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Abstract

We study in detail the numerical techniques needed to

minimize the computation time in calculations of the transport

properties of a dilute gas. We iterate all numerical processes

until the results are uniformly correct to the accuracy prescribed

by the user. Thus in 1 minute we may calculate a set of transport

properties to an accuracy l in 100, but 10 minutes may be needed

for an accuracy 1 in 10,000.

The principal numerical difficulties encountered are centred.

around the evaluation of some singular definite integrals. Vie eliminate

the singularities by changes of variable and evaluate the resulting well

behaved integrals using the Clenshaw-Curtis method. We found this to

be the most efficient quadrature method mainly because of its accuracy

and its error estimates. For the same reasons we adopted Chebyshev,

polynomial curve fitting techniques for i;aterpolation 'rather than hagrangian

or Spline method.

r^
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I. Introduction

In the Chapman-Enskog theory [13 of a dilute gas the transport

properties of the gas can be expressed in terms of a set of collision
C-2

integrals A , 
5) (T) . These are functions of the temperature T and

they depend on the interaction potentials between the atoms or molecules

in the gas. A number of successful methods for calculating; these collision

integrals have been described in the literature 1_2-81 but we believe that

the method we describe here is: (1) considerably more efficient than anything,

previously published and (2) more reliable because we check the accuracy of

every step in the calculation. It is also easier-to use, takes up less

storage space and the facility enabling the user to specify the accuracy

which he needs should save him a great deal of computer time, especially in

cases when he does not need great accuracy. The program is so fast that it

is possible to calculate a set of collision integrals in only about 1 minute

on our ` ICL 1907 computer to an accuracy of 1%. for an accuracy of 0.1% it

takes about 3 minutes.

In the following we describe mainly the :Final methods we adopted in

r the program and say little about the many less efficient or less.reliable.

methods we tried. These are discussed in more detail in a thesis by one of
v

us r9]

A 1.1 Theory

The collision integral 	 5)(.^:) takes the form [2]

CO

in which	 is the reduced mass of the two interacting systems and k is

z

:	 ,
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Boltzmann's constant. In practice the integers 'L and s are small,

usually less than 6. The collision cross section 	 depends on

the initial relative energy E and is given by

C^) = z^r ,^- -	 ^) XJ6,	 (2

n

where b is the impact parameter and 	 is the classical deflection angle

010

Ti- — I Ir 	 [F	 (3)

in which rm , the classical turning point, is the outermost zero of

V(Y-) E	 jj^ Atl I

j

1.2	 Difficulties

y

The problem thus reduces to the evaluation of the triple integral

represented by equations (1) to (3) Difficulties arise because of certain

singularities on or near the interval of integration in equations (2) and

(3) which we will discuss later. Therefore our main difficulty is the

calculation of the cross sections	 The evaluation of the

integral in equation (1) is relatively easy.

Fortunately we can make one immediate simplification by noting that

is a single-valued function of the single real variable E

for each value of	 Thus	 (^;l ^ 	 can be determined at a discreet

set of energies EZ_ and further cross sections found quickly, by inter-

polation in the first set. It is not therefore necessary to calculate a

1
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new set of cross sections,	 'oC^	 , for each temperature, T .

The problem is now reduced to: (a) the evaluation of a set of aw1ward

double integrals represented by equations (2) and (3); (b) choosing the

energies E at which these cross sections are best evaluated; (c)

interpolating in these cross sections and (d) evaluating a set o y simple

integrals represented by Equation (1) .

We add a condition to all our numerical processes the program

reads in a permitted relative error or accuracy 	 F	 , the final

'	 collision_ integrals must be correct to this accuracy. Also, as far as

possible the amount of computation should be minimized to ensure the

accuracy	 and no higher accuracy. Thus quick results to an accuracy

0.01 or necessarily longer calculations to an accuracy 0.0001 should

both be possible. This means that we can only use nume°ical processes

which allow us to estimate their accuracy reliably.

