General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

ESB Incorporated The Carl F. Norberg Research Center Yardley, Pennsylvania The Exide Missile and Electronics Division Raleigh, North Carolina

HEAT STERILIZABLE IMPACT RESISTANT CELL DEVELOPMENT

JET PROPULSION LABORATORY CONTRACT NO. 951296

REPORT FOR FOURTH QUARTER, 1968 OCTOBER 1 TO DECEMBER 31, 1968

"This work was performed for the Jet Propulsion Laboratory, California Institute of Technology, sponsored by the National Aeronautics and Space Administration under Contract NAS7-100."

Prepared by: G. W. BODAMER Program Director Approved by: R. A. SCHAEFER Director of Research

A. M. CHREITZBERG Assistant Director of Engrg. G. S. HARTMAN Director of Engineering

NOTICE

This report was prepared as an account of Government-sponsored work. Neither the United States, nor the National Aeronautics and Space Administration (NASA), nor any person acting on behalf of NASA:

- (a) Makes warranty or representation, expressed or implied with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately - owned rights; or
- (b) Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used above, "person acting on behalf of NASA" includes any employee or contractor of NASA, or employee of such contractor, to the extent that such employees or contractor of NASA, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment with such contractor.

Requests for copies of this report should be referred to:

National Aeronautics and Space Administration Office of Scientific and Technical Information Washington 25, D. C.

Attention: AFSS-A

HEAT STERILIZABLE, IMPACT RESISTANT CELL DEVELOPMENT

JET PROPULSION LABORATORY CONTRACT NO. 951296

REPORT FOR FOURTH QUARTER 1968 OCTOBER 1 TO DECEMBER 31, 1968

ABSTRACT

Further data were accumulated during this Quarter which exonerated the separators SWRI-GX, RAI-110, and RAI-116; the absorber EM-476; and polyphenylene oxide PPO 531-801 or PPO 534-801 from responsibility in causing low capacity or gassing during formation. However, the presence of excessive vapors of Catalyst 11 (sometimes used for curing epoxy resins) reduced the amount of current which could be withdrawn at higher rates of discharge. In the case of cells sealed with DEN438 EK85/Hardener 927, some sensitivity to resin/catalyst ratio seemed to appear. The most severe effects were caused by the presence of a heat shrinkable polyolefin tubing used as insulation on plate leads. It is thought that a flame retardant or a stabilizer added to this tubing is the culprit. In any case, replacement of the tubing with Teflon has corrected the problem.

Work has continued on cycling prior to heat sterilization but no specific recommendations are made at this time.

The emphasis of the contract has been redirected from battery to cell development. Cell performance after 72 or 100 hours of sterilization in the wet and sealed condition has improved to the extent that the following characteristics have been achieved during the first discharge after formation:

Model	Capacity	Mean Voltage	Energy	Energy De	nsity Rate
No.	AH to 1.25V	(Volts)	Watt-Hours	WH/1b.	Amps.
281	11	1.49	16.4	43	3.3
172	34	1.49	51	49	8.0
364 /	89	1.49	133	52	20.0

Wet life as a function of separator wet thickness has been estimated. The cycle life of 24 amp-hr cells after heat sterilization is now limited by AgO penetration. An increase in the number of layers of SWRI-GX separator from 6 to 9, an increase in ZnO/Ag ratio, and the use of sintered Teflon-ated negatives in more recently constructed cells are changes directed toward attaining ninety 50% DOD cycles in 18 months of wet charged life with or without 4000 g shock resistance.

- i -

TABLE OF CONTENTS

1

T

ABSTRACT,	• •	٠	,	٠	*	*	•	•	•	•	٠	•	*		•	٠	•	٠	.i
TABLE OF CONTEN	VTS	•		•	•	•	٠	٠	•	•	•	•	٠	•	•	•	•	•	.ii
LIST OF TABLES .		٠	ø	•	ð	•	•	•	•	•	A .	٠	•	•	•	•	•	•	.iii
LIST OF FIGURES	9 *				•		•	٠	•	•		•		•	٠	•		٠	.iv

ELECTROCHEMISTRY

Ι.	VARIATION IN CAPACITY AND PRESSURE OF CELLS 1
II.	STERILIZATION OF CYCLED CELLS
III.	LONG CYCLE LIFE DESIGN

FABRICATION AND TESTING OF CELLS

I.	HEAT STERILIZABLE - HIGH IMPACT 5.0 AH AND 25 AH BATTERIES
II.	DEVELOPMENT OF 48 AH HIGH CYCLE LIFE, HEAT STERILIZABLE CELL - TASK 10
III.	DEVELOPMENT OF 1200 WATT-HOUR BATTERY CELLS - TASK 11
IV.	DE VELOPMENT OF 400 WATT-HOUR 4,000 "G" IMPACT BATTERY CELLS - TASK 12
v.	DEVELOPMENT OF 400 WATT-HOUR SECONDARY BATTERY - TASK 13
VI.	CONCLUSIONS AND RECOMMENDATIONS
	PROJECT PERSONNEL

South States

independences of the second se

- ii -

LIST OF TABLES

1

TABLE I	SUMMARY OF THE STERILIZATION EFFECTS OF ORGANIC COMPOUNDS ON CELL CAPACITY
TABLE II	EFFECT ON PERFORMANCE OF SEALED STERILIZED CELLS CAUSED BY VARIATION OF EPOXY RESIN/ CATALYST RATIO
TABLE III	PERFORMANCE OF Ag.Zn CELLS, STERILIZED FOLLOWING CYCLING
TABLE IV	EVALUATION OF DESIGN FOR EXTENDED CYCLE LIFE
TABLE V	EFFECT OF CELL SEALANT AND CURE METHOD ON FORMATION CHARGE ACCEPTANCE AFTER 120 HOUR HEAT STERILIZATION AT 135°C
TABLE VI	MODEL 172 CELLS ON AUTOMATIC CYCLING 17
TABLE VII	DESIGN REQUIREMENTS FOR 70 AH WET HEAT STERILIZABLE CELL
TABLE VIII	DESIGN OBJECTIVES FOR 25 AH 4000 "G" IMPACT SECONDARY CELLS
TABLE IX	DESIGN OBJECTIVES FOR 25 AH WET HEAT STERILIZABLE SECONDARY CELLS 32

- <u>iii</u> -

LIST OF FIGURES

7

1

T

FIGURE 1	Ni BOMB WITH TEFLON INSERT
FIGURE 2	DISCHARGE CHARACTERISTICS - MODEL 281 CELLS
FIGURE 3	EFFECTS OF ABSORBER AND NEGATIVE ADDITIVE ON CAPACITY DURING AUTO-CYCLING OF MODEL 172 (24-AH) CELLS
FIGURE 4	MODEL 172 CELL VOLTAGE VS. PULSE DISCHARGE
FIGURE 5	MODEL 172 (379) CELL DIMENSIONAL AND CUT-A-WAY VIEW
FIGURE 6	MODEL 364 SEALED CELL CYCLE LIFE DISCHARGE CHARACTERISTICS SEALED-STERILIZED
FIGURE 7	DEVELOPMENT MODEL 364 HEAT- STERILIZABLE HSS80 AG-ZNO CELL
FIGURE 8	NINE-PLATE EXPERIMENTAL CELLS FOR TESTING PLATES
FIGURE 9	WET HEAT STERILIZED CELL LIFE VS. NUMBER OF LAYERS SWRI-GX MEMBRANE

- iv -

ELECTROCHEMISTRY

I. VARIATION IN CAPACITY AND PRESSURE OF CELLS

A. Introduction

-

4 .

