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MANIPULATION  ERRORS I N  FINITE ELEMENT 

ANALYSIS OF STRUCTURES 

By R. J. Me.losh* and E. L. Palacolf i  

SUMMARY 

The f i n i t e  element concept  provides the bas i s   fo r   numer i ca l   ana lys i s  of 
s t ructures .   Implementat ion  of   analyses   of   large  pract ical   problems  using  this  
concept  involve  digital   computers.   The'use  of  computers  incurs  manipulation 
e r rors   ( round-of f   and   t runca t ion)   in  the a n a l y s i s   s i n c e  the computer carries 
a l imi t ed  number o f   s i g n i f i c a n t  places in   a r i t hme t i c .   These   man ipu la t ion   e r ro r s  
will inc rease  as the  number o f   ca l cu la t ions  are increased.  Since  the  problem 
s izes  are growing,   an  analysis   of   the   errors   induced by the   use  of d i g i t a l  
computer is  increasingly  important .   This   report   examines these e r r o r s   f o r   t h e  
displacement  and  force  methods of s t r u c t u r a l   a n a l y s i s   f o r ,   r e s p e c t i v e l y ,  
sys t ems   o f   f i n i t e   e l emen t s   i n  series and i n   p a r a l l e l .  

The pr inc ipa l   manipula t ion   e r ror   involves   d i s tor t ion '   o f  the mantissa  of 
the f loa t ing   dec imal   representa t ion   of  the number. This error   depends upon 
the   s e l ec t ion   o f  number base, numbe.r of   p laces   car r ied ,   a r i thmet ic  mode, and 
manipulation mode. These   cha rac t e r i s t i c s  are f i x e d  by the   s e l ec t ion   o f  com- 
puter  hardware  and  software.  ,Table I i d e n t i f i e s  these characteristics f o r  
several   computer  systems. 

The manipula t ion   e r ror  i s  a l so   in f luenced  by  problem scale, s t r u c t u r a l  
i d e a l i z a t i o n ,  the sequencing  of   joints   and  e lements ,   se lect ion  of   coordinate  
axes, element  representations  used,  choice  between the fo rce   o r   d i sp l acemen t  
method,  and the   a lgor i thm  se lec ted   for   so lv ing   the   load-def lec t ion   re la t ion-  
s h i p s   f o r   t h e   s t r u c t u r e .  

E r ro r s  are s tudied  in   the  input-output ,   generat ion  and  e l iminat ion  phases  
of ca l cu la t ion .  The input-output   phase  invol l les   that   par t   of   the   problem  in  
which the   da t a  i.c in t roduced   in to  the computer  and r e s u l t s  are o u t p u t   f o r  
a n a l y s t   i n t e r p r e " a t i o n .   I n p u t   e r r o r s  are n o t   s i g n i f i c a n t .  The most cr i t ical  
Lnput e r r o r s  arise when dec imal   f rac t ions  are entered .   Er rors   in   input   can   be  
regarded as changes i n   t h e   o r i g i n a l   s t r u c t u r e ,  and  consequent ly   their  affect 
can   be   in te rpre ted  by the ana lys t .   Output   e r rors  are zero  unless  a l l  places  
c a r r i e d   i n   t h e   d i g i t a l  computer are p r in t ed   ou t .  If a l l  places  are p r in t ed ,  

*Section  Manager,  Engineering  Mechanics,  Philco-Ford  Corporation,  Western 
Development Laboratory,  Palo  Alto, Calif. 

Ci ty ,  Calif. 
*Senior Engineer /Scient is t ,   Douglas  Missile and  Space  Division,  Culver 
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the  last  place  may  be  in  error. 

Generation  errors  consist  of  the  errors  arising in developing  the co- 
efficients in the  load-deflection  equations.  These  errors  are  relatively 
small  for  both  the  force  and  displacement  methods  because  coefficient  generation 
requires  few  calculations.  Accuracy  measures  described can  be  coded to  insure 
the  consistency of the  coefficients.  A  larger  source of error  consists  of  the 
introduction  of  coordinate  information  which  does  not  permit  accurate 
evaluation of the  geometry of the  elements of the  structure. 

The largest  manipulation  errors  are  evoked  in  evaluating  the  primary 
unknowns of the  structure.  For  the  displacement  method  these  are  displacements; 
for  the  force  method,  force  redundants. 

For  the  displacement  method,  this  study  examines  the  errors  in  the  analysis 
of  series  systems. The worst  error  arises  for  these  systems in the  decomposi- 
tion  (triangularization) o f  the  stiffness  array.  Error  sources in this  process 
include  instability of the  calculations  due  to  manipulation  errors,  the 
accumulation  of  small  errors,  and  critical  arithmetic.  Errors  in  forward  and 
backward  substitution  to  evaluate  the  displacement  unknowns  are  small  in  these 
systems.  This  study  describes  criteria  for  the  analyst  to  minimize  manipulation 
error  and  equations  to  bound  its  magnitudes.  Included  are  descriptions  of 
optimum  joints  sequencing,  element  sequencing,  selection  of  idealization,  and 
error  .estimation  formulas.  Criteria  for  software  error  control  include 
modification  of  the  simultaneous  equation  solution  algorithm  and  error  checks. 

The worst  error  in  the  force  method  arises  in  inverting  the  force-redundant 
influence  matrix.  Errors in  triangularizing  the  geometric  matrix are only 
critical  if  the  structure  in  kinematically  unstable.  Algarithm  instability  and 
the  persistent  accumulation  of  errors  are  important  error  sources  in  resolving 
the  matrix of redundants.  Critical  arithmetic  is  less  important  that  for  the 
displacement  method. The parallel  structural  system  yields  the  largest  error 
of  any  structural  system  for  the  solution  of  the  redundants  matrix.  Analyst 
criteria  include  the  selection of weighting  of  the  structured  redundants  to 
sequence  equation  treatment,  the  numbering  of  elements  and  the  selection  of 
idealization.  Programming  described  to  control  error  includes  modifications of 
the  solution  algorithm  and  checks  to  insure  the  accuracy of  the  analysis. 

Verification  problems  consisting of a  swept  wing  and an unswept  box  are 
analyzed  to  validate  error  bounds  for  practical  structural  analysis.  Data 
from  this  study  shows  that  upper  bounds  based on the  number  of  calculations 
are  conservative  for  the  displacement  method  and  very  conservative  for  the 
force  method.  Study of these  problems  confirm  that  parallel  systems  should 
be treated  by  the  displacement  method  and  series  by  the  force  method  to 
minimize  manipulation  errors. 
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Sect ion 1 

INTRODUCTION 

lhen   t he   f i n i t e  element  approach t o  s t ructural   analysis  was introduced by 
Levy1  and Turner2  fourteen  years ago, analysis involved few equations. C u r -  
rently,  analyses  involving between 4.00 and 800 equations  are commonplace. 
Analyses  of 1500-2500 equations, which are  unusual now, vi11 soon be  typical. 
Thus, though  few bad ansvers have a r i s e n   i n  numerical  analyses  because  of mani- 
pulation errors, the  probabili ty o f  answer inva l id i ty  i s  increasing. 

In   addi t ion  to the   increase   in  problem size,   the complexity  of f i n i t e  
element  analyses has increased. In   t he   pas t ,  many applications were made t o  
s t ruc tures   for  which the  analyst  could  evaluate answer va l id i ty  by simple 
calculations, economical tests,  or  engineering  experience. Now, powerful 
programs l i k e  NASTRAN are  becoming available. These  provide  the  abil i ty  to 
t r e a t  geometric and material orthotropy  (sandwich,  laminated, wound, and other 
composites), more  complex geometry ( she l l s  of  arbitrary form, sol ids) ,  as well 
as more equations. Checks now available t o  insure answer va l id i ty  can be. 
expected t o  be too  gross f o r  these more  complex systems. 

Even a t  present problem s izes  and  with  the  present problem complexities, 
deleterious  manipulation  errors have occured i n   f i n i t e  element  analyses. 
These have been treated  individually.  A comprehensive study of the  severi ty  
and causes of  manipulation  errors i s  required. T h i s  study  can  provide a basis 
f o r  the  analyst t o  evaluate  the  accuracy of the  analysis  with  respect  to  the 
manipulation  error and suggest ways i n  which he can  formulate his problem  and/or 
maximize his answer val idi ty .  

Previous  studies on manipulation  errors  pertinent t o  the   s t ruc tura l  
analysis problem are  principally  involved  with  evaluation of t he   e r ro r   i n   t he  
solution  of  the  load-deflection  equations. Von Neumann and Goldstin2  per- 
formed an  extensive  analysis of the  errors   involved  in  matrix inversion.  Their 
attack  considered  the  errors  involved  in  the  solution t o  the  equations. They 
defined bounds  on the magnitudes  of these  errors as a function of matrix norms. 
Turing4  defined a number of more useable matrix norms ("condition numbers" ) . 
He showed that the bounds defined by Von  Neumann and Goldstine were much l e s s  
vhen expected  errors were estimated  rather  than maxima. Wilkinson5  adopted a 
"backward analysis"  approach t o  error evaluation. T h i s  approach  involves 
determining bounds of  changes i n  problem formulation  rather  than bounds on 
solution  error. He found it easier,  usi g this approach, t o  define a set of 
bounds f o r  the  analysis  error.  Forsytheg has given a good overview  of mani- 
pulation  error problems in   l inear   a lgebra.  He distinguishes  dense and sparse 
matrices as having d i s t inc t   e r ro r  problems. 

Other  authors have t reated  manipulat ion  errors   in   s t ructural   analyses   in  
particular.  Rosanoff and Ginsburg7  and  Rosanoff8 expounded the  basis  availa- 
ble  f o r  error  analysis as re la ted  t o  the  s t ructural   analysis  problem. They 
c i ted  some examples of analysis   error  and indicated  the  complexity  of  the  error 
analysis problem. Gatewood and Ohanian9 looked a t  the  manipulation error as a 
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function  of  the  order  of  the  differential  equations  being  considered.  They 
showed  that  considering  first  order  equations  gave  less  error  than  second  order 
differential  equations.  Moreover,  the  manipulation  errors  associated  with  a 
pair  of  second  order  differential  equations  was  less  than  that  associated  with 
a  single  fourth  order  differential  equation.  Shahlo  evaluated  errors  in  a 
structural  analysis  in  terms  of  the  eigenvectors  of  the  matrix  of  the  load- 
deflection  equations  using  the  displacement  method.  His  study  indicated  some 
general  conclusions  with  respect  to  error. 

This  paper  is  directly  concerned  with  the  manipulation  errors  in  conven- 
tional  force  and  displacement  method  analysis  of  structures.  The  purposes  of 
this  study  are  as  follows: 

1. To define  the  relative  importance  of  all  sources of manipulation 
error  in a computer-aided  numerical  analysis  of  a  structural  system 
using  finite  elements.  The  structural  systems  will  be  restricted 
to  those  with  linear  response  characteristics. 

2. To present  criteria  for  the  engineer to evaluate  the  maximum 
manipulation  error  that  may  occur  in  his  analysis  and  to  define 
ways  in  which  he  can  formulate  his  problem  to  minimize  this  error. 

3.  To  note  error  control  devices  that  the  programmer  may  use  to  reduce 
manipulation  error. 

4 .  To demonstrate  the  effectiveness  of  the  criteria  for  error  evalua- 
tion for practical  finite  element  structural  analyses. 

The  results  of  the  study  are  presented  in  five  sections.  The  next  section 
provides  the  basic  definitions  for  the  error  analysis  and  examines  the  error 
sources  common  to  both  the  force  and  displacement  methods  of  structural  analysis. 
The  third  section  includes  the  error  analysis  of  the  displacement  method  of 
structural  analysis.  The  fourth  section  involves  error  analysis  of  the  force 
method.  The  fifth  section  examines  use  of  displacement  and  force  criteria  in 
predicting  the  manipulation  error  associated  with  the  analysis  of  a  swept  wing 
and an  unswept  box.  The  final  section  of  the  document  contains  a  summary  of 
report  developments. 

The  valuable  assistance  of  Philip  Diether  of  Philco-Ford  and  Harvey  Puckett 
of  Douglas  in  formulating  test  problems  is  gratefully  acknowledged.  The 
assistance  of  the  Ames  computing  laboratory  in  performing  displacement  method 
calculations  was  indispensable.  The  assistance  of  Stewart  Crandall  in  implement- 
ing  higher  precision  analyses  was  of  special  help. 

Displacement  method  equation  solutions  were  developed  using  the SAMIS code 
available  from  the  University of Georgia.  Force  method  analyses  were  implemented 
by  Format 11, available  from  Wright-Patterson  Air  Force  Base. 
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Sect ion 2 

GENERAL ASPECTS OF ERROR ANALYSIS 

Manipulation  errors are caused by using a l imited number  of p l aces   t o  
represent  a number.  Most engineer ing  data  are represented on the  computer  using 
f loa t ing   po in t  numbers.  Each r ep resen ta t ion   cons i s t s  of two parts: a mantissa 
and  an  exponent. 

I n  a s ingle   operat ion,   manipulat ion  errors   can  involve  exponent   exceedance 
o r   man t i s sa   d i s to r t ion .  The limited  range  of  the  exponent  due  to  the  limited 
number .of places alloted,  induces  "overflow"  and  "underf lowJ" errors.   Overflow 
occurs when t h e   r e s u l t  of  an arithmetic operat ion i s  such  that   the  exponent 
exceeds  the  value  that   can  be  represented.   I f ,   for   example,   exponents   bigger  
than  one are inadmiss ib l e   i n  a tens   base  calculat ion,   forming  the  product   of  
10'  and lo1 would r e su l t   i n   ove r f low.  Underflow  occurs when the   r e su l t   o f   t he  
c a l c u l a t i o n s  i s  so small that  the  exponent is  smaller than  representable  with 
the number of  places  provided  for  the  exponent. 

Overflow  and  underflow are not  normally cr i t ical  sources  of  manipulation 
e r ror .   Usual ly ,   the  number of places   for   the  exponent  i s  enough so tha t   over -  
f lot7 and  underflow do not  occur. 

I f  exceedance  errors  occur,  i t  i s  convent iona l   to  replace an  underflowed 
number with  an  absolute   zero  during  calculat ions.   Thus,  when underflow  occurs, 
the number r ep resen t ing   t he   r e su l t  i s  n e g l i g i b l e  compared wi th   t yp ica l  numbers. 
When overflow  occurs,  however, a number t h a t  i s  i n f i n i t e l y   l a r g e r   t h a n   o t h e r  
numbers cannot be subs t i tu ted   for   the   over f lowed number.  With some software,  
the  overflowed number is  replaced by the  maximum number tha t   can  be represented 
on the  computer. On o the r s ,   t he  number  of  overflow  occurrences i s  noted   to  
provide a measure  of  the  inadequacy  of  the  calculations  to  the  analyst. 

I f  exponent  exceedance  errors are important,   they  can be el iminated by 
changes  to  the  problem  or  the  software.   Scaling  or  shift ing  of  the  problem  data 
base  can  be  used  to  reduce  the  required  exponent  range  of  calculations.   Scaling 
requires   mult iplying a l l  numbers by a f a c t o r .   S h i f t i n g   i n v o l v e s   t r a n s l a t i n g  
coordinate  systems.  These same types  of  changes  can be incorporated  in   sof tware 
t o   i n s u r e   t h a t  no exponent  exceedance  occurs. The  optimum  problem formulation 
is  t h a t   i n  which t h e   f u l l   r a n g e  of the  exponent i s  used  but  never  exceeded. 

Though exponent  exceedance  errors  rarely  occur and  can  be eas i ly   sensed  
and el iminated,   the  same i s  not t r u e  of   mant i ssa   d i s tor t ion   e r rors .   These  
e r r o r s   i n v o l v e   t h e   a t t r i t i o n  of the  mantissa as a consequence of a series of 
c a l c u l a t i o n s .  The a t t r i t i o n  may r e s u l t   i n  exponent  exceedance  but  deleterinus 
errors   can  exis t   wi thout   over   or   underf low.  The simplest way t o   d e t e c t  and 
e l imina te   t hese   e r ro r s  i s  by performing  ari thmetic  using more places i n   t h e  
mantissa.  Determination  of  the  magnitude  of  these  errors i s  the   cen t ra l   concern  
of   th i s   s tudy .  
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Error  Parameters 
Manipulation  errors  depend on the  analyst's  choice of hardware  and  soft- 

ware. This  choice  determines  the  number  base,  the  arithmetic  mode,  and  the 
manipulation  mode. The  number  base  used  in all high-speed  computers is two. 
Both  the  exponent  and  the  mantissa  are  represented in a binary  mode.  Thus,  the 
number 0.5 x 101 in the  tens  numoer  base is represented  on  the  computer as 
.LO1 x 23. In the  representation, on ly  the  mantissa ( .loll and  the  exponent (3)  
are cited.  The  base  of  the  exponent is implied. 

I 

The arithmetic  mode  of  interest is the  floating  binary  mode.  Fixed  point 
arithmetic is inherently  more  accurate  using a given  number  of  places  to 
represent a number  because  more  places  can  be  allocated'  to  the  mantissa  when  the 
exponent is implied.  The  added  programming  effort  involved in controlling seal- 
ing  throughout  the  calculations,  however,  results in  fixed  point  being an 
unpopular  mode for scientific  analyses. 

The  manipulation  mode is defined by the  rules for arithmetic.  These  rules 
define  the  precision of the  calculations, how the  answer is developed,  special 
treatment  to  the  answer  and  wbat  is  done  with  the  remainder in the  calculations. 

This  study will be  concerned  with  single  precision  manipulation.  This 
means  that  the  number is represented  by a single  computer  word.  Most  large 
computers  provide for both  single  and  double  precision  arithmetic in the  ha.rd- 
ware.  Higher  than  double  precision  can  be  attained by software  but  involves a 
large  time  penalty  compared  with  single  precision.  For  example,  quadruple 
precision is over  four  times  more  time  consuming  than  double  precision  though 
double  precision is o d y  1.4 times  more  expensive  than  single  precision.  The  con- 
sideratiop o f  multiple precision modes does not change  the basic  error 
analysis. It means  that  calculations  proceed as if a single  number  with a 
larger  mantissa  has  been  used. For example, if single  precision has a 24 bit 
(binary  place)  mantissa,  double  precision  has 48 (IBM 7094). 

For  this  study, it will be assumed  that  the  answers are developed 
using a single  precision  accumulator for addition  and  subtraction. A double 
precision  accumulator will be  assumed for multiplication  and  division.  This 
assumption is true for a number of computers  of  interest. 

After  the  single or double  precision  result is obtained, it will be  assumed 
that  the  result is normalized.  Normalization  consists  of  shifting  the  mantissa 
to  the  left  as far as necessary so that  the  lead  place  contains a non-zero 
number. It will be  assumed  that  the  lead  place is a binary  place. It is noted 
that  this is not true  of  the  IBM 360 system  which  uses a hexadecimal  (five  bit) 
first place.  Binary  normalization is common  to all other  large  scale  computers, 
however. Upon  completion  of  normalization, it will be assumed that the 
remainder is truncated. In truncation  the  remainder is simply  discarded. In 
rounding, on the  other  hand,  the  last  place in the  mantissa is increased  by 1 
if the  first  place  of  the  remainder is non-zero. 

Average  and maximum errors  associated  with  truncation  tend  to  be  greater 
than  those  due  to  rounding.  The  average  truncation  error is slightly  less  than 
one-half  the  value  of  the last place in the  result.  The  average  rounding  error' 
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is  zero.  The maximum t r u n c a t i o n   e r r o r  i s  one p a r t  i n   t h e  last p lace ;   the  m a x i -  
mum rounding   e r ror   one-ha l f   par t .  Assuming t runca t ion  will y i e l d   e r r o r  bounds 
which  would indicate   larger   errors   than  assuming  rounding.  

The manipulation mode assumed i s  cons is ten t   wi th   the  mode used i n  a 
For t ran  I V  program opera t ing  on the  IBM 7094.  This mode i s  more o r  less t h e  
common  mode o f   ca l cu la t ion  on a l l  computers. 

The character is t ics   of   var ious  computers   with respect to   manipula t ion  mode 
are summarized i n   T a b l e  I. Th i s   t ab l e  ci tes t h e   t o t a l  work s i z e   f o r  number 
representa t ion ,   the  number o f   t h e   b i t s   o f   t h i s  word s i z e   r e s e r v e d   f o r   t h e  
mantissa,   and  the number o f   dec ima l   d ig i t s   t ha t  are represented.  If the   range  
of the  exponent i s  of   in te res t ,   the   reader   can   de te rmine   the  number o f   d i g i t s  
in   the   exponent  by sub t r ac t ing   t he  number of b i t s   i n   t h e   m a n t i s s a   f r o m   f l o a t i n g  
point  word s i z e  and  consider ing  this  as a range  on  exponent of t he  number  two. 
For  the  Burroughs B5500, f o r  example,  the number of b i t s   f o r   t h e   e x p o n e n t  i s  
t h u s   e i g h t .   ( I n   t h i s  p a r t i c  :lar case one b i t  i s  r e se rved   t o   i nd ica t e   t he  
e x i s t e n c e   o f   d a t a   i n   t h e   s t o r a g e   l o c a t i o n . )  The largest   exponent   that   can be 
represented i s  212*. It i s  customary to  divide  the  exponent  equally  between 
t h e   o s i t i v e  and negative  exponents.  Thus,  the  exponent  could  range  from 2- 
t o  2 . Conver t ing   th i s   in to  a decimal  system,  the  exponent  could  vary  between %3 

63 

and lO+l9. 

A s  i nd ica t ed  by this  st-cvey,  most  of  the  large scale computers  truncate 
the   r e su l t   o f   t he   a r i t hme t i r -   ope ra t ions .  Whether or   no t   rounding   or   t runca t ion  
i s  used  depends  upon  the  compiler. I n  most  of t he   l a rge  scale computers,  the 
machine  language  instruction  to  perform  either  rounding  or  truncation i s  ava i l a -  
b l e .   T h u s ,   t h e   e n t r i e s   i n   t h e   f i f t h  column of   the   t ab le   def ine   t rea tment   o f  
the  mant issa   in   accordance with the   Fo r t r an  I V  compi l e r   fo r  the computer 
ind ica ted .  

Besides   his   select ion  of   computer   hardware  and  sof tware,   the   analyst ' s  
choice  of  problem scale, i d e a l i z a t i o n  and solut ion  a lgori thm  has   an  important  
a f f e c t  upon t h e   m a n i p u l a t i o n   e r r o r   i n   h i s   c a l c u l a t i o n s .  A s  noted,  his choice 
of scales determines  whether  exponent  exceedance will occur  and  influences  the 
magnitude  of   mant issa   dis tor t ion.  H i s  i d e a l i z a t i o n  of the s t ruc ture   de te rmines  
the  conditioning  of  the numbers used i n   t h e   c a l c u l a t i o n .  Of importance are the  
j o i n t  numbering  sequence,  coordinate axes, the  material coef f ic ien ts ,   and   the  
e l emen t   r ep resen ta t ion   s e l ec t ed   fo r   t he   f i n i t e   e l emen t s .  The algori thm selec- 
ted  by the   ana lys t   def ines   the   sequence   in   which   ca lcu la t ions  are performed  and 
the  approximateions  used i n   a r r i v i n g  a t  the so lu t ion .  

I n   t h e   s e q u e l   e r r o r s  will sometimes  be c h a r a c t e r i z e d   i n   t h e i r   a b s o l u t e  
form  and  sometimes i n   t h e i r   r e l a t i v e .   A b s o l u t e   e r r o r s  are s ta tements   o f   t rue  
values  of t h e   e r r o r s .   R e l a t i v e   e r r o r s  are t h e   r a t i o   o f   t h e   a b s o l u t e   e r r o r  
divided by some measure  of  the  numbers  used i n  the ca l cu la t ion ,   e .g . ,  e = E/A 
where e i s  t h e   r e l a t i v e   e r r o r ,  E i s  the abso lu te   e r ro r   and  A i s  t h e  number 
measure. 
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Table I 

Accuracy  of  Computers 

f 

Floating  Decimal No. of Bits in No. of  Digits  Manipulation 
Computer  Word  Size,Bits  Mantissa in Accuracy  Mode 

Burroughs €35500 ? 43% 39 11.7 Round 

CDC 3600 43 36 10.8 Round 

CDC 6600 60 48 140 4 Round 

GE 265 40  29 8.7 Truncate 

03 Honeywell MH 800 43 4 12.0 Truncate 

Honeywell MH 1800 48 4 12.0 Truncate 

IBM 7094 36 27 8 .1  Truncate 

IBM 360 32 2 4 0  7.2 Truncate 

Philco 212 48 35 10.5 Round 

RCA  Spectra 7 0 ' s  32 2.@ 8.1 Truncate 

Univac 1108 36 27 8.1 Truncate 

* One bit  indicates  data  existence. 

0 Hexadecimal  normalization;  thus  effectively 23-1/3 bits,  on  the  average. 



The o b j e c t i v e   o f   t h i s   e r r o r   a n a l y s i s   i s . t o   d e f i n e   t h e  magnitude  of  the 
e r r o r s   t h a t  arise in   ca lcu la t ion .   In   per forming   the   ana lys i s ,  each opera t ion  
will be t reated  independent ly .  It will be  assumed t h a t   t h e   i n p u t   t o   t h a t  
opera t ion  i s  prec ise .  The e r r o r   i n   t h e   o u t p u t   o f   t h a t   o p e r a t i o n  will be  pre- 
dicted.   Operat ions  include  input-out  and a r i thme t i c .  The ‘ e r r o r   a n a l y s i s  will 
be performed  by  analyzing  special cases and  developing  error  cri teria.  These 
cr i ter ia  will be evaluated on a. set  of. special prnblems.   F ina l   ver i f ica t ion  
of   the  cr i ter ia  will be  performed by applying  the c r i te r ia  t o   p r a c t i c a l   s t r u c -  
tural problems  and cor re la t ing   resu l t s   wi th   computer   ana lyses   o f   these  s t ruc-  
tures. 

Input-Output  Errors 

Inpu t -ou tpu t   e r ro r s  are t h e   e r r o r s   i n v o l v e d   i n  communicating  problem  con- 
s t a n t s  between t h e   a n a l y s t   o r  programmer  and the  computer .   Usual ly   input   data  
i s  developed by the  analyst   in   the  form  of   card-punched  information.  The 
programmer s u p p l i e s   i n p u t   t o  the ca lcu la t ions   in   the   form  of   cons tan ts   def ined  
i n  his   source  deck.   Output   data  i s  t ransmi t ted  by the   computer   to   the   ana lys t  
i n   t h e  form  of  printouts  and  punched  card  data.. 

I n p u t   e r r o r s   i n c l u d e   e r r o r s   i n   d a t a   t r u n c a t i o n  and  conversion. No matter 
how accura t e ly   t he   ana lys t   de f ines   h i s   i npu t   da t a ,   t he   compute r   r ep resen t s   t h i s  
i n fo rma t ion   i n  a f l o a t i n g   p o i n t  word of   l imited  s ize .   Thus,   for   example,  a 
t e n - d i g i t  number i s  t runca ted   to   an  8.3 d i g i t  number. Truncation i s  performed 
after c o n v e r t i n g   d i g i t s .   T h e r e f o r e ,   i n   t h i s   e x a m p l e ,   t h e   t e n t h   d i g i t  would  be 
disregarded  and  the  ninth  represented  with some e r r o r .  

Conversion  errors arise becausz  lnput   data  i s  genera l ly   in t roduced   in  
decimal  form  and mus t  be conve r t ed   i n to   t he   b ina ry   base   sys t em  fo r   ca l cu la t ions .  
No conve r s ion   e r ro r   occu r s   i n ’ t r ansmi t t i ng   i n t ege r s .   E r ro r s   do  arise, however, 
in   conver t ing   dec imal   f rac t ions .   In  fac t ,  a 27 b i t   r ep resen ta t ion   does   no t  
provide   for   e igh t   d ig i t   accuracy   due   to  con--sion e r r o r  . 11 

Output e r r o r s  are caused by t ransforming   the   b inary   representa t ion   of   the  
number into  the  decimal  system  and  reproducing a l imited  decimal   representat ion 
for  the  convenience  of  the  user.   These  again,  are errors   of   conversion and 
t r u n c a t i o n .   I n   c o n v e r s i o n   f o r   o u t p u t ,   d i g i t s  beyond those   p r in t ed   o r  punched 
are d i s r ega rded .   In   conve r t ing   t he   man t i s sa   t o  a decimal   system,  errors  arise 
o n l y   i n   d i g i t s  beyond those  represented  in   the  computer ,  i .e . ,  i n   t h e   n i n t h  
d i g i t   i n  a machine ca r ry ing  8 . 3  decimal places in   t he   man t i s sa .   Th i s  i s  because 
s ing le   p rec i s ion   ope ra t ions  are used t o  perform  the  conversion.  Since  the 
ana lys t  i s  no rma l ly   i n t e re s t ed   i n  fewer s ign i f i can t   f i gu res   t han   r ep resen ted  
on the  computer i n   t he   man t i s sa ,   t h i s   e r ro r   does   no t   appea r   i n   t he   f i na l   answer .  

Table I1 provides   typ ica l   input -output   e r ror   da ta .   These   da ta  were obtained 
us ing   the  IBM 7094. E r r o r s   i n   i n p u t   t r a n s f o r m a t i o n   f o r   i n t e g e r s  is  s i g n i f i c a n t  
o n l y   i n   t h e  last  p lace   tha t   can   be   represented   in   the   computer .   This   e r ror  is  a 
measure   o f   the   t runca t ion   e r ror   a lone .   Er ror   in   conver t ing   f rac t iona l   dec imals  
is  seen   t o  be more s i g n i f i c a n t .  It  is i n t e r e s t i n g   t o   n o t e  
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Table I1 

Input-Output  Errors 

Number* In te rna l  Form Outmt Form 

.1 099,999,995 , 6 .099,999,996 

.2 .199,999,999,1 -199,999,999 

.3 .300,000,000,5 .300,000,001 

04 .399,999,998,2 .399,999,999 

.5 .500,000,000,0 .500,000,000 

.6 .600,000,001,0 .600,000,001 

.7  .700 , 000 , 004,3 .700,000,003 

.8 799,999,996 , 5 .799,999,997 

-9 899  ,999,998 y 2 899,999,999 

1.0 1.000,000,000,0 9999,999,994 
268435455. 268,435,456.0 268 , 435 , 456 

*From compiler or  source  cards. 
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tha t   da ta   in t roduced   th rough the compiler by way of   input   cards  may r e s u l t   i n  a 
d i f f e ren t   r ep resen ta t ion   t han   t he  same decimal  introduced  by the programmer. 
This  inconsistency  can  be a problem i f  i t  i s  required  to   match  input   of   the  
ana lys t   wi th   cons tan ts   suppl ied  by t h e  programmer. 

Output   errors  arise o n l y   i n   t h e  last dec imal   d ig i t   represented  on t h i s  
computer. I f  less t h a n   n i n e   d i g i t s  are p r i n t e d   f o r   t h e  27 b i t  word, t he  
answe i s  a c c u r a t e   i n  a l l  d ig i t s .   S ince   eng inee r s  are s e l d o m   i n t e r e s t e d   i n  more 
t h a n   f o u r   s i g n i f i c a n t   d i g i t s   i n   t h e i r   a n s w e r s ,  th i s  output   manipulat ion  error  
can  be  disregarded  for a l l  computers. 

I f   t h e   a n a l y s t  i s  concerned  about the magnitude  of the e r r o r   d u e   t o   i n p u t -  
ou tput   e r ror ,   he   can  modify h i s   c a l c u l a t i o n s  t o  measure i t .  This  can  be 
achieved by changing  input   to   span the exact numbers t o  be  represented, re- 
running  the  analysis,   and  comparing  solutions.  

The affect of   t runca t ing  numbers e n t e r e d   i n  the source  deck is  n o t  as 
e a s i l y  measured s i n c e  i t  would r e q u i r e  a recompilation  of  the program being 
used. However, these e r r o r s  are small i f  the programmer e n t e r s   c o n s t a n t s  with 
maximum prec is ion   of  the floating  words.   For  example,  the cons t an t  II i n  a 
27 b i t  ( 8 . 3  decimal   d ig i t )   mant i ssa   should   be   en te red  as 3.14159265 t o  minimize 
t h e   e r r o r .  