We begin by looking at the problem of the evaluation of a well behaved

integral and of the integral' in Equation (1) 	 ^`le next show hoti^rr^ remove

the singularities in the double integral and we finally consider the

problem of interpolation.
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II Nell Behaved Integrals

2.1 Clenshsw-Curtis method

We assume that we have reduced an integral by changes of

variable to the form

w

C5)

where F (17)	 is well behaved in and near (-l. +1). There are

endless numbers of methods for evaluating such an integral but when we

can choose the abscissas or pivots at any points in the interval including,

the end points and when we are asked to obtain an answer with a minimum

number of function evaluations to an accuracy ,	, then the choice

is limited and one method stands out in front of the others, the

Clenshaw-Curtis method E10, 11] 	 Because this method is not well

known we will describe it briefly.

The integrand F: 07) is expanded in a finite Chebyshev series

A(

t6)^
'r= 0
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where

5	 i= 1	 ^. ^ f

2k^ ) ^<, 5 -<... Pj - I ;,

(9)

N

These weights are easily computed at he beginning of the program for

any N needed.

The quadrature in Equation (8) has several advantages. It is

extremely accurate (nearly as accurate as Gaussian quadratures).partly

because a Chebyshev series converges so, quickly and partly because it can

be shown [111 that not only are the contributions to the integral from

the harmonies r = 0 to r = N in Equation (6) evaluated, but most of
c

she contribution to the integral from the higher harmoni/s between N + 1

and 2N - 1 are also included. Hence the aeou paey is nearly that of as

Gaussian quadrature, 2N - 1. But the method has a number of advantages

over Gaussian quadratures. First of a11, the function evaluation in

the 9-point quadrature (1?, 8) are common with the 17-point quadrature

(N = 16)	 So we can double the number of points without losing function

evaluations (as in Simpson's rule). An even bigger advantage is the

range of possible error estimatesC11]

Of these we adopted the estimate

EW
I b	

MdX v4UWWt	 aN ff	 N-Z ^l
 = d _ (( (10)

where

:5=0

j
ry	 .

I

01
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This is easily computed since it depends only on the function evaluations

needed in the quadrature. Since it is the maximum of three quantities

the possibility of one or two of them being accidentally very small is

ruled out. It is shown in [11] that EhT is reliable provided

When this test failed we continued the calculation till EN was less

than 9 /10 rather than	 This process rarely fails to give us an

error bound, but for badly behaved integrals where experience shows it

does fail we use in place of EN the "conservative" error estimate

In the end vie were able to ensure by appropriate

changes of variable that none of our integrals ^ this badly behaved.

Because of the lack of similar error estimates in Gaussian quadratures

the Clenshaw-Curtis method is preferred. Other quadratures such as

Romberg's algorithm are too inefficient to be comparable to the Clenshaw-

Curtis method for our purposes. A recent variation on Gaussian quadratures

due to Patterson [12] is the nearest competitor to the Clenshaw-Curtis

method, but we think that it, too, falls down because of the lack of a

sufficiently good error estimate

2.2 Infinite Internals

I

	

	 - The integrals in Equations (1) to ( 3) are over an infinite range.	 1

To put them in the form where we can use the CJ-ensnaw-Curtis formula we must

-change the variable. °Vd'e illustrate a difficulty by writing Equation (1)

in the f orm

t	 co

:r
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One possible change of variable is given by

oC 7e— = (I— e )k + t
	

(12)

For any o^ this changes the integral in Equation (11) into the form

in Equation (5), but the efficiency of the resulting quadrature will

vary greatly with different values of pC	 For ex=ple, for very

large 0!	 a sharp peak will appear near t _ -1, and for very small

a peak appears near t +1	 The choice of the correet

presents a difficulty, but fortunately sire can often use some analytic

infommation to detexmine p( as we now show.

