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ABSTRACT

Part II considers input-output properties of nonlinear time-varying

discrete systems. Slightly generalized forms of the Small Gain and the

Passivity Lieorem are derived. Some results of Part I and these theorems

are used to derive stability criteria. The memoryless nonlinearities and

the multipliers are not required to be noninteracting.
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I.	 Introduction

In Part I of this paper we have derived the best known results con-

cerning the determinateness and the input-output properties of linear

discrete feedback systems. In this Part II we are concerned mostly with

nonlinear discrete systems. Two fundamental results in stability theory

of feedbac' systems are the Small Gain theorem and the Passivity theorem.

They are the two basic principles behind most of the stability criteria.

These two theorems are not new and they have been used either explicitly

or implicitly in many papers. Here we present them in a new, slightly

more general form. The corresponding Section IV is essentially tutorial

in nature. We hope that these two basic theorems will provide a more

unified approach to the stability problem. As applications and illustra-

tions of the power of these two theorems, we present in Section V several

stability criteria for certain classes of nonlinear discrete systems.

Some features of this paper are as follows: 1) We take the advantage of

the simpler analytic properties of the discrete case to obtain simple

derivations. 2) We define the stability of feedback systems in terms of

their input-output properties. 3) In contrast to most previous results

in the multiple-input, multiple-output case we don't require the nonlin-

earities to be of noninteracting type. 4) By the use of the results of

Part I, we are able to include a much broader class of linear subsystems.

5) Using the passivity criterion we obtain a simple derivation of the

Tsypkin criterion under less restrictive conditions. 6) The paper is

essentially self-contained.
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II. Notations

We use the same notations as in Part I. Some new terms are defined

below.

The symbol En and Enxn 
denote the spaces of all sequences in ,n

and 
exn respectively; more precisely, En {x : J+ -► IItn} and Enxn

{G : J+ -o-IR
nxn } 	

If n s 1, we simply write E.

Let x{^i}^ E En and let N E J+. The sequence x 
truncated at N

'IV

is denoted by zN and is defined as
^.w

, _l,, 0, 0 9 .. .
A.

Let I . 1 denote aLny norm on En subject to the condition that for all

xlu E En and all N e J+

rxNa S 1 ti1 .

All Rn norms defined in Part I satisfy this condition. The space of all

sequences in En that have finite norm is denoted by (Q, i.e.

xe En n xi <fli	 to

o^
Let x, E fin. The scalar product of two real sequences ti {tii}0

and y A. {T1 I  denoted by ( x,y ) is the map of E n x En into 1R+ defined

by

-3-
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( ti'ti	 E PEW i tii
i•()

where 	denotes the transpose of ^ i . Consequently

( ti.ti >	 r 10 2	 Vti E Rn

Considering truncations at N. we note that

( b'k ) 	(ti'X'N)	 ( ti'ti) N

N
where we define ( n,y) N by Ftii tii

If z is a complex number, then z denotes its complex conjugate. If

eis an n-tuple of complex numbers, then e* denotes its conjugate trans-
IV

pose.

III. Svstem Description

We consider the system model shown in Fig. 1. The sequences u1,

U
2' a tit' yl and tit are in En. H1, HZ :

E n -, En are operators which

can be linear or/and nonlinear, time-invariant or/and time-varying. As-

sume that the system J is determinate. From Fig. 1 the system . isti	 ti
described by the following system equations.

	

Q	 til tit
	 (1)

-4-
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ti2	 ti2 + X'1	 (2)

til	 Hl a	 (3)

X2	 H2 ti2	 (4)

Comment:

For simplicity, we consider H1 and HZ as operators. In fact H 1 and

H2 can also be allowed to be relations [1].

Definition 1

Let H En ; En and let 1 . 1 be
ti

said to have finite gain y  if there

a constant S1 (both independent of x'

I (EX)mA, N1 
g y

l1 ,X-,N1 + S1

any norm on En . The operator H is

exists a nonnegative number y1 and

such that

Vx E En , V  E J+	 (5)

where (Hx) N denotes the sequence Hx truncated at N.

