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THE INCREASE IN CURRENT IN A TOWNSEND-DISCHARGE UNDER THE
INFLUENCE OF SPACE-CHARGING

Starting from the basic equation (Towsend-differential

equations, supplementary - and Poisson-equation) an equation

system is developed, from which the position coordinate

is eliminated, and which connects the desired currents

and	 i.«i	 via the variable j-w). After conversion of

this equation system the usual procedures for solving the

differential equations can be used.

In contrast to an earlier computation by the author,

the process can be used for a number of initial conditions

(lightning, constant irradiation, weak irradiation, static

breakthrough, over - and under-voltage). The treatment of

examples gives a survey on the diverse possibilities and

shows the usefulness of the process. The transition of

increases in current with varying initial conditions into

a unified course (asymptotic form) is of interest; this

transition is expected in theory and is confirmed by

experiments.        
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In experimental investigations of the increase in

current of a Towsend-discharge in time :-5 it was ascer-

tained that a characteristic increase occurs with the

attainment of a certain current intensity. Here first of

all, only slight deviations from the normal course are

shown. With increasing current intensity the rise then

becomes increasingly steeper. A cause for this charac-

teristic rise was found, by space-charging the positive

ions, to be the distorted field in which the electronic

avalanches attain an increased concentration of gas.

One of these experimental examples 4) was already

treated theoretically earlier; here, from the basic

equations (Townsend's differential equations, Poisson-

equation) a differential equation for the increase in

current was extablishedl).

In the meantime similarly measured increases 6 ) in

current were treated theoretically with regard to space

charging. In 7) the movement away of ions was considered

when calculating the increase in current; this made possible

a thorough description of the increase in current from the

start of the released electrons to the steep rise leading

to the breakthrough.

I.	 EQUATIONS FOR THE INCREASE IN CURRENT

The derivation of the basic equations is undertaken

by using the following simplifications.

f
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1. In the homogenous field of a plate spark area,

support current or support density are distributed evenly

over the discharge area in radial direction. Thus only x

appears as the position coordinate.

2. The voltage set on the discharge area remains

constant in time; according to this, the decrease in

voltage on the outer resistance must be negligibly small.

3. When being confined to small	 E/p_	 values

(large pd) the expression

a/p= A(E/p—B) 2	 can be used for a/p

The field intensity-changes (called forth by the space

charging of ions) should be slight; under these conditions

the drift velocities v_ of the electrons and u ,	 of

the ions are assumed to be constant. - As an extreme

case (say in the ...,,. discussed in Section 5) - the

following values may appear:

E(0)/E(d)--1,15,	 a (0) /a (d) ;z.: 3.

4. The change in time of a in an interval of length

T_	 should be slight.

As a supplementary mechanism we assume photo effect

on the cathode exclusively, as corresponds to the experi-

mental examples. Here the coefficient	 'rnn=d/a	 is set

as constant.
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On the basis of these simplifications the following

equation system (1), (2), (3) is derived in Appendix I

from the basic equations (Townsend differential equations,

supplementary equation.). 	 It brings the current constituents

(current density) of the electrons 1_(1) and the ions !.M

flowing in the-outer circle, in relationship with the current

of electrons	 i_Ro	 leaving the cathode. A clear

explanation of equations (1), (2), and (3) is obtained from

the following model:	 all the ions, electrons and photons

are generated at point 	 x=d—a„ -1 	. The passage time

of the electronic avalanches up to this point (when the

avalanche develops without delay) is	 TO=T_(1-(a,d)-1)'.