2.3 The Integral in Equation(1^

In the case of Equation (1) the integrand typically takes the form

shown in Fig. 1	 Because 
Q
^	 varies slowly with E the shape

of this integrand is dominated by the 'term ( .e7' ac- s+' j which has a

peak at s + 1	 We therefore usm :pc. = S4-1	 as an approximation to ' the

position of the peak in the integrand. We split the integral in two
•	

I
parts at s + 1 and integrate the second part by changing the variable

to	 + I)	 ( effectively we are allowing the position

of-the peak to determine the 	 parameter for us) :

CT

s+1	 ^

(.Q^ s ^	 wx sfl	 -x st t

O	
__ O

The first egral is now readily put in the form of Equation (5) by a
A

+wear transformation.

Jr

OW
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Because of the '^C	 term we know that the integrand and all of

its derivatives are zero at y = 0; thus the reflection of the integrand

into the interval (-1, 0) produces a smooth even function over the whole

interval (-1, +1) We can use this information by adopting only the

positive Clenshaw-Curtis abscissas and the corresponding sleights in the

evaluation of this second int gral.

IJote that sauce the abscissas in the Clenshwu-Curtis quadrature are

concentrated near the ends of the range, the abov-, changes of variable have

effectively concentrated the abscissas mainly in the region of the maximum

in the integrand.

The accuracy of these methods is demonstrated in Table 1 for the

two integrals in Equation (13)	 A number .of other changes of variable
,arc,
-wepe tried but as expected these were not ac accurate as the above.

r
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III Cross Sections for a Repulsive potential

3.1 Cross Section Ind ral

The calculation of the cross section Qk by evaluating

tha double integral in Equations (2) and (3) is straightforward when

the. intermolecular potential is repulsive for all values of

Then the angle	 falls monotonically from -1-r to zero as

increases from zero to infinity. There is then only one maximum

in the integrand	 l cxyJ"-x)	 in Equation (2) near the impact

parameter b' at which x = z 77- 	 We therefore comput% b'

approximately by scanning N at different values of b and using

the fact that b' decreases as the energy E increases to start us on

each scan. On average b' is computed approximately after only 4 or 5

calculations of the angle jL
Once we have found b' we use the method in (2.3) to evaluate

the integral. - with one difference. In the integral from b' to infinity

we could have used the positive abscissas asve do in (2.3)	 However,

this concentrates the abscissas near b' with few abscissas at large values

of b	 This is ideal for the integrand in Equation (13) because of

its decreasing exponential term but in the integral in Equation- (2) .,
particularly when the potential falls to zero slowly as	 increases

t
to infinity, a large part of the integral comes from 

,
large b values,

Therefore, we adopted the change of variable

kow

r

y
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and the integral becomes

b O	 - ).

Clenshaw-Curtis quadratures are used on both integrals once the range in

the first integral is changed to (-1, +1) 	 Zhe abscissas are now

concentrated near b' and they extend to large values of b .

This method has proved to be efficient and reliable. Often only

9 abscissas are needed to ensure the evaluation of each integral to an

accuracy of 1 in 1000 .

also relatively

at 	 the

(3) can be eliminated

variable such as

becomes

k	 -f-

^,, E ^ = 7T 17, ?	 }

Thisuadrature converges a little less slowly than the Gauss-I+ehlerq	 g	 y	 1

quadrature but it is still preferable because of the difficulty of finding

a good error estimate in the Gauss-PvIehler method. Also because the

abscissas in successive Gauss-Mehler quadratures do not overlap vie loose
a

all our previous function evaluations each time we change the order of the

quadrature.