The ability to build cells producing about 0.35 amp-hrs/g Ag and no pressure on a consistent basis has been the objective of the Fourth Quarter of 1968. When cells are constructed in Teflon inserts and sealed in nickel bombs prior to sterilization, the capacity and pressure were reproducibly good. However, when the cells were constructed in polyphenylene oxide cases and sealed with various epoxy systems prior to sterilization, the capacity varied from 0.25 to 0.38 amp-hrs/g Ag. In addition, the cells with low capacity developed gas pressure. The following discussion continues the work described in previous quarterly reports which had been predicated on the assumption that some organic material caused the undesirable effects.

B. Effect of Organic Components

In order to examine the effect of organic components on the capacity of cells following sterilization in the sealed condition, a number of experiments have been conducted in containers consisting of Teflon inserts sealed in nickel bombs. The design is shown in Figure 1, which was inadvertently omitted from previous quarterly reports. The nickel cap, not shown on the drawing, is caused to form a good seal by wrapping the threads of the lower portion of the bomb with Teflon tape. The cap also has attached to it a pressure gage. Leads from the electrodes are brought over the top of the Teflon insert, down the grooves, and attached to the electrical feed-through which is insulated from the bomb.

The data of this study are shown in Table I. Except for the first three cycles of one cell, 4B, containing the separator SWRI-GX alone (out of a total of five such cells). and one of the cells, 15B, containing Catalyst DMP-30, the capacity of the cells whether sterilized or not was around 0.35 amp-hrs/g Ag. The reason for the low initial capacity of cell 4B is not obvious, but by the end of four cycles, it had a capacity of 0.36 amp-hrs/g Ag, and the fact that other cells containing GX separator performed well indicate that the GX component did not reduce the cell capacity. On the other hand, the data for DMP-30, when interpreted along with other data which will be presented later, indicate that this catalyst could affect cell capacity.

Another effect which is not obvious from Table I is the rate at which the capacity was obtained from the cells. Usually, about 5.5 amp-hrs of the capacity is removed during the first stage of discharge which is a higher rate discharge (2.0 amps), whereas only about 1 amp-hr is obtained at

- 1 -

FIGURE 1

Ni Bomb With Teflon Insert

NOTE:

Electrical feed through not shown on back side

TABLE I

Summary of the Sterilization Effects of Organic Compounds on Cell Capacity (Experiments in Teflon Inserts in Nickel Bombs)

		Capacity	(AH/g	Ag)				
Excess Head Space	lst Di	schg.	2nd Dis	schg.	3rd Di	schg.	4th Dise	chg.
	A	В	A	В	A	m	A	n B
(I) GX, 476 Unster.	.34	.32	. 33	.30	, 33	.31	. 34	30
(2) GX, 476 Ster. *	.33	. 33	. 33	. 32	.35	35	90	36
Limited Head Space)))	
(3) GX alone. Unster.	.39	.40	. 35	• 39	.37	37	37	27
(4) GX alone ster.	. 39	. 24	.39	. 26	0	- e - e)	
42.) 11 11 11	. 35	.36	.32	37	, L , (,	, , , ,	ţ	
4b) ¹¹ ¹¹ ¹¹	.38		•	a }) •		i I	I
(5) GX, 531-801 ster.	.34	. 33	.36	.35	37	ц	1	
(6) GX, cured DEN/		.) ;	⇔) •))	1	ł
DMP30 Ser.	.35	.40	.35	35	с С	37		
(7) GX alone; cell heated			ł)))	-) -	I)
at 160°F for 16 hrs.								
in N2 before activa.		J						
and ster.	.36	ł	. 35		I	I	ì	I
(8) GX, 534-801 ster.	.35	.34	.35	.34	.35	35	35	33
8a) ¹¹ 11 11	. 39	.40	ı	1	I	- 1)
(9) GX, DEN etc. cured								i
in activated and sealed								
bomb before ster.	.35	.34	. 35	.34	. 35	5	34	32
10) RAI-110 alone ster.	.37	.39	.37	1	.37)) =	36)
11) RAI-116 alone ster.	.36	.40	.35	ı	.37	1	36	i i
12) GX, PPO, and uncured				J.	•)	l
epoxy ster.	.40	. 39 1	ł	I	I	1	I	
13) GX, cell heated at						l.	l	1
160°C for 16 hrs. in								
air before activa.								
and ster.	.40	.40	I	ł	I	I	I	;
14) GX, with no allowance								i
for expansion, ster.	.40	.40	I	ı	ł	ł)	Ţ

- 3 -

* All cells sterilized at 135°C for 120 hours.

Summary of the Sterilization Effects of Organic Compounds on Cell Capacity (Experiments in Teflon Inserts in Nickel Bombs) TABLE I (continued)

•		ΰ	apacity	(AH/g Ag	() ()				
Exce	ss Head Space	lst Dis	chg.	2nd Dis	schg.	3rd Dis	schg.	4th Dise	chg.
		A	Д	A	ıщ	A	m ا	A	
(15)	GX, DMP=30 **								I.
	alone ster.	. 35	, 31	. 33	.31	.34	ľ	.36	i
(16)	GX, DEN438 EK85 **								
	alone ster.	.37	. 38	т, С	.38	.35	ŧ	.35	
(17)	GX, Catalyst 11 **								
	alone ster.	.37	.37	. 39	. 39	ı	ſ	3	ı
(18)	GX, EM-476						,		
	alone ster.	• 38	.38	.37	.38	.37	.37	.37	.36

** DMP-30, DEN438 EK85, and Catalyst 11 were contained in the annular space between the Teflon insert and the nickel bonzb.

an ensuing lower rate (0.40 amp). For cells 17A and B which contained Emerson and Cumings Catalyst 11 vapors, about 3.00 amp-hrs were obtained at each stage of discharge. The long second stage discharge may be related to surface films which create high cell resistance. As measured by the Wayne-Kerr bridge, resistances of cells 17A and B were higher than those of normal cells. Experiments are being conducted to determine if a relationship exists between cell impedance and discharge rates.

