NASA UARL H910461-38

N 69 33259 NASA CR 103815

THIRD ANNUAL PROGRESS REPORT

ANALYTICAL STUDY OF CATALYTIC REACTORS FOR HYDRAZINE DECOMPOSITION

prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

May, 1969

CONTRACT NAS 7-458

United Aircraft Research Laboratories

Copy # 3

NASA UARL H910461-38

THIRD ANNUAL PROGRESS REPORT

ANALYTICAL STUDY OF CATALYTIC REACTORS FOR HYDRAZINE DECOMPOSITION

by Arthur S. Kesten

prepared for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

May, 1969

CONTRACT NAS 7-458

United Aircraft Research Laboratories

UNITED AIRCRAFT CORPORATION A EAST HARTFORD, CONNECTICUT

Report H910461-38

Analytical Study of Catalytic Reactors

for Hydrazine Decomposition

Third Annual Progress Report

April 15, 1968 - April 14, 1969

Contract NAS 7-458

TABLE OF CONTENTS

Page

ABSTRAC	Τ.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	i
FOREWOR	D.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	ii
SUMMARY		•	•	•	•	•	•		•	•	•	•	•	• .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	l
INTRODU	CTI	EOI	Ŋ	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
DESCRIP	TIC	ON	0	F	ΤF	E	TF	RAN	183	ΕĨ	ΥT	M	DDI	ΞL	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
RESULTS	Oł	F (CA	ΤC	UI	JA'I	PIC)NS	3.	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	10
REFEREN	CES	5.	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1¥
LIST OF	SI	ζMI	80	LS	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	15
APPENDI	Х	•	•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	18
FIGURES	ſ	•	•	•	•	•	•	•	•	•	•	•	•				•	•		•		•		•				•	•	•	•	25

ABSTRACT

Analytical studies of catalyzed hydrazine decomposition reaction chambers were performed in order to establish procedures capable of predicting the effects of pulse operation of the reactor for an arbitrary duty cycle on the transient behavior of the system. These studies included an extension of a computer program previously developed to calculate temperature and reactant concentrations as functions of time and axial position in typical reaction chamber configurations. The extended program includes consideration of the effects of heat conduction and diffusion when flow is stopped. In addition, reaction chamber fluid dynamics are taken into account by allowing for feed pressure and mass flow rate changes with time. The effects of these changes on thermal and catalytic decomposition of reactants, along with heat and mass transfer between the free-gas phase and the gas within the pores of the catalyst pellets, are considered.

A series of caluclations was made using the computer program to evaluate the effects of duty cycle, nominal chamber pressure, bed loading, and catalyst bed configuration on the transient temperature, pressure, and reactant concentration distributions in the reactor system. The results of these calculations are illustrated in the report.

FOREWORD

This work was performed by United Aircraft Research Laboratories for the National Aeronautics and Space Administration under Contract NAS 7-458 initiated April 15, 1966.

Included among those who cooperated in performance of the work under Contract NAS 7-458 were Dr. A. S. Kesten, Program Manager, Dr. W. G. Burwell, Chief, Kinetics and Thermal Sciences Section, Mr. D. B. Smith, and Mrs. E. Smith of UARL.

This work was conducted under program management of the NASA Chief, Liquid Propulsion Experimental Engineering Systems, NASA Headquarters, Washington, D. C., and the Technical Manager was Mr. T. W. Price, Jet Propulsion Laboratory, Pasadena, California. Report H910461-38

Analytical Study of Catalytic Reactors

for Hydrazine Decomposition <u>Third Annual Progress Report</u> <u>April 15, 1968 - April 14, 1969</u>

Contract No. NAS 7-458

SUMMARY

The Research Laboratories of United Aircraft Corporation under Contract NAS 7-458 with the National Aeronautics and Space Administration have been performing an analytical study of catalytic reactors for hydrazine decomposition. This third annual technical report summarizes work performed under this contract from April 15, 1968 to April 14, 1969. Work during this period has included the development of a computer program representing a transient model of a distributed-feed catalyzed hydrazine decomposition reaction chamber. The model describes the behavior of reactors operated under conditions of continuous flow as well as pulsed flow for an arbitrary duty cycle. Both thermal and catalytic decomposition of reactants are considered along with simultaneous heat and mass transfer between the freegas phase and the gas within the pores of the catalyst pellets. The effects of heat conduction and diffusion when flow is stopped are included in the model. In addition, reaction chamber fluid dynamics are taken into account in order to allow consideration of chamber pressure and mass flow rate changes with time. Calculations have been made of temperature and species concentration distributions as functions of time and axial position in typical hydrazine reaction chambers for a number of pulse duty cycles, mass flow rate distributions, and catalyst bed configurations.

Calculated transient temperature profiles in a continuous flow reactor have been compared with temperatures measured as a function of time in a small scale engine run at Jet Propulsion Laboratory. Generally good agreement between theoretical and experimental results was found.

The computer programs representing both the steady-state and transient models of a catalyzed hydrazine reactor have been described in detail in two computer manuals. These manuals contain operating instructions for these programs as well as descriptions of input and output formats.

INTRODUCTION

Under Contract NAS 7-458, the Research Laboratories of United Aircraft Corporation are performing analytical studies of the behavior of distributedfeed catalytic reactors for hydrazine decomposition. The specific objectives of this program are (a) to develop computer programs for predicting the temperature and concentration distributions in monopropellant hydrazine catalytic reactors in which hydrazine can be injected at arbitrary locations in the reaction chamber and (b) to perform calculations using these computer programs to demonstrate the effects of various system parameters on the performance of the reactor.

Progress previously reported in the first annual report (Ref. 1) included the development of computer programs which describe the steady-state and transient behavior of a hydrazine reactor operated under conditions of constant, continuous flow, in which complete radial mixing in the free-gas (or liquid) phase was assumed. Progress previously reported in the second annual report (Ref. 2) included an extension of the steady-state program to include radial as well as axial variations in temperature and concentrations in order to permit an analysis of various injection schemes and catalyst bed configurations which exhibit radial nonuniformities. These programs had been used to calculate temperature and reactant concentration distributions as functions of initial bed temperature, feed temperature, chamber pressure, mass flow rate distribution, catalyst size distribution, and axial injector locations.

During the third year of contract effort attention has been focused on extending the transient model of the reactor system to take the effects of reaction chamber fluid dynamics on transient response into account, and to permit consideration of pulse operation of the reactor for an arbitrary duty cycle. In addition, computer manuals have been prepared describing to potential users the operation of both the steady-state and transient computer programs (Refs. 3 and 4). Included in succeeding sections of this report are detailed descriptions of (a) the development of the equations representing the transient model of the reactor system, (b) the use of the computer program representing the transient model to compute transient temperature profiles in a typical continuous flow reactor in order to test the validity of the model by comparing the calculated results with measured temperature profiles, and (c) the use of the transient computer program to calculate the effects on transient temperature and reactant concentration distributions of initial bed temperature, chamber pressure, mass flow rate distribution, catalyst size distribution, and pulse duty cycle.

DESCRIPTION OF THE TRANSIENT MODEL

The analysis of a hydrazine engine reaction system pertains to a reaction chamber packed with catalyst particles into which liquid hydrazine is injected at arbitrarily selected axial locations. Catalyst particles are represented as "equivalent" spheres with a diameter taken as a function of the particle size and shape. Both thermal and catalytic vapor phase decomposition of hydrazine and ammonia are considered in developing equations describing the concentration distributions of these reactants. Diffusion of reactants from the free-gas phase to the outside surface of the catalyst pellets is taken into account. Since the catalyst material is impregnated on the interior and exterior surfaces of porous particles, the diffusion of reactants into the porous structure must also be considered. In addition, the conduction of heat within the porous particles must be taken into account since the decomposition reactions are accompanied by the evolution or absorption of heat.

In generalizing the transient model described in Ref. 1 to consider reactor shutdown as well as start-up, the temperature and the concentration of reactants in the interstitial (free-gas) phase are still assumed to vary only with time and axial distance along the bed. In this system film coefficients are used to describe heat and mass transfer between the interstitial phase and the outside surface of the catalyst pellets. The reactant concentrations, c_p , and the temperature, T_p , are taken as uniform within the interior of the porous particles. Heat and mass diffusion within the particles are taken into account by multiplying the reaction rates computed on the basis of uniform c_p and T_p by a utilization factor determined by analogy with the steady-state system (see Ref. 1). In addition, it is assumed that during reactor operation liquid velocities are sufficiently low relative to other rate processes so that, for all practical purposes, steady-state in the liquid and liquid-vapor regions is achieved as soon as the liquid reaches a given axial location in the reactor. No consideration is given to regression of the liquid-vapor interface as the chamber pressure builds up since the overall length of the liquid region in typical reactors is very small compared to the length of the vapor region (Ref. 1). When flow into the reactor is stopped it is easily shown that the residual liquid hydrazine in the reactor vaporizes in just a few milliseconds due to the very rapid decomposition of hydrazine in the liquid region. Therefore, even during reactor shutdown, the liquid regions plays a very small role in determing the transient behavior of the reactor system.