3.2 The Angle Integral

The calculation of the deflection angle	 is

straightforward for a repulsive potential. The pole

classical turning point, in the integrand in Equation

by Gauss-Mehler quadratures E13] or by a change of

C-o-o[yl T&c+0] = ^' ,̀,,;^^" [14] . Then Equation (3)
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3.3 The Classical Turning Point

The classical turning point I1';v, , 	can be found by inverse

interpolation [6 ] for any impact parameter b . Because the integrand

in Equation (3) is Lifin to at ^rw^	 it is important that we calculate

fist	very accurately. We therefore adopt the following process:

vie begin with the given value of b, we calculate an approximate

we recalculate a new b from the precise formula

//	 t r

and then we calculate	 ^" E) rather than	 E	 Small

errors in tvv' will result in a small difference between b and b" and

a resulting small difference between X(-6- t/̂  E) and x ^^-, C)

much smaller than the error obtained by using the slightly incorrect

and the correct b in Equation (14).	 TJ-4- Wk- 

m

T.^o O^r
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N Cross Sections at Orbiting Energies

When the interatomic potential has ' a minimiun the cross sections are

much more difficult to calculate because of a phenomenon Irnov;n as orbiting

(the particles orbit about one another). Mathematically this occurs

because of a non-integrable pole in the integrand in Equation (3) at what

is called the orbiting impact parameter b  . This is illustrated in

Big. 2 wherehe term	 ^^'> ; ^^ in the denominator of the integral in

Equation (3) is dravm -	 ^,	 -^	 The curve corresponding

to the impact parameter b o just touches the ayis at 7`'='i o , so

F ( r, .k-o , i=_ ) has a zero of order 2 at -I` _ ro	 , the iultegrand

in Equation (3) has a pole of order 1 and	 = oo	 The integrand

then has an infinite number of oscillations in the

region of b  .

The orbiting phenomenon illustrated in Fig. 2 only occurs at lour

energies: when E is large the term V601C is small compared with
2	

and the slope of P ^^^ •-^', E^ is always positive as it

crosses the axis. - There is a critical energy E, below which orbiting

occurs and above which it cannot occur, but at energies just above,

there are still a lot of oscillations in the integrand .,	 60-3.,'Y) in

Equation (2) although there is no singularity. Thus we find that we have

to consider three energyregions separately:- 1. energies below E
j
	

2. energies just above	 (which we took to be EC-to 10 Ee- );

and 3. energies wel l  above C

4.1 Region ` 1, E < Ec

4.1.1 The Angle

When orbiting occurs both the integral for the angle and the integral

for the cross section give us trouble. The integral for	 in Equation



1

73

(3) is particularly difficult for b less than, but close to b o	By

examining Fig. 2 it is apparent that the integrand has a 	 ^- peak near
0

	

as well as a ple at ^^,,^	 This ham peak makes the simple
A

method described for the repulsive potential converge slowly. Because

the abscissas in the Clenshavi-Curtis method are concentrated near the

ends of the range we split the integral in Equation (16) at the value

x 7Co corresponding to -" _ y'o	 The peak occurs somewhere near

xa . Then	 becomes

.2co 
r I

7
-/^t ^, 7r	 ..I

7T	 +

0

-1
In the first integral we introduce the change X -(ce 4-	 to concentrate

the pivots near the peak at x d	A similar change is introduced into

the second integral. Both of the resulting integrals are now put in the

foam in Equation (5) by linear variable changes and evaluated by Clenshaw-••

Curtis quadratures. In Table 2 the efficiency of this method is compared

with the method in Equation (16) for a value of b less than and close to

b 	 Clearly this is a case when splitting the integral pays dividends.

We adopt this method for all b < b 	 For b;> b  there is no difficultyiculty

and the method described earlier for a repulsive potential is used.

µ	
1+,1.2 The Cross Section

a

The integral for the cross section in Equation (2) is even more

difficult.' Because x diverges at bo the integrand has an infinite
o •number of oscillations near b 	 This is illustrated ^.z^ Fi g 3 ' . We

break the integral into two parts at bo. In the integral from 0 to bo

we note that the integrand is largest and it varies most quickly near bo,.



