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THE INCREASE IN CURRENT IN A TOWNSEND-DISCHARGE UNDER THE
INFLUENCE OF SPACE-CHARGING

Starting from the basic equation (Towsend-differential
equations, supplementary - and Poisson-equation) an equation
system is developed, from which the position coordinate -
is eliminated, and which connects the desired currents
and J.i via the variable /.«v. After conversion of
this equation system the usual procedures for solving the
differential equations can be used.

In contrast to an earlier computation by the author,
the process can be used for a number of initial conditions
(1ightning, constant irradiation, weak irradiation, static
breakthrough, over - and under-voltage). The treatment of
examples gives a survey on the diverse possibilities and
shows the usefulness of the process. The transition of
increases in current with varying initial conditions into
a unified course (asymptotic form) is of interest; this

transition is expected in theory and is confirmed by

experiments. : N69“326!.8 .
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In experimental investigations of the increase in
current of a Towsend-discharge in time 25 {t was ascer-
tained that a characteristic increase occurs with the
attainment of a certain current intensity. Here first of
all, only slight deviations from the normal course are
shown. With increasing current intensity the rise then
becomes increasingly steeper. A cause for this charac-
teristic rise was found, by space-charging the positive
ions, to be the distorted field in which the electronic
avalanches attain an increased concentration of gas.

One of these experimental examples4) was already
treated theoretically earlier; here, from the basic
equations (Townsend's differential equations, Poisson-
equation) a differential equation for the increase in
current was extablished)).

In the meantime similarly measured increases®) in
current were treated theoretically with regard to space
charging. In7) the movement away of ions was considered
when calculating the increase in current; this made possible
a thorough description of the increase in current from the
start of the released electrons to the steep rise leading
to the breakthrough.

I. EQUATIONS FOR THE INCREASE IN CURRENT
The derivation of the basic equations is undertaken

by using the following simplifications.
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1. In the homogenous field of a plate spark area,
support current or support density are distributed evenly
over the discharge area in radial direction. Thus only =z
appears as the position coordinate.

2. The voltage set on the discharge area remains
constant in time; according to this, the decrease in
voltage on the outer resistance must be negligibly small.

3. When being confined to small E/p- values

(1arge pd) the expression

alp=A(E[p-B)* can be used for ap

The field intensity-changes (called forth by the space
charging of ions) should be slight; under these conditions
the drift velocities ». of the electrons and v, of

the ions are assumed to be constant. - As an extreme

case (say in the Ymx discussed in Section 5) - the

following values may appear:

E(0)/E(d)~1,15, a(0)/a(d)~3.

4, The change in time of a in an interval of length
T_. should be slight.

As a supplementary mechanism we assume photo effect
on the cathode exclusively, as corresponds to the experi-
mental examples. Here the coefficient Voh = 0fa is set

as constant.
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On the basis of these simplifications the following
equation system (1), (2), (3) is derived in Appendix I
from the basic equations (Townsend differ2ntial equations,
supplementary equation.). It brings the current constituents
(current density) of the electrons J_(n and the ions J.(9
flowing in the -outer circle, in relationship with the current
of electrons j-(0.) leaving the cathode. A clear
explanation of equations (1), (2), and (3) is obtained from
the following model: all the ions, electrons and photons
are generated at point r=d—a,! . The passage time
of the electronic avalanches up to this point (when the
avalanche develops without delay) is T,=T_{1-(2d)"1}.
Equation (1) describes the development in time of j_(0,9
here Jr(0) is the foreign current released by foreign
irradiation on the cathode. In equation (2) the electronic
current J (t) is represented, whilst the passage time
of the electrons from the place of generation up to the
anode is ignored. Equation (3) describes the development
in time of the ion current J (t); it is gained from the
movement of jons (with velocity v, ) from the point z=d-a,!
up to the cathode; for this the time Ti=T.{1- (apd) "1}

is necessary.