The transient model is concerned then with the vapor region only. The general equations describing the rates of change of enthalpy and reactant concentrations with time and axial distance in the interstitial phase are

$$\delta \frac{\partial}{\partial t} \left[\rho_{i} h_{i} \right] = - \frac{\partial}{\partial z} \left[G h_{i} \right] - H^{N_{2}H_{4}} r_{hom} \delta + F h_{F} - \hbar_{c} A_{P} \left(T_{i} - T_{P} \right) - \frac{4 \hbar w}{d_{c}} \left(T_{i} - T_{w} \right) - h_{i} \sum_{J} A_{P} k_{c}^{J} \left(C_{i}^{J} - C_{P}^{J} \right)$$
(1)

$$\delta \frac{\partial C_i N_2 H_4}{\partial t} = -G \frac{\partial W_i N_2 H_4}{\partial Z} - W_i N_2 H_4 \frac{\partial G}{\partial Z} + F - r_{hom} \delta - A_P K_C N_2 H_4 (C_i N_2 H_4 - C_P N_2 H_4)$$
(2)

$$\delta \frac{\partial c_i^{NH_3}}{\partial t} = -G \frac{\partial w_i^{NH_3}}{\partial z} - w_i^{NH_3} \frac{\partial G}{\partial z} + r_{hom} \delta \frac{M^{NH_3}}{M^{N_2H_4}} - A_P k_C^{NH_3} (c_i^{NH_3} - c_P^{NH_3})$$
(3)

$$\delta \frac{\partial c_i^{N_2}}{\partial t} = -G \frac{\partial w_i^{N_2}}{\partial z} - w_i^{N_2} \frac{\partial G}{\partial z} + r_{hom} \delta \frac{M^{N_2}}{2M^{N_2H_4}} - A_{PK_c}^{N_2} (c_i^{N_2} - c_{P}^{N_2})$$
(4)

$$\delta \frac{\partial C_i^{H_2}}{\partial t} = -G \frac{\partial W_i^{H_2}}{\partial z} - W_i^{H_2} \frac{\partial G}{\partial z} + r_{\text{hom}} \delta \frac{M^{H_2}}{2M^{N_2H_4}} - A_P K_C^{H_2} (C_i^{H_2} - C_P^{H_2})$$
(5)

where

$$w_i^J = \frac{c_i^J}{\rho_i} = \frac{c_i^J}{\sum_{J} c_i^J}$$
(6)

Equations (1) through (5) can be reduced to a somewhat simpler form with the aid of an overall equation of continuity which can be written as

$$\delta \frac{\partial \rho_i}{\partial t} = F - \frac{\partial G}{\partial z} - \sum_J A_P k_C^J (C_i^J - C_P^J)$$
⁽⁷⁾

Equations (1) through (5) can now be written as

$$\delta_{P_i} \frac{\partial h_i}{\partial t} = -G \frac{\partial h_i}{\partial z} - \mathcal{A}_C A_P (T_i - T_P) - H^{N_2 H_4} r_{hom} \delta - F (h_i - h_F) - 4 \frac{\mathcal{K}_W}{d_c} (T_i - T_w)$$
(8)

$$\delta P_{i} \frac{\partial w_{i}^{N_{2}H_{4}}}{\partial t} + G \frac{\partial w_{i}^{N_{2}H_{4}}}{\partial z} = F - r_{hom} \delta - A_{P}k_{C}^{N_{2}H_{4}} (C_{i}^{N_{2}H_{4}} - C_{P}^{N_{2}H_{4}})$$

$$- w_{i}^{N_{2}H_{4}} F + w_{i}^{N_{2}H_{4}} \sum_{J} A_{P}k_{C}^{J} (C_{i}^{J} - C_{P}^{J})$$

$$(9)$$

$$\begin{split} \delta \rho_{i} \frac{\partial w_{i}^{NH_{3}}}{\partial t} + G \frac{\partial w_{i}^{NH_{3}}}{\partial z} &= r_{hom} \delta \frac{M^{NH_{3}}}{M^{N_{2}H_{4}}} - \Delta_{P} k_{C}^{NH_{3}} (C_{i}^{NH_{3}} - C_{P}^{NH_{3}}) \\ &- w_{i}^{NH_{3}} F + w_{i}^{NH_{3}} \sum_{J} \Delta_{P} k_{C}^{J} (C_{i}^{J} - C_{P}^{J}) \end{split}$$
(10)

$$\begin{split} \delta P_{i} \quad \frac{\partial w_{i}^{N_{2}}}{\partial t} + G \quad \frac{\partial w_{i}^{N_{2}}}{\partial z} &= r_{hom} \delta \quad \frac{M^{N_{2}}}{2M^{N_{2}H_{4}}} - \Delta_{P} k_{C}^{N_{2}} (C_{i}^{N_{2}} - C_{P}^{N_{2}}) \\ &- w_{i}^{N_{2}} F + w_{i}^{N_{2}} \sum_{J} \Delta_{P} k_{C}^{J} (C_{i}^{J} - C_{P}^{J}) \\ \delta P_{i} \quad \frac{\partial w_{i}^{H_{2}}}{\partial t} + G \quad \frac{\partial w_{i}^{H_{2}}}{\partial z} &= r_{hom} \delta \quad \frac{M^{H_{2}}}{2M^{N_{2}H_{4}}} - \Delta_{P} k_{C}^{H_{2}} (C_{i}^{H_{2}} - C_{P}^{H_{2}}) \end{split}$$
(11)

$$- w_{i}^{H_{2}}F + w_{i}^{H_{2}}\sum_{J} \Delta_{P}k_{C}^{J}(C_{i}^{J} - C_{P}^{J})$$

The last term on the right side of Eq. (8) represents the heat loss from the bulk vapor to the wall of the reactor. Taking the reactor wall temperature as uniform, the rate of change of wall temperature with time is

$$m_{w}C_{w}\frac{dT_{w}}{dt} = \pi d_{c}\int_{0}^{L} \mathcal{A}_{w}(T_{i} - T_{w}) dz - \mathcal{A}_{a}A_{w}(T_{w} - T_{a})$$
(13)

(12)

where the last term on the right side of Eq. (13) represents the heat loss by forced convection from the reactor to the surrounding atmosphere. Heat loss by natural convection or radiation can be represented in Eq. (13) by adding a term of the form $\mathcal{A}_a' A_w (T_w - T_a)^{1.25}$ or $\mathcal{A}_a'' A_w (T_w - T_a^{4})$, respectively.

The mass flow rate, G, may be calculated as a function of time and axial position from the inlet mass flow rate, which is a function of pressure, and from Eq. (7). The inlet mass flow rate at any time may be calculated in terms of the steady-state (SS) inlet mass flow rate using

$$\frac{(G)_{Z=0}}{[(G)_{Z=0}]_{SS}} = \frac{\sqrt{P_F - P}}{\sqrt{P_F - P_{SS}}}$$
(14)

For choked nozzle and for a rate of change of vapor density with time which is approximately uniform throughout the reactor, Eq. (7) reduces to

$$\frac{\partial G}{\partial z} = F - \sum_{J} A_{P} k_{c}^{J} (c_{i}^{J} - c_{P}^{J}) - \frac{A_{c} \delta}{V_{c}} \left\{ G - \left(P \sqrt{M} / T_{i} \right) \left(\frac{G}{P \sqrt{M} / T_{i}} \right)_{ss} \right\}_{z=L}$$
(15)

Taking the chamber pressure to be uniform throughout the reactor, the corresponding rate of champe of chamber pressure with time can be approximated by

$$\frac{dP}{dt} \sim R\left(\frac{T_{i}}{\overline{M}}\right)_{z=L} \frac{A_{c}}{V_{c}} \left\{ G - \left(P\sqrt{\overline{M}/T_{i}}\right) \left(\frac{G}{P\sqrt{\overline{M}/T_{i}}}\right)_{ss} \right\}_{z=L}$$
(16)

At a given axial location the rates of change of temperature and reactant concentrations in the catalyst particles with time are given by

$$\frac{dT_{P}}{dt} = -\frac{i}{\rho_{s}C_{s}}\left[\left(Hr_{het}\right)^{N_{2}H_{4}} + \left(Hr_{het}\right)^{NH_{3}}\right] + \frac{3\mathcal{L}_{C}}{\alpha\rho_{s}C_{s}}\left(T_{i} - T_{P}\right) \quad (17)$$

$$\frac{dc_{P}^{N_{2}H_{4}}}{dt} = -\frac{1}{\alpha_{P}}r_{het}^{N_{2}H_{4}} + \frac{3k_{C}^{N_{2}H_{4}}}{\alpha_{P}\alpha}\left(c_{i}^{N_{2}H_{4}} - c_{P}^{N_{2}H_{4}}\right)$$
(18)

$$\frac{dc_{\rm P}^{\rm NH_3}}{dt} = \frac{1}{\alpha_{\rm P}} \left[r_{\rm het}^{\rm N_2H_4} \frac{M^{\rm NH_3}}{M^{\rm N_2H_4}} - r_{\rm het}^{\rm NH_3} \right] + \frac{3 k_{\rm C}^{\rm NH_3}}{\alpha_{\rm P} \alpha} \left(c_{\rm i}^{\rm NH_3} - c_{\rm P}^{\rm NH_3} \right)$$
(19)

н910461-38

$$\frac{dc_{P}^{N_{2}}}{dt} = \frac{i}{\alpha_{P}} \left[r_{het}^{N_{2}H_{4}} \frac{M^{N_{2}}}{2M^{N_{2}H_{4}}} + r_{het}^{NH_{3}} \frac{M^{N_{2}}}{2M^{NH_{3}}} \right] + \frac{3k_{c}^{N_{2}}}{\alpha_{P}\alpha} \left(c_{i}^{N_{2}} - c_{P}^{N_{2}} \right)$$
(20)

$$\frac{dc_{P}^{H_{2}}}{dt} = \frac{1}{\alpha_{P}} \left[r_{het}^{N_{2}H_{4}} \frac{M^{H_{2}}}{2M^{N_{2}H_{4}}} + r_{het}^{NH_{3}} \frac{3M^{H_{2}}}{2M^{NH_{3}}} \right] + \frac{3k_{C}^{H_{2}}}{\alpha_{P}\alpha} \left(c_{i}^{H_{2}} - c_{P}^{H_{2}} \right)$$
(21)

where the film coefficients, h_c , h_w , and k_c , may be estimated from (Ref. 5)

$$h_{\rm w} = h_{\rm c} = 0.74 \left(\frac{G}{A_{\rm p}\mu}\right)^{-0.41} (\overline{C}_{\rm F}G) + \frac{K_{\rm i}}{a}$$
(22)

and

$$k_{c}^{J} = \left(\frac{O.6IG}{\rho_{i}}\right) \left(\frac{\mu}{\rho_{i}D_{i}^{J}}\right)^{-O.667} \left(\frac{G}{A_{p}\mu}\right)^{-O.41} + \frac{D_{i}^{J}}{a}$$
(23)

It should be noted that the thermal conduction term in Eq. (22) and the simple diffusion term in Eq. (23) become significant only when the mass flow rate is quite small, as it is during reactor shutdown.

