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ABSTRACT

Analytical studies of catalyzed hydrazine decomposition reaction chambers
were performed in order to establish procedures capable of predicting the
effects of pulse operation of the reactor for an arbitrary duty cycle on the
transient behavior of the system. These studies included an extension of a
computer program previously developed to calculate temperature and reactant
concentrations as functions of time and axial position in typical reaction
chamber configurations. The extended program includes consideration of the
effects of heat conduction and diffusion when flow is stopped. In addition,
reaction chamber fluid dynamics are taken into account by allowing for feed
pressure and mass flow rate changes with time, The effects of these changes
on thermal and catalytic decomposition of reactants, along with heat and mass
transfer between the free-gas phase and the gas within the pores of the
catalyst pellets, are considered.

A series of caluclations was made using the computer program to evaluate
the effects of duty cycle, nominal ‘chamber pressure, bed loading, and catalyst
bed configuration on the transient temperature, pressure, and reactant con-
centration distributions in the reactor system. The results of these calcu-
lations are illustrated in the report.
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SUMMARY

, The Research Laboratories of United Aircraft Corporation under Contract
NAS 7-458 with the National Aeronautics and Space Administration have been
performing an analytical study of catalytic reactors for hydrazine decomposi-
tion. This third annual technical report summarizes work performed under
this contract from April 15, 1968 to April 1k, 1969. Work during this
period has included the development of a computer program representing a
transient model of a distributed-feed catalyzed hydrazine decomposition
reaction chamber. The model describes the behavior of reactors operated
under conditions of continuous flow as well as pulsed flow for an arbitrary
duty cycle. Both thermal and catalytic decomposition of reactants are
considered along with simultaneous heat and mass transfer between the free-
gas phase and the gas within the pores of the catalyst pellets. The

effects of heat conduction and diffusion when flow is stopped are included
in the model. In addition, reaction chamber fluid dynamics are taken

into account in order to allow consideration of chamber pressure and

mass flow rate changes with time. Calculations have been made of temperature
and species concentration distributions as functions of time and axial
position in typical hydrazine reaction chambers for a number of pulse duty
cycles, mass flow rate distributions, and catalyst bed configurations.

Calculated transient temperature profiles in a continuous flow reactor
have been compared with temperatures measured as a function of time in a
small scale engine run at Jet Propulsion Laboratory. Generally good agree-
ment between theoretical and experimental results was found.

The computer programs representing both the steady-state and transient
models of a catalyzed hydrazine reactor have been described in detail in two
computer manuals. These manuals contain operating instructions for these
programs as well as descriptions of input and output formats.
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INTRODUCTION

Under Contract NAS 7-458, the Research Laboratories of United Aircraft
Corporation are performing analytical studies of the behavior of distributed-
feed catalytic reactors for hydrazine decomposition., The specific objectives
of this program are (a) to develop computer programs for predicting the
temperature and concentration distributions in monopropellant hydrazine
catalytic reactors in which hydrazine can be injected at arbitrary locations
in the reaction chamber and (b) to perform calculations using these computer
programs to demonstrate the effects of various system parameters on the
performance of the reactor.

Progress previously reported in the first annual report (Ref. 1) included
the development of computer programs which describe the steady-state and
transient behavior of a hydrazine reactor operated under conditions of
-constant, continuous flow, in which complete radial mixing in the free-gas
(or liquid) phase ﬁ%s assumed. Progress previously reported in the second
annual report (Ref. 2) included an extension of the steady-state program
to include radial as well as axial variations in temperature and concentrations
in order to permit an analysis of various injection schemes and catalyst bed
configurations which exhibit radial nonuniformities. These programs had
been used to calculate temperature and reactant concentration distributions
as functions of initial bed temperature, feed temperature, chamber pressure,
mass flow rate distribution, catalyst size distribution, and axial injector
locations.

During the third year of contract effort attention has been focused on
extending the transient model of the reactor system to take the effects of
reaction chamber fluid dynamics on transient response into account, and to
permit consideration of pulse operation of the reactor for an arbitrary duty
cycle. In addition, computer manuals have been prepared describing to
potential users the operation of both the steady-state and transient computer
programs (Refs. 3 and 4). Included in suceeding sections of this report
are detailed descriptions of (a) the development of the equations representing
the transient model of the reactor system, (b) the use of the computer pro-
gram representing the transient model to compute transient temperature pro-
files in a typical continuous flow reactor in order to test the validity of
the model by comparing the calculated results with measured temperature
profiles, and (c) the use of the transient computer program to calculate
the effects on transient temperature and reactant concentration distributions
of initial bed temperature, chamber pressure, mass flow rate distribution,
catalyst size distribution, and pulse duty cycle.
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DESCRIPTION OF THE TRANSIENT MODEL

The analysis of a hydrazine engine reaction system pertains to a reaction
chamber packed with catalyst particles into which liquid hydrazine is injected
at arbitrarily selected axial locations. Catalyst particles are represented
as "equivalent" spheres with a diameter taken as a function of the particle
size and shape. Both thermal and catalytic vapor phase decomposition of
hydrazine and ammonia are considered in developing equations describing the
concentration distributions of these reactants. Diffusion of reactants from
the free-gas phase to the outside surface of the catalyst pellets is taken
into account. Since the catalyst material is impregnated on the intexpior and
exterior surfaces of porous particles, the diffusion of reactants into the
porous structure must also be considered. In addition, the conduction of heat
within the porous particles must be taken into account since the decomposition
reactions are accompanied by the evolution or absorption of heat.

In generalizing the transient model described in Ref. 1 to consider reac-
tor shutdown as well as start-up, the temperature and the concentration of
reactants in the interstitial (free-gas) phase are still assumed to vary only
with time and axial distance along the bed. In this system film coefficients
are used to describe heat and mass transfer between the interstitial phase
and the outside surface of the catalyst pellets. The reactant concentrations,
¢p, and the temperature, jp, are taken as uniform within the interior of the
porous particles. Heat and mass diffusion within the particles are taken
into account by multiplying the reaction rates computed on the basis of
uniform ¢, and Tp by a utilization factor determined by analogy with the
steady-state system (see Ref. 1). In addition, it is assumed that during
reactor operation liquid velocities are sufficiently low relative to other
rate processes so that, for all practical purposes, steady-state in the
liquid and liquid-vapor regions is achieved as soon as the liquid reaches
a given axial location in the reactor. No consideration is given to regression
of the liquid-vapor interface as the chamber pressure builds up since the
overall length of the liquid region in typical reactors is very small com-
pared to the length of the vapor region (Ref. 1). When flow into the reac-
tor is stopped it is easily shown that the residual liquid hydrazine in the
reactor vaporizes in Jjust a few milliseconds due to the very rapid decomposi-
tion of hydrazine in the liquid region. Therefore, even during reactor
shutdown, the liquid regions plays a very small role in determing the
transient behavior of the reactor system.

