N69-35074 NASA CR 104/33

A GRID SEARCH OPTIMIZATION SUBROUTINE FOR

USE WITH THE GOSPEL OPTIMIZATION

SOFTWARE PACKAGE

CASE FILE COPY

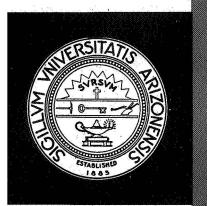
Prepared under Grant NGL-03-002-136 for the Instrumentation Division of the Ames Research Center National Aeronautics and Space Administration

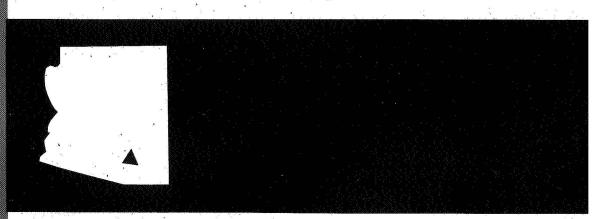
by

L. P. Huelsman

and

G. R. Allgaier





ENGINEERING EXPERIMENT STATION

COLLEGE OF ENGINEERING

THE UNIVERSITY OF ARIZONA

TUCSON, ARIZONA

A GRID SEARCH OPTIMIZATION SUBROUTINE FOR

USE WITH THE GOSPEL OPTIMIZATION

SOFTWARE PACKAGE

Prepared under Grant NGL-03-002-136 for the Instrumentation Division of the Ames Research Center National Aeronautics and Space Administration

by

L. P. Huelsman and G. R. Allgaier

Department of Electrical Engineering University of Arizona Tucson, Arizona

Abstract: This report describes a subroutine implementing an optimization strategy which supplements those described in an earlier report. The strategy is a grid search. The results obtained from applying this strategy to a pair of test problems are discussed.

TABLE OF CONTENTS

				Page
I.	Introduction	•	•	1
II.	The Grid Search Optimization Strategy	,•	•	2
III.	Grid Search Optimization Subroutine OPT1		٠	3
	Options			4
	Significant Variables		•	5
	Other Subroutines Used	•	•	6
IV.	Examples of the Use of OPT1	•		7
٧.	Conclusion		٠	9
Ackno	wledgement		jo	11
Refer	rences	•	•	11
Appen	ndix			
Flow	Chart for Subroutine OPT1	•	•	12
Listi	ing of Subroutine OPT1		٠	14
Flow	Chart for Subroutine ORDER		•	16
Flow	Chart for Subroutine REDUC		•	18
Flow	Chart for Subroutine COMB			18
	ing of Subroutine ORDER			19
Listi	ing of Subroutine COMB	• •	٠	19
Listi	ing of Subroutine REDUC		•	19

I. INTRODUCTION

This is one of a series of reports concerning the use of digital computational techniques in the analysis and synthesis of DLA (Distributed-Lumped-Active) networks. This class of networks consists of three distinct types of elements, namely distributed elements (modeled by partial differential equations), lumped elements (modeled by algebraic equations and ordinary differential equations), and active elements (modeled by algebraic equations). Such a characterization is especially applicable to the broad class of circuits referred to as linear integrated circuits, since the required fabrication techniques readily produce elements which may be referred to as "distributed", as well as producing elements which may be characterized as "lumped" and/or "active". The DLA class of networks is capable of realizing network functions with a wide range of properties. In addition, such realizations usually have fewer components and superior characteristics than realizations using only lumped elements, or realizations using lumped elements and active elements. The analysis problem for this class of network, however, is considerably more complex than the analysis problem for more restricted classes of networks. The synthesis problem is even more challenging, and the results achieved to date have been far from general.

One of the more promising approaches to the synthesis problem appears to be the use of optimization techniques. The experience of research workers in this field has indicated that in order to successfully apply optimization techniques to a wide range of problems, it is desirable to have available a varied collection of optimization strategies. To be fully useful, the individual strategies of such a collection must be so designed that any one of them can be applied to the same

problem, without requiring that the problem be modified. Thus, the individual optimization strategies can be considered as forming the elements of an optimization software package, in which various logical decisions can be incorporated as an "executive monitor" to successfully apply the different strategies in such a way as to obtain the best final results.