Definition 2

Let H : En -^ En . The operator H is said to be passive if there is
PU

a nonnegative function V : En x J+ M,, and a constant a such that

(x, Hx) N Z V (x, N) + a	 bti E En , .. E J+	 (6)

-5-
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In particular, if there is a positive number d such that

V(z,N) ? d1^l 2 Wx E En , bN E J+

thus

(ti,,^)N L dMAXo2 +a
	

W^ E En , ^l N E J+ 	 (7)

then H is said to be strictly passive.
ti

Comments:

1. The definition of gain defined in (5) is more appropriate and more

general than that defined by Zames [1] and used by Sandberg [3]. In fact

(5) does not require that HO = 0; this is useful, for example, if H re-

presents a relay or a hysteresis. As a special case when 01 0 and

'xNj	 0, yl can be taken to be
ru

z=

	

0	 N (Hx)N1

Y1 	sup
NEJ+ xNIIx E ^n

N

we are then brought back to the definition originally given by Zames [1].

2. The definition of passivity is slightly more general than those used

by Zames [1] and Sandberg [3]. Ours is inspired from circuit theory.

(See Kuh-Rohrer [21.)

f
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IV. Main Results

In the stability studies of feedback systems in terms of input-

output properties, there are two..major results, namely, the Small Gain

theorem and the Passivity theorem. The Small Gain theorem is appli-

cable to My norm on En , but with the more restricting condition of re-

quiring that the product of gains of two subsystems be less than 1;

while the Passivity theorem is applicable on'.y to Q n-norm. It hac the

advantage that, for the linear time-invariant case, the passivity condi-

tion has a frequency domain interpretation. These results have been

developed mostly for the continuous systems and are available explicitly

or implicitly elsewhere [1, 3, 5, 14, 161. Here we are concerned only with

discrete systems and these two results are genertl.ized and :Mated in

their most general forms.

Theorem  (Small Gain Theorem)

Consider the system.-J(Fig. 1) described by (1)-(4), where A1,

H2 E
n -+ n. Let	 be any norm on En and let there be some nonnega-

ru

tive numbers ul, 
u2 

and some constants v l , v2 such that

1(xl , N^ 	 u lIN, + vl
	 d x e En , d N E 3+	 8)

and

	

(H X) N1 `- PAO + v 2
	

d x E En , d N E Ji,	 (9)

Under these conditions, if



u © v1u2 < 1
	

(10)

of

then, for all N E J+,

<	
1[I 'u,,2N

I+u ^u r+v +uv	 c11)ti2N - 1- u 	 1 ulN	 1	 1 2

Furthermore, if u tit E ^, then el, tit' tii and	 areare in Q .

Theorem 2 (Passivity Theorem)

Consider the system - J (Fig. 1) described by (1)-(4), where H

H2 En -► En. Let H1 satisfy the following conditions:

(i) For some nonnegative number yl and some constant $1

(Hlti)N^ 2 5 yld^ 2 + ^l	 V^ E En , VN E J+	 (12)

(ii) For some

< ,x^, HxL

Let H2 be such that

,u-Uu>N

Under these conditii

constants d l and al

N > d ll tilV^ 2 + a
l	 Vx E En , VN E J+	 (13)

for some constants 
E2 

and a2

Z 
E2^ 

(H2ti)Np 2 + a 2	 V. E En , VN E J+ 	(14)

Dns, if

x 
a 

(8 1 + E2 ) > 0	 (15)

-8-
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then ACV tit E Rn implies that	
2 

E 1 2 and consequently iiimm X2  Q.

The same results also hold for el, ee
and r1.

Comments:

1. In contrast to the continuous case the two preceding theorems need

no special assumption concerning the possibility of finite escape time.

The assumption of determinateness implies that, for the nonanticipative

case, the equations for the successive components of eeand tit have a

unique solution. In the linear case explicit conditions can be given

for this to be the case (see Theorem 1, Part I).

2. Many forms of these theorems have appeared in the literature. The

best recent ones are due to Zames (1] and to Sandberg ( 3]. It is inter-

eating to note that our more inclusive definitions do not alter the es-

sential conclusion.

3. With respect to the Passivity theorem, (a) we do not require H1 to

be passive and tit 
to be strictly passive, we need only have d l + e2 > 0.

This fact has already been observed by Stern (15] and Cho-Narendra [14].

(b) If x E R2 , then x E R^ and ,x -* 0 as i -^ ^. Therefore the conclusion
tin	 ti	 n	 ti.t ti

k
of the theorem implies that e. tit , til 

and 
tit 

E Rn and -> 0 as i
,Ul

(c) If u1 - 0, the assumption (12) pis not required in proving ►̂2, e E Rn.
ti ti

In other words, if u0 and if we are only interested in showing 29

eE Rn, then we don't need the assumption (12), namely, that H1 has fi-
Ni

nite gain. Hodever, if we want to have same results for t 
and e2 , then

the assumption (12) is essential.