The transient model is concerned then with the wvapor region only. The
general equations describing the rates of change of enthalpy and reactant
concentrations with time and axial distance in the interstitial phase are
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Equations (1) through (5) can be reduced to a somewhat simpler form with the

aid of an overall equation of continuity which can be written as
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aTI “F-37 "g, Apkc’ (Civ —cp?)

(7)
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Equations (1) through (5) can now be written as

spig% =-G%';—‘ ~ AcAp (Ti—Tp)— HNzHe 'homS'F(hi"hF)""']dl\;L(Ti’Tw) (8)

dw;NzHa Jw;NzHa
SPI (;'f alz = F - rh0m8 —APKCNqu (C6N2H4 _.CPN?H4)
(9)
- WiNqu F + wiN"‘H“g Apkd(ci¥-cp?)
wNH3 NH3 NH3
3P a_alt—— + G a\glz = rhomSM—r\ﬁE —/-\PRCNH3(CiNH3 “CPNH3)
(10)
—wiNH3 F + WiNH3§ Apk¢ (ci¥ —CPJ)
ow;Ne dwiNe mNe N2 (. N N
- + 6 —F%— = v —t—— — Apke 2(CiNV2 —Cp¥2
B3P 3T 6 =5 hom & >MNaHa pke 2 (C;i pNz) (11)
- wiNe F +wiNe 5 ApkeY (civ—-cpY)
J
dw; " ow;e MH2
5P| +6 Sl = rom® Dt — ApkcH2 (¢iM2 — cpH2)
NoH (o i P
ot ‘ 0z 2MmTera (12)

The last term on the right side of Eq. (8) represents the heat loss from
the bulk vapor to the wall of the reactor. Taking the reactor wall tempera-
ture as uniform, the rate of change of wall temperature with time is

T L
""‘wcwccjjTW = '”dc./; ’lw(Ti'Tw)dz'ﬁko(Tw‘To) (13)

where the last term on the right side of Eq. (13) represents the heat loss
by forced convection from the reactor to the surrounding atmosphere. Heat
loss by natural convection or radiation <J:_an be represented in Eg. (13) by

. ' _ .25 n _ .
adding a term of the form ﬁa A, (TW Ta) or /za A, (TW T, ), respectively.

The mass flow rate, G, may be calculated as a function of time and axial

position from the inlet mass flow rate, which is a function of pressure, and
from Eq. (7). The inlet mass flow rate at any time may be calculated in
terms of the steady-state (SS) inlet mass flow rate using
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For choked nozzle and for a rate of change of vapor density with time which
is approximately uniform throughout the reactor, Eq. (7) reduces to.

0G
0z

(15)
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Taking the chamber pressure to be uniform throughout the reactor, the
corresponding rate of change of chamber pressure with time can be approximated

by

28 ~r( ), {o-(pvmrm ) (16)

TR e

At a given axial location the rates of change of temperature and reactant
concentrations in the catalyst particles with time are given by

av | 34
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where the film coefficients,)%c,. and k_, may be estimated from (Ref. 5)

w2

hy = he-ora (-‘i—#)-om(C—FG) + 3 (22)
and
T

It should be noted that the thermal conduction term in Eq. (22) and the simple
diffusion term in Ea. (23) become significant only when the mass flow rate is
quite small, as it is during reactor shutdown.

Recalling that the reaction of hydrazine on the catalyst surfaces is
extremely fast, so that the reaction rate is controlled by the rate of
transport of hydrazine to the catalyst surfaces, Eq. (18) can be used to
define rhetNEHh by noting that (d NEHH/dt) and cpN2Hh are both approximately
equal to zero. The reaction rate is then given by

NaHg
NaHq 3ke NoH,
het T g Ci (24)

The reaction rate of ammonia on the catalyst surfaces, rhetNHB, can be computed
by multiplying the rate of reaction calculated on the basis of uniform T_ and
Cp by the utilization factor determined by analogy with the steady-state system
(see Refs. 1, 6 and 7).
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This general system of equations is applicable to both normal reactor
operation and reactor shutdown. Partial differential equations may be
simplified considerably by noting first that, during the "on" portion of
a pulse duty cycle (or during continuous reactor operation), gas velocities
are so great that the time lag from the entrance to the vapor region to any
axial position for the fluid is negligible compared with other transient
effects. Here Egqs. (8) through (12) may be approximated by

ohj ~ HNeHa A F 4
37 5 Thom3- TP[ILC(Ti —TP)]— < (hi-he) - Gg’;” (Ti-Tw)  (25)
ow;NaHa
G alz = F=rpomd ‘APKCNZH4(CiN2H4"CPN2H4)
(26)
_WiN2H4 F + WiN2H4 ZAPKCJ (CiJ—CpJ)
J
. NH NH ,
G oW T rhom ‘%%T;‘ — ApkcM3 (ciNHs — pNH3) .
az M 2M4q
(27)
_ WI'NHBF + WiNH;; z APKCJ (C,‘J_ CPJ)
J
N M2 N Np _ ~ N2
G agzl - = Thomd W‘APKC 2 (M- cp?)
\ (28)
~wheE + w3 Apke? (cif - ce’)
i i c i :
J
.Hz2 Hz
W : M H H H
6 aa; * Thom® iz~ Apke™ (ci™—cp?)
(29)

“WiHZF + Win %: Ap kc‘J (Ci\J - ¢cp’)

