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Abstract

We study in detail the numerical techniques needed to
minimize the computation time in calculations of the transport
properties of a dilute gas. We iterate all numerical processes
until the results are uniformly correct to the accuracy prescribed
by the user, Thus in 1 minute we may calculate a set of transport
properties to an accuracy 1 in 100, but 10 minutes may be needed
for an accuracy 1 in 10,000,

The principal numerical difficulties encountered are centred .
around the evaluation of some singular definite integrals., Ve eliminate
the singularities by changes of variable and evaluate the resulting well
behaved integrals using the Clenshaw=-Curtis method. We found this to
be the most efficient quadrature method mainly becausé of its accuracy
and its error estimates. For the same reasons we adopted Chebyshev.
polynomial curve fitting techniques for interpolation rather then Lagrangian
or Spline method. '



I. Introduction

In the Chapman-Enskog theory [1].of a dilute gas the transport
‘properties of the gas can be expressed in terms of a set of collision
integrals .(LC£75>(?T>. These are functions of the temperature T and
they depend on the interaction potentials between the atoms or molecules
in the gas. A number of successful methods fog'calculating these collision
integralé have been described in the literature [2—8] but we believe that
the method we describe here is: (1) considerably more efficient than anything
previously published;and (2) more reliable because we check the accuracy of
every step in the calculation. It is also easier to use, takes up less
storage space and the facility enabling the user to specify the accuracy
which he needs should save him a great deal of computer timé, especially in
cases when he does not need great accuracy. The program is so fast that it
is possible to calculate a set of collisién integrals in only about 1 minute
on our ICL 1907 computer to an accuracy of 17. Tor an accuracy of 0.17 it
takes about 3 minutes. |

In the following we describe mainly thé final methods we adopted in

the program and say little about the many less efficient or less reliable

-methods we tried. These are discussed in more detail in a thesis by one of
. E]

us [9] .

1.1 Theory

‘ A
The collision integralg ne ’SQ?T> takes the form [2]

. (e8] .
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in which /Az' is the reduced mass of the two interacting systems and k is



Boltzmann's constant. In practice the integers 42' and s are small,
usually less than 6. The collision cross section G%Z(E) depends on

the initial rélative energy E and is given by

Q€) = x| 4 (= sl b @

o

-

where b is the impact parameter and :kf is the classical deflection angle

a a{,,—/,f?— L

X(/J@, E> = T -2k [F(f,lr,&ﬂi B (3)
T |

. in which T o thé classical turning point, is the outermost zero of

-

E(r b E) = 1= V&/E =4[+, )

1.2 Difficulties

L

The problem thus reduces to the evaluation of the triple integral
represented by equations (1) to (3). Difficulties arise because of certain
singularities on or near the interval of integration in equations (2) an&
(3) which we will discuss later. Therefore our main difficulty is the
calculation of the cross sections ‘Gé_(E) . The evaluation of the
integral in equation (1) is rglatively easy. .

Fortunately Qe éan'make one immediate simplification by noting that

GQXKQE> is a single~valued function of the single real variable E
for each value of A . Thus Qi(E) can be determined at a discreet
| setrof energies E{ and further cross sectipns found‘quickly by inter-

" polation in the first set. It is not therefore necessary to_ calculate a



new set of cross sections, é;é(<15) , for each temperature, T.
The problem is now reduced to: (a) the evaluation of a set of awkward
double integrals represented by equations (2) and (3); (b) choosing the
energies E at which thése cross sections are best evaluated; (c)
interpolating in these cross sections and (d) evaluating a set o simple
integrals represented by Equation (1) . .
We add a.condition to all our numerical processes: +the program
reads in a permitted relative error or accuracy g , the final
collision integrals must be correct to this accuracy. Also, as far as
possible the amount'of canputation should be minimized to ensure the
accuracy £ and no higher accuracy. Thus quick results to an accuracy
0.01 or necessarily longer calculations to an accuracy 0.0001 should
both be possible. This means that we can only use numeiical pfocesses
which allow us to estimate their accuracy reliably.
We begin by looking at the problem of the evaluation of ; well behaved
integrel and of the integral in Equation (1) . Ve next show howve remove
-the singularities in the double integral and we finally consider the

. problem of interpoletion.
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II Well Behaved Intezrals