I f   t h e   a n a l y s t   i n s i s t s  on e l imina t ing   i npu t   man ipu la t ion   e r ro r s ,  this can 
be  achieved  for  a l l  bu t   i r r a , t i ona l  numbers by s c a l i n g  h i s  d a t a  by the least 
common denominator   consis tent   with model s c a l i n g  laws. He should  then  choose 
a computer  system  which  can  handle this  i n t e g e r .  

It is  concluded   tha t   input -output   e r rors  are not  an  important  source  of 
manipulat ion  errors .  The p r inc ipa l   e r ro r s   i n   i npu t   i nvo lve   conve r s ions .  If  
t h e s e   e r r o r s  are important ,   their   effect   can  be  measured by r eca l cu la t ion .  The 
pr inc ipa l   e r rors   in   ou tput   involve   t runca t ion .   These   can   be   avoided  by p r i n t -  
i ng   ou t  a t  least one less s i g n i f i c a n t  place than is  ca r r i ed   w i th   t he   p rec i s ion  
a v a i l a b l e .   I f  the ana lys t   r equ i r e s  a complete  representation  of the number f o r  
ou tpu t ,  he can  always  print  the number i n   o c t a l   f o r m a t  and  perform the con- 
vers ion  himself   wi thout   errors .  

I Simple  Arithmetic  Errors 

A l l  e r r o r s   o t h e r   t h a n   i n p u t - o u t p u t   e r r o r s  arise a t  the s imple   a r i thmet ic  
leve l .   S imple   a r i thmet ic   cons is t s   o f   s ing le   ca lcu la t ions   and  series of 
ca l cu la t ions   i nvo lv ing  a s ing le   ope ra t ion .  

Consider f i r s t  the e r r o r s   a r i s i n g   i n  a s i n g l e   a d d i t i o n ,   s u b t r a c t i o n ,  
mu l t ip l i ca t ion   and   d iv i s ion .  The maximum a b s o l u t e   e r r o r   i n   s u c h   a n   o p e r a t i o n  
i s  less t h a n   o r   e q u a l   t o   o n e   p a r t   i n  the last place  of the un-normalized  answer: 

bx(A)-P (2-1) 

where b i s  the number of   base   o f   in te res t ,  x(A) i s  the exponent of the answer 
p is the arithmetic p rec i s ion  (number of s i g n i f i c a n t   p l a c e s   i n   t h e   m a n t i s s a ) .  
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When two components are added  together ,   the   exact  sum can  contain more 
p l aces   t han   e i the r  addend.  Only i n   t h i s  case can  the  computer  result be i n  
e r r o r .   T h u s ,   e r r o r s   i n   t h e   o r d e r   o f   t h e  maximum given by equation (1) arise 
when the   exac t  sum contains  more places than  e i ther   addend.  One a d d i t i o n a l  
place i s  su f f i c i en t   t o   app roach  Em. The following  examples show t h i s .  The num- 
ber  base assumed is  10. E i s  the   exac t   va lue  of e r r o r .  

p=2: . 4 3 ~ 1 0  +.29x10  =.72x10 E=O, E =.OlxlO m 

p=2: . 1 2 ~ 1 0  +. 29x10 =. 14x10 E=.009x10 , E =.OlxlO 

p=3 : .123xlO-I+. 999x10 =. 100x10 E=.  0 0 0 0 2 3 ~ 1 0 ~ ’  Em=. O O O l x l O  

p=3: .743 .10   + .999~10. -~=.743~10 E=.000999x102, E = . O O l x l O  0 2  2 

1 1 1 

2 1 2  2 

1 

2 
m 

1 2  2 

m 

When the  number base is  2 ,   t he   e r ro r  bound given by equation (1) provides a 
c l o s e r  estimate than  with  the number base  10.  For  example: 

p-2:  .11x2  +.11x2  =.11x2 2 0 2 E=. 0011x2 E -.01x2 

-1 

2 
m 

p=3: . 1 0 1 ~ - ~ + .   1 1 1 ~ 2 - ~ = .   1 0 0 ~ 2  
-1 

E=. 0001 1x2 E = .001x2 

p=4: .1101x2 +. l l l O ~ 2 ~ - .  llOxZ4  E=.00011x2 E =.001x2 

-1 

4 
m 

3 
m 

In   add i t ion ,  the r e l a t i v e   e r r o r  i s  def ined as the   absolu te   va lue   o f   e r ror  
divided by the  sum. Using equation (1) and  recognizing  that   the   t runcat ion i s  
always  posi t ive,   the  maximum r e l a t i v e   e r r o r  is  given by 

Where the   s econd   subsc r ip t   i nd ica t e s   t ha t   t he   ope ra t ion  i s  add i t ion .  The exact 
sum i s  bounded by 

where A is  the  estimate of  the answer. 
from  zero  than  the estimate. E 

A + A e  < A E m a  \ 
(2-3)  

Thus,   the   solut ion i s  always  fur ther  

I n   s u b t r a c t i o n ,   t h e  number of places i n   t h e  answer may be less than  the 
number of places i n   e i t h e r   t h e  minuend or   subtrahend.   Then,   the   subtract ion 
ope ra t ion   i nvo lves   sh i f t i ng   o f   t he   r e su l t   t o   y i e ld  a normalized  mantissa. Modi- 
fyfng  equat ion (1) to   i nc lude   cons ide ra t ion   o f   t he   sh i f t i ng   o f   t he   man t i s sa  
after t h e   s u b t r a c t i o n ,  i t  takes  the  form 

12 



E =b x(A1-p + f + 1 
m s  

(2-4) 

where f i s  the  number of l e f t  s h i f t s   ( m u l t i p l i c a t i o n s  by .b )   t o   no rma l i ze   t he  
answer.   Note   that   the   actual   error   of   subtract ion may be   pos i t ive   o r   nega t ive .  
The f i d e l i t y  which t h i s   e q u a t i o n   d e f i n e s   i n   u p p e r  bound i s  indica ted  as fol lows 
for  decimal and binary  based  ari thmetic.   Again,  as fo r   add t ion ,   t he  bound i s  
u s u a l l y   c l o s e r  when binary arithmetic i s  used. 

b P  Subt rac t ion   Resul t  E E 
" ms - - 
10 2 .16x101-  .89x10 = .8x10  .09xlO . lxlO 
10 2 . 1 6 ~ 1 0 - ~ - .  41x10 1 = -. 40x10- . 0 0 6 ~ 1 0 - ~  .01x10- 

10 3 . 326x102-.  999x10 1 = .227xlO 2 . ooo1x102 . O O l X l O  2 

10 3 . 1 4 3 ~ 1 0 - ~ - . 1 4 2 ~ 1 0 - ~  = . ~ O O X I O - ~  0. . 1x1~-5 

0 0 0 0 

2 2 . 11x22-.  10x2 =. 10x22 = . lox2 
2 3 .101x2-1-.110x2 0 = -. 100x2 0 .0001x2 O .001x2 0 

2 4 . 1001x26-.  1101x2 O = .1001x2 6 . l lOlx2  O 1000x21 

1 2 
0 .Olx2 2 

Because  the  resul ts   of   the   sub, t ract ions may be  zero,  i t  i s  d e s i r a b l e   t o  
d e f i n e   t h e   r e l a t i v e   e r r o r s  as: 

N 
where . 2 n i  means the  sum of   the  absolute   values   of   the  numbers invo lved   i n  
the   a r i t hzek ic .  Using (4 )  and (5) the   exac t   d i f fe rence  is bounded  by: 

Thus,  the  answer i s  a lways   c loser   to   zero   than  the estimate. 

S u b t r a c t i o n   t e n d s   t o   r e s u l t   i n  smaller e r ro r s   t han   add i t ion .   Abso lu te  
va lues   o f   e r ro r s  are the  same magnitude,  but  subtraction  involves no e r r o r  when 
the  exponents  of  the numbers producing  the  answer are the  same. Therefore ,  
r e l a t i v e   e r r o r s ,  as def ined by equat ion  (51,  will be smaller f o r   s u b t r a c t i o n  
than  addi t ion.  

This   conclusion  offends  the  intui t ion  because  the  subtract ion  of   near ly  
equal  numbers will r e s u l t   i n   a n  answer with few s i g n i f i c a n t   f i g u r e s  of  accuracy. 
This   def ic iency i s  n o t   s u b t r a c t i o n   e r r o r .  It i s  due  embedding the  information 
o f   i n t e r e s t   i n   t h e  least s ign i f i can t   p l aces   o f   t he   man t i s sa   o f   t he  minuend and 
subtrahend.   This   operat ion i s  one  type  of "cr i t ical  a r i thmet ic . "  

A second  type  of c r i t i ca l  a r i thmet ic   occurs   in   bo th   addi t ion   and   subt rac-  
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t ion.This   occurs  when one  of  the  components is  small compared wi th   the   o ther ,  
and v i t a l  information is  l o s t .   I n   t h i s  c r i t i ca l  arithmetic, the  smaller com- 
ponent i s  truncated  from  the l e f t  and  the compoenent may be l o s t ,   e . g . ,  

b=10, p=4: .lOOOxlO 8 + .5000x10 4 =.lOOOxlO 8 

Since  the  resul t   of   mult ipl icat ion  of   normalized numbers is  always  nor- 
mal ized ,   the   l imi ta t ion   o f   equa t ion  (1) t o  a normalized  result   can  be  disregard- 
ed f o r   m u l t i p l i c a t i o n .  It is convenient ,   however ,   to   def ine.another ,  less 
accurate, e r r o r  measure f o r   m u l t i p l i c a t i o n :  

= AC (2-7)  

where the   subsc r ip t  m des igna te s   mu l t ip l i ca t ion ,  A i s  the  exact  product  and 
C bl-p.  The following examples i l l u s t r a t e   t h e   e f f e c t i v e n e s s  of  equations 
(1) and ( 7 )   i n  bounding   the   e r ior   for   mul t i  
bases : 

b P  Product  Result  

1 1 1 
" 

10 2 ( . 2 3 ~ 1 0   ) ( . 2 1 ~ 1 0  ) = .48x10 
1 m 

b l i ca t ion   i n   t he   t ens  and  -binary 

E 
- Em mm E 

- - 
03x10-' . ~ O X ~ O - ~  .48x10-' 

10 2  (.82x101) (. 1 3 ~ 1 0 ~ )  = . 10xlOL .66x1Oo 1 . 0 ~ 1 0 ~  1 . 0 6 ~ 1 0  
0 

10 3 (.223x10  1(.684x1O2) = . 1152x103 .532x1Oo 1 . 0 ~ 1 0  1 . 5 2 ~ 1 0  2 0 0 

2 2 ( .11x2  ) ( .11x2 1 0 0 = . lox2  O .001x2-1 . l x2  .102- 
-1 

2 3 (.110x2  )(.101x2 1 = .111x2 
1 2 .010x2  .1x2 .111x2 1 1 

2 4 ( . 1 1 0 1 ~ 2 - ~ ) ( . 1 0 0 1 ~ 2 ~  = .111oX2O . 0 1 0 1 ~ 2 - ~   . l X 2  -3 . 1 1 1 0 ~ 2 - ~  

It can  be  seen  that   (7)   gives   an estimate of  the maximum e r r o r   t h a t  i s  at  
most twice tha t   g iven  by (1) for   b inary   base   a r i thmet ic .  It may be  ten times 
g rea t e r   fo r   dec ima l   a r i t hme t i c .  

The r e l a t i v e   e r r o r   i n   m u l t i p l i c a t i o n  i s  def ined as the   e r ro r   d iv ided  by the 
value  of   the  product .   Using  equat ion  (71,   the   re la t ive  error   takes   the  form 

I eml = IcI 
Bounds f o r   t h e  exact product are 

Thus the answer i s  always  further  from  zero  than the estimate. 

14 
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Equation (1) de f ines  an e r r o r  bound f o r   d i v i s i o n   b e c a u s e ,   l i k e  m u l t i p l i c a -  
t i o n ,   t h e   r e s u l t  i s  developed i n  a double  precision  accumulator.   Normalization 
of the   resu l t   insures   accuracy   to  as many places as in   t he   o r ig ina l   d iv idend  and 
d iv i so r .   L ike   mu l t ip l i ca t ion ,   an   a l t e rna te  bound f o r   t h e   q u o t i e n t   e r r o r  is  
taken  in  the  form  of  equation (7) .  I l l u s t r a t i o n  of  the  effectiveness  of  equa- 
t i o n s  (1) and ( 7 )   i n  bounding  the  error of d i v i s i o n  i s  ind ica t ed  by the  follow- 
ing examples : 

b P  Quotient 
" 

Result  E E E - m - mm - 
10 2 (.57x1O3)(.24x1O 3 1 -1 = .23xlO 2 . 0 0 7 3 ~ 1 0 - ~  . 01X10-2 . 0 2 3 ~ 1 0 - ~  

10 2 ( .57x101) ( .68x10 1 = - .83x101  .008x10 .O1xlO1 .083x10 -2 -1 1 

10 3 ( .57x102)  (.683x10- ) = .84x103 . 0 0 1 ~ 1 0  1 -1 .0lX1o3  .084x10 3 

2 2 (.lox2  )(.11x2 1 = .lox2  .0101x2 . l x 2  . l x 2  2 1 -1 1 0 0 0 

2 3 (. 1 1 0 ~ 2 - ~ )  (. 1 0 1 ~ 2 ~ ) - ~  = .1oox2  -2 . 0 1 1 ~ 2 - ~  . l x 2  -4 . 1 1 0 ~ 2 - ~  

2 4 (. 1 1 0 1 x 2 ~ ~ . 1 0 1 1 ~ 2 ~ ) - ~  = .0o1lx2 .1x2 -3  . 1 0 0 1 ~ 2 - ~  

Again i t  i s  seen   tha t   the  bound given by E d i f f e r s  from t h a t  of E by a t  most 
a f a c t o r  of two  when the  binary  base i s  involved   in   the   opera t ion .  mm m 

R e l a t i v e   e r r o r   f o r   d i v i s i o n  i s  defined  the same way as f o r   m u l t i p l i c a t i o n ,  
i . e . ,  by equat ion  (7)  and the   quot ien t  i s  bounded  by equation ( 9 ) .  The exac t  
quot ient  is  always  far ther   than  zero  than  the estimate. 

It i s  sometimes des i r ab le   t o   de t e rmine   e r ro r  when the  exact  answer i s  un- 
known. Then fo rmulas   fo r   t he   r e l a t ive   e r ro r   can  be  used  with estimates of  the 
exact   answer  to   predict   absolute   error   magni tudes.   These estimates are only as 
good as the estimates of  the  exact  answers. 

Simple  Arithmetic  Sequences.- A s imple  a lgori thm  involving  ar i thmetic  
operat ions i s  to  perform a series of ca l cu la t ions   u s ing   e i the r   add i t ion ,   sub -  
t rac t ion ,   mul t ip l ica t ion   or   d iv is ion .   Examinat ion   of   the   t runca t ion   e r ror   in  
these  sequences  provides a b a s i s   f o r  bounding e r r o r s   i n  more  complex  sequences. 

Assume t h a t  i t  is  desired  to   perform a series a d d i t i o n . .  The ope ra t ion   cons i s t s  
of  performing a number of   addi t ions ,  N ,  each  time  adding a component t o   t h e  
previous sum. 

Consider f i r s t   t h e   c a s e  where the components are a l l  equal.  Then the bounds 
f o r   t h e   e r r o r   c a n  be defined by examining  the  errors when the most  and least 
e r r o r  prone  mantissa are considered.  These  bounds  can  then  be  curve f i t   t o  
provide s imple  f o r m u l a e   f o r   e v a l u a t i n g   e r r o r s   i n  series add i t ion  as a func t ion  
of  the number of  components  and  the  precision  being  used. 
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The mantissa with  the I.naximum error  i s  given by 

T h i  s mantissa results i n   t h e  maximum absolute and re la t ive   e r ror  i .n 

( 2-10 ) 

a -series 
addition.  In  the  tens number base, it gives a component of the form 19 x 10qq 
where q i s  any number within  the  admissible exponent  range and the  verniculum 
indicates that the   d ig i t s  it spans are  repeated. The first d ig i t   i n   t he  man- 
tissa i s  1 t o  maximize the  re la t ive error. The remaining digi ts   are   nines  so 
that  the  truncation, which occurs from the   r i gh t ,  i s  a large  as  possible  value. 

The mantissa  associated  with  least  truncation  error i s  

T h i s  r e s u l t s   i n  a lower  error bound since it involves no e r ro r   i n  a ser ies  of 
additions until the number additions i s  greater  than bp . Then c r i t i c a l  
arithmetic  occurs and the  error  f o r  each  addition i s  

Where  Ac here i s  the  current sum. 

Figure 1 shows the  var ia t ion of error as a function of  N, the number of 
times  the component i s  added in   t he   s e r i e s  for c r i t i c a l  components. The varia- 
t i on  of  the  upper bound with N i s  typical  of errors  with any component. The 
absolute   error   var ies   l inear ly   with N i n  each  range i n  which the sum varies  
from S t o  bS where S = bqq and q i s  an  integer. The range is  s ta r ted  by 
a number of the form go Within this range  the  relative  error  varies as 

e =  (E + nZ Ems) 
ma 0 

S + nZ 
0 

( 2-12) 

where Eo i s  the  cumulative  error a t  the  beginning of the  range 

n i s  the number of components added 

Z i s  the component being added 

So i s  the  value o f  the  ser ies  sum a t  the  beginning of the range. I n  
most ranges, nE << So and the   re la t ive   e r ror   var ies   near ly   l inear ly .   In   the  
first range, So - Eo = 0 and the   re la t ive   e r ror  i s  constant. - 

Figure 2 shows the   re la t ive   e r ror  as a function of  N over a number of 
ranges. I n  this case  the number base is 10, the  precision 8, and the components 
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Figure 2. Series  Addition  Relative Error 



considered to   def ine  the bounds being added a re  given by e uations (10) and (11). 
The re la t ive   e r ror  i s  negligible when N i s  less than bd. The er ror  is 
excessive when N i s  greater  than bp. The c r i t i c a l   e r r o r  range of i n t e r e s t  is 
thus : 

vhere Rc defines  the  cri t ical   ranges  of N. 

1.Jithin this range  an  upper bound f i t  fo r   t he   e r ro r  i s  given by 

The f i t  of this curve f o r  the  tens  base i s  indicated on Figure 2. The corres- 
ponding formula f o r  the  binary  base i s  

Formulas (13) and (14) indicate   re la t ive error in   percent  i f  multiplied by 100. 
Equation (14.) indicates   that   re la t ive  error  r - r i l l  not exceed f ive   percent   un t i l  
the  number of  additions  exceeds .1X227 = 26 .&lo6 vhen p = 27. 

Table I I I shows the  small r e l a t ive   e r ro r  i f  calculations  are resequenced to 
minimize the error associated  with  the  series  addition. The  optimum process 
consists  of  pairing numbers of  equal  size  in  the  addition. Thus, f o r  example, 
i f  16 equal components a re  t o  be added, 8 pai rs   a re  first added, then  pairs of 
these sums are  added by f o u r  more additions;  the  results  of  these  are added i n  
tu0 additions and the   f ina l   resu l t   ob ta ined   wi th   the   f ina l  and 15th  addition. 

Table I I I shows tha t  the   reduct ion  in   error  due t o  this optimum sequence of 
additions i s  dramatic. T h i s  example i l l u s t r a t e s   t he  importance o f  the  selec- 
t i o n  of  algorithm in   a f f ec t ing   t he  magnitude of  the  manipulation  error. un- 
fortunately, it i s  cost ly  t o  define  the sequence of  the  calculations,based 
upon the component magnitude. Thus, the improvement indicated  in  this simple 
example  would be  expected t o  be greater than   the  improvement t h a t  would be  
' ach ieved   in   p rac t ice .  

The maximum errors  indicated f o r  equal components a r e  a l so  valid  estimates 
f o r  maximum errors  when unequal components are  involved. The equal component 
case  represents  the  worst  case,  since  the  error  accumulates a t  every  step and 
the  accumulation i s  the maximum that could  be  attained. Thus, the  error  in- 
volved in   the  addi t ion bf  equal components i s  approached as a limit when 
unequal components a re  added. 

The maximum addition error defined  using  the component (lo) defines ex- 
tremes that can be achieved in   p rac t ice .  The e r ror  bound given by equation i s  
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Table I11 
E r r o r  Reduction f o r  Optimum Addition 

b = 10, p = 8, Cu= 19,999,999 

Relative Er ro r ,  % 

N Optimum  Bound - 
lo2  .113 x 10-4 .400 x 10-4 

103 .190 x 10-4 .455 x 

104 .240 x 10-4 .455 x 

105 .300 x 10-4 .455 x 10-1 

lo6 .377 x 10-4 .455 x loo 
10~ ,472 x 10-4 -455 x 10 

lo8 333  x 10-4 .455 x lo2 
109 .792 x 10-4 .945 x 10 

1o1O .843 x 10-4 .994 x lo2 

1 

2 
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an  approximation. It gives  an  upper bound f o r  error  except when errors are 
negligible. 

Consider  the  errors  involved i n  performing a number of subtractions. A 
series  subtraction i s  defined as a sequence of subtractions  such  that   the  result  
of each  subtraction  yields  an answer which is  almys  opposi te   in   s ign t o  the 
sign of the  next component. This   ser ies  of subtractions  can  occur by s t a r t i ng  
with a large  posit ive number and sequentially  subtracting a small component 
a multiple number of times o r  it can  occur by performing  subtractions  with 
alternating  signs.  

.The error bound for   se r ia l   subt rac t ion  can  be  developed from the bounds 
for   se r ia l   addi t ion .  The maximum absolute  error  in  subtraction  cannot exceed 
the maximum absolute  error of addi t ion  s ince  the  cr i t ical  component in   addi t ion  
maximizes error  a t  each  step  in  the  calculations.  Thus, the maximum absolute 
error  can  be  defined by considering  additions  of  the  mantissa  defined by equa- 
t ion  (10). 

The r e l a t ive   e r ro r  bound for   subtract ion may be taken as twice  the  relative 
error i n  addition. T h i s  i s  t rue  because  the maximum error  does not  occur when 
the minuend and  subtrahend have the same exponent. Then the  error  i s  zero. 
Since  the denominator f o r  extreme re l a t ive   e r ro r  must involve two unequal  ele- 
ments, the Irorst case i s  tJhen the smaller pa r t  of the denominator is l eg l ig ib l e  
in  absolute  value compared with  the  large. Thus, the  maximum re la t ive   e r ror  i s  
bounded  by: 

The error  for  multiplication of a ser ies   of   factors  i s  the same as f o r  
division of a ser ies .  The upper bound fo r   t he   e r ro r  can  be  expressed as: 

E = A(l+C) -A = Emd N 
mm ( 2-16 ) 

then,  since C i s  much less than 1, the  error  can  be sa t i s f ac to r i ly  approximated 
by: 

Em = ANC = Emd ( 2-17 I 

The corresponding r e l a t ive   e r ro r  i s  given by dividing  the  equation by the  answer. 
Thus, the  re la t ive  error  i s  given by: 

e = NC = ema mm ( 2-18 I 
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This  can  be  converted  into  percent by multiplying by 100. The lower e r r o r  bound 
i s  zero.  

Equations  (12)  and (18) de f ine  bounds that  cannot  be  achieved. However, as 
the   p rec is ion   increases ,   the i r   accuracy   improves .   Table  I V  shows the   mu l t ip l i e r s  
involved   to  maximize r e l a t i v e   e r r o r   i n  series mul t ip l i ca t ions   i n   t he   t ens   base .  
Fac to r s  were s e l e c t e d  by tr ial  and  error .   Figure 3 provides a p lo t   o f   exac t  
r e l a t i v e   e r r o r  and estimates obtained by equation (18). These  curves show t h a t  
t he  bound f o r  estimates i s  s a t i s f a c t o r y  when  p i s  f o u r   o r  more. Therefore,  i t  
would be  expected  that   equation (18) y ie lds   s a t i s f ac to ry   uppe r  bounds when 
b = 2 and p = 27. 

In   cons ider ing   the   sources   o f   e r ror   for  a series of   opera t ions ,   the   g rea tes t  
e r r o r  bounds arise f o r  series m u l t i p l i c a t i o n s  and d i v i s i o n .  The least e r r o r  
arises i n  series add i t ions .  An extreme bound fo r   t he   e r ro r   fo r   any   o f   t hese  
sequences  of   calculat ions i s ,  the re fo re ,   g iven  by the  equations: 

E = ANC em = NC (2-19) m 

It is  noted   tha t  when sub t r ac t ions  are involved in   the   sequence   of   opera t ions ,  
use of   equat ion (19) t o  bound t h e   s o l u t i o n   e r r o r  i s  d i f f i c u l t   b e c a u s e   t h e  e s t i -  
mate of  the  answer  cannot  be  used  for A. A must  be the   absolu te  sum of  the 
numbers subtracted,   added,   and  mult ipl ied.  It i s  also  observed  that   even  with 
the   conserva t ive   e r ror  bound def ined by equation (191, many c a l c u l a t i o n s  are 
required  before  the  answer  has more than 5% e r r o r .  Tihen b = 2 ,  and p = 27, 
13.4 x lo6 c a l c u l a t i o n s  would be  required.  

Though many c a l c u l a t i o n s  are requ i r ed   t o   deve lop   s ign i f i can t   r e l a t ive   t runca -  
t i on   e r ro r s ,   l a rge   ana lys i s   e r ro r s   can  s t i l l  occur.  These arise when c r i t i ca l  
arithmetic i s  involved. A s  an  example  of a sequence  involving .this e r r o r ,  
consider :  

b=10, p=3: .333x10 +l.OxlO +.222x1Oo - 1 . 0 ~ 1 0  =O.O 0 6 6 

Here, i t  i s  des i r ed   t o   add   t he  f i r s t  and t h i r d  numbers. The r e s u l t   f o r   t h e  
calculation  sequence  used is  meaningless  due  to c r i t i ca l  ari thmetic,   though 
s u f f i c i e n t   p r e c i s i o n  i s  being  used i f  the sequence  of   calculat ions i s  changed. 
Note that t h e   r e l a t i v e   e r r o r   o f   t h e   c a l c u l a t i o n  i s  small. 

Vector  Scalar  Products.-   Wilkinson12  has  developed  an  error bound f o r  
accumulation  of  inner  products.   This i s  given as 

C 

2 aibi  
i= 1 

(2-20)  
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Table IV 

p = l  

Factors : 
Eq. (18): 
Exact : 

- 

- p = 2  

Factors : 
Eq. (18): 
Exact : 

p = 3  

Factors : 
Eq. (18): 
Exact : 

- 

- P = 4  
Factors : 
Eq. (18): 
Exact : 

p = 8  

Factors : 

Eq. (18): 
Exact : 

- 

Multiplication Error Estimates 

b = 10 

(114X114~1oX90oX800)x( 1&144~11oX90oX800) = 105.9L+28xlO 18 

emm'gx 350 
1. = .090  9.0% 

e =5.94/105.9 = .0562 5.6% mm 

10,007,00oX10,007,00oX10,~~~,000x10,100,000x10~,157,000x10,020,000 

e mm 6~10% 

d0,156,000 = 10,973,628~10~ 

=6/10,973 , 628 = 5.47xlO"  5.47~10'~% 7 
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Figure 3.  Multiplication Error Estimates 
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and a. and  b. are the  components of   vector  
ponents are equal .  Then t h e   r e l a t i v e   e r r o r  1 1 

e =z ti = 3x2 C - 2p- 1 
vm 

i= 1 

A and B. Assume t h a t  a l l  t h e  corn- 
is  given by 

The number of   ca lcu la t ions   involved  i s  2C. Therefore ,  if e = 0.05, t h e  number 
of  calculations  must  exceed  47.8 x lo6 ,  when  p = 27. When unequal numbers are 
involved,  Wilkinson estimates t h a t   t h e   e x p e c t e d   r e l a t i v e   e r r o r  will be 

Then, the  expected number o f   c a l c u l a t i o n s   f o r   t h e   r e l a t i v e   e r r o r   t o   b e  less than 
f i v e   p e r c e n t  would  be about 5 x 

I n   b o t h  cases, t h e  number o f   c a l c u l a t i o n s   t o   d e v e l o p   s i g n i f i c a n t   a t t r i t i o n  
e r rors   exceeds   the  bound developed f o r   t h e  s i m p l e  sequences.  Consequently,  the 
p r o b a b i l i t y   o f   s i g n i f i c a n t   a t t r i t i o n   e r r o r  will be  determined by  comparing the  
number of calculat ions  with  13.4 x lo6. 

S t ruc tura l   Analys is   Er rors  

S t ruc tu ra l   ana lys i s   i nvo lves  more  complex  sequences  of  calculations. To 
s impl i fy   t he   ana lys i s  of these e r r o r s ,   e a c h  of t he   ope ra t ions  will be  considered 
independently.  The opera t ions   cons is t   o f   genera t ions   o f   the   coef f ic ien ts   o f   the  
s t ruc tu ra l   equa t ions  and e l imina t ion   of   the   coupl ing   of   the   equat ions  t o  de f ine  
the  primary  secondary  unknotms. The equat ions of s t r u c t u r a l   a n a l y s i s  are 
completely  defined by the   s ing le  set o f   l i nea r   a lgeb ra i c   equa t ions .  13 

D Q + PTA= tl Q Q 

DX X + Px.h T = t2 
(2- 23 1 

P Q + P X = - F  Q X 
(2-  24) 

where DQ , DX = s u b s t r u c t u r e   f l e x i b i l i t y  matrices. P , P = matrices de f in ing  
geometrlc  relations  between  forces PT and Pz  the  trgnspose  of P and Px, Q = 
unknown i n t e r n a l   f o r c e s   f o r   t h e   d e t e g i n a t e   s u b s t r u c t u r e  and X f8r the  rest of 
t h e   s t r u c t u r e ,  t,, = i n t e re l emen t   d i s to r t ions  F = the   vector   of   loads A =  
the   vec tor  of jolnt   &splacements.   Equations  (23) are the   i n t e rna l   l oad   de f l ec -  
t i o n   r e l a t i o n s   f o r   t h e   s t r u c t u r e .   E q u a t i o n s   ( 2 4 )  are the   equi l ibr ium  equat ions  
for   the   sys tem.   These   cons t i tu te   the   necessary   and   suf f ic ien t   equa t ions   to  
def ine  a l l  the   i n t e rna l   l oads  and structural   displacements  of  the  system. Dis- 
r e g a r d i n g   s t r u c t u r a l   i d e a l i z a t i o n ,   t h e   d i s t i n c t i o n  between t h e   f o r c e  and d i s -  
placement  method cons i s t s   on ly  of  the manner i n  which  equations  (23)  and  (24) 

X 
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are solved  simultaneously.  

In   the  displacement  method equations  (23) are so lved   fo r  Q and X ,  and  the 
r e su l t s   subs t i t u t ed   i n   (24 ) .   Equa t ion   (24 )   neg lec t ing  E ,  and E n ,  then  takes  the 
form: 

[pQ DQ-'PTQ 

o r  K A  = F 

and K i s  c a l l e d   t h e   s t i f f n e s s  
r e s u l t s   s u b s t i t u t e d   i n   e q u a t i o n  
These  equations are used i n   t h e  

L L 

+ Px D2 Px A = F '1 
where K = P D P + P D- -1 T -1 T 

Q Q  Q X X  'X (2-25) 

matrix. This  equation i s  solved  for  and  the 
(23)   to   evaluate   the  e lement   forces ,  Q and X. 
form: 

. -  
Q = D  P A  X = D  - 1 -1- -1 T 

Q Q  x pxA 

or{}= 
0 
D i 1  (2-26) 

The ca lcu la t ions   involved   in   genera t ion   cons is t   o f   those   requi red   to  
d e v e l o p   t h e   c o e f f i c i e n t s   i n   t h e   s t i f f n e s s  matrices. Generally,   these are 
developed   d i rec t ly   ra ther   than  by exp l i c i t l y   fo rming   t he   i nd ica t ed   t r i p l e  
product .   El iminat ion  errors  are a l l  the   e r ro r s   i nvo lved   i n   so lv ing   t he  s i m u l -  
taneous  equations  (25)  to  determine  and  equation  (26)  to  evaluate  the  un- 
known f o r c e s ,  Q and X, of   the   s t ruc ture .  