Recalling that the reaction of hydrazine on the catalyst surfaces is extremely fast, so that the reaction rate is controlled by the rate of transport of hydrazine to the catalyst surfaces, Eq. (18) can be used to define $r_{het}^{N_2H_4}$ by noting that $(dc_p^{N_2H_4}/dt)$ and $c_p^{N_2H_4}$ are both approximately equal to zero. The reaction rate is then given by

$$r_{het}^{N_2H_4} = \frac{3k_c^{N_2H_4}}{a} C_i^{N_2H_4}$$
 (24)

The reaction rate of ammonia on the catalyst surfaces, $r_{het}^{NH}3$, can be computed by multiplying the rate of reaction calculated on the basis of uniform T_p and c_p by the utilization factor determined by analogy with the steady-state system (see Refs. 1, 6 and 7). This general system of equations is applicable to both normal reactor operation and reactor shutdown. Partial differential equations may be simplified considerably by noting first that, during the "on" portion of a pulse duty cycle (or during continuous reactor operation), gas velocities are so great that the time lag from the entrance to the vapor region to any axial position for the fluid is negligible compared with other transient effects. Here Eqs. (8) through (12) may be approximated by

$$\frac{\partial h_i}{\partial z} = -\frac{H^{N_2H_4}}{G}r_{hom}\delta - \frac{A_P}{G}\left[h_C(T_i - T_P)\right] - \frac{F}{G}(h_i - h_F) - \frac{4h_W}{Gd_C}(T_i - T_W)$$
(25)

$$G \frac{\partial W_{i}^{N_{2}H_{4}}}{\partial Z} = F - r_{hom} \delta - A_{P} k_{c}^{N_{2}H_{4}} (C_{i}^{N_{2}H_{4}} - C_{P}^{N_{2}H_{4}})$$

$$- W_{i}^{N_{2}H_{4}} F + W_{i}^{N_{2}H_{4}} \sum_{J} A_{P}^{i} k_{c}^{J} (C_{i}^{J} - C_{P}^{J})$$

$$(26)$$

$$G \frac{\partial w_i^{NH_3}}{\partial z} = r_{hom} \delta \frac{M^{NH_3}}{M^{N_2H_4}} - \Delta_P k_C^{NH_3} (C_i^{NH_3} - C_P^{NH_3}).$$

$$- w_i^{NH_3} F + w_i^{NH_3} \sum_J \Delta_P k_C^J (C_i^J - C_P^J)$$
(27)

$$G \frac{\partial w_i^{N_2}}{\partial z} = r_{\text{hom}} \delta \frac{M^{N_2}}{2M^{N_2H_4}} - A_P k_C^{N_2} (C_i^{N_2} - C_P^{N_2})$$

$$- w_i^{N_2} F + w_i^{N_2} \sum_{J} A_P k_C^{J} (C_i^{J} - C_P^{J})$$
(28)

$$G \frac{\partial w_{i}^{H_{2}}}{\partial z} = r_{hom} \delta \frac{M^{H_{2}}}{2M^{N_{2}H_{4}}} - A_{P} k_{C}^{H_{2}} (C_{i}^{H_{2}} - C_{P}^{H_{2}}) - w_{i}^{H_{2}}F + w_{i}^{H_{2}} \sum_{J} A_{P} k_{C}^{J} (C_{i}^{J} - C_{P}^{J})$$
(29)

Some simplification of the partial differential equations may be achieved in describing reactor operation during the "off" portion of a duty cycle by noting that, here, gas velocities are sufficiently low so that the terms in Eqs. (8) through (12) involving G $\frac{\partial}{\partial Z}$ may be approximated when integrating these equations over small time intervals without introducing any significant error into the calculations. Finite difference methods have been used to program for digital computation the differential equations describing the changes in temperature and concentrations in the reactor system. These methods are similar to those discussed in Ref. 1, where each of the differential equations is treated as an ordinary differential equation (by integrating with respect to time at a fixed position or vice versa). Each equation is rearranged in the form

$$\frac{d'g}{ds} = \alpha - \beta g \qquad (30)$$

where the quantities α and β are taken as constant while integrating the equations from s_{k-1} to s_k (corresponding to Δt or Δ_z). Equation (30) can be integrated to obtain

$$g_{k} = g_{k-1} e^{-\beta (s_{k} - s_{k-1})} + \frac{\alpha}{\beta} \left[1 - e^{-\beta (s_{k} - s_{k-1})} \right]$$
(31)

where g_k is the value of g at $s_k,$ and g_{k-l} is the value of g at $s_{k-l}.$ An alternative form of Eq. (31) is

$$g_{k} = g_{k-1} + \left(\frac{\partial g}{\partial s}\right)_{k-1} \left[\frac{1 - e^{-\beta(s_{k} - s_{k-1})}}{\beta}\right]$$
(32)

It is convenient to use equations of the form of Eq. (31) to compute particle concentrations and temperatures, and to use equations of the form of Eq. (32) to compute interstitial concentrations and temperatures.

The equations representing the transient model of a hydrazine catalytic reactor have been programmed using FØRTRAN IV source language for the UNIVAC 1108 digital computer. This computer program is discussed in detail in a computer manual (Ref. 4). The manual includes input and output descriptions and a description of possible operational problems associated with the program.

RESULTS OF CALCULATIONS

A series of calculations of the transient behavior of a typical continuous flow reactor for which experimental information is available (Ref. 8) was made in order to examine the effectiveness of the transient model. The calculations pertain to a 50 lbr nominal thrust hydrazine reactor 2.4 in. in diameter into which liquid hydrazine is injected at the upstream end of the reactor only. The catalyst bed packing was taken to consist of 25-30 mesh catalyst particles for the first 0.25 in. and 1/8 in. x 1/8 in. cylindrical pellets for the remainder of the bed. This configuration is referred to in the figures as "mixed bed #1". The steady-state chamber pressure was taken as 200 psia, the steady-state mass flow rate as 6.5 lb/ft²-sec, and the initial chamber pressure as 14.7 psia. The results of these calculations are shown in Figs. 1 through 4. Gas temperatures are plotted as function of time at each of four axial positions in Fig. 1* for a case in which the initial bed temperature was taken as 530 deg R. Measured gas temperature profiles (Ref. 8) are also shown in Fig. 1 for purposes of comparison. Generally good agreement between theoretical and experimental results may be noted, particularly during the early stages of the transient. While the differences between measured and calculated rates of response are in part due to the thermocouple response time, the use of steady-state utilization factors to describe heat and mass diffusion within catalyst particles under transient conditions results in calculated response rates which are a little too high. The calculated mole-fraction profiles for hydrazine and ammonia, corresponding to the temperature profiles shown in Fig. 1, are illustrated in Fig. 2, and the corresponding mole-fraction profiles for nitrogen and hydrogen are illustrated in Fig. 3. Here, the mole-fractions are plotted as functions of axial position at various times.

Temperatures are plotted as functions of time at a fixed axial position in Fig. 4 for cases in which the initial bed temperatures were taken as 530, 950, and 1420 deg R respectively. The comparison between calculated and measured temperature profiles is similar for low and elevated initial bed temperature cases.

Additional calculations were made for the reactor configuration noted above in order to examine the effect of pulsed flow on initial transient response. The calculated results illustrated in Figs. 5 through 11 refer to a reactor operated under pulsed flow conditions at a steady-state chamber pressure of 260 psia, a steady-state mass flow rate of 5.8 lb/ft^2 -sec, an initial chamber pressure of 14.7 psia, and an initial bed temperature af 530 deg R. Calculations were made for the first two pulses of a duty cycle consisting of alternate on and off times of 50 msec and 100 msec respectively.

^{*}A plot similar to Fig. 1 was included in Ref. 8; the calculated temperature profiles illustrated in that plot were slightly in error.

The temperature in the interstitial phase is plotted in Fig. 5 as a function of time at various axial locations in the reaction chamber. The temperature rises rapidly after reactor startup, particularly in the upstream portion of the chamber. When flow into the reactor is turned off, the gas temperature in the upstream section of the reactor rises extremely rapidly at first because of thermal decomposition of residual hydrazine in this region. In the regions of the reactor downstream of the small catalyst particles, where the gas temperature is too low after 50 msec to permit significant thermal decomposition of hydrazine, the temperature falls due to heat transfer from the gas to the colder catalyst pellets and to the chamber walls. The heat gained by the catalyst pellets in these regions results in a very small temperature change because of the large mass of the particles. This is illustrated in Fig. 6 where catalyst particle temperature is plotted as a function of time at the same axial locations chosen for Fig. 5.

The rapid pressure buildup and decay resulting from pulse operation of the reactor for this case is shown in Fig. 7. The species mole-fraction profiles associated with this pressure variation and the temperature distributions illustrated in Figs. 5 and 6 and shown in Figs. 8 through 11. The variation of mole-fraction of hydrazine with time at various axial locations is plotted in Fig. 8. This plot illustrates the very rapid thermal decomposition of residual hydrazine in the hotter upstream regions of the reaction chamber during reactor shutdown as well as the somewhat slower catalytic decomposition in the cooler downstream regions of the reactor. The variation of mole-fraction of ammonia with time is illustrated at various axial locations in Fig. 9. Following reactor shutdown the residual ammonia near the upstream end of the reactor decomposes catalytically in the hot catalyst particles. In the cooler downstream regions, ammonia is displaced gradually by the nitrogen and hydrogen formed from hydrazine and ammonia decomposition upstream. These decomposition products flow downstream during shutdown as the chamber pressure decays. These processes lead to the ammonia mole-fraction profiles shown in Fig. 9 and the mole-fraction profiles of nitrogen and hydrogen shown in Figs. 10 and ll respectively.