2.1 Clenshew=Curtis method

We assume that we have reduced an integral by changes of

variable to the fom
+|

I = § F(fﬂf’u‘ | (5)

-1

where F () is well behaved in and near (~l1, +1). There are
endless’ nﬁmbers of methods for evaluating such an integral but when we

cen choose the abscissas or pivots at any points in the interval including
the end points and when we are asked to obtain an enswer with a minimum
number of function evaluatiox_ls to an accuracy: £ , then the choice
is limited and one method stands out in front of the othe'rs , the
Clenshaw-Curtis method [10 ’ ll:l . Because this method is not well

known we will describe it briefly.

The integrand F(t) is expanded in a finite Chebyshev series

N / .
F(E) =7 ar Te(E) (6)

where

Ay = ‘Iz'\}_ Lol 5 F(ME—S-> | (7)

and the series is integrated term by term. A quadrature results

(8)

L
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where
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N N

A= g, = -

These weights are easily computed at %he beginning of the program for
any N needed.

The gquadreture in Equation (8) has severasl advantages. It is
extremely accurate (nearly as accurate as Gaussien gquadratures). partly
' because & Chebyshev series converges so quickly and partly because it can
~ be shown [ll] that not only are the contributions to the integral from
the harmonies r =0 to r =N in Equation (6) evaluated, but most of
.he contribution to the integral from the higher harmoni;fs between _.N + 1
and 2V - 1 are also included. Hence the m is nearly that of a
Gaussian quadrature, 2N = 1. But the method hasa number of advantages
over Gaussian quadratures. PFirst of all, the function evaluations in
the 9-point quadrature (N = 8) are common with the 17-point quadrature
(N = 16) . So we can double the number of points without losing function
evaluations (as in Simpson's rule). An even bigger advantage is the
'r«';'lpg'e of p?ssible error estimates [ 11] . | |

0f these we a@opted the estimate

B0 = @ ooe-g)

Mex It {l Ay ,Ji(‘gu—z\,ié‘(dm—vi} (10)

where

a
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This is easily computed since it depends only on the function evaluations
needed in the quadrature. Since it is the maximum of three quantities
the possibility of one or two of' them being accidentally very small is
ruled out. It is shomn in [11] that Dy is relisble provided

lan] < £ [an-2] < 51 %w-u]
When this test feiled we continued the calculafion till ‘EN was less
than € /10 rether than £ . This process rarely :f'ails' to give us an
error bound, but for badly behaved integrals where experience shows it
does fail we use ia place of By the "conservative" error estimate
: [ IN - Iﬂ/z.[ . In the end we were able to ensure by approprié,te

Auen
changes of variable that none of our integrals swewe this badly behaved.

Because of the lack of similer error estimates in Gaussien quadrature

the Clenshaw-Curtis method is preferred. Other quadratures such es

Ramberg's algorithm are too inefficient to be comparable to the Clenshaw-

6o

S

Curtis method for our purposes. A recent variation on Gaussian quadratures

due to Patterson [12:7 is the nearest competitor to the Clenshaw-Curtis
method, but we think that it, too, falls down because of the lack of a

sufficiently good error estimate.

2,2 Infinite Intervals

The integrals in Equations (1) to (3) are over an infinite range.

To put them'in the form where we can use the Clenshaw=Curtis formula we must

change the variable. We illustrete a difficulty by writing Equation (1)
in the form

~

(o d]

(2,5)

a7 = e ix e
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One possible change of variable is given by

X = (=E)/(+E (12)

For any o( this chenges the integral in Equation (1l) into the form
in Equation (5) , but the eff‘icieﬁcy of the res%lting quadrature will
vary greai:ly with different values of o{ . TIor example, for very
large 0( & sharp peak will appear near %t = -1, and for very smell ’
'o{ @& peck appears near t = +1 . The choice of the correet
presents a difficulty, but fortunately we can of'ten use some analytic

information to determine ({ as we now show.