In   t he   fo rce  method Q and X are e v a l u a t e d   f i r s t  and  then  displacements are 
found. Q and X are found by solving  equat ion  (24)   for  Q and s u b s t i t u t i n g   t h e  
r e s u l t  back in   equat ions   (23) .   Neglec t ing  E and E t h i s   g i v e s  1 2 

-D P  -'Px X-D E -IF + P T A = 0 
Q Q  Q Q  Q 

%X + PxA = 0 
T 

El iminat ing A from  equations  (27)  gives 

(PTP - I T D  P -'P + D X = -P  P T - lTp 
X Q  Q Q  x If X Q  Q 

(2-27) 

(2-28) 
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This equation i s  solved  for X. Q, found  from  equation  (24) , i s  

and A i s  given by, 
rn 

A = -P-' D Q Q Q  (2-30) 

Generation  errors  are  the  manipulation  errors  associated  with a l l  opera- 
tions  required  to  develop  the  coefficients  in  equations  (24) and (25). 
Elimination  errors  are  the  errors  associated  with  the  operations  involved  in 
solving  the  structural  equations  to  define  the unknown internal  forces X 
(equation (28)), the  forces Q (equation (3)) , and the unknox-m displacements 
(equation (30) ) . 

These s t ructural  analysis manipulation  errors will be examined i n   t h e  
next ttro sections.  Section 3 considers  displacement method errors and Section 
4, force method errors. 
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Section 3 

DISPLACEMENT  METHOD  ERROR  ANALYSIS 

This section  considers  the  structural  analysis manipulation errors  in generating 
the coefficients in the structural equations  and in solving them. It examines  the error  
magnitudes  and describes the  implications of these  errors on problem solutions. It 
provides  the  engineering-analyst  with  guidelines for reducing, estimating  and  measur- 
ing manipulation error. It suggests guidelines for  the  programmer to reduce and 
measure  errors. 

Generation Errors 

Generation errors  in the  displacement method include  the  manipulation errors 
incurred in development of the loading, stress, and stifbess matrices  for  each  element 
of the  structure.  These errors  also include  the errors evoked in forming  the  loading 
and stifbess matrix  for the complete structural  system (i. e. , the global loading and 
stif€ness matrices). 

Generalizing  the  formulation of Melosh14, the loading matrices  for a finite 
element are written in the  form, 

f = I C p  pi 2 o i  

fmi 3 o a o = I  C M C '  

fti 

= I C  D E  e 3 o I L T i  

where 

f = loading vector  for  pressure loading of finite  element f r i t ' .  
Pi 

f = loading vectors  for  field  accelerations due to body forces. (D'Alembert 
@ forces) in element 'ti!!. 

f m i  

= loading matrix due to  local  accelerations at each joint. (mass  matrix) 
of element W!. 

fti = loading vector  for  thermal  forces  treated as body forces in element frir'. 

. . . . . . - 
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and  the linear  operators given in equation (1) perform  the following functions: 

cO 

In 

Pi 

gi 

Ma 

DI 

EL 
e Ti 

transforms displacement  coordinates from the  global to the local system. 
The  global system is the set of coordinates  used in expressing equations 
(2-23) and (2-24). 

performs  integration. The subscript n denotes  the  maximum  dimension of 
the  integration  space. For example, if n = 2, integration is over a surface. 

defines pressure  distribution. 

defines  the acceleration potential over the volume. 

defines mass distribution  over  the volume. 

is a differential  operator. In this  case it transforms  displacements into 
strains. 

is a  matrix of elastic constants. This  transforms  strains into stresses. 

defines  the  distribution of thermal  strains  over the  element  before dimen- 
sional  changes are  permitted. Note that the loading resulting  from  these 
deformations  implies the existence of % in equations (2-23) 

The stress  matrix  for a finite element  can  be formalized as: 

m r n  

S- 1 = I2 EL DI' Co' 

where 

si is the matrix of stress coef€icients used by equation (2-23) to define 
stresses in the  element f r P  

The  element stiffness  matrices are  similarly given by: 

m m  

Ki = I3 Co DIEL DI Co ' I  ' (3-3) 

It is noted that  the  coefficients are  not usually developed by performing  the 
operations defined by equations (l), (2), and (3) since they can be developed more 
economically  otherwise. Defining the  operations this way, however, provides a 
simple  and  sufficiently accurate way to  estimate the  number of calculations involved. 

29 



The  summation of the  element  loading  and  stiffness matrices define  the global 
loading  and  stSEuess matrices: 

f 

i - 1  
Fm= U.Tf U 

1 mi i 

K = Ui ki Ui f T  
i = l  

( 3 -4) 

where f is the number of finite  elements in the  structure and the  matrix U is a permuta- 
tion  matrix, i, e. , a matrix in which each row and column contains only one component 
equal to 1.0. The permutation  matrix has been described by Arqyrislfi as a Boolean 
matrix. Again, the  formal definition of equation (4) is not used in a computer program 
which develops the  structural coefEicients because it requires  more  calculations than 
necessary.  This  form is convenient in describing the process. 

Attrition errors  in developing the loading matrices are negligible. The  number of 
calculations  required  for the development of the  matrices is most when the mass 
matrix is involved. Here,  the  number of calculations is of the order 3j2 (2j-1) where 
j is the number of generalized  coordinates. The matrices of equation &re  assumed to 
be square,  fully populated and of order j. For a rectangular  prism  (an element with 
a large number of generalized  coordinates j = 24, since  there are  eight  joints with 
three degrees of freedom  per joint. Then, the number of calculations would be about 
0.081 x 106 including  additions, subtractions,  multiplications,  and  divisions.  This 
many calculations are not sufEicient to involve significant attrition  error  since it is much 
less than  the 13.4 x 106,according  to  the  analysis of Section 2. 

Development of the coefEicients in the  loading matrjx may, however, involve 
critical  arithmetic.  The  integrations  require calculating the lengths, areas, and 
volumes of the  structural  elements  using data defining the  coordinates of the bounding 
surfaces of the element.  Lengths are obtained by Werencing  these coordinates; areas 
and  volumes by performing  calculations  with  these  differences. Crit ical  arithmetic 
will be involved if the  coordinates  describing  the  boundaries of an element are chosen in 
a coordinate system so that the  dif€erence of the  coordinates is incommensurate to the 
true lengths. For example, if the  coordinates of two points on a line are given by 
(472.1,0,0), (472.2,0,0), the  length of the  element  must  be  nearly 0.1 if the error  in 
performing  the  integration is to  be negligible. 
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Even if the  length is satisfactorily  described,  critical  arithmetic can be involved 
in defining the  coefficients in the orientation  matrix Co. The coeffi'cients in this 
transformation  matrix  represent  cosines of the  element surface  normals and thus 
represent  ratios of the  difference of the  coordinates  describing  the  element. If the 
two lengths defining the  direction  cosines are  a  and b, avoidance of critical  arithmetic 
requires that the errors Ea and E be such  that b 

Ea a - E b / b = e  - e  / a b  

is small compared  with one. 

Critical  arithmetic may also be involved in development of the coefficients in 
the  differencing  matrix. This matrix, like  the  integration  matrix,  requires an  accurate 
representation of the  lengths of the element. Again, critical  arithmetic will only be 
involved if the difference in coordinates bounding the  element are significantly  different 
from  the  projections of the element on the axis involved. Utku and Melosh16  show  how 
this  error can destroy  measurements of discretization  error. 

Jf critical  arithmetic is avoided, the  small manipulation errors  involved in  the 
loading  coefficients will be negligible. In linear  structure  analyses,  the change induced 
in displacements due to  a  relative  error, rfefl, in loading is of the order of  "e. Thus 
an  error in the  eighth  digit in the  loading matrix will only imply an  error in the  eighth 
digit in the  displacement  predictions. 

Attrition errors in development of the stress coefficients are  also  small and can 
be neglected. The  number of calculations is of the  order of 36j2 -18. For  the  solid 
prism this indicates about 0.21 x 106 calculations. This is small compared  with 
13.4 x 106, and therefore,  the maximum attrition  error is negligible. 

Critical arithmetic in stress coeEcient generation, as  for the  loading  matrix, 
involves  the  data  describing the  location and orientation of the  element in three dimen- 
sional  space. If these errors are avoided, manipulation errors  in the stress coefficients 
will be small. 

If errors do arise,  their effect may only be local. Errors in the stress  coeffi- 
cients only affect  the  prediction of stresses  for that particular element. Manipulation 
error  in  stress coefficients will not affect  the  accuracy of any  deflection  predictions 
per se. 

Attrition errors  in  the development of the  element  stiffness  matrices a re  small 
and rarely significant.  The  number of the  calculations required  for developing the 
stjfEness matrix is of the  order 8j3-4jZe For  the  rectangular  prism  this  indicates 
0.108 x 106, calculators, a negligible  number  compared  with  13.4 x 106. Critical 
arithmetic  again involves  the basic  geometric  description of the  structure. 
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Though errors  in development of the  element sti€fness matrices will be small, 
they will, however, affect  the  response of the  total  system.  To obtain a measure of 
the  importance of these  errors, define a relative  error  measure, e a s  the  energy 
implied in the  rigid body modes divided by the  energy in the elastic &ode with  the 
smallest energy. I€ the  stiffness  coefficients have no error, e will be zero. For 
simplicity,  consider that the  stiffness  matrices are written in %e local  coordinate  sys- 
tem  for  the element. (This  simplification is no restriction  since  the  matrix can  always 
be transferred  into this system.) Then  the stjfbess  matrix  for a rod  element can be 
taken in form, 

where A is the  crossectional area; E,  Young’s modulus; element  length and the E 
and Eij are the errors  contributed by manipulation error. It is noted that  the  element 
stifhess matrix  for a torque tube and shear panel is the  same as for a rod, within a 
scale factor, so that conclusions for the  rod have wider application. 

Since the stiffness matrix is symmetric, it is customary to develop only half of 
this matrix  and  to  reflect it about the  main diagonal or  to sequence  the  calculations so 
that  the  symmetry of the  matrix is insured.  Therefore, it is assumed  that  Eij = E:i. 
The  symmetry of the exact matrix about  the minor diagonal insures that the  Ell = h22. 

Calculating  the strain-energy  for a rigid  translation  and  for elongation, the error  
measure  can be written as 

2 2 
- E12) ‘11 - E12) ‘T e -  - 

RT (2+E11 + E  ) 2 E. 2  2 ( 3 -6) 
12 qE qE 

since Ell and E12 < <1 and 

eRT is error  ratio  for the  translation  rigid mode 

qT is the  amplitude of rigid  translation 

qE is the  amplitude of elastic deformation 

The rigid body and elastic modes are exact regardless of the  magnitudes of the errors. 
The  significance of manipulation errors  is a function of the amount of rigid body motion 
involved in the  element a s  compared  with  the elastic motion as well as the  distribution 
of errors  in the  matrix. Since the  relative  errors will be of the order of 2-P compared 
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with 1, the  rigid body motion for the  element  must  be much, much larger than  the 
elastic  response if the errors due to  the manipulation are to significantly  distort  the 
response  predictions. It is noted, however, that the  relative  values of manipulation 
errors  Eij may represent the rigid body  mode with  negative  energy.  The  implication 
of negative  energy in the  computer  simulation is significant  even when small  quantities 
are involved. 

Performing  the  same type of analysis  for  the  beam as for  the  rod  requires con- 
sidering  an  element stiffness matrix of the form , 

I 1 + E 1 2  3 + E12 
2 

1 1 + E14 1 + ~ 2 4  -1 - 3 2 + E44 

The beam representation  includes two rigid body modes: a translation mode 
and a rotation. There are thus two ratios  to consider.  Calculating the eigenvalues 
and  eigenvectors for this stiffness  matrix  and developing the  energies  associated with 
the  rigid  and elastic modes  treating unit length  vectors,  leads to the  ratios, 

2 
- E13) qT 

e~~ 0.142 2 

2 

0.089 2 
E12) qR 

w 

qE 



-. . 

where e is the error  ratio and qR the amplitude of the  rotational  rigid mode. 
Of the two modes, the error   in  the  rotational  energy is much more  significant 
than in translational. Negative energies  can  also be  implied, depending upon the 
distribution of the  relative errors  in the  element stiffness matrix. Again, the error  
is important only if the  rigid body  mode deformation is much,  much greater than the 
elastic, though errors  in beam matrices are 24 times  more  important  than  for  rods, 
tubes or  shear panels. 

RR 

It is concluded that the effect of stiffness coefficient manipulation error  on pre- 
dictions of response are only important if the  element  undergoes a large  rigid body 
motion compared  with  the elastic motion (2P compared  with 1). The errors  could be 
expected to be a problem in the  treatment of a cantilever  rod o r  beam in which the 
load is near the point of €ixity so that elements far  from  the  root would undergo only 
rigid motions. 

Errors in forming  the global loading matrices are negligible  and  those in  forming 
the  global stiffness matrix are rarely significant.  The  calculations a re  the  additions 
and subtractions of a sequence of components. Since few elements are added together 
to  form a particular coefficient in the  structural equations  (usually between 3 and 10 and, 
rarely, as many as 13, the  truncation error  in the  accumulation  can  normally  be 
disregarded. 

However, critical arithmetic  may be involved in adding incommensurate loading 
or  stiffness CoefEicients. In the case of the  loa  coefficients,  the relative errors 
induced by critical arithmetic have an affect of Y 2- on predicted deflections. For the 
stiffness matrix  the  affect of this critical  arithmetic can be deterioration of the 
process of solving  simultaneous equations. 

Guidelines for the Analyst. - The  significant errors that arise in generation, 
due to critical arithmetic,  can be  minimized by proper  formulation of the  structural 
problem. This  involves  locating  joints  to avoid  incommensurate  adjacent  stiffnesses, 
sequencing elements  to  reduce series additioc error, and choosing coordinate systems 
to  yield good measures of structural geometry. 

X€ r r ~ l r  binary  place  representation of the  stiffness of an  element is to be retained, 
the  ratio of this  stiffness  to  the  total  stiffnesses at joints of this element  must  satisfy 

Compliance with this formula  insures that  the  generation error  in the stiffness 
coefficients is satisfactorily  small. In accordance with  equation (9), if p = 27 and ten 
bit  accuracy (about three significant  decimal digits) is required,  the  stiffness  ratio 
must lie between 2 f 17 (ie. 7.6 x 10-6 < ki/% < 131,072). If 20 bit  accuracy is re- 
quired, 0.078 < ki/% < 128. 
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If the  ratio of stiffnesses a re  excessive,  the  analyst  can  relocate  gridpoints 
so the  ratios  satisfy equation (9). A simple  example of joint  location so the  stiffhess 
ratio is one is shown for  the  articulated  structure of Figure 4a. . Since the stiffness 
of the  rod  elements is proportional  to AE/a and of beams EI/a3, the  analyst  defines 
the  spacing of joints of the  structure to attain commensurate stiffnesses  at  the joint 
where the rod and beam  join by spacing  beam  joints more  closely than rod joints. 

Figure 4b shows good location of joints for a  membrane or plate. In the case of 
the  membrane,  stiffness is explicitly  proportional  to  tE( 12( l-vz) and implicitly depen- 
dent on the  ratio of the  sides and the  squares and products of the  side lengths. In 
both cases equal stjf€nesses  are added for a sheet of uniform thickness  and  isotropic 
material when joints a re  located  to define square panels. 

In securing commensurate stiffness  for  membranes, the  implicit  factors can 
be  disregarded.  This is shown  by the  data of Table V. This  table lists the  x  direction, 

and y’direction, Vll, diagonal stiffnesses  for a membrane a s  a  function of the :g ratios.  The  table 1s based on Turner’s  triangular  membrane  used  for the  four 
elements of a  rectangular panel. It is assumed that no external  loads a re  applied to 
the center joint and these coefficients a re  accordingly  eliminated from  the  stiffness 
matrix.  The  second and third columns give the diagonal stifhess  for displacements at 
joint one along  the x and y  axes.  The  fourth column of the  table  measures the error 
in adding stiffnesses assuming  that  each  panel is independently attached to an adjacent 
square panel. The relative error  in this case is defined a s  the  absolute error  divided 
by the smaller  number being summed. These data show that  very  large panel side 
ratios result in little relative  error. Thus,  the  network shown in  Figure .4b satisfac- 
torily avoids  incommensurate stiffnesses for a uniform isotropic panel practically 
independent of panel  side ratios. 

Since plate  stiffnesses a re  proportional  to  length cubed, it is expected that panel 
ratio will be  a more  important  parameter  for  plates than for membranes. Using the 
cubic relation, the ratios indicated in Table V indicate that panel ratios up to two will  
result  in negligible error.  Panel  ratios up to  five have acceptable errors. 

If incommensurate stiffnesses a re  to  be added, the  analyst  can  optimize  the 
arithmetic by numbering his elements (which accordingly  sequences  the  additions  and 
minimizes error) so that the  smaller  stiffnesses  are  treated  first. Figure 4c shows the 
numbering of panels of a variable  thickness  plate  to  achieve this optimization. 

In cases  where the  analyst is concerned  with  the treatment of structures involving 
structural  elements  acting  in  parallel,  the element representation should be  chosen 
so that commensurate stiffnesses are  involved. For example, analysis of a wing 
structure using  plate  elements for  the skin and shear panel  elements for the spars and 
ribs wiU result in combining stifhesses proportional  to  element  length  squared with 
stiffnesses  proportional  to length. If these  structures  are to be treated, manipulation 
error will be reduced by representing skins as membranes working in parallel with 
shear webs (ribs and spars)  or by using classical  beam  spars with  the  plates. 



27" 

Figure  4a. Trussed  Beam 

t Cons tan t  

F igure  4b. Panel - Increas ing  t 

F igure  4c. Variable   Thickness   Panel  

F igure  4. Jo in t   Loca t ion   and   Element   Sequencing  
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Table V 

Relative  Membrane  Stiffnesses 

b 

b/a - 
1 

2 
4 
8 

16 

32 
64 

128 

256 
512 
1024 

2048 

u *  11 

.91684372 
1.5298992 

2.9924205 
5.991504 

11.995061 

23.997440 

47.998709 

95.999352 

191.9997 

383.9998 
797.9999 

1535.999 

Y 

v *  11 

.91684372 

.82399555 

1.1608030 

2.0809400 

4.0419431 
8.023968 

16.017984 
32.020992 

64.034496 
128.0652 
256.1286 

512.2563 

= 0.3333 

Rel. 
Error** 

0 

0 

, O  

0 

7 x 
7 x 

7 x 

7 x 10" 
4 x 
4 x 
4 x lo-6 
4 x 

~~ ~ 

*Diagonal  stiffness  coefficients. 

**When  panel is adjacent to a square  panel, 
b = 10, and p = 8. , 
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The  analyst should be careful to choose  coordinate  systems to minimize errors  
due to  critical  arithmetic  in  calculating  the  lengths and  orientation of the  elements 
of the  structure. In particular, he shodd  locate the origin of his global coordinate 
systems  near  the  center of his structure to minimize  the  span of the  coordinate  number 
magnitudes. Coordinate surfaces should be  chosen parallel to as many of the elements 
of the structure as possible  to  eliminate  critical  arithmetic in evaluating  orientation 
of these  surfaces. (Incidentally, this choice will decrease  the  number of calculations. ) 
In sensitive  cases,  the scale of the  structure should be  selected  to  maximize  the dis- 
c r i m i t i o n  of the  problem  geometry  description.  This is achieved by choosing a 
scale such that the  lengths of the  element  farthest  removed  from the origin are  satis- 
factorily  represented by the  difference of its coordinates. Lf the option to use  local 
coordinates in describing  the  geometry is available to the  analyst, this capability  can 
be  used to eliminate critical arithmetic in the definitions of element  geometry  and 
orientation. 

If the  analyst is introducing element stress and stiffness  matrices,  these should 
comply with  the programmer's  adjustments of generated  matrices to eliminate manipu- 
lation  error. Manipulation error  in the loading  and stress matrices can  usually  be 
neglected. 

Guidelines for the Programmer. - To  remove  analysis  inconsistencies, the 
p r o g r a m e r  should adjust final stress and stiffness coefficients. Stress coefficients 
may be adjusted so  that no stress is calculated when rigid body'motions are defined. 

Stiffnesses should be  adjusted to insure that zero  energy is involved in rigid 

= E12 in equation (5). In this form,  the  elastic modes,  and rigid body modes, 
be  exactly  represented  and  exact  satisfaction of macroscopic  equilibrium is indi- 

body deformations. For rods, for example, the  matrix should be  forced by making 

53 
cated. In the case of a beam stiffness  matrix, errors  should be  adjusted so that  the 
matrix of equation (7) takes  the  form 

2 +4Ell 

2 1 + 2Ell 3 
+ 

Sym. 

-2 - 4Ell -1 - 2Ell  2 + 4Ell 
kBi a 

- 6EI 
3 - - (1 + Ei) 

1 + 2Ell 5 1 + Ell -1 - 2Ell 3 2 + Ell 1 
(3-  10) 
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In this case, both the  modes  and  the  energy have been  adjusted to insure that 
the  rigid body modes are associated  with  zero energy. These  adjustments  guarantee 
that regardless of what the  deformations are,  the  energy  absorbed in rigid body defor- 
mation will be precisely  zero. Note that by these  adjustments,  the  program  forces 
symmetry of theoretically  symmetric  matrices. 

To  protect  the  analyst  from  ruinous  critical  arithmetic in the  summing of stiff- 
nesses, a check  may be included of the  relative  size of elements added in calculatiw 
the  diagonals of the  global stiffness matrix. This will  eliminate  the  necessity  for  the 
analyst  to make this check himself. 

Elimination Error 

Elimination  includes  triangularization  and  forward  and  back  substitution  to 
determine the primary unknowns in the  displacement  method  (displacements)  and  the 
calculations  to  evaluate  the  secondary unknowns (stresses). 

The triangularization may  be  accomplished by Choleski  decomposition. Given a 
stiffness  matrix,  the decomposition  involves  evaluating  the matrix L such that 

L L ~  = K (3-11) 

where L is a lower  triangular  matrix.  This decomposition is always  possible if the 
stiffness  matrix, K, is symmetric  and  positive  semi-definite or positive definite. 

For a large  matrix  the  number of multiplications  required to perform  the decom- 
position is equal to nw (w + 1) where n is the  matrix  order  and w the  average wavefront. 
The  wavefront is defined as the  number of non-zero elements  to  the  right of the diagonal 
in row r of the  matrix when the  decomposition has been  completed for all rows less 
than r. About as many additions as multiplications are required in performing  the 
decomposition. In addition, each row of the  decomposition requires taking the  square 
root of the  diagonal  element. 

The forward  substitution  process  consists of solving for y in the  expression 

Ly = F (3-12) 

where F is the 'global loading matrix loading. For a large  array this operation  requires 
n (w f 1) multiplications  and  division,  and an equal  number of additions  and  subtractions. 



The  back  substitution  process involves  the  solution of the equations 

L A = y  T (3-13) 

for A , the unknown displacements in the structure; i. e. , primary unknowns. This 
operation also  requires n (w + 1) multiplications  and  divisions  and  an  equal  number of 
subtractions and  additions. 

Calculations of the  secondary unknowns involves  the  multiplication of the  element 
stress matrices by the  vector of primary redundants in accordance with equation (2-26). 
This calculation requires a maximum of 6 (2j - 1) multiplications  and  additions per 
element  where j is the  number of generalized  coordinates for the  element. 

This  process of evaluating  the primary unknowns can take  advantage of the  matrix 
symmetry  and  sparseness  and  thus  tends  to  minimize  the  number of calculations 
involved. Errors  in this elimination  include  inherited,  square  root, and attrition  error. 
Attrition errors  involving critical arithmetic  require  special consideration. 

Inheritederror is the error  existing in the  coefficients of the  matrix due to  prior 
arithmetic; i. e., the  generation  calculations. A s  indicated few calculations are involved 
in developing these coefEicients, critical  arithmetic  can be avoided, and  the  consist- 
ency of coefficients can be insured. The relative  inherited errors will usually  be less 
than  2-4  Representation of a  physically  realizable  system is insured. 

The errors  involved in obtaining square  roots are larger than  inherited  errors. 
Algorithms for taking the  square  root are contained in codes of the  computer systems 
software. These  codes develop square  roots with a maximum absolute error of one part 
in the last digit of the  floating  decimal  mantissa.  The maximum relative  errors are 
less than t-24-P. In IBM Fortran N software, these errors always  result in overestimates 
of the  square root.  The average  relative  error is much less than  the maximum. For 
components from 1 to 1029, the s uare  roots have an  average  relative error  of -0.461 X lo-' 
and  the madmum is -0.148 x lo-? when p = 27. 

Attrition errors  cannot be  expected  to destroy  the  consistency of results of the 
elimination  process until problems of much larger  order than are currently being 
treated are involved. I€ attrition  errors are to be  significant, 2nw2 + 4nw must be 
greater than or  equal  to  13.4 x 10Ge In the  analysis of aerospace  structures, wave- 
fronts approaching 200 have arisen. This is unusual, however. In analyzing antenna 
reflectors,  the  average wavefront is about 50. The maximum wavefront  encountered 
by the  authors  occurred in analyzing a quadrant of a 90-foot earth  station  reflector. 
Here w was 83 for 436 equations. Thus, for  these  structures a minimum of 950 equa- 
tions  and an expected 2600 equations could be  treated without concern for  attrition 
error. It is noted that even if the  number of calculations is greater than 13.4 x lo6, 
attrition  errors will not necessarily  be  important  since  this is an  upper bound error  
to attain a relative  error of five  percent. 



Though consistency of answers may be assured,  small  attrition  errors may 
incur significant error  in response  predictions. This can  occur due to the propagation 
of these errors with amplification,  the  cumulative  effect of many errors, or  critical 
arithmetic.  The next paragraphs examine  the effect of these complications in the 
numerical  analyses of structural  systems consisting of a series of finite  elements. 

Errors in Evaluating Primary Unknowns. - The  critical  structural  systems 
involved in displacement analyses a re  pure series systems  such a s  shown in Figure 5a, 
b, c, d  and e. Pure  parallel  systems  are not critical  for manipulation errors because 
they result in  small  systems of equations  whose  solution  involves few calculations. 

The  systems  in  Figure 5 wil l  be  examined  to  determine  the  magnitudes  and 
characteristics of manipulation errors.  Figure 5a shows a simple series rod  system. 
Figure 5b shows a cantilevered  beam  represented by finite  elements. This  figure 
could also  represent a series of rectangular  prisms.  Figure 5c represents  a  cylindrical 
shell.  The  system of Figure 5d consists of a  number of rectangular  panels  representing 
a  membrane.  Each  panel is subdivided into  four triangles and provides  resistance 
only to loads in x-y plane. Figure 5e illustrates a plate  system  providing  resistance 
only to z direction  loads. All systems are  clamped on the  right edge and free on the 
left. 

In the  sequel regular,  increasing and decreasing  systems are  considered, In 
the regular  system, all finite  elements have the  same  stifhess. In the  increasing 
system,  the stiffness of each  successive  element is twice  the  previous,  proceeding 
from  left  to right. In the decreasing  system,  each  successive  element  has half the 
stiffness of the previous  element. 

Series rod systems error  analysis:  The  stiffness  matrix for the series rod 
system is given by 

K =  

w1 (1 + 4  

-wl w1 +w2 sym. 

0 -w2 wz +w3 

-w. W. - 1 +wi 
1 1  

where W = Ar Er/ar, r = 1, 2, 3 . . f, is the axial stiffness of the ,rod element 
and f is fhe number of finite  elements  (rods).  For  the  rod  case f is also  the  order 
of the  stiffness  matrix. (Y = relative  stif€ness of a  spring  located at the free end of 
the  rod. 
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Disregarding  the  inherent error,  the first 
position matrix L are  given by 

111 = w1 ( 1 + a) 112 

and second  diagonals of the  decom- 

Relative  values of the first and  second  diagonals of the L matrix can  be defined by 
dividing these terms by the values of the  diagonals when the  spring  stiffness a is 
zero. 

This  gives 

(3-16) 

If a were introduced in the rth equation, equation (16) would also apply for the rth and 
r + 1 st diagonals, Therefore  these equations  indicate how an added stiffness in a 
given diagonal effects the  neighboring diagonal. 

Assuming  that all the W i  are  equal (regular system) and interpreting a as  an 
error  introduced by manipulation, equations (16) can be studied  to show the  character- 
istics of error propagation in the series rod  system. This is achieved by solving 
equations (16) simultaneously  to  eliminate a and express  ell in terms of e22e 

A plot of this  relationship is shown in Figure 6, This  curve shows that when a 
positive  stiffness  perturbation (a > O )  is introduced in diagonal r successive diagonals 
retain the  perturbation with reduced magnitude. The rate  at which the  perturbation is 
damped can  be deduced by repeated  use of the data in the  upper  quadrant of Fi 
The  curve shows that positive  propagations are  bounded  by an asymptote at $"';". 2 - 6- 
Thus,  even if a  positive  relative error of infinite magnitude is introduced at row V t  

it will be reduced to a relative value of 0.414 in equation r + 1. The  lower left-hand 
quadrant of Figure 6 shows that a negative  perturbation in a diagonal results in an 
increased negative  perturbation in the next  diagonal. A negative  asymptote exists 
where  the input perturbation has a  relative value of -1. Then  the next diagonal will 
have a relative  perturbation of minus infinity. 

A physical  interpretation of the  propagation of negative a is that if a load is 
introduced at joint V t  in the  plus  direction,  then  a  negative  infinite  displacement 
occurs  at  some joint greater than Vf. Thus, in this case,  solution of the  structural 
equations is physically meanindess. Mathematically  the perturbation has been  such 
that the  implied stif€ness matrix is indefinite. 
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Figure 6. Decomposition  Perturbation  Propagation  Regular Rod 



Tighter  restrictions can be  imposed by considering  the  singularity of the 
stiffness  matrix, K. One restriction on admissible negative a is that successive 
equations  must not be dependent. This condition is represented by the Choleski limit 
on Figure 6. It occurs when the  relative negative perturbation is -5, since, in this 
case, = 0. 

A still  tighter  restriction is that the  total  stiffness  matrix  must not be  singular. 
The  determinant of the regular rod  stiffness  matrix is W12f (fa + 92. Therefore, 
the maximum error, a, that may  be  introduced in  the first equation to avoid singularity 
must be - l/f. Conversely, if the error  is -2-P,  2P equations  (elements in series) 
can  be  treated.  The relative  error in the  determinant is 

The  neutral  propagation  line shown on Figure 6 defines  the  regions of stable 
and  unstable propagation. Stable  propagation is defined as propagation in which the 
perturbation is reduced in magnitude in  successive diagonals of the  decomposition 
matrix. As shown  by the figure, all positive  perturbations involve stable propagation 
whereas all negative errors  involved unstable propagation. 

A d  

Neutral  propagation arises due to  the  fact that the  numbers are represented 
with a finite number of places. Then, a small  positive  or negative error  can persist 
due to  the  fact that the nearest finite number is used in the numerical  analysis. The 
greater the  number of places involved in  the arithmetic,  the  smaller is the  range of 
neutral  propatioa In the propagation  plot of Figure 7, a neutral  stability  region exists 
around  the  intersection of the axes. 

Figure 7 shows plots of the  attenuation  and  amplification of a as a function of 
the  number of successive equrt;ons after a is introduced.  Amplitudes of stable dis- 
turbances are  diminished  slonly,  whereas  unstable  rapidly  increase. 

Figure 8 is similar  to Figure 6 but is constructed for  cases in which the stiff- 
nesses of adjacent  elements differ. Study  of these  curves  confirms that positive  per- 
turbations, though they increase,  never  cause singularity. Negative perturbations are 
deleterious only  when in the  unstable region. In addition, these  data show t k t  if the 
second  element is stiffer than  the  first,  the  relative  perturbation is decreased in the 
successive equation  and  conversely.  The figure shows that non-uniform rods can 
have more than one region in which neutral  stability  occurs.  These are at  each 
intersection of the  propagation  curve  with  the neutral line. The plus  asymptote 
and Choleski limits have not been  plotted to avoid clutter. 

The determinant of the stiffness matrix of the  increasing  system  can be written 
a s  a  product of a number of factors, only  one of which depends upon a. This factor 
is (a + Zf-1/(2f-l) )2. Therefore, the matrix will be  singular  for f large, only if 
a = -0. 5. 
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The determinant of the stmess matrix of the  decreasing  system s an CY 
factor, (CY + (2f-1)-1)2. Thus, this matrix will be singular when CY = -2-? The 
decreasing  system is therefore  more  sensitive  to  error than  the increasing  system. 

Computer experiments  verify this analysis. I3 f = 20 for the  decreasing  system, 
the stifEness matrix should be singular if cy = - (220-1)-1. Then ell = 0. -952 x 10-6. 
Computer experiments show that the  matrix is positive  definite when ell = -0.482 x 10-6 
and  indefinite when ell = -0.961 x 10-6. 

by repeated  use of equations (15) or  estimated  from  Figure 8. These ways are  simpler than 
developing the  determinant of the sWess  matrix. 