The final conclusion from the data on organic components is that the materials studied when used properly are not responsible for the capacity loss nor the gas pressure developed in cells sealed then sterilized. However, an excess of either the epoxy resin DEN438 EK85 or the catalyst Hardener 927 may affect the performance of the cells as shown in Table II.

Cells 89-1 and 2-2 having the smallest and the largest ratio of catalyst/ resin respectively had lower capacities than the cells having formulations approaching the recommended ratio of 15:100. There was also an effect on the rate at which the capacity could be obtained for cell 89-1.

II. STERILIZATION OF CYCLED CELLS

The use of Compound 323-43 has been shown in previous studies to be essential for heat sterilized cells. Recently, consideration has been given to the possibility of sterilizing the cell after cycling. Cycling before sterilization of the cells is a desirable technique because it would permit the matching of cells before they are assembled as batteries and mounted on the spacecraft. Moreover, by cycling the cells before sterilization, metallic mercury is present during sterilization. Thus, HgO could be used in the negative mix. Table III shows some performance data of cells sterilized after cycling. All five cells had 3% HgO rather than Compound 323-43, but cells 6-4 and 6-5 had silver electrodes which were pretreated with a solution containing a variation of Compound 323-43. The three cells, 6-1, 6-2, and 6-3 which were untreated lost capacity after sterilization whereas the two that were pretreated maintained good capacity. Further testing along this line is planned.

III. LONG CYCLE LIFE DESIGN

A preliminary cell design including some features for long cycle life was evaluated. The features included were as follows: (1) One layer of polypropylene EM-476 was placed adjacent to the silver electrode; (2) ten layers of GX separator; and (3) a ratio of ZnO/Ag greater than 1. For easier insertion of the elements into the cell jar, the silver electrodes were wrapped, these being slightly smaller than the zinc electrodes.

The theoretical capacity ratio of 1.2:1 for zinc oxide to silver may be increased for future life studies. The results of the evaluation are shown in Table IV. The capacities of about 0.33 amp-hrs/g Ag were acceptable.

- 5 -

Effect on Performance of Sealed Sterilized Cells Caused by Variation of Epoxy Resin/Catalyst Ratio Resin: DEN438 EK85; Catalyst: Furane Plastic Hardener 927

		,			
Cell Number Catalyst/Resin ratio	89-1 11.7:100	99-1 14:100	100-1 17.5:100	2-1 16.4:100	2-2 20:100
Formation Charge:) ; ;
Amp. hrs. Step 1	4.21	3.82	3 87	010	r r
Amp. hrs. Step 2	0.73	1.60	1 25	1,20	3. (D
Amp. hrs. Total	4.94	5.42	5 12	ос , т	1.19
Amp. hrs/gm Ag	0.336	0.368	0.348	0, 378	4, 45 0, 336
Discharges:					
First - Step 1 (100 ma/sq. in)	2.01	4.41	4 02	C0 1	0 / c
Step 2 (20 ma/sq. in)	2.10	0.60	0.78	4. VC	0.0 10 0
Amp. hrs., Total	4.11	5.01	4.80	4 82	0.01 4 50
Amp. hrs/gm Ag.	0.279	0.340	0, 320	0.327	7. 306
Second - Step 1	2.55	4.41	4, 02	4 N2	07 6
Step 2	1.76	0.60	0, 78	0 80	0,07 0 01
Amp. hrs. Total	4.31	5.01	4, 80	4.82	4 50
Amp. hrs/gm Ag	0.293	0.340	0.326	0.327	1, 306 0, 306
Third - Step 1	3.00	4.41	4 20		
Step 2	1.45	0.60	0.71	4. 11 0 84	64.0 67.0
Amp. hrs., Total	4.45	5.01	5.00	4, 95	4 71
Amp. hrs/gm Ag	0.300	0.340	0.340	0.336	0.320
Fourth - Step 1	3.33	4.35	4.38	4.11	3 03
Step 2	1.23	0.60	0.60	0. 65	0.58
Amp. hrs., Total	4.56	4.95	4.98	4.76	4.5.
Amp. hrs/gm Ag	0.310	0.336	0.338	0.323	0.307

TABLE II

ŧ

• :

TABLE II (continued) Effect on Performance of Sealed Sterilized Cells Caused by Variation of Epoxy Resin/Catalyst Ratio Resin: DEN438 EK85; Catalyst: Furane Plastic Hardener 927

Cell Number	89-1	, I-99	100-1	2-1	2-2
Catalyst/Resin ratio	11.7:100	14:100	17.5:100	16.4.100	20.100
Discharges:					
Tifth - Step 1	3,15	4.17	4,44	4, 05	3, 99
Step 2	1.43	0.60	0.42	1, 02	0.71
Amp. hrs., Total	4,58	4.77	4.86	5,07	4, 70
Amp. hrs/gm Ag	0.311	0.324	0.330	0.344	0.319
	- first discharge				
After 30 min.	1.432	1.528	I.557	I,454	1.470
After 60 min.	1.330	1.438	1.416	1.417	1.410
After 90 min.	42	1.420	I, 393	I.393	1.383
After 120 min.	Ъ.	1.380	1.331	1.344	1

Performance of Ag-Zn Cells, Sterilized Following Cycling TABLE III

Cell Number	6-1	6-2	6-3	6-4	6-5
Positives	Std	Std	Std	Treated	Treated
				(see Text)	(see Text)
Additive to Negative, Percent	HgO, 3	HgO, 3	HgO, 3	HgO, 3	HgO, 3
Formation Charge					
Step 1, Amp hrs	4.95	4.98	4.91	5.39	5.07
Step 2, Amp hrs	0.51	0.48	0.42	0, 15	0.29
Amp. hrs., Total	5.46	5.46	5, 33	5.54	5.36
Amp. hrs/gm Ag	0.371	0.371	0.362	0.377	0.364
Discharges - before sterilization:					
First - Step 1, 100 ma/sq in.	4.92	4.95	4.77	4,74	4, 38
Step 2, 20 ma/sq in.	0.25	0.29	0.31	0。29	0.46
Amp hrs Total	5.17	5,24	5.08	5.03	4.84
Amp. hrs/gm Ag	0.351	0.356	0,345	0.342	0.329
Amp. hrs/gm					
After sterilization:					
Second - Step 1, 133 ma/sq in.	2.44	0.60	2.28	3, 28	0, 88
Step 2, 20 ma/sq in.	1.46	3.11	1.41	1.18	4.28
Amp. hrs, Total	3.90	3.71	3.69	4.46	5.16
Amp. hrs/gm Ag	0.265	0.252	0.251	0.303	0.351
Third - Step 100 ma/sq in.	4.05	3.66	3.i6	3.99	3.96
Step 2 20 ma/sq in.	0.76	I.05	0.79	0.91	1.32
Amp hrs. Total	4.81	4.71	4.45	4.90	5.28
Amp hrs/gm Ag	0.327	0.320	0.302	0.333	0.359

TABLE III (continued) Performance of Ag-Zn Cells, Sterilized Following Cycling

بهمینی : .