Equation (1) describes the development in time of j_(o,c)

here	 jFM	 is the foreign current released by foreign

irradiation on the cathode. 	 In equation (2) the electronic

current J (t) is represented, whilst the passage time

of the electrons from the place of generation up to the

anode is ignored. Equation (3) describes the development

in time of the ion current J (t); it is yained from the

movement of ions (with velocity v. ) from the point x-d—as-1

up to the cathode; for this the time	 T,=T,(1-(a,d)-1)

is necessary.

j-(0,	 +PAj-(0, Ty►) exp

d
[f a (x, = — Toe) dz—aod], iAph — YDe[ezp a* d-1],	 (1)
0
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I_(t): expa,d j _(O,t — Tpn)eXP[f a (x, t—Tpn)dx—aod],	 (2)a. d 0

dl. (t)	 exp a, d JJ	 d

dt _ T,	 1/-(O,t—Tp6)e:P[la(x,t—Tpn)d. 	 dJ

d
—j_ (O, t—Ti — Tpn)eXp[f a (x,t—Ti—Tpn)dx—aod]}• 	 (3)

In equations (1), (2), and (3) f 2(x,0dx is the

modified gas concentration under the influence of the space

charging; here we take over the relationship (4) already

used, with j•(t)	 (see also 8 ), which is obtained from the

application of the Poisson-equation and the analytical

expression for the	 ,IP	 given above (K, see equation

(3.1).	 d

	

f a (x, t) d x — ao d — x+ J+ (t) •	 (4)
0

Since the calculation with the functional equations

(1), (2), and (3) cause several difficulties we wish to

make a conversion to differential equations. For reasons

of constancy we assume that jF(t) may only contain a a.

function with	 t-o	 therefore we write jF(t)=qa(t)+j,:`(1).

By inserting (2) in (1) and using (4), first of all

/_ (t-t TPn) =1_ (t) exp (x +K+.l+ (t)}	 (5)

+ IP (t) exQ d d eXp( +3 2+ 	 (t) }

is formed (x—InP,n)
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By linear  development of the term	 1_ (t+Tph)	 and

of the exponential function standing on the right at 1_(t)

one obtains equation (6) . The factor next to	 jr*(t)

exp (^+I+(t)}	 may be made equal to 1, since the term

iF'(t)	 only plays a roll in the initial stage, in which

no significant space charging has yet been formed. - The

equation (7) results by introducing (2) and (3).

	

di 
di —TrnI_ (t) {x + K+ J2+ (t)} {-IK(t) 

ezp°' d ,	 (6)dt	
Tph a, d

(7)

	

1- (Tph) = eap a, d q,	 I + (Tph) = 0 .TO a, d	 (8)

The initial condition (8) for	 1+(t)	 is obtained from

the model described above, which allows the generation of

ions to be inserted at 	 t- Tph	 The initial condition for

1-(t)	 is obtained by the requirement that j-(0,t) 	 for

1-^0	 changes into the course which is free of space

charging (see equation (2)).

In this way we have gained a system of differential

equations for both functions which are of interest, 1-(t)

and	 1+0)	 A deviation from the usual form of a

differential equation is developed by the retarded term

1-(t - T,) 	 in equation (7).	 - With (6) and (7) the

theoretical curves applied in section 3 are calculated by
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using the method described in Appendix 3. With certain

prerequisites, simple solutions are found, as is shown in

the following section, Section II.

II. ASYMPTOTIC SOLUTIONS

It should be shown that all increases in current

leading to a breakthrough with increasing current intensity

pass over into a unified course. This course is independent

of special conditions such as irradiationa and over-voltage.

We start out from the equation system (6), (7) and

first of all we assume that	 xa0	 It is seen that during

the development of the discharge the electron current I_(t)

becomes so large that the inequality

1 - ( t ) )> !_ (t —T;)	 (9)

is fulfilled.	 Because of this

d!.(tt) =(a.d/T.)1_(t)•	 (10)
d

is developed from equation (7).

If an extremely unfavorable course of	 it^(t>	 is

ignored, then the term with	 jF(t)	 in equation (6)

can be neglected at this point in tire. Then by introducing

(10) in (6) the differential equation of 2nd degree for

1. (1)	 result:
d1j. (t) s T-1 dlat(t) {x + M+ •P+dO 	 (t) } . (11)
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In standardised form it goes (cp. Appendix 3)

	

Y(z) = Y (T) {x + yz (T) } .	 (12)

By integration via one obtains from (12) a differential

equation of 1st degree.