2.3 The Integral in Equation (1)

'In the case of Equation (1) the integrand typically tekes the form

shown in Fig. 1 . Because Qi(Ey varies slowly with E the shape

b s+l
p

of this integrand is dominated by the term ( 2 ) which has a

peek at s + 1. Ve therefore uss 2¢ = s+/ as an approximation to the

. position of the peak in the integrand. Ve split the integral in two

parts at s + 1 and integraete the second part by chenging the variable
to . Y als+1)/x (effectively we are allowing the position

of- the peak to determine the &  parsmeter for us):

S+ {
-X st

_Qa, S)(T) - j“&;z DCS*/.QX&TXJ b 4 ($+l)5£ x y%{(lk-rx)‘{;l_ (13)

o]

. | t
The first inegral is now readily put in the form of Equation (5) vy a

dinear transformation.



Because of the ,Q:’C term we know that the integrand and ell of
its derivatives are zero at y = 0; thus the reflection of the integrand
into the intervel (=1, 0) produces a smooth even function over the whole
interval (-1, +1) . We can use this information by adopting enly the
positive Clenshaw-Curtis abscissas and the corresponding weights in the
evaluation of this second integral. .

Note. that since the abscissas in the Clenshaw-Curtis quadrature are
concentrated near the ends of the range, the abova changes of variable have
effectively concentrated the abscissas mainly in the region of the maximum
in the integrand.

“ The accuracy of these methods is demonstrated in Teble 1 for the

two integrals in Equation (13) . A number .of other changes of variable

“«wed
wowe tried but as expected these were not as accurate as the above.



III Cross Sections for a Repulsive Potential

3«1 Cross Section Integral

The calculation of the cross section Q 3 (E > by evaluating
the double integral in Equations (2) and (3) is straightforwerd when
the. intermolecular potential is repulsive for all values of o .
Then the éngle X falls monotonicelly from 77  to zero as A~
increases from zero to infinity. There is then only one ma;imum
in the integrana .- (1~ w/.s’zk ) in Equation (2) near %he impact
parameter b' at which X =:§:7T o We therefore compute b
‘ﬁpproximately by scanning ;kf at different values of b and using
the fact that D' decreases as the energy E increases to start us on
each scan. On average b' is computed epproximately after only L4 or 5
calculations of the angle ;Xf .

Once we have found b' we use the method in (2.3) to evaluate

the integral = with one difference. In the integral from b' +to infinity

. we could have used the positive abscissas aswe do in (2.3) . However,

this concentrates the abscissas near b' with few abscissas at large values;
of b. This is ideel for the integrand in Equation (13) because of

its decreasing exponential term but in the integral in Equation (2),
particularly when the potential falls to zero slowly as 1 in;reases
‘to infinity, a large part of the integral comes fromwlarge b values. |

Therefore, we adopted the change of variable

3»:& (@—//l»)-l | s : ()
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and the integral becomes
4

od £ + 1 '
.gle‘(‘__ c«rael) b _—_J,{}.(;— coo(k)a(,(r +£uL6?J"€f (i- mﬂx)&y.(w)
: : o )
Clenshaw=Curtis quadratures afe used on both integrals once the range in
the first integral is changed to (-1, +1) . The abscissas are now
concentratéd near b' and they extend to large values of b .

This method has proved to be ef'ficient and reliable. ften only

9 abscissas are needed to ensure the evaluation of each integral to an

accuracy of 1 in 1000 .

3.2 The Angle Integral
The calculation of the deflection angle X is also relé:bively

straightforward for a repulsive potential. The pole at 7'7:/; s the
classical tuming point, in the integrand in Equation (3) can be eliminated

- by Gauss=lehler quadratures [13] or by a change of variable such as

CoQ[#_-W'(x.H)] =, /rr' [114-] o Then Equation (3) becomes

A
7((«6)5):77‘[1,- y :
: AT 2 {F(T‘Mﬁwr,‘gr(xu),»[r,ﬁ

This quadrature converges a little less slowly than the Gauss-llehler

+{
[T (e 0] doe ] (16)
)f*

quadrature but it is still preferable because of the difficulty of finding
a good error estimate :.n the Gauss-lMehler method. Also because the |
abscissas in successive Gauss-Mehler quadratures do not overlap we loose

.all our previous function evaluations each time we change the order of the

| quadrature.