Some simplification of the partial differential equations may be achieved
in describing reactor operation during the "off" portion of a duty cycle by
noting that, here, gas velocities are sufficiently low so that the terms in
Egs. (8) through (12) involving G 5% may be approximated when integrating these
equations over small time intervals without introducing any significant error
into the calculations.
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Finite difference methods have been used to program for digital computa-
tion the differential equations describing the changes in temperature and
concentrations in the reactor system. These methods are similar to those
discussed in Ref. 1, where each of the differential equations is treated as
an ordinary differential equation (by integrating with respect to time at
a fixed position or vice versa). FEach equation is rearranged in the form

99

o Bg (30)

where the quantities o and B are taken as constant while integrating the
equations from sy_; to s, (corresponding to At or Az). Equation (30) can be
integrated to obtain

- B(Sk - Sk-p) a - B(Sk - Sy
9 = k@ o+ B [' - ¢ (31)

where gy is the value of g at sy, and gy_; is the value of g at Spe_1° An
alternative form of Eq. (31) is

—B(Sk'8k-|)
) o Q’g) |-
gk = gk.| + (ds k-1 ,B (32)

It is convenient to use equations of the form of Eq. (31) to compute particle
concentrations and temperatures, and to use equations of the form of Eq. (32)
to compute interstitial concentrations and temperatures.

The equations representing the transient model of a hydrazine catalytic
reactor have been programmed using F¢RTRAN IV source language for the
UNIVAC 1108 digital computer. This computer program is discussed in detail
in a computer manual (Ref. 4), The manual includes input and output descriptions
and a description of possible operational problems associlated with the program.
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RESULTS OF CALCULATIONS

A series of calculations of the transient behavior of a typical continuous
flow reactor for which experimental information is available (Ref. 8) was made
in order to examine the effectiveness of the transient model., The calculations
pertain to a 50 lbp nominal thrust hydrazine reactor 2.4 in. in diameter into
which liquid hydrazine is injected at the upstream end of the reactor only.

The catalyst bed packing was taken to consist of 25-30 mesh catalyst particles
for the first 0.25 in. and 1/8 in. x 1/8 in. cylindrical pellets for the
remainder of the bed. This configuration is referred to in the figures as
"mixed bed #1". The steady-state chamber pressure was taken as 200 psia, the
steady-state mass flow rate as 6.5 lb/ftz-sec, and the initial chamber pressure
as 14.7 psia. The results of these calculations are shown in Figs. 1 through
4. Gas temperatures are plotted as function of time at each of four axial
positions in Fig. 1% for a case in which the initial bed temperature was taken
as 530 deg R. Measured gas temperature profiles (Ref. 8) are also shown in
Fig. 1 for purposes of comparison. QGenerally good agreement between theoretical
and experimental results may be noted, particularly during the early stages

of the transient. While the differences between measured and calculated rates
of response are in part due to the thermocouple respohse time, the use of
steady-state utilization factors to describe heat and mass diffusion within
catalyst particles under transient conditions results in calculated response
rates which are a little too high. The calculated mole-fraction profiles for
hydrazine and ammonia, corresponding to the temperature profiles shown in

Fig. 1, are illustrated in Fig. 2, and the corresponding mole-fraction profiles
for nitrogen and hydrogen are illustrated in Fig. 3. Here, the mole-fractions
are plotted as functions of axial position at various times.

Temperatures are plotted as functions of time at a fixed axial position
in Fig. L for cases in which the initial bed temperatures were taken as 530,
950, and 1420 deg R respectively. The comparison between calculated and
measured temperature profiles is similar for low and elevated initial bed
temperature cases.

Additional calculations were made for the reactor configuration noted
above in order to examine the effect of pulsed flow on initial transient
response. The calculated results illustrated in Figs. 5 through 11 refer to
a reactor operated under pulsed flow conditions at a steady-state chamber
pressure of 260 psia, a steady-state mass flow rate of 5.8 1b/ft2-sec, an
initial chamber pressure of 14.7 psia, and an initial bed temperature af
530 deg R. Calculations were made for the first two pulses of a duty cycle
consisting of alternate on and off times of 50 msec and 100 msec respectively.

¥A plot similar to Fig. 1 was included in Ref. 8; the calculated temperature
profiles illustrated in that plot were slightly in error.

10
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The temperature in the interstitial phase ig plotted in Fig. 5 as a
function of time at various axial locations in the reaction chamber. The
temperature rises rapidly after reactor startup, particularly in the
upstream portion of the chamber, When flow into the reactor is turned off,
the gas temperature in the upstream section of the reactor rises extremely
rapidly at first because of thermal decomposition of residual hydrazine in
this region. In the regions of the reactor downstream of the small catalyst
particles, where the gas temperature is too low after 50 msec to permit
significant thermal decomposition of hydrazine, the temperature falls due
to heat transfer from the gas to the colder catalyst pellets and to the
chamber walls. The heat gained by the catalyst pellets in these regions
results in a very small temperature change because of the large mass of
the particles. This is illustrated in Fig. 6 where catalyst particle
temperature is plotted as a function of time at the same axial locations
chosen for Fig. 5.

The rapid pressure buildup and decay resulting from pulse operation
of the reactor for this case is shown in Fig. 7. The species mole-fraction
profiles associated with this pressure variation and the temperature
distributions illustrated in Figs. 5 and 6 and shown in Figs. 8 through 11.
The variation of mole-fraction of hydrazine with time at various axial
locations is plotted in Fig. 8. This plot illustrates the very rapid
thermal decomposition of residual hydrazine in the hotter upstream regions
of the reaction chamber during reactor shutdown as well as the somewhat
slower catalytic decomposition in the cooler downstream regions of the
reactor. The variation of mole~fraction of ammonia with time is illustrated
at various axial locations in Fig. 9. Following reactor shutdown the
residual ammonia near the upstream end.of the reactor decomposes catalytic-
ally in the hot catalyst particles. In the cooler downstream regions,
ammonia is displaced gradually by the nitrogen and hydrdgen formed from
hydrazine and ammonia decomposition upstream. These decomposition products
flow downstream during shutdown as the chamber pressure decays. These
processes lead to the ammonia mole-fraction profiles shown in Fig. 9 and
the mole-fraction profiles of nitrogen and hydrogen shown in Figs. 10 and
11 respectively.