Y ( T) — {x y ( T) + .1 y3 (T) }

	

=Y( Ti) —{xy(Ti)+jys(Ti)}—a. 	 (13)

As can be seen in equation (13) without a doubt,

with increasing y at a point 	 T =T,	 the case arises of

the members 3(:_) a 	 {xy(T:) +A0(To 	 being large

against a•	 From this, for T > T: we can make the left

side of (13) equal zero. The development cescribed above

is always the case for xa0 for x <o it i; possible that

in some cases the conditions required for this are satisfied.

Then the following considerations are obviously true. The

solutions of equation (13) (left side made equal to zero)

with the initial condition 	 y(TO —b	 are:

y = b (3 x)'^^ { (3 x + b=) ezp [2 x (s= — s) J — b=}—'^^

	

— (3x)'I'{eap[2x(Ta,—T)] —1} —'Io, (x$O),	 (14)

y — b ( 1— j b2 (T — T=)) —%

	

(x—O).	 (15)
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The left side of equations (14) and (15) shows clearly

that y (T) becomes singular  for a certain value T.	 On the

right side the equations are rewritten as an argument to

T,. — T .

The treatment of the functions for increasing y given

by (14) should now be discussed. The analytical develapment

of the exponential function is (14) shows that with s,.—:--+o

(i . e . , for /-- ) all functions with x * 0	
approach the

function ( x o)	 given by (15) asymptotically.	 This

behavior can also be explained with the aid of the differential

equation	 the factor	 X-- Y2 	 shows that with

increasing y the influence of x on the course of the

function diminishes.

In the equations given above, only the ion constituent

of the current in each case was considered in each case.

From
Y. ( r ) = z. (r) — K -  J (t);

one obtains the electron constituent; it is understandable

that the differential quotient y •(T)	 has the same

asymptotic behavior as ya(T)	 Thus these considerations

are not only true for the ion constituent, but also for

the total current.

It would now be interesting to study this asymptotic

behavior with an experimental example.	 In continuous
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UV-radiation of the catnode a large number of increases

in current was measured 2 ; during tnis the over-voltage

(i.e., x. Inpo)	 as parameter, was varied.	 As opposed

to the original task, where the voltage was plotted at the

zero point of the time axis, the individual curves in

Figure 1 have been shifted in the direction of time.

In this way a large number of curves approaching each

other is created, which merge together with large intensities

of current.	 In addition in Figure 1 the course calculated

in the asymptotic form

y+( T ) _^!^)^ {ice-i} ^ l^, Z.(t) - (I)'" ` r°^ r}-''^,	
(16,14

(F = cross-section of the discharge) is marked in with

a dotted line; in the last phase this curve merges with

the courses of the current measured.

A further application of the asymptotic solution is

found in 6 for describing the increase in current; here

it is shown that increases in current oscillating

statistically in the beginning change into a unified course

under the influence of the space discharge.
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III. EXPERIMENTAL EXAMPLES

a)	 Measurements with b shaped irradiation

As an example we shall consider an increase in

current measured in hydrogen 9 . In contrast to the example

treated 7 with	 flne...1	 here inn is considerably different

from 1. The calculation of the increase in current for

these conditions is an interesting example for the operation

of space charging. On curves placed together in Figure 2,

the inter-play between J, (t) and /_(t)	 according to

Equation (6) and (7) can be studied. Thus first of all

the electron current I_(t) fa l ls ( because of x<o)	 and

correspondingly i,(t)	 has a curved course with negative 2nd

differential quotient. With	 t= T;	 the ions movements

away are noticeable by a sharp bend. In order to lead the

increase in current to the breakthrough, the factor

In fbn + Kg J= t	 s	
(17)

in equation (6) must become positive (see also right scale

in Figure 2). This occurs in the curves a and b, not

however in curve c, which therefore doesn't lead to the

breakthrough. The importance of the factor (17) for

realizing the breakthrough was already indicated in9.

In the constituents	 i,(t) and	 I_(t)	 are

added to the total current, a relatively smooth course

results, which does not reveal the details just described.
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Figure 1

Experimental detection of the asymptotic behavior.

Measurements in dry air 2 ( Figure 2), data on the measurements.