4. The Passivity theorem and its applications (given in the next section)



0

can be extended in that,instead of considering only inputs with finite

end,  viz.

{ ,,)o	 with	 ' ,v^^ 2	 Ivi1 2 <

1-0

one may also consider inputs with finite avera  power, i.e.

V - {N IM with lim sup 1 t 1N 
2 <

ti	 i 0	 N-0-0 N i-0 i

Under the conditions stated, such finite average power inputs produce

finite average power outputs.

The usefulness of Theorem 2 can be greatly enhanced by modifying

the system 
IV
j using the multiplier technique. Let M be a linear map

from En onto En and suppose that its inverse, M 1 , maps En into En. The

modified system is denoted by M̂ and is shown in Fig. 2. It is easy to

verify that 
ul' u2' el , e2' yl' y2 

satisfy the system equations of .e!
ti u. ti ti ti ti

(i.e. (1) to (4)) if and only if u tit , el , tit , til 
and 

tit 
satisfy the

system equations of iM. Furthermore ^ is determinate if and only if
ti

.f^M is determinate.
ti

Theorem 2M below is obtained by transcribing Theorem 2 to the sys-

tem JM and using w 2 d ,Mee and 
a = Mu •

Theorem 2M (Passivity Theorem for the System with Multiplier)

Considor the system ^V M shown in Fig. 2, where Hl , H29 M ; En -> En.

Let M1 satisfy the following conditions:

.j

r



(i) for some nonnegati^re constant Yi and some constant S1

J(MH
 vl-. N12 < Y1 1 tiN P 2 + Si	 f/x F• En , dN E J+

(ii) for some constants di and a 

X, MHlX) 
N 

Z 
d11

,N12 + a^	 f/^ E En , V  E J+

Let H2 , M be such that for some constants e2 and a2

MX9 H2ti) 
N Z EIN (H2X)N12 + a2	 Vx E En , dN E J+

Under these conditions, if

(13')

(14')

1► '	 (81 + E2) > 0	 (15 )

then for all ul, 
-1 with u E Qn a

nd Mug E Qn, we 	 have

(a) N.' ti2' il and y
2 in Rn.

ti

(b) If, in addition, either (i) H l has a finite gain

or (ii) M 1 :in } R'n

then y1 is also in I

(c) In (b), if (ii) holds, then 
tit 

is also in I

Comment:

It is important to note that in Theorem 2M, we don't require the

-11-
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multiplier 
M 

to be a map of 1n into Rn( a similar comment applies to

the continuous case).

V.	 Applications

We use the theorems above to obtain several stability criteria for

some classes of nonlinear discrete time -varying systems. Theorem lA (be-

low) applies to system	 (Fig. 1): H1 is linear time-invariant and spe-

cified by its z- transfer function G(z); it is assumed (ineq. (18)) that

,I
	

ti

3 is stable under constant linear feedback with gain K. Suppose now

that the feedback becomes nonlinear and time-varying; then we use the

Small Gain theorem (see (13) below) to ascertain how far it can deviate

from the linear gain 
K 

(see (17)). This is essentially a perturbational
lu

result. A little thought will show that if (17) is violated only for a

finite number of values of m, the boundedness conclusions still hold.

Theorem lA (Application of Small Gain Theorem)

Consider the system J (Fig. 1) with ti = G being a linear, time-

invariant, nonanticipative subsystem and H2 
tit 

being a time-varying

memoryless nonlinearity. Let the input -output relation of the linear

subsystem G be defined in terms of its impulse response G by the convol-
ti	 ti

ution

til = ti * til

Let the open-loop z-transfer function of G be of the form
ti

-12-
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_ -1 	 —1
G(z)	 R(1 - z 1 } +	 G z-i © 

R(1 - z-1 ) + G (z)	 (16a)
ti	 ti	 i 

0 
tii	 ti	 tiR

where R is an nxn coi
ti

Let the time-varying

linear function t  :

some constant matrix

Zstant matrix and G

memoryless nonlinear

En x J+ ^ En , which

K, some nonnegative

ao

la {Gi}0

city tit be

satisf ies

number 
u2

3 -1{G (z)) E inxn'

described by a non-

the condition that for

and some constant v2

( tit (It#	 - Kai S u21tiI + v2 Va E En , dm E J+
I%j

(17)