For  an irregular structure, growth in  the  error  in the  diagonals  can  be  predicted 

The  propagation curves of Figures 6 and  8 involve what may  be  called  conservative 
propagation. It is conservative in the  sense that if a succession of equations are  
treated  the sequence of treatment will not affect  the  relative  perturbation  propagation 
through  the  complete set. The  propagation  can  be made unconservative by introducing 
new perturbations due to  manipulation errors  in performing  each  step of the decomposition. 

To  estimate the maximum number of rod equations that can  be  treated without 
concern for  error propagation, it is assumed  that a negative error  is introduced in 
each row  of the  decomposition due to  inherent,  square  root, or  attrition  error.  For a 
regular rod, propagation is nearly  stable so these  errors will be summed. Assuming 
all this error  is introduced a s  a perturbation in the first equation, the number of 
equations that can be treated  for a regular  rod without an indication of singularity in the 
Choleski process is given by f = 2P/2 M 6000 if p = 27. Fewer equations can be treated 
if the  rod  elements  decrease in stiffness  and  more if stiffnesses  are increasing. 

These  small  perturbations, however, can  introduce  significant errors  in the 
solution  even if they are neutrally stable.  To  consider  the  implications of these errors  
in  the  decomposition upon the  solution for the rod, assume that the  typical  perturbed 
equation is given by the  difference  equation 

(3-18) 

where E and E differ  from 1 by a and 8 ,  and r is the  number of the degree of 
freedomCY(joint p sequence  number). Solution of this difference  equation is given by 

+ c2 (2 + [ (2)2 - l]l”)’ (3-19) 
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Considering the  rod pinned at the left and  loaded at the  right,  the boundary conditions 
are 

0 = O ; - E  U 
Q f-1 (3-20) 

Using these conditions to define the  .arbitrary constants, C1 and C2, letting EQ = 1 + Q, 

E = 1 -I- 8 with cr dl << 1 and expanding terms in a binominal series gives  the  displace- 
m%nt as 

'r p - a . r ( l - f [ / 3 - Q ]  AE -.) (3-21) 

When CY = /3 = 0, equation (21) gives  the  same  displacements at each  joint as the  solution 
of the  differential  equation for the rod, regardless of the  number of joints involved. 
The relative error  when Q # 0, f l  # 0 is given by 

e w - f ( p - ~ )  (3-22) 

This  error is independent of r ;  the joint  sequence  number,  and proportional  to  the  total 
number of equations or  finite elements  considered. 

Suppose displacement  boundary conditions are imposed so that u = 0 and Uf = 1. 
Then  the  displacements  to a first  order are r/f and are independent of manipulabon 
error. 

The  expansion of equation (19) for Q w B <</ and ra  << 1 makes if apparent that 
the relative  error can at worst  vary  linearly  with  the joint number. The maximum 
error  will be of the order given in equation (22). Taking Q w- B-2-P the maximum 
error  in the  displacements is less than  five  percent when p = 27 if f < 3.35 x 106. 

Critical arithmetic is involved in the  decomposition process in evaluating diagonal 
elements of the decomposition  matrix. These involve  calculations of the  form 

(3-23) 

where  the ejr is coefficient in row j column r of the  array when  row j of the decompo- 
sition is belng formed. Since all the 1.- are positive when K is positive  definite, as the 
decomposition proceeds a particular dLgonal is persistently  reduced.  The stiffness 
matrix is numerically  singular if the  total  reductions in  the diagonal result in a relative 
zero  for the diagonal. 



The  singularity  can  be  predicted by estimating  the decomposition diagonal using 
its physical  interpretation.  The rth diagonal is the  square  root of the stiffness in the 
rth  degree of freedom when all lower  freedoms in the set of equations are unrestrained 
and all higher are fixed. It measures the force  to induce a unit  displacement in the rth 
freedom. 

Consider  use of this criterion  for  the series rod  systems.  Assume that equations 
are sequenced from  root  to tip. The  numerical  singularity will be exhibited first at 
the  tip joint. For the regular rod,  the square of the last diagonal of the  decomposition 
matrix is, by its interpretation, (AE/fa). Its original  value is (AE/a). Then, the set 
of equations will  be singular when 

(3-24) 

The relative error  is given by 

With joints sequenced from  root  to tip,  the increasing  system will  result in fewer 
and  the  decreasing  system  greater  values of f  than given by equation (25). For  the 
increasing  system,  the deflection of the  tip of the f joint rod  for unit load when joints 
inboard are free  to move is 

f 
u = -  " 

F w1 c - w1 
(1 - 2-5 

i = l  1 

f 
u = -  " 

F w1 
(1 - 2-5 c - W. 

i = l  

(3-26) 

The stifEness is the  reciprocal of uf 

Since  the original  value of the  fth row stifbess is W1 af-' the  matrix will  be singular 
when 

- w1 (1 -2-5 < 2-p w1 af-l 
2 - (3 -27) 

o r  

f FYp. 

For  every  reduction in f by 1, one more  accurate  binary  place will occur in the 
determinant, i. e. 

e = f/p (3-28) * 
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Figure 9 shows the results of computer tests demonstrating  the  validity of 
this critical arithmetic  analysis  for  the  increasing  rod  system.  Singularity  occurs 
when expected. As f is reduced, the  accuracy of the determinant  varies  nearly 
as predicted. Variances  from  the  curve  can  be explained by errors  in forming 
square  roots in the  Choleski process. 

Errors  in  the  forward and  backward  substitution are relatively  small if the  inherent 
error   in  the  coefficients is negligible. In the forward substitution,  the worst  error is 
associated  with evaluation of the last unknown,  yr This is formed  for  the regular rod 
by calculations of the  form 

f j 
Yf = c p. n ai (3-29) 

j = 1  d i = l  

j 
where n a. is a series multiplication  with j components. The evaluation of 

yf requires  the  summing of terms of a .rector scalar product. Each  term summed 
depends upon the series multiplication. As indicated in Section 2, the errors  in form- 
ing series multiplications are small  and  errors in taking vector  scalar  products would 
be  esTected to be  small. Consequently, errors  in forming yf are negligible unless 
2 fiv2 - 1 13.4 X lo6. 

i = l  1 

Critical  arithmetic  may be involved, depending upon the  signs of the Pj loadings. 
When all the loads are in the  same  direction, yf involves  the series additions of compo- 
nents and, thus,  the final sum mill  have small  relative  error as long as the  number of 
additions is less than 26.8 x 106- When the  signs Mer,  the  relative error  of the 
result mil l  also be small though more difficult to  estimate since it is measured by the 
sum of the  absolute  values of the series components. 

The  operations involved in  back  substitution are comparable  to  those in forward 
substitution involving, instead,  the summing of the  deformations. 

It is noted that when the  right hand of the rod is assumed  to  be fixed, a physical 
interpretation of the  substitution processes is possible.  The  forward  substifxion 
defines  the  loads in each  element of the  structure. The  back  substitution  involves a 
summing of the  incremental  deformations of each of the  elements of the  structure  to 
obtain  the total  deflections of the  structure. 

Since the errors  in the  forward  and  back  substitution  process  correspond  to  the 
errors  in series operations,  the following characteristics  can be anticipated for each 
process  separately, 

1. The  absolute error  can  be  expected to change its rate of growth by a 
factor of 2 when the  answers change by a power of  2. Between changes, 
growth will vary  linearly. The  calculated  answers  will  always  be less 
than the exact if all loads have the  same  sign. 
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2. Relative errors  will  increase at worst  linearly with the  number of 
components (equations)  and will be  insignificant for p = 27 unless 
13.4 x lo6 components are involved, in accordance with equation (2-14). 

Confirmation of these  characteristics are provided by computer tests for series 
of rod  finite  elements.  These data are summarized in Figures 10 and 11. 

Figure 10 shows the growth of absolute error  for back  substitution  with  successive 
equations in the  back  substitution  process. The  decomposition in this case involves 
no inherent  error.  These  data  were developed based on a 400 element  rod  with a tip 
load of (228-1)0 This loading maximizes the e r ror  when p = 27. Predicted  deflections 
are less than  the exact at all joints. Changes in slope of the error  curve  occur when 
the exponent of the  answer changes by a power of two. 

The maximum relative  error is 1.089 x and  occurs at the  tip  because  the 
exact  answers  vary  linearly with  the  number of the  equation  being treated. The lower 
curve of Figure 11 shows the growth of the maximum relative  error with  the  total 
number of equations treated. These data were obtained by analyzing rods with 100, 
200, 400, and 1200 elements.  The data exhibits expected  characteristics. It is noted 
that this curve is not bounded by  equation (2-14) since  the  number of components does 
not lie in the  critical  range; Re. 

The following Characteristics can be  anticipated when forward and  back  sub- 
stitution are combined so that the errors  in forward  substitution  constitute  inherent 
error  to  the back  substitution: 

1. The  absolute error  will vary  linearly  with a growth rate equal to the sum 
of the  forward and back  substitution  growth rates. It will tend to be 
insensitive to the  value of the answer  characteristic  since  the growth rate 
increases in forward and  back  substitution  and  equations are treated in 
reversed sequence, 

2. Relative errors  will increase  linearly with the  number of equations. The 
relative  error is bounded  by letting 

in equation (2-14) since  each of the yf-r are found by adding values involving 
the sum of (f-r) components where r is the  equation  sequence  number in 
back  substitution. Then, if the  error is to  be less than  five  percent,  f 
cannot exceed 7300. 

Figure 12 shows the  measured growth of absolute error  for  forward and  back 
substitution combined. Again, the decomposition has no inherent  error.  These  data 
were developed for  the 400 element  rod with a load of (228-1) at every joint, This 
loading maximizes  the error  when p = 27. These  data exhibit an  error which is a 
linear function of the  equation  sequence  number in  the back  substitution  process. 

! 
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The  upper  curve of Figure 11 shows  the maximum relative  error as a 
function of the  number of equations for  the combination of forward  and back  sub- 
stitution. The errors  are small.  The  relative errors  for the combined processes 
involve 3.57 times  the  relative  error of each  process  separately.  This  factor  reflects 
the fact that, in the  worst  case,  the error  growth rate and the  relative  error at a 
particular growth rate double when the  number of components is doubled. 

These  data  demonstrate that the e r ror  in substitution in series rod  systems is 
small. The curve of Figure 11 is a straight line. In the  worst case, the  relative  error 
is given by e = 0.959 x f. Therefore,  the  substitution  processes in these series 
rod  analysis will yield  answers  with less than  five  percent error  unless  more than 
5.2 million  elements are involved. This is a better bound than  the 7300 obtained by 
disregarding  calculation  details. 

Series  beams  systems  error  analysis: The stfiess matrix  for  the series beam system 
is given by 

K =  

where 

3w- 2W. 
1 

2 a ( 1 + B )  sym. a 1 1 

-6W / 3 -3W / 2 6W1 
al l 8 2  - +  n 7 6W2 

I Ll 

.I. "2 

ih. -3w, 2w1 2W2 - +- a a *  1 2 -. 
0 0 

(3-30) 

Wi = Ei I i  i - 1, 2.-.f 

Ei = Young's modulus of segment i 

I. = bending moment of inertia 

a. = segment  span 
1 

1 
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Q and B = relative  normal  displacement  and  rotational  springs  at joint 1. 

Generalized  coordinates a re  the  displacements  normal  to  the beam and  the  rotation of 
each joint,  Shear  deformations are neglected in the  representation. Equation (30) is 
the stjf€ness matrix  for the beam of Figure 5b.  Note that there are twice a s  many 
equations as there are finite elements. The first of each  pair of rows of the  stiffness 
matrix is associated with force  equilibrium and is the rrforce  rowfr. The second of 
each  pair is a "moment rowrr 

To examine  the  propagation of CY and B y  it will be assumed  that when  one is 
non-zero, the  other is zero.  The relative  values of the first and  third diagonals of the 
decomposition matrix assuming B = 0 are given by 

w p 1 3  
1/2 

e 33 = ( I t  A) -1 
w2/aZ3 ( l +  a) 

(3-31) 

The relative  values of the  second and fourth diagonals,  assuming CY = 0, are  given by 

(3-32) 

Equations (31) and (32) also define error  propagation between any pair of rows r, r + 1 
and a second pair r + 2, r + 3 for  the series beam  when no error  has arisen  in  prior 
decomposition. Thus, conclusions  with respect  to  these apply at any point of decomposi- 
tion 

Figure 13 shows a plot of the  stability  characteristics of the  pairs of diagonals. 
This  figure is based on a regular beam, i. e. , W = W +al. This  curve  exhibits  the 
same  perturbation propagation characteristics ag the genes rod  curves shown in 
Figure 6. Positive  perturbations  coverage  and negative diverge  more rapidly, however. 
It is noted that the  branches shown to the left of the minus asymptote  also  occur  for the 
rod, though they are not shown on Figures 6 or 8. Figure 13 curves  indicate  that 
moment perturbations are more  important  than  force. 
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Examining equations (31) and (32), it can  be seen that as successive stiffnesses 
decrease,  the  process is increasingly  sensitive  to  perturbations. The new propagation 
curves will be rotated  similarly  to  the way the  rod curves of Figure 8 rotate as stifFness 
ratios  decrease. H both CY and B are non-zero, it can be shown that curves  for e33 are  
not sensitive  to  small  values of (Y and  e44 for  small B However, the  curves do vary 
with both of the  perturbations. 

Because of the coupling between the ce and B perturbations, the beam may have 
more than two neutral  stability points. This is reflected by equating  the general 
expression  for e33 involving both CY and B ,  

e33 = (l + $$ m) 4 l+(Y 1 + B  -3/4 ll2-1 (3-33) 

to e l l .  Then for  the regular beam, regions of neutral  stability are seen to arise  at 
CY = 0 for any B and at B = - 1 for any CY. 

The  number of elements that can be treated without degeneracy if CY f 0 and 
B = 0 is twice as many as for  the series rods, i. e., if p = 27, f = 134 x 106. Xf 
(Y = 0 and B f  0, the maximum number of elements is 33.5 x 106. If it is assumed  that 
negative errors  arise in every equation, 3000 equations (1500 series beam segments) 
can be treated if p = 27. 

Consider the implications of persistent small errors  in the final structural 
equations due to  decomposition errors. The  difference  equations are  of the  form 

-6W r-1- 3er-1 a + 12EaW + E Q a - 6wr+l + 30r+la = 0 
 CY^ 

3W r-1 + 9r-la + E$v + 4E B era - 3wr+l + 9r+1a = 0 (3-34) 

where r and 9 are the  displacement  and  rotation of joint rrrrr E, = 1 + CY, E@ = 1 + B, 
E, = 1 + (Y and a ,  B, and CY are small  errors of the order of  2-P. 

To solve  equations (33), let them first be  replaced,  approximately, by a set of 
differential equations,  Then  the  solution of the differential equations will  be studied, 
For this purpose let 

w = r 

w = 
r 

er' = 

er' = 



then  equations (27) can be  written as 

Since each of the errors  will be  small, it will be  assumed that the  effect of c r y  8 , and y 
can be examked  separately  and  the effects of simultaneous  occurrence evaluated by 
superposition. 

Table VI summarizes  the  four cases of interest. The  second column of this 
table  summarizes  the  characteristic equations of the set of merent ia1 equations for 
each case.  The third column of the  table cites the  general  expression  for  the solution 
of the equation. This  expression is obtained by expanding the  solution of the  equations 
in powers of r A, dropping terms of higher order than r5 h and using the characteristic 
equation to  eliminate  terms involving ~4~ 

Examination of the  expressions in Table VI provides  some  characterization of the 
effects of manipulation errors  in final response  predictions. It is noted first that to a. 
first order, all the  constants in column three with  the  same  subscript are equal, i. e. , 

A. = Bo = Co = Do 

Further, it is noted that the first two constants in each  equations are determined,  to a 
first  order, by the displacement  boundary conditions. The other two constants are 
defined by loading or displacement boundary conditions of redundant  supports. 

It can be seen that the solution of Case 1, where  all  the errors  are zero, is the 
exact solution of the  differential equation for a beam. It is easy  to show that this solu- 
tion is also the  exact  solution of the  difference  equations for the finite element. Thus, 
the  replacement of the pair of difference  equations by differential  equations is exact, 
under the assumption of no manipulation errors,  regardless of the  number of equations 
involved in  the  analysis. 

Case 2  involves errors  occurring in every moment equation. The error  is 
assumed  to exist on the diagonal of the stiffness matrix. In this case,  since both the 
constant 82 and 83 cannot be zero,  the error  is proportional  to 8 r2 reqrdless of what 
displacement  boundary conditions are involved. If all the Bk 2 0, i. e. , for a cantilever, 
the error  reduces  deflections at all joints, if 8 r 0. Conversely, if manipulation error  
is less than zero, all deflections are increased: 

In Case 3, it is assumed that persistent manipulation errors  are introduced in the 
force equations on the diagonal. The  examination of the expanded expression  for dis- 
placement  indicates that depending on boundary conditions the  error may  vary as ar4 
or  crr2 when ra  is small. If all the arbitrary constants are greater than o r  equal to 
zero,  the error  reduces deflections at all joints if the  persistent  error is greater than 
zero,  and conversely.  The e r ror  contributions  to  the elastic modes  (subscripts 2  and 3) 
are less than  those due to 8, but for some  displacement  boundary  conditions  the  rigid 
modes are distorted. 
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Table V I  

Solution  of Beam Error  Equations 

C h a r a c t e r i s t i c  
Case Equation - 

I I  I Y  
-2wr+4 a wr+2aer+ yaer = 0 

General  ExDression f o r  w Pa r t i cu la r   So lu t ion  

2 2  2 2 3 2 

5 2 x1=x2=o;x3=xq’-4P Bo+Blr+B2r ( l-*)+B3r (I.-*) 

PfO 

4  2 r n  r4 a 2 r a  3 r 2 a  4 2 
3 xi=-2 n x i-12 a co(l-- 2 )+Clr(l-- 10 ) + C 2 r  (1” 6 )+C3r (1” 10 
aiCo 

4 1 2  
4 2  3 5 2  3 

Xi=4 Y A i +  7 Y D ( l+*)+Dlr( 1+ 6 : r24yo )+D2r (1 +‘ 15 )+D3r ( l + Y r )  4 
3 

Y#O 
0 48 

I L 



Case 4 involves  the persistence of y at a constant value. This er ror  arises in 
the coupling terms between the  displacement  and  rotation  coordinates in both the  force 
and moment equations. It can  be seen that the  error involves terms in r y and r3  y 
primarily. Thus, whereas Case 1, 2  and  3 involve even error  functions, this case 
involves an odd function. Errors  may  decrease o r  increase response  predictions, 
depending upon boundary conditions. Generally, these  errors  will  be  more significant 
than  the 8 errors  and less significant  than [Y errors. 

Considering all  the  cases  together,  the  error  may  vary up to  the  fourth  order in 
the  number of equations involved. It may  be  either  positive or  negative at any  given 
station, depending upon problem boundary conditions. In the  worst case, the errors  
accumulate  and  the maximum elastic error  is of the  order f4  c r / l O .  Therefore, with 
cy 2-27 it can  be  anticipated that in the  worst case about 190 beam elements in series 
can be  treated  vithout  answer invalidity due to the  accumulative effect' of small  errors. 

The fourth column of Table VI lists the  particular  solutions  for a tip-loaded 
cantilevered beam for  the first three cases. These equations are solutions when 
f h << 1. Case 1 shows that the  exact solution is obtained when no manipulation error  
exists. Case  2  and Case 3 show that the error  in deflection predictions  vary as the 
third power of the  total  number of beam  elements,  inversely with the  joint  sequence 
number,  and linearly  with error  magnitude. Near the  tip of a typical beam  (where 
r 4 f , f >>l), the error  reduces deflections by a magnitude proportional  to f% of f2S . 

Critical arithmetic  for decomposition series beams of matrices  takes  the  same 
form as for series rods,  The  most  significant errors  are made in evaluating the 
diagonal elements of the decomposition matrix. 

Consider use of the  singularity criteria for the series beam. For  the regular 
beam,  with  equations  sequenced from  root  to tip, the  square of last diagonal is by its 
interpretation 3EI (fa)3 Its original  value is l2EI/a3  Then  the set of equations will be 
singular when 

(3-36) 

Thus, when p = 27,  370 finite  elements wi l l  yield  meaningless  predictions of deflections. 

As for rods,  the  increasing  system results in fewer  and the decreasing in greater 
values of f than  given by equation (36). The force row will involve critical arithmetic 
before moment since the force diagonal  depends on the  number of elements cubed while 
rotation depends on the  number  to  the first power. Singularity  wilI  occur  theoretically 
when the  ratio of original  to  final stiffness is greater.'than 2p. This is given by 

I 

K ni > 2p' = 268 x 10 whenp = 27 6 
f f -  (3-37) 

where Kf is the  stiffness of the last beam segment in displacement  and wf is the  tip 
displacement. 
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The first three columns of Table VII summarize  the evaluation of Kf wf for the 
increasing series beam  when f = 12, 14, 15, 16, and 17. wf is evaluated by integrating 
the beam differential  equation for  the  increasing beam stiffness distribution.  These 
data show that only 16  segments can be  treated  before  singularity  occurs  and  answers 
become meaningless. 

A maximum relative  error, due to decomposition, can be defined by 

(3-38) 

Note the  similarity of this equation (2-1)e Equation (38) is an  error bound established 
by assuming that an  error  of one part  occurs in the last binary  place of the  original 
stifhess coeacient, Kf and  dividing this er ror  by the  stiffness of the  final  decomposition 
diagonal. This  formula is only meaningful before  singularity  occurs. 

The last four columns of Table VII summarize  the  calculations of the relative 
error  predicted by equation (38) and  values obtained from computer measurements. 
Computer measurements  used Gauss triangular decomposition. At each joint, the 
force  equilibrium equation was written  before moment equilibrium. Computer results 
are much better  than expected. Results are obtained beyond predicted signularity. 
Actually, singularity was  not indicated  until 19 elements were involved in the beam. 
Nevertheless,  the  critical  arithmetic bound is regarded as excellent. It  provides a 
close bound for  error when the errors  are small  and it shows the  trend of increasing 
error. It's imprecision is attributed to the  sensitivity of this calculation, on the com- 
puter, to manipulation error. 

The  calculation for  singularity  can be simplSied  at  the  loss of some  accuracy. 
This is achieved by assuming  the beam is uniform  with the  smallest stifhess to  evaluate 
wf. This approach  indicates  singularity when f = 14 and  the  relative error  is given by 
e = f (p-3)-1. 

Relative errors  in substitution for  beams have characteristics  similar  to  rod 
substitution errors. The worst  errors arise when each  joint is loaded  with a force 
and a reinforcing moment with a load valued at the  critical component (228-1 for p = 27). 

Figure  14 is a plot of the maximum relative  error in substitution  for a beam as  
a function of the  number of beam elements involved. The  decomposition was exact. 
The relative  error varies linearily  with  the number of series beam segments. The 
relative  error is given by 

e = 0.134 x 

If this error  is to  be less than  five percent, less than 3,700,000 beam segments can 
be treated.' 
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Table VI1 

Increasing  Beam  Critical  Arithmetic  Error 

f - f, Exact ' Kf Kf wf 2 p-l-X(Kf) e w f , Computed e ,Actual W 

12  449.329102  6x 2 l1 5.53~10 8192  5.50%  425.54143  5.29% 6 

6 

6 

6 
6 

14 633.332107  6x2 l3 31.1~10 2048  30.9%  470.11828  25.8% 

15  737.332720  6x2 l4 72.5~10 1024  71.9%  324.53154  56.0% 

16  849.333027  6x2 l5 167.~10 512 166% 220.24451  74.1% 

17  969.331800  6x2 l6 380.~10 133.74655  86.2% 



Loading = (228-1) 

wkw4- 
Structure 
(Regular Beam) 

100 200 

4 

Number of Elements: f 

Figure 14. Beam Total  Substitution Errors 
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Other series  systems: The  effects of manipulation errors  for  series  rods and 
beams can  be  extrapolated  to  other series systems. It is argued that the  rod and beam 
systems  represent  the  basic  behaviors of any structural system. This is in fact the 
basis  for the lattice and  framework  analogies  proposed by  Hrennikoff 17. These have 
been  used with some  success  for analyzing structural  systems. Another argument 
suggesting  extrapolation is valid, is that errors  in  rod and beam  analyses differ in 
intensity  rather than characteristics. 

Series  systems of torque  tubes  and shear  panels will exhibit the  same  errors  as 
series rods. Series  systems  for  the finite element for the zeroth  harmonic of the 
cylinder given by Percy. et a118 membrane  representations  such a s  those of Turner, 
et a12 Argyrislg, and Hrennikoffi7, and representations of elastic  solids such a s  those 
of Melosh20 will exhibit errors with intensities  similar  to those of the  rod  systems. 
Errors will be more significant, however,  due to  the  increase in attritition  error caused 
by greater  stiffness  matrix wavefronts, as  the  element  goes  from  a one to  a  three 
dimensional  representation. 

Table VItI cites the results of experiments of some of these  series  systems. 
These  results  verify expectations. Results  for the series  rod  are included for com- 
parison. Since the  stiffnesses for the cylinder were  imprecise  (because computer 
generated  rather than input), these  results  reflect  inherent errors which do not exist 
in results  for the membrane and cube. In  the  Turner  ,membrane  representation a square 
panel  model  was developed first and the central joint  equations  eliminated  before  stif€- 
nesses were summed.  Indicated errors  are only those due to  manipulation.  Idealiza- 
tion error is eliminated by developing the  exact  solution  for  system  behavior  based 
upon its intrinsic exact  representations.  For  the  membrane,  for  example,  the  case of 
uniaxial  tension is treated  since  the  elements  represent this exactly if determinante 
boundary conditions and  uniform  loading are treated.  The same  situation  exists  for  the 
rod, cylinder and rectangular  prism. 

The  fourth and fifth columns of the  table  permit comparing  the  exact  solutions 
with  those  calculated.  These  data  confirm  the trend of increasing error with  the increase 
in the average wavefront of the stiffness  matrix, Exa- the  membrane  results, it is 
also  apparent that with  the same density,  the  manipulation error  varies with the choice 
of idealization. 

The last column of Table VIII indicates  the  number of elements  that  were  treated 
on the computer  before  singularity  was  sensed. Data in this column also shows that 
analyses breakdown due to manipulation error is aggravated  be increasing  the  average 
wavefront of the matrix. 

Series  systems of plates and the  first cylinder  harmonic  can be expected to behave 
like beam  systems.  Analysis of these  systems will be sensitive  to errors in the decomp- 
sition  process and accuracy may  be  controlled by critical  arithmetic.  Attrition errors 
will be worse than  those for  beams  because of the  increased  stiffness  matrix density. 



Table VI11 

Ser i e s  Systems  Manipulation  Errors 

Element Type 

Rod 

Cylinder,   Zeroth 

Membrane, Square 

Turner 

Argyris 

Hrennikof f 

Pr i sm,  1 x 2 ~ 3  

Be am 

Cylinder , F i r s t  

Plate,   Square 

fa 

100 

100 

100 

100 

100 

25 

100 

25 

20 

b n 
7 

100 

402 

40 1 

401 

40 1 

305 

200 

102 

120 

C 
W - 

1.99 

6.46 

6.42 

6.42 

6.42 

18.0 

3.48 

6.32 

9.22 

Exact T i p  8 Calculated  Calculated - Sd 

.152587 .152588 .152584 > 4000 

.212209 .212206 ,212199 > 100 

.143051 .143045 .143000 500 >S >400 

.889079 ,888131 .888643 lSO>S>lOO 

.286102 285927 ,285882 >5 00 
,260417 .233177 .233177 49 

.666667 .666666 .655364 800)s  >400 

,803014 .625960 .695000 17 

. 733321e .756491 .757842 > 200 

a 

bn = Number of  equations 

w = Average wave f r o n t  

f = Number of f i n i t e   e l e m e n t s  

C 

dS = Number of e lements   causing  s ingular i ty  (p=27)  
e Calcula ted   so lu t ion ,  p=36 



Table VIII shows solution results for beam,  cylinder first harmonic and s uare 
plate series systems. The plate  finite  element is that of Bogner, Fox, Schmit 27 . 
Errors indicated are due only to  manipulations in elimination, The data shows that 
as the average  matrix wavefront increases,  error  increases.  Early  failure of the 
cylinder  analysis a s  a attributed  to  its  large  inherent  error. Only eight  significant 
decimal  digit  accuracy was used  to define the stiffness  matrix. 

Series  systems of curved  shell  elements are regarded as mixed systems  since 
they involve parallel  subsystems of rod-like  (membrane).  and  beam-like  (plate)  behavior. 
Mixed systems are beyond the  scope of this study. 

Errors  in Evaluating  Secondary Unknowns. - These are due to  the  fact that the 
operation  intrinsically involves critical arithmetic.  Determination of stresses from 
displacements is essentially a differentiation operation. The characteristic  form of 
the  calculation is 

Ar - A b +  1 
si x - x r +  1 = t  

r 

where t is a factor involving material  constants  and xr ,is a coordinate of an element 
joint. As the  network interval approaches  zero,  successive  displacements (A, and 
A, + 1) approach  each other.  The stress predictions become meaningless as the  evalu- 
ation of the stresses involves  the subtraction of two components which are  nearly equal. 
Since the  useful  information is contained in the  lower  bits of the A,, critical  arithmetic 
is intrinsically involved. 

Anderson  and  Christiansen2' point out that in the  case of an  incompressible 
material (Poisson9s ratio  nearly 0.5) critical arithmetic is involved even when the joint 
spacing is large.  Stresses  calculated  for  nozzles  under  nearly  pure  dilatational 
deformation  indicate an  oscillating  sign stress pattern throughout the network. This 
type of response  aggravates  the  critical  arithmetic  error. 

Guidelines for the Analyst. - The  analyst's  formulation of his structural  problem 
has an important  influence on the amount and  distribution of manipulation error. His 
selection of joint numbering, joint  spacing,  and structural  idealization  can  insure his 
analysis  accuracy  almost independent of the computer  and program he selects, 
Idealization  defines  the  mathematical  model of each  finite  element,  thus  fixing  matrix 
sparseness and critical  arithmetic involved. 

In displacement method computer  codes  the  sequence in which joints are numbered 
corresponds with the sequence in which equations are treated in the  elimination  process. 
This enables  the  analyst  to  eliminate crithal  arithmetic in the  decomposition for series 
systems. If non-optimum sequencing is used,  the  singularity criteria previously dis- 
cussed  can  be  used  to  estimate manipulation error. 



Optimum joint  sequencing is defined as that which minimizes the ratio of the 
stiffness diagonal over its final  value  during decomposition; for  the diagonal with the 
largest ratio. This definition seeks  to avoid critical  arithmetic. It is consistent 
with the  predictions  and  experimental results reported  here  for  rods and  beams. 

Based on this definition, optimum joint  sequencing for  regular  cantilevered 
series rod  and beam systems  can be  proved to involve numbering from  the  free edge 
toward  the  support. 

'Lf all the  edges of the  structure a.re restrained,  the joint  numbering  sequence has 
less affect on critical arithmetic  than  for a structure with a free edge. This is illus- 
trated  for  the  series  rod by the  data in TableIL In addition, these data show that 
numbering from  the  midstation toward both supports or numbering from one end to the 
other results in the  same diagonals for the  decomposition matrix  for a regular rod. 

The data in Table M also show that for  the regular rod with both ends clamped, 
optimum joint  numbering  involves  sequential  numbering of adjacent  joints. Since this 
is also the  case  for optimum numbering with a free edge, and since  this type of number- 
ing tends  to  minimize  matrix wavefront, it is hypothesized that optimum joint  numbering 
from  the point of view of manipulation error  is that which minimizes  the stiffness matrix 
wavefront  and proceeds  from free edges, when they exist. 

The effect of varying stiffness is to increase the  importance of proper joint  number- 
ing as demonstrated by the  increasing  rod  and beam systems. With improper numbering, 
numerical  singularity  can  occur with only two elements if the  elements differ in stiffness 
drastically, 

The guideline of numbering  from  the  free edge also is valid for  other  systems. 
This conclusion is based on comparing analysis  errors using  the data in the  fourth, 
fifth  and  sixth  columns of Table Vm. In column five, joints are sequenced from  the free 
edge; in column six, from  the fixity. The  comparison shows that generally  numbering 
from  the  free edge gives  smaller  error. The  cylinder  exception is discounted  because of 
inherent error  in input. The Argyris membrane exception  can  be attributed  to  the 
capriciousness of manipulation error. The maximum relative  error  for this membrane, 
in accordance with equation (38), is 12.3%. 