C

Cell Number	6-1	6-2	6-3	6-4	6-5
Discharges:					
Fourth - Step 1	3.99	3, 75	3.51	3.99	3, 66
Step 2	0.90	1,12	0.96	0.90	1,59
Amp. hrs, Total	4.89	4, 83	4.47	4.89	5, 25
Amp. hrs/gm Ag	0.332	0.33I	0.304	0,332	0.357
Load Voltages = Before ster	ilization - First Disc	harge = 100 ma/	sq. in.		
After 30 min.	1.432	1.436	1.436	1.439	i.421
After 60 min.	I.441	1.443	1.443	I , 449	I.429
After 90 min.	1.442	1.443	1.442	1,448	1.424
After 120 min.	1.435	1.435	1.434	1.435	1.397
After 150 min.	1.397	1.399	I.390	1.349	ţ
Load Voltages - After steril	ization - Fourth discl	harge - 100 ma/:	sq. in.		
After 30 min.	1.500	1.439	1.462	1.481	1.503
After 60 min.	1.421	I.369	1.407	I.434	I.396
After 100 min.	1.414	I.355	1.372	1.421	1.378
After 120 min.	1.393	I. 332	ť	1,382	1,333

9 425

ii s

I.481	I.434	1.421	1,382
1.462	1.407	1.372	ť
1.439	1.369	I.355	1.332
I.500	1.421	1.414	1.393
After 30 min.	After 60 min.	After 100 min.	After 120 min.

Evaluation of Design for Extended Cycle Life

5-1 7-1 4, 19.6 5, 18.2 10 42% KOH EM-476 U-wrap, silver electrodes 0-10 10 42% KOH EM-476 EM-476 EM-476 EM-476 EM-476 EM-476 C-wrap, silver electrode	4.40 4.61 2.48 1.63 6.88 6.24 0.351 0.318	$\begin{array}{c} 5.70\\ 6.66\\ 6.66\\ 6.04\\ 0.340\\ 0.60\\ 6.64\\ 6.64\\ 6.64\\ 6.36\\ 0.324\\ 5.68\\ 0.324\\ 6.52\\ 6.52\\ 6.52\end{array}$	0.336 0.332 5.96 5.60 5.96 0.85 6.64 6.45 6.64 0.329 1.504 1.453 1.395 1.408 1.380 1.320
Cell Number Number of silver electrodes, gas active material Number of zinc exide electrodes, gas ZnO Number of separator layers (GX) Electrolyte concentration, (before ZnO addition) Absorber adjacent to silver electrode Type of construction	Formation charge: Amp. hrs, Step 1 Amp. hrs, Step 2 Amp. hrs, Total Amp hrs/gm Ag	Discharges: First - Step 1 (100 ma/sq. in) Step 2 (20 ma/sq. in) Amp. hrs. Total Amp. hrs. Total Amp. hrs/gm Ag Second - Step 1 Step 2 Amp. hrs, Total Amp. hrs, Total Amp. hrs, Total Amp. hrs, Total Amp. hrs, Total	Fourth - Step 1 Step 2 Step 2 Amp. hrs, Total Amp hrs/gm Ag Load Voltages 100 ma/sq. in. After 30 min. After 60 min. After 90 min. After 120 min.

- 10 -

, And the

FABRICATION AND TESTING OF CELLS

I. HEAT STERILIZABLE - HIGH IMPACT 5.0 AH AND 25 AH BATTERIES TASK 9
A. <u>Objectives and Past Work</u>. - This task has been redirected ⁽¹⁾ from 18-cell battery development to development of cells meeting the requirements of JPL Specification GMP-50437-DSN-C, a shock level of 2,800 ± 200 g at 115 ± 3 ft/sec., and JPL Engineering Memorandum 342-70. Thirty (30) cells each of the 5 AH and 25 AH design are to be delivered to JPL by December 1969.

B. <u>Non-High Impact Test Cells</u>. - Previous test cells (Model 281) were designed and constructed in 5.0 AH size to determine the reason for a 23-59% capacity loss resulting from wet sealed heat sterilization for 120 hours at 135°C and hydrogen evolution during the early stages of formation charge. Two separator systems, SWRI-GX and RAI-116, two cell case materials PPO 531-801 and PPO 534-801, and two epoxy sealants DEN438EK85/DMP30 and Isochem 811B/A were tested, but no variable was found to account completely for the capacity losses or pressure rise. ⁽²⁾

Two additional groups of cells were assembled to test three epoxy sealants, alternative curing techniques, and another formation charge technique. The test groups and formation charge results are given in Table V. The cause of gassing was common to all 16 cells since all 16 cells bulged in excess of 100 mils, and no significant improvement in formation charge acceptance was observed for the alternative cure method or sealing after the preformation charge.

(1) JPL Contract 951296 Modification 18.

(2) Report for Second and Third Quarter 1968, p24, 12-20-68.

TABLE V

EFFECT OF CELL SEALANT AND CURE METHOD ON FORMATION CHARGE ACCEPTANCE AFTER 120 HOUR HEAT STERILIZATION AT 1.35°C

Group I 6 Cells S/N 47 through 52 Group II 10 Cells S/N 53 through 62

*

*

**

*

**

**

100:8

100:8

100:8

100:5 ***

Test Sealants:

2	Ţ	Epocast 221	L/927	Ratio	100:8
2		DEN438EK85/	Cat.	11	100:18
2	_	DEN438/Cat.	11		100:18

Cure Condition:

2 Cycles 16 hours at 71°C Dry Heat

Other: 6L GX + 1L GX retainer

pressed powder negatives

<u>Preformation</u> Activated and sealed before preformation

Heat Sterilization Wet Sealed

Formation Charge Results

- 0.22 to 0.27 AH/gm Ag
- All cells bulged greater than

100 mils.

Cure Condition:

Test Sealants:

2 - Epocast 221/927 Ratio

2 - Epocast 221/927 Ratio

2 - DEN438/Cat. 11 Ratio

2 - DEN438EK85/DMP30 Ratio

16 hours at 100°C, cells activated,

2 - DEN438EK85/Cat. 11 Ratio 100:8

in sealed bomb

Other; 6L GX + 1L GX retainer and

pressed powder negatives except -

- EM476 between GX layers
- Sintered negatives

Preformation:

Preformed vented, then sealed.

Heat Sterilization Wet Sealed

Formation Charge Results

- Input .24-.31 AH/gm Ag.
 - Input .27-.31 AH/gm Ag.