Under these conditions, if

ti
(a)	 (inf Idet(I + G(z)K) ( > 0

and if either R = 0 or RK is nonsingular,
IV 	 ti	 Auni

(18)

(b)
	

I 
HI 

lu 2	 1
	

(19)

N^;zere H	
{Hi

}p 	-1{[I + G(z)K]-1G(z)}

then for any fixed p E [1, w] ul, 
tit 

in kn im plies that 
el' tit , til 

and 
tit

are also in Ip.
n

Corollary lA

Consider the single-input, single-output system j (Fig. - 1) with

H1 = G being a linear time-invariant, nonanticipative subsystem and H 2 = 4^t

I

-13-
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zv1 11 + kg(z)' > 0
I-
>(a) (18')

r

_	 r

being a time-varying memoryless nonlinearity. Let the input-output re-

lation of the linear subsystem G be defined in terms of its impulse res-

ponse g by the convolution

yl	 g * el 	(161)

Let the open-loop z-transfer function of G be of the form

-1

	

g (z ) • r (1 - z-1) +	 giz-i © r (1 - z-1 ) + 91 (z)	 (16a' )
i•0

	

where r is a constant and gQ	 {gi}^ • -1 {g" (z)} E x1 . Let the time-

varying, memoryless nonlinearity be described by a nonlinear function

*t : E x J+ -► E, which satisfies the condition that for some constants k,

v2 and some nonnegative number U'

I *t(ar,m) - ka ( S u2 a + v2	 Va E E, Vm E J+	 (171)

Under these conditions, if

and if r=0orrk #0,

(b)
	

Ihl lu2 ` 1
	

(191)

-14-



where h © {hi}^ 	 -1{g(a)/1 + Q(z)j, then for any fixed p E [l, m], ul,

u2 E Rp implies that el , e2 , y l and y2 are also in Rp.

Theorem 1B

Consider the system J(Fig. 1) with H = G being a linear, time-
A.

invariant, nonanticipative subsystem which i-- described by (16) and (16a)

and H2 = K being a linear, time-varying gain K 
which is specified by a

ru

sequence of nxn matrices { Ri }
0

, where 
IKi I < M Vi E J+. Let the system

be determinate, i.e. by Theorem 1, Part I,

det [ I + (vo + R)Ki] ¢ 0	 Vi E J+

Under these conditions, if there is a constant matrix 
ti
s uch that K -* K

as i -, w and furthermore

inf Idet [I + G(z)R] I > 0	 (18a)

1
2
1 
11

then for any fixed p E [1,co], u
tit 

in In im plies that 
el , tit , til 

and

;C2 are also in In.

Roughly speaking Theorem 1B asserts that if a given linear discrete

system with time-varying gain tends towards a stable (see (18a)) linear

time-invariant system, then the given system is also stable. This result

is sharper than that of C. T. Chen [19] in that we do not require that

I Ki '`I	 <i

-15-
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Theorem 2A below is an application of the Passivity theorem. It

uses a combination of techniques: some results of Part I of this paper,

the multiplier idea and some inequalities of Willems-Brockett [7]. It

is worth noting that Theorem 2A applies to the multiple-input multiple-

output case and memoryless nonlinearity need not be uncoupled, as was

the case, for example, in Refs. [6], and [11],

Theorem 2A (Application of Passivity Theorem)

Consider the same system 16(as in Theorem 1A, where the linear

time-invariant nonanticipative subsystem 
G 

is described by (16) and (16a);

the memoryless, time-varying nonlinearity 
tit 

is described by a nonlinear

function 
t 

En x J+ -> En which has the following properties:

N1. for some constant nxn matrix K

ĉy1,

^ 11 ^^

1 	 1%021 / Ct01'm^t Cti2'm1]	 4i01	 1%,2^ ^1K0 Ctil	 1%2^

d 1%1' 1%2 E En , d m E J+	 (20)

N2.
tt hy,m) _ -tt (z,m)	 d E En , d m E J+	 (21)

Let M be a multiplier whose z-trancier function is of the form
ru

M(z) _	 Miz-i
	

(22)"U
i=0

and satisfies the following conditions:

-16-
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inf Idet M(z)I > 0

Mal 	 N
^M2. (23)

e^

i

	

Ml. M s . {M ) 00	 -1{M(Z) ) E 21
ti	 tii 0	 ti	 nxn

M3. for all i E J+, all elements of Mi are such that

	

1
	

En rn

	