The effects of various reactor operating conditions on the transient behavior of typical hydrazine reactors are illustrated in Figs. 12 through 38. The calculated results refer to a 23 lb_f nominal thrust engine 1.4 in. in diameter with a packed length of 1.2 in. into which liquid hydrazine is injected at a temperature of 530 deg R. A reference case was chosen in which hydrazine injection was taken at the reactor inlet only and in which the steady-state mass flow rate was taken as 5.76 lb/ft^2 -sec (0.04 lb/in^2 -sec), the injector pressure as 150 psia, the initial chamber pressure as 14.7 psia, the initial bed temperature as 530 deg R, the pulse duty cycle as alternating 60 msec on and 60 msec off, and the catalyst bed configuration as 0.2 in. of 25-30 mesh catalyst particles followed by 1.0 in. of 14-18 mesh catalyst This bed configuration is referred to in the figures as "mixed particles. bed #2". Injector pressure, mass flow rate, axial injection profile, catalyst bed configuration, and pulse duty cycle were then varied in turn and the calculated interstitial temperatures at two axial positions in the bed were then plotted as a function of time. The transient behavior of the reference case is illustrated in Figs. 12 through 22. Transient interstitial temperature profiles are plotted in Fig. 12 for two axial positions, one at the end of the bed and one at approximately the midpoint of the bed. Also plotted in Fig. 12 are the temperature profiles computed at these same points for the reactor operating under conditions of continuous rather than pulsed flow. The transient particle temperature profiles associated with the interstitial temperatures shown in Fig. 12 are plotted in Fig. 13, while the chamber pressure is plotted as a function of time in Fig. 14. The associated molefraction profiles for hydrazine are plotted in Figs. 15 and 16, for ammonia in Figs. 17 and 18, for nitrogen in Figs. 19 and 20, and for hydrogen in Figs. 21 and 22.

In Fig. 23, transient interstitial temperature profiles are plotted for an injector pressure of 500 psia with all other conditions taken as those of the reference case. The very slight effect of pressure on transient response may be noted by comparing Figs. 12 and 23. A direct comparison of exit gas temperature profiles associated with the two different pressures is shown in Fig. 24 for the reactor operating under conditions of continuous flow.

Transient interstitial temperature profiles are plotted for steady-state mass flow rates of 1.44 lb/ft^2 -sec (0.01 lb/in.²-sec) in Fig. 25 and 14.4 lb/ft²-sec (0.10 lb/in.²-sec) in Fig. 26 with all other conditions taken the same as those of the reference case.* The marked effect of mass flow rate on transient response is further illustrated in Fig. 27 for a continuous flow system. Here, exit gas temperatures are plotted versus time for the three different steady-state mass flow rates.

The effects of distributed injectors on transient temperature profiles are illustrated in Figs. 28 through 30. Temperature are plotted as functions of time at the midpoint and at the end of the bed in Figs. 28 and 29 respectively for a case in which 1/4 of the hydrazine is injected at the inlet and the remaining 3/4 is injected uniformly over the first 1/2 in. of the reactor.

^{*}An injector pressure of 500 psia was used in calculations for the high mass flow rate case since the high pressure drop associated with this flow rate precludes use of the reference injector pressure.

The exit gas temperature profiles for this case and for the reference case of all inlet injection are compared in Fig. 30 under conditions of continuous flow.

Transient interstitial temperature profiles are plotted for different catalyst bed configurations in Figs. 31 through 35. Temperature profiles associated with beds packed with all 25-30 mesh particles are shown in Fig. 31, all 14-18 mesh particles in Fig. 32, and the mixture of 25-30 mesh particles and 1/8 in. x 1/8 in. cylindrical pellets in Figs. 33 and 34. Exit gas temperature profiles for these cases are compared in Fig. 35 under conditions of continuous flow.

The transient temperature profiles at two axial positions for a pulse duty cycle consisting of alternate on and off times of 60 msec and 120 msec respectively are illustrated in Fig. 36. The temperature profiles associated with a 60 msec/240 msec pulse duty cycle are shown in Fig. 37. The effects of duty cycle on the transient response of the exit gas temperature are summarized in Fig. 38.

Additional calculations were made to illustrate the transient behavior of a high thrust hydrazine engine. The calculations pertain to a 600 lb_f nominal thrust hydrazine reactor 4.2 in. in diameter with a packed length of 1.0 in. into which liquid hydrazine is injected at the upstream end of the reactor only. The catalyst bed packing was taken to consist of all 25-30 mesh catalyst particles; the steady-state mass flow rate was taken as 40.3 lb/ft^2 -sec, the injector pressure as 1405 psia, the initial chamber pressure as 0.1 psia, the initial bed temperature as 530 deg R, and the pulse duty cycle as alternating 50 msec on and 250 msec off. For this case, interstitial temperature, particle temperature, chamber pressure, and the mole-fractions of hydrazine, ammonia, nitrogen and hydrogen are plotted as functions of time at the end of the bed in Figs. 39, 40, 41, 42, 43, 44 and 45 respectively. These figures illustrate the very rapid transient response associated with this high flow rate system.

REFERENCES

- Kesten, A. S.: Analytical Study of Catalytic Reactors for Hydrazine Decomposition. United Aircraft Research Laboratories Report F910461-12, First Annual Progress Report, Contract NAS 7-458, May 1967.
- 2. Kesten, A. S.: Analytical Study of Catalytic Reactors for Hydrazine Decomposition. United Aircraft Research Laboratories Report G910461-24, Second Annual Progress Report, Contract NAS 7-458, May 1968.
- 3. Smith, E. J., D. B. Smith, and A. S. Kesten: Analytical Study of Catalytic Reactors for Hydrazine Decomposition. United Aircraft Research Laboratories Report G910461-30, Computer Program Manual - Oneand Two-Dimensional Steady-State Models, Contract NAS 7-458, August 1968.
- 4. Smith, D. B., E. J. Smith, and A. S. Kesten: Analytical Study of Catalytic Reactors for Hydrazine Decomposition. United Aircraft Research Laboratories Report H910461-37, Computer Programs Manual - Transient Model, Contract NAS 7-458, May 1969.
- 5. Bird, R. B., W. E. Stewart, and E. N. Lightfoot: Transport Phenomena. John Wiley & Sons, Inc., New York, 1960.
- 6. Kesten, A. S.: Analytical Study of Catalytic Reactors for Hydrazine Decomposition - Part I: Steady-State Behavior of Hydrazine Reactors. Proceedings of the Hydrazine Monopropellant Technology Symposium, The Johns Hopkins University Applied Physics Laboratory, Silver Spring, Maryland, November 1967.
- 7. Kesten, A. S.: Analytical Study of Catalytic Reactors for Hydrazine Decomposition - Part II: Transient Behavior of Hydrazine Reactors. Proceedings of the Hydrazine Monopropellant Technology Symposium, The Johns Hopkins University Applied Physics Laboratory, Silver Spring, Maryland, November 1967.
- 8. Kesten, A. S. and T. W. Price: Analytical and Experimental Studies of the Transient Behavior of Catalytic Reactors for Hydrazine Decomposition. Proceedings of the CPIA 10th Liquid Propulsion Symposium, Las Vegas, Nevada, November 1968.

н910461**-**38

LIST OF SYMBOLS

a	Radius of spherical particle, ft
A _c	Cross-sectional area of reaction chamber, ft ²
Ap	Total external surface of catalyst particle per unit volume of bed, ft ⁻¹
A _w	Total surface area of chamber walls, ft ²
°. i	Reactant concentration in interstitial fluid, lb/ft^3
с _р	Reactant concentration in gas phase within the porous particle, lb/ft^3
$C_{\mathbf{F}}$	Specific heat of fluid in the interstitial phase, Btu/lb-deg R
$\overline{C_{\mathbf{F}}}$	Average specific heat of fluid in the interstitial phase, Btu/lb-deg R
Cs	Specific heat of catalyst particle, Btu/1b - deg R
Cw	Specific heat of chamber walls, Btu/lb - deg R
d _c	Diameter of reaction chamber, ft
Di	Diffusion coefficient of reactant gas in the interstitial fluid, ${\rm ft}^2/{ m sec}$
Dp	Diffusion coefficient of reactant gas in the porous particle, ft^2/sec
F	Rate of feed of hydrazine from distributed injectors into the system, $lb/ft3$ -sec
G	Mass flow rate, lb/ft ² -sec
h	Enthalpy, Btu/lb
h _a	Heat transfer coefficient for forced convection between chamber and surrounding atmosphere, Btu/ft^2 -sec-deg R
h _a '	Heat transfer coefficient for natural convection between chamber and surrounding atmosphere, Btu/ft^2 -sec-deg R ^{1.25}
h_{a} "	Radiation heat transfer coefficient between chamber and surrounding atmosphere, Btu/ft^2 -sec-deg R^4
hc	Heat transfer coefficient between bulk fluid and particles, Btu/ft^2 -sec-deg R

h_{w}	Heat transfer coefficient between bulk fluid and chamber walls, Btu/ft^2 -sec-deg R
Н	Heat of reaction (negative for exothermic reaction), Btu/lb
k c	Mass transfer coefficient, ft/sec
Ki	Thermal conductivity of interstitial fluid, Btu/ft-sec-deg R
Кр	Thermal conductivity of the porous catalyst particle, Btu/ft-sec-deg R
L	Length of reaction chamber, ft
m_ W	Thermal mass of chamber walls, 1b
М	Molecular weight, lb/lb mole
M	Average molecular weight, lb/lb mole
P	Chamber pressure, psia
r het	Rate of (heterogeneous) chemical reaction on the catalyst surfaces, lb/ft^3 -sec
rhom	Rate of (homogeneous) chemical reaction in the interstitial phase, lb/ft3-sec
R	Gas constant, equals 10.73 psia - ft ³ /lb mole - deg R
t	Time, sec
Т	Temperature, deg R
V _c	Volume of reactor up to nozzle throat exclusive of volume occupied by catalyst particles, ft^3
wi	Weight fraction of reactant in interstitial phase
Z	Axial distance, ft
$lpha_{ m p}$	Intraparticle void fraction
δ	Interparticle void fraction
μ	Viscosity of interstitial fluid, 1b/ft-sec

```
н910461-38
```

 $\rho_{\rm i}$ Density of interstitial fluid, lb/ft³

 $ho_{\rm s}$ Bulk density of catalyst particle, lb/ft³

Subscripts

a	Refers to surrounding atmosphere
F	Refers to feed
i	Refers to interstitial phase
р	Refers to gas within the porous catalyst particle
S	Refers to surface of catalyst particle
SS	Refers to steady-state
W	Refers to chamber wall
Supersci	ripts