Input .27-.31 AH/gm Ag.

- All others .22-.25 AH/gm Ag.
- All cells bulged 100 mils or more

- 12 -

A third group of cells was assembled to investigate the common design factors used in cell assembly -

- Calgonite detergent wash of plastic parts
- Heat shrinkable polyolefin tubing on plate leads
- Sandblasting of sealing surfaces
- e Electrolyte purity

The first 3 cells tested the electrolyte purity effect and by omission the detergent, tubing, and sandblasting factors. All three cells accepted .40 - .41 AH/gm Ag with no pressure rise in excess of 3 mils of sealed cell bulge. Charge acceptance of 80% of theoretical and pressure bulging of 1-3 mils on formation charge after 72 hours heat sterilization at 135°C is considered excellent performance. The next 3 cells identified the gassing agent to be the heat shrinkable polyolefin tubing used as plate lead insulation. Samples of the tubing exposed in hot caustic did not create gas by decomposition, but when exposed in direct contact with zinc metal powder in hot caustic, the hydrogen gassing rate of the zinc more than doubled. One or more additives in the tubing - a flame retardant and a stabilizer, both proprietary to the vendor - apparently vaporize during heat sterilization and accelerate negative gassing after charge. Work on another (3) contract shows exposure at 140°F for 2-3 days gives a similar response in wet charged Ag-Zn sealed cells. Substitution of teflon heat shrinkable tubing for polyolefin tubing has resolved this problem.

The Model 281 test cell now delivers on formation discharge no less than 11.0 AH at 3.3 amps to 1.25 volts per cell, 16.4 watt-hours at an

(3) C. D. Farris - JPL Contract 951927, Development of Improved Sealed Ag-Zn Battery for Mariner 1969, Part II, p.10.

average voltage of 1.49 volts, and 43.0 WH/lb. of cell at a wet sealed weight of 0.38 lb. Figure 2 gives the formation discharge of cells S/N 66, 67, and 68 as an example of voltage regulation at the C/3 rate. C. <u>High-Impact Cell</u>. - Preliminary drafting work on the 5 AH high shock cell design to meet 4,000 "g" impact has been completed. Positive plates are reinforced with zirconium sheet for the impact test. Initial tests have shown that cell capacities are reduced 15-20% by the zirconium core in the positive plate but no gassing pressures have been observed during heat sterilization or later cycling. Negative plates are being supported by chemically etched pure Ag grid structures. Four 5.0 AH cells are being fabricated for design proofing tests at 4,000 "g" during the first quarter of 1969.

The 25 AH cell design differs from the 5.0 AH design only in the number of plates in the cell. Drafting for this design is in an advanced state. See Task 12 for detailed design description.

II. DEVELOPMENT OF 48 AH HIGH CYCLE LIFE, HEAT STERILIZABLE CELL TASK 10

A. <u>Objectives and Past Work</u>. - This task has been redirect.d to eliminate all battery design and development to allow concentration of all effort on cell development. Cell performance requirements are governed by JPL Specification GMP-50436-DSN-B and may be summarized -

- One year prelaunch storage followed by heat sterilization for 120 hours (now reduced to 72 hours) at 135°C;
 - Charge, 9-month interplanetary travel;
 - Flight, entry, and landing environments of
 200 "g" for 0.7 ± 0.2 msec, 100 "g" deceleration for
 10 minutes, and 35 "g" rms maximum vibration 100 to
 2000 cps;

- 14 -

FIGURE 2

- 15 -

 400 cycles, 50% depth, 12-hour maximum charge time, discharge rates C/10 to C/3 delivering 24 AH at operating temperatures in the range 10°C to 50°C.

Half size 24 AH cells have been designed and tested through one year uncharged stand (the Model 345), through 80 cycles (the Model 172), but in no case to date the combination.

B. Effect of Heat Sterilization, Negative Additive, and Absorber on Cycle Life. - With the Model 172 24 AH cell as the basic test cell design five groups of 3 cells each were assembled and then cycled to determine the effect on cycle life of -

- heat sterilization 120 hours at 135°C vs no sterilization
- percentage of Compound 323-43 in the negative plate active material (3, 5, and 7%)
- Pellon 2530W absorber vs no absorber

Table VI summarizes measured 100% depth of discharge capacity during 80% and 60% DOD cycling on a 21 hour modified CP charge and a 3 hour constant resistance discharge giving a total cycle life of -

6	100%	DOD	cycles	plus				
34	80%	DOD	cycles	(6.4	amps,	3	hrs.),	plus
44 max.	60%	DOD	cycles	(4.8	amps,	3	hrs.).	

84 total cycles in 5-6 months wet life

Figure 3 shows the decay of capacity for the control non-heat sterilized cells (0.33 AH/cycle) vs the four test designs. Pellon 2530W used as a positive plate absorber gave an abrupt initial capacity loss but main-tained this capacity for 50 cycles before beginning to decay at the control group rate. The decay in capacity corresponded to negative plate

MODEL 172 CELLS ON AUTOMATIC CYCLING TABLE VI

C

LL/26 Yes 5.5 22.0 62 62 15 61 11/26 Yes 5.5 21.3 60 61 1 60 42 Yes None 11/26 5.5 24.0 Yes 60 Е 42 60 Yes 11/26 5.5 16.4 60 60 12 Ę None Yes 6.6 20.1 70 No 70 67 61 ഗ Yes 12/17 6.1 18.6 70 Ч 70 S/N 1-8, 10-15 (cycles 1-49)
S/N 9 (cycles 1-15)
S/N 1-8 (cycle 50-failure)
S/N 10-15 (cycle 49-failure)
S/N 9 (cycles 16-40) 61 S/N 1-8, 10-15 (cycles 1-49) S/N 9 (cycles 1-15) S/N 1-8 (cycle 50-failure) S/N 10-15 (cycle 49-failure) S/N 9 (cycles 16-40) Discharge profile: 8.0 amps to 1.25 volts.
 Active silver in cell - 96.6 grams - nominal capacity 24 AH.
 Activation date (all cells) - 6/12/68. Last auto-cycle 12-(4) S = Shorted Cell. 6.6 25.1 50 No 50 10 6 Pellon 2530W 84**S** 6.6 18.6 74 74 64 No Yes φ Yes 12/17 74 6.1 16.7 64 74 6.6 16.0 64 70 No 70 Q None Yes 12/16 12/16 Yes 64 70 70 6.1 L7.2 70 ഹ Yes 70 6.1 17.7 64 70 # CP for 21 hcurs (0.96 amp. max.) 6.6 16.0 3 hours at 6.4 amps (80% depth) 3 hours at 4.8 amps (60% depth) 64 (0.72 amp max.) No 78 82 ĉ None 6.6 17.1 64 No 78 82 No 6.6 L6.0 78 64 No 20 CP for 21 hours disch. performed Last Auto-cycle⁽⁴⁾ Automatic Cycling Wet Life, Mos (1) Full Capacity (1) Mean Cycle Life discharge, AH Cycle at which Cycles to Date Percent 323-43 - Discharge Date Shorted Cell Shorted - Charge Sterilized Absorbers NOTES: S/N .