(mi) 	 I `mi) as I	
and	 (mi) ^s ' E I (mi) aBs'1	 awl

sfa	 a¢s

Under these conditions, if

(i) for*the constant matrix K defined in (20)

(24)

IZnI>fl Idet (I + G(z)K)I 	 > 0
-

(2S)

and if RR - 0 or 
RK 

is nonsingular,

(ii) for some number 6 > 0,

inf 7►{M(z) [I + G(z)KJ-lti(z) + ti'	 [ti + K'ti' n J	 ' (^} Z 6 > 0 (26)
I Z I-1

where X M denotes the least eigenvalue of the matrix ti , tben for all u
Aul

tit in 19 el' ti2 F til 
and 

tit 
are in in.

Corollary 2A

Consider the same system 'Jas in Corollary 1A, where the linear,

time-invariant, nonanticipative subsystem G is described by (16') and

-17-
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M(Z)	 miz-
i=0

(22')

<f
.7

(16a') and the memoryless, time-varying nonlinearity 
0  

is described by

a nonlinear function ^t : E x J+ - ► E which has the following properties:

N1. for some constant k

[O t (al ,m) - 'fit (a2 ,m)] (Q1 - a2)a k (al - a2) 2	 Val, a2 E E, Vm E J+	
(201)

N2.
Ot (-a,m) _ 

-fit (a,m)
	 bra (_^' r, V  E J+	 (211)

Let M be a multiplier whose z-transfer function is of the form

and satisfies the following conditions:

Ml. m © (mi}^ 	 -1{m(z)} E Q1.

W.	
MI, 
 Im(z)^ > 0

1	 1

M.	 m  >- 0 V i E J+

Under these conditions, if

(i) for the constant k defined in (201)

inf 11 + kg (z) > 0

(231)

(24')

(25')

-18-
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and if re0orrk¢0

(ii) for some number d' > 0

g8(z)
inf Re m(z)	 >_ 6' > 0	 (261)
M al	 l+kj (z )

then u 
1 

u2 a k2 implies that e
l , e2 , y1, y2 

E 2.

Theorem 2A is simply an application of usualPassivity theorem [1,31,

a special case of Theorem 2, in which one subsystem is passive and the

other subsystem is strictly passive and has finite gain. In order to il-

lustrate the application of generalized passivity theorem given in The-

orem 2, we present the following theorem.

Theorem 2B

Consider the single-input, single-output system 	 (Fig. 1) with

Hl = G being a linear tim =:-►variant, nonanticipative subsystem and

H2 = 0 being a time-invariant memoryless nonlinearity. Let the open-loop

impulse response sequencw of G, g A.{gi}0 be in i and let the the input-

output relation of the linear subsystem G be defined in terms of g by

yl = g * el	 (27)

*f

M.

or equivalently

m
ylm = (g * el) = E gm-ieli	 (28)

m	
i=0

-19-
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Let 0 be characterized by a nonlinear function 	 E -+ E which satisfies

the following assumptions:

N1. for some constants k  and k2,

(01) - ^' (^2)
0 < kl s	 o	 c	 S k2 	Vvl, °2 E E,	 °l f v2	 (29)

1 - 2

W) = 0 if and only if Q 0

N2. 0-0 = -* (a) Vo E E

Let M :	 E -+ E be a multiplier whose z-transfer function is of the

form

M(z) _

	

	 m i Z

i=0

where m A. {mi }^ 	 -1{" (z) ) E k }`. The input-output relation of the mul-

tiplier M is defined by the convolution Mx = m * x.

Under these conditions, if

m
a	 z fl {Re[m(z)g(z) J+ k - k I MI 1 ' 0I ^_	 2	 1

then ul , u2 E k2 implies that el , e2 , yl , y2 are in I

Comments:

1. Assumption N1 implies the following facts:

(30)

-20-



(al) - * (a2)
a1 - a2

S k	 al, a
2 

r=
	 of 

# a20 5 (31)

,r

a. 0 < klo2 < v^, (v) r k 
2 
a 
2
	 Va C E, a 0	 (29a)

b. 0 0 
._L 

*2(0) 
:S 

a^V (Q) <	 ^ 2 (Q)	 h► c E E, o	 0	 (29b)
2	 1

2. The assumptions N1 and N2 above specify an odd monotonically increas-

ing nonlinearity in the sector (kl,k2].