J Refers to chemical species

APPENDIX I

DISTRIBUTION LIST FOR THIRD ANNUAL PROGRESS REPORT

G910461-24

Addressee	Copies	Addressee	Copie	s
National Aeronautics & Space Administration	1	NASA Lewis Research Center		1
Washington, D. C. 20546		21000 Brookpark Road		
Attn: Chief, Liq. Prop. Res. & Tech., RPL		Cleveland, Ohio 44135		
,		Attn: Mr. I. A. Johnsen		
National Aeronautics & Space Administration	10			
Washington, D. C. 20546		Marshall Space Flight Center		1
Attn: Chief, Liq. Prop. Exp. Systems, RPX		Huntsville, Alabama 35812		
	_	Attn: Mr. Kieth Coates		
National Aeronautics & Space Administration	1			_
Washington, D. C. 20546		Department of Chemical Engineering		1
Attn: Dir., Launch Vehicles & Prop., SV		University of British Columbia		
National Assessmenting & Engage Administration	7	Vancouver D, Canada		
Washington D C 205%	7	Aton: Dr. J. Lielmezs		
Attr. Dir. Advanced Manned Missions. MT		NASA Ameg Research Center		2
noon, brit, natenooa pedioa neoboliby na		Moffett Field, California 94035		-
Air Force Rocket Propulsion Laboratory	1	Attn: Technical Librarian		
Research and Technology Division				
Air Force System Command		NASA Ames Research Center	Ltr.	Only
Edwards, California 93523		Moffett Field, California 94035		-
Attn: Mr. K. Rimer		Attn: Mr. Harold Hornby		
		Mission Analysis Division		
Air Force Rocket Propulsion Laboratory	1			
Research and Technology Division		NASA Ames Research Center	Ltr.	Only
Air Force System Command		Moffett Field, California 94035		
Edwards, California 93523		Attn: Mr. Clarence A. Syvertson		
Attn: Capt. Noyce/32725				
		NASA Goddard Space Flight Center		2
U. S. Naval Ordnance Test Station	1	Greenbelt, Maryland 20771		
China Lake, California 93553		Attn: Tecnnical Librarian		
Attn: Mr. Duane williams		NACA Coddand Chapper Flight Conton	T+	Onla
U.S. Nevel Ordnence West Station	ı	Greenbelt Maryland 2077]	TIOL .	UIIIJ
China Lake California 93553		Attn: Mr. Merland L. Moseson, Code 620		
Attn: Mr. James Dake		How Met Met Lake 21 Messeony beas all		
		NASA Goddard Space Flight Center	Ltr.	Only
U. S. Naval Ordnance Test Station	1	Greenbelt, Maryland 20771		
China Lake, California 93553		Attn: Mr. D. Grant		
Attn: Mr. David Oliver				
		Jet Propulsion Laboratory		2
Jet Propulsion Laboratory	10	California Institute of Technology		
4800 Oak Grove Drive		4800 Oak Grove Drive		
Pasadena, California 91103		Pasadena, California 91103		
Attn: Mr. Theodore W. Price		Attn: Technical Librarian		
MARA Deserves Office	2	Tet Desculator Televotory	T+m	0
NASA Pasadena Ollice	7	California Institute of Machaelogy	TOT.	Unity
Pagedene California 01103		1800 Oak Grove Drive		
Attn: Contracting Officer		Pasadena California 91103		
Aban, Considering officer		Attn: Mr. Henry Burlage, Jr.		
NASA Pasadena Office	1	Propulsion Div., 38		
4800 Oak Grove Drive				
Pasadena, California 91103		NASA Langley Research Center		2
Attn: Office of Tech. Information		Langley Station		
& Patent Matters		Hampton, Virginia 23365		
		Attn: Technical Librarian		
Scientific & Technical Information Facility	2			
P. 0. Box 5700		NASA Langley Research Center		
Bethesda, Maryland 20014		langley Station		
Attn: NASA Rep., Code CRT		Hampton, Virginia 23365		
MAGA Lorda Pogoamah Centar	, ,	Attn: Mr. David Carter		
NADA LEWIS RESEATCH GENTET	3	NASA Landley Research Conter	T+2	001.0
Cleveland, Ohio 44135		Tangley Station	Пот.	oury
Attn: Mr. Paul N. Herr		Hampton, Virginia 23365		
		Attn: Dr. Floyd L. Thompson. Dir.		
		· ··· · · ····························		

H910461-38

Addressee	Copies	Addressee	Copie	8
NASA Langley Research Center Langley Station Hampton, Virginia 23365	Ltr. Only	Air Force Missile Development Center Holloman Air Force Base, New Mexico 88330 Attn: Maj. R. E. Bracken, Code MDGRT	、Ltr.	Only
Attn: Mr. R. Hook NASA Lewis Research Center 21000 Brookpark Road	2	Air Force Missile Test Center Patrick Air Force Base, Florida		
Cleveland, Ohio 44135 Attn: Technical Librarian		Air Force Missile Test Center	Ltr.	Only
NASA Lewis Research Center 21000 Brookpark Road	Ltr. Only	Patrick Air Force Base, Florida Attn: Mr. L. J. Ullian		
Cleveland, Ohio 44135 Attn: Dr. Abe Silverstein, Dir.		Air Force Systems Division Air Force Unit Post Office Los Angeles 45. California 90045		1
NASA Lewis Research Center 21000 Brookpark Road Cleveland, Obio 44135	Ltr. Only	Attn: Technical Librarian	L±r	Only
Attn: Mr. Steve Cohen	0	Air Force Dit Post Office Los Angeles 45, California 90045	101.	Unity
Huntsville, Alabama 35812 Attn: Technical Librarian	۷	Attn: Col. Clark, Tech. Data Center Technical Library		2
NASA Marshall Space Flight Center Huntsville, Alabama 35812 Attn: Mr. Hans G. Paul, Code R-P+VED	Ltr. Only	AFFTC (FTBPP-2) Edwards AFB, California 93523 Attn: Technical Librarian		
NASA Marshall Space Flight Center Huntsville, Alabama 35812 Attn: Mr. Werner Voss, R-P&VE-FM	Ltr. Only	Arnold Engineering Development Center Arnold Air Force Station Tullahoma, Tennessee 37388 Attn: Technical Librarian		l
NASA Manned Spacecraft Center Houston, Texas 77001 Attn: Technical Librarian	2	Arnold Engineering Development Center Arnold Air Force Station Tullahoma, Tennessee 37388	Ltr.	Only
NASA Manned Spacecraft Center	Ltr. Only	Attn: Dr. H. K. Doetsch		
Houston, Texas 77001 Attn: Dr. Robert R. Gilruth, Dir.		Bureau of Naval Weapons Department of the Navy Washington, D. C. 20546		1
NASA Manned Spacecraft Center Houston, Texas 77001 Attn: Mr. H. Pohl	Ltr. Only	Attn: Technical Librarian Bureau of Naval Weapons	Ltr.	Only
NASA John F. Kennedy Space Center Cocca Beach, Florida 32931 Attn: Technical Librarian	2	Department of the Navy Washington, D. C. 20546 Attn: Mr. J. Kay, RTMS-41		
NASA John F. Kennedy Space Center Cocoa Beach, Florida 32931 Attn: Dr. Kurt H. Debus	Ltr. Only	Defense Documentation Center Headquarters Cameron Station, Building 5 5010 Duke Street Alexandria, Virginia 22314		1
NASA Test Facility	1	Attn: Technical Librarian		
White Sands, New Mexico Attn: Technical Librarian		Defense Documentation Center Headquarters Cameron Station, Building 5 5010 Duke Street Alexandria. Virginia 22314	Ltr.	Only
NASA Test Facility Propulsion Engineering Office White Sands, New Mexico	Ltr. Only	Attn: TISIA Headquarters, U. S. Air Force		1
Attn: Mr. I. D. Smith, Staff Chemist	٦	Washington, D. C. 20546 Attn: Technical Librarian		-
Air Force Systems Command Wright-Patterson Air Force Base Dayton, Ohio 45433 Attn: Technical Librarian	-	Headquarters, U. S. Air Force Washington, D. C. 20546 Attn: Col. C. K. Stambaugh, AFRST	Ltr.	Only
Aeronautical Systems Division Air Force Systems Command Wright_Patterson Air Force Base	Ltr. Only .	Picatinny Arsenal Dover, New Jersey 07801 Attn: Technical Librarian		1
Dayton, Ohio 45433 Attn: Mr. D. L. Schmidt, Code ASRCNC-2		Picatinny Arsenal Dover, New Jersey 07801	Ltr.	Only
Air Force Missile Development Center Holloman Air Force Base, New Mexico 88330 Attn: Technical Librarian	l	Liquid Propulsion Lab., SMUPA-DL		