See Figure 4. By shifting the time scale the measurement

curves	 were brought for coverage in the last

section. - - - - Current calculated in the asymptotic '13rm

according to Equation (16).

The curves a and b in Figure 3 reproduce the measured course

qualitatively (cp. Figure 9 to 12 in 9).

A direct comparison of the measured and calculated

course of the current is rejected because of the difficulty

in choosing the right parameter N and x. In addition in

this case, with	 yw_-z1	 the general validity range of our

solutions is exceeded, so that the curves shown in Figure 3

only hdve a qualitative character in their last stretch.
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Firure 2 (above) and 3 (below)

Current calculated in hydrogen (p = 330 Torr, d = 2.5 cm.

x = -0.2). Release of the primary electrons by lightning:

1F(r) =N 9e(5 (r),	 a: N = 6.5	 10 5 ,	 b: N = 5.8	 105,

c:	 N = 5.5 - 105.

b)	 Measurements with constant irradiation

We will consider an increase in current measured

in dry air 2 . On the cathode n„ electrons were released

per second by radiation with a UV-light source; from this

IF ( 1 ) = Jo = ( no9e)IF•	 The zero point in time in the

oscillograms is given by switching on the voltage. 	 Increases

in current with varying Over-voltage in the vicinity of the
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static breakthrough voltage we re used (cp. Figure 1). We

will consider as an example the increase in current leading

to the breakthrough after 35,rsm In the half-logarithmic

operations (Figure 4) the measured current rises steeply

up to approximately T. and then passes over to a flat

section; from this the increase in current is developed,

which becomes increasingly steeper and leads to the

breakthrough.

In the following evaluation a generation interval

enlarged against	 To=T_{1 - (a9 d) - 1 )	 is used.	 This was

necessary, since earlier investigations in dry air 4, 10

had shown a delayed-avalanche development. The value used

here	 TO = 1,5 . 10 -7 SM	 follows from measurements of build-

up timell.

First of all the course of the current i., 1_

and	 l+ ^	 is calculated without considering the effect

of space charging, according to the formulas given in

Appendix 2. Here we put	 x =in i.h=0,axq,	 whereby the

most favorable adjustment to the initial course of the

measurement curve (free of space loading) results. Then

a thorough calculation of the course of the current is

carried out by means of equations (6) and (7) according to

the numerical process described in Appendix 3.

The results of this calculation are illustrated

in Figure 4 and are compared with the experimental course.
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The measurement and the calculation are in close agreement

and show that as a secondary effect only photo electric

release on the cathode is concerned, and not a fractional

supplement with •r.- effect, as was assumed, on the other

side, as an explanation for the increase in currentl2.

c)	 Measurements with weak irradiation.

In these investigations 3 -5 the cathode of the

discharge area is radiated during the static breakthrough

voltage	 (#Ph =1) 	 with a strongly reduced UV-light source,

so that only individual photo-electrons with a large time-

interval (10 -3 to 1 sec.) are released. The breakthrough

is created by an (infinitely large) avalanche chain which

contains 2k-1 electron avalanches in the kth generationl3.

From this we can undertake the computation by means of the

equations (6) and (7), by putting:

1F( 1 ) = to =2 q,1(TvhF)

In most cases, however, a simpler calculation is

possible. Thus, in 1) the increase in current was calculated

by ignoring the movement away from the ions (i.e., the

term I_(c—T;) in equation (7)).	 In 5) it was shown that

the asymptotic solution (16) is useful for evaluating the

increases in current, released by weak irradiation.
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Figure 4

Rise in current in dry air 2 (p = 724 Torr, d = 1 cm,

u;7--2s,6 kV, n,=	 60 electrons/i-w, Ti=is,usft), M = measurement

curve,	 calculated progress of current-

without space charging).

IV. THE CALCULATION OF THE BUILD - UP TIME IN THE TOWNSEND
SYNTHESIS

The measurement of the build-up time occurs in such

a way that a voltage impulse is placed on the discharge

space and the time span between applying the voltage and

the collapse is measured with an oscillograph ( cp 11, 14).

