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This report describes a subroutine implementing an optimizi—

tion strategy which supplements those described in an earlier report.

is a grid search. The results obtained from applying this

: G
strategy to a pair of test problems are discussed.
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I. INTRODUCTION

This is one of a series of reports concerning the use of digital

computational techniques in the analysis and synthesis of DLA (Distri-
buted-Lumped-Active) networks. This class of networks consists of three
distinct types of elements, namely distributed elements (modeled by par~
tial differential equations), lumped elements {(modeled by algebraic
equations and ordinary differential equations), and active elements
(modeled by algebraic equations). Such a characterization is especially
applicable to the broad class of circuits referred to as linear inte-
grated circuits, since the required fabrication techniques readily
produce elements which may be referred to as "distributed", as well as
producing elements which may be characterized as "lumped" and/or "active'.
The DLA class of networks is capable of realizing network functions with
a wide range of properties. In addition, such realizations usually have
fewer components and superior characteristics than realizations using
only lumped eiements, or realizations using lumped elements and active
elements. The analysis problem for this class of network, however, is
considerably more complex than the analysis problem for more restricted
classes of networks. The synthesié§problem is even more challenging,

and the results achieved to date have been far from general.

One of ;he more promising approaches to the synthesis problem
appears to be the use of optimization techniques. The experience of
research workers in this field has indicated that in order to success-
fully apply optimization techniques to a wide range of problems, it’is
desirable to have available a varied collection of optimization gtrate~
gies. To be fully useful, the individual strategies of such a collectioh

must be so designed that any one of them can be applied to the same
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problem, without requiring that the problem be modified. Thus, the
individual optimization strategies can be considered as forming the
elements of an optimization software package, in which various logical
decisions can be incorporated as an "executive monitor" to successfully
apply the different strategies in such a way as to obtain the best
final results.

In a previous report the formulation of general problem struc-.
ture and the development and testing of digital computer program
incorporating a series of optimization strategies was described.l
These strategies include such well known techniques as: random grid
search, random direction and step size search, steepest descent,
Newton-Raphson, and Fletcher-Powell. The program was named GOSPEL
(for ggneral‘gptimization Software Program for ELectrical Networks).

In this report the development of one additional optimization strategy
is discussed. This is a (non-random) grid search optimization strategy.
. It is named OPTI. Fér conciseness, the material contained in the ori-
ginal report describing the general problem structure and the test
problems has not been duplicated in this report. Thus, the reader
should refer to the original GOSPEL report for the background material

pertinent to the development contained in this report.

II. THE GRID SEARCH OPTIMIZATION STRATEGY

A grid search optimization strategy is a systematic testing of an
entire range of values for a set of n ﬁarameters. These parameter val-
ues are determined by dividing the range of interest of each parameter

into equal segments. Thus an initial range of values must be specified
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as well as the number of values to be examinéd for each parameter, The
grid search optimization strategy then procedes by examining all péssi—
ble combinations of these parameter values and stores that combination
which comes closest to meeting the design criterion. Several variations
of this basic procedure are possible. For example, instead of storing
just the single set of pargmeter values which gave the best result, it
may be desirable to store several of the bgst sets of parameter values
in order to make available a wide choice eof starting points for use in
other optimization strategies. Another possible variation 1s to set up
a smaller range of values surrounding the best set of parameter values
found in searching the original grid, and then make a further search of
this reduced area.

A gfid search of the type described above is not, in general, use-
ful for an exact determination of a minimum of a specified error func-
tion. This is because (1) a large number of parameters may result in
an impossibly large number of cases to be analyzed; (2) if the grid
spacings are too large, it is possible that the program may completely
miss a global minimum and find only local minima; and (3) if the grid
spacings are too sgall the computation time may become excessive, Nev-
ertheless, because the grid search optimization strategy does sample a
large volume of parameter space, the grid search routine is useful in
preliminary studies to determine the general nature of the topology of

a given problemn.

ITI. GRID SEARCH OPTIMIZATION SUBROUTINE OPT1

In this section, a subroutine named OPT1 which was written to

implement a grid search optimization strategy is described. The
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options which are available, and the additional subroutinesArequired 

by the optimization strategy are described below.

Options

1.

This option permits a decision as to whethér to store more than one
"best" value. The controlling variables for this option are NOPT
(1,1) and PARAM(1,1). 1If the option is taken lﬁbPT(l,l) =v£7, tﬁe’
value of PARAM(1,1) is read to determine the number of "best" values
to be computed and stored. Subroutine ORDER (see below) is then
implemented to order and store these values. PARAM(1,1) may be

set for any value from 2 to 10. If a value is not read-in for

this parameter, it is initialized to a value of 5 by the subrou-
tine. If the option is not taken lﬁbPT(l,l) = 97; then only the
single best set of parameters will be computed and stored.