H910461-38

Addressee	Copies	Addressee	Copies
Air Force Rocket Propulsion Laboratory Research and Technology Division Air Force Systems Command	1	Aeronutronic Division Philco Corporation Ford Road	1
Attn: Technical Librarian		Attn: Technical Librarian	
Air Force Rocket Propulsion Laboratory Research and Technology Division Air Force Systems Command	Ltr. Only	Aeronutronic Division Phileo Corporation Ford Road	Ltr. Only
Edwards, California 93523 Attn: Mr. H. Main, RPRR		Newport Beach, California 92663 Attn: Mr. N. Stern	
U. S. Atomic Energy Commission ' Technical Information Services Box 62	1	Aerospace Corporation 2400 East El Segundo Boulevard P. O. Box 95085	l
Oak Ridge, Tennessee 37830 Attn: Technical Librarian		Los Angeles, California 90045 Attn: Technical Librarian	
U. S. Atomic Energy Commission Technical Information Services Box 62	Ltr. Only	Aerospace Corporation 2400 East El Segundo Boulevard P. 0. Box 95085	Ltr. Only
Oak Ridge, Tennessee 37830 Attn: Mr. A. P. Huber Oak Ridge Gaseous Diffusion Flant		Los Angeles, California 90045 Attn: Mr. M. J. Russi	
(OKGDP) P. O. BOX P U. S. Army Missile Command	1	Aerospace Corporation 2400 East El Segundo Boulevard P. O. Box 95085	Ltr. Only
Redstone Arsenal, Alabama 35809 Attn: Technical Librarian		Los Angeles, California 90045 Attn: Mr. H. Greer, Propulsion Dept.	
U. S. Army Missile Command Redstone Arsenal, Alabama 35809 Attn: Dr. Walter Wharton	Ltr. Only	Arthur D. Little, Incorporated 20 Acorn Park Cambridge, Massachusetts 02140 Attn: Technical Librarian	1
U. S. Naval Ordnance Test Station China Lake, California 93557 Attn: Technical Librarian	1	Arthur D. Little, Incorporated 20 Acorn Park	Ltr. Only
U. S. Naval Ordnance Test Station China Lake, California 93557	Ltr. Only	Cambridge, Massachusetts 02140 Attn: Mr. E. Karl Bastress	
Chief, Missile Propulsion Division		Douglas Aircraft Company 2121 Paularino	Т
Chemical Propulsion CPIA Information Agency Applied Physics Laboratory 8621 Georgia Avenue	1	Newport Beach, California 92663 Attn: Technical Librarian	
Silver Spring, Maryland 20910 Attn: Technical Librarian		Astropower Laboratory Douglas Aircraft Company 212 Paularino	Ltr. Only
Chemical Propulsion CPIA Information Agency Applied Physics Laboratory 8621 Georgia Avenue	Ltr. Only	Newport Beach, California 92663 Attn: Dr. George Moc, Dir. Research	
Silver Spring, Maryland 20910 Attn: Mr. P. Martin		Astrosystems International, Incorporated 1275 Bloomfield Avenue Fairfield, New Jersey 07007	1
Aerojet-General Corporation P. 0. Box 296 Agues California 01703	1	Attn: Technical Librarian	[tm_0n]v
Attn: Technical Librarian		1275 Bloomfield Avenue Fairfield, New Jersey 07007	bor, only
Aerojet-General Corporation P. O. Box 296 Azusa, California 91703	str. Only	Attn: Mr. A. Mendenhall Atlantic Research Corporation	l
Attn: Mr. L. F. Kohrs	1	Edsall Road and Shirley Highway Alexandria, Virginia 22314 Attn: Technical Librarian	
P. 0. Box 1947 Technical Library, Bldg. 2015, Dept. 2410	_	Atlantic Research Corporation	Ltr. Only
Sacramento, California 95809 Attn: Technical Librarian		Edsall Road and Shirley Highway Alexandria, Virginia 22314 Attn: Mr. A. Scurlock	
Aerojet-General Corporation	Ltr. Only		
P. O. Box 1947 Sacramento, California 95809 Attn: Dr. C. B. McGough		Beech Aircraft Corporation Boulder Division Box 631	1
		Boulder, Colorado 80302 Attn: Technical Librarian	

н910461-38

Addressee	Copies	Addressee	Copies
Beech Aircraft Corporation Boulder Division Box 631 Boulder, Colorado 80302 Attn: Mr. J. H. Rodgers	Ltr. Only	Missile and Space Systems Division Douglas Aircraft Company, Incorporated 3000 Ocean Park Boulevard Santa Monica, California 90406 Attn: Mr. R. W. Hallet, Chief Engineer Advanced Space Tech.	Ltr. Only
Bell Aerosystems Company P. O. Box 1	1	Missile and Space Systems Division	Ltr. Only
Buffalo, New York 14240 Attn: Technical Librarian		Douglas Aircraft Company, Incorporated 3000 Ocean Park Boulevard Santa Monica, California 90406	Hor Mity
Bell Aerosystems Company P. O. Box 1	Ltr. Only	Attn: Mr. A. Pisciotta, Jr.	
Buffalo, New York 14240 Attn: Mr. N. Safeer		Aircraft Missiles Division Fairchild Hiller Corporation Hagerstown, Maryland 21740	1
Bell Aerosystems Company P. O. Box 1	Ltr. Only	Attn: Technical Librarian	
Buffalo, New York 14240 Attn: Mr. N. R. Roth		Aircraft Missiles Division Fairchild Hiller Corporation Hagerstown, Maryland 21740	Ltr. Only
Bell Aerosystems Company P. O. Box 1	Ltr. Only	Attn: Mr. J. S. Kerr	
Buffalo, New York 14240 Attn: Mr. J. Flanagan Bendix Systems Division Bendix Corporation	1	General Dynamics Convair Division 5001 Kearny Villa Road P. O. Box 1628 San Diego, California 92112	1
3300 Plymouth Road Ann Arbor, Michigan 48105		Attn: Technical Librarian	
Attn: Technical Librarian		General Dynamics Convair Division 5001 Kaamu Wills Bood	Ltr. Only
Bendix Corporation 3300 Plymouth Road Ann Arbor, Michigan 48105	Her, only	P. O. Box 1628 San Diego, California 92112 Attn: Mr. E. R. Peterson	
Attn: Mr. John M. Brueger		V.P., Research and Eng.	
Boeing Company P. O. Box 3707 Seattle, Washington 98124 Attn: Technical Librarian Boeing Company	l Ltr. Only	General Dynamics Convair Division 5001 Kearny Villa Road P. O. Box 1628 San Diego, California 92112 Attn: Mr. Frank Dore	Ltr. Only
P. O. Box 3707 Seattle, Washington 98124 Attn: Mr. J. D. Alexander		Missile and Space Systems Center General Electric Company	l
Missile Division Chrysler Corporation	1	Valley Forge Space Technology Center P. O. Box 8555 Philadelphia, Pennsylvania	
P. O. Box 2628 Detroit, Michigan 48231		Attn: Technical Librarian	
Attn: Technical Librarian	÷	Missile and Space Systems Center General Electric Company	Ltr. Only
Missile Division Chrysler Corporation P. O. Box 2628 Detroit, Michigan 48231	Ltr. Only	Valley Forge Space Technology Center P. O. Box 8555 Philadelphia, Pennsylvania Attn: Mr. F. Mezger	
Attn: Mr. John Gates		Missile and Space Systems Center	Ltr. Only
Wright Aeronautical Division Curtiss-Wright Corporation Wood-Ridge, New Jersey 07075 Attn: Technical Librarian	1	General Electric Company Valley Forge Space Technology Center P. 0. Box 8555 Philadelphia, Pennsylvania Attp: Mr. B. E. Emmer	
Wright Aeronautical Division	Ltr. Only	Mandle and Owner Contains 2 1	Ť± ^*
Curtiss-Wright Corporation Wood-Ridge, New Jersey 07075 Attn: Mr. G. Kelley		MISSILE and Space Systems Center General Electric Company Valley Forge Space Technology Center P. 0. Box 8555	Ltr. Only
Missile and Space Systems Division Douglas Aircraft Company, Incorporated 3000 Ocean Park Boulevard	Ţ	Attn: Mr. B. H. Caldwell	
Santa Monica, California 90406 Attn: Technical Librarian		Advanced Engine & Technology Department General Electric Company Cincinnati, Ohio 45215 Attn: Technical Librarian	1

H910461-38

Addressee	Copies	Addresses	Copies
Advanced Engine & Technology Department	Ltr. Only	The Marquardt Corporation	Ltr. Only
General Electric Company		16555 Sericoy Street	
Cincinnati, Ohio 45215		Van Nuys, California 91409	
Attn: Mr. D. Suichu		Attn: Mr. Warren P. Boardman, Jr.	
Grumman Aircraft Engineering Corporation .	1	The Marguardt Corporation	Ltr. Only
Bethpage, Long Island, New York 11714		16555 Saricoy Street	
Attn: Technical Librarian		Van Nuys, California 91409 Attn: Mr. R. Knox	
Grumman Aircraft Engineering Corporation	Ltr. Only		
Bethpage, Long Island, New York 11714		Baltimore Division	1
Attn: Mr. Joseph Gavin		Martin Marietta Corporation Baltimore, Marvland 21203	
Hughes Aircraft Company	l	Attn: Technical Librarian	
Aerospace Group			
Centinela and Teale Streets		Baltimore Division	Ltr. Only
Culver City, California		Martin Marietta Corporation	
Attn: Technical Librarian		Attn: Mr John Celethes (3214)	
Hughes Aircraft Company	Ltr. Only	Non, M. Dom our ones (Jean)	
Aerospace Group		Denver Division	1
Centinela and Teale Streets		Martin Marietta Corporation	
Culver City, California		P. O. Box 179	
Attn: Mr. E. H. Meier, V.P. & Div. Mgr.		Denver, Colorado 80201	
Research and Dev. Div.		Attn: Technical Librarian	
Walter Kidde & Company, Incorporated	1	Denver Division	Ltr. Only
675 Main Street		Martin Marietta Corporation	
Belleville, New Jersey 07109		P. 0. Box 179	
Attn: Technical Librarian		Denver, Colorado 80201	
	The Only	Attn: Mr. J. D. Gobalette (A-241)	
675 Main Street	her. only	Denver Division	Ltr. Only
Belleville, New Jersev 07109		Martin Marietta Corporation	
Attn: Mr. K. A. Travnelis		P. 0. Box 179	
		Denver, Colorado 80201	
Ling-Temco-Vought Corporation	1	Attn: Mr. A. J. Kullas	
Astronautics			_
P. 0. Box 5907		Orland Division	1
Dallas, Texas 75222		Martin Marietta Corporation	
Attn: Technical Librarian		Box 2037 Orlando Florida	
Ling-Temco-Vought Corporation	Ltr. Only	Attn: Technical Librarian	
Astronautics			
P. 0. Box 5907		Orland Division	Ltr. Only
Dallas, Texas 75222		Martin Marietta Corporation	
Attn: Mr. Garland Whisenhunt		Box 5837	
	7	Attn. Mn I Form	
Attn: Machnicel Information Center	T	ACCH: M. S. Feim	
P. O. Box 504		McDonnell Aircraft Corporation	1
Sunnyvale, California 94088		P. O. Box 516	
Attn: Technical Librarian		Municipal Airport	
		St. Louis, Missouri 63166	
Lockheed Missiles and Space Company	Ltr. Only	Attn: Technical Librarian	
Attn: Technical Information Center		N-D	Tta Oplar
P. 0. Box 504		MeDonnell Aircrait Corporation	LTT. OILY
Attr. Mr. Y. C. Lee		Municipel Airport	
AUGH: MI. I. C. Lee		St. Louis. Missouri 63166	
Lockheed Propulsion Company	1	Attn: Mr. R. A. Herzmark	
P. O. Box 111	-		
Redlands, California 92374		McDonnell Aircraft Corporation	Ltr. Only
Attn: Technical Librarian		P. O. Box 516	
		Municipal Airport	
Lockneed Propulsion Company	Ltr. Only	St. LOUIS, MISSOURI OJLOD	
r. U. BOX III Redlands California 0227		WOON! M. L. VETTER	
Attn: Mr. H. L. Thackwell		Rocket Research Corporation	1
		520 South Portland Street	
Lockheed Propulsion Company	Ltr. Only	Seattle, Washington 98108	
P. O. Box 111		Attn: Technical Librarian	
Redlands, California 92374			T.L. 0.17
Attn: Mr. J. E. Fitzgerald		Rocket Research Corporation	Ltr. Only
The Managerit Comparation	۲	Seattle Washington 08108	
ine marquarat corporation 16555 Saricov Street	Ţ	Attn: Mr. Foy McCullough. Jr.	
Van Nuys, California 91409		III / / / / / / / / / / / /	
Attn: Technical Librarian			