The  analyst should space  his  joints so that as the  joint  numbers  increase,  the 
element stifEnesses increase.  Table X shows the results of rod  analyses  for  irregular 
structures. The relative  errors are indicated  to be smaller when stiffness increases as 
joint  numbers  increase. The problems  considered are rods  with  elements whose stiff- 
ness doubles or  is multiplied by  one-half for  each  sequential  element going from  tip  to 
root. The structures are loaded  with a force of (228-1) at the  tip  and errors  measured 
for tip displacements.  The  reduction in error  due to preceding in the  direction of in- 
creasing stjfhess is less important  than  the  proper  joint  numbering for  these  small 
problems. However, as the  order of the  equations  becomes large,  propagation  instability 
is more probable in the  system  where  element  stiffnesses are decreasing and proper 
joint  spacing  becomes more  important in avoiding stiffness decreases. 
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Table IX 

Effect of Joint  Sequencing  for  Regular  Rods 

STRUCTURE 1 4 

Joint No. 1 2 3 4 - 5  6 7 8 

1 I I 

2* 
lii 2 312 4/3 5/4 6/5 7/6 8/7 1/8 

kii/lii 2** 
1 1.33 1.50 1.60  1.67  1.71  1.75  16.0 

Joint No. 8 7 6 5 4 3 2  1 

lii 1 1 1  1 1 1 1 1 
2* 

STRUCTURE: 4 
Joint No. 1 2 3 4 5 6 7 

lii 2 3/2 4/3 5/4 

kii/lii 1.00 1.33 1.50 1.60 1.67  1.71  1.75 

F 
2* 

6/5 7.6 8/7 

2* 

Joint No. 6 4 2, 1 3 5 7 

lii 

kii/lii  1/71  1.60  1.33  1  1.50 1.67 1.75 

2* 7/6 5/4 3/2 2  4/3 6/5 8/7 

23rk 

Joint No. 1 5 2 7 3 6 4 

2 1 2 1/2 2 1 2 

kii/lii 1 2.00 1 4.00 1 2.00 1 2* 

i 

~ 

*Square  of  the  Decomposition  Diagonal 

*Stiffness  Diagonal/Decomposition  Diagonal  Squared 
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Table X 

Er ror   Magni f ica t ion   for   Var iab le   S t i f fness  

Se r i e s  Rods 

No. of  Increasing  Systems  Tip  Deflection Decreasing  Systems  Tip  Deflection 
Segments Exact Calculated X Error  Exact Calculated X Error  

15 d5-1)(228-1)  (215-1) 2 28 - 215 0 (215-1)(228-1) d 5 - 1 )  2 28 - 219 5 . 2 2 ~ 1 0 - ~  

20 (220-1)(228-1) (220-1> 228-220 0 (220-1)(228-1) (220-1> 228-11.220 3 . 7 2 ~ 1 0 - ~  

100 (2100-l)t228-1) ( 2  100-1)228 - 2101 . 3 7 2 ~ 1 0 - ~  (2loo- 1) (228- 1) 2128- 17.2 100 5 . 9 6 ~ 1 0 - ~  

40 ( 2 4 0 - 1 ) ( 2 2 8 - 1 )  (240-1) 228-241 .372x10-~ ( 2 4 0 - 1 ) ( 2 2 8 - 1 )  268- 17.2 40 5 . 9 6 ~ 1 0 - ~  



The  selection of the  mathematical  representations  for a continuum elements 
also has an important  effect on manipulation error. Table XI compares  analyses of 
a membrane  using  Turner and Argyris representations  for the series problem.  The 
Turner  representation results in less relative manipulation error  for all ratios of 
the  panel  sides. 

The  manipulation errors  tend  to reduce in membrane  and  plate  systems as the - 
panels become elongated in the  direction of the series. This is evident from  the data in 
the last two rows of Table XI. This  suggests that errors  in mixed  systems may be 
larger than  those in  pure series systems. Moreover, it implies that one of the  most 
effective  ways  the  analyst  can use  to  reduce manipulation errors  is to  introduce  displace- 
ment  constraints. In the case of the  uniformly  loaded series membrane using the 
Turner,  Argyris or  Hrennikoff model, this reduces manipulation errors  to those of the 
rod  system. 

Manipulation errors  can  be  reduced by idealizing  the  structure  with  lower  order 
difference  representations  according  to Gatewood and Ohanian9. For  the beam,  they 
demonstrated by numerical  experimentation that manipulation error  was reduced when 
the  single  fourth order  Merence representation was replaced by a pair of second order 
equations. Further  error reduction  occurred when the pair of second order equations 
were replaced by four first  order equations. This study  confirmed this trend  theoretically. 
The  absolute error  for the  rod  equations (a first order set) at worst is proportional to 
the equation number. The relative  error is proportional  to  the  total  number of equations. 
Thus, the  analyst should choose  idealizations involving many  low order  difterence 
equations to  minimize his maximum error. 

Having formulated this problem,  the  analyst  must  determine what precision is 
required  in computer  calculations to  insure  the  desired  accuracy.  Based on the needed 
precision,  the  analyst  can select an adequate  computer configuration: hardware  and 
software. 

Formulas developed for series rod  and beam systems  can be used as guidelines 
for evaluating required  precision.  Table XII summarizes  these  formulas  for  relative 
error  for  extreme cases for  the  regular  structures.  These  relative  errors  can be 
assumed  to  be additive. 

Multiple source  propagation error  is based on an  error of 2-' in every diagonal 
of the decomposition. In evaluating the expected error  it is assumed that this  occurs 
only only half the diagonals. The  accumulation of persistent  small  errors in the decom- 
position is based on errors  in every row of the decomposition of magnitude 2%'. The 
expected error  formula assumes that these  errors  assume  an  average value of one-half 
the maximum. Substitution e r ror  is based on the  critical component for the load. 
The  expected  value is taken as the  average  error of the  critical component load  and an 
ideal load. 

Assume that critical  arithmetic is avoided, Then, for the  rod  systems of more 
than 265 elements,  the  propagation of unstable errors  in decomposition is the  most 
important e r ror  source. When  many elements are involved, the  required  precision 
to insure less than  five  percent e r ror  can  be  estimated by 
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Table X I  

Effect   of   Panel   Side  Rat ios  

r 1 
Formulation 
I d e a l i z a t i o n  

Turner b 

Argyris b 

Bogner" 

p 

Exact 
27 
e 

Exact 
27 
e 

Exact 
36 
27 
e 

Calculated  Tip Def l ec t iona  
8/1 Panel 1/1 Panel 1/8 Panel 

.7 25002 .Ut305 1 .113281 

.724982 .143045 .113281 

.0152% .0042% 0 

.177816 .889079 .277837 

.177763 .888131 .277842 

.0299% -106% .0018% 

.952381 .761905 .186012 

.820100 .761928 .190452 

.765259 .75649 1 .1907 13 
19.5%  .7 10%  2.15% 

a Due to  uniform  load a t  t i p .  S t r u c t u r e   f i x e d  a t  high numbered j o i n t s ,  
Gauss so lu t ion .  

bMembrane, 100 series elements,   401  equations.  

C P l a t e ,  20 series elements, l20  equations.  
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Table XI1 

Regular  Series  Systems  Errors 

Rod Systems 

Error  Source Error  Bound Expected 

Multiple  Source  Propagation f 22-p p 2 -  P 
4 

Persistent  Accumulation  f2-P . Iff” 
2 

Subs t i  t u t i o n  

Critical Arithmetic 

265 f2-’ 133 f2-’ 

f 2-p f 2-p 

Beam Sys tems 

Er ro r  Bound Expected 

16f 22’p 4f  22-p 

360 €2-’ 180f 2-’ 

f 2 -  (p-2) f 2 -  (p-2) 
3 3 



p > In2 (20 H) Bound 

Expected (3-39) 

The  equations show that  single  precision  arithmetic  for all the computers of Table I 
is adequate for  treating  large  rod  systems. 

For beam systems with many elements,  persistent  small manipulation errors 
in the  decomposition process is the  most  important error  source. The required  pre- 
cision  to  insure less than five  percent error  is given by 

p > In2 (20 f$ Bound 

p In2 (10 Expected (3-40) 

Application of equations (39) or  (40) to  practical  structural  problems  requires 
judgment. Each  equation is based on a worst  case series system (with no critical 
arithmetic),  whereas the practical  structure involves mixed series and parallel sub- 
systems.  The  equations are also  written  in  terms of the  number of finite  elements 
whereas  the manipulation error  must depend on the  number of non-zero  coefficients 
in the stiffness matrix.  Assuming that series systems are critical, and rewriting 
equation (40) in  terms of the number of equations for the beam given 

p .> ln2 (0.625 f$ Expected ( 3 -41) 

this equation can  be  used  to estimate the  required  precision in a practical  structural 
analysis. 

It is observed that all errors  in Table XII are proportional  to 2-’ except  those 
due to critical arithmetic.  This  suggests that analyses with  different  levels of precision 
can  be performed  to estimate manipulation errors. 

Figure 15 shows measurements  demonstrating  the  validity of this  approach  for a 
regular series rod  and  several  regular series beams.  The scale  for  precision has been 
chosen so that if all errors  are proportional  to 2’P, the errors  for a particular  structure 
will plot as a straight  line  passing through  the intersection of the given axes. 

This figure shows that the manipulation error  varies with 2-p over  most of the 
tested range. Failure of some of the  lines  to  pass through  the intersection of the  axes 
suggests  some  nonlinearity when errors  are very  small, due to use of a discrete 
number  system. 

These  results indicate that analyses with several  levels of precision  can be  used 
to  estimate manipulation errors. If three  levels are used, the  assumption  that error  
is proportional  to 2-p can  be checked. E only two levels are used,  the  proportionality 
must be assumed  to  predict error  magnitudes. 
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Guidelines for the  Programmer. - Though the  analyst fixes the sequence in 
which the  equations of a joint areintroduced  into  the  elimination  process, the 
details of the  solution algorithm are selected by the  computer programmer. It is 
these  details which he can modify to  improve  the  accuracy of the  structural  analysis. 
In addition, there are a number of checks that the computer programmer can include 
in his code to  indicate  the  accuracy of the  numerical  results. 

One  of the  most  significant  algorithm  changes is to  increase the precision of the 
arithmetic involved. One device for making this  improvement is simply  to make avail- 
able  multiple  precision  arithmetic.  This study has shown that single  precision  arithmetic 
on a 27 bit  mantissa  machine is satisfactory  for  problems up to about 3000th order if 
the  analyst is careful in program formulation. The use of multiple  precision  arithmetic 
results in a computer code that can handle smaller problem sizes  or  problems of the 
same size at much more machine time  because of the added core  space  required to 
retain multiple precision numbers. 

An examination of the  decomposition process shows that all the  elements of the 
decomposition matrix are less than one. Since this is true, the bits  reserved  for the 
exponent can be  implied  and  fixed  decimal  arithmetic  used throughout with  the  decimal 
point positioned at the left of the  number  representation.  This will effectively permit 
an  increase of at least 20 percent in the  mantissa  for  the  machines  listed in Table I. 
This algorithm change requires no additional storage  space  over  the  standard  algorithm. 

Since  the largest single source of error  arises in forming  square  roots, it might 
be thought that use of double precision  to develop square  roots would result  in improved 
accuracy. Figure 16 shows that this is not the  case.  The double precision  square 
roots result in twice as much error  as expected for  the  increasing  series  rod  systems. 
The  explanation is that truncating  the double precision  root  to  single  precision  insures 
that the errors, when they are non-zero, are negative. Since the  process is unstable 
for negative errors, the small  errors are magnified resulting in larger  errors in the 
result than for the single precision case where only positive errors  can  occur. 

The  squre  root error  can  be  entirely avoided if a modified Gauss triangularization 
process is selected  instead of the  Choleski process.  Let  the decomposition  be written 
as 

K = L D L  T (3-42) 

where L = a lower  triangular  matrix with  ones on the diagonal 
D = a  diagonal matrix 

The elements of D can  be  stored along  the diagonal of L and the ones  implied so 
that no additional space is required  over Choleski  decomposition. No square rooting 
is required.  The accuracy of this modification for  series  rods is indicated  in Figure 16. 
The  predicted  accuracy  assuming no manipulation error  correlates well with  that 
measured with this modified  Gauss  decomposition.  Table XIII provides a comparison of 
the error  in a series beam analysis  for Choleski  and  Gauss for a regular  series beam 
with 100 segments with unit lateral loads  and  for  the  increasing series beam. The error  
in the  Choleski is not always  worse  than  the Gauss error. However, as the  matrix 
approaches  numerical  singularity,  the advantage of Gauss  becomes  increasingly evident. 



, 
0 DoubIePrecision 

Choleski:  Measured 

El Single-Precision 
Gauss : Measured - Expected:  Theory 

10 15 20 25 30 
Number of Equations  (Elements) 

Figure 16. Effect of Algorithm  on Rod Singularity Tests 
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Table XI11 

Comparison  Between  Choleski  and Gauss Er ror  

iegular  Beam 

.oading Displ .  Exact Gauss Choleski 
J o i n t  J o i n t  D i s p l .  D i sp l .  D i s p l .  

1 1 .666667 .665973 .665382 

100 99.6667  96.1824  89.6148 

100 1 99.6667  96.1826  89.6147 

100 666,667  645,046  595,514 

.ncreasing Beam .c 
1 2  3 ... 

w 
f 

w 
f , Exact f , Gauss f , Choleski 

w 
- 
12  449.329  102  425.54143  46 I. 42364 

14  633.332107  470.11828  718.191  41 

15  737.332720  324.53154  1344.5670 

4 . .  
100 99 98 .. . 1 fi 

Gauss Choleski 
D i s p l .  D i s p l .  

.666667 .666764 

99.6667 100.051 

99.6667 100.051 

666 , 665 669 , 453 

E Chol./E Gauss 

.524 

,520 

1.475 

16  849.333026  220.24451 Not p o s i t i v e  ""- 
d e f i n i t e  
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Though the  analyst  specifies  the equation  sequence by his joint  numbering, the 
sequence in which the  degrees of freedom are treated  at a joint  affects  the  accuracy 
of solution. The  importance of treating force  equilibrium first for the  beam  can  be 
seen  in  Figure 17. This figure shows the  relative  errors at several  stations on the 100 
segment beam as a function of precision  for  each equation sequence. This  figure shows 
that though errors  may  sometimes  be  greater when forces are treated first, the errors  
behave better. 

The intrinsic advantage of treating  force  equilibrium equations before moment 
equations is evident by looking at the  forward  or  back  substitution equations. When 
force  equilibrium is stated  first,  the  first of the equation pair can  be  solved independently 
of the second. This equation is a first  order equation of the form, 

e -  r 'r-1 = Mr (3-43) 

Since all the M r  are less than  the exact moments  because of truncation,  the 8, are all 
underestimated  (for  this  argument all loads are considered  reinforcing). 

When moment equilibrium is stated first, each  pair of equations is coupled. 
Eliminating  displacements in the pair of back  substitution  equations  gives a second order 
difference  equation of the  form, 

Thus, solution of these  equations is sensitive  to  the rate of error  growth as well as 
magnitude and  hence more  sensitive  to  the moment errors. Since  the error  rate is 
negative, rotations (and  displacements) may be overestimated o r  underestimated  even 
though loads are reinforcing, as indicated in Figure 17. 

Another way in which the errors  in the  elimination process can be  reduced is by 
making a change of variables in the  equilibrium equations. If the  displacement  variables 
are replaced by change of displacement,  critical  arithmetic will  be  largely  removed 
in the  decomposition process.  This  can be  accomplished  explicitly by a change of 
variables. It is accomplished  implicitly by  optimum equation sequencing. 

Another possibility  for  minimizing manipulation e r ror  is for  the  computer code 
to  provide  the capability to  resort  the  equations so that they are handled in an optimum 
sequence. This solution is not an acceptable solution. For series systems  for example, 
there are only two reasonable sorting sequences to  preserve optimum bandedness. If 
joints a re  numbered  toward  the  fixity,  equations are treated in an optimum sequence. 
This  suggests that minimum bandwidths imply an optimum sort, both from  the point 
of view of  ef€icient data handling and minimum manipulation error. Since resorting of 
large  matrices is inefficient on the  computer  and a near optimum sequencing can easily 
be  specified by the  analyst cognizant of the topology of his structure,  automatic equation 
resequencing is unattractive. 

Several  attempts have been  made  to  minimize  the affects of critical arithmetic 
in  the  determination of stresses in the  displacement  method.  These have involved 
some technique for smoothing the stress estimates so that big jumps in stresses do not 
occur between elements.  This smoothing is achieved by taking cognizance of the 
stresses in neighboring elements  to condition the  estimates of stress in a given  element. 
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Turner, Martin, and Weike123  have  shown  by numerical  experimentation that 
better  estimates of the stresses  are obtained for  membranes by averaging  the stresses 
for  the  elements  meeting at a joint. has found that a  least  squares  fit to  the 
stress values is helpful in improving  the estimates. 

There a re  four checks that should be includai  in a displacement  method  computer 
code to  validate  solutions.  The first  consists of a  singularity  test.  The  studies  described 
demonstrate that the  relative value of the diagonal after the  decomposition process 
compared  with its value  before is the  best single measure of the accuracy of the decom- 
position  process. In addition,  the last diagonal of the  matrix  provides  the  best  measure 
of the accuracy of the  determinant of the matrix: Therefore,  a  simple  comparison 
between the diagonal before and after the  decomposition process can lead  to  measures 
of the analysis accuracy. 

A second  computer based  test can  be developed considering  the error propagation 
characterlstics  described  earlier  in this section, A measure of the  propagation 
stability can not  only determine  the  accuracy of predicted  structural  response but also 
can anticipate the singularity or  non-positive definiteness of the stifhess  array. 

A third, and already popular test involves  equilibrium checks. These  checks 
measure the error in the  solution of the  simultaneous  equations by resubstituting  the 
solution in the original equations (2-25). 

A fourth check is the evaluation of stress calculations  with respect  to manipulation 
error.  This check is easily  incorporated and will define, for the  analyst,  the  relative 
accuracy of the  calculated stresses. 

One check which has been used in the past is based upon Maxwell reciprocity. 
This check consists of comparison of the off diagonals of the  flexibility  matrix  to  deter- 
mine analysis  accuracy,  Test  problems  in this study have convincingly demonstrated 
that this test is not a sufficient test of accuracy,  For example, a regular 400 segment 
cantilevered  beam  fixed in the last equations  gives no significant figures  accuracy  for 
deflection  under a tip  normal load or a load  adjacent to  the fixity. Maxwell reciprocity, 
however, is satisfied  for  seven significant digits. 

A number of investigators have suggested  the use of eigenvalue ratios  as a 
measure of the  manipulation error of the matrix. Test  problems have shown that these 
criteria  are not directly  related  to the principal manipulation error inducing phenomena 
in the  elimination process:  critical  arithmetic.  This is proven by the fact that when 
the  equation of series  rod  systems  are sequenced from  tip to root  the  solution has 
negligible error compared  to  their sequencing from  root to tip.  Though resequencing 
does not  change the matrix eigenvalue ratios, errors  vary dramatically.  Moreover, 
a s  the number of segments of the  rod  increase, the eigenvalue ratio  (the conditioning 
number) will increase monotonically. Nevertheless,  the  accuracy for solving problems 
of order of 50 for the  rod systems is comparable  to  the accuracy  for solving  those of the 
order of 1200 when the  structure is numbered  from  the  free edge to the  root. 
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Sect ion 4 

FORCE XETHOD EKKOR ANALYSIS 

This   sec t ion   cons iders   the   s t ruc tura l   ana lys i s   manipula t ion   e r rors  i n  
g e n e r a t i n g   t h e   c o e f f i c i e n t s   i n   t h e   s t r u c t u r a l   e q u a t i o n s  and i n  elimina- 
t ing   coupl ing   to   eva lua te   the   p r imary  and  secondary unknowns. I n   t h e   f o r c e  
method the  primary unknowns are the  e lement   forces ,  X and Q. The secondary 
unknowns are t h e   s t r u c t u r a l   d e f l e c t i o n s ,  A i n   equa t ions  (2-23) and (2-24) .  
This   sec t ion   provides   gu ide l ines   for  tne engineer ing   ana lys t  and  programmer 
for  reducing,  estimating,  and  measuring  manipulation  error.  

Although  the sets of   var iab les   in   the   d i sp lacement  and fo rce  methods 
o f   s t ruc tu ra l   ana lys ’ i s  are dual   to   each   o ther ,   there  are s i g n i f i c a n t   d i f -  
f e r ences   i n   computa t iona l   de t a i l   i n   t he   so lu t ion   p rocess .  The p r i n c i p a l  
d i f f e rences  arise i n   t h e   t r a n s f o r m a t i o n s  of va r i ab le s   and   i n   so lv ing   t he  
r e s u l t i n g  set of   l inear   s imultaneous  equat ions.  On t h i s   b a s i s ,   t h e   e r r o r  
ana lys i s   o f   the   d i sp lacement  method cannot   be  completely  carr ied  over   for  
t h e   f o r c e  method. 

Generat ion  Lrror  

G e n e r a t i o n   e r r o r s   i n   t h e   f o r c e  method inc lude   the   manipula t ion   e r rors  
incurred  in   the  development   of   the   fol lowing  coeff ic ient  matrices: 

(1) The load ing   coe f f i c i en t   ma t r ix  F 

(2) The geometric  assembly  matrix P. This   mat r ix   inc ludes   the  
p a r t i t i o n s  P and Px of  equation (2-24) .  Q 

(3) The f l e x i b i l i t y  matrices di for   each   e lement   in   loca l   coord ina tes .  
When arranged i n   b l o c k   d i a g o n a l  form  along  the main d iagonal ,   these   mat r ices  
form matrices D and 1) of  equation (2-23) .  Q x 

( 4 )  The e lement   deformat ions   in   loca l   coord ina tes .  

The coe f f i c i en t s   o f   ma t r ix  F are d i rec t ion   cos ines   o f   load   vec tors .  
If they are d i rec t - input ,   input   convers ion   and   t runca t ion   e r ror  is involved. 
Often,  however,  the  coefficients  depend upon the   coord ina tes  of two p o i n t s  
def ined   by   the   ana lys t   to   descr ibe   the   d i rec t ion   of  a load  vector .  Then t h e  
ca lcu la t ions   in   genera t ing   the   e lements   o f   the  F matrix  can  involve c r i t i ca l  
a r i thmet ic .  

S imi la r ly ,   the   ca lcu la t ions   for   the   e lements   o f   the  P matr ix   involve 
c a l c u l a t i o n  of lengths   and  ra t ios   of   lengths .   Lengths  are obtained by d i f -  
ferencing  coordinates   of   points .  Cri t ical  a r i t hme t i c  w i l l  be  involved i f  
t he   coo rd ina te s  are d e f i n e d   s u c h   t h a t   t h e i r   d i f f e r e n c e  is no t  an accu ra t e  
measure  of   e lement   length.   Furthernore,   s ince  the  cosines   represent   ra t ios  
of two l eng ths ,   t o   avo id  c r i t i ca l  a r i t hme t i c ,   a s   no ted   i n   Sec t ion  3 ,  t h e  
d i f fe rence   o f   the  relative e r r o r   i n   t h e   c a l c u l a t i o n   o f   t h e   l e n g t h s  must be  
small compared t o  one. 
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The generalized  coordinates  used i n   t h e  development  of the  e lement  
f l e x i b i l i t i e s  are based  only  on elastic deformations  and do not   inc lude  
r i g i d  body motion.  The e r r o r s  i n  the   ma t r ix   o f  elastic cons tan ts   used   for  
c a l c u l a t i n g   e l e m e n t   f l e x i b i l i t i e s  are due   p r imar i ly   t o   i npu t   e r ro r s .   Th i s  
s t a t emen t   a l so   app l i e s   t o   t he   gene ra t ion   e r ro r s   i nvo lved   i n   t he   deve lopmen t  
o f   t h e  matrix of element deformations,  eT. 

The maximum number of   ca lcu la t ions   to   genera te   an   e lement   o f   the  P 
matrix i s  i n  t h e   o r d e r  of 130   ca lcu la t ions .   This  many ca lcu la t ions   cor -  
respond t o   t h a t   r e q u i r e d   t o   c a l c u l a t e   t h e   k i c k   f o r c e s   o r   o u t - o f - p l a n e   f o r c e s  
f o r  a warped s h e a r   p a n e l   i n  terms of   the   e lement   genera l ized   force   tha t  is 
e n t e r e d   i n t o   t h e  P matrix. The d e t a i l e d   e x p r e s s i o n s   f o r   t h e   c a l c u l a t i o n s  
are given i n  r e fe rence  26. 

On compar ing   t he   va r ious   f l ex ib i l i t y  matrices of f in i t e   e l emen t s ,  e.g. 
t h o s e   d e r i v e d   i n   r e f e r e n c e   2 7 ,   t h e  maximum number o f   ca l cu la t ions   t o  gen- 
erate an element o f   t he  matrices 1) and D correspond t o   t h a t  of a t e t rahedron  
f i n i t e   e l e m e n t  and i s  in   t he   o rde r   o f   125   ca l cu la t ions .  Q X 

It can   be   seen   tha t  i f  c r i t i ca l  a r i t h m e t i c  is avo ided   gene ra t ion   e r ro r s  
are small. The  number of c a l c u l a t i o n s  i s  much less than  13.4 x l o 6  f o r   e a c h  
coef f ic ien t .   In   accordance   wi th   the   ana lys i s   o f   Sec t ion  2 ,  t h i s  many calcu- 
l a t i o n s  would be   r equ i r ed   be fo re   e r ro r  would  exceed f ive   pe rcen t   w i th  a 27 
binary  place  mant issa .  

El iminat ion  Error  

The gene ra l   S t ruc tu ra l   equa t ions  are given i n  Sec t ion  2. T h i s   o u t l i n e  
o f   t h e   s o l u t i o n  by t h e   f o r c e  method is  appropr i a t e  when the  redundant   forces  
are prese lec ted   s ince   the   o rder ing   of   the   de te rmina te   and   redundant   forces  
e s t a b l i s h e s   t h e   c o r r e s p o n d i n g   p a r t i t i o n s   i n   t h e   c o e f f i c i e n t  matrix i n  equa- 
t i o n  (2-23) and  equation (2-24). Bowever when the   redundant   forces  are 
au tomat i ca l ly   s e l ec t ed  by t h e  computer, t h e   s o l u t i o n   p r o c e s s  is modified.  

I n   t h e   f o r c e  method, t h e   s t r u c t u r a l   e q u a t i o n s  are regarded as two sets 
of  simultaneous  equations.  The f i r s t  set of  equations are the   equ i l ib r ium 
equat ions (2-24). This  set o f   equa t ions   r equ i r e s   pa r t i t i on ing   t he   spa r se ly  
populated  and  unsymmetric  geometry  assembly  matrix P i n t o  P and l'? by auto- 
matic s e l e c t i o n  of the  redundants. The P matrix  involves  Yorces m a sta- 
t i ca l ly   de t e rmina te   subs t ruc tu re .  The s tandard  t7ay o f   r educ ing   t he   s t ruc tu re  
t o  a de te rmina te   s t ruc tu re   by   su i t ab le   r e l eases   o r  is e q u i v a l e n t   t o  
ob ta in ing  a "pa r t i cu la r   so lu t ion"   t o   t he   equ i l ib r ium  equa t ions .   Th i s   so lu t ion  
sa t i s f ies   the   condi t ions   o f   equi l ibr ium  but   no t   the   boundary   condi t ions   o f   the  
problem, i.e., tne  cont inui ty   of   cont iguous  e lements .   Thus,   the   solut ion  of  
the.equi l ibr ium  equat ions  contains   arbi t rary  parameters   which are determined 
from cont inui ty   cons idera t ions .  

ci 

The pa r t i t i on ing   p rocess  is accomplished by the Jordan  diagonal izat ion 
method. This  is  similar t o   t h e   f a m i l i a r  Gauss e l imina t ion  method.  The only 
d i f f e r e n c e  is  t h a t   i n   t h e   f o r m e r   t h e   c o e f f i c i e n t   m a t r i x  is  reduced t o  a diag- 
o n a l   ( o r   t o  a uni t   matr ix)   whereas   in   the latter i t  is reduced t o  a t r i a n g u l a r  
a r r a y .   I n   e i t h e r  case the   p rocess  is equivalent   to   performing  e lementary row 
operat ions  or   premult iplying  by a sequence of matrices. 
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The par t i t ion ing   approach  is t o   f i n d  and  diagonalize a set o f   l i nea r ly  
independent  columns  of  the  dimension  of  the row space  of P ( t he  number of 
equi l ibr ium  equat ions) .   I f  a nul l   l inear ly   dependent  column o r  a ze ro -p ivo t  
(diagonal)  element is  encountered i n   t h e   e l i m i n a t i o n   p r o c e s s ,  column i n t e r -  
changes are performed. I f   i n su f f i c i en t ,   non-nu l l  colunrns are found, a t  l e a s t  
one  of  the  equilibrium  equations is dependent. I f  enough  columns are found 
and t h e  Px p a r t i t i o n  i s  n o t   n u l l ,   t h e  columns  of PQ comprise   the  selected 
s t a b l e   d e t e r m i n a t e   s u b s t r u c t u r e  and t h e  columns of Px comprise   the  selected 
redundants. The dimension of the  column space  of Px is the  degree  of  inde- 
terminacy of t h e   s t r u c t u r e .  If Px is n u l l ,   t h e   s t r u c t u r e  is s t a t i c a l l y  de- 
t e r m i n a t e .   I n   t h i s  case the   equi l ibr ium  equat ions  ( 2 - 2 4 )  are the   on ly  rel- 
evant  set of   equa t ions ;   the   cont inui ty   equat ions  ( 2 - 2 3 )  are i r r e l e v a n t .  

The redundant  forces are evaluated  from  the  second -set of  equations. 
These  equations are compat ib i l i ty   condi t ions .  They 
( 2 - 2 8 )  which  involve  the  coeff ic ient   array 

T -lTD 
px 

- 
9 Q  

'P + DX = 6= 

The matr ix ,  6n, is p o s i t i v e   d e f i n i t e  and symmetric 
a congruent   t ransformat ion   of   the   pos i t ive   def in i te  

r e s u l t   i n   e q u a t i o n s  

s i n c e  i t  is obtained by 
mat r ices ,  Do and %. I f  

t h e  set of  redundants are not   o r thogonal ,  the   mat r ix  is denGely p&&.dated. 
I f   t he   r edundan t s  form  an  orthogonal set, t h e   m a t r i x ,  6,u i s  a diagonal   matr ix .  

I n   s o l v i n g  ( 2 - 2 8 )  for   the   redundant   forces ,  X ,  Jordan  diagonal izat ion is  
a l s o  used.  Since  the  matrix 6ky i s  p o s i t i v e   d e f i n i t e ,   p i v o t i n g  is  not   requi red .  
It i s  sometimes  incorporated  with  the  intent  of  minimizing  manipulation  error.  

The next   s tep   o f   the   e l imina t ion   process   involves   the   use   o f   equa t ion  
( 2 - 2 9 )  t o   e v a l u a t e   t h e   i n t e r n a l   f o r c e s ,  (2. S i g n i f i c a n t   a t t r i t i o n   e r r o r s   c a n  
r e s u l t  from t h i s   c a l c u l a t i o n   i f   t h e   d e t e r m i n a t e   b a s e   s t r u c t u r e  and  correspon- 
ding  redundant stress system are not  properly  chosen.  This  occurs when t h e  
e f f e c t  on the   de te rmina te   base   s t ruc ture   o f   the   redundants  is comparable i n  
magnitude t o   t h a t  of  the external loads.  The ca l cu la t ions   i nvo lve   sub t r ac t ion  
of  numbers  of  approximately  the same magnitude. 

F ina l ly   t he   ca l cu la t ions   desc r ibed   by   equa t ion  (2-30) def ine  displacements .  
No c r i t i ca l  a r i t h m e t i c  is involved i n   t h e   c a l c u l a t i o n .  The product  of  the 
f i r s t   p a i r   o f  matrices on the  r ight-hand  s ide  of   equat ion ( 2 - 3 0 )  is  preserved 
from the   e l imina t ion  and m u l t i p l i e d   b y   t h e   i n t e r n a l   f o r c e s   t o  assess t h e   d i s -  
placements. 