Activation date (all cells) - 6/12/68. Last auto-cycle 12-31-68 and continuing.

I - 17

FIGURE 3

EFFECTS OF ABSORBER AND NEGATIVE ADDITIVE ON CAPACITY DURING AUTO-CYCLING OF MODEL 172 (24-AH) CELLS

erosion as determined by post-mortes analysis. All cells failed first, however, from Ag penetration through the 6L Southwest Research Institute GX membrane system. The three control non-sterilized cells gave at least 30-40% more cycles to end of life and failed by negative plate erosion.

As the result of the experiment above the following design changes were made the 24 AH cell.

- Compound 323-43 reduced from 7% to 4%.
- Layers GX increased from 6 to 7, 8, or 9.
- Ratio ZnO/Ag increased.
- Negative plate process changed to a sintered teflonated active material.

The newer 24 AH cell designs are described as either the Model 379 cell of Task 13 or the Model 380 cells constructed for the factorial design.

C. <u>Advanced Design 24 AH Test Cells</u>. - Special plates were constructed to test scale up of sintered teflonated negative plates from 5 AH size to 24 AH size. Shedding around plate edges was encountered with physical deterioration varying with plate thickness -

Plate Thickness <u>Mils</u>	Physical Description After Sintering
20-22	Smooth, intact
34-38	Cracked, shedding on edges
58-63	Cracked, shedding on edges
	and corners
75-78	Delaminated

Grids of greater expanded thickness appeared to be necessary to achieve greater dry unformed strength. A study of grid types was initiated to improve strength without an increase in true negative active material density. See Task XI. Two 3/0 expanded Ag grids spotwelded together with grids crossed gave the best overall result for the 24 AH cell.

- 19 -

Two teflon powders were evaluated: particle size 35 micron and 8 micron. The larger particle size gave the best green strength and sintered structure. A 6 gram metal ball was dropped from a predetermined height of 32 inches onto the dry unformed sintered plates. The plate with larger teflon particle size shed only one-third as much active material.

Four 24 AH cells were constructed using: 7 double-grid, sinteredteflonated negatives; 6 DP positives 69 gm/in³; a 29% ZnO capacity reserve at full float charge; 96 in² active plate area; and 6 layers GX membrane as a separator system.

After 72 hours sterilization at 135° C in nitrogen, the cells were formation charged at the 50 hour rate and then discharged at 8.0 amps (C/3) to 1.25 volts per cell. A formation charge and discharge data summary is presented below:

Test		Obs	ervatio	ns and Cel	Ll No.
Parameter	Unit	16	17	19	20
 Formation Charge Input (to 2.00 v/c) 	АН	42.8	44.7	42.5	43.6
• Formation Discharge Output	АН	34.1	36.8	41.2	41.2
 Midpoint Voltage, 	Volts	1.492	1.510	1.502	1.505
 Energy Density, (Cell weight 1.08 lb.) 	WH/lb.	48.5	52.8	56.2	57.0

Figure 4 summarizes voltage vs discharge current for the previous 5 experimental design types and the most recent design. A significant increase in voltage has been obtained in this progression at all discharge rates. Figure 5 gives an overall schematic of the cell design with dimensions and sealing technique. Burst pressures of the cell jars range from 175-195 psi water pressure.

MODEL 172 CELL VOLTAGE VS PULSE DISCHARGE

FIGURE 4

FIGURE 5 MODEL 172 (379) CELL DIMENSIONAL AND CUT-A-WAY VIEW The four cells are now on automatic cycling routines: two on 9-hour charge/3-hour discharge at 50% DOD and two on 21 hour charge/3hour discharge at 80% depth of discharge.

D. <u>Factorial Experiment</u>. - Twenty-seven 24-AH cells have been designed and released for construction to test the following variables and levels on 100% depth of discharge after 72 hours wet sealed sterilization at 135°C.

 	Variable		Level	
	999 - 2019 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	-1	0	+1
Α.	Weight % teflon in	5	7	9
	sintered negative plate			
В.	SWRI-GX membrane	2.0	2.4	2.8
	wet thickness-mils			
с.	Weight ratio ZnO/Ag	0.9	1.2	1.5
D.	Electrolyte concentration	41	43	45
	before 90% saturation			

Molded covers for all cell jars have been procured. Two Model C-100 Automatic Battery Cycler and controllers and two Model CT-100 Current Time Integrators have been ordered from Electro-Mechanical Research, Inc., College Park, Maryland to perform the 100% depth cycling tests to begin during the next quarter.

III. DEVELOPMENT OF 1200 WATT-HOUR BATTERY CELLS TASK 11

A. <u>Objectives and Past Work</u>. - The goal for this task has been redirected from an 18-cell 2000 watt-hour battery per JPL Specification GMP-50607-DSN to a 12-cell 1200 watt-hour battery cell meeting the requirements of JPL Engineering Memorandum 342-71. One-hundred cells are to be delivered to JPL by June 1969. Table VII summarizes the old and new specification requirements on a cell and battery basis. The major impact of redirection on the previously developed Model 364 cell design will be due to:

- Increase in landing shock from 200 to 250 g each 0.7 ± 0.2 millisecond, 30 shocks total
- Entry deccleration increase from 100 to 250 g in any direction for 10 minutes.

B. <u>Plate Grid Structure Development</u>. - The Model 364 80 AH cell design met the discharge requirements after sterilization for 120 hours at 135°C at 44-59 watt-hour/lb. of sealed cell but failed the shock and vibration requirements when plate grid structures did not support impact or vibration forces. Plate grid structures have been reinforced by using double 3/0 expanded mesh with long mesh dimensions at 90° angles to each other and the edges framed with 1/4 inch Ag ribbon shaped into "U" form and spotwelded to the grids. A mechanical device has been designed and constructed to test the failure modes under varying vibrational loads.

The contribution of these framed grids to plate thickness was measured using the equation

$$T_p = T_G + \left(\frac{1}{d}\right) \cdot \left(\frac{W}{A}\right)$$

where T_p , the sintered plate thickness is plotted vs (W/A), the negative mix weight per unit area giving a slope (1/d), the reciprocal active material density, and an intercept at (W/A) = 0 equal to the effective grid thickness. Effective grid thicknesses measured for several grid types and combinations are given below.