In a previous report the formulation of general problem structure and the development and testing of digital computer program incorporating a series of optimization strategies was described.

These strategies include such well known techniques as: random grid search, random direction and step size search, steepest descent,

Newton-Raphson, and Fletcher-Powell. The program was named GOSPEL

(for General Optimization Software Program for Electrical Networks).

In this report the development of one additional optimization strategy is discussed. This is a (non-random) grid search optimization strategy.

It is named OPT1. For conciseness, the material contained in the original report describing the general problem structure and the test problems has not been duplicated in this report. Thus, the reader should refer to the original GOSPEL report for the background material pertinent to the development contained in this report.

II. THE GRID SEARCH OPTIMIZATION STRATEGY

A grid search optimization strategy is a systematic testing of an entire range of values for a set of n parameters. These parameter values are determined by dividing the range of interest of each parameter into equal segments. Thus an initial range of values must be specified

as well as the <u>number</u> of values to be examined for each parameter. The grid search optimization strategy then procedes by examining all possible combinations of these parameter values and stores that combination which comes closest to meeting the design criterion. Several variations of this basic procedure are possible. For example, instead of storing just the single set of parameter values which gave the best result, it may be desirable to store several of the best sets of parameter values in order to make available a wide choice of starting points for use in other optimization strategies. Another possible variation is to set up a smaller range of values surrounding the best set of parameter values found in searching the original grid, and then make a further search of this reduced area.

A grid search of the type described above is not, in general, useful for an exact determination of a minimum of a specified error function. This is because (1) a large number of parameters may result in an impossibly large number of cases to be analyzed; (2) if the grid spacings are too large, it is possible that the program may completely miss a global minimum and find only local minima; and (3) if the grid spacings are too small the computation time may become excessive. Nevertheless, because the grid search optimization strategy does sample a large volume of parameter space, the grid search routine is useful in preliminary studies to determine the general nature of the topology of a given problem.

III. GRID SEARCH OPTIMIZATION SUBROUTINE OPTI

In this section, a subroutine named OPT1 which was written to implement a grid search optimization strategy is described. The

options which are available, and the additional subroutines required by the optimization strategy are described below.

Options

- 1. This option permits a decision as to whether to store more than one "best" value. The controlling variables for this option are NOPT (1,1) and PARAM(1,1). If the option is taken NOPT(1,1) = 1, the value of PARAM(1,1) is read to determine the number of "best" values to be computed and stored. Subroutine ORDER (see below) is then implemented to order and store these values. PARAM(1,1) may be set for any value from 2 to 10. If a value is not read-in for this parameter, it is initialized to a value of 5 by the subroutine. If the option is not taken NOPT(1,1) = 0, then only the single best set of parameters will be computed and stored.
- 2. This option permits a decision as to whether an extended printout of all the points sampled is to be made. The controlling variable is NOPT(1,2). If the option is taken $\sqrt{\text{NOPT}(1,2)} = \overline{1/}$, the subroutine will print the results of each trial thus permitting an evaluation of the topology of the entire region to be made. In addition, the best single result $\sqrt{\text{NOPT}(1,1)} = \overline{0/}$ or an ordered set of several of the best results $\sqrt{\text{NOPT}(1,1)} = \overline{1/}$ will be printed. If the option is not taken, $\sqrt{\text{NOPT}(1,2)} = \overline{0/}$, only the printout specified by NOPT(1,1) will be made.
- 3. This option permits a decision to make a local search around the best point previously found. The controlling variable for this option is NOPT(1,3). If the option is taken $\sqrt{\text{NOPT}(1,3)} = \overline{1/}$, the range of the search area as defined by the variables XU(I) and

XL(I) is reduced to a value of one-half the former step size on either side of the parameter values which determine the best point previously found. The search is then repeated on this reduced grid using the same number of values for each parameter. At the conclusion of this local search, this reduction process is again repeated. The reduction process will continue until the error is less than ERMIN or the number of iterations exceeds ITMAX. If this option is not taken $\sqrt{NOPT}(1,3) = 0\overline{1}$, the program will terminate after searching the entire grid or when the number of iterations exceeds ITMAX.