The effects of various reactor operating conditions on the transient
behavior of typical hydrazine reactors are illustrated in Figs. 12 through
38. The calculated results refer to a 23 lby nominal thrust engine 1.k in.
in diameter with a packed length of 1.2 in. into which liquid hydrazine is
injected at a temperature of 530 deg R. A reference case was chogen in
which hydrazine injection was taken at the reactor inlet only and in which
the steady-state mass flow rate was taken as 5.76 lb/ftz-sec (0.04 1b/in2-gec),
the injector pressure as 150 psia, the initial chamber pressure as 14.7 psia,

11
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the initial bed temperature as 530 deg R, the pulse duty cycle as alternating
60 msec on and 60 msec off, and the catalyst bed configuration as 0.2 in. of
25-30 mesh catalyst particles followed by 1.0 in. of 14-18 mesh catalyst
particles. This bed configuration is referred to in the figures as "mixed
bed #2". Injector pressure, mass flow rate, axial injection profile, catalyst
bed configuration, and pulse duty cycle were then varied in turn and the
calculated interstitial temperatures at two axial positions in the bed were
then plotted as a function of time. The transient behavior of the reference
case is illustrated in Figs. 12 through 22. Transient interstitial tempera-
ture profiles are plotted in Fig. 12 for two axial positions, one at the end
of the bed and one at approximately the midpoint of the bed. Also plotted

in Fig. 12 are the temperature profiles computed at these same points for

the reactor operating under conditions of continuous rather than pulsed flow.
The transient particle temperatﬁre profiles associated with the interstitial
temperatures shown in Fig. 12 are plotted in Fig. 13, while the chamber
pressure is plotted as a function of time in Fig. 14. The associated mole-

- fraction profiles for hydrazine are plotted in Figs. 15 and 16, for ammonia
in Figs. 17 and 18, for nitrogen in Figs. 19 and 20, and for hydrogen in
Figs. 21 and 22,

In Fig. 23, transient interstitial temperature profiles are plotted for
an injector pressure of 500 psia with all other conditions taken as those of
the reference case. The very slight effect of pressure on transient response
may be noted by comparing Figs. 12 and 23. A direct comparison of exit gas
temperature profiles associated with the two different pressures is shown in
Fig. 24 for the reactor operating under conditions of continuous flow.

Transient interstitial temperature profiles are plotted for steady-state
mass flow rates of 1.4k lb/ftz—sec (0.01 1b/in. 2- sec) in Fig. 25 and 1k.k
1b/ft2-sec (0.10 lb/ind'2-sec) in Fig. 26 with all other conditions taken the
same as those of the reference case.* The marked effect of mass flow rate
on transient response is further illustrated in Fig. 27 for a continuous flow
system. Here, exit gas temperatures are plotted versus time for the three
different steady-state mass flow rates.

The effects of distributed injectors on transient temperature profiles
are illustrated in Figs. 28 through 30. Temperature are plotted as functions
of time at the midpoint and at the end of the bed in Figs. 28 and 29 respec-
tively for a case in which l/h of the hydrazine is injected at the inlet and
the remaining 3/4 is injected uniformly over the first 1/2 in. of the reactor.

*An injector pressure of 500 psia was used in calculations for the high mass
flow rate case since the high pressure drop assoclated with this flow rate
precludes use of the reference injector pressure.

12
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The exit gas temperature profiles for this case and for the reference case of
all inlet injection are compared in Fig, 30 under conditions of continuous flow.

Transient interstitial temperature profiles are plotted for different
catalyst bed configurations in Figs. 31 through 35. Temperature profiles
associated with beds packed with all 25-30 mesh particles are shown in Fig.

31, all 14-18 mesh particles in Fig. 32, and the mixture of 25-30 mesh particles
and 1/8 in, x 1/8 in. cylindrical pellets in Figs. 33 and 34. Exit gas
temperature profiles for these cases are compared in Fig. 35 under conditions
of continuous flow.

The transient temperature profiles at two axial positions for a pulse
duty cycle consisting of alternate on and off times of 60 msec and 120 msec
respectively are illustrated in Fig. 36. The temperature profiles associated
with a 60 msec/EMO msec pulse duty cycle are shown in Fig. 37. The effects
of duty cycle on the transient response of the exit gas temperature are
.summarized in Fig. 38.

Additional calculations were made to illustrate the transient behavior
of a high thrust hydrazine engine. The calculations pertain to a 600 1lbe
nominal thrust hydrazine reactor 4.2 in. in diameter with a packed length of
1.0 in. into which liquid hydrazine is injected at the upstream end of the
reactor only. The catalyst bed packing was taken to consist of all 25-30 mesh
catalyst particles; the steady-state mass flow rate was taken as 40.3 lb/fte—sec,
the injector pressure as 1405 psia, the initial chamber pressure as 0.1 psia, '
the initial bed temperature as 530 deg R, and the pulse duty cycle as alter-
nating 50 msec on and 250 msec off. For this case, interstitial temperature,
particle temperature, chamber pressure, and the mole-fractionsof hydrazine,
ammonia, nitrogen and hydrogen are plotted as functions of time at the end
of the bed in Figs. 39, 40, b1, 42, 43, 4L and U5 respectively. These figures
illustrate the very rapid transient response associated with this high flow
rate system.

13
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LIST OF SYMBOLS

Radius of spherical particle, ft

- Cross-sectional area of reaction chamber, ££2

Total external surface of catalyst particle per unit volume of bed, ft'l

Total surface area of chamber walls, ft2
Reactant concentration in interstitial fluid, lb/ft3

Reactant concentration in gas phase within the porous particle, lb/ft3
Specific heat of fluid in the interstitial phase, Btu/lb- deg R

Average specific heat of fluid in the interstitial phase, Btu/lb- deg R
Specific heat of catalyst particle, Btu/lb - deg R

Specific heat of chamber walls, Btu/lb - deg R

Diameter of reaction chamber, ft

Diffusion coefficient of reactant gas in the interstitial fluid, ftz/sec

Diffusion coefficient of reactant gas in the porous particle, ftz/sec

Rate of feed of hydrazine from distributed injectors into the systen,
1b/ft3-sec

Mass flow rate, 1b/ft°-sec
Enthalpy, Btu/lb

Heat transfer coefficient for forced convection between chamber and
surrounding atmosphere, Btu/ftz-sec-deg R