So

T

24•

In addition at bo we cannot calculate the integrand. We therefore seek

a change of variable that concentrates the abscissas near bo and such

that the new integrand is zero at the end corresponding to bo 	 One (of

many) such changes of variable is	 co-a b'	 -^ )1 •

o	 41

L(19)
C' c —	 x d G- _ ! 7rz .ddi.  	 &-w xZ d x

o	 ^

The singularity is nosy at aC = -( where the integrand is zero. Thus

the singularity is effectively eliminated. This change of variable vrorks

extremely well and transforms an almost impossible integral into one which

we can readily and quickly evaluate. Typically ire obtain three figure

accuracy with 17 Clenshaw-Curtis qua&,ature points.

In,the case of the integral from bo to infinity we note that if

we change the variable from 'b to - ";vL then since d^	 O	 at

b bo, the new integrand is also Zero at bo and we have eliminated

the singularity 3]

	

V (-Q	 V tIrm)]	 20)

o°

f	 tC
.^ro 	10 	 ^

The difficulty With this change of variable is that it introduces the

derivative of the potential, often not easily calculated. For this reason

we did not adopt this change of variable generally. We adopted 	 --

^partly for historical reasons n Other 	 changes

would'have given as good results' for example the change leading to Equation
LJP

t r



The new integral in Equation (20) can now be evaluated by changing

the variable so that the interval is (-1, •t•1), e.g.

"^wti. = z V-/^^c -f- (^ .	 (21)

But we found that N falls to zero so quickly as b increases that the

integrand is still concentrated near the end point 2L = +1 	 Ve

therefore made yet another change of variable to concentrate the abscissas

even closer to b 

So as

--- cro c^ 23

I	 E J	 Zn
.^'ro	 ^	 vex

The integrand and all of its derivatives are zero at y = 0 so we can use only

the positive Clenshaw-Curtis points in the quadrature. This proved to be

the most successful of a number of methods tried. We typically obtained

an accuracy of 0.410 or less with only 17 abscissas.

a 	
d4.2 Region 2, Ec K E < 10EO

For energies just above the critical energy E. the angle 	 remains

finite and no-:orbiting occurs. However,	 does fall to a negative

minimum valuethe rainbow angle) and the integrand ^Q,- C(	 g ^	 g	 I — cOO Jx^	 has

a number of oscillations in the region of this minimum; the closer E is

to Ec the more oscillations there are. In the program we find the

r

r

r

15.
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approximate position of the minimum angle, b b r, quickly by scanning

N at different b and using the information that br , decreases

as E increases and that br is less than b  at B. 	Since most

of the oscillations occur near b r and since the therefore wish to

concentrate our abscissas near b r we break the integral into two parts

at br .	 M

The integral from br to infinity we evaluate in the same way

as we evaluated the equivalent integral in (4.1.2) with bo ' replaced by

b	 In this
.-
 
	

is no longer zero, but it is small at br 	 r
and the transformation from b to P;,, is still advantageous. For

the same reason it can also be used with advantage in the first part of

the integral from 0 to br -1 	 indeed we found this the most efficient

method . of evaluating this integral. Thus our whole integral becomes

00	 •.	 fm 	 I	
`A
	 d

1

J, A
o	 ^co	 0

in which	 and 4-,u,	 ore the turning points corresponding to

b = ' O  and b = br respectively, y is defined by Equation (22) with

ro replaced by 1-+N i and

d	 -	 2- -r, C - 1lCr►^)/ - ^, V (rte,) f^zE)	 C 5)

A simple linear change of variable puts the first integral in the form of

Equation (5) for the Clenshaw-Curtis quadrature and the second integral uses

only the positive abscissas.

€	 The angle 
/
^ is readily computed in all cases by the method used

for the repulsive potential in (3.2)

s

.Y

a

4

4
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4.3 Region 3, E <IOEc

Well above the critical energy the minimum (rainbow) angle is

small and there are just Uto bumps. in the integrand ,& CI —

one when x is near ^ 77"	 as for the repulsive potential and

the second at the minimum angle. At very large energies (E > 1000 Lc)

the contribution from this second bump is small and we use the same routines

as vie have described for the repulsive potential in (3.1) which concentrate

the abscissas near the first bump only.