7-10,8) = jr(8) + pign j (0,8 —Tpy) exp

d
[.-f“(z:‘—Tph)dz—c.d]. Hyu=yop[expagd~1], )




d
J1-(8) = fi:;!;! J-(0,8~Tp) exp[o/a(z,t—T,h) dz—aed], (2
ex : d
d.l;‘(t) _ ;f:' { 1-00,8=Tpp) exp[o/a(z,t—Tph) d - d|
d
Q=T T) el fa i~ Ti- T de—ed]) . )
0

In equations (1), (2), and (3) [ 2(z1) dz is the

[
modified gas concentration under the influence of the space

charging; here we take over the relationship (4) already
used, with /,) (see also 8), which is obtained from the
application of the Poisson-equation and the analytical
expression for the 4, given above (K, see equation

(3.1):

d

Je@nd-ad=KLS 0. ()

Since the calculation with the functional equations
(1), (2), and (3) cause several difficuliies we wish to
make a conversion to differential equations. For reasons
of constancy we assume that jr(s) may only contain a 4.
function with t¢=0 therefore we write jr(t)=qd(1) +j:*(r).
By inserting (2) in (1) &nd using (4), first of all

J 0+ Tpw) =J_(¢) exp {x+ K% J% (1)} (5)
+ ik () P2 exp(K%L J% ()

is formed (x=Inuu)
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By linear development of the term J. (4 Tpm) and
of the exponential function standing on the right at /. (1
one obtains equation (6). The factor next to /()
exp {KiJi (o) may be made equal to 1, since the term
je*(9  only plays a roll in the initial stage, in which
no significant space charging has yet been formed. - The

equation (7) results by introducing (2) and (3).

VO TR e+ KL TS (0) + 3 (o) ;’;E%j ©
dl.
A RO o Iy (@)
] (Ton) = ;’;’;:.Z g, J.(Tw)=0. (8)

The initial condition (8) for /- {5 obtained from
the model described above, which allows the generation of
ions to be inserted at (=Tpu The initial condition for

J_(t) is obtained by the requirement that /-(0,9 for
t—0 changes into the course which is free of space
charging (see equation (2)).

In this way we have gained a system of differential
equations for both functions which are of interest, j_(
and /. A deviation from the usual form of a
differential equation is developed by the retarded term

]_(t=T) in equation (7). - With (6) and (7) the

theoretical curves applied in section 3 are calculated by
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using the method described in Appendix 3. With certain
prerequisites, simple solutions are found, as is shown in

the following section, Section II.

II. ASYMPTOTIC SOLUTIONS

It should be shown that all increases in current
leading to a breakthrough with increasing current intensity
pass over into a unified course. This course is independent
of special conditions such as irradiationa and over-voltage.

We start out from the equation system (6), (7) and
first of all we assume that *20 It is seen that during
the development of the discharge the electron current J_ (9

becomes so large that the inequality

/-(t)>/_(z_7'i) (9)

is fulfilled. Because of this

dJ(;‘(l) = (apd/T.) ]_(1). o

is developed from equation (7).

If an extremely unfavorable course of /() is
ignored, then the term with /&' () in equation (6)
can be neglected at this point in time. Then by introducing
(10) in (6) the differential equation of 2nd degree for

J.(8) result:

d¢J., - .
Jd",(")' = T de‘(z) {"+K2+J2+ ®}.

(11)
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In standardised form it goes (cp. Appendix 3)
Y@ =y(®) {x+y*(r)}. (12)

By integration via one obtains from (12) a differential

equation of 1st degree.
Y(¥) ~ {xy(v) + ky3()}

=¥(r) —{xy(ny) + §3*(x;)} =a. (13)

As can be seen in equation (13) without a doubt,
with increasing y at a point =1, the case arises of
the members y(z) OF {".'/(:!g)+.&y’(t,)} being large
against e From this, for >1, we can make the left
side of (13) equal zero. The development cescribed above
is always the case for x20 for x<0 it i; possible that
in some cases the conditions required for this are satisfied.
Then the following considerations are obviously true. The
solutions of equation (13) (left side made equal to zero)

with the initial condition y(z) =b are:

y=b3x)"{(3x+b?) exp[2x(t,—7)] — bt}

= (3%)" {exp[2%(1—7)] =1} 7", (x=0), (14)

y=b{l-5b¥(v~7)} "

=" {ra -1} (x=0). (15)
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The left side of equations (14) and (15) shows clearly
that y(rx) becomes singular for a certain value «. On the
right side the equations are rewritten as an argument to
T —T

The treatment of the functions for increasing y given
by (14) should now be discussed. The analytical develupment
of the exponential function is (14) shows that with z,-1—0
(i.e., for v—~) all functions with x+0 approach the
function (x 0) given by (15) asymptoticaily. This
behavior can also be explained with the aid of the differential
equation (1.): the factor #-y? shows that with
increasing y the influence of « on the course of the
function diminishes.

In the equations given above, only the ion constituent
of the current in each case was considered in each case.