A calculation of the build up time is necessary in order

to analyse the measurements.
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This can be done in such a way that the increase in

current is calculated by the voltage switch-on via the

region of the increase which is free of space loading or

influenced by space loading to the voltage decrease.	 In

the following considerations we will limit ourselves to

the supplement due to	 Yor effect.

First let us consider the course of the current in

the section of the rise free of space charging. The

formulas for this, given in Appendix 2, are simplified by

working with over-voltage(X>0) By this means all the

members fall with the exception of the exponential term

in the equations (2.5) or (2.7) for	 I.(c)	 (apart from

extremely small over-voltages): With equation (14) we

have already described a course of current y(t)= K+l+(c)

which rises exponentially in the region free of space

charging.

y (z) — (3 x)"' exp(x(r—r„ )) .	 (18)

We can therefore use equation (14) to describe the

course of the current in the region of space charging.

In F^y-!re 5 an example is illustrated for the development

of the current from the switch-on of the 'voltage to the

collapse. The discharge is started by electrons released

on the cathode at time t = 0 by 10 2 . The greatest part
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of the rise in current progresses without the influence

of space charging. Only in the last section is the space

charging effective; this part of the course of the current

is illustrated with an extended time scale.

The course of the voltage on the discharge stretch

results from the course of the total current	 1 .0) +1-(,)

if the given substitute diagram of connections is taken as

a basis. On eht other hand the influence of the lowering

of the voltage on the course of the current is not taken

into consideration. Basically, because of this, the

validity range of our analytical solution	 y= K.I.	 is

exceeded, so that the course of the current in the last

section only has a qualitative character. 	 If the time

inter—value for the part of the rise free of space charging

are compared with that part conditioned by space charging,

it can be seen that a fault in the last part of the rise

is of no significance for the length of the build-up

time.	 - An exact calculation which is valid without

reservation up to higher current intensities, and in

which the fall in voltage is considered, is found in the

following publication by the audhor 15 (see also Section 5).

As the final point of the build-up time TA 	 TO.

defined by equation (14) is applied:	 it can hardly be

differentiated from the point in time at which the first

noticeable drop in voltage can be observed. From equation
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Figure 5

For calculating the build-up times.	 Calculated current

and voltage progress in hydrogen (p = 500 Torr, d = 2cm

Up = 19.8kV), AU!Un=0,2%, x=lnµph=0,105.	 Substitute diagram of

connections for the outer circuit discharge section:

R-485 1), C=28 pP.

(18) the following results (cp. also Figure 8 inl4)

Y (%.) _ (3x)"I

Thus now only the course of 	 y(0_ K .(0	 (constituent

of the positive ions) needs to be calculated, without

considering space charging. By applying
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!. iT	 13xP,K-' _ (3	 I.al^,t)—^, 
T n	 (19)

the build-up time T A then follows. Until now only the

current increase free of space charging was considered

when calculating the build-up time; in a comparison with

experimental build-up time a critical current density could

be determined 16 .	 In contrast to the empirical criterion

the formula (19) derived here is based on an explicit

computation of the current in the region of space charging.

V.	 VALIDITY RANGE

An evaluation of the maximal current density, u p to

which the method applied here can be used, could be carried

out by applying a critical consideration of the mathematical

process.	 In particular, those approximations could be

discurred which were made by deriving equations (1), (2)

and (3) 17. The evaluation of the maximal current density

is, however, undertaken in another way.

A course of current calculated with equations (6) and (7)

(method A) is compared with the calculation according to

an exact method M. In this method for a series of time

point to the current densities	 i-4, t.)	 and	 i. (_,1.)
are calculated successively with the help of the Towsend

differential equations.	 For this	 7 (z,t.),	 V (=,r.)

and	 V. rr.t„)	 are required, which are the functions of

E(r, t„)
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The field intensity 	 E(.r.1„)	 is determined15

for every poi.lt in time cR by means of the Poisson-equation.