Thus, e r r o r   a n a l y s i s   f o r   e l i m i n a t i o n   e r r o r   i n   t h e   f o r c e  method w i l l  be  
concerned  with  errors  i n  par t i t ioning  the  geometr ic   assembly  matr ix ,  P ,  and 
so lv ing   for   redundant   forces   by   t r iangular iz ing   the   mat r ix  6 E r r o r s   f o r  
t h e s e   a r r a y s  w i l l  be  examined sepa ra t e ly .  xx' 

Error   Analysis   for   the  Geometr ic  Assembly Matrix 

Cr ro r s   i n   e l imina t ing   t he   r edundan t   i n t e rac t ion   t o   eva lua te   t he  unknolams 
inc lude   i nhe ren t   and   a t t r i t i on   e r ro r .   I nhe ren t   e r ro r  is t h e   e r r o r   e x i s t i n g  
i n   t h e   c o e f f i c i e n t s  of t h e  matrices due t o   p r i o r   a r i t h m e t i c .   I n   t h e   c a s e  of 
t h e  P matrix ( the  geometr ic   assembly  matr ix)   the  pr ior   ar i thmetic  are generat ion 
ca l cu la t ions .  A s  described  above, f e w  c a l c u l a t i o n s  are involved in   deve lop ing  
t h e s e   c o e f f i c i e n t s  and critical'arithmetic can  be  avoided. The r e l a t i v e  in- 
he ren t   e r ro r  will be less than 2-p .  
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An important   source  of   error   in   select ing  redundants  is  the  numerical  
singularity  of  the  geometric  assembly  matrix.  The matrix 'PQ is  a square   a r ray  
of c o e f f i c i e n t s   o f   t h e  unknown "determinate"   forces   in   the  equat ions  of   equi-  
l ibr ium (2-24). Singu la r i ty   o f   t h i s   ma t r ix   can  arise from a l i n e a r  dependency 
or   inconsis tency  of   the  equat ions of equi l ibr ium, i.e., of  the rows  of the  P 
matrix. A p a r t i c u l a r   c a s e  is when a t  least one  of  the  element  coordinate 
fo rces  is not  a genera l ized   force .   In   the   force  mechod t h e   f o r c e s   i n  a d i s -  
assembled  element f a l l   i n t o  two groups:  element  reactions  and  element  forces. 
Only element  forces may occupy a column i n   t h e  P mat r ix ,   I f   e lement   reac t ions  
were inadve r t an t ly   i nc luded   i n   t he  P matrix a dependency  would e x i s t .  A phys- 
i c a l   i n t e r p r e t a t i o n  of the   s ingular i ty   o f   the   geometr ic   assembly   mat r ix  is 
t h a t   t h e   s t r u c t u r e  i s  unstable.   This i m p l i e s  the  formation  of a mechanism. 

Assuming t h a t   t h e   i d e a l i z e d   s t r u c t u r e  is p h y s i c a l l y   s t a b l e ,  a condi t ion 
o f   l o c a l   i n s t a b i l i t y   c a n   r e s u l t  from  the  following cases: 

(1 )   Gene ra t ion   e r ro r s   i nvo lv ing   c r i t i ca l   a r i t hme t i c   r e su l t i ng  from t h e  
ca lcu la t ion   of   l engths   and   or ien ta t ion  of elements.  For  example, two a x i a l l y  
loaded  pin-connected  rods  which are supposedly  col l inear  are u n s t a b l e   i f   t h e  
ends are o f f s e t .  

(2) S t ruc tu res  which are nearly  Unstable.  An example  of  these i s  a 
truss with a panel  whose l e n g t h   t o   d e p t h   r a t i o  i s  such   tha t   the   d iagonal  be- 
comes i n e f f e c t i v e   o r   l o s t   i n   t h e   n u m e r i c a l   c a l c u l a t i o n s   r e s u l t i n g   i n   t h e  
formation  of a mechanism. 

I n s t a b i l i t y   c a n   a l s o   o c c u r  when the  redundant   forces  are not   properly 
s e l e c t e d ,  i.e., the   s t a t i ca l ly   de t e rmina te   s t ruc tu re   r ema in ing   a f t e r   r emova l  
of  redundants is u n s t a b l e .   I n   t h i s  case t h e   c o e f f i c i e n t   m a t r i x   f o r   t h e  sta- 
t i c a l l y   d e t e r m i n a t e   f o r c e s  P is s ingu la r .  

9 
The s i n g u l a r i t y   e r r o r   f o r   t h e   c o e f f i c i e n t   m a t r i x   o f   t h e   d e t e r m i n a t e  

s t r u c t u r e  is n o t   c r i t i c a l   f o r  a p a r a l l e l  system. The mat r ix  is a scalar f o r  
rod  systems  and a t  most i well-conditioned 2 x 2 m a t r i x   f o r  beam systems. 
I n  a series system,  there  are no  redundants, i.e., P i s  i d e n t i c a l   t o  P. Then, 
t h e   r e l a t i v e   f l e x i b i l i t i e s   o f   t h e   s t r u c t u r a l   e l e m e n t s  do n o t   c o n t r i b u t e   t o   t h e  
s i n g u l a r i t y   e r r o r   i n   t h e   c o e f f i c i e n t   m a t r i x .   T h i s   m a t r i x   e x p r e s s e s   t h e  com- 
b ined   e f f ec t s  of the  geometr ical   posi t ion  of   the member with respect t o   t h e  
coordinate  system  and  of  the  incidence of t h e  members a t  t h e   j o i n t s .  It thus 
r ep resen t s  a l inear   t ransformation  of   the  base  vectors   of   the   e lement-forces  
space i n t o   t h e   b a s i s  of the  vector   space  of  the joint-appl ied  loads.  The 
order ing   of   the   e lements   o r   jo in ts   a f fec ts   the   d i spos i t ion   o f   e lements   o f   the  
t ransformat ion   mat r ix   bu t   no t   the i r   va lues .  

4 

For a series sys tem  the   coef f ic ien t   mat r ix  is a l s o  well behaved.  This is 
conf i rmed   by   t he   so lu t ion   fo r   t he   s t ruc tu re  shown in   F igu re  18 i n  which  the 
angle  between  contiguous  elements is  made small. Each bar  carries a x i a l  and 
bend ing   r e s t r a in f s  a t  each  end. The s i g n i f i c a n t   r e s u l t s  are the   p ivot   va lues  
of  the  Jordan  diagonalization  of  the I? matrix.  These  maintained a value  of 
1.0 throughout. 

87 



Y 

03 
03 

(a) Idea l i zed   S t ruc tu re  

Figure 18 - Beam Elements i n   S e r i e s  

(b> I n t e r n a l  Loads 

Typical Bar 



Considerat ion of a mixed  system  involving  paral le l   and series elements 
may perhaps  yield a more m e a n i n g f u l   c r i t e r i o n   f o r   t h e  numerical. s i n g u l a r i t y  
of the P matrix. To  d iscover  this c r i t e r i o n ,  a t y p i c a l   r e c t a n g u l a r   p a n e l  
made  up of  four  edge  bars  and  one  diagonal  bar is ana lyzed   wi th   the   ra t io  
a/b  reduced  by a fac tor   o f  2 i n   success ive   so lu t ions ,   where  a is the   wid th  
and b is  the   l eng th   o f  the panel.  See Figure  19. 

I I 

Vec tors   wi th   s t rokes  
are r e a c t i o n s  

t""- b"-----bl 
Figure 19 - Rectangular  Panel 

'In t h e  program  used for   the   so lu t ions   the   format   for   the   input   o f   coor -  
d i n a t e   v a l u e s  is prescribed i n   f i x e d   p o i n t  manner with s ix   p l aces   p rov ided  
f o r   t h e   f r a c t i o n a l   p a r t  of the  value.  One can see t h a t   t h e   l e n g t h  'a '  would 
be   e ro  (and  t,he s t r u c t u r e  a mechanism) when values   of   coordinates  fa l l  below 
10- . I n   t h e  case a t  hand s i n c e   t h e  v7hole a r t  had  two a d d i t i o n a l   s i g n i f i c a n t  
f i g u r e s  , cos 8 becomes un i ty  when a /b  10' E . I f   t h e   i n p u t   d a t a  are expressed 
i n   f l o a t i n g   p o i n t  manner t h e   r a t i o  of a/b for c r e a t i o n  of a mechanism is  smaller. 

E 

Therefore ,  it i s  seen t h a t   t h e  numerical s i n g u l a r i t y  of the  geometr ic  as- 
sembly matrix w i l l  no t  arise u n t i l   t h e   c o o r d i n a t e s   d e f i n e   d e g e n e r a t e   s t r u c t u r a l  
geometry. The e r ro r   i n   computa t ions   eva lua t ing   l eng th ,   ang le s ,  areas, and  vol- 
umes w i l l  be   of   the   order   of  2-p. Only when t h e   a c t u a l   q u a n t i t i e s  are o f   t h i s  
order ,  t r i l l  t h e   e r r o r   d e s t r o y   s o l u t i o n   v a l i d i t y .  

Error  Analysis  for  the  Redmaants  Matrix 

The errors  incurred  in  partitioning  the  geometric assembly matrix  are 
inherent  errors  for  the redundant8 matrix, 6 . These errors m a y  be  signi- 
f icant when many force unknowns are treated  Snce  they can  induce  unstable 
error propagation. The redundants  matrix, like the  stiffness  matrix, m u s t  
be positive  definite i f  it represents a realizable  structure. Error propa- 
gation w i l l  have characteristics  like  those  described  in  Section 3 for   the 
displacement method.  However, since the 6 matrix is full,  the different ia l  
equation approach described i n  Section 3 t o  evaluate  the  implications of the 
error propagation cannot be used. 

xx 

L i k e  the  stiffhess  matrix,  the reduntiants matrix  could exhibit numerical 
singularity. The worst  case system for  singularity  of  the redundants  matrix 
is for  the para l le l  system. The parallel   structure  consists of "m" collinear 
members joined t o  common points at the i r  ends. I'?umericsl singularity  for 
w a l l e l  rods and beam systems with equal and unequal f l ex ib i l i t i e s  w i l l  be 
examined. 
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Figure 20 - Envelope of Relat ive  Error   and Number of Calculat ions 
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FQ D X l  

- - 
D Q D Q DQ ' DX3 

I """"""" 
LDQ D Q D - - D  + D m  Q Q 

(4-3) 

where 

D =-- f l e x i b i l i t y  of d e t e r m i n a t e   s t r u c t u r e  Q AE 

Dxi AE = 2 f l e x i b i l i t y  of ith redundant 

Assuming e q u a l   f l e x i b i l i t i e s  of b a r s  w e  can mite 

DQ DX% i=1, 2, o o o  N-1 ( 4 - 4 )  

Assuming d e c r e a s i n g   f l e x i b i l i t i e s   o f   b a r s   a n d   t a k i n g   t h e   m o s t   f l e x i b l e  
b a r  as t h e   d e t e r m i n a t e   s t r u c t u r e  we can write 

D = -  L Q m  
(4-5 1 

1 
D X i  = Fl DQ i 9, 2, N-1 

Cons ide r ing   i nc reas ing   f l ex ib i l i t i e s   o f   ba r s   and   t ak ing   t he  mose r i g i d  
bar as t h e  Aeterminata s t r u c t u r e  w e  can write 

L 
DQ * 

;4-6) 

Dxi - 2i-1 D Q I* 2, 0 0 0  11-1 

Crmeider now t h e   t r i a n g u l a r i z a t i o n  of 6=. The gene ra l  krh d i agona l  
elemrut after k-1  Gauss-Jordan  reduct ion  represents   the  def lect ion at t h e  
c u t  in t h e   d i r e c t i o n  of  redundant k w j t h  a l l  elements j , j=l  t o  k-1 closed 
and a l l  elements m, m=k t o  N open. 
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Using the   above   phys ica l   in te rpre ta t ion ,   the   fo l lowing   express ion   for  
the  general   k th   diagonal   e lement   af ter  k-1 reductions  can  be  derived 

i=l 
+ k k-1 &kk - Di+l 

- 
t nu: 
i=1 i=l 

where 

Di 

k 
n. Di 
i=l 

= f l e x i b i l i t y   m a t r i x   o f  ith rod  element 

= cont inuous   p roduct   o f   the   f lex ib i l i ty  matrices of   the  
k redundant  elements 

k k-1 x * D ,  = sum of t h e  k cont inuo-   p roducts   o f   the   f lex ib i l i ty  
i=l i=l matrices  of  the k redundant  elements  taken k-1 a t  a 

time 

Using  equation (7:) f o r  N rods i n  p a r a l l e l   w i t h   e q u a l   f l e x i b i l i t i e s  D., 
w e  ob ta in  

DN = D ( l  + ;) L ~ ~ = D +  1 

N (DN") 

The  number of  elements N a t  w ich   numer ica l   s ingular i ty   occurs  is when t h e  
second term in  equation 7 o r  - i n   e q u a t i o n  8 is smaller than  the  numerical  
value of t h e  last recorded bi! i n   t h e  computer number representat ion.  As- 
suming f loa t ing   po in t   a r i t hme t i c  and l e t t i n g  p = 27, 

P 

1 2-P-1 
N 

o r  N = 228 = 268 x 10 elements 6 

(4- 7 1 

(4-8) 

(4-9 1 

P a r a l l e l  Beam System.- Consider  the same para l le l   sys tem  except   the   e lements  
connect ing  the two end p o i n t s  are now beams instead  of  rods.  The f l e x i b i l i t y  
matrix t o   r e p r e s e n t   t h e  elastic behavior  of  each beam may be  character ized by 
two general ized  forces .  Each f o r c e  may r e f e r   t o  a s ingle   independent   force  
at a coordinate  degree  of  freedom. 
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For the   para l le l  system  of beams there are two independent  equations of 
equilibrium and 2N unknowwelement forces. Thus ,  the   s t ruc ture  is indeter- 
minate t o  2(N-1) degrees. Assuming  beam 1 is the  determinate  structure,  the 
redundants matrix, equation (4-1) is also given  by  equation (4-3). However , 

= 2 x 2 f l e x i b i l i t y  matrix of determinate  structure and DXi - 2 x 2 matrix 
i t h  redundant. 

A linear  transformation  8lwayo.exists from one set of  generalized  coordi- 
na t e s   t o  another. The set of generalized  coordinates shown i n  Figure 2 1  is 
used for   the  beam for   this   array.  

Considering  equal  flexibilities of beams the  elements of tixx i n  equation 
(3) can  be  written as 

L 

Considering.decreasing  flexibilities  such  that  the  determinate  struc- 
t u re  is most flexible,  the  elements of Giar i n  equation (3Y are 

D = -  

7 

1. = 2, 3 ... N-1 

Considering  increasing  flexibilities  such  that  the  asterminate  struc- 
tu re  is most rigid,  the  elements of tixx i n  equation (3) are 

A 

= -  

(4-9) 

(4-10) 

The prediction of numerical  singularity  for  parallel  beam systems fol- 
lows the  logic   for   rods and leads again  to  equation (7). The order of the 
matrix a t  which it is singular is the same f o r  beams and rods. For beams, 
however, the element f lex ib i l i ty   mat r ix  D is a 2 x 2 matrix whereas for . rods,  
D was a scalar. Thus, the number of pa ra l l e l  beam elements a t  which tin is 
singular is only one half  the  corresponding number of pa ra l l e l  rod  elements, 
i.e., 134 x lo6. 
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Vectors With Stroke are Element Reactions 

F2 
= Generalized Coord. 

Figure 21- Generalized Coordinates For Beams 
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Sin  e i t  i s  i m p r a c t i c a l   t o   v e r i f y   t h e   s i n g u l a r i t y   o f   t h e   m a t r i x   f o r  
.r 134 x  10  elements, a t e s t  problem  of   32  paral le l  beams o f   e q u a l   f l e x i b i l i t i e s  

was used   t o   ve r i fy   t he  cri teria.  By i h s p e c t i o n   o f   t h e   p i v o t   v a l u e s   i n   t h e  
Jordan-d iagonal iza t ion   of  6, t abu la t ed   i n   Tab le  XIV. 

8 

(4-12) 

which  confirms  the  previous  re la t ionship,   equat ion (8). 

For   t he   ca se   o f   unequa l   f l ex ib i l i t i e s ,   t he   p rev ious   r e l a t ionsh ip  may 
a l s o  be  applied. However, it i s  quite  apparent  from  the  input  data  what 
order   the  rows  of  the matrix are   a lmost   ident ica l .  The 6m matrix i s  a 
f u l l  matrPA consis t ing  of   groups  of  2 x 2 corresponding  to   the  e lement  
f l e x i b i l i t y  matrix of   the  determinate  beam. In addi t ion ,   each  2 x 2 block 
along  the main diagonal are incremented by t h e  2  x  2 e l e m e n t   f l e x i b i l i t y  
matrices  of  the  redundants.   For  the  case  where  the  determinate beam i s  t h e  
most f l e x i b l e ,  i t  i s  easy   t o  see t h a t  when the  difference  between  the 
e lements   o f   the   f lex ib i l i ty   mat r ix   o f   the   de te rmina te  beam and  elements  of 
t h e   f l e x i b i l i t y   m a t r i x   o f   t h e  Nth redundant beam i s  approximately 2-2T t h e  
rows of t h e  8m matrix are p r a c t i c a l l y   i d e n t i c a l  which  renders it singular .  
The matrix  order when t h i s   o c c u r s  i s  54. Th i s  i s  confirmed  by an a c t u a l  
computer  run.  (Table XV). Since i n  t h e  case o f   u n e q u a l   f l e x i b i l i t i e s   i n  
which  the  determinate   s t ructure  i s  t h e  most r i g i d   t h e   n u m e r i c a l   s i n g u l a r i t y  
w i l l  incur  more e l emen t s   t han   fo r   t he   ca se   o f   equa l   f l ex ib i l i t i e s ,  no 
computer  runs were made f o r   t h e   c a s e   o f   i n c r e a s i n g   f l e x i b i l i t i e s .  

Assuming a p r e c i s i o n  p = 27 b i t s ,   t h e  main conclusions  from  the  singu- 
l a r i t y   e r r o r   a n a l y s i s   o f   t h e   m a t r i x ,  am, f o r  a pa ra l l e l   sys t em of rods  and 
beams are:  

(1) Considering beam elements   of   decreasing  f lexibi l i t ies   and  assuming 
the   de t e rmina te   s t ruc tu re   t o   be   t he  most f lex ib le   e lement ,   very  few elements 
(54) are r e q u i r e d   t o   c a u s e   s i n g u l a r i t y ,  L e . ,  meaningless  answers  due t o  
c r i t i ca l  a r i t hme t i c .  

(2) Considering beam e lemen t s   o f   equa l   f l ex ib i l i t i e s ,  a s u b s t a n t i a l  
number of elements  (134 x lo6) are   requi red   before   numer ica l   s ingular i ty  
occurs. 

(3) Considering beam elements of i n c r e a s i n g   f l e x i b i l i t i e s  and  assuming 
the   de te rmina te   s t ruc ture  i s  t h e  least f l e x i b l e  (most r i g i d ) ,   t h e  number of  
e lements   to   cause   s ingular i ty  are even much g r e a t e r   t h a n   i n   ( 2 )  above. 

(4) The  number of   rod   e lements   to   cause   s ingular i ty  i s  twice  the number 
of  beam elements  for  each of the  three  corresponding cases s i n c e   t h e   o r d e r - o f  
the   mat r ix  a t  which i t  i s  s i n g u l a r  i s  t h e  same f o r  beams and  rods.  For beams, 
however ,   the   e lement   f lexibi l i ty   matr ix  D i s  a 2 x 2 matrix whereas  for  rods,  
D was a scalar. 
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COL 
1 

5 

9 

13 

17 

21 

25 

29 

PrvoT 
.10000+01 

.66667-00 

.80000-00 

.57143-00 

55556-00 

54545-00 

53846-00 

53333-00 

Table XIV Pivot Values In Triangularization of dXx 

For Parallel Beams, Equal Flexibilities 

PIVOTS II!l ORDER OF SELECTION 

COL 

2 

- 6  

10 

14 

18 

22 

26 

30 

PrvoT 
.75000-00 

.50000-00 

.45000-00 

.42857-00 

.41667-00 

.40909-00 

.40385-00 

.40000-00 

COL 

3 

7 
11 

15 

19 

23 

27 

31 

PIVOT 
.75000-00 

.62500-00 

58333-00 

.56250-00 

55000-00 

.54167-00 

.53571-00 

.53125-00 

COL 
4 

8 

12 

16 

20 

24 

28 

32 

.40179-00 

.39844-00 



i 

COL 

1 

5 

9 

13 

17 

21 

25 

29 

33 

37 

41 

45 

49 

Table XV Pivot Values In Triangularization Of 6= 

For Parallel  Beams, Diminishing Plexibil i t ies 

PIVOTS I N  ORDER OF SEI;ECTION 

COL 

2 

6 

10 

1 4  

18 

22 

26 

30 

34 

38 

42 

46 

50 

COL 

3 

7 

ll 

15 

19 

23 

27 

31 

35 

39 

43 

47 

51 

COL 

4 

8 

12 

16 

20 

24 

28 

32 

36 

4 

44 

48 

52 

MATRIX DELXX IS SIIOGULAR 
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I n  summary, t h e   i d e a l   s i t u a t i o n  is t o  select t h e  most r igid  e lement  as 
the   de t e rmina te   s t ruc tu re .  To a p p l y   t h i s  cr i ter ia  de r ived   fo r  a worst  case 
p a r a l l e l   s y s t e m   t o  a p r a c t i c a l   s t r u c t u r e ,   t h e  criteria may b e   s t a t e d  as 
follows: The optimum determina te   base   s t ruc ture  is a s table  subs t ruc tu re  
which is as r i g i d   ( l a r g e   s t r u c t u r a l   s t i f f n e s s )  as possible .   This   a lso  cor-  
responds t o   a n  optimum s e l e c t i o n  of  redundants. With the   u se  of accu ra t e  
and s t a b l e   s o l u t i o n   a l g o r i t h m s ,   t h e s e  optimum condi t ions  would  minimize 
manipulat ion  errors .  

The proper   choice   o f   the   base   s t ruc ture  and  corresponding  redundant 
stress system is t h e  most impor t an t   s t r a t egy   i n   t he   fo rce  method.  The im- 
p rope r   s e l ec t ion   o f   t he   de t e rmina te   s t ruc tu re   can   r e su l t   i n   mean ing le s s  an- 
swers due to   t he   fo l lowing   cond i t ions :  

(1) Singular i ty   o f   the  PQ matrix  caused  by  an  implied  kinematic  in- 
s t a b i l i t y   o f   t h e   d e t e r m i n a t e   s t r u c t u r e .  

(2) S ingular i ty   o f   the  gXx matr ix  when the   de te rmina te   s t ruc ture  is 
ve ry   f l ex ib l e .  

(3) S i g n i f i c a n t   a t t r i t i o n   e r r o r s   i n   t h e   c a l c u l a t i o n   o f   i n t e r n a l   e l e m e n t  
fo rces  Q i n   e q u a t i o n  (2-29) when t h e   e f f e c t  of the  loads  and  the  redundants  
on t h e   b a s e   s t r u c t u r e  are comparable i n  magnitude. 

Guide l ines   for   the   Analys t  

The gu ide l ines   t ha t  may be   p rovided   for   the   ana lys t   per ta in  to  the   bas i c  
input   da ta   which   a f fec ts   genera t ion   e r rors .   These  are r e l a t e d   t o   t h e   p r o p e r  
idea l iza t ion   of   the   s t ruc ture ,   p roper   choice   o f   re fe rence   sys tems,  and ac- 
cu ra t e   desc r ip t ion  of the  geometry of t h e   s t r u c t u r e .  As previous ly   no ted   in  
s e c t i o n  3,  t hese   a spec t s  are w i t h i n   t h e   c o n t r o l  of t he   ana lys t   i n   p rope r ly  
formula t ing   the   p roblem  in   o rder   to   avoid  c r i t i ca l  a r i t hme t i c   t ha t   causes  
numerical   s ingular i ty   and 'subsequent   inval idat ion  of   answers .  

The ana lys t   should   loca te   the   g loba l   coord ina te   sys tem  near   the   cen ter  
of his   s t ructure   to   minimize  the  span  between  coordinate   points   which de- 
f ine   the   boundar ies   o f   e lements .   I f   necessary   the  scale o f   t h e   s t r u c t u r e  
should   be   se lec ted   such   tha t   the   e lement   fa r thes t  removed from t h e   o r i g i n  
are s a t i s f a c t o r i l y   r e p r e s e n t e d  by the   d i f f e rence  of i ts  coordinates .  

In   t he   i dea l i za t ion   o f   t he   s t ruc tu re   t he  numbering  of the   e lements  de- 
f ines   the  order ing  of   the  e lement   forces   which  correspond  to   the columns of 
t h e  P mat r ix  as w e l l  as t h e   o r d e r i n g   o f   t h e   f l e x i b i l i t i e s   o f   e l e m e n t s   i n   t h e  
1) matrix. The  numbering of   e lements   def ines   the   sequence   in   which   f lex ib i l i -  
ties are added. To minimize  the  errors  and  avoid cr i t ical  a r i t hme t i c ,   t he  
jo in ts   should   be   loca ted   such   tha t   ad jacent ly   o rdered   e lements   should   have  
commensurate f l e x i b i l i t i e s .   I f  incommensurate f l e x i b i l i t i e s  are t o  be  added, 
the  analysts   can  opt imize  tne  ar i thmetic  by  numbering his   e lements ,   adding 
t h e  smaller f l e x i b i l i t i e s   f i r s t .  
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I n   t h e   i d e a l i z a t i o n  of t h e   s t r u c t u r e  it is a l s o   d e s i r a b l e   f o r   t h e   a n a l -  
ys t   to   have   an   idea   o f   the   poss ib le   load   pa ths   for   the   exeerna l   loads   to   the  
points   of   supports .  With t h i s   i d e a   i n  mind the  joints   can  be  located  and 
the  elements  can  be numbered such  that   those  elements which  comprise  the more 
d i r ec t   l oad   pa ths  are i n c l u d e d   i n   e s t a b l i s h i n g   t h e   d e t e r m h a t e   b a s e   s t r u c t u r e .  
The s i g n i f i c a n c e  of this  cri terion  cannot  be  overemphasized. It is a com- 
plementary  measure  for   an  adequate   s t ructure-cut ter  whose e s s e n t i a l   f e a t u r e s  
will be  discussed  under  "Guidelines  to  the Programmer." I n   g e n e r a l   t h i s   b a s e  
s t r u c t u r e  i s  comprised  of  elements  with  the smallest f l e x i b i l i t i e s  and i n  
add i t ion   accoun t   fo r   t he   connec t iv i ty   o f  a l l  t h e   s t r u c t u r a l   e l e m e n t s .   I n   t h i s  
case s ince   t he   e f f ec t   o f   t he   r edundan t s  will be minimum, t h e   a t t r i t i o n   e r r o r s  
i n  the   ca l cu la t ion   o f   i n t e rna l   e l emen t   fo rces  Q i n   equa t ion  (2-29) will a l s o  
be minimum. 

I n   a d d i t i o n ,   a t t r i t i o n   e r r o r s   i n   t r i a n g u l a r i z i n g   t h e  P mat r ix  w i l l  be small, 
because  the number  of c a l c u l a t i o n s  9s small. For a genera l   p rac t ica l   p roblem  the  
t o t a l  number of ca l cu la t ions   i n   t he   e l imina t ion   p rocess  and  evaluation  of  internal 
element  forces  depends on  two parameters.  These are t h e  number of  independent 
equations  of  equilibrium, NE or   t he  row dimension  of P and t h e  number  of unknown 
element  forces NF or   t he  column dimension  of P. S ince   the  number  of redundants, 
Nx corresponds to   the   d i f fe rence   be tween  the  column  and row dimensions  of P a n  
a l t e r n a t i v e  set of  parameters  would  be  the number  of  independent  equations  of 
equilibrium  and  the number  of  redundant  forces. 

Consider f i r s t  a pure series system.  Since  this  is s t a t i c a l l y   d e t e r m i n a t e  
t h e  number of  independent  equations  of  equilibrium  equals  the number of unknown: 
element  forces. The t o t a l  number o f   ca l cu la t ions  d.epends s o l e l y  on the   o rde r  of 
t he   ma t r ix  P. For   the number of c a l c u l a t i o n s   t o   b e  of the   o rder  of 13.4 x lo6  
t h e  number of unknowns w i l l  be  approximately  This number is considered  to  
be  an  upper bound f o r   t h e  number  of  unknotm  element  forces.  This is  based on t h e  
assumption  that   the  P mat r ix  i s  f ive   percent   dense   and   tha t   the  maximum number of 
ca lcu la t ions   for   an   e lement   force  is  twice t h e   a v e r a g e   c a l c u l a t i o n   f o r  a l l  ele- 
ments  of t h e   s o l u t i o n   v e c t o r .  

Consider next a pure parallel system of  beams.  Most  of the ca-lculations 
w i l l  pertah   to  the  inversion of the redun-t matrix 6=. For the number of 
calculations t o  be of the order of 13.4 x 10 the number of redundants will be 
approximately, 1500. This number is considered t o  be an upper bound for  the 
number of redundants. The result is based on the assumption that  the 6 ma- 
trix is frill and that  the maximum number of calculations  for a rednndan%%s 
+ice  the average calculation  for all the redundant forces. 

For a more practical problem the determination of the total  nurdber of 
calculations is more involved. In carrying through the solution process of 
the general structural equations presented in  Section 2 ,  the  total number of 
calculations for one element force under one loading condition has the  fol- 
lowing general form: (see  figure 20) 

where 
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NC = total  number  of  calculations 

NE = independent  equations  of  equilibrium 

NX = total  number  of  redundants 

Equation (4-2) is based  on  the  following  assumptions: 

(1)  the  matrix P is  five percerit dense  while  the  matrix 8= is  full. 

(2) The  maximum  number  of  calculations  for  one  element  force  is  twice 
the  average  calculation for all  the  element  forces. 

Additional  guidelines  to  the  analyst  pertain  to  making  good  choices  of 
redundancies  where  they  are  not  automatically  established  by  the  computer. 
The  only  general  rule  that  can  be  given in the  good  choice  of  redundancies is 
that  their  effect  should  be  as  localized  as  possible, i.e., their  effect  should 
not  propagate  throughout  the  entire  structure.  The  objectives  in  making  a 
good  choice  of  redundants  are  as  follows: 

(a) To have  a  stable  base  structure. 

(b) To have  a  well  conditioned 6= matrix  using  as  a  criteria  sii>>  65k 
for all k. 

(c) To minimize  the  amount  of  calculations in the  inversion  of 6, by 
reducing  the  number  of  non-zero  elements  to  minimum. 

(d) To minimize  the  effect  of  the  redundants  on  the  determinate  struc- 
ture in order  to  reduce  attrition  errors in the  calculations  of  internal 
element  forces  to  minimum. 

This  will  be  illustrated  with  simple  examples. 

Consider  the  continuous  beam  shown  in  figure 22. We discuss  three  alter- 
native  choices  of  redundancies. 

(a) In Figure 22 a  redundants  X1  and X2 are  taken as the  reactions  at 
the  supports A and B. The  matrix for this  system is 

The  above  choice  of  redundants is  a  remarkably  bad  choice  since 6 12 >>622' 
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AA BQ C A  DA 

A B 4 n 

x1 x2 

Figure 22 - Alterna t ive   choices  of redundants f o r  continuous beam 
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(b) In  Figure 22b redundants X and X are taken as the   r eac t ions  a t  1 2 the   in te rmedia te   suppor t  B and C. For t h i s  system 

(4-14) 

This  is st i l l  a bad  choice  s ince a l l  t h e  6 ' s  are of t he  same order  of 
magnitude. 

(c)   In   Figure  22c X and X are taken as the  bending moments a t  sup- 
p o r t s  i3 and C. Then 1 2 

'XX --I-: - L 12EI :] (4-15) 

L 
The.:. choice ( c )  is c l e a r l y   t h e  most sui table   choice  of   redundants .  The d i f -  
fe rences   in   the   above   sys tems become even more  pronounced when t h e  number of 
spans is increased.  For  example  for six spans   the   cor responding   mat r ices   for  
release system (b) and  (c) are as follows: 

L3 
(6=) = - 

b 150EI 

L 

160 

225 

200 

115 

L 
6E I ( 6  ) = -  

% 

The c o e f f i c i e n t s i p 6 ,   f o r   c h o i c e s  

- 
4 

1 

0 

n 

(a) 
s p a n s ,   t o  become l i n s r l y  dependent. 