Significant Variables

Some of the significant variables which are not part of the common array of variables listed in the original GOSPEL report are listed below.

- YERRX(I,J) an array which stores the I best values determined by the program. For J = 1, YERRX(I,J) stores the error associated with the Ith best set of parameter values. For the range of I from 2 to N + 1, YERRX(I,J) stores the values of the N parameters which specify the Ith best point.
- XM(I,J) an array which stores up to J values of each of the I parameters. These are the values which determine the grid points which are to be tested. J may have a different value for the various parameters. The maximum value of J which is permitted by the dimensioning of the program is 20. Thus, this is the maximum number of values of any one parameter which can be used.

- NY the number of the best values of the parameters which are to be stored and printed $/\bar{t}$ his is equal to PARAM(1,1) $/\bar{t}$.
- NC the total number of combinations of sets of parameter values which are to be tested. This is equal to the product of the quantities KX(I) which specify the number of values of the Ith parameter (I = 1, 2, ..., N).

Other Subroutines Used

There are three subroutines which are used in connection with the subroutine OPT1. These are:

- SUBROUTINE COMB(K,A,NA,NV,AV) This subroutine is used to produce all possible combinations of the parameter values. K is index for the combination number. A is a two-dimensional array of elements A(I,J) in which are stored the Jth value of the Ith parameter. NA is a one-dimensional array with element NA(I) which specify the number of values of the Ith parameter. NV is the number of parameter combinations. AV is a one-dimensional array with elements AV(I) giving the resulting vector of parameter values corresponding with the Kth combination.
- SUBROUTINE ORDER (YERR, NY, YERRX, X) This subroutine compares

 the value of the error YERR computed by the subroutine ERR

 (see the original GOSPEL report) for the current set of parameter values, and ranks this value of YERR in descending order in the YERRX array. NY such values of error are stored along with the associated parameter values.
- SUBROUTINE REDUC This subroutine reduces the range of parameter values to plus or minus one-half of the former step size for

each parameter. This is done by computing new values of XU(I) and XL(I). All input and output of information to this subroutine is made through the labeled common array.

IV. EXAMPLES OF THE USE OF OPT1

The grid search subroutine OPT1 was applied to the test problems described in the GOSPEL report. The data for the various runs is summarized in Table 1. Some comments on these runs follow:

In test problem one, all runs gave a good error result, and, as the grid size was reduced, the error became smaller. The final parameter values for different grid sizes were considerably different from each other, however, indicating the importance of finer search gradations. The second and third lines of data shown in the table for each run resulted from local searches about the previous "best" parameter values. The values of XL(I) were 0.0 for all parameters and the values of XU(I) were 2.0 for all parameters. Although the final error was low, the total computer time required to obtain this error was quite high in comparison with that required by other optimization strategies. For such a comparison the reader is referred to the original GOSPEL report.

In test problem two, the same upper and lower bounds of X(I) were used for runs 1 and 2 as were used for problem one. For run 1 the range of X(I) was divided into grids of one-fifth. The final error was so large (17202) at the end of run 1 that, on run 2, the grid size was reduced to one-sixth to improve this error. The final error resulting from run 2 was smaller (11429) but still considered excessive. This is probably due to the fact that the function defined by the problem has

TABLE 1. RESULTS OF TEST PROBLEMS

The tabulation below gives the results of the various computer runs made on the two test problems described in the GOSPEL report.