The exact calculation is undertaken for the example presented

in Figure 4. The comparison shows the following: the

current of ions I-W has nearly the same course in both

process; in the current of electrons 1-(r) the course 
j A

calculated according to A is noticeably smaller than the

current IN	 calculated according to N. The cause of this

can be found in the unfavorable approximation which was

derived in Appendix I (Equation 2) for the current of the

electrons. The following data should characterise this

deviation:

y—K.I.	 f ads--a d.y=	 n,tjA
o

	

0.2	 0,04	 1.06

	

0,4	 0,16	 1,3

	

0,7	 0,49	 I's

The result obtained in the special example may be

generalised without reservation, since according to

Section 2 all increases in current with varying initial
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progress pass over into a unified course with large current

intensities. The degree of the deviation	 J! /j" is

obviously determined by the field distortion. Here we
A

can use as a guide	 — .1.	 or	 g% adx —aod

If an error of 20 % is assumed for the total current

1. +1_	 the following maximal y values 18 result for the

examples treated here:

Abb.	 gm,=

l and 4	 0,55
2, 3 and 5	 0,65

APPENDIX I

DERIVATION OF THE FUNCTIONAL EQUATIONS

The following expressions for the solution satisfy

the Towsend differential equations and the l;mit conditions

appertaining to theM (v_, v, —const):

(0,t _ lv_)U^/'a^s.t— 7—Z,^^''
./	 v_	 (1.1}
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d
i —r^ i	 X, —X 	 (1.2)(x t )-	 f 	 ^r,t	
e,	

a x,t-	 dr .
r.

X

We will next consider the supplementary equation

d( 	d

	

j - (0,t)=je(t)+(j-(x,t)d(x, t)dx=je(t) +Yphfj-U,0a(x.0dx. 	(1.3)
o

By inserting ( 1) we obtain

d
j - (0, 0 =je(t) +Yvh j _(0,t - rph) { exp f a(x,t-Tph) dx-1 }

0
d	 (1)

=jF( t) +jtPhl - (0, t - TPh) exp 
r

l .l 2 (x, t- Tph) dz- aody
0

with

d

	

j z/v_ eap {f a{z',t) di 'a(x,0 dz	 (1-})

Tph-- 0 d	 .0	 --	 -	 d1v_(1-(aod)-'}I exp {(aw, t) dx'^a(x, t) dx
0	 0

When converting (1.3) it is assumed that 	 j-(O , t)	 acts

linearly in an interval of the length	 T-laod	 arranged

according to size and that the change in time of 	 a(x,t)

is small (see hypothesis (4)).	 All	 a(--,t)-	 values are
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related to the point in time 	 t — Tun	 in this way consideration

is ta ken that the gas-concentration of the avalanches started

at time t—T,,,,	 is determined mainly by the heightened field

on the cathode. For Tun	 an expression is first formed in

equation (1.4) which contains 	 2(x,0 for the field ratios

prevailing here the approximation value ( constant in time)

may be dependent on the transition to the second line of

(1) is made by disregarding slight factors.

A relationship between 1.W	 and	 i_(0,t) is obtained

from the 2nd Townsend differential equation by integrating

via X

d

dt	 T.( X,

0	 /1

= PzP a, d J	 d
T+ (I_ (D,t—Tnh) eAP ^f a (=,t —Tnh) dx—,d)

0

d
—j - (0,t—Ti—Tph) e"P ( f a (x,t—Tj--Tyh) dx—z% d}^	 (3)

0

The conversion in the left term of tht first line

results analogously to the conversion in equation (1). The

term	 j ' (0,t)	 is rewritten according to equation (1 .2) ;
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it can only be compared with the left term in case i_(o,t)

in the time space	 t- 7',...t	 has changed little. 	 In this

case	 f_(o,t)	 may be set as a function linear in time,

the integration via x then produces the expression given.