3¢3 The Classical Turning Point

The classical turning point 15, can be found by inverse

_interpolation [6] for any impact parameter b . Because the integrand

in Equation (3) is infinite at Fon it is important that we calculate
- W very accurately. We therefore adopt the following process:

we begin with the given value of b, we calculate an approximate 77, ,

we recalculate a new b from the precise formula

4 = T (1 = VO )/E)éT’ (17)

» /]

a.nd.‘ then we calculate A (*6' ’ E> rather than X { '@", E) . Small

errors in Ty  will result in a smell difference between b and b" and
{4

a resulting small difference between X ( A E) and X ( A, E) P

much smaller than the error obtained by using the'sligh‘bly incorrect T,

and the correct b in Equation (14). TAd M«CU%<§ -5«*— M@Cy

meﬁw W«’/LM F[j.(l) vég‘/ < /&/?Lmjw//k

# F(ry Ay E) ot +=T.. ‘U“ﬁmﬂ’o i o Armeinalor
7 A A;&;,NX aew itk mr ealed ST o W/&J"
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IV Cross Sections at Orbiting Encrgies

When the interatomic potential has a minimum the cross sections are
much more difficult to calculate because of a phenomenon known as orbiting
(the particles orbit about one another). Mathematically this occurs
because of a non-integrable pole in the integrand in Bquation (3) at what
is called"che orbiting impact parameter D . This is iilustrated in

Fige 2 where the term F( A-, E) in the denominator of the integral in
. j;—c‘ v&" neaAa” 16" P
Bquation (3) is drawm Lo -

3 The curve corresponding
4o the impact parameter 'bor just touches the axis at T =71,, so _
F(r, Ao, E) has a zero of order 2 at = Yo , ‘the integrand
in Equation (3) has a pole of order 1 and X = — <@ ., The integrand
1-C ( _."wﬂ"e X) then has an infinite number of oscillations in the
region of bo . .
The orbiting phenomenon illustrated in Fig. 2 only occurs at low
energies: when E is large the term V(T)/ € is small compared with
,&—L/’rl ~ and the slope of F( L, E ) is always p.osi'bive as it
crosses the axiss  There is a critical energy E. below which orbiting
occurs and above which it cannot occur, but a‘l_'. energies Jjust above d,:c
theve ave still & lot of oscillabions in the integrand, 4-( -m/fi;() in
Equation (2) although there is no singularity. Thus we find that we have
fo consider thres energy regions ‘separately:- l. energies below Ec_ ;
2. energies just above E ¢ (which we 'tooic tobe E. to 10 E. );

A0

and 3. energies well above [E. .

Lel Region.l, E< Eg

Le.l.1 The Angle

When orbiting occurs both the integral for the angle and the integral

 for the cross section give us trouble. The integral for S in Equation



-3,

(3) is particulerly diff'iicult for b less than, but close to b . By
examining Fige. 2 it is apparent that the integrand has a-skexp peak near
1, as well as a g%e at . o This -she¥p- peak makes the simple
_method described for the repulsive potential converge slowly.,  Because
the abscissas in the Clenshaw=Curtis method are concentrated near the
ends of the range we split the integral in Equation (16) et the value
2 ==DC; corresponding to =Y, . The peak occurs somewhere near

X o Then ;KZC%;E) becomes

Adu & TT(?CH)]CU-?C
%(L [> Tr{ f [F (. /Caoﬁ'/‘(xﬂ) lrfﬂ‘gv (28)

. -1
In the first integral we introduce the change X :éco-l-l)avae/\ to concentrate

the pivots near the peak at X, . A similar chenge is introduced into
the second integral. Both of the resulting integréls are now put in the
form in Equation (5) by linear variable changes and evaluated by Clenshaw=-
Curtis qnadrafures. In Teble 2 the efficiency of this method is ?ompared
with the method in Equetion (16) for a value of b less than and close to
'bo . Clearly this is a case when splitting the integral péys dividends.

We adopt this method for all b <:bo e Por b;>'bok there is no difficulty
~ and the method described earlier for a repulsive potential is used. .

b

Lele2 The Cross Section

The integral for the cross section in Equation (2) is even more
difficult. Because - X  diverges at b, the integrand has an infinite
number of oscillations near b, . This is illustrat%d in Fig. 3'. We
| break the integral~ihto two parts at bo" In the integrel fram O %o D,

‘we note that the integrand is largest and it varies most quickly near b, .