This option permits a decision as to whether an extended printout

of all the points gampled is to be made. The controlling variable
is NOPT(1,2). 1If the option is taken ZﬁOPT(l,i) = 17, the subrou-
tine will print the results of each trial thus permitting an
eValuatioanf the topology of the entire region to be made. In
addition, the best single result lﬁpr(l,i) = 27 or an ordered set
of several of the best results /NOPT(1,1) = 1/ will be printed.

If the option is not taken, lﬁbPT(i,Z) - 97, only the printéut’spe—”
cified by NOPT(1,1) will be made. gz k
This option permits a decision to méke 8 local search around the

best point previously found. The controlling variable for this .

option is NOPT(1,3). If the option is taken 1§bPT(1,3) = 17, the  ;ﬂ

range of the search area as defined by the variables XU(I) and  f i 3£
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XL(I) is reduced to a value of one-half the former step size on
either side of the parameter values whicb determine the best point
previously found. The search is then repeated on this reduced
grid using the same number of values.for each parameter. At the
conclusion of this local search, this reduction process is again
repeated. The reduction process will continue until the error is
less than ERMIN or the number of iterations exceeds ITMAX. If this
option is not taken lﬁbPT(l,3) = QY, the program will terminate
after searching the entire grid or when the number of iterations
exceeds ITHMAX.

S}gnificant Variables

Some of the significant variables which are not part of the common

array of variables listed in the original GOSPEL report are listed below.

YERRX(I,J) - an array which stores the I best values determined by
the program. For J = 1, YERRX(I,J) stores the error associa-
ted with the Ith best set of parameter values. For the range
of I from 2 to N + 1, YERRX(1,J) stores the values of the N
parameters which specify the Ith best point.

X(I,J) - an array which stores up to J values of each of the I
parameters. These are the values which determine the grid
_points which are to be tested. J may have a different value
for the various parameters. . The maximum value of J which is
permitted by the dimensioning of thé program is 20. Thus,
this is the maximum number of values of any one parameter

which can be used.
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'NY - the number of the best values of the parameters which are to
be stored and printed lfhis is equal to PARAM(1,1)/.
NC - the total number of combinations of sets of parameter values
which are to be tested. This is equal to the product of the
quantities KX(I) which specify the number of values of the

1th parameter (I = 1,2, ..., N).

Other Subroutines Used

There are three subroutines which are used in connection with the

subroutine OPT1, These are:

SUBROUTINE COMB(K,A,NA,NV,AV) - This subroutine is used to produce
all possible combinations of the parameter values. K is index
for the combination number. A is a two-dimensional array of
elemeﬁfs A(1,J) in which are stored‘the Jth value of the Ith
parameter. NA is a one-dimensional array with element NA(I)
which specify the number of values of the Ith parameter. NV
is the number of parameter combinations. AV is a one~dimen-

: sional array with elements AV(I) giving the resulting vector
of parameter Qalues Eorresponding with the Kth combination.

SUBROUTINE ORDER(YERR, NY, YERRX, X) - This subroutine compares
the value of the error YERR computed by the subroutine ERR
(see the original GOSPEL report) for the current set of para-
meter values, and ranks this value of YERR in descending order
in the YERRX array. NY such values of error are stored along
with the associated parameter values.

SUBROUTINE REDUC - This subroutine reduces the range of parameter

values to plus or minus one-half of the former step size for
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each parameter. This is done by computing new values of
XU(I) and XL(I). All input and output of information to this

subroutine is made through the labeled common array.

Iv. EXAMPLES OF THE USE OF OPT1

The grid search subroutine OPT1 was applied to the test problems
described in the GOSPEL report. The data for the various runs is sum-
marized in Table 1. Some comments on these runs follow:

In test problem one, all runs gave.a good error result, and, as .
the grid size was réduced,uthe error became smaller. The final para-
meter values for different grid sizes were considerably different from
each other, however, indicating the importance of finer search grada-
tions. The second and third lines of data shown in the table for each
run resulted from local searches about the previous "best“ parameter
values. The values of XL(I) were 0.0 for all parameters and the values
of XU(I) were 2.0 for all parameters. Although the final error was
low, the total computer time required to obtain this error was quite
high in comparison with that reqpired by other optimization strategies.
For such a comparison the reader is referred to the original GOSPEL
report.

In test problem two, the same upper and lower bounds of X(I) were-
used for runs 1 and 2 as were used for problem one. For run 1 the range
of X(I) was divided into grids of one~fifth., The final error was so
large (17202) at the end of run 1 that, on run 2, the grid size was
reduced to one-~-sixth to improve this error. The final error result;ng
from run 2 was smaller (11429) but still considered excessive. This is

probably due to the fact that the function defined by the problem has
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TABLE 1. RESULTS OF TEST PROBLEMS

The tabulation below gives the results of the various computer

runs made on the two test problems described in the GOSPEL report.