RUN NO.	GRID SIZE	X(1)	FINA X(2)	L PARAMET X(3)	ER VALUES X(4)	X(5)	FINAL ERROR	ITERA TIONS	RUN TIME ON 6400
		•	,	TEST PR	OBLEM NUM	BER ONE		· · · · · · · · · · · · · · · · · · ·	
1	3	.6667	2.000	.6667	1.333	.6667	7.560	243	3 sec.
		.6667	1.852	.8333	1.260	.6667	1.039	486	6 sec.
		.6667	1.852	.8313	1.260	.6667	1.038	72 9	9 sec.
2	4	. 5000	1.500	1.000	2.000	.5000	6.274	1024	11 sec.
		.5781	1.398	.945	1.852	.5781	. 468	2048	22 sec.
		.6036	1.397	.944	1.849	.5687	.318	3072	33 sec.
3	.5	.4000	.1200	1.200	1.200	1.200	.169	3125	33 sec.
		.4440	1.264	1.128	1.128	1.196	.043	6250	66 sec.
		.4388	1.263	1.126	1.126	1.199	009	9375	99 sec.
				TEST PR	OBLEM NUM	BER TWO			
1	5	.4000	.800	.400	1.200	2.000	21278	3125	22 sec.
		.3920	.940	.392	1.128	2.200	17333	6250	44 sec.
		.3909	.947	.391	1.127	2.242	17202	9375	66 sec.
2	6	.3333	1.000	. 333	1.000	2.000	12018	7776	55 sec.
		.3264	.991	.326	.991	2.167	11429	15552	110 sec.
3	5*	.1000	1.100	.100	.900	1.080	22.88	3125	22 sec.
V .		.1016	1.103	.102	. 898	1.080	13.70	6250	44 sec.
		.1022	1.103	.101	.898	1.080	13.50	9375	66 sec.

*The Third run had different upper and lower bounds on X(I) than the first run.

a very sharp minimum, and in general, a grid search optimization strategy is unable to locate sharp minimums. The third run used very narrow upper and lower limits (see below) in the general area determined by the results of other optimization strategies applied to the same problem. The final error was 13.50. The upper and lower limits used were:

XL(1) =	0.07	XU(1)	=	0.12
XL(2) =	1.07	XU(2)	==	1.12
XL(3) =	0.07	XU(3)		0.12
XL(4) =	0.87	XU(4)		0.92
XL(5) =	1.07	XU(5)	=	1.12

As has been borne out by the test results, the grid search is unable to easily locate sharply defined optimum points. The large relative computing time is also evident, indicating the inefficiency of the method. The increase in this time as a function of the grid size is also readily observed to be large even when the grid increment size is only one-third or one-fourth of the total range of the individual parameter range.

V. CONCLUSION

In this report the basic theory and implementation of a non-random grid search optimization strategy has been discussed. This optimization strategy is so defined that it will function as a integral part of the GOSPEL optimization software package described in an earlier report.

Although the grid search optimization strategy described herein is, in general, not useful for accurately finding precise minimums. Nevertheless,

it does have considerable application. For example, it is useful when the researcher desires to methodically cover a large area of N-dimensional space so that he may develop some information on the contours followed by some error function. It is also useful for making preliminary studies to make a coarse evaluation of the topology of a problem about which relatively little information is available.

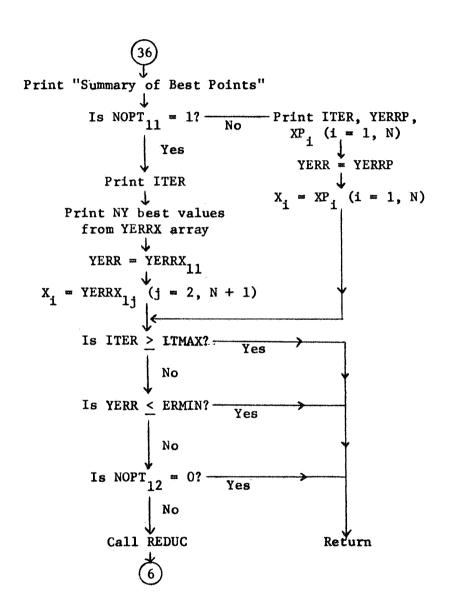
ACKNOWLEDGEMENT

The research described in this report was supported in part by the Instrumentation Division of the Ames Research Center of the National Aeronautics and Space Administration under Grant NGL-03-002-136. The author wishes to express his appreciation to the grantee, and especially to Dr. W. J. Kerwin, Chief, Electronics Research Branch, Instrumentation Division, NASA Ames Research Center, for the encouragement given to this research project. The author also wishes to acknowledge the assistance of Mr. Glen Allgaier, who assisted in the development of the program.