As a n o t h e r   i l l u s t r a t i o n  of a good 

325 

360 

340 

200 

1 

4 
1 

0 

and 

200 115 

340 200 

360 225 

225 160 

0 0  

1 0  

4 1  

1 4  

(b) t e n d ,   f o r  a l a r g e  number of 

and  bad  choice  of  redundancies con- 

(4-16) 

(4-17) 

s i d e r   t h e   p l a n e  frame shown i n   F i g u r e  23. .We discuss  two a l t e r a t i v e   c h o i c e s  
of  redundancies  for making the   f r ame   s t a t i ca l ly   de t e rmina te .  The s t r u c t u r e  
is a plane  f rame  with  four   r ings so t h a t  it in 12 times statically indeterminate. 

- 
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Figure 23 - Alternative  choices of redundants for plane  frame 
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(a )   In   F igure  23a a c u t  is made .of t he   cen te r  of each  of  the beams. It 
is  seen   tha t   each   of   the   a rb i t ra ry   cons tan ts  a t  t h e  release of t he   t op  beam 
w i l l  produce a bending moment diagram  throughout   the  length  of   the columns s o  
t h a t   e a c h   r i n g  R1 t o  K4 i s  affected.   Thus,  a l l  i n f luence   coe f f i c i en t s  611, 
612, 613, .. .. 61, 12 will e x i s t ,   t h e r e   b e i n g   t h r e e   a r b i t r a r y   c o n s t a n t s   f o r  
each   r ing .   In   the  case of  the  second beam from t h e   t o p   t h e   a r b i t r a r y  con- 
s t a n t s  of t h i s   c u t  will a f f e c t   t h e  beam i t s e l f  and the  whole  length  of  the 

Thus, a l l  i n f l u e n c e   c o e f f i c i e n t s  641, 642, 12 will e x i s t .  Each 

We t h e r e f o r e   f i n d   t h a t   e a c h  component of   tne   mat r ix  6 e x i s t s ,  i .e.,  

column  from t h i s  beam t o   t h e   b a s e  so t h a t  R4 is a f f ec t ed .  

succeeding beam will a f f e c t   a d j a c e n t   r i n g s  r i n g s  below t h e  beam. 

xx 

&Xx= 1 """"""" 
p 1 2 ,  1 %2, 2 %2, 2 " - &12,  12 

(b) Consider now t h e   o t h e r  release system  where  one  of  the  columns i n  
each  r ing is c u t  as shown i n   F i g u r e  23b. I n   t h i s  sys t em  the   a rb i t r a ry  cpn- 
s t a n t s   o f   r i n g  R w i l l  a f f e c t   o n l y   t h e  members of   r ing  X Therefore   the  
fo l lowing   i n f luence   coe f f i c i en t s  of r i n g  K1 w i l l  e x i s t :  1 1' 

R1l - 
- 

&22 

32 

(4-18) 

(4-19) 

S i m i l a r l y   f o r   t h e   a r b i t r a r y   c o n s t a n t s   o f   r i n g  X t he   i n f luence   coe f f i c i en t s  
exis t  as follows: 2 

and so  on f o r   t h e   f o u r   r i n g s .  

However, s ince  the  second beam from t h e   t o p  is  a shared member, ' t h e r e  

1 2 is  an   i n t e rac t ion  between t h e   r i n g  R and K so  tha t   t he   fo l lowing   l i nk ing  
terms arise: 
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K1* - - 
615 

6 
25 

35 36 

In   the  case of a r ing  shar ing members with  r ings on e i t h e r   s i d e ,  two such 
sets of l inking terns arise. The f ina l   pa t t e rn   o f   t he  oi<x matrix  can be 
wri t ten  as follows: 

r 1 

(4-22) 

This form of  the matrix is  usually  called a continuant  matrix.  For a l l  sets 
of simply connected  rings a choice  of  redundancies  can  be made such  that- 
t he  above pat tern  appl ies .  It i s  noted  that   the  above pa t t e rn   a l so   r e su l t s  
from the  continuous beam using moment releases a t  the  supports.  

As a t h i r d   i l l u s t r a t i o n   i n   t h e   a n a l y s c s   s e l e c t i o n  of redundancies we 
consider  the  case where it is possible  to  separate  the  redundants  into  groups 
such  that   there is  coupling  of  redundants  only  within  each  group  but  there is 
no coupling  of  redundants between groups. 

For  example,  consider the  generalized  loading of plane  frames  such  as 
the  one shot711 i n  Figure 24. I n   t h i s  case the   a rb i t ra ry   cons tan ts   separa te  
i n t o  two sets. 

(a) 'the f i r s t  set cons is t s  of the  moment Xl and associated  shear S 2  f o r  
bending in   t he   p l ane  of the   Tor ta l  and t h e   d i r e c t   t h r u s t  X 3' 

(b) The second set cons is t s  of the moment X4 and associated  shear X6 
f o r  bending  normal to   the   p lane  of the   por ta l  and the   to rs iona l  moment X5. 

dote   tha t   the   a rb i t ra ry   cons tan ts   in  one group are not  coupled to   t hose  of 
the  other .  Thus, the  matrix &,, is as follotrs: 

nn 

6 1 
612 13 0 0 0 1  

6 
'22 23 0 

1 
0 

6 
32  33 0 

6 
0 

6 

6 6 6 

6 6 6 

0 0 

0 0 54  55 56 

0 0 64 65 66 

10 5 

(4-23) 



X 
3 $ x1 

'6 

Figure 24 - Separable   groups  of redundants 
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(4-2 3 )  

Thus,  using  equation ( 4 - 2 3 )  and  by  parti t ioning  and  expanding  the  equation 
fo r   ca l cu la t ing   t he   a rb i t r a ry   cons t an t s ,   equa t ion  ( 2 - 2 8 )  can  be  broken in- 
t o  two independent sets of  simultaneous  equations  each  of  which w i l l  in- 
volve a smaller number of unknowns t h a n   t h e   o r i g i n a l  set. 

The sepa ra t ion  of cSXx i n t o  two p a r t s  depends  upon the  fol lowing:  

(a)  The a r b i t r a r y   c o n s t a n t s   s h a l l   b e   l a b e l l e d   i n   s u c h  a way t h a t   t h e  
copuled  elements are consecut ively  ordered  together   in   one  group  and  no 
coupling  occurs  between  elements  of  different  groups. 

(b)  The  axes of b o t h   t h e   a r b i t r a r y   c o n s t a n t s  X and  the member ele- 
ment fo rces  are r e l a t e d   t o   a n   o r t h o g o n a l  set of axes o r i e n t e d   t o   c o n i c i d e  
wi th   t he   p r inc ipa l   axes   o f   t he   s t ruc tu re   and   a l so   t ha t  a l l  t h e   s h e a r   c e n t e r s  
of   the  members of t h e   s t r u c t u r e  l i e  i n  one  plane. 

The  above  concepts   of   select ing  redundancies   i l lustrated  by some simple ex- 
amples   can  be  readi ly   appl ied  to   s t ructures   which are comprised  of r e l a t i v e l y  
simple  f inite  elements  and  which are r e l a t i v e l y   r e g u l a r   i n  geometry.  For 
more genera l   types   o f   s t ruc tures   wi th  more  complex  geometry the   choice   o f  
redundants may no t   be   qu i t e   obv ious .   In  many cases it is b e s t  when t h e  equa- 
t i o n s  are ill cond i t ioned ,   t o  select a different   basic   system  and  corresponding 
redundancies X which are s ta t ica l ly   equiva len t   wi th   any   prev ious   choice   o f  
redundancies X. 

I n  cases w h e r e   t h e   a b o v e   g u i d e l i n e s   f a i l s   t o   y i e l d  a well condi t ioned 
diu matrpx, a transfonnation  from a previous  choice  of   redundants   to   an 
or thogonal  set of  redundants 28; 29, 30 can  be  performed.  Although t h i s  
approach  yields  a diagonal  6= matrix  and is the re fo re   ve ry  well condi t ioned 
t h e r e  are a cons iderably   g rea te r  number of   calculat ions  involved.  The  pro- 
cedure i s  as follows: 

Let fX   be   t he   ma t r ix  of   e lement   forces   ( inc luding   bo th   s ta t ica l ly  de- 
terminate  forces  and  redundants)  result ing  from  unit   values  of  the  redun- 
dants .  Then 

( 4 - 2   4 )  

The  columns  of fX  comprise   the  base  vectors   for   the  previously  chosen 
redundants. 
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The n e x t   s t e p  is to   o r thogona l i ze   t hese  base vec to r s  by t h e  Gram- 
Schmidt  orthogonalization  procedure. The des i r ed  set of  orthogonal re- 
dundants is obtained as follows: The f i r s t  redundant of t he   des i r ed  
set  is  c h o s e n   e q u a l   t o   t h e   f i r s t  column vec to r  of  f i .e. X' 

- 
f l  = f l  

The  succeeding set of   desired  redundants  are related to   t he   g iven  
set as follows: 

f 2 = f   " f C  2 1 12 
- - 
f : = f  " f C  

3 3 1 13 + '2'23 

f r  = f r  + flClr 
+ 72'2, 

""""""_ - - - + ... C fr-l r-1 

(4-25) 

It remainsl-to  determine  ghe  coefficients Cij such that 6= is diagonal ized.  
i. e . ,  i n  the  congruent   t ransformation 

t h e   c o n d i t i o n   t o   b e   s a t i s f i e d  is  

(4-26) 

(4-27) 

Using t h i s   c o n d i t i o n   t h e   c o e f f i c i e n t  C i n   t he   t r ans fo rma t ion  is 
i j  

"T 

f i  D fi 
f t  D f .  

'ij 
- " - j >i (4-28) 

Beginning  with  the known vec tor  Li = f ly   the  constant  C12 is  computed 
- 

t hen   t he   vec to r  F2. Having ob ta ined   f2   t he   cons t an t  C and C are cal- 
cu la t ed  and  so.on. l.3 23 

Note t h a t   t h e   c o e f f i c i e n t s  C depend only on the   na tu re   o f   t he  s t ruc-  
ture .  i j  

In t he   con t inu i ty   equa t ion   t he  unknown redundants X are readi ly   ob ta ined  
because  the  diagonal   matr ix  6 is eas i ly   i nve r t ed .   F ina l ly ,   t he   e l emen t  
f o r c e s  are obtained  from xx 

F = f 2  + f o  
" 

( 4- 30) 

where 
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Une in t e re s t ing   p rope r ty  of the   t ransformat ion   to   an   o r thogonal  set of re- 
dundants is  t h e   f a c t   t h a t   t h e   m a t r i x  f o  is i n v a r i a n t   t o   t h e  class of  trans- 
formation 

where C is a non-singular  matrix. 

The main significance  of  the  above  approach is t h a t   i n   s p i t e  of t h e  
i l l - cond i t ion ing   o f   t he   equa t ions ' t ne   t r ans fo rma t ion   t o   an   o r thogona l  set 
of redundants  avoids c r i t i ca l  a r i t h m e t i c   d u e   t o  any   numer ica l   s ingular i ty  
of t h e  1 3 ~  matrix. This is done  however a t  the  expense  of a considerably 
l a r g e r  number of calculat ions  which  incurs   manipulat ion  errors .  

Guide l ines   to   the  Programmer 

G u i d e l i n e s   f o r   t h e  programmer inc ludes  related strategies t o   p r o p e r l y  
sequence  calculations  to  minimize  errors.   These  revolve  around  the  central  
theme of a r r i v i n g  a t  t h e  most s u i t a b l e   s t a b l e   b a s e   s t r u c t u r e  so t h e   b e s t  
set of  redundant  forces is  used. 

The fol lowing  general ly  related areas in which   gu ide l ines   t o   t he   p ro -  
g r a m e r  w i l l  help  avoid c r i t i c a l  ari thmetic  and  minimize  manipulation er- 
r o r s   i n   t h e   f o r c e  method are: 

(1)  Scaling  of matrices p r i o r   t o   t h e   s o l u t i o n   p r o c e s s .  

(2) Programming f o r   e l i m i n a t i o n  of ex t raneous   equat ions   in   the  equa- 
t i o n  set. 

(3) Programming t o   d e t e c t ,  min imize   and   cont ro l   e r rors   in  the s o l u t i o n  
process   by  the  Jordan  diagonal izat ion method. 

( 4 )  Programming t o   m a t h e m a t i c a l l y   c u t   t h e   s t r u c t u r e   t o   o b t a i n  a stabler- 
and r i g i d   d e t e r m i n a t e   b a s e   s t r u c t u r e  and t h e  set of redundant   forces   tha t  op- 
t imizes   the   condi t ion ing   of   the   assoc ia ted   coef f ic ien t   mat r ix .  

Depending upon the   a lgo r i thm  se l ec t ed ,  items ( 4 )  and (3) c a n   e i t h e r   b e  
s e p a r a t e   o r  combined. 

In   t he   e l imina t ion   p rocess   t he re  are r e l a t e d   s t r a t e g i e s   t h a t  are es- 
s e n t i a l   t o  minimize ,   de tec t ,   and   cont ro l   manipula t ion   e r rors   and   to   insure  
success  i n  t h e  Gauss e l imina t ion  method o r   Jo rdan ian   d i agona l i za t ion  method 
when used  with  unsymmetric matrices. These   s t r a t eg ie s  are (a)   scal ing  and 
(b) use of ivo t ing   i n   t he   e l imina t ion   p rocess .  Numerical s t u d i e s  by 
Mlk inson  3tE-32 shot7 t h a t  by the   u se  of scal ing  and  pivot ing,   the   Gauss  
e l imina t ion   p rocess   can   be   s t ab i l i zed   t o   p reven t   b reak  down. 

Consider first sca l ing .  As a n   i l l u s t r a t i v e  example,  consider  dif- 
f e r en t   poss ib l e   cho ices   fo r   t he   gene ra l i zed   coord ina te s   t o   r ep resen t   t he  
f l e x i b i l i t y   m a t r i x  of a beam. The elastic behavior   o f   the  beam may be , 
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character ized  by two general ized  forces   which may be  a s ingle   independent  
f o r c e  a t  a coordinate  degree  of  freedom  or a l inear  combination  of  such 
forces .  The fol lowing sets of   genera l ized   forces  are poss ib l e :  (The ar- 
rows wi th   t he   s t rokes  are the  e lement   react ions) .  

(1) Une shear  force  and  one moment a t  one  end: 

VR 
(2) One  moment a t  each  end 

(3 )  One s h e a r   f o r c e  a t  one  end  and  one moment a t  the   o the r  end 

An a l t e r n a t i v e  set of   general ized  forces   based on a l inear   combinat ion 
of t h e   f o r c e s  in set (1) above is as follows: 

It can be r ead i ly   s een   t ha t   t he   gene ra l i zed   fo rces  F1 and F2 i n   t h e  
above set i s  a l inear   combina t ion   of   the   genera l ized   forces   in  l a  and I.D. 

( 4 - 3 2 )  

The r e s p e c t i v e   f l e x i b i l i t y  matrices f o r   t h e  above sets of   general ized 
forces  are as fol lows : 
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l a  or lb: One s h e a r   f o r c e  and  one moment a t  an end 

O u  

D = -  L 
EI 22 
" 

2 3  $1 (4-33)  

Scaling  the  displacements uby and the   fo rces  by L we o b t a i n  1 

.-&[ 1 

1 
2 
- 'I L 1 

3 
- 

(4-34)  

One moment each end 

One s h e a r   f o r c e  a t  one  end  and  one moment a t  the  other   end 

D = -  L 
E1 

U e -  
1 1  - 

L L  

L 

2 

2 3  

Linear  combination of f o r c e s   i n  set 1 
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(4-36)  

(4-37)  



Using  the r a t i o  of   the  maximum and minimum eigenvalues  as a measure  of ma- 
t r i x   c o n d i t i o n i n g  i t  i s  e v i d e n t   t h a t   t h e   f l e x i b i l i t y  matrices given by (35) 
and (37) are be t t e r   cond i t ioned   t han   t hose   g iven  by ( 3 4 )  and (86)  since t h e  
e igenvalue   ra t ios   in   the   former  are much smaller and   c loser   to   one   than   the  
latter. Since a l i nea r   t r ans fo rma t ion   a lways   ex i s t  from  one set of   general ized 
f o r c e s   t o   a n o t h e r ,  by  proper   scal ing  one  can  seek  to   obtain  the  most   sui table  
form of f l e x i b i l i t y   m a t r i x   t o   u s e .  The above r e s u l t s   f o r  a beam  show t h a t  
u s i n g   e i t h e r  two s h e a r   f o r c e s   o r  two moments will y i e l d  a be t t e r   cond i t ioned  
matrix than  using a combination of a s h e a r   f o r c e  and moment. 

Consider   next   the  problem  of   scal ing  the  matr ix  A i n   t h e   s o l u t i o n   o f  
Ax = b. Alternate terms f o r   s c a l i n g  are precondi t ioning  and  equi l ibrat ion.  
This is normally  done  by  multiplying  the rows  and  columns o f   t he   ma t r ix  by 
f ac to r s   such   t ha t   t he   e l emen t s   o f   t he   ma t r ix  have  approximately  the same 
magnitude. PIore r i g o r o u s l y ,   i f   t h e   c o n d i t i o n  of t he   ma t r ix  A is defined  by 
some measure,  the  non-singular  diagonal matrices C and C can scale A by 
the   t ransformat ion  1 2 

so as t o   r e d u c e   t h e   c o n d i t i o n  of ( C l  'A C2) t o  as low a va lue  as i s  reasonably 
possible .  Powers  of t h e   f l o a t i n g   p o i n t   b a s e  are usua l ly  used f o r   s c a l e   f a c -  
t o r s ,   t o   a v o i d   t h e   i n t r o d u c t i o n  of rounding  errors  i n  t h e   s c a l i n g .  

- 

Although some s tudies33  have been made on the  problem of f ind ing  C 1  and 
C 2  t o  minimize  the  condition  of (C1 -'A C,), i t  t u r n s   o u t   t h a t   t h e   s o l u t i o n  
involves  computation  of A-' t o   f i n d  a reasonable   scal ing.   Thus,  from a 
p rac t i ca l   s t andpo in t ,   t he   above  method is open to   ques t ion .  The only  advice 
t h a t  one is sometimes  given is t o   p i c k  C 1  and C2 so t h a t   t h e   r e s u l t i n g   m a t r i x  

l A  C2 has  elements  of  approximately  the same magnitude  or  has i t s  maximum 
i n  each row and column ( i n ,   a b s o l u t e   v a l u e )   i n   t h e   i n t e r v a l   ( . l , l )   i n  

whatever  base  one is using. 

Another   device  for   minimizing  manipulat ion  error  is modified  pivoting. 
P ivo t ing   cons i s t s  of  interchanging  rows,  columns,  or rows  and  colums s o  
t h a t   t h e   d i a g o n a l  element i n   t h e  ith row, a f t e r  i reduct ions  is non-zero. 
This is a necessary par t   o f   Jo rdan   r educ t ion   fo r   an   a rb i t r a ry   non- s ingu la r  
matrix. In   modif ied  pivot ing,   an a t t e m p t  is made t o   f i n d  a la rge   d iagonal .  
The pivot  element is the  diagonal  element  found. 

There are t h r e e   p u r e   p i v o t i n g   s t r a t a g i e s :  

(a)  Complete  pivoting i n  which a t  each  stage  one selects as a p ivot  
some element aij of maximum value  among a l l  the  remaining  elements  of  the 
matrix. 

(b) P a r t i a l   p i v o t i n g   w i t h  row in t e rchange   i n  which a t  each  stage  one 
selects as a p ivo t  some element aij of maximum abso lu te   va lue  among t h e  
f i r s t  column of  the  remaining  elements  of  the  matrix.  

( c )   P a r t i a l   p i v o t i n g   w i t h  column in t e rchange   i n  which  one selects as 
a p ivot  some element a i j  of max imum abso lu te   va lue  among t h e   f i r s t  row of 
the  remaining  elements  of  the  matrix.  
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P o s i t i v e   d e f i n i t e  matrices, such as t h e  matrix 6m i n   t h e   c o n t i n u i t y  
equat ions ,   do   no t   requi re   p ivot ing   in   the   Jordan   process   though  modi f ied  
p ivot ing  may be  advantageous. 

Although  complete  pivoting  has  invariably  provided  success  and small 
e r ror   bounds ,   the   pena l ty   pa id  i s  much longer  computer times t h a n   p a r t i a l  
p i v o t i n g .   S t u d i e s   b y   W i l k i n ~ o n ~ ~  and previous   exper ience   wi th   p rac t ica l  
types   o f   p roblems  ind ica te   tha t   the  use of p a r t i a l   p i v o t i n g   s h o u l d   b e  sat- 
i s f a c t o r y .  However, s i n c e   i n   f l o a t i n g   p o i n t   c o m p u t a t i o n  it i s  genera l ly  
not  easy  to: ,determine i f  some  numQer is e f f e c t i v e l y   z e r o   o r   n o t ,  i t  is 
d e s i r a b l e   t o  u s e  as a safeguard a c e r t a i n   “ p i v o t   t o l e r a n c e . ”   I f   i n  a c e r t a i n  
row ( i f   p a r t i a l   p i v o t i n g   b y  row interchange is used) o r   i f   i n  a c e r t a i n  column 
( i f   p a r t i a l   p i v o t i n g  by  column in te rchange  is used)   no   p ivot   g rea te r   than   the  
“pivot   tolerance’’   can  be  found,   then  that  row o r  column is cons ide red   t o   be  a 
l inear   combinat ion  of   the  other  rows o r  columns i n  which  pivots  have  already 
been  chosen. A p ivo t   t o l e rance  of 111-5 is  adequate   for  a 27 b i t   m a n t i s s a .  

33 Scal ing  and  pivot ing are a c t u a l l y   r e l a t e d .  From a theorem  by  Bauer , 
i f   t h e   o r d e r e d  set of   pivotal   e lements  is se l ec t ed   i n   advance ,   s ca l ing   o f  
matrix A by  powers  of the   f loa t ing   po in t   base   does   no t   change  .a s i n g l e   d i g i t  
of s ign i f i cance   o f   any   i n t e rmed ia t e   o r   f i na l  number in  the   so lu t ion   o f  Ax = b 
by Gaussian  elimination.  Thus, the only p o s s i b l e   e f f e c t   o f  the sca l ing   o f  A 
on the  rounding  errors  must  occur  through  changing  the  order  of  pivots.  

Probably  the  most  important  of a l l  g u i d e l i n e s   f o r   t h e  programmer for 
minimizat ion  of   manipulat ion  errors  is  i n  programming t o   o b t a i n   t h e   b e s t  
set of  redundant  forces.  Recall t h a t   t h i s   o p e r a t i o n  is  r e l a t e d   t o   t h e  
pa r t i t i on ing   o f   t he  matrix P. In t h e   s e l e c t i o n   o f   t h i s  se t ,  i t  i m p l i e s   t h a t  
t h e   a s s o c i a t e d   b a s e   s t r u c t u r e  is s t a b l e   a n d   f l e x i b i l i t y  matrix f o r   t h e  re- 
dundant set of   forces  i s  best   condi t ioned.  The term condi t ioning  of  a matrix 
i s  based  on some kind  of  measure. A well condi t ioned   mat r ix   genera l ly  im- 
p l i e s  small e r r o r s   i n   t h e   e l i m i n a t i o n   p r o c e s s .  

It is  well knotm t h a t   t h e   c h o i c e  of t h e   r e d u n d a n t   f o r c e s   i n  a s t a t i c a l l y  
inde te rmina te   s t ruc tu re  is not   unique.   The  only  res t r ic t ion is  t h a t   f o r   a n y  
choice  of redundant stress system,  the  associated  determinate   s t ructure   must  
b e   s t a b l e .   T h i s   i m p l i e s   t h a t   t h e   c o e f f i c i e n t   m a t r i x   f o r   t h e   d e t e r m i n a t e   f o r c e s  
must be  non-singular. 

S t a r t i ng   w i th   t he   ma t r ix  P in   t he   cu t t i ng   o f   t he   s t ruc tu re   ma themat i ca l ly ,  
i t  is d e s i r a b l e   t o  weigh the   e lements   o f   the  P matr ix   by  the relative f l e x i -  
b i l i t i e s  of  the  elements.  The idea  is to  .b ias   the  choice  of   redundant   forces  
i n   s u c h  a way t h a t   t h e  more r i g i d  members will compr ise   the   base   s t ruc ture   and  
t h e  more f l e x i b l e  members will comprise  the  redundants. It can be deduced 
from t h e   r e s u l t s  of t h e  test problems  and   the   e r ror   ana lys i s   for   the   redundants  
mat r ix ,  6m, that i d e a l l y   t h e   r e s u l t i n g   b a s e   s t r u c t u r e   s h o u l d   b e   t h e  most r i g i d  
of a l l  p o s s i b l e   a l t e r n a t i v e   c h o i c e s .   I n   t h i s  case the   load   pa th  is most d i r e c t .  
The e f f e c t   o f   t h e   r e d u n d a n t s  is minimum s i n c e   t h e  stresses i n   t h e   b a s e   s t r u c t u r e  
will be   approximate ly   the  same as t h e  stresses i n   t h e   f i n a l   s t r u c t u r e .   I f   t h e  
b a s e   s t r u c t u r e  is re l a t ive ly   f l ex ib l e   t he   r edundan t   fo rces   have  a s i g n i f i c a n t  
eflFect  on t h e  stresses of the b a s e   s t r u c t u r e  and c r i t i ca l  a r i t h m e t i c  may be  in-  
volved. 
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It i s  no ted   t ha t  most r i g id   e l emen t s   do   no t   necessa r i ly   bu i ld  up t h e  
most r i g i d ,  stable b a s e   s t r u c t u r e .  The connec t iv i ty   o f   the   e lements   a l so  
en te r s   i n to   cons ide ra t ion .  The weight ing  factors   suggested aims to  develop 
a b a s e   s t r u c t u r e   i n c u r r i n g  low, n o t  least ,  manipulat ion  error .  

Elimination  of  extraneous  equations i n  the   equat ions   o f   equi l ibr ium 
shou ld   be   au tomated   t o   e l imina te   i nadve r t en t   numer i ca l   s ingu la r i t i e s .   Th i s  
may be  accomplished i n   t h e   g e n e r a t i o n  o f  the   e lements   o f   the   coef f ic ien t  matrix 
Y t o   y i e l d   l i n e a r l y   i n d e p e n d e n t  rows o r   i n   t he   Jo rdan ian   e l imina t ion   p rocess .  

I n   t h e  most  general case six e q u a t i o n s   p e r   j o i n t   o r   f r e e  body are required.  
I n  many ins t ances ,  however, fewer t h a n   s i x  are independent.  For  example, a 
p l a n e   p i n   j o i n t e d   t r u s s   r e q u i r e s   o n l y  two equa t ions   pe r   j o in t .   Wr i t ing  more 
than two e q u a t i o n s   r e s u l t s   i n  a l inear ly   dependent  set of  equations.  

The basic  problems are twofold: 

(1) To de te rmine   l i nea r  dependency  of the   equat ions .   This  is manifested 
i f  i n   t h e   t r i a n g u l a r i z a t i o n   o f   t h e  P matrix one o r  more dependent  equations 
o f   t he  form 0 = 0 w i l l  r e s u l t .  Due t o  round-off  errors,  however,  the num- 
be r s  may no t   be   exac t ly   ze ro .  

(2)  To determine i f  the   equat ions  are cons i s t en t  by i n v e s t i g a t i n g   i f  
s u f f i c i e n t   i n t e r n a l   r e s t r a i n t  is provided  for   each  appl ied  load.   In   the tri- 
angu la r i za t ion  of P ,  wi th   s imultaneous  reduct ion  of  F = Fo, one o r  more  equa- 
t i ons   o f   t he  form 0 = f i ,  where f i  is  a non-zero  component  of t he   app l i ed   l oad  
may r e s u l t .   I n   t h i s  case the   equ l l ib r ium  equa t ions  are incons i s t en t   o r   i n -  
compat ible   and  no  solut ion  exis ts .  The  model  of the  physical   system i s  mathe- 
mat ica l ly   uns tab le .   I f   the   equi l ibr ium  equat ions   def ined  by t h e   c o e f f i c i e n t  
mat r ix  P is  t o   b e   c o n s i s t e n t  and  have  l inearly  independent rows to   avo id   s in -  
gu la r i ty ,   t he   ex t r aneous   equa t ions  of t h e  form 0 = f i  must  be  eliminated  or 
modified by i n t r o d u c i n g   a d d i t i o n a l   s t r u c t u r a l   r e s t r a i n t .  

The el iminat ion  of   extraneous  equat ions may be  achieved i n  two ways. I n  
t h e   f i r s t   t h e  programming provides  a means o f   i n s p e c t i n g   t h e   i n d i v i d u a l   j o i n t s  
to   de te rmine   whether   the   in te rna l   e lement   forces  are n u l l ,   c o l i n e a r ,   o r   c o p l a n a r  
and m i t e  on ly   t he   appropr i a t e  number of  equations.   Since  the  above  conditions 
may n o t   b e   e x a c t l y   s a t i s f i e d   d u e   t o   i n p u t - o u t p u t   e r r o r ,  a cut-off cr i ter ia  
should  be  used i n   t h e   v e c t o r   e v a l u a t i o n   t o   d e t e r m i n e   i f   t h e   d e g r e e  of divergence 
from  any  one  of t h e  above  conditions  ( i .e.  , nu l l ,   co l inea r ,   o r   cop lana r )  is 
su f f i c i en t   t o   war ren t   i nc lus ion   o f   t he   r e l a t ed   equ i l ib r ium  equa t ions .  An up- 
per  limit of   the  cut-off  criteria define  vector  magnitudes  which are s u f f i c i e n t  
t o   w a r r a n t   i n c l u s i o n  of  equations. A lower limit of t h e   c u t - o f f   c r i t e r i a   d e f i n e s  
vector  magnitudes  which are considered  insignif icant   and  permit   e l iminat ion  of  
equat ions.   Note   that   the   lower l i m i t  of the  cut-off cr i ter ia  is in tended   to  
compensate f o r   t h e   e r r o r s   i n   t h e   g e n e r a t i o n  of t h e   c o e f f i c i e n t s  and  do not   in-  
t roduce   add i t iona l   e r ro r s .  The  upper limit of  the  cut-off cri teria i s  q u i t e  
a r b i t r a r y .  It is i n t e n d e d   t o   d e t e c t   e r r o r s   d u e   t o   p o o r l y   i d e a l i z e d   j o i n t s   o r  
i n   de f in ing   coord ina te s .  From exper ience ,   the   equat ions   represent ing   d ivergence  
from the  condi t ion  of   nul l ,   col inear ,   or   coplanar   ranging  f rom  .001  to  .003 are 
o f t en   due   t o   t he   above   mi s t akes   i nd ica t ing   e r roneous   i dea l i za t ion  and  fornlulation. 
Thus,  an  upper limit cut-off cri teria of .003 is  cons ide red   s a t i s f ac to ry .  
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The  second way is t o   s e n s e   e x t r a n e o u s   e q u a t i o n s   d i r e c t l y   i n   t h e  
Jordanian  e l iminat ion  process .  In t h i s  method,  an  equivalent criteria is 
used  by  specifying a certain "p ivot   to le rance"   to   de te rmine   i f  some number 
i s  e f f ec t ive ly   ze ro   o r   no t .   Th i s  method  of e l imina t ion  of extraneous equa- 
tions, however, r equ i r e s  row in te rchanges   ra ther   than  column in t e rchange   i n  
t h e   p a r t i a l   p i v o t i n g   s t r a t e g y  and is the re fo re   u sua l ly  uneconomical. I f  i n  
a c e r t a i n  row no  p ivot   g rea te r   than  a certain pivot   tolerance  can  be  found 
then   t ha t  row is considered  to   be a l inear   combinat ion  of   the  other  rows 
and pivots   that   have  a l ready  been  chosen.  

As f i n a l   g u i d e l i n e s  t o  t h e  programmer, t h e r e  are checks  that   should  be 
included i n  t h e   f o r c e  method  computer  program t o   v a l i d a t e   s o l u t i o n s .  The 
f i r s t   c o n s i s t s  of a s i n g u l a r i t y  test. The p i v o t   v a l u e s   i n   t h e   t r i a n g u l a r i -  
za t ion  of t h e  P and 6xic matrix should  be  checked.  If   they are less t han   t he  
prescr ibed   to le rance  level of   the   mat r ix  i s  considered  s ingular   and 
er ror   no tes   should   be   p r in ted   ou t .  