At intermediate energies (IOEc< E©< 1000E- vie split the integrand

at b, (which we note is nearly equal to ro at E = Ec in all cases)

and then adopt the same routines as we use for the repulsive potential

with b' replaced by br



18.

V Interpolotion

,As vie have explained in our introduction the most efficient Tray of

calculating a set of collision integrals ^^' s ^(7)	 for different

temperatures • T is to calculate an initial set of cross sections^f

and interpolate for the many further cross sections needed. The range

over which the enrgies	 E&	 must be chosen is between Emin and Ems:

wt,ty. 	 wtct	
,,^	

wi^c ^Ck^	 ( 26)

where Tmi.n and max are the minimum and maximum temperatures and

x	 and xmax are the minimum and. maximum abscissas needed tomin
evaluate the integral in Equation (1) 	Usually Emax is many orders of

magnitude larger than Emin so this cells for a logarithmic scale in our

choice of energies. Further, plots of , 	 62) (E)^ against Log Ei	 L
are much smoother functions of Yog E than are plots ofL
against Xog E	 Not surprising then is our discovery that interpolation

in tables of -fOg

	

	 (E	 gives better results than in tables of

We illustrate the smoothness of Log On, : , (E) ^.
.Q

against Log (E) in Fig.	 .

Fig. 1+ also shoves that the plots of Log	 J 	 fall into the

three regions we mentioned in the last section Region (l): 	 Ec,

Region_ 2 E < E < 10E O , Region 3: 1CsEc < E	 We curve fitted or	 d

interpolated in these three regions separately.	
j

There were three different methods available for the interpolation

t (a) Lagrangian (Aitker's) method

(b) Cubic Splines [15]

(^) Polynomial curve fitting

r



Method (b) we found gave slightly more accurate answers than piecewise

cubic Lagrangian interpolation, but less accurate answers than, say,

quintic Lagrangian interpolation. It also used zzon.; storage space since

the second derivative at each pivot must be stored. Its biggest dr n-w-

back is the lack of a facility for estimating the error realistically and

in our case this is essential since vie wish to double the number of

energies in our table in suecessive .st" ps until we can interpolate to the

accuracy we require. For this purpose Lagrangiaii intezmolation i s better

because we can examine the interpolates obtained using parabolic, cubic,

quartic, etc. fits to adjacent points and use these to estimate the error

at a number of energies chosen at random in the range. But there are

still inaccuracies especially at the ends of the range.

The third choice is a polynomial curve fit of all the points in the

range. Here the position of the pivots in the range is crucial. Equi-

distant pivots°give good answers in the middle of the range and poor answers

(or divergent answers) at the ends of the range [16]	 But if the range

of integration is changed to -1 x < +1 and the pivots chosen at the

points

k	 then the set of polynomials orthogonal over these pivots is the set of
i

Chebyshev polynomials, Tn (r )	 The resulting curve fit converges

quickly as N increases and gives uniformly accurate results over the whole

range.

We can determine this curve fit approximately as follows. She write

{

j	 x _ 	 c ?- (^ 11	 (28), `{ -^	 Y` r J

I
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where the coefficients	 Cy.	 are easily calculated from the relation

G _	 2-^r	 11	 (29 )^",y,. (X,&) -F <x-^t J

Since ! 1r	 C	 and the Chebyshev series converges rapidly we
can approximate the error by	 -f- with some confidence.

In our case we are integrating over the functions which vie are curve
G

fitting and the contributions from the high order harmoni^s T^^^ )

will tend to cancel out because they oscillate considerably. Therefore,

for our purposes we found empirically that it was sufficient to use as

our error estimate
•

K

S	 ^_

	

-	
[ t^ S -- i s 	t	 (30)N	 1v

This nethc;d worked so well that we needed only 5 cross sections
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VI Conclusion

Yle have described how we optimised each step in our calculations.