Heat transfer coefficient for natural convection between chamber and
surrounding atmosphere, Btu/ft2-sec-deg R 1.25

Radiation heat transfer coefficient between chamber and surrounding
atmosphere, Btu/ftz—sec-deg RY

Heat transfer coefficient between bulk fluid and particles,
Btu/rt>-sec-deg R
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Heat transfer coefficient between bulk fluid and chamber walls,
Btu/ft2-sec-deg R

H Heat of reaction (negative for exothermic reaction), Btu/lb

kb Mass transfer coefficient, ft/sec

K4 Thermal conductivity of interstitial fluid, Btu/ft—sec-deg R

Kp Thermal conductivity of the porous catalyst particle, Btu/ft-sec—deg R

L Length of reaction chamber, ft

m Thermal mass of chamber walls, 1b

M Molecular weight, 1b/1b mole

ﬁ Average molecular weight, lb/lb mole

P Chamber pressure, psia

Tyet Rate of (heterogeneous) chemical reaction on the catalyst surfaces,
1b/ft3-sec

Thom Rate of (homogeneous) chemical reaction in the interstitial phase,
1b/ft3-sec

R Gas constant, equals 10.73 psié - ft3/lb mole - deg R

t Time, sec

T Temperature, deg R

Vc Volume of reactor up to nozzle throat exclusive of volume occupied by
catalyst particles, ££3

Wy Weight fraction of reactant in interstitial phase

Z Axial distance, ft

ap Intraparticle void fraction

[} Interparticle void fraction

7 Viscosity of interstitial fluid, 1b/ft-sec
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Py Density of interstitial fluid, 1b/ft3

Py Bulk density of catalyst particle, lb/ft3
Subscripts

a Refers to surrounding atmosphere

F Refers to feed

1 Refers to interstitial phase

p Refers +to gas within the porous catalyst particle
s Refers to surface of catalyst particle
83 Refers to steady-state

w Refers to chamber wall

Superscripts

J Refers to chemical species
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H910461-38 FIG. 1

COMPARISON OF THEORETICAL AND EXPERIMENTAL
TRANSIENT TEMPERATURE PROFILES

STEADY-STATE CHAMBER PRESSURE = 200 PSIA STEADY-STATE MASS FLOW RATE = 6.5 LB/FT 2 — SEC
CATALYST BED CONFIGURATION: MIXED BED #1 (SEE TEXT)

INITIAL BED TEMPERATURE = 530 DEG R
SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS
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H910461-38

STEADY-STATE CHAMBER PRESSURE = 260 PSIA

TEMPERATURE IN INTERSTITIAL PHASE, T; - DEG R

VARIATION OF INTERSTITIAL TEMPERATURE WITH TIME

2000

1800
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1400

1200

1000

800

600

400

200

AT VARIOUS AXIAL POSITIONS

CATALYST BED CONFIGURATION: MIXED BED # 1 (SEE TEXT)
SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

F 0.010 FT
AXIAL POSITION, z=
F 0,010 FT
/ 0.052 FT
/ 0,140 FT
0.052 FT 0.308 FT
0,140 FT '_/
0.308 FT
REACTOR ON | REACTOR OFF l REACTOR 0N=
L ] I Ly |
40 80 120 160 200 240

TIME, t - MILLISECONDS

FIG. 5

STEADY-STATE MASS FLOW RATE = 5.8 LB/FT2 — SEC



H910461-38 FIG. 6

VARIATION OF CATALYST PARTICLE TEMPERATURE
WITH TIME AT VARIOUS AXIAL POSITIONS

STEADY-STATE CHAMBER PRESSURE = 260 PSIA

STEADY-STATE MASS FLOW RATE = 5.8 LB/FT2 - SEC
CATALYST BED CONFIGURATION: MIXED BED # 1 (SEE TEXT)
SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

2200
AXIAL POSITION, z =
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H910461-38 FIG. 7
VARIATION OF CHAMBER PRESSURE WITH TIME

STEADY —STATE CHAMBER PRESSURE = 260 PSIA STEADY-STATE MASS FLOW RATE = 5.8 LB/FTZ = SEC
CATALYST BED CONFIGURATION: MIXED BED # 1 (SEE TEXT)

SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS
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60 r‘
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20 F

l |

REACTOR ON REACTOR OFF IREACTOR ON I
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H910461-38 I1G. 8

VARIATION OF MOLE-FRACTION OF HYDRAZINE
WITH TIME AT VARIOUS AXIAL POSITIONS

STEADY-STATE CHAMBER PRESSURE = 260 PSIA
STEADY-STATE MASS FLOW RATE = 5.8 LB/FT2 — SEC

CATALYST BED CONFIGURATION: MIXED BED # 1 (SEE TEXT)
SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

0.6 , = r
REACTOR ON | REACTOR OFF | REACTOR ON |
I l |
0.5
0.4 |

AXIAL POSITION, z =

MOLE-FRACTION OF HYDRAZINE IN INTERSTITIAL PHASE

0,010 FT
0,052 FT
0,140 FT
0.308 FT { { | 0.308 FT
0 40 80 120 160 200 240

TIME, t — MILLISECONDS
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MOLE—FRACTION OF AMMONIA IN INTERSTITIAL PHASE

0.5

0.4

0.3

0.2

00]

VARIATION OF MOLE-FRACTION OF AMMONIA
WITH TIME AT VARIOUS AXIAL POSITIONS

STEADY~STATE CHAMBER PRESSURE = 260 PSIA

2

STEADY-STATE MASS FLOW RATE = 5.8 LB/FT" - SEC

CATALYST BED CONFIGURATION: MIXED BED # 1 (SEE TEXT)

SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

REACTOR ON | REACTOR OFF | REACTOR ON |

I r f
I l I

AXIAL POSITION, z =
0.308 FT

0.308 FT
0,140 FT
0.052 FT
0.010 FT
0.052 FT
¢
0.010 FT
] 1 | |
0 40 80 120 160 200 240

TIME, t — MILLISECONDS

FIG. 9
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MOLE-FRACTION OF NITROGEN IN INTERSTITIAL PHASE

0.6

0.5

0.4

0.3

0'2

Ol]