TABLE VII

DESIGN REQUIREMENTS FOR 70 AH WET HEAT STERILIZABLE CELL

Des Par	ign ameter	<u>Unit</u>	Specification Requirement*	Achieved To Date Model 364 Sterilized(1)
1	Frommy (12 coll battown)	ហាប	חחכו	1200 oct (1)
上。 ウ	Energy (12 Cerr Dattery)	₩11 ₩11/1b	7500	35 ost (2)
<u>د</u> .	Voltage load	Wil/LD. Volte	111 522 E	
.Э. •	VOTLAGE, TOAU	Volte (colt	(1)]] 07)	1 25.0-21.0
11	Voltago obango may	VULLS/CELL.	2E 0	エ・ムコーエ・O フル つ
-r.	Power continuous	VOLLS	20.0	200 00+
ວ. ແ	Current continuous	Amne	,JUU 17 oct	200 est.
7	Capacity discharge C/H	λu	17 est.	ΔQ Q2
/• 0	Cycle life 100% DOD	An	UJ ESL.	11
0.	Change time full	ea. Unc	・ ギ 70	(3)
э. 10	Operating temperature	°C	10 to 55	20 + 20
LU.	(30 days after landing)		TO 00 DD	
11	Stonage			
ە يادىك	$P_{nelaunch} = 0 \pm c 25^{\circ}C$	Vn	1	NT
	Transit $-10 \pm 0.25^{\circ}$	Months	ġ.	NT
	$(25 \pm 0.40^{\circ} \text{C} = 10 \text{ days only})$	LIGHEND	2	11.2
12.	Operating Pressure	Torr	10^{-12} to 800	NT
13.	Heat sterilization	LOLL	20 20 000	1,12
	Time	Hrs.	72 (] Perio	od) 120
	Temperature	°C	135	135
14.	Shock-launch & transit		250g. 0.7±0.2	NT
	(30 shocks)		msec.	
15.	Vibration-entry and landing			
	Sine		35g rms, 100 t	to F
			2000 Hz	
	Random		25g rms, 20 to 2000 Hz	o NT
16.	Deceleration		25g, 20 second	ls NT
(1)	Based on sterilized cell tests.			

(2)

Estimated from achieved 40 WH/lb/sterilized cell. Formation charge-discharge-charge cycle required 134 hours, 10 hours, (3) 38 hours respectively.

(*) JPL Engineering Memorandum 342-71 (Task 11)

NT = Not Tested; F = Failed.

Grid <u>Type</u>	Nominal Thickness Mils	Weight. gm∕in ²	Effective Thickness <u>Mils</u>	Mix Density gms∕in ³
2/0	17	.200	5.6	37.6
3/0	15	.244	2.8	38.3
2 X 2/0	34	.400	5.6	37.4
2/0 Distorted	26	.260	3.0	36.1
2 X 3/0	30	. 488	5.7	35.7

C. <u>Model 364 Cell Performance</u>. - Development to date on the 80 AH cell has given the performance summarized in Figure 6. No significant difference was observed comparing 6 cells heat sterilized 120 hours at 135°C from 3 cells not sterilized during their first four 20 ampere discharge tests -

<u>Test Parameter</u>	<u>Mon-Sterile</u>	<u>Sterile</u>
Voltage, Initial, 20 Amp Load	1.73	120 hrs. 135°C 1.73
Plateau	1.47	1.47
Average	1.49	1.49
Energy Delivered, Watt-Hours	136	133
Energy Density, WH/lb. Sealed (Cell 53.6	52.3

Figure 6 also shows the 20-36% loss in discharge capacity which occurred in the non-sterile group on the sixth to 24th cycle when sterilized 120 hours at 135°C <u>after</u> five pretest cycles. This loss can now be eliminated by proper let down technique. See Task I. Figure 7 shows projected cell dimensions and weight with the new plate grid structures. New molded covers have been ordered and will be available for the next cell tests.

IV. DEVELOPMENT OF 400 WATT-HOUR 4,000 "G" IMPACT BATTERY CELLS TASK 12 A. <u>Objectives and Schedules</u>. - This task is a new task requiring the development and test of cells meeting the requirements of JPL memoramdum 342-68

- 26 -

FIGURE 7

C

DEVELOPMENT MODEL 364 HEAT-STERILIZABLE HSS80 Ag-Zn0 CELL

1. 49 88 **I**33 61 (20A) Predicted cell performance at C/4 Discharge rate: (20 Energy Density, WH/1b Voltage, Avg. - Volts Capacity, AH Energy, WH

2.7 Weight, lb.

١.

28 1

which are given in Table VIII in abbreciated form. A lot of 100 cells are to be delivered to JPL in December 1969.

Experimental Nine Plate Cells. - Heat sterilization problems have been в. resolved in other tasks; thus, the major development emphasis will be on the 4,000 "g" impact plus the 90 50% depth cycles after shock. Figure 8 is a sketch of the cell design. Four positives, each reinforced with a central core of 17 mil zirconium sheet, will be inserted within the "U" folds of 8L SWRI-GX membrane. Five negatives, each having a pure Ag grid of full plate thickness chemically etched in precise pattern to retain active material, will be mounted in slots in the cell case, so that shock loads in all directions are carried by the cell case. Detailed design features of the ultimate cells are described by ESB Drawings 382-1000 for the 25 AH version and 361-1000 for the 5 AH version. The nine plate 5 AH test cell will verify electrochemical performance and shock capability prior to release of molded parts for procurement. Test cell parts will be machined from Lucite and cemented up with Lucite cement to give 1/2 inch thick jar walls. Ultimate parts will be molded in PPO 534-801 and sealed with epoxy. Liaison with the molder has established the critical flow points and compromises to favor the molder are in process.

First discharge shock tests are scheduled for the first quarter 1969. V. DEVELOPMENT OF 400 WATT-HOUR SECONDARY BATTERY TASK 13

A. <u>Objectivesand Past Work</u>. - In this new task a 25 AH wet heat sterilizable cell will be designed, developed, and tested to the requirements of JPL Engineering Memorandum 342-68 except <u>no</u> 4,000 "g" impact test. Table IX summarizes the design requirements and data verification to date. High priority requires the delivery of 20 Type A cells in March, 20 Type B cells

29 -

TABLE VIII

DESIGN OBJECTIVES FOR 25 AH 4000 "G" IMPACT SECONDARY CELLS

Desig <u>Para</u>	gn neter	<u>Units</u>	Contract* <u>Requirement</u>
1.	Battery energy (12 cells)	WH	400
2.	Energy density, minimum	WH/lb.	20
3.	Voltage, load (12 cells)	Volts	14.5-22.5
4.	Capacity	АН	25
5.	Wattage (12 cells)	W	200
6.	Cycle life, 50% DOD	ea.	90
7.	Charge time, max.	hrs.	72 (full charge after heat sterilization)
8.	Cycle Charge, max. Discharge, min.	hrs.	10 14
9.	Operating Temperature	°C	10 to 55
10.	Storage Life Prelaunch, 0 to 25°C In Transit, -10 to 25°C (10 days 25 to 40°C)		l year (uncharged) 9 months (charged)
11.	Operating Environment	Torr	10-12 to 800
12.	Heat Sterilization		3 each
13.	Shock-Launch and Transit		5 shocks X 6 250 g, 0.7 ±.2 msec.
14.	Vibration-Entry and Landing		30 g, 16 to 2000 Hz
15.	Deceleration - Entry		250 g, any axis for 30 secs.
16.	Shock-Landing		4000 "g" from 120 ft/sec.