The resulting program is extremely efficient. Tho times needed to

calculate for a Lennard-Jones (6-12) potential a complete set of cross

sections 1	 < 6 or a set of collision integrals 1

at 40 different temperatures is given in Table 4 for different required

accuracies S	 The actual errors vrere less than the tolerated errors

in all cases we tested.

We have checked the program by running it for ' the 12-6-3 and

12-6-5 potentials for which results are axrailable )-4, l7 j	 and for the .

potential	 The program of Smith and Munn [6 ^ , probably

the best previous general program, ` gave incorrect results for this last

potential at high temperatures [7, 8	 Our program gave the correct

results but it also sent out an error message warning that the results were

not entirely reliable at high temperatures„ In this case the potential

effective],y falls off very slowly at high energies and this severely tests

any transport program. We were pleased that our program dealt with it

s o well.

We are reasonably convinced that the efficiency and reliability

of our program cannot be greatly improved.

PW
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Errors in nua drature:. cvalu^,tir - tho	 in	 (13) for 'U%o, S, cmaarrl-
Jones 6-12 -ootential where n is the number of ±, n. tervals.

n Error n Error

8 0.0011 4- 0.239b-

16 0.0008 8 0.0103

32 0.0001 16 0.00 1".

Integral 10.2165 Integral 12.4.853

Table 2.

A comparison of the
value of b close to b
is evaluated in :the same
integral into two parts.
E=0.23Ec and b=0.991boo

errors in two methods of evaluating the angle -. e:t a
for the (6-12) potential. In n}ethod (1) t'-,e integral

tray as for a repulsive potential without splitting the
In method (2) the integral is spit near r--ro . Here
n is the number of abscissas.



1 tr==.

L b l c 3

typical set Of C 2el^tTs'jev co efficients `:' tt'in u, Ln( 	 a_ 4i3"zott L:?.("i) in
the three energy regions. These are for the 6-12 ;p oten tial witb f, =It'-'.

Coefficients

Region 1 Re ;ion 2 Region" 3
7.5353 3.0050 0.2521

-1.6523 -0.5599 -o. X061

0.0090 0.01;57 -0.00a 64-

-0.0070 0.0213 -0.0038

-0.0099 -0.0225 0.0058

0.009,

-0.0015

0.0016

0.00 2j

Table 4-

A comparison of the limes needed (a) to calculate a con,-!fete set of cross-
sections	 1 C l< 6 and (b) to calculate a set of cross-sections and a complete set
of collision integrals 1 < 1, s < 6	 for 1^0 temperatures for different accuracies

Also shovrn is-the typical actual error obtained (err).

{	 W 0.01 .0.001 0.0001 0.00001
(a 1 m. 2-Lm. 52m• 20m.
(b 2^ m. -42 10m. 29m.	 1

(err) 0.002 0.0003 Q.00003 ------

-	 1

x

r

9

r
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C3
c4

C5

C6

C7

C8
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Cl',P--PTF,R Y', 1,'A), 7"r'S

FIG.I

	

	 The intro ;rand in Eon. (1) tpr the (12-t:* ) potentild when 1=1 an%
T = 0.1/k.

FIG.2	 The term F(r,l^,E) in the irate arana in Ban. (3) at a value of 'a near
bo . Orbiting; occurs at 1) = b  bec. use F(r,b ,E) touches 'ul e axis at

r=.ro , The integral in Ban. ( 3) then div;r-es. For ener ies nearer
E  the shape would be similar but the maximum near r m would be smaller.
Here E/Eo = ^ i o-5.

FIG.3	 The integrand, b(1-cos%) in Eqn. (2) at an orbiting energy. `Where
is an infinite os-illation at b b .

0

FIG.4	 The cross-sections Q, '(E) ez a function of energy. This illustrates

I
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