REFERENCES

 "GOSPEL - A General Optimization Software Package for Electrical Network Design", by L. P. Huelsman, 94 pages, report prepared under NASA Grant NGL 03-002-136, Sept. 1968.

Flow Chart for Subroutine OPT1

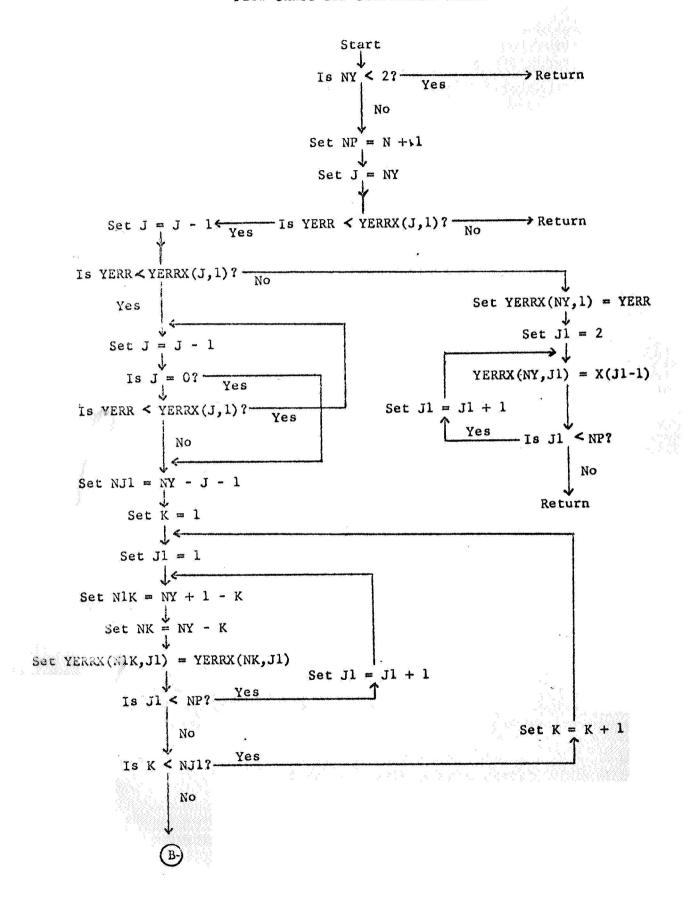


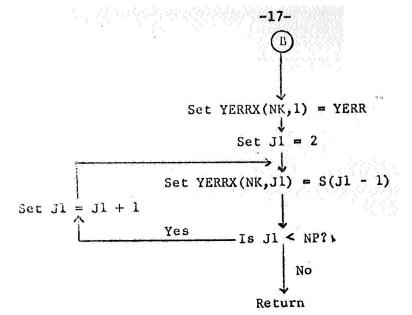
Flow Chart for Subroutine OPT1 (continued)

```
SHOULD INF OF IT
                                     ORIO SEANCE OPIL JUNITOR SUBBOULTER
                       C
                       C
                                     FOR COC 6400, HUFL SAMM, JUST 1964
- 000002
                                     CORMON JUNION (20) . XL (20) . XH (20) . X (20) . XH (20) . H (20) . H (20) . X (20) . H (20)
                                   1,G(20), DAYAM(10,7), MOPT(10,10), T, Uri, YERRALTED, FF TA & ITMAX, ALFA (8)
                                     DIMENSION XM (20.20)
  200000
                                     DIMENSION YFRAX (14.21)
  2000002
  200000
                                     DATA YERRX/21000.0/
  200000
                                     PRINT 110
                           110 FORMAS (///IXPORT) GILLO SEARCH SUBBOUTINE HAS FEED CALLEDY/)
  000006
  000006
                                     JF (PAHAM (1.1) . FU. C.) PAHAM (1.1) == .
  000010
                                     (S. (= T. ) ( ( - ( ) - ( ( - ( ) + AS) + ( ( - ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + 
  000025
                            120 FORMAT (
                                   11X4PAHAM(1.1)-NU "SER OF HEST VALUES TO HE PHISTED. #EIG.3/
                                   21x#NCP1(1.1)-PRIM1 MANY VALUES(1=YES,0=N0,2=ALI). #12/
                                   31x4NCPT(1,2)-MAKE_LOCAL_SFAHCH(1=YES,0=NO).......412/)
   000025
                                5 ITFR=U
   920000
                                     1 C=1
   000027
                                     no 30 I=1.N
                               30 VC=NC+KX(T)
   000031
                                 6 00 10 J=1.N
   000037
                                     KKP=KX([)
   000041
   000043
                                     XKP=KX(()-1
   000046
                                     XDIF=(XU(T)-XL(I))/XKP
   000052
                                     DO 10 -= 1.KKH
   000054
                                      x J=J-1
   000056
                               10 XM([+J)=XJ#XUIF + XL([)
   000071
                                     NY=PARAM(1.1)
                                     00 35 J=1,NC
   000073
   000074
                                      ITEH=ITEH+1
                                      CALL COME (J. XM. KX. N. X)
   000076
   000101
                                      CALL ANLYZ