From
Va(t) =z,(1) =K_1 (0);

one obtains the electron constituent; it is understandable
that the differential quotient Y.() has the same
asymptotic behavior as z.(7) Thus these considerations
are not only true for the ion constituent, but also for
the total current.

It would now be interesting to study this asymptotic

behavior with an experimental example. In continuous
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UV-radiation of the catnhode a large number of increases
in current was measuredz; during tnis the over-voltage
(1.e., *=1n fipn) as parameter, was varied. As opposed
to the original task, where the voltage was plontted at the
zero point of the time axis, the individual curves in
Figure 1 have been shifted in the direction of time.

In this way a large number of curves approaching each
other is created, which merge together with large intensities
of current. 1In addition in Figure 1 the course calculated

in the asymptotic form

I{) = F{K ' yat1) + K" 5, (1) ),

Yo l0) =" {1 =1} 2y(1) = ()" {10 — 1} ", (16;

(F = cross-section of the discharge) is marked in with
a dotted line; in the last phase this curve merges with
the courses of the current measured.

A further application of the asymptotic solution is
found in 6 for describing the increase in current; here
it is shown that increases in current oscillating
statistically in the beginning change into a unified course

under the influence of the space discharge.
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IIl. EXPERIMENTAL EXAMPLES
a) Measurements with d-shaped irradiation

As an example we shall consider an increase in
current measured in hydrogeng. In contrast to the example
treated’ with Hyp=c] here 4, 1is considerably different
from 1. The calculation of the increase in current for
these conditions is an interesting example for the operation
of space charging. On curves placed together in Figure 2,
the inter-play between /.(9 and ; () according to
Equation (6) and (7) can be studied. Thus first of all
the electron current ; (, falls (because of x<0) . and
correspondingly , (y has a curved course with negative 2nd
differential quotient. With (=T, the ions movements
away are noticeable by a sharp bend. In order to lead the

increase in current to the breakthrough, the factor

(17
In sy + K% T2 (8) =%+ y2(1) )

in equation (6) must become positive (see also right scale
in Figure 2). This occurs in the curves a and b, not
however in curve c¢, which therefore doesn't lead to the
breakthrough. The importance of the factor (17) for
realizing the breakthrough was already indicated in9.

In the constituents 7. and I_() are
added to the total current, a relatively smooth course

results, which does not reveal the details just described.
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Figure 1

Experimental detection of the asymptotic behavior.
Measurements in dry air2 (Figure 2), data on the measurements.
See Figure 4. By shifting the time scale the measurement
curves were brought for coverage in the last
section. - - - - Current calculated in the asymptotic form

according to Equation (16).

The curves a and b in Figure 3 reproduce the measured course
qualitatively (cp. Figure 9 to 12 in 2).

A direct comparison of the measured and calculated
course of the current is rejected because of the difficulty
in choosing the right parameter N and x. In addition in
this case, with %._=1 the general validity range of our
solutions is exceeded, so that the curves shown in Figure 3

only have a qualitative character in their last stretch.
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Ficure 2 (above) and 3 (below)
Current calculated in hydrogen (p = 330 Torr, d = 2.5 cm.
x = -0.2). Release of the primary electrons by lightning:
e =N ge 800, a: N =6.5 - 10°, b: N=5.8 - 105,
c: N =5.5"- 105,

b) Measurements with constant irradiation
We will consider an increase in current measured
in dry air2. On the cathode n, electrons were released
per second by radiation with a UV-1ight source; from this
j(8) = jo= (g o) /F- The zero point in time in the
oscillagrams is given by switching on the voltage. Increases

in current with varying Over-voltage in the vicinity of the




-14-

static breakthrough voltage were used (cp. Figuire 1). We
will consider as an example the increase in current leading
to the breakthrough after 35usec In the half-logarithmic
operations (Figure 4) the measured current rises steeply

up to approximately 7. and then passes over to a flat
section; from this the increase in current is developed,
which becomes increasingly steeper and leads to the
breakthrough.

In the following evaluation a generation interval
enlarged against To=T._{1 (2d)"'} is used. This was
necessary, since earlier investigations in dry air 4, 10
had shown a delayed-avalanche development. The value used
here Ton=1,5"10"7 sec follows from measurements of build-
up timell.

First of all the course of the current I, /.
and I,+1. s calculated without considering the effect
of space charging, according to the formulas given in
Appendix 2. Here we put # =1In g, = 0,009, whereby the
most favorable adjustment to the initial course of the
measurement curve (free of space loading) results. Then
a thorough calculation of the course of the current is
carried out by means of equations (6) and (7) according to
the numerical process described in Appendix 3.