VARIATION OF MOLE-FRACTION OF NITROGEN
WITH TIME AT VARIOUS AXIAL POSITIONS

STEADY-STATE CHAMBER PRESSURE = 260 PSIA
STEADY-STATE MASS FLOW RATE = 5.8 LB/FT2 - SEC
CATALYST BED CONFIGURATION : MIXED BED # 1(SEE TEXT)
SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

AXIAL POSITION, z =

0,052 FT
0,140 FT
0,308 FT
0.010 FT- 0.010 FT
0,052 FT
0.140 FT
0,308 FT
REACTOR ON | REACTOR OFF :REACTOR ON :
L1 ] ] L ]
0 40 80 120 160 200 240

TIME, t — MILLISECONDS

FIG. 10
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MOLE~FRACTION OF HYDROGEN IN INTERSTITIAL PHASE
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0.5

0.4

0.2

0.1

VARIATION OF MOLE-FRACTION OF HYDROGEN

WITH TIME AT VARIOUS AXIAL POSITIONS

STEADY_STATE CHAMBER PRESSURE = 260 PSIA
STEADY-STATE MASS FLOW RATE — 5.8 LB/FTZ — SEC

CATALYST BED CONFIGURATION: MIXED BED # 1 (SEE TEXT)

SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS
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0.052 FT

0.308 FT
0.140 FT
0.052 FT

0140 FT

0.308 FT

0.010 FT
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P | | i |
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FIG. 11



H?10461-38 FIG. 12

TRANSIENT INTERSTITIAL TEMPERATURE PROFILES
FOR THE REFERENCE OPERATING CONDITIONS

INJECTOR PRESSURE = 150 PSIA
STEADY-STATE MASS FLOW RATE = 5.76 LB/FT 2 _seC
CATALYST BED CONFIGURATION: MIXED BED # 2 (SEE TEXT)

SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

REACTOR STATUS

OWFF: ON}BFF{ON :OFF'I ON}O#F" ON :OFF]I ON]TOFF{ oﬂOFF: ON !OFF: ON :OFF: ON !IOFF: ON'TOFF: ON :OFF: ON :OFFII ON ITOFF]' ON}OFF
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H910461-38 FIG. 13
TRANSIENT PARTICLE TEMPERATURE PROFI LES
FOR THE REFERENCE OPERATING CONDITIONS
INJECTOR PRESSURE — 150 PSIA
STEADY~STATE MASS FLOW RATE = 5.76 LB/FT 2 — SEC
CATALYST BED CONFIGURATION: MIXED BED # 2 (SEE TEXT)
SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS
2200 REACTOR STATUS
ON |OFF| ON :0F|=1| ON }OFE: ON :oéi—ll ON l'OF F: ON ;OFFl onoFF on :OFF: ON IOFF: ON :OFF} ON :OFF: ON :OFF: ON }OFFf ON :OFF] ONJoFF
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0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
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H910461-38

TRANSIENT CHAMBER PRESSURE PROFILE FOR THE
REFERENCE OPERATING CONDITIONS

INJECTOR PRESSURE = 150 PSIA
STEADY-STATE MASS FLOW RATE = 5.76 LB/FT? — SEC
CATALYST BED CONFIGURATION: MIXED BED # 2(SEE TEXT)

SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

REACTOR STATUS

FIG. 14
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MOLE-FRACTION OF HYDRAZINE IN INTERSTITIAL PHASE

0.05

0.04

0.03

0.02

0.01

TRANSIENT PROFILE OF MOLE-FRACTION OF HYDRAZINE FOR

THE REFERENCE OPERATING CONDITIONS

INJECTOR PRESSURE =150 PSIA

STEADY-STATE MASS FLOW RATE =5.76 LB/FT2 - SEC
CATALYST BED CONFIGURATION: MIXED BED # 2 (SEE TEXT)

SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

REACTOR STATUS

FIG. 15

SEE AN T T T !

TIME, t — SECONDS
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| AXIAL POSITION, z=0.052 FT
— I\
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| 1] L 1 L |
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
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FIG. 16

TRANSIENT PROFILE OF MOLE-FRACTION OF HYDRAZINE FOR
THE REFERENCE OPERATING CONDITIONS

INJECTOR PRESSURE = 150 PSIA

STEADY-STATE MASS FLOW RATE = 5,76 LB/FT? ~ SEC

CATALYST BED CONFIGURATION: MIXED BED # 2 (SEE TEXT)
SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS
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TIME, t+ — SECONDS
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MOLE-FRACTION OF AMMONIA IN INTERSTITIAL PHASE

TRANSIENT PROFILE OF MOLE-FRACTION OF AMMONIA FOR
THE REFERENCE OPERATING CONDITIONS

INJECTOR PRESSURE = 150 PSIA
STEADY-STATE MASS FLOW RATE = 5.76 LB/FT? — SEC
CATALYST BED CONFIGURATION : MIXED BED # 2 (SEE TEXT)

SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

REACTOR STATUS

FIG. 17
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H910461-38 FIG. 18
TRANSIENT PROFILE OF MOLE-FRACTION OF AMMONIA
FOR THE REFERENCE OPERATING CONDITIONS
INJECTOR PRESSURE = 150 PSIA
STEADY-STATE MASS FLOW RATE = 5.76 LB/FT2 — SEC
CATALYST BED CONFIGURATION: MIXED BED # 2 (SEE TEXT)
SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS
REACTOR STATUS
0.7

MOLE-FRACTION OF AMMONIA IN INTERSTITIAL PHASE

DASHED CURVE REPRESENTS
CONTINUOUS OPERATION

AXIAL POSITION, 2=0.100 FT

0 ! | | | ! | | | L | |

ON [OFF| ON IOFFl ON {OFF[ on JorF on JoFF oNToFF| oN oFF] oNToFF oN loF Fl oN }OFF‘I ON lOFF: ON IOFF: oN lorel on for F: oNloFF

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
TIME, + — SECONDS
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MOLE-FRACTION OF NITROGEN IN INTERS TITIAL PHASE