                                      CALL ENH
   000102
   000103
                                      IF (ITEA.GT.1) GO TO 310
   000107
                                      DO 300 1=1.10
                             300 XP(I)=X(I)
   000110
   000115
                                      YERRP=YERR
   000117
                                      00 305
                                                         1=1 + 10 Y
   000120
                             305 YERRX (1,1)=1.c+44
                             310 [F(NCPI(1.1)-1) 15.312.315
   000125
   000130
                             312 CALL UNUER (NY YERRX)
   000132
                                      GO TC 34
                             315 PRINT 14. TTER . YEUR
   000133
   000143
                               14 FORMAT(1HA*ITFRATION*I4.5X*ERROR=*E12.5)
                                      PRINT 16. (X(1), I=1.N)
   000143
                               16 FORMAT (1X*X(I)=*5(E10.3,1X))
   000156
   000156
                               15 IF (YEHH-YEHHY) 20,34,34
   000161
                               20 YERRE=YERR
   000163
                                      DO 25 I=1.N
   000164
                               25 XP(I)=X(I)
                               34 IF (ITEH . GE . ITMAX) GO TO 36
   000171
   000174
                               35 CONTINUE
    000176
                               36 PHINT 211
   000505
                             211 FORMAT(/IHO#SUMMARY OF BEST POINTS#)
   000202
                                      IF (NCP1(1.1) . ME. 1) GO TO 320 .
    000204
                                      PRINT 215. TIEN
   000212
                             215 FORMAT (MOTOTAL ITERATIONS#14/)
```

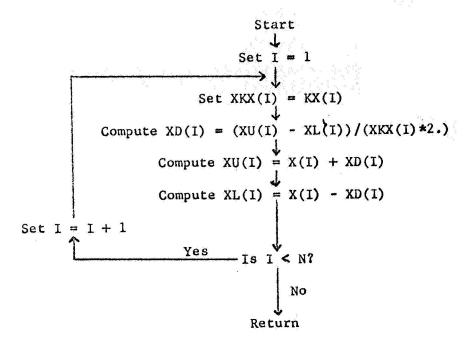
```
アセンコンナー
000515
                                          -15-
000214
                no slu I=1. W
000216
                (1.1) APHRY (1.51S TAIGR
000226
            212 FORMAT (1404000. 413, 3, 44 KROD = 4 (12.5)
922000
                 PRINT 16. (YEKRX (1.J)).J1=2.MP2)
            210 CONTINUE
000243
000246
                 YERR=YERRX(1.1)
000247
                M. [=1 055 00
000251
                 JP=I+1
000253
            220 X(I)=YEHAX(I,JP)
192000
                 en TC 335
292000
            320 1=1
000263
                PPINT 212.1.YERRY
000273
                 PRINT 16. (XP(1). (=1.K)
000306
            325 YERR=YERRA
000310
                 po 330
                          1=1.5
000311
            330 X(1) = XF(1)
000316
            335 IF (ITEH GE . LTMAX) RETURN
                    (YERR . LE . LUMIN) RETURN
000322
                 IF (NOPT (1.2) . EQ. 0) RETURN
000326
                 CALL REDUC
000330
000331
                 60 TC 6
000332
                 END
```