The results of this calculation are illustrated

in Figure 4 and are compared with the experimental course.
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The measurement and the calculation are in close agreement
and show that as a secondary effect only photo electric
release on the cathode is concerned, and not a fractional
supplement with 7.- effect, as was assumed, on the other
side, as an explanation for the increase in currentl2,

c) Measurements with weak irradiation.

In these investigations 3-5 the cathode of the
discharge area is radiated during the static breakthrough
voltage (1 =1) with a strongly reduced UV-1ight source,
so that only individual photo-electrons with a large time-
interval (10'3 to 1 sec.) are released. The breakthrough
is created by an (infinitely large) avalanche chain which
contains 2k-1 electron avalanches in the kth generation]3.
From this we can undertake the computation by means of the

equations (6) and (7), by putting:
Je(D) = jo=2qe/ (T F) .

In most cases, however, a simpler calculation is
possible. Thus, in 1) the increase in current was calculated
by ignoring the movement away from the ions (i.e., the
term J_(t-T) in equation (7)). In 5) it was shown that
the asymptotic solution (16) is useful for evaluating the

increases in current, released by weak irradiation.
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Figure 4

Rise in current in dry air2 (p = 724 Torr, d = 1 cm,
U = 28,6 kV, no= 60 electrons fusec, Ti=15 usec), M = measurement
curve, caiculated progress of current (- - - -

without space charging).

IV. THE CALCULATION OF THE BUILD-UP TIME IN THE TOWNSEND
SYNTHESIS

The measurement of the build-up time occurs in such
a way that a voltage impulse is placed on the discharge
space and the time span between applying the voltage and
the collapse is measured with an oscillograph (cp 1, 14).

A calculation of the build up time is necessary in order

to analyse the measurements.
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This can be done in such a way that the increase in
current is calculated by the voltage switch-on via the
region of the increase which is free of space loading or
influenced by space loading to the voltage decrease. In
the following considerations we will 1imit ourselves to
the supplement due to 7w effect.

First let us consider the course of the current in
the section of the rise free of space charging. The
formulas for this, given in Appendix 2, are simplified by
working with over-voltage (x>0) By this means all the
members fall with the exception of the exponential term
in the equations (2.5) or (2.7) for /. (apart from
extremely small over-voltages). With equation (14) we
have already described a course of current y(:)=K.,/, (9
which rises exponentially in the region free of space

charging.

y(r) = (3x)"" exp{x(t:—rm)} . (18)

We can therefore use equation (14) to describe the
course of the current in the region of space charging.
In Figure 5 an example is illustrated for the development
of the current from the switch-on of the 21tage to the

collapse. The discharge is started by electrons released

on the cathode at time t = 0 by 102. The greatest part
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of the rise in current progresses without the influence
of space charging. Only in the last section is the space
charging effective; this part of the course of the current
is illustrated with an extended time scale.
The course of the voltage on the discharge stretch
results from the course of the total current J.(+/.()
if the given substitute diagram of connections is taken as
a basis. On eht other hand the influence of the lowering
of the voltage on the course of the current is not taken
into consideration. Basically, because of this, the
validity range of our analytical solution y=K.J. is
exceeded, so that the course of the current in the last
section only has a qualitative character. If the time
inter-value for the part of the rise free of space charging
are compared with that part conditioned by space charging,
it can be seen that a fault in the last part of the rise
is of no significance for the length of the build-up
time. - An exact calculation which is valid without
reservation up to higher current intensities, and in
which the fall in voltage is considered, is found in the
following publication by the audhorl!5 (see also Section 5).
As the final point of the build-up time 7T, Tw
defined by equation (14) is applied: it can hardly be
differentiated from the point in time at which the first

noticeable drop in voltage can be observed. From equation
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Figure 5
For calculatinc the build-up times. Calculated current
and voltage progress in hydrogen (p = 500 Torr, d = 2cm
Up = 19.8kV), 4uwp=02%, x=lnum=0105. Substitute diagram of
connections for the outer circuit discharge section:

R==485 {2, C=28 pF.

(18) the following results (cp. also Figure 8 inl4)
.1; ('eo) = (3 X)./'.