The follotring  computer  based tests which  can  be  included are similar 
to   t hose   a l r eady   d i scussed   i n   Sec t ion  3 for   the   d i sp lacement  method. 

(1) Test f o r   e r r o r   p r o p a g a t i o n   c h a r a c t e r i s t i c s   i n   t r i a n g u l a r i z a t i o n  
process.  

(2) Equilibrium  check. 

I n   a d d i t i o n   t o   t h e   a b o v e  tests the  following  checks are pecul ia r   on ly  t o  
the   fo rce  method. 

(1) Back-substitution  check in   con t inu i ty   equa t ions .   Th i s  i s  one 
measure of the   accu racy   i n   t he   ca l cu la t ion  of redundants. 

(2) Evaluat ion of displacement   .calculat ions  with respect t o  manipu- 
l a t i o n   e r r o r .  

Some i n v e s t i g a t o r s  7'  34 have  suggested  the use of e i g e n v a l u e   r a t i o s   a s  
a measure  of  manipulation  error. The p resen t   ana lys i s  and test problems 
have shown t h a t   t h e s e  criteria i s  not  always  an  adequate  approach  since i t  
d o e s   n o t   r e f l e c t  any   numer i ca l   s ingu la r i ty   i n   t he  two c o e f f i c i e n t  matrices 
of concern. T'ne matrix e i g e n v a l u e   r a t i o s   f o r  a s t ructure   does  not   change 
regardless   of   the   sequence of so lv ing   the   equat ions .  It has  been shown i n  
t h i s   a n a l y s i s  however tha t   t he   e r ro r s   va ry   d rama t i ca l ly   depend ing  on now t h e  
equi l ibr ium  equat ions  are p a r t i t i o n e d ,  i.e., the   phys ica l   cu t t ing   o f  the 
s t r u c t u r e .  
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Section 5 

VERIFICATION  ANALYSES 

This  section  describes  the  displacement  and  force  analyses of a 
practical  wing.  The  purpose  of  these  analyses  is  to  determine  the  magnitude 
of manipulation  error  in  a  typical  analysis  and  to  apply  the  guidelines  of 
Sections 3 and 4 to  a  practical  structural  analysis. In addition,  these 
analyses  will  provide  a  comparison  between  displacement  and  force  method 
manipulation  errors. 

Description of Problems 

Figure 25 shows  the  geometry  of  the  structure. The structure  consists 
of five  main  spars  and  four  ribs  supporting  variable  thickness  skins. 
Table XVI defines  the  geometry  and  material  properties of the  elements  of 
the  structure. 

A model  of  this  structure  has  been  fabricated  and  analyzed.  These  data 
indicate  that  the  basic  network  (identified  by  solid  and  dashed  lines  in 
Figure 25) leads to satisfactory  predictions of behavior. 

The boundary  conditions  for  this  study  are  summarized in Table  XVII. 
The upper  table  defines  the  loading  conditions  when  the  box  represents  a 
swept  wing. The  wing  has  a 30 degree  sweep  and  represents  the  structural 
box of a  low  aspect  ratio  surface. The swept  end  is  fully  fixed. All of 
the  six  loads  act  normal  to  the  wing. 

The second  set  of  boundary  conditions  consist of six  loadings  under 
the  assumption of full  fixity  along  the  long  edge of the  box. The structure 
is  then an unswept  box.  This  alternate  fixity  condition  changes  the  ratio 
between  series  and  parallel  elements in the  structure. In the  first  boundary 
condition  there  are  between  ten  and  fourteen  series  elements  and  nine 
parallel  elements.  With  the  fixity  along  the  long  edge,  there  are  between 
ten  and  fourteen  parallel  elements  and  nine  series  elements. 

Displacement  Method  Analysis. - The  structure  shown  in  Figure 25 is 
idealized  as  shear  panels,  membranes,  and  rods  for  the  displacement  method 
analysis. The  webs of the  spars  and  ribs  are  treated as rectangular  shear 
panels. The rectangles  are  divided  into  two  triangles,  and  each  is  repre- 
sented by a  triangular  membrane.  The  model of Turner,  et  a12,  is  degenerated 
to a shear  panel  by  choosing  only  a  non-zero  shear  modulus  for  the  elastic 
coefficients. The Turner  membrane  representation  is  also  selected  for  the 
skin  elements. In this  case,  an  isotropic  material  is  defined.  Stiffners 
fastening  the  spar  and  rib  webs  to  the  skins  and wing verticals  are  repres- 
ented  by  rod  elements. 
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Table X V I  

P rope r t i e s  of Structural   Elements  

E 1 emen t: 

Spars A,E 
Caps 

Spars B ,C ,D 
Caps  

Ribs 1.4 
Caps 

Ribs 2.3 

Spar & Rib 
Pane 1 s 

Skin 
Pane 1 s 

Bar 
Area 

i n  2 

0.0652 

0.0466 

0.0652 

0.0466 

"- 

"_  

Pane 1 
Thickness  Modulus, E Modulus Poisson 's  

i n  p s i .  1~ 6 _psi* 10-6 Ratio 

"- 10.525 "- " - 

10.525 "- 

10.525 "- 

"- 

"- 

" - 10.525 -" "- 

0.059  9.814  3.774 0.3 

0.118 LO. 525 4.048 0.3 
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Table XVII 
Loading Conditions - Swept End Fixed 

Loading Condition  Joint 

1 A- 1 
E- 1 

2 A-.I 

3 A- 1 
4 E- 1 
5 A-3 

6 E- 3 

Direction 

-Z 
-Z 

-Z 

/Z 

tZ  

CZ 
CZ 

Magnitude 

1103.75 
1103.75 

2207.50 
1.00 

1.00 

1.00 

1 .oo 

Loading Conditions - Long Edge Fixed 

Loading Condition  Joint 

1 A- 4 
A- 1 

2 A-4 
3 A-4 
4 A- 1 

5 D- 4 
6 D- 1 

Direction 

-Z 
-Z 

-Z 

CZ 

/Z 

/Z 

#Z 

-Nagni tude 

1103.75 
1103.75 
2207.50 

1.00 
1.00 

1.00 

1.00 
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It i s  n o t e d   t h a t   i n  a case  of  the  displacement method a n a l y s i s   t h e  
idea l i za t ion   i nvo lves  no  "lumping"  of  material .   Panel  thicknesses  in  the 
skin  and webs are t a k e n   d i r e c t l y  from the   geometry   o f   the   bas ic   s t ruc ture .  
Cross   s ec t ions   o f   t he   rods   a r e   s e l ec t ed   t o  match the  geometry  of  the model 
s t r u c t u r e .  

Figure 26 depicts   the  displacement  method  network  and i d e a l i z a t i o n  
s e l e c t e d   f o r   t h e   a n a l y s i s .  The i d e a l i z a t i o n   c o n s i s t s  of 130 j o i n t s .  A t  
each   jo in t   d i sp lacement   in   th ree   o r thogonal   d i rec t ions   a re   admi t ted ,   thus  
providing  for  a maximum of 390 degrees  of  freedom. The ideal ized  wing i s  
comprised  of 516 elements:   182  shear  panels,   192  skin  panels  and 1 7 2  
rods. The  whole  wing s t r u c t u r e  i s  cons ide red   i n   t he   ana lys i s .  

Not only was the  box analyzed  under two different  displacement  boundary 
condi t ions ,   bu t  two different   analyses   were  run  for   each  boundary  condi t ion.  
The f i r s t   a n a l y s i s   c o n s i s t e d   o f   s o l u t i o n  of the  problem,  using a 27 b i t  
mant i ssa   to   represent  numbers. Calculations  were  performed on t h e  IBM 7094. 
The second  displacement  analysis  for  each  boundary  condition was run  with a 
mantissa  of 23 b i t s .   Th i s   s i ze   man t i s sa  was se l ec t ed   t o   s imu la t e   t he  IBM 
360 F o r t r a n  IV a r i thme t i c .  Only 23 b i t s  were used   to   ad jus t   for   the   hexi -  
decimal  normalization of the  IBM 360. 

Figures  27 and 28 show r e l a t i v e   e r r o r   c o n t o u r s   f o r   t h e  two boundary 
conditions.  These  data  are  developed by dividing  the  difference  between  the 
23  and 27 b i t   s o l u t i o n s  by the  27 b i t  answer.  This  provides a measure  of 
t he   r e l a t ive   man ipu la t ion   e r ro r .  Assuming the  manipulat ion  error  i s  
propor t iona l   to  2'p, the  measure i s  15 times t h e   e r r o r   i n   t h e  27 b i t   s o l u t i o n .  

For  both  boundary  conditions, a l l  normal de f l ec t ion   p red ic t ions   u s ing  
the  23 b i t   mant i ssa   were   g rea te r   than   for   the  27 b i t   s o l u t i o n .   R e l a t i v e  
e r r o r s  were minimum where def lec t ions   were   g rea tes t   and  maximum where  they 
were l e a s t .  The r a t i o   o f  maximum t o  minimum r e l a t i v e   e r r o r  was about   t en   in  
each  condition. 

Maximum e r r o r   f o r   t h e  23 b i t   s o l u t i o n  i s  .73% f o r   t h e  swept  wing  and 
.062% f o r   t h e  unswept  box.  This r e s u l t  i s  found  by s c a l i n g   t h e   e r r o r s  of 
Figures  27 and  28 by 16/15.  Using  equation  (3-40) i t  i s  de termined   tha t   th i s  
e r r o r  must  be less t h a n   f i v e   p e r c e n t   i f  68 b i t s   a r e  used in   t he   man t i s sa .  
The formula i s  sa t i s f ied ,   bu t   very   pess imis t ic .   Equat ion   (2-15)   p rovides  a 
b e t t e r  bound  on e r r o r .  The t a b l e  below shows the   ca lcu la t ion   da ta   and   the  
p r e d i c t e d   e r r o r  bound  and a c t u a l  maximum r e l a t i v e   e r r o r s .  

S t ruc tu re  No. E q s .  VI 
"AVG . No. Calculat ions e (2-1-5) T a x  e (Actual) -ax 

Swept Wing 360 34.0 453 , 800 1.06% 0.73% 
Unswept Box 300 28.1 261 , 100 0.61% 0.062% 

. 
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Figure 26. Displacement Method  Idealization 
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Table X V I I I  l i s t s  the   in f luence   coef f ic ien ts   for   un i t   loadings  
described by loads 3 ,  4 ,  5, and 6 i n   T a b l e  XXI for  each  boundary  condi- 
t ion.   These  data  are  based on a 23 b i t   man t i s sa  and  involve  only  loads 
and  displacement  normal  to  the  box. The under l ined   e lements   in   th i s  
tab le   have   the   b igges t   e r ror   in   sa t i s fy ing   Maxwel l ' s   rec iproc i ty   theorem.  
In  both  the  swept  wing  and  unswept  box,  these  terms  relate  the t i p  
in f luence   to  a j o i n t   a d j a c e n t   t o   t h e   r o o t  of t he   can t i l eve r .  

The t a b l e  below  shows t h e   r e c i p r o c i t y   r e l a t i v e   e r r o r   a n d   t h e  mani- 
p u l a t i o n   e r r o r s   f o r   t h e s e   c o e f f i c i e n t s .  The r e c i p r o c i t y   r e l a t i v e   e r r o r  

* was c a l c u l a t e d  by d i v i d i n g   t h e   e r r o r  by the 27 bit   mant issa   answer.   This  
answer s a t i s f i e d   r e c i p r o c i t y   t o   s i x   p a r t s  and  the  seventh  digi t .  The 
r e l a t ive   man ipu la t ion   e r ro r  was obtained by d iv id ing   the   d i f fe rence  i n  
the   i n f luence   coe f f i c i en t   fo r   t he  23 and 27 b i t  so lu t ions  by the  27 b i t  
result .  This   t ab le  shows that   wi th  higher   manipulat ion  error ,   the   error  
i n   s a t i s f y i n g  Maxwell's  theorem i s  g r e a t e r .  However, they a l s o  show t h a t  
the  symmetry e r r o r  i s  a poor  measure  of  manipulation  error. It i s  noted 
tha t   t he   r ec ip roc i ty   check   fo r   t he  unswept box would  be  expected t o  have 
l a rge r   e r ro r   t han   t ha t   o f   t he  swept  wing  because  the  coefficient i s  of 
small  magnitude. 

Reciprocity  and  Manipulation  Error 

( 2 3  b i t   e r r o r / 2 7   b i t   r e s u l t )  

Reciproci ty   Relat ive 
Error 

Relative  Manipulation 
Error  

Swept Wing Unswept Box 

.HI x 2.37  x 

84.4 x 10'~ 3 8 3 .  x 



Tab le XVIII 

In f   hence   Coef f i c i en t s  (p=23 )* 

~~~ ~~ ~ 

Deflected 
J o i n t  

A 1  

E l  

A 3  

E 3  

Deflected 
Joint 

A4 

A 1  

D4 

D l  

- A 1  

. 25830959-3 

. 19804193-3 

. 24087919-4 

. 17200531-4 

A4 
. 30936913-4 

. 22232679-5 

. 66991779-5 

. 32952078-6 

Swe p t Wing 

Load A t  : 

E l  A 3  - - E 3  - 

. 19804210-3 . 24087872-4 . 17200505-4 

. 26603381-3 . 1367369G4 . 34577300-4 

. 13673729-4 . 14555457-4 . 24086030-5 

. 34577366-4 . 24086052'5 . 24834058-4 

Unswept Box 

Load A t :  

Al - D4 - D l  

. 22232770-5 . 66991787-5 . 32952533-6 

. 41814419-4 . 40422528-7 . 92233677-5 

.40421568-7 . 92155460'5 .68137396-7 

. 92233622-5 - . 68138106-7 . 94475617-5 

* Exponents i n   t a b l e  imply a m u l t i p l i e r  of 10 with that   exponent ;  
3.g.  .32-4 means .32  x 
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Force Method Analysis.  - The same four   analyses   were  run  for   the  force 
method as for  the  displacement method. The  "lumped parameter"  approach was 
taken i n  t h e   i d e a l i z a t i o n .   T h i s   r e s u l t e d  i n  ba r s   unde r   ax i a l   r e s t r a in t  
whose a reas  were a summation  of t r u e  frame members and s t r i n g e r s  p l u s  po r t ions  
of  ad jacen t   sk in   o r  web ma te r i a l .  The s k i n  and  webs  were represented by 
panels   which  ( in   the  ideal izat ion)   could  carry  shear   only.  I f  follows  then, 
t ha t   t he   ba r   a r eas   u sed   i n   t he   fo rce  method are   g rea te r   than   those  of the 
displacement method  and t h a t  more b a r s   e x i s t .  

Figures 29,  30,  and  31 show the   bas i c  components  used  for  the  ideali-  
zation.  These  are 130 jo in ts   (nodes) ,  293 bars,  and  168  panels. 

It becomes evident   that   the   computat ion  of   percent   re la t ive  error  
(lOO(F27 - F23)/F27) i s  no t   r e l evan t   fo r   answers   c lose   t o   ze ro   s ince   r e l -  
a t ively  small   answers   are   unrel iable .   Since  answers   are   reported  as   nodes 
o n l y ,   t h e   p o s s i b i l i t y  of   answers   near   zero  increases   as   the  s t ructural   ide-  
a l i z a t i o n  i s  made f i n e r .  For  the  structural   examples  used i n  t h i s   r e p o r t  
t he   g r id  i s  coarse enough so t h a t  no extremes i n   p e r c e n t   r e l a t i v e   e r r o r  
encountered  but  there i s  a de f in i t e   t r end   t oward   l a rge r   pe rcen t   r e l a t ive  
e r ror   for   the   smal le r   va lues   o f   forces .  

For t h e   s t i f f n e s s  method of   solut ion,   the   pr imary unknowns a r e   d i s -  
placements   and  these  were  used  in   showing  the  error   character is t ics .   For  
t h e   f l e x i b i l i t y  method, the  primary unknowns a r e   f o r c e s  and the re fo re  
e r ro r s   r e l a t ed   t o   fo rce   answers   a r e   r epor t ed .  Those  chosen a r e   t h e   b a r   a x i a l  
s t resses   ( in   the   upper   sur face)   which   a re   e f fec t ive ly   spar   caps .  For the  
swept  wing  these  run i n  the   l ong   d i r ec t ion   o f   t he   s t ruc tu re  and for   the 
unswept  box, i n   t h e   s h o r t   d i r e c t i o n .  

The behavior of t h e   e r r o r   c h a r a c t e r i s t i c s   c a n   b e s t  be shown  by 
p lo t t i ng   t he   d i f f e rence   i n   answers  (F27 - F23)  from t h e  27 b i t   s o l u t i o n  
aga ins t   t he  27 b i t  answers a s  shown.in  Figure  32  and 33. Note tha t   t he  
abc i s sa   a r e   d i f f e rences   i n   answers  and   no t   percent   re la t ive   e r ror .  For 
t h e  swept  wing  (Figure  32) i t  can  be  seen  that   the  answers  for  spars A, B,  
and C show re l a t ive ly   sma l l   d i f f e rences   ( abso lu t e   va lues   a r e   u sed )   r ega rd le s s  
of  the  force  magnitudes,  whereas  for  spars D and E t h e   d i f f e r e n c e s   a r e   r e l -  
a t ively  large  and  increase  roughly  proport ional   to   the  force  magni tudes.  
In   a t tempt ing   to   account   for   the   ex is tence   o f   th i s  phenomena i t  was discov- 
e r e d   t h a t   s p a r s  D and E were r e t a i n e d   a s   p a r t   o f   t h e   s t a t i c a l l y   d e t e r m i n a t e  
s t ruc tures   whereas   spars  A ,  B, and C were cu t ,   i . e . ,   t hey  were  redundant. 

For the  unswept  wing the   r e l a t ive   e r ro r   a s soc ia t ed   w i th   t he   l a rges t  
force i s  .004% and tha t   a s soc ia t ed   w i th   t he   sma l l e s t   fo rce  i s  .164% f o r  
the  23 b i t   s o l u t i o n .  These  data  are  obtained by s c a l i n g   d i f f e r e n c e   e r r o r s  
by 16/15. Averaging   the   f ive   va lues   a t   r ib  2 (approximately  mid-length) 
y i e l d s  .0951% r e l a t i v e   e r r o r .  

For  the  unswept box (Figure  33)   the  var ia t ion of d i f f e rences  between 
27 and 23 b i t  answers  taken  from  root  to  free  end  vary  roughly  proportional 
to  the  force  magnitudes.  The slope,  which i s  a rough  ind ica t ion   of   re la t ive  
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Figure 29. Joint Identification Nurnbm (Idealized  Structure) 



RI  ES 
UPPER STRUCTURE 

A 

1 2 3  
la 2a 
lb 2b 
IC 2c 

4 
3b  3c 3d 3e 

LOWER BAR NO. ( ) = UPPER BAR NO. + 1 
SPARS 

101 103  105  101 1 0 9  1 1 1  113  115 111 119 ~~ 

A 
233  238 293 219 213 269  263 248  253  258  243 

102  104 1 0 6   1 0 8  110  112  114 116  119 120 
79 81 a3  85  81 89 SI 93  95 97 99 

E 
232 282  281 252  251  262  261  212  211 241  242  231 

80 82 84 86 88 90 92 94 96 98 1 0 0  
55 51 59 61 63 65 61 69 11 13 15  11 

C 
231  236  281  286 290 216 211  261  266 256 251 246 241 

56 58 60 62 64 66 68 10 12 14 16 18 
29 31 33 35 31 39 41 43 45 41 49 51  53 

D 
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E 
1 3 5  1  9 1 1  13  15  11 19 21 23  25  21 
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22 

Figure 30. Bar Identification  Numbers  (Idealized  Structure) 
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65  69 
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I C  2C NOTE: NO  VERTICAL RIBS 

ALONG la, lb, IC, 
2a,  2b,  2c, %,a, 
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1 2 3 
4 

A 
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B 
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C 

79 151 159 165 143 135 127 119 111 103 95 87 
D 

77 

1 l a  I b  IC 2 2a 2% 2c 3 3a 3b 3c 3d 3e 

149 157 163 167 141 133 125 117 109 101 93 85 
E 
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Figure 31. Panel identification Numbers (Idealized  Structure) 
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e r r o r ,  i s  d i f f e ren t   fo r   each   l i ne .  For the 23 b i t   s o l u t i o n ,   t h e   r e l a t i v e  
e r r o r   a s s o c i a t e d   w i t h   t h e   l a r g e s t   f o r c e  i s  .068%,  with  the  smallest   force,  
and  the mean f o r   r i b  C i s  .137%. 

The t a b l e  below  summarizes  the  problem c h a r a c t e r i s t i c s  and p red ic t ions  
of  upper bound error  based  on  equation  (2-15).   These  data  indicate  that  
e r r o r  bounds a re   ve ry   conse rva t ive   fo r   t he   fo rce  method. 

S t r u c t u r e  m. Unknowns Redund. Calculat ions gmaXi2-15J s a x ( a c t u a l )  

Swept Wing 390  49 1 10 1 1.71 x lo6 4.09%  .164% 

Unswept Box 390 551 161 3.58  x lo6 8.38%  .60 6% 

Table XIX l is ts  the   i n f luence   coe f f i c i en t s  (23  b i t   s o l u t i o n   u s i n g   t h e  
f l e x i b i l i t y  method) fo r   un i t   l oads   3 ,   4 ,   5 ,  and 6 i n   T a b l e  X V I I  fo r   bo th  
s t r u c t u r e s .  The underlined  elements show t h e   l a r g e s t   d e v i a t i o n  from s a t i s -  
fying maxwell’s r e c i p r o c i t y  theorem. 

The t a b l e  below  compares  the maximum r e c i p r o c i t y   r e l a t i v e   e r r o r  and the 
man ipu la t ion   r e l a t ive   e r ro r   fo r   t he  same i t ems .   Fa i r   co r re l a t ion   ex i s t s .  
Comparing these   va lues   wi th   those   o f   the   s t i f fness  method  shows l a r g e r   e r r o r s  
f o r   t h e   f l e x i b i l i t y  method. This may b e   a t t r i b u t e d   t o   t h e   f a c t   t h a t   d e f l e c t i o n s  
are secondary  answers i n   t h e   f l e x i b i l i t y  method. This i s  corroborated by 
the  increase  indicated  for   manipulat ion  error   over   the  values   c i ted  above  for  
force  manipulat ion  error .  

Reciprocity  and  Manipulation  Error 

( 2 3   b i t   e r r o r / 2 7   b i t   s o l u t i o n  

Relative  Reciprocity 
Error  175.3 x 

Relative  Manipulation 
Error  125.4 x 

132 

12720.  x 

5407x9  x 



Table X I X  

In f luence   Coef f i c  i e n t s  

F l e x i b i l i t y  Method (23 B i t  So lu t ion )  

Swept Wing 

Load A t  

Def l ec t ion  
J o i n t  - A 1  E l  - 

A 1  . 20341133-3 . 16268703-3 

E l  . 16270924-3 . 22122845-3 

A 3  . 16617989-4 .97806405-5 

E 3  . 15465255-4 . 30263036-4 

Unswept Box 

Load A t  

De f l ec t ion  
J o i n t  - A4 - A 1  

A 4  . 25654212-4 . 13474491-5 

A 1  . 13626413-5 .31488911-4 

D4 . 46403147-5 -. 24606016-6 

D l  . 11399606-7 . 54632010-5 

A 3  - 
. 16619749-4 

. 97645824-4 

. 918121294-5 

. 12534983-5 

D4 

.46184286-5 

-. 24631481-6 

. 74720010-5 

-. 11489374-6 

- 

E 3  - 
. 15458976-4 

.30316180-4 

. 12552637-5 

. 18139210-4 

- D l  

. 10113581-7 

. 54631855-5 

-. 11576549-6 

. 59473158-5 



Comparison  of  Displacement  and  Force  Method  Errors 

The  table  below  furnishes  a  comparison of measured  and  predicted 
bounds  for  manipulation  errors  in evaluatingthe primary  unknowns.  Errors 
are  for  the  23  bit  analysis.  These  data  show  that  the  displacement  method 
incurs  smaller  errors  for  the  unswept  box  and  the  force  method  smaller  for 
the  swept  wing.  Since  errors  are  less  than  bound  predictions,  critical 
arithmetic  was  not an important  error  source  in  either  analysis.  Suppose 
the  selection  of  analysis  method is to  be  such  that  manipulation  error is 
minimized.  Then,  these  data  suggest  that  the  displacement  method  has 
smaller  errors  for  structures  whose  subsystems  act  predominately  in  parallel 
(box)  and  force  method  with  series  subsystems  (wing).  Arithmetic  in  the 
force  method  is  indicated  to  be  better  optimized  since  measured  errors  are 
a smaller  fraction of the  upper  bound  errors. 

Analysis  Relative  Error 

(Percent) 

Stiffness  Method  Flexibility  Method 
(Deflections)  (Forces) 

Wing Box Wing Box 

With  largest 
answer .066 .0664 . 00 14 .0682 

With  smallest 
answer .73 .064 .164  .606 

Mean  for  mid- 
rib  (Rib 2 or 
C) .091 .0195  .0951  .137 

Error  bound  1.06  .61 4.09 8.38 

134 



Section 6 

CONCLUSIONS 

Table XX summarizes  and  characterizes  the  errors  examined  for  the  dis- 
placement  and  force  methods.  Input,  generation  and  output  errors  are  similar 
for  the  two  methods.  Elimination  errors  examined  are  the  same  but  are of 
differing  importance  in  the  two  approaches.  Note  that  the  solution  process 
chosen  for  displacement  method  permits  separating  attrition.  error  into 
decomposition  cumulative  and  substitution  attrition  error. 

Table XXI summarizes  some  of  the  guidelines  the  analyst can use  for  mini- 
mizing  error. This  table  is  concerned  with  modification  of  the  problem  to 
descriptive  data  since  this  is  at  the  analyst's  disposal.  Guidelines  for  input, 
output,  and  generation  errors can normally  be  disregarded. 

Particular  criteria  to  fix  required  Arithmetic  precision in a  structural 
analysis  have  been  estimated  for  series  systems  in  the  displacement  method  and 
for  parallel  systems  for  the  first  method.  These  criteria  appear in Sections 
3 and 4 .  On the  basis of the  evidence  presented in Section 5 ,  these  criteria 
must  be  regarded as very  conservative. 

Based on the  study  described in ';he previous  sections,  the  following  con- 
clusions  are  dratm: 

(1) Elimination  is  the  most  important  error  source.  Input  errors,  except 
for  decimal  fractions, can  be interpreted  by  the  analyst  in  terms  of  a  modified 
structural  model.  These  errors  usually  are  negligible.  Generations  are  small 
since  relatively  few  calculations  are  required  per  coefficient  in  the  structural 
equations.  Lack of discrimination in the  coordinant  data  is  the  largest 
single  source  of  generation  error  can  cause  significant  errors.  Output 
errors  are  negligible  unless  as  many  digits  are  printed  out  as  are  contained 
in the  computer  representation  of  the  number. 

(2) Considering  series  systems  as  critical  for  the  displacement  method 
and  parallel  systems  as  critical  for  the  force  method,  the  following  character- 
istics  were  observed  for  elimination  errors: 

(a) In both  methods,  the  solution can be  invalidated  due  to 
numerical  singularity,  unstable  propagation  of  manipulation  errors, 
cumulative  triangularization  (decomposition)  attrition  errors,  and 
attrition  errors  in  the  substitution  processes. 

(b) While  singularity  errors  are  important  in  the  displacement 
method,  they  are  relatively  unimportant  for  the  force  method. 

(c) Attrition  errors  are  important  for  the  displacement  method 
and  the  force  method.  Cumulative  attrition  errors  are  important  for 
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the  displacement  method,  particularly  for  systems of equations  of 
higher  than  first  order.  Substitution  errors  are  not.  Because  of 
the  large  number of calculations  involved in the  force  method 
manipulations,  attrition  errors  are  important  for  the  force  method 
diagonalization. 

(3) A s  presently  practiced,  the  force  method  intrinsically  has  lower 
manipulation  error  than  the  displacement  method. In the  force  method, re- 
dundants  are  often  selected  automatically  and  equations  sequenced  in an 
attempt to minimize  manipulation  errors. The displacement  method  has  no 
equivalent  operation.  The  sequencing of equations  is  entirely  at  the  disposal 
of the  engineering  analyst. The force  method  uses  the  Gauss-Jordan  reduction 
process  which  is  more  accurate  than  the  Choleski  process  used  in  some  dis- 
placement  analyses. The force  method  uses  few  and  simple  element  representa- 
tions  which  involve  low  manipulation  error  while  the  displacement  method  may 
use  a  broad  class of representations,  some of which  may  incur  large  manipula- 
tion  errors. 

( 4 )  With  optimum  error  control,  single  precision  arithmetic  is  regarded 
as  adequate  for  the  analysis of problems  up  to  5000  order.  Lacking  optimum 
control,  higher  precision  arithmetic can  be used.  The  worst  case  structure in 
the  displacement  method  for  single  precision on the IBM 360 permits  treatment 
of 60 series  beam  elements of 1300 series  rod  elements. Few practical  struc- 
tures  being  analyzed  today  have  more  than 60 elements in series,  although  very 
small  sets of equations can be  involved  with  hundreds of elements  in  series. 
Since  the  error  is  reduced by a  factor of two  for  every  added  bit in the 
mantissa,  the 48 bit  word  machines  (Philco 212, Honeywell MH 800, CDC 3600, 
and  Burroughs  B5500)  will  involve  negligible  manipulation  error  except  for 
pathological  problems. 

(5) Manipulation  error  bounds  based on the  number of calculations can 
provide  a  measure of error  when  critical  arithmetic  is  avoided.  Equation 
(2-15)  gives  fair  error  estimates  for  both  the  displacement  and  force  analysis. 
It does  not  indicate  the  proper  selection of analysis  method,  if  manipulation 
error  is  to  be  minimized,  because  arithmetic  is  better  optimized in the  force 
method.  These  conclusions  are  based on the  verification  analyses.  These 
analyses  also  confirm  that  structures  composed  predominately of parallel 
subsystems  should  be  analyzed  by  the  displacement  method,  Structures  with 
most  subsystems in series  should  be  analyzed  by  the  force  method  to  minimize 
manipulation  errors. 
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Summary of Importance  of  Manipulation  Errors 

Errors PaRe  References 

Input - Output 9 

Truncation 9 ,  11 
Conversion 9 ,  11 

Generation 28,  84 

Coordinate  discrimi- 
nation 30,84, 99 
Transformation 27, 87 
Series  Addition 15,34,  99 

Elimination 

Unstable  propagation 41,57,  83 

Cumulative  attrition 48 ,  60 

Numerical  singularity 49,63 ,  69 
87 ,90 ,  99 

Substitution  attrition 51,64,   81 

Secondary  unknown 69 , 132 

Displacement  Method Force  Method 

Negligible  except  for  unusual  cases 
I 

Input,  controlled  by  analyst;  output,  by  coder 
Input,  only  significant  for  decimal  fractions; 
output,  only  for  last  digit of number  representation 

Small,  controllable,  and  easily  measured 

Important  in  comparative  studies 
Negligible  since  few  operations/coefficient 
Negligible  if  small  components  added  first 

Large  errors  possible 

Can  be  sensed  and  controlled so need not:  be an 
output 

Large  and possibly unavoidable  for high order  and 
large  sets of difference  equations 

Small  with  optimum 
joint  numbering 

Usually  very  small 

Small Small  with  optimum 
redundant  selection 

Small,  but  may  involve 
critical  arithmetic 

Small 



Table XXI 

Analyst's Guidelines 

Error 
Input 

Generation 

Elimination 

output 

-cement  Method  Guides  Force  Method  Guides 

Scale  to  minimize  truncation  error  and  decimal  fraction  input. 

Use  local  coordinates for structural  elements. 

Local  origin  of  global  system at centroid of structure. 

Choose pordinate surfaces  parallel  to  structural  surfaces. 

Number  most  flexible  elements  first. 

Avoid  adjacent  incommensurate 
stiffnesses. 

Avoid  adjacent  incommensurate 
flexibilities. 

Number  joints  from  free  edge. 

Number  toward  stiffer  structure. 

Avoid  Choleski  algorithm. 

Average  stresses. 

Disregard  last  converted  digit if 
representation. 

z 

Number  stiff  determinate  sub- 
structure  first  starting  at 
fixity. 

Avoid  Choleski  algorithm. 

computer  prints  entire 
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