Flow Chart for Subroutine ORDER

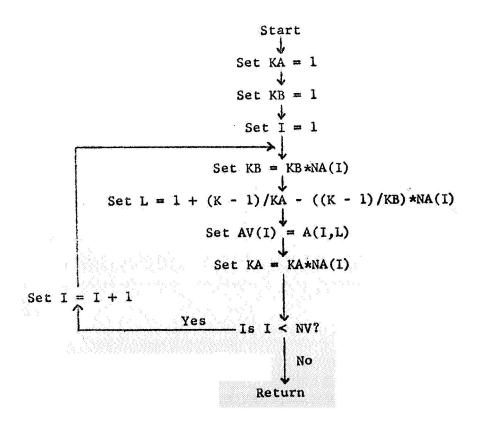




Flow Chart for Subroutine REDUC



Flow Chart for Subroutine COMB



SUMMOUTING UNDER LYENH, NY. YERRX. A)

```
COMMON JOBINY (50) + YP (50) + XA (50) + KX (50) + XB (50) + H (50) + B (50) + M (50)
000007
               1.G(20) .PARMM (10.7) .NOPT (10.10) .N. NH. YERR. ITEM. ERMIN. ITMAX. ALFA (H)
                DIMENSION YERRX (10,21)
900007
                 TF (NY.LI. 2) HETHRN
000007
                MP=N+1
  0012
                 J=NY
000014
                 IF (YERR-YERRX (J.1)) 105,105,125
000015
000020
            105 J=J=1
               IF (YEHR-YEHRX (J.1)) 305,305,310_
550000
            305 J=J-1
000025
                (F(J) 110,110,115
750000
            115 IF (YERR-YERRX(J.1)) 305,305,110
000030
            1-1.-YM = [LM 011
000033
                 00 120 K=1.NJ1
000036
                00 120 J1=1.NP
000037
                 NIK=NY+1-K
000040
000043
                NK=NY=K
            120 YERRX (NIK.JI) = YERRX (NK.JI)
000044
                 YERRX (NK.1) = YERR
000055
                 94.5=16 025 00
000057
            520 YERRX (NK.J1) =X (J1-1)
000060
                 GO TO 125
000070
             310 YERRX (NY. 1) = YERR
000070
                 DO 315 J1=2.NP
000072
             315 YERRX (NY, J) = X (J1-1)
000074
             125 CONTINUE
000104
             130 RETURN
0001n4
                 END
000105
                 SUBROUTINE CUMB (K.A.NA.NV.AV)
                 DIMENSION A (20,20) . NA (20) . AV (20)
000010
                 KAml
000010
000011
                 KHEL
000012
                 DO 110 I=1.NV
                KH=KH#NA(1)
  0013
                 L=1+(K-1)/KA-((K-1)/KB) #NA(I)
000016
                AV(I) = A(I_{\bullet}L)
000030
          110 KA=KA*NA(I)
000034
                 RETURN
000061
000041
                 END
                 SURROUTINE HEDUC
                 COMMON /OPI/x(20) +xL(20) +XU(20) +Kx(20) +XP(20) +H(20) +R(20) +W(20)
200000
                1.G(20) , PARAM(10.7) , NOPT(10.10) . N. NH. YERR. ITER, ERMIN, ITMAX. ALFA(8
                 DIMENSION XKX (20) - XU (20)
000002
                 00 10 I=1.N
000002
                 XKX(I)=KX(I)
 10004
                 XD(I) = (XU(I)-XL(I))/(XKX(I)+2.)
000007
                 YU(I) = \lambda(I) + \lambda U(I)
A10000
              10 XL(I)=X(I)-XD(I)
000022
000030.
                 RETURN_
                 END
000031
```