Thus now only the course of V() =K. 1.0 (constituent
of the positive ions) needs to be calculated, without

considering space charging. By applying
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/ ) oa= i Wy "1= s [ A pdy—" fQp '
F Ty =32 K " = (3 %) ‘ 12} ! (19)

the build-up time TA then follows. Until now only the
current increase free of space charging was considered

when calculating the build-up time; in a comparison with
experimental build-up time a critical current density could
be determined!®. 1In contrast to the empirical criterion
the formula (19) derived here is based on an explicit

computation of the current in the region of space charging.

V. VALIDITY RANGE

An evaluation of the maximal current density, up to
which the method applied here can be used, could be carried
out by applying a critical consideration of the mathematical
prucess. In particular, those approximations could be
discurred which were made by deriving equations (1), (2)
and (3) 17, The evaluation of the maximal current density
is, however, undertaken in another way.

A course of current calculated with equations (6) and (7)
(method A) is compared with the calculation according to
an exact method (N). In this method for a series of time
point ¢ the current densities j-(zt4) and j+ (2, 8)
are calculated successively with the help of the Towsend
differential equations. For this z(zu), v (z,1,)

and  v.iry,) are required, which are the functions of

E(x,t,)
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The field intensity Eix ty) is determined!®
for every poiat in time «, by means of the Poisson-equation.
The exact calculation is undertaken for the example presented
in Figure 4. The comparison shows the following: the
current of ions /.(!) has nearly the same course in both
process; in the current of electrons J/_() the course /%
calculated according to A is noticeably smaller than the
current /¥ calculated according to N. The cause of this
can be found in the unfavorable approximation which was
derived in Appendix I (Equation 2) for the current of the
electrons. The following data should characterise this

deviation:

d
y=K.J. { Gdz—-a.d-yf J:,’.’£

0,2 0,04
0,4 0,16
0,7 0,49

bt o

06
3
)

The result obtained in the special example may be
generalised without reservation, since according to

Section 2 all increases in current with varying initial
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proyress pass over into a unified course with large current
intensities. The degree of the aeviation /¥/A s
obviously determined by the field distortion. Here we
can use as a guide y=K.J, or 6;adx—%d

If an error of 20% is assumed for the total current
Jo+]. the following maximal y values'8 result for the

examples treated here:

APPENDIX I
DERIVATION OF THE FUNCTIONAL EQUATIONS

The following expressions for the solution satisfy
the Towsend differential equations and the 1imit conditions

appertaining to them (v_,v, =const):

J-(z.0) =j_(0, t—zfy_) exp ‘ e TTEY
G[G(z" N —)d,, (L1)
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d
jo@t)= fj_(:t:— ”")a(xg,_ f‘*)d;, (12)

v, .,
I

We will next consider the supplementary equation
. . 4 d
1-0.9 =je0) + [} (@0 8(5.0) dr =je()) +ypm [ j_ (x20) alzt) da (13)
1 0 *

By inserting (1) we obtain

. . . d
J- 0.0 =je( +yonj_(0,6~Tp) { exp [ a(z,t—Tpn) dz—1)
0

. d (1)
=lF(0‘Fﬂph]-(O,P—T}h)exp{ifz(x,twl}h)dt——aod}

Wwith

d x
[ z/v_ exp{f a(z’,t) dr'}2(z, 1) da (1.4
Twe ™, 0 ~dfv_{1- (agd) .

of exp{bfa(x', t) dz’}a(x, t) dr

When converting (1.3) it is assumed that /-(0.)  acts
linearly in an interval of the length T_/ad arranged
according to size and that the change in time of a(x,t)

is small (see hypothesis (4)). A1l  a(zg. values are
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related to the point in time -7w in this way consideration
is taken that the gas-concentration of the avalanches started
at time (-7, 1is determined mainly by the heightened field
on the cathode. For Tm an expression is first formed in
equation (1.4) which contains 2= for the field ratios
prevailing here the approximation value {(constant in time)
may be dependent on the transition to the second line of
(1) is made by disregarding slight factors.

A relationship between J.( and j.(0,r) is obtained
from the 2nd Townsend differential equation by integrating

via X

d . (0

1
d T,

d
T {o/i- (x.1) a(z,t) dx — j, (O,t)}

_ epayd |

, d
T, l]- (0,[—Tph) exp {/q(z’t__]'ph) dz—aod}
0

) d
=7 (0, —T;—Tpp) exp {ofa(z,t—-Ti--Tph) dz—:’.od}}. (3)

The conversion in the left term of tre first line

results analogously to the conversion in equation (1). The

term /.0, is rewritten according to equation (1.2);
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it can only be compared with the lef{ term in case Jj.(0,9
in the time space ¢-7, . has changed little. 1In this
case j_ (o,ry may be set as a function linear in time,

the integration via x then produces the expression given.