н9**10**461**-3**8

Addressee	Copies	Addressee	Copies
Rocket Research Corporation 520 South Portland Street Seattle, Washington 98108 Attn: Mr. Bruce Schmitz	Ltr. Only	Republic Aviation Corporation Farmingdale, Long Island, New York Attn: Technical Librarian	1
Rocket Research Corporation 520 South Portland Street Seattle, Washington 98108	Ltr. Only	Republic Aviation Corporation Farmingdale, Long Island, New York Attn: Dr. William O'Donnell	Ltr. Only
Space & Information Systems Division North American Aviation, Incorporated 12214 Lakewood Boulevard	l	9200 East Flair Avenue El Monte, California 91734 Attn: Technical Librarian	L
Downey, California 90241 Attn: Technical Librarian		Space General Corporation 9200 East Flair Avenue El Monte, California 91734	Ltr. Only
Space & Information Systems Division North American Aviation, Incorporated 12214 Lakewood Boulevard Downey, California 90241 Attn: Mr. H. Storms	Ltr. Only	Attn: Mr. C. E. Roth Stanford Research Institute 333 Ravenswood Avenue Menlo Park, California 94025 Attn: Technical Librarian	
North American Aviation, Incorporated 6633 Canoga Avenue Canoga Park, California 91304 Attn: Technical Librarian	Ţ	Stanford Research Institute 333 Ravenswood Avenue Menlo Park, California 94025 Attn: Mr. Lionel Dickinson	Ltr. Only
Rocketdyne (Library 586-306) North American Aviation, Incorporated 6633 Canoga Avenue Canoga Park, California 91304 Attn: Mr. E. B. Monteath	Ltr. Only	TRW Systems One Space Park Redondo Beach, California 90278 Attn: Technical Librarian	l
Rocketdyne (Library 586-306) North American Aviation, Incorporated 6633 Canoga Avenue Canoga Park, California 91304	Ltr. Only	TRW Systems One Space Park Redondo Beach, California 90278 Attn: Mr. D. Lee	Ltr. Only
Attn: Mr. E. V. Zettle Rocketdyne (Library 586-306) North American Aviation, Incorporated	Ltr. Only	TRW Systems One Space Park Redondo Beach, California 90278 Attn: Mr. V. Moseley	Ltr. Only
6633 Canoga Avenue Canoga Park, California 91304 Attn: Mr. N. Rodewald		Tapco Division TRW, Incorporated 23555 Euclid Avenue	ſ
Northrop Space Laboratories 3401 West Broadway Hawthorne, California 90250 Attn: Technical Librarian	Ţ	Cleveland, Ohio 44117 Attn: Technical Librarian Tapco Division	Ltr. Only
Northrop Space Laboratories 3401 West Broadway Hawthorne, California 90250 Attn: Dr. William Howard	Ltr. Only	TRW, Incorporated 23555 Euclid Avenue Cleveland, Ohio ⁴⁴ 117 Attn: Mr. P. T. Angell	
Astro-Electronics Division Radio Corporation of America Princeton, New Jersey 08540 Attn: Technical Librarian	1	Thiokol Chemical Corporation Huntsville Division Huntsville, Alabama 35807 Attn: Technical Librarian	1
Astro-Electronics Division Radio Corporation of America Princeton, New Jersey 08540 Attn: Mr. S. Fairweather	Ltr. Only	Thiokol Chemical Corporation Huntsville Division Huntsville, Alabama 34807 Attn: Mr. John Goodloe	Ltr. Only
Reaction Motors Division Thiokol Chemical Corporation Denville, New Jersey 07832 Attn: Technical Librarian	1,	United Technology Center 587 Methilda Avenue P. O. Box 358 Sunnyvale, California 94088 Attn: Technical Librarian	1
Reaction Motors Division Thiokol Chemical Corporation Denville, New Jersey 07832 Attn: Mr. Arthur Sherman	Ltr. Only	United Technology Center 587 Methilda Avenue P. O. Box 358 Sunnyvale, California 94088 Attn: Mr. B. Adelman	Ltr. Only
Reaction Motors Division Thiokol Chemical Corporation Denville, New Jersey 07832 Attn: Mr. Robert Gere	Ltr. Only		

H910461-38

Addressee	Copies	Addressee	Copies
Florida Research & Development Center Pratt & Whitney Aircraft United Aircraft Corporation P. O. Box 2691 West Palm Beach, Florida 33402 Attn: Technical Librarian	1	Brooklyn Polytechnic Institute Department of Chemical Engineering 333 Jay Street Brooklyn, New York 11201 Attn: Prof. I. Miller	Ltr. Only
Florida Research & Development Center Pratt & Whitney Aircraft United Aircraft Corporation P. O. Box 2691 West Palm Beach, Florida 33402 Attn: Mr. R. J. Coar	Ltr. Only		
Vickers Incorporated Box 302 Troy, Michigan Attn: Technical Librarian	1		
Sunstrand Aviation 2421 llth Street Rockford, Illinois 61101 Attn: Technical Librarian	l		
Sunstrand Aviation 2421 11th Street Rockford, Illinois 61101 Attn: Mr. R. W. Reynolds	Ltr. Only		
Hamilton Standard Division United Aircraft Corporation Windsor Locks, Connecticut 06096 Attn: Technical Librarian	1		
Hamilton Standard Division United Aircraft Corporation Windsor Locks, Connecticut 06096 Attn: Mr. R. Hatch	Ltr. Only		
Technical Library Air Research Manufacturing Company 9851 Sepulveda Boulevard Los Angeles, California 90009 Attn: Technical Librarian			
Air Research Manufacturing Company 9851 Sepulveda Boulevard Los Angeles, California 90009 Attn: Mr. C. S. Coe	Ltr. Only		
Air Research Manufacturing Company 9851 Sepulveda Boulevard Los Angeles, California 90009 Attn: Mr. A. C. Standiffe	Ltr, Only		
Shell Development Company 1400 53rd Street Emeryville, California 94608 Attn: Technical Librarian	1		
Shell Development Company 1400 53rd Street Emeryville, California 94608 Attn: Dr. H. Voge	Ltr. Only		
Shell Development Company 1400 53rd Street Emeryville, California 94608 Attn: Dr. T. J. Jennings	Ltr. Only		
Brooklyn Polytechnic Institute Department of Chemical Engineering 333 Jay Street Brooklyn, New York 11201 Attn: Technical Librarian	1		

COMPARISON OF THEORETICAL AND EXPERIMENTAL TRANSIENT TEMPERATURE PROFILES

STEADY-STATE CHAMBER PRESSURE = 200 PSIA CATALYST BED CONFIGURATION: MIXED BED #1 (SEE TEXT) INITIAL BED TEMPERATURE = 530 DEG R SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

STEADY-STATE CHAMBER PRESSURE = 200 PSIA

MOLE-FRACTION OF HYDRAZINE IN INTERSTITIAL PHASE

AT VARIOUS AXIAL POSITIONS

TIME, + - MILLISECONDS

VARIATION OF CHAMBER PRESSURE WITH TIME

 $\label{eq:state_$

VARIATION OF MOLE-FRACTION OF HYDRAZINE WITH TIME AT VARIOUS AXIAL POSITIONS

STEADY-STATE CHAMBER PRESSURE = 260 PSIA STEADY-STATE MASS FLOW RATE = 5.8 LB/FT² - SEC CATALYST BED CONFIGURATION: MIXED BED # 1 (SEE TEXT) SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

VARIATION OF MOLE-FRACTION OF AMMONIA WITH TIME AT VARIOUS AXIAL POSITIONS

STEADY-STATE CHAMBER PRESSURE = 260 PSIA STEADY-STATE MASS FLOW RATE = 5.8 LB/FT^2 - SEC CATALYST BED CONFIGURATION: MIXED BED # 1 (SEE TEXT) SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

VARIATION OF MOLE-FRACTION OF NITROGEN WITH TIME AT VARIOUS AXIAL POSITIONS

 $\label{eq:state-$

WITH TIME AT VARIOUS AXIAL POSITIONS STEADY-STATE CHAMBER PRESSURE = 260 PSIA STEADY-STATE MASS FLOW RATE = 5.8 LB/FT^2 - SEC CATALYST BED CONFIGURATION: MIXED BED # 1 (SEE TEXT) SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS 0.9 0.010 FT 0.8 0.7 MOLE-FRACTION OF HYDROGEN IN INTERSTITIAL PHASE 0.6 0.052 FT 0.5 AXIAL POSITION , z = 0.4 0.308 FT 0.140 FT 0.052 FT 0,140 FT 0.308 FT 0.010 FT 0.3 0.308 FT 0.140 FT 0.052 FT 0.010 FT 0.2 0.1 REACTOR ON REACTOR ON REACTOR OFF 0 120 80 160 200 0 40 240 TIME, + - MILLISECONDS

VARIATION OF MOLE-FRACTION OF HYDROGEN

FIG. 12

TRANSIENT INTERSTITIAL TEMPERATURE PROFILES FOR THE REFERENCE OPERATING CONDITIONS

INJECTOR PRESSURE = 150 PSIA

STEADY-STATE MASS FLOW RATE = 5.76 LB/FT 2 - SEC CATALYST BED CONFIGURATION: MIXED BED # 2 (SEE TEXT)

SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

TRANSIENT PARTICLE TEMPERATURE PROFILES FOR THE REFERENCE OPERATING CONDITIONS

$\label{eq:state} \begin{array}{l} \text{INJECTOR PRESSURE} = 150 \ \text{PSIA} \\ \text{STEADY-STATE MASS FLOW RATE} = 5.76 \ \text{LB/FT}^2 - \text{SEC} \\ \text{CATALYST BED CONFIGURATION: MIXED BED # 2 (SEE TEXT)} \\ \text{SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS} \end{array}$

