sequence

y = NTAG(x)

CALL TAG(x, n)

CALL TAGSCN

y = UNTAG(x)

y = TATAN(x)

y = TATANZ(x,Z)

y = TERF(x)

y = TGAMMA(x)

y = TLGAMA(x)

None

None

None
None

. .- - .

E r r o r message

__..- -

None

*ATTEMPT TO TAG
ANONREALGAVE
A TAGGED ZERO

None

None

None

* ILLEGAL ARG.
TAGGED ATANZ

None

None

None

None

None

None
None

.-

E r r o r condition

None

n is not rea l

None

None

None

x o r z is non­
real , nontagged

None

None

None

None

None

None
None

Optional exit
control

None

$LIBSAR

None

None

None

$LIBSAR

None

None

None

None

None

None
None

aUsed automatically and a r e not called by the programer.

11

I

Subroutine TAGSCN (Written in MAP)

This subroutine must be called by the program before any other statements are exe­
cuted in order to use any tagged arithmetic during execution of the program. It deter­
mines the areas of core storage to be scanned for possible floating-point arithmetic oper­
ations. Two areas will be scanned, the object program loaded by the programer and all
standard library subroutines. Three areas are not scanned. These include the resident
portion of the IBJOB monitor system itself; nonstandard, non-FORTRAN library routines;
and that portion of core storage beyond the loaded object program and library. TAGSCN
calls subroutine SCANTG.

Subroutine SCANTG (Written in FORTRAN IV)

This subroutine actually scans the necessary part of the core and replaces floating-
point operations and certain library routine calls so that they may be tested for tagged
arithmetic when executed. The first octal digit is set to 5, which will cause (1)the in­
struction counter to be stored and (2) an illegal operation trap. These operations a re
addition, subtraction, multiplication, and division, o r any of the transfers to the func­
tions SIN, COS, EXP, SQRT, ASQRT, ALOG, and ALOG10.

Subroutine TAGOPE (Written in FORTRAN IV)

TAGOPE is entered when an operand is a tagged number. The tag o r tags of the op­
erands a re removed, the indicated operation is performed, and the result is tagged with
the combined tags of the operands. Permissible operations a re addition, subtraction,
multiplication, and division, or one of the functions SIN, COS, EXP, ALOG, SQRT,
ASQRT, and ALOG10.

Subroutine TAGPF (Written in FORTRAN IV)

This logical function will determine if the operand is a tagged number. If it is
tagged, a function subprogram will be called to operate on the argument and the function
will be set .TRUE. . This function is used by the special library routines that were
written to replace routines that operate on the characteristic and mantissa of a floating-
point argument separately rather than by using the standard machine floating-point op­
erations.

12

Subroutine TAGTRP (Written in MAP)

This subroutine recognizes a command that may be a possible tagged arithmetic op­
eration. If neither operand is tagged, the operation is performed normally. If either
one is tagged, TAGOPE is called to perform the operation. This routine also controls
the output conversion of tagged numbers in the E or F conversion. If a number to be
written out is tagged, the alphabetic tag will appear in the rightmost position of the speci­
fied field, thus causing one less significant digit to appear.

Subroutine NTAG (Written in FORTRAN IV)

This function subprogram is used in a FORTRAN tagged arithmetic data processing
job to determine whether a single-precision floating-point number is tagged. An integer
is generated, the value of which depends on the fault conditions that apply to the number.
The value of that integer is obtained by a reference to NTAG(X). The relations among the
value of the integer, the letter used to tag this number in output, and these fault condi­
tions are illustrated as follows:

-__Fault conditions that apply to number X Tag bits I Value of NTAG(X)

I Tag letter

u v w x Y
Input tag o r engineer's code-out
Failure of programed test for validity #
Computer overflow or impossible operation
Dataword outside of declared range

_____.- ~

/

When X is untagged, NTAGG) is zero. When X is not a single-precision floating-
point number, such as when X is an integer, NTAGN) is se t to the value -31.