In order to represent the current of electron we

write

4

d
J_(® =d"6/‘1'- (0,t—z/v_) exp {fa(z',t—Tph) dz’} dr
a

d
=(aed) 7}j_ (O,I—Tph){ exp{fa(z,t_Tph) dx} _1}
6

_expagd g
-7 ._«o.:-r,,,,)exp{oja(x,z_r,,h)dz_a.d}. 2)

The integration in the first line can only be carried
out after introducing the factor a '-a(x:-Tm) in the
expression to be integrated. This factor can deviate
considerably from 1 with strong distortion of space
charging; thus (2) is a relatively bad approximation. When
inserting (2) in (3) (cp. (2)) the quality of the approximation
does not, however, play any roll. Here only the abbreviated

way of writing (2) is used for an expression which occurs

in equation (3)
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APPENDIX 2

EQUATIONS FOR THE INCREASING - CURRENT WHILST IGNORING
SPACE CHARGINE
The point of departure is the functional equation
(1) with ‘zir ad:

7 () = jp (&) + ptpn @ (¢t — Tpn) . (2.1)

Far Jp () =q0(1) ist (v=t/Ty,)

¢() =qTinexspxt (2.2)

a solution of equation (2.1) with the exception of the
time interval o<:<L The solution (2.2) is
largely identical with the "asymptotic solution" which
resulted by calculating exactly the increase in currentl9.
In particular, an exponential increase results from (2.2)

with the time constants

i=1;§x=T?{i—(da”Y”nym.

For je(®=jo ¢>0) we obtain a solution from (2.1) (by
way of approximation, a coefficient {ttph— 1} In upy is

substituted by 1):

@(t) =jox Hexprr—1}. (2.3)
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By using (6), (7) and (8) the following expressions

for J.() and J.@ are calculated.

x+0 x=0

jplth =g o0 . -
et I‘=! H,yexpx(r—1) H, (2.4)
< T+ ;oo Hix Nexpri—1)—1) )
( i Jo= B LOX] Hy{t—1
T2 Ti+1) l Hyx =1 oxp(—sxti) b expx(r - 1) H;{ti ' J (2:5)
iFt) =jo (1>0) . . )

J :’ Hyx-Nexpx{r—1)—1} Hy{t—1} (2.6)
<+ ~ Hyx MY~ ex }

Su+D o a2 N expx(r—1)—1] - (r—1)) H 3 {r-1)2 .
(r=21n+1b l Hy ‘\z“[l—exp(—xri)]v.\pz(r»--l)—r.} Il:ri{r—i‘rg—l} 2.0
H. qgexp a,d _ gexpayd _ Jeexpagd joTphexpag,d
Tphagd H, T, o Hy= agd He= 7 pT‘ A

APPENDIX 3

METHODS OF SOLUTION

For the numerical calculations the transition to

normal functions is useful. We introduce

t=t/Tpn, ti=Ti/Tp,
. _[Apd\i T,
y(r)=K. 71 (1. K‘_(IZ) &p’ (3.1
) Apd\% Tphagd
@) =K_J_(1), K-=(-£~)'%53~'

n=di-electricity constant.

Then the following equation system is produced:

haad
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#0) =2(0) (et 9? @K 8 ), (3.2)
y(1) =z(1) —z(r—1i) . (3.3)
The initial conditions are:
2(1) =K. "‘:o“d-" Tole. 4(1)=0. (3.4)

In solving equation system (3.2), (3.3) the time axis
is devided into sections of length = The solutions
are then each calculated in every section and the function
¥(®,z(z) already known in the previous section, is inserted
for z(r-u) In this way the usual methods for solving a :z(n)
differential equation are applied. In general one is
referred to numerical processes in the calculation.

Thus the examples treated in Section 3 is calculated
by the Runge-Kutta's method of stepwise apprcximation
(formulas of 2nd order). It is found to be helpful that
in this method the interval 4 can be fitted to the
character of the solutions; at the beginnings of the rise
At can be chosen to be relatively large, whereas for
the last steep rise a small T is appropriate.

The following table contains the values of F (cross -

section of the discharge used in calculation))

Abb, Le 2,3 | 5
F [em?] 28,6 195 | 100
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