In addition at b, we cannot calculate the integrand. We therefore seek
a change of varieble that concentrates the abscissas near bo and such
that the new integrand is zero at the end corresponding to bo . Oone (of

many) such changes of variable is A~ = b CM['Q?TOC*-’):/-

So .
ﬁb “ -+{ (19)
% , 21 4
ji,((-— e X)J,@- =§—ng .ow{i—r(x-u)](l—coo /1’) d
© -
The singularity is now at x = —{ wherc the integrand is zero.  Thus

the singularity is effectively eliminated. This change of variable works
extremely well and transforms an almost impossible integral into one which
we can readily and quickly evaluate. Typically we obtain three figure
accuracy with 17 Clenshaw=Curtis quadrature points.
In.the case of the integral from b, to infinity we note that if
we change the variable from b to 7T, then since dt - o at o

A

b=">» the new integrand is also zero at b, and we have eliminated

Q’
the singularify [3] :

(<) o0

b (1= )by = f 5 [1= - V(1 a0

ac
S , Y

3 | '- '
The difficulty with this change of variable is that i% introduces the

derivative of the potential, often not easily calculated. For this reason

we did not adopt this change of variable generally. We adopted this—
-ohe-nge—e?—xanable}\ partly for historical reasons, A Other variasble changes

woﬁlq'have ‘given as good results, for example the change leading to Equation

(19) o - 5}

-~
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The new integral in Equation (20) cen now be evaluated by changing

the varieble so that the interval is (=1, +1), €.g.

Ton = 2V G+ 1) . (22)

But we found that ;kf falls to zero so quickly as b increases that the
integrand&is still concentrated near the end point > =+1 . Ve

therefore made yet another change of variable to concentrate the abscissas

eéen closer to bo
T = “fz/w;«.(-;;w-y) (22)

So as

« (

) 1

i g =l T Ve VATl

b (1- ) di; Jjnm[:- )V wa oty dy (23)
&

[
The integrand and all of its derivatives are zero at y = 0 so we can use only
the positive Clenshaw-Curtis points in the quadrature. This proved to be

the most successful of a number of methods tried. We typically obtained

an accuracy of 0.1% or less with only 17 abscissas.

4.2 Region 2, E¢< E < 10Ec

For energies'juét above the critical energy ﬁc the angle jk( remains
finite and no.orbiting occurs.  However, ;Zf ‘does fall to a negative
- minimum value (the rainbow angle) and the integrénd l; (}-cxﬁrﬂFKB ‘has
& number of oscillations in the region of this minimum; the closer E is

~to Ec the more oscillations there are. In the program we find the

i



i
A

16.

approximate position of the minimum angle, b = br’ quickly by scanning
/’K et different b and using the infommation that br' decreases
as E increeses and that b,, is less than bo at Ec « Since most

of the oscillations occur near br and since we thereflore wish %o

.concentrate our abscissas near br we break the integral into two parts

-

at br
The integral from b, to infinity we evaluate in the same way

as we evaluated the equivalent integral in (4.1.2) with b o replaced by

b . In this -0-(-—-&—

r is no longer zero, but it is small at br

’)NM .
and the transformation from b to 97,  is still advantageous. For
the same reason it can also be used with advantage in the first part of
the integral from O ".':o br » 2nd indeed we found this the most efficient

method of evaluating this integral. Thus our whole integral becomes

X | B 'Twu | 0[3,
S u@_,(,, M£X>J»@- = j (/ w/'()ch“—t— Tj@_‘lb( )cw wy (2n)
J’M Y "Wy
0 ’rmo
in which T, and 7T, are the"buming points corresponding to -

b=0 and b= b,, respectively, y is defined by Equetion (22) with

r, replaced by T, , oand

3

j__:&' = T [l" Veu) /e ~ TM\/I/T'M)/[Z‘E)] (25)
M o

1

A simple linear change of variable pu'Es the first integral in the form of

. Equation ( 5) for the Clenshaw-Curtis quadrature and the second integral uses

only the positive absc:x.ssas.
' The angle X is read:.ly computed in all ceses by the method used
for the repulsive potentiul in (3.2) .
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4¢3 Region 3, E < 1CE,

Well above the critical energy the minimum (rainbow) engle is
small and there are just two bumps in the integrand ,(};- ( | = Cofb“(;@ ’
one when % is near '(7;77' as for the repulsive potential and
the second at the minimum angle. At very large energies (E > 1000 E,)
the contribution from this second bump is smzll end we use the same routines
as we have described for the repulsive potential in (3.1) which concentrate
the abscissas near the first bump only.