Subroutine TAG (Written in FORTRAN IV)

This subroutine is used to set specified fault bits, called the tag, of a real, single-
precision, floating-point data word. The tag is used to specify fault conditions that apply

13

to the data word; the tag NN is defined as follows:
NN=8 input tag o r engineer's code-out
"=4 failure of programed test for validity
"=2 computer overflow or impossible operation
"=1 data word has fallen outside declared range
Tags propagate through tagged arithmetic to the results of the calculation. When E,

F, o r G format conversions a re used for output, the tags are reported as literal tags.
Insertion of a tag is made by the statement

CALL TAG(X,N)

where

data word to be tagged

N fixed-point variable or constant, sum of all values of NN to be inserted with this
CALL

Define n congruent to N modulo 16.
(1) When n = 0, X is left unchanged.
(2) When X is untagged, the resulting tag of X is n.
(3) When X is tagged, the resulting tag of X is the logical sum of n and the orig­

inal tag of X.
(4)An NN=2 in n is ignored. The programer cannot control this bit. The re­

lation among n, the letter tag in the output, and the fault bits is given as follows:

lTan bit I Value of n

1 2 1 3 4 1 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 E1 ­
* * * *

* * *NN=2
* * * * *NN=1-

When X is nonreal, such as an integer, the following error message is returned by the
Execution Error Monitor:

*ATTEMPT TO TAG A NONREAL GAVE A TAGGED ZERO

14

X

Subroutine UNTAG (Written in F@RTRAN IV)

This subroutine may be used to remove the tag from a number. If the number has
been tagged, the accuracy is limited to the 22 bits available in the mantissa. The state­
ment

Y = UNTAGN)

stores the untagged value of X in Y. Programers are cautioned about the use of this
routine so that the purpose of tagged arithmetic is not wasted.

Subroutines TATAN, TATAN?, TGAMMA, TLGAMA, and TERF

(Written in FORTRAN IV)

These function names a re used to reference the respective functions whenever there
is a possibility that an argument may be a tagged number. These names should always
be used by a program that uses tagged arithmetic.

z = TATAN(x) z = ATAN(x)
z = TATAN2 (x, y) z = ATAN2 (x,y)
z = TGAMMA(x) z GAMMA(x)

= TLGAMA(X) z = ALGAMAW
= TERF(X) z = ERF(x)

Each of these routines calls TAGPF. An entry into the normal library routine is then
effected with an untagged argument. If any tag is present, it will be propagated in the
function value before return to the user's program.

15

Figure 1

NASA-LEWib RESEARCH C E N T E R CLEVELAND. O H I O PRELiHINARY DATA 0 1 / 1 5 / 6 9 CADDE-I1 R E C O R D E D 1 3 21 5 0 43 438
FAClL I T Y P SL-2 P K O b 0007 KDI; 0137

lAHOM = 14.3tPSIA

AV 0 1 2 3 4 5 6 7 8 9 10
1-51.0232 -53.8371 -683 37 A-6 72 - 3 4 3 -3.44234 498 -486 9399.21 9388.88 9393.47 12707.1

11 126YY.8 1269Y. 8 ~ 0 . 4 0 8 8 25.4037 18.7015 9.15292 4.52307 4.44765 4.56615 0.13301E-01
2 1 9*(i t i192
31 422.152

2.49680
0.20002

-0.8\)119�-02 0
2. 28923 83.5560

519.871
2 113.41

467.145
2 12 8.34

496.580
2056.98

3.4254
2055.49

1 2.24122
2105.87

471.919
2092.23

.41 4 w . 7 8 1 437.771 442,083 438.825 443 -029 437 .821 442.083 438.82 5 438.976 638.875
5 1 439.879 439 12b 531,020 0.50005E- 4.2 0.20002E-02 584.263 585.926 581.949 578.989 578.817
61 586,395 5 85.029 5b1.306 577.613 577 -398 580 -7136 578.602 5 76.109 574.300 578.588
11 5.15.719 574.166 573.001 578.000 582.891 104.21 n 576.537 575.633 610.68 tl 579.805
81 582.334 948.56 H 577.484 579.118 582.934 574.037 574.900 609.68 1 579.976 528.38 H
9 1 1015.22 1017.49 1016.35 1021.95 1327.55 1019.07 1017.49 1013.90 1020.20 1027.33