In order to represent the current of electron we

write

=d-1 
a	 t

 (0, t — a!v _ ) exp ( f a W, t — Tph) d:"} dxo	 0

J d=(aed)-'i-(0,t —Tph){ exp { f a(., t —Tph) dz} —1}
0

	

exp a, d	
J d

	

a.d	 i_10.t - Tph) expl f a (z> t— Tph)dx —a,dj.	 (2)
0

The integration in the first line can only be carried

out after introducing the factor 	 ae-'•a(z,t—Tph)	 in the

expression to be integrated. This factor can deviate

considerably from 1 with strong distortion of space

charging; thus (2) is a relatively bad approximation. When

inserting (2) in (3) (cp. (2)) the quality of the approximation

does not, however, play any roll. Here only the abbreviated

way of writing (2) is used for an expression which occurs

in equation (3)
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APPENDIX 2

EQUATIONS FOR THE INCREASING - CURRENT WHILST IGNORING
SPACE CHARGING

The point of departure is the functional equation

(1 ) with	 Yo d:

T(t) -= jFW =µphT, (t—Tph) •	 (2.1)

i,^r 4( 1 ) = qd(t) ist (r=t/Tph)

T (7) = 4 T vi, ex  x r	 (2.2)

a solution of equation (2.1) with the exception of the

time interval	 0<r<1.	 The solution (2.2) is

largely identical with the "asymptotic solution" which

resulted by calculating exactly the increase in current19.

In particular, an exponential increase results from (2.2)

with the time constants

A=Tphx=TJ`i—(,zed)-1)-1 In Mph •

For jF( t) =je 0 > 0) we obtain a solution from (2.1) (by

way of approximation, a coefficient	 (Mph —1} — ' In Mph	 i s

substituted by 1):

T(r) jew'(expxr-1).	 (2.3)
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By using (6), (1) and (8) the following expressions

for I, (t)	 and	 1' (t)	 are calculated.

K $ 0 x=0

1,.M	 -qo(r)

J-=	 11, e•xp ,(T-1) 11, (2.4)
( T < Ti -=1)
(T? TiT1)

 {Lr	 '{vxp	 T-1)-1}
1	 !/.r.-'	 1_,," T i), expr.(r--1) N7--1 '̂

112 z;
(2.5)

!F (t) = 10 V>01 -	 -
! 1 {exPX(T - 1) -1} H31 -C (2.6)

(T>T,
(T<Ti -I- 1)

1)
Hex -'[expY(T-1)-]]	 -(T	 1)}I.-'1 H }(T-1)2- '[1-11 4 	 1-exP(-xTi))e'xPr(T-"1)-T,} 114Ti(T- iTi -1} (2.7)

	

H 
_ gexp-7.d	 i- q^xPaod	

H3 	
^a^x P 3,d	 T exH -	 -_	

d -
	 Ho _ to pn p ao d

	

Tnn zB `!	 T • as	 T+

APPENDIX 3

METHODS OF SOLUTION

For the numerical calculations the transition to

normal functions is useful. We introduce

T=v7pn,

y (T) =K. 1. (1).

z(T) =K - 1_ (t),

Ti = Ti/Tph ,

K.
_ (Apd)'. T,

- 1 12 / eo p

_ (Apol'/. Tpna,d
K - - 1 12 /	 E6 P

(3.1)

f.=di-electricity constant.

Then the following equation system is produced:
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z(T) =z(T) (x+y2(T))+K_ `x	 d 7e (T) ,	
(3.2)

2
0 d

	

y (T) =z (T ) — z(T —ri) •	 (3.3)

The initial conditions are:

	

z(1) =K_ ,x^^ d Tph 9,	 y ( 1 ) =0.	 (3.4)

In solving equation system (3.2), (3.3) the time axis

is devided into sections of length Tj	 The solutions

are then each calculated in every section and the function

y (T),z(Z)	 already known in the previous section, is inserted

for Z(T—T;) In this way the usual methods for solving a Z(r)

differential equation are applied. 	 In general one is

referred to numerical processes in the calculation.

Thus the examples treated in Section 3 is calculated

by the Runge-Kutta's method of stepwise approximation

(formulas of 2nd order). It is found to be helpful that

in this method the interval AT can be fitted to the AT

character of the solutions; at the beginnings of the rise

AT	 can be chosen to be relatively large, whereas for

the last steep rise a small	 T	 is appropriate.

The following table contains the values of F (cross -

section of the discharge used in calculation:)

Abb.	 1, 4	 2, 3	 i	 5
F [cm']	 28,6	 10,5	 1	 100
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