At intermediate energies (10E < E@< 1000E,) we split the integrand

at b, (Which we note is nearly equel to r

o, at E =E, in 2ll cases)

and then adopt the same routines as we use for the repulsive potential

with b' vreplaced by b, .
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VvV  Interpolation

As we have expleined in our introduction the most efficient way of
4,8
calculating a set of collision integrals _Qf ol T) for different
temperatures 'T is to calculate an initiasl set of cross sections Q)Q(E [,)

-

end interpolate for the many further cross sections needed. The range

over which the enrgies oy must be chosen is be‘t:vreen En and Emax:
E_M;\ - '&TMC\A 2Ciuin ') EMW :"k (u\wx Dcma/x <26)

where Tmin and T gz*e the minimum and maximum temperatures and

X . and X pex &% the minimum and maximum abscissas needed to

evaluate the integral in Equation (1) . Usually E a5 meny orders of
magnitude larger than E ;,, so this calls for a logarithmic scale in our
choice of energies. TFurther, plots of ,ﬁ@a [_6.2 ( E)] against Log B
are much smoother fuxictions of’ Lj(og E than are plots of Qlé )
ageinst ‘,-Z'og E . VNot surprising then is our discovery that interpolation
in tables of fog [Qi(Eﬂ gives better results than in tables of
Ql ) . We illustrate the smoothness of Log C a, () :{
against Log (E) in Fig. 4 .
" Pig. 4 also shows that the plots of Log [&,E)] f£all into the
three regions we mentioned in the last section: Region (1): E<E,
‘Region 2: E,< E < 10E,, Region 3: 10E,< E . We curve fitted or
interpolated in these three regions séparately.
Theré were three different methods available f'or the interpolation
(2) Lagrangian (Aitken's) method |
(b)  cubic Splines [15]

(¢) + Polynomial curve fitting
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HMethod (b) we found gave slightly more accurate answers than plecewise
cubic Lagrangian interpolation, but less accurate enswers than, say,
quintic Lagrangian interpolation. It also used morc‘storage spece since
the second derivative at each pivot must be stored. Its biggest drow-
back is the lack of e facility for estimating the errcr realisticelly and
in our case this is essential since we wish to double the number of
energies in’our table in successive;gtsiys until we can interpolete to the
accuracy we require. For this purpose Lagrangian interpolation is better
because we can exemine the interpolates obtained using parabolic, cubic,
quartic, etc. fits to adjacent points and use these to estimate the error
et & number of energies chosen at random in the range. But there are
still inaccuracies especially at the ends of the range.

The third choice is & polynomial curve fit of all the poin%s in the
renge. Here the position of the pivots in the range is crucial. Zqui=-
distant pivots ‘give good answers in the middle of the range and poor answers
(or divergent enswers) at the ends of the range [16] . But if the renge
of integration is changed to «1 L X +1 and the pivots chosen at the

' points

2, = cw(h'lT/N) , OSRKREN (27)

then the set of polymomials orthogongl over these éivots is the set of
Chebyshev polynomials, —T;t(f) « The resulting curve fit converges

‘ qpickly as N increases and gives unif'ormly accurate results over tée whole
. range.
| We can deterqine this curve it epproximately as follows. We write

oo

o - Ny ' o
.Rx) = 2 Cy_7:_()6) | (28) _

T: (@)

-
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where the coefficients Cy are easily calculated from the relation

44

Cr = g Z T64) &) (29)

&=0
Since ! T}J@{)} <) and the Chebyshev series converges rapidly we
can approximate the error by ﬁ:u }-+-}qu-1(. with some confidence.