TRANSIENT CHAMBER PRESSURE PROFILE FOR THE REFERENCE OPERATING CONDITIONS

INJECTOR PRESSURE = 150 PSIA

STEADY-STATE MASS FLOW RATE = 5.76 LB/FT^2 - SEC CATALYST BED CONFIGURATION: MIXED BED # 2(SEE TEXT) SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

TIME, t - SECONDS

TRANSIENT PROFILE OF MOLE-FRACTION OF HYDRAZINE FOR THE REFERENCE OPERATING CONDITIONS

INJECTOR PRESSURE = 150 PSIA

STEADY-STATE MASS FLOW RATE = 5.76 LB/FT 2 - SEC CATALYST BED CONFIGURATION: MIXED BED # 2 (SEE TEXT) SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

TRANSIENT PROFILE OF MOLE-FRACTION OF HYDRAZINE FOR THE REFERENCE OPERATING CONDITIONS

$$\label{eq:star} \begin{split} \text{INJECTOR PRESSURE} &= 150 \ \text{PSIA} \\ \text{STEADY-STATE MASS FLOW RATE} &= 5.76 \ \text{LB/FT}^2 \ \text{~} \text{SEC} \\ \text{CATALYST BED CONFIGURATION: MIXED BED # 2 (SEE TEXT)} \\ \text{SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS} \end{split}$$

TRANSIENT PROFILE OF MOLE-FRACTION OF AMMONIA FOR THE REFERENCE OPERATING CONDITIONS

INJECTOR PRESSURE = 150 PSIA

STEADY-STATE MASS FLOW RATE = 5.76 LB/FT² - SEC

CATALYST BED CONFIGURATION : MIXED BED # 2 (SEE TEXT)

SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

TRANSIENT PROFILE OF MOLE-FRACTION OF AMMONIA FOR THE REFERENCE OPERATING CONDITIONS

INJECTOR PRESSURE = 150 PSIA

STEADY-STATE MASS FLOW RATE = 5.76 LB/FT^2 - SEC

CATALYST BED CONFIGURATION: MIXED BED # 2 (SEE TEXT)

SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

REACTOR STATUS

INJECTOR PRESSURE = 150 PSIA STEADY-STATE MASS FLOW RATE = 5.76 LB/FT² - SEC CATALYST BED CONFIGURATION: MIXED BED # 2 (SEE TEXT) SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

TRANSIENT PROFILE OF MOLE-FRACTION OF NITROGEN FOR

INJECTOR PRESSURE = 150 PSIA

STEADY-STATE MASS FLOW RATE = 5.76 LB/FT^2 - SEC CATALYST BED CONFIGURATION: MIXED BED # 2 (SEE TEXT)

SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

TRANSIENT PROFILE OF MOLE-FRACTION OF HYDROGEN FOR THE REFERENCE OPERATING CONDITIONS

INJECTOR PRESSURE = 150 PSIA

STEADY-STATE MASS FLOW RATE = 5.76 LB/FT² -SEC

CATALYST BED CONFIGURATION: MIXED BED # 2 (SEE TEXT)

SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

TIME, t- SECONDS

TRANSIENT INTERSTITIAL TEMPERATURE PROFILES

FOR AN INJECTOR PRESSURE OF 500 PSIA

STEADY-STATE MASS FLOW RATE = 5.76 LB/FT^2 -SEC CATALYST BED CONFIGURATION: MIXED BED # 2 (SEE TEXT) SEE TEXT FOR FOR ADDITIONAL REACTOR PARAMETERS

REACTOR STATUS

COMPARISON OF TRANSIENT INTERSTITIAL TEMPERATURE PROFILES FOR TWO INJECTOR PRESSURES IN A CONTINUOUS FLOW SYSTEM

STEADY-STATE MASS FLOW RATE = 5.76 LB/FT 2 - SEC CATALYST BED CONFIGURATION: MIXED BED # 2 (SEE TEXT) SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

TRANSIENT INTERSTITIAL TEMPERATURE PROFILES FOR A STEADY-STATE MASS FLOW RATE OF 1.44 $LB/FT^2 - SEC$

TRANSIENT INTERSTITIAL TEMPERATURE PROFILES FOR A STEADY-STATE MASS FLOW RATE OF 14.4 LB/FT 2 - SEC

H910461-38 COMPARISON OF TRANSIENT INTERSTITIAL TEMPERATURE PROFILES FOR VARIOUS STEADY-STATE MASS FLOW RATES IN A CONTINUOUS FLOW SYSTEM

H910461-38 FIG. 29 TRANSIENT INTERSTITIAL TEMPERATURE PROFILE FOR A BURIED INJECTOR CONFIGURATION

H910461-38 COMPARISON OF TRANSIENT INTERSTITIAL TEMPERATURE PROFILES FOR TWO INJECTION CONFIGURATIONS IN A CONTINUOUS FLOW SYSTEM

TRANSIENT INTERSTITIAL TEMPERATURE PROFILES FOR A CATALYST BED PACKED WITH ALL 25-30 MESH PARTICLES

INJECTOR PRESSURE == 150 PSIA STEADY-STATE MASS FLOW RATE = 5.76 LB/FT² - SEC SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

TRANSIENT INTERSTITIAL TEMPERATURE PROFILES FOR A CATALYST BED PACKED WITH ALL 14-18 MESH PARTICLES

INJECTOR PRESSURE = 150 PSIA STEADY-STATE MASS FLOW RATE = 5.76 LB/FT 2 - SEC SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

TRANSIENT INTERSTITIAL TEMPERATURE PROFILE FOR THE "MIXED BED #1" CATALYST BED CONFIGURATION

INJECTOR PRESSURE = 150 PSIA STEADY-STATE MASS FLOW RATE = 5.76 LB/FT² \rightarrow SEC SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

TRANSIENT INTERSTITIAL TEMPERATURE PROFILE FOR THE "MIXED BED #1" CATALYST BED CONFIGURATION

INJECTOR PRESSURE = 150 PSIA

STEADY-STATE MASS FLOW RATE = 5.76 LB/FT² - SEC

SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

COMPARISON OF TRANSIENT INTERSTITIAL TEMPERATURE PROFILES FOR VARIOUS BED CONFIGURATIONS IN A CONTINUOUS FLOW SYSTEM

INJECTOR PRESSURE = 150 PSIA STEADY-STATE MASS FLOW RATE = 5.76 LB/FT 2 - SEC SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

TRANSIENT INTERSTITIAL TEMPERATURE PROFILES FOR 60 msec/120 msec PULSE DUTY CYCLE

INJECTOR PRESSURE = 150 PSIA STEADY-STATE MASS FLOW RATE = 5.76 LB/FT^2 - SEC CATALYST BED CONFIGURATION: MIXED BED # 2 (SEE TEXT) SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

TRANSIENT INTERSTITIAL TEMPERATURE PROFILES FOR 60 msec/ 240 msec PULSE DUTY CYCLE

REACTOR STATUS 2400 ON 1 ON ON OFF NO ON OFF Ю OFF OFF OFF OFF 2200 z = 0.052 FT2000 0.100 FT TEMPERATURE IN INTERSTITIAL PHASE, T_i – DEG R 1800 1600 0.052 FT 1400 1200 0.100 FT 1000 800 DASHED CURVES REPRESENT CONTINUOUS OPERATION 600 400 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.8 1.6 TIME, t - SECONDS

 $\label{eq:state} \begin{array}{l} \text{INJECTOR PRESSURE} = 150 \ \text{PSIA} \\ \text{STEADY-STATE MASS FLOW RATE} = 5.76 \ \text{LB/FT}^2 \ \text{-} \ \text{SEC} \\ \text{CATALYST BED CONFIGURATION: MIXED BED $\#$ 2 (SEE TEXT)} \\ \text{SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS} \end{array}$

COMPARISON OF TRANSIENT INTERSTITIAL TEMPERATURE PROFILES FOR VARIOUS PULSE DUTY CYCLES

INJECTOR PRESSURE = 150 PSIA STEADY-STATE MASS FLOW RATE = 5.76 LB/FT^2 - SEC CATALYST BED CONFIGURATION: MIXED BED # 2 (SEE TEXT) SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

INJECTOR PRESSURE = 1405 PSIA STEADY-STATE MASS FLOW RATE = 40.3 LB/FT² - SEC CATALYST BED CONFIGURATION: ALL 25-30 MESH PARTICLES SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

TRANSIENT PARTICLE TEMPERATURE PROFILE FOR A HIGH THRUST ENGINE

TRANSIENT CHAMBER PRESSURE PROFILE FOR A HIGH THRUST ENGINE

INJECTOR PRESSURE = 1405 PSIA STEADY-STATE MASS FLOW RATE = 40.3 LB/FT 2 - SEC CATALYST BED CONFIGURATION: ALL 25-30 MESH PARTICLES SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

TRANSIENT PROFILE OF MOLE-FRACTION OF HYDRAZINE FOR A HIGH THRUST ENGINE

INJECTOR PRESSURE = 1405 PSIA STEADY-STATE MASS FLOW RATE = 40.3 LB/FT² - SEC CATALYST BED CONFIGURATION: ALL 25-30 MESH PARTICLES SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

INJECTOR PRESSURE = 1405 PSIA STEADY-STATE MASS FLOWRATE = 40.3 LB/FT² - SEC CATALYST BED CONFIGURATION: ALL 25-30 MESH PARTICLES SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS
TRANSIENT PROFILE OF MOLE-FRACTION OF NITROGEN FOR A HIGH THRUST ENGINE

INJECTOR PRESSURE = 1405 PSIA STEADY-STATE MASS FLOW = 40.3 LB/FT 2 - SEC CATALYST BED CONFIGURATION : ALL 25-30 MESH PARTICLES SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

H910461-38 TRANSIENT PROFILE OF MOLE-FRACTION OF HYDROGEN FOR A HIGH THRUST ENGINE

INJECTOR PRESSURE = 1405 PSIA STEADY-STATE MASS FLOW RATE = 40.3 LB/FT^2 - SEC CATALYST BED CONFIGURATION: ALL 25-30 MESH PARTICLES SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

FIG. 45