0.6

0.5

0.4

0.1

FIG. 19

TRANSIENT PROFILE OF MOLE-FRACTION OF NITROGEN FOR
THE REFERENCE OPERATING CONDITIONS

INJECTOR PRESSURE = 150 PSIA
STEADY-STATE MASS FLOW RATE = 5.76 LB/FT? - SEC
CATALYST BED CONFIGURATION: MIXED BED # 2 (SEE TEXT)

SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

REACTOR STATUS

oNoFF oNToFF oNTorFl oN :OF%N ToFH on ;OFF:ON :OFFI ONTOFF oN JoFF oN ToF FT on ToFF oN ToF A oN loF FTon ToF AT on ToFF

DASHED CURVE REPRESENTS
CONTINUOUS OPERATION

AXIAL POSITION, z=0.052 FT
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IR A R N NN SR NN REN SR SUN SR SN R S R S

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
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TRANSIENT PROFILE OF MOLE-FRACTION OF NITROGEN FOR
THE REFERENCE OPERATING CONDITIONS

INJECTOR PRESSURE = 150 PSIA
STEADY -STATE MASS FLOW RATE = 5.76 LB/FT 2_ SEC

CATALYST BED CONFIGURATION: MIXED BED # 2 (SEE TEXT)
SEE TEXT FOR ADDTIONAL REACTOR PARAMETERS

FIG. 20
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MOLE-FRACTION OF NITROGEN IN INTERSTITIAL PHASE

T Ly
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MOLE-FRACTION OF HYDROGEN IN INTERSTITIAL PHASE

TRANSIENT PROFILE OF MOLE-FRACTION OF HYDROGEN FOR
THE REFERENCE OPERATING CONDITIONS

INJECTOR PRESSURE = 150 PSIA
STEADY-STATE MASS FLOW RATE = 5.76 LB/FT2 - SEC

CATALYST BED CONFIGURATION: MIXED BED # 2( SEE TEXT)
SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

REACTOR STATUS
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FIG. 21
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H?10461-38 FIG. 22

TRANSIENT PROFILE OF MOLE-FRACTION OF HYDROGEN
FOR THE REFERENCE OPERATING CONDITIONS

INJECTOR PRESSURE = 150 PSI A
STEADY-STATE MASS FLOW RATE = 576 LB/FT 2 —SEC
CATALYST BED CONFIGURATION: MIXED BED # 2 (SEE TEXT)

SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

REACTOR STATUS
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H910461-38 FIG. 23
TRANSIENT INTERSTITIAL TEMPERATURE PROFILES

FOR AN INJECTOR PRESSURE OF 500 PSIA

STEADY -STATE MASS FLOW RATE = 5.76 LB/FT2 -SEC
CATALYST BED CONFIGURATION: MIXED BED # 2 (SEE TEXT)
SEE TEXT FOR FOR ADDITIONAL REACTOR PARAMETERS

REACTOR STATUS
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COMPARISON OF TRANSIENT INTERSTITIAL TEMPERATURE PROFILES FOR TWO
INJECTOR PRESSURES IN A CONTINUOUS FLOW SYSTEM

STEADY—STATE MASS FLOW RATE = 576 LB/FT 2 - SEC
CATALYST BED CONFIGURATION: MIXED BED # 2 (SEE TEXT)
SEE TEXT FOR ADDTITIONAL REACTOR PARAMETERS

FIG. 24

Pr = 150 PSIA
Pp =500 PSIA
AXIAL POSITION — 0,100 FT ]
! | I | 1 L | | | l 1 1 I !
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

TIME,t — SECONDS



H210461-38 FIG. 25
TRANSIENT INTERSTITIAL TEMPERATURE PROFILES FOR A
STEADY-STATE MASS FLOW RATE OF 1.44 LB/FT2 ~ SEC
INJECTOR PRESSURE = 150 PSIA
CATALYST BED CONFIGURATION: MIXED BED # 2 (SEE TEXT)
SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS
REACTOR STATUS
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H%10461-38 FIG. 26
TRANSIENT INTERSTITIAL TEMPERATURE PROFILES FOR A
STEADY-STATE MASS FLOW RATE OF 14.4 LB/FT 2 - SEC
INJECTOR PRESSURE = 150 PSIA
CATALYST BED CONFIGURATION: MI XED BED # 2 (SEE TEXT)
SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS
REACTOR STATUS
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COMPARISON OF TRANSIENT INTERSTITIAL TEMPERATURE PROFILES FOR VARIOUS

STEADY-STATE MASS FLOW RATES IN A CONTINUOUS FLOW SYSTEM

INJECTOR PRESSURE = 150 PSIA
CATALYST BED CONFIGURATION: MIXED BED # 2 (SEE TEXT)
SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

FIG, 27
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TRANSIENT INTERSTITIAL TEMPERATURE PROFILE FOR A
BURIED INJECTOR CONFIGURATION

INJECTOR PRESSURE = 150 PSIA
CATALYST BED CONFIGURATION: MIXED BED # 2 (SEE TEXT)
SEE TEXT FOR ADDITIONAL REACTOR P ARAMETERS

REACTOR STATUS

FIG. 28
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FIG. 29

TRANSIENT INTERSTITIAL TEMPERATURE PROFILE FOR A BURIED INJECTOR CONFIGURATION

TEMPERATURE IN INTERSTITIAL PHASE, T, - DEG R
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CATALY ST BED CONFIGURATION: MIXED BED # 2 (SEE TEXT)

SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS
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TEMPERATURE IN INTERSTITIAL PHASE, T. - DEG R

FIG. 30
COMPARISON OF TRANSIENT INTERSTITIAL TEMPERATURE PROFILES FOR TWO INJECTION
CONFIGURATIONS IN A CONTINUOUS FLOW SYSTEM
INJECTOR PRESSURE = 150 PSIA
CATALY ST BED CONFIGURATION: MIXED BED # 2 ( SEE TEXT)
SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS
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TEMPERATURE IN INTERSTITIAL PHASE, T; - DEG