101 1013.55 i011.63 1017.84 1025.36 1034.19 LO 1 4 - 3 4 1009.53 1011.37 1020.55 1028.60
111 746.17 H 1918.59 -b042.L 5 1856.84 176 5 -48 2020.08 2147.08 2133.69 1931.8 FI 611.32 H
121 1630.38 1984.68 2083.97 2046.46 1851.61 1912.87 1928.27 1984.68 1930.48 I 959. a5
A51 1755.59 1765.91 611.32 ri 1748.08 1520 .a 1331.86 1565.04 157 9.67 1502.97 1462.95
1 4 1 1522.51 611.11 H 1575.49 1548.93 145 8-10 1649.44 1712.37 1765.26 1738.23 1519.57
15) 1608.26 1707.04 1 I78 .60 1646.95 1384.85 586 -357 580.611 581.914 582.814 594.870

2 4 1

161 590.053 572.17 i 587,251 5 86.144 581.443 578.393 516.627 8 5 1 .a70 504.362 508.75 7
171 506.814 507.410 504.221 577.101 573.428 578.695 586.229 517.532 578.910 585.205
181 599.906 5Y9.822- 600.575 624.006 602.495 602.745 6 34.594 670.481 779.850 755.995
A91 739.646 790 0 9 3 611.32 n 715.082 231.09 n 743.270 611.32 H 711.067 739.696 145.057
2 0 1 677.090 674.972 611.32 n 732.544 726.955 7 53 -415 7 79.182 719.125 769.317 511.32 H
2 1 i 728.520 724.718 -15886. S 753.094 734 -556 b11.32 n 738.578 708.604 727.178 597.173
221 708.156 733.673 bYL.70 H 692.247 703 -677 721 -813 7 10 -396 765.141 611.32 H 719.123
231 7139.500 -5450.8 S 763.357 6 11 -32 n 747.290 718.230 757.334 704.797 lQ9.500 712.535

02611.32 n ib6.277 14.6525 479.663 0.30003E-02 507.063 o ~ 0 0 0 4 ~ - 12.7253 27.292! 42.9193

Figure 1. - Sample output frpm tagged arithmetic system.

i

-
OAIIPR

1 0.97992
11 14.2986
21 07.7702
31 0.97300
4 1 14.4107

35.7044
0.97009

35.6968
0.98825

0.Y7244
14.jOL6
87.7793
0.97300
14.3629
4.36073
4.61942

Id 11.6MY
7. A899
4.81 942
4.83111

0.91992
14.2986
87. 7793
0.91300

-0.3 	 314
4.36849
4.796G4

H 11.578
H 11.246

4.85059
4. 2 3672

H 	4.60923
4.72904
11.0008

H 11.2162
10.5986
10.4210
10.7201
10.1108
11.1225
8.93847
8.66879
61.4971
61.5438
13. b45
9.81942
10*-1314

9.39464
9.41328
3.19306
6.048 17
3.21987
11.3286
57.6823
3.L0071

0.98365
14.3026
87.7793
0.Y 7300

A 14.378a
4.37236

35.7006
0.97917
14.29 29
139 -856
4 -850 59
4.84283
4.8 5449

H 10.803

35.7044
0.97917
14.2740
139.856
4.85059
4.80383
4.79994

d 	 4.84280
4.03500

;I 	4.2948
4.26771
4.83111

35.7306
0.97317
14.2335
139.871
4.83893
4.62331
4.842 80
4.30333
4.82331

H 	11.238
3.2045
4.83530

0.97992
14.2907
87.8156
1-00384
14.3788
4.36461
4.84200
12.247
4.79994
4.83500
4.83890

14.2835 14.2835
139.886 139.071

4.85059
4.81942
4.91298
4.7649

H 4.78825
n 4.2638

4.031 11
4.84610
4.8 2721

H 4.81552
H 11.206
n 4.2445

4.28321
4.75709
4.80383
ll.OS70
10.851 1
11.3192
10.9072
10.9540
8 e 7 1527
8.52009
0.380 74
8 -03728
60.8748
61.5749
23.6246
10.692 1

n io..3rez

9.21769
8.78035
8 -80469

51 4.84670
61 4.83500
7 1 4.81552
81 4.82331
9 1 4.81102

101 4.01942
A11 3.2314
121 4.56259

4.85059
n 11.753
tt 	 11.246

4.85059
4.28708
4.66751
4.17656
11.0664
11.50b7
11.3099
10.1221
9.93541
9.82345
0.69667
9.52509

n 7.2179
4.2600
4.28708
4.72205
4.7 92 14
11.0196
11.0102
11.1603
10.85 11
10.82 33
9.42259
8 -7 3386