RUN GRID FINAL PARAMETER VALUES FINAL ITERA RUN TIME“f
NO. SIZE X(1) X(2) X(3) X(4) X(5) ERROR TIONS ON 6400

TEST PROBLEM NUMBER ONE

1 3 .6667 2,000  .6667  1.333  .6667  7.560 243 3 sec.
.6667  1.852  .8333  1.260  .6667  1.039 486 6 sec.
.6667  1.852  .8313  1.260  .6667  1.038 729 9 sec.
2 4 .5000  1.500  1.000  2.000  .5000  6.274 1024 11 sec.
.5781 1.398 .945 1.852 .5781 . 468 2048 22 sec.
.6036  1.397  .944  1.849  .5687  .318 3072 33 sec.
3 5 .4000  .1200  1.200  1.200  1.200 .169 3125 33 sec.
L4440 1,264  1.128  1.128  1.196 .043 6250 66 sec.
4388 1,263 1.126  1.126  1.199  .009 9375 99 sec.

TEST PROBLEM NUMBER TWO

1 5 . 4000 . 800 .400 1,200 2,000 21278 3125 22 sec.
.3920 .940 392 1.128  2.200 17333 6250 44 sec.
.3909 .947 391 1,127 2,242 17202 9375 66 sec,
2 6 .3333  1.000 .333  1.000 2,000 12018 7776 55 sec.
.3264 .991 .326 991 2.167 11429 15552 110 sec}i
3 5% .1000  1.100 .100 .900 1,080  22.88 3125 22 see,
| .1016  1.103 .102 .898  1.080  13.70 6250 44 sec;ﬁ

.1022 1.103 .101 .898 1.080 13.50 9375 66

*The Third run had different upper and lower bounds on X(I) than

the first run.
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a very sharp minimum, and in general, a grid search optimization stra¥"
tegy is unable to locate sharp minimums. The third run used very nar-

row upper and lower limits (see below) in the general area determined

by the results of other optimization strategies applied to the same

proﬁlem. ‘The final error was 13.50. The upper and lower limits used

were;
XL(1) = 0.07 Xu(l) = 0.12
XL(2) = 1.07 Xu(2) = 1.12
XL(3) = 0.07 Xu(3) = 0.12
XL(4) = 0.87 XUu(4) = 0.92
XL(5) = 1.07 Xu(5) = 1.12

As has been borme out by the test results, the grid search is: unable
to easily locate sharply defined optimum points. The large relative
computing time is also evident, 1ndicating the inefficiency of the method.
The increase in this time_as a function of the grid size is also readily
observed to be large even when the grid increment size is only one-third

or one-fourth of the total range of the individual paraméter range.

V. CONCLUSION
In this report the basic theory and implementation of a non-random
grid search optimization strategy has been discussed. This optimization
strategy is so defined that it will function as a integral part of the -
GOSPEL optimizatioﬁ software package described in an earlier report.
Afthough the grid search optimization strategy described herein is, in

general, not useful for accurately finding precise minimums. NeverthelééS;ﬁﬂ
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it does have considerable application. For example, it is useful;whw

the researcher desires to methodically cover a large area of N«diméﬁﬁi

sional space so that he may develop some information on the contoutsi
followed by some error function. 1t is also useful for making prelim-
inary studies to make a coarse evaluation of the topology of a problem

about which relatively little information is available.



-11-~

ACKNOWLEDGEMENT

The research described in this report was supported in part by th

Instrumentation Division of the Ames Research Center of the Natioﬁaif’
Aeronautics and Space Administration under Grant NGL~03—002~136."T£51; 
author wishes to express his appreciation to the grantee, and especiail& f
to Dr. W. J. Kerwin, Chief, Electronics Research Branch, Instrumentétibn
Division, NASA Ames Research Center, for the encouragement given to thisfﬁ
research project. The author also wishes to acknowledge the assistance

- of Mr. Glen Allgaier, who assisted in the development of the program..

REFERENCES

1, "“GOSPEL ~ A General Optimization Software Package for Electrica1'  f 
Network Design', by L. P. Huelsman, 94 pages, report prepared
under NASA Crant NGL 03-002-136, Sept. 1968.



] D
APPENDIX

Start
Print parameter and option data
Compute NC
©® >|
Compute values of Xi evenly spaced
between XL1 and XUi (1 =1, N)

and store in XM array

4

NY = PARAM,,
\:
Set j =1

N
ld

ITER = ITER + 1

Call COMB, ANLYZ, ERR

Is ITER > 17

Yes
l No

Xe, = X, (i =1, N)

YERRP : YERR

YERRX, | = 10°? @ = 1,87)

ya
Y

Test value of NOPT —-———————>» Call ORDER

=) 11 =1
=2

Print ITER, YERR, X, (1= 1, N)

V)

>
7

Is YERR < YERRP?

Ao

No

Yes ¥

YERRP = YERR

X, =X (=1,N
> | €
Is ITER > ITMAX?

lud Yes |

Is § < NC?

e

Flow Chart for Subroutine OPT1



-13-
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®

Flow Chart for Subroutine OPT1 (céntinued)
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Flow Chart for Subroutine ORDER
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Flow Chart for Subrcptine REDUC
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Flow Chart for Subroutine COMB
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