TRANSIENT INTERSTITIAL TEMPERATURE PROFILES FOR A CATALYST BED
PACKED WITH ALL 25-30 MESH PARTICLES

INJECTOR PRESSURE = 150 PSIA
STEADY~STATE MASS FLOW RATE = 5.76 LB/FT2 - SEC

SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

REACTOR STATUS

FIG. 31
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H910461-38 FIG. 32
TRANSIENT INTERSTITIAL TEMPERATURE PROFILES
FOR A CATALYST BED PACKED WITH ALL 14-18 MESH PARTICLES
INJECTOR PRESSURE = 150 PSIA
STEADY—STATE MASS FLOW RATE = 5.76 LB/FT?2 — SEC
SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS
REACTOR STATUS
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Ho10461-38 TRANSIENT INTERSTITIAL TEMPERATURE PROFILE

FOR THE “MIXED BED #1" CATALYST BED CONFIGURATION

INJECTOR PRESSURE = 150 PStA
STEADY-STATE MASS FLOW RATE = 5.76 LB/FT? - SEC
SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

REACTOR STATUS

FIG. 33
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TRANSIENT INTERSTITIAL TEMPERATURE PROFILE FIG. 34

FOR THE ‘“‘MIXED BED #1' CATALYST BED CONFIGURATION

INJECTOR PRESSURE = 150 PSIA
STEADY-STATE MASS FLOW RATE=5.76 LB/FT2 - SEC

SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

REACTOR STATUS
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H910461-38 FIG. 35
COMPARISON OF TRANSIENT INTERSTITIAL TEMPERATURE PROFILES
FOR VARIOUS BED CONFIGURATIONS IN A CONTINUOUS FLOW SYSTEM
INJECTOR PRESSURE = 150 PSIA
STEADY-STATE MASS FLOW RATE = 5.76 LB/FT 2 - SEC
SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS
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H910461-38 FIG. 36
TRANSIENT INTERSTITIAL TEMPERATURE PROFILES
FOR 60 msec/120 msec PULSE DUTY CYCLE
INJECTOR PRESSURE = 150 PSIA
STEADY-STATE MASS FLOW RATE = 5.76 LB/FT2 _ SEC
CATALYST BED CONFIGURATION: MIXED BED # 2 (SEE TEXT)
SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS
2400 REACTOR STATUS .
| OFF |ON| OFF |ON| OFF [ON| OFF JON| OFF [ON| OFF |ON, OFF |ON OFF [ON| OFF JON| OFF
2200 —
B 2=0.052 FT e ——— — —
052FT __ _ — —
2000 — - W —
/ e e ————

1600 —

TEMPERATURE IN INTERSTITIAL PHASE, T, - DEG R

1800 —

0.052 FT

0.100 FT

1400
1200
1000
DASHED CURVES
800 REPRESENT
CONTINUOUS
OPERATION
600
-
400 1 I 1 I 1 l ] I | | ] | 1 1 | | |
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

TIME, + — SECONDS



H?10461-38 FiG. 37

TEMPERATURE IN INTERSTITIAL PHASE, T; - DEG R
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STEADY-STATE MASS FLOW RATE = 5.76 LB/FT 2 - SEC
CATALYST BED CONFIGURATION: MIXED BED # 2 (SEE TEXT)
SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS
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_ FIG.
MIMEITE  COMPARISON OF TRANSIENT INTERSTITIAL TEMPERATURE PROFILES o

FOR VARIOUS PULSE DUTY CYCLES

INJECTOR PRESSURE = 150 PSIA
STEADY—STATE MASS FLOW RATE = 5.76 LB/FT % — SEC
CATALYST BED CONFIGURATION: MIXED BED # 2 (SEE TEXT)
SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS
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TRANSIENT INTERSTITIAL TEMPERATURE PROFILE FOR A HIGH THRUST ENGINE

INJECTOR PRESSURE = 1405 PSIA
STEADY~STATE MASS FLOW RATE = 40.3 LB/FT2 — SEC

CATALYST BED CONFIGURATION: ALL 25-30 MESH PARTICLES
SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

REACTOR STATUS
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TRANSIENT PARTICLE TEMPERATURE PROFILE FOR A HIGH THRUST ENGINE

INJECTOR PRESSURE = 1405 PSIA
STEADY-STATE MASS FLOW RATE = 40.3 LB/FT 2 - SEC
CATALYST BED CONFIGURATION: ALL 25-30 MESH PARTICLES
SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS

REACTOR STATUS

FIG. 40
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H910461-38 FIG. 41
TRANSIENT CHAMBER PRESSURE PROFILE FOR A HIGH THRUST ENGINE
INJECTOR PRESSURE = 1405 PSIA
STEADY-STATE MASS FLOW RATE = 40.3 LB/FT % — SEC
CATALYST BED CONFIGURATION: ALL 25-30 MESH PARTICLES
SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS
REACTOR STATUS
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H910461-38 FIG. 42

TRANSIENT PROFILE OF MOLE-FRACTION OF HYDRAZINE
FOR A HIGH THRUST ENGINE

INJECTOR PRESSURE = 1405 PSIA
STEADY-STATE MASS FLOW RATE = 40.3 LB/FT2 - SEC

CATALYST BED CONFIGURATION: ALL 25-30 MESH PARTICLES

SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS
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FIG. 43

TRANSIENT PROFILE OF MOLE-FRACTION OF AMMONIA FOR A HIGH THRUST ENGINE

0.9

0.8

0.7

0.6

0.5

0.4

0.3

MOLE FRACTIION OF AMMONIA IN INTERSTITIAL PHASE

0.2

0.1

INJECTOR PRESSURE = 1405 PSIA
STEADY-STATE MASS FLOWRATE = 40.3 LB/FT2 - SEC
CATALYST BED CONFIGURATION: ALL 25-30 MESH PARTICLES

SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS
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MOLE-FRACTION OF NITROGEN IN INTERSTITIAL PHASE

FIG. 44

TRANSIENT PROFILE OF MOLE-FRACTION OF NITROGEN FOR A HIGH THRUST ENGINE
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SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS
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H910461-38 FIG. 45
TRANSIENT PROFILE OF MOLE-FRACTION OF HYDROGEN FOR A HIGH THRUST ENGINE

INJECTOR PRESSURE = 1405 PSIA
STEADY-STATE MASS FLOW RATE = 40.3 LB/FT 2 - SEC
CATALYST BED CONFIGURATION: ALL 25-30 MESH PARTICLES
SEE TEXT FOR ADDITIONAL REACTOR PARAMETERS
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