4 -2 8321
4.79214
4.22123
11.141
11.4504
11.2256
11.2630
13.087
Y .33875
7.88886
0.43647
8.17648
61.7926
61.2794

H 3.2237H 3.2352
4.69461
10. 	7388
10.066
11.48 79
10.8230
11.1694
10.9634
11.1694
10.8792
8.46434
61.5438
61.9326

4.22123 4.2239a4.65590
4.21736
11.A132
11.3286
10.7482
11.1319
10.9634
11.1881
7.55517
9 -096b6

-I 10.9540
11.4129
6.7686
11-0196

H 	11.0289
8.62231
8.03728
8.64090

10.7163
11.3942

H 	 11.5536
9.84211
10.0101
9.18044
5.99776
8.91055

131 4-19800
i 4 1 11.0102
151 11.3099
161 10.7295
171 10.Y915
181 10.92b0
191 8.58513
201 6.99976
211 9.02221
221 3.2700
231 62.8343

M -427 l a
7.83322
61.0771
61.1082
23.7039

10.1501
3.1472

3.73271
8.35288
0.96997
3.24669
3.21221
11.0573
60.5481

A-0 -6 26 8

a.13935
63.0053
62.2592

n 55.2647
9.55305
10.5144~­

8.8 36 15
9.46918
8 .MY281
3.12032

3.20454
11.6848
58.7419

-0.6268

8.3aoic
60.6414
61.1082

51.3882
61.9537
58.7107
23.4499
10.2155
L O . 7314

n bo.6570
61.7149

23.5928
10.9353
10.0194

9.19906
8.19504
8.81971

23.7357
10.6360
10.823K

9.24562
8.32502
8.94559
3.21981
7.66636
10.1402
30.0745
10898

H 57.0743 51.1522241 14.159
9.776829 53441251 9.52509

261 10.1688 1022621

9.32944
9.09666
3.22753
8. 84817
3.2lbU4
7.15703
28.1910
3.23902

10.0007

9.37601
9.143LI
3.22753
8.81977
3.20454
7-28660
25.4969
8.18576

271 10.1127
201 9.42259
291 3.21997
3 0 1 8.7994Y
311 3.20454
321 7.50885
331 50.0755
341 14.3629

9.18044
3.21634
8.85223
3.19336
7.66536
25. lO04
1-4.6319
11031

3.22753
3.22370
3.1655
36.6419

3.21987
8.05503

H 11.0570
48.5410
10951A 10971 ~-

Fiqure 1. - Continued.

AV tRAG�S
PP 2 4.84085
PSZ 6 4.274I7
PT2E - 5 11.614
PTZJ 3 r.8402a
PTiZ3 t 4.83939
PTZjA t 10.9726
PTZ3ZC 5 11.1039
PT237L 5 11.1826
DSLCO 3 8.64090
PTZCG :10.7897
PTLCJ 4 A1.0547
TLCC 3 577.325
TZLJ 4 515.707
PSATP 1 58.7107
PT3C 5 b1.9979
PT34C 4 b1.6371
T 30 5 1016.68
T 35c 4 iO29.56
T51C 5 1960.62
T513C 3 2067.45
T5bA 5 1498.50
T562C 3 1661.49
PSL5 4 9.23406
PTL50 4 10.0141
T25A 4 582.959
T & j C i 580.154
NC 3 12702.2

T PTZTOP 1 4 4.83603

(A

?