(*) JPL Contract 951296 Engineering Memorandum 342-68.

ł

FIGURE 8

TABLE IX

DESIGN OBJECTIVES FOR 25 AH WET HEAT STERILIZABLE SECONDARY CELLS

Desi <u>Para</u>	gn meter	<u>Units</u>	Contract* <u>Requirement</u>	Achieved to Date (Model 172)
l.	Battery energy (12 cells)	WH	400	618
2.	Energy density, minimum	WH/lb.	20	52 on cells; 40 battery (est.)
3.	Voltage, load (12 cells)	Volts	14.5-22.5	17.4 (C/3)
4.	Capacity	АН	25	35.5
5.	Wattage (12 cells)	W	200	420 (C/l)
6.	Cycle life, 50% DOD	ea.	90	84
7.	Charge time, max. (100%)	hrs.	72	60 - 88
8,	Cycle Charge, max. Discharge, min.	hrs.	10 14	N.T. N.T.
9,	Operating Temperature	°C	10 to 55	10 to 55
10.	Storage Life Prelaunch, O to 25°C In Transit, -10 to 25°C (10 days 25 to 40°C)		l yr. (uncharged) 9 month (charged)	l yr. (Model 345) 12 months (Model 364) (Not consecutive)
11.	Operating Environment	Torr	10 ⁻¹² to 800	Ambient
12.	Heat Sterilization		3 each 24.5 hrs. at 135°C	120 hrs. 135°C
Ĩ3.	Shock-Launch and Transit		5 shocks X 6 250 g, 0.7 ±.2 mse	N.T
14.	Vibration-Entry & Landing		30 g, 16 to 2000 H	z N.T.
15.	Deceleration-Entry		250 g any axis for 30 secs.	N. T ₂ ;

(*) JPL Contract 951296 Engineering Memorandum 342-68.

**

- 32 -

ļ

in April, and 20 Type C cells will be delivered in August 1969. Basic cell design will be an advanced version of the 24 AH test cell of Task 10. B. <u>Cell Design</u>. - Redesign of the Model 172 cell has been concentrated in three areas: (1) increased cycle life to give 90 50% depth of discharge cycles reliably; (2) increased wet life with an 18 month goal; (3) increased structure to meet the vibration and 250 g deceleration requirements. Selection of number of layers SWRI-GX separator was based on wet life data accumulated on previous cell types all designed for operation at a current density of approximately 0.1 amps/in² but having differing wet thicknesses of membrane. Figure 9 shows the extrapolation predicting that 8L GX separator should give at least 18 months wet life (combined charged stand and cycling). Twenty-five test cells are being assembled to test -

- 7L vs 9L GX membrane separator
- 42 vs 49 gm/in³ active material density in sintered negative plates at a ZnO/Ag weight ratio of 0.8 to 1.0.
- Positive plate absorber (Pellon 2530W) vs no absorber.
- GX "U" fold on positives vs on negatives.
- Epoxy platelock vs no platelock to cement the bottom edges of exposed plates to the jar.

The cycle life achieved for the Model 172 cell (see Task 10) (6-100% DOD cycles, 34-80% DOD cycles, plus 20-44 50% DOD cycles) should be increased to the desired 90 50% DOD cycles (21 hour charge, 3 hour discharge) by the addition above of 2-4 layers GX, a 20% reserve of ZnO after full float charge, and by decreased plate erosion resulting from the sintered negative plate process. Test data will be available during the first quarter of 1969

- 33 -

FIGURE 9

WET HEAT STERILIZED CELL LIFE VS NUMBER OF LAYERS SWRI-GX MEMBRANE

- 34 -

VI. CONCLUSIONS AND RECOMMENDATIONS

Heat shrinkable polyolefin tubing, used as plate lead insulation in Α. Model 281 test cells, has been found to accelerate hydrogen evolution from negative plates of heat sterilized Ag-ZnO cells on formation charge. Replacement of polyolefin with teflon tubing eliminated this major problem. Model 281 test cells now deliver 11.0 AH at 3.3 amps to 1.25 volts at Β. an average voltage of 1.49 volts, 16.4 watt-hours and 43.0 watt-hours per pound of sealed cell after sterilization wet sealed for 72 hours at 135°C. Model 172 24 AH heat sterilized sealed cells have delivered 6 100% DOD, C. plus 34 80% DOD, plus 44 maximum 60% DOD cycles in 5-6 months of wet life. Failures occurred from Ag penetration. Non-sterile control cells exhibited failures at 84 total cycles from plate erosion but no cell shorts. Model 172 24 AH sealed cells have delivered 34 AH at 8.0 amps to 1.25 D. volts, a midpoint voltage of 1.49 volts, and an energy density of 49 watthours per pound of sealed cell after 120 hours sterilization at 135°C. È. Model 364 80 AH sealed cells have delivered a mean 4-cycle capacity of 89 AH at 1.49 volts at 20 amps to 1.25 volts, an energy of 133 watthours, and an energy density of 52 watt-hours per pound of sealed cell after sterilization 120 hours at 135°C.

F. Life to short data accumulated to date predicts 8 layers of GX separator should increase cell life after sterilization to 18 months. New cell designs are testing 7, 8, and 9 layers for verification.

35 -

PROJECT PERSONNEL

The experimental work presented herein has been performed by the following ESB Incorporated personnel.

At the Research Center -

	Section Leader	63	G. F. Nordblom
	Selectist	. 1044	H. I. James
	Tochnicians	** *	W. F. Kobie, F. J. Lewis
At Jet Propu	lsion Laboratory -		
	Scientist	in the second	J. T. Arms
At Exide Mis	sile and Electronics Division -		
	Project Leader	1	A. M. Chreitzberg
	Staff Consultant, Mechanical Design &		
	Stress Analysis		T. H. Purcell, Jr.
	Senior Project Engineers:		
	Tasks 4, 8, 9, 12		A. W. Jordan
	Task 11	<i>1</i> 20	J. F. Szabo
	Project Engineers		
	Taks 10, 13		E. K. Woomer,
			C. D. Farris
	Quality Assurance		
	Engineer		W. C. Rodgers