Iﬂ cur case we are integrating over the functions which we are curve
fitting and the contributions from the high order harmonigé ‘EQ(ﬁi)
will tend to cancel out because they oscillate considerably. Therefore,
for our purposes we found empirically that it was sufi'icient to use as

our error estimate

En = iff E{qNﬁ *"C\N—/[j. (30)

This method worked so well that we needed only 5 cross sections
in Region 1, 9 in Region 2, and 5 in Region 3 to ensure that oux
interpolated collision integrals were correct to 1% . A typical set of

coefficients are given in Table 3 .
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VI Conclusion

Ve have described how we optimised each step in our calculations.
The resulting program is extremely efficient. The times needed %o

calculate for a Lennard-Jones (6-12) potential a complete set of cross

sections 1 /(g 6 or a set of collision jntegrals 1 K A,sX 4

at 40 ‘diff'erent temperatures is given in Table 4 for different required
accuracies & . The ac.‘aual errors were less than the tolerated errors
in 21l cases we tested.

Ve ‘have checked the program by running it for the 12=-6-3 and
12-5-5 potentials for which results are available 2:&., 17} and for thek,
potential 2" T/+ . The program of Smith and Munn £6 :( s Probably
the best previous general program, gave incorrect results for this last
potential at high temperatures [:7 ’ 8] e Our program éave the correct

results but it also sent out an error message warning that the results were

not entirely reliable at high temperatures. In this case the potential

effectively falls off very slowly at high energies and this severely tests

any transport program. We were pleased that our program dealt with it

so well.

We are reasonably convinced that the efficiency and reliability
]

.of our program cannot be greatly improved.

Y. .
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Tehle 1.

- peepiap ¥

Errors in cuadratures evaluating the intesrals in irn, (43) Cor whe Lennord-
Jones 6-12 potential where n is the number of intervals.

n Error n Error
8 0.0071 L 0.239%

16 v 0,0008 -8 ' | 0.0103
32 ' " 0.0001 16 0,09
Integr;l : 10,2165 Integr;i 12,4853

v

. GO e S

A comparison of the errors in two methods of evaluating the angle 76 at a
value of b close to b for the (6-12) potential, In method (1) the intesral
is evaluated intthe sameoway as Tor a repulsive potontial without splitting the
integral into two parts. In method (2) the integral is spit near r=r . Here
E=0.23Ec ad b=6.991b0. n is the number of abscissas., ©

n : Method 1 Method 2

9 0.24769 .
17 0.01922 0,0007L
33 - 0,01059" | 0.00005

65 - 0.00015 0,00000°

P

~
e

- - A -




Pable 3

o 9w

A typical set of Chebyshev coefficients 2itting In(f (E\;, azainst Ln(u) in
the taree energy regions. These are ior the 6-12 DOoenulal with ¢ =1%

Coefficients
Repion 1 Region 2 | Rogion 3
' Co 75555 3.,0050 0.2521
C, -1.6523 -0.5599 v -0, 5061
C, -0.0090 0.0837 -0.0064
03 =0,0070 0.0213 -0.0038
04 -0.0099 -0.0225 . 0.0058
C5 0.0091
C6 -0,0015
C7 ' ' -0,0016
Cg - ' ‘ 0,002k
Table A4

A comparison of the times needed (2) to calculate a comlete set of cross-

sections 1< 1< 6 and (b) to calculate a set of cross-sections and a complete setb
‘of collision integrals 1K1, s'<.6 for 40 temperatures for different accuracies
(e ). Also shown is ‘the typlcal actual error obtalned (err).

o (e) 0.01 .o oo1 0.0001 0.00001
‘ ‘ Im, 2?m. 5%m. 20m.
(b « olm, Lkm, . 10m. | 29,

(err) 0,002 0.0003 - . 0.00003 —==-- |

- -m A -
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.

The intesrand in Eon.(1) for the (12-¢) Potentisl when 1=1 and
T = 0.1/k.

The term F(r,b,B) in the intesrand in Eqn.(3) at a value of b near
b Orbiting occurs at b = b_ becnuse 'F(r,bD,E) touches the axis at
r =.r_. The integrel in Eon, (3) then diverses, For energies nearer
Ec the shape would be similar but the maximum near r would be smaller,

Here E/E_ = 31 0",

4

The integrand, b(1-cos){) in .Eqn.(?)‘ at an orbiting energy. There

is an infinite oscillaticn at b ='bo.

The cross-sections Q1“(E) as a function of energv. This illustrates
that a log-log plot is smooth and that there are three enersy regions:-

J o 4 W oe 7 [y
B(Ec, Ec<DL1O"c‘ IOI‘C< E,

¥
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