I­(0

m

(D

TP L L 439.589 PT 1 4 4.84670 P S 1 4 4.36655 PT2 32 4.02079
PTZA 3 4.83630 PTZB 5 4.82487 PTZC 5 4.84826 PT23 3 4.81942

H PTZF 2 4.d.2916 P T Z G 3 4.83903 PT2H -5 9.6374 H P T ~ I 5 4.81ew+
P T Z K -5 5.bb03 H PT2L 3 4.82991 PTC21 9 4.80989 PTt22 3 4.83630
P i t 2 5 9 4.8267d PTCZ6 3 4.65580 PT23 25 11.1548 T23 10 581.768
PT23B 6 AI. 1054 PT23C 7 11.3193 PT23D 6 11.1945 PT2316 5 10.7388
PT233C 2 11.1151 PTZ346 4 11.0385 PT235C 5 10.9861 PT236C 3 11.2288
T23A 5 581.988 TZ3b 5 581.548 PTZC* 24 10.7033 PS261 3 9.31393
P s 2 c I 0 b 8.97742 r 2 c 20 571.807 PTZCA 5 10.5687 PTZJB 5 10.7766
PTPCO 4 10,7040 PTZCE 5 10.6174 PT2Cl 5 10.8642 PT2tZ 5 10.9410
PT2C4 5 10.7801 PT2C5 5 9.94662 T2CA 5 577.921 T2C3 5 576.755
rzco 4 580.468 TZCE 3 576.304 T2Cl 4 578.199 T2CZ 4 516.051
T2C4 4 511.999 TZC5 4 581.079 PT3 19 61.5b82 PS3H8 2 57.1132
PS3HT 5 57.6457 T3 LO 1919.20 P T 3 A 4 61.2715 PT35 5 61.4783
PT5U 5 61.4660 PT31C 4 62.1541 PT32C 3 61.6732 PT33L 4 6L.2054
PT35C 4 61.1976 T3 A 5 1019.71 T 38 5 1019.71 T3C 5 1020.52
T f l C 4 1015-54 T32C 4 1014.03 T33c 4 1014.87 T346 4 1022.02
P i 5 1 5 23.b214 T5 1 20 1907.95 i 5 1 A 3 1846.97 T518 3 2100.28
T510 5 1%;t.Z3 ~ S A E 4 1699.49 T511C 4 1881.23 T512C 5 1948.91
T514C 4 1895.46 T 5 15C 4 1776.3’3 YT56 5 9.6537b T56 19 1582.00
T56ti 4 152b.2b T56C 5 1676.97 T 5 6 D 5 1625.14 T561C 4 1528.02
T 5 6 3 C 4 1b74.76 T564C 4 1609.21 T565C 4 1456.37 PT25 15 10.3787
TL5 11 584.231 PT25A 4 10.6034 PT258 4 10.1618 PT25C 3 10.3213
Pi251C 4 10.1291 PT252C 4 10.5496 PT253C 3 10.5459 PT254C 4 10.3323
i 2 5 8 3 590.725 T25C 4 580.652 T251C 3 589.124 T252C 3 584.056
TLS4C 3 5U.230 * s o 4 3.20455 PSOS 4 3.21508 NF 3 9393.85
FP 2-52-7302 f1 3 2119.60 FZ 3 2084.53 F 6 2102.06
PT28UT 9 4.81595 PT9 20 6.03995

Figure 1. -,Concluded.

M
I
ul

0

0

ul

6

AERONAUTICSNATIONAL AND SPACE ADMINISTRATION
WASHINGTON,D. C. 20546

OFFICIAL BUSINESS FIRST CLASS MAIL

POSTAGE AND FEES PAID
NATIONAL AERONAUTICS AND

SPACE ADMINISTRATION

POSTbIASTER: -. . . .LL.~LL~de (Section 15s
Postal M a n u a l) Do Nor Return

-

"The aei.omitticn1 am? spnce nctioities of the Ufaited Stntes shnll be
con&cted so ns to contribrtte . . . t o the expaasio-ra of hzimaiz kitowl­
edge of pheaomena iit the Litittosphere a d space. The Admiiaistrntion
.rhnll proride for the widest prncticnble and appropriate disseuziuntioit
of i~ i fo r~ t in t ioncortceming its nctii'ities n?zd the resnlts thereof."

-NATIONAL AERONAUTICSA N D SPACE ACT OF 195s

NASA SCIENTIFIC A N D TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and
technical information considered important,
complete, and R lasting contribution to existing
knowledge.

TECHNICAL NOTES: Information less broad
in scope but nevertheless of importance as a
contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution
because of preliminary data, security classifica­
tion, or other reasons.

CONTRACTOR REPORTS: Scientific and
technical information generated under a NASA
contract or grant and considered an important
contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information
published in a foreign language considered
to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information
derived from or of value to NASA activities.
Publications include conference proceedings,
monographs, data compilations, handbooks,
sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular
interest in cornnicrcial and other non-aerospace
applicationz. Publications include Tech Briefs,
Tcchnology Utiliz'ition Reports and Notes,
and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546

I