3. If, in addition to N1 and N2 defined above, we have additional assump-

tion on the slope of the nonlinearity, e.g. jd*(o) /daj < k3 , then a Jury-

Lee [10] type of criterion which is In the form of (30) can be obtained

easily as an application of Theorem 2.

To illustrate further the power of Theorem 2, we present below a

stability criterion which is similar to that of Tsypkin [9]. Our result

is more general in that we allow for inputs in 12 and the conditions on

the nonlinearity are slightly leas restrictive.

Theorem 2C

Consider the same system J as in Theorem 2B, where the linear,

time-invariant, nonanticipative subsystem G is described by (27) and (28)

and the memoryless, time-invariant nonlinearity 0 is described by a non-

linear function * : E - ► E which satisfies the condition that for some

constant k

Let M be the multiplier whose z-transform is m(z) 1 + q(1 - z-1) with

T-	

-21
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q g 0. Under these conditions, if

i
fi 
f R C1 + q (l - Z-1) g (2 1 + 

1 
>0	 (32)

s	 i^ Z 1

then for all ul , u2 in k2 , el , e2 , yl and y2 are also in R2.

-22-



VI. Appendix

Proof of Theorem 1

From the system equations (1), (2), (3) and the assumptions (8)

and (9), we obtain (using the subscript N to indicate truncation at N),

lei < l nu I+ ul p e j+ vl 	WN E J+ 	(33)

and

r el-j < ^ ti1N^ + u2^ ti2N^ + v2 	V N E J+ 	(34)

Now substituting (34) into (33), we obtain after some manipulations

	

^l u1 2^ I ti2NI < C1 AM + u l l ti1Nl + v l + 
ulv2 J	

(35)

Since 1- ulu 2	(1 - u) > 0 by (10), inequality (35) yields

rti2NI < 1 1 u C1 ti2N II + u1INU1NI + '*'l + ulv21	
(36)

Now til ,
 tit E (B, hence for all N E J+, 1)61Nl :5Q ulp < co and q N2NI S fl X,21

< m and as a consequence of (36), le< W. i.e. tit E 63. From the sys-CA

tem, equations (1)-(4) and the assumptions (8) and (9), we can easily see

that el, yl 
and 

tit 
are also in ^.

IV ti

Before we prove Theorem 2, we present first a fundamental lemma

which is analogous to Tellegen's Theorem in circuit theory. This lemma
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is an immediate consequence of the system equations (1)-(4) and the lin-

earity of the scalar product.

1

Lemma A

Let the system ^ell and ^M (Fig. 1 and Fig. 2) described by (1)-(4)

be determinate. Then for all N E J+, we have for ru

	

til' Hltil N + ti2' H2ti2 N	 til' HlI$ ) N + ( ti2' H2ti2 ) N
	 (37)

and similarly for ^M

	

tit' ltil N + vet' H2ti2 N	 ( ul ^ltil ) N + ^w2' H2ti2 ) N	 (38)

Proof of Theorem 2

By Lemma A, we have for any N E J+

	

"l' QQ ) N + ti2' H2ti2 N	 ftv Hltil ) N + ( n2' H2ti2 ) N
	 (39)

Using the assumptions (12)-(14) and Schwarz's inequality, we obtain from (39)

	

d11 1%0	 2 + al + E21 (H2ti2)NI2 + 	 a2 	 Q (,ltil >NII 8u II + (H e) Q ^ u 
II 22 ti1N 2	 -.2,,,,2 _N 2 ti2N

(40)

Recalling from the system equations that
ti2 H2ti2 and e = u ti2, thus

we have for any N E J+'



>r

ti1N 0 a' r Q 2 -. I ti2NI 2	 and	 .1N12 S I w1NI 2 + 1 y2N12

Using these relations and (12) we obtain from (40)

a 1( 1 ti1N 1 2 — IQti2N 2 ^2 + 
al + e2 1 Z2N11 2 + a2

[Yl( IulN I 2 + QN 1 2) + a1 ] h u,0 1 2 + I ti2N I 2 I ti2N' 2	 (41)

Let a A dl + e2 and use the assumptions u1, X.2and 	 12 ; we obtain, after

some manipulations, from (41)

aM X2N Q 2 
-< Pyl + 28 1) N11 2 + J ti2 1 2, II ti2N112

+ 	 + 1811) 1 ul^ 2 + a l^till! 2 - al - a2 ]	 (42)[(Yl	
a

or

aI 
ti2NN 2 < k1 1 ti2NII 2 + k2	 d N E J+, vX2 E En	 (43)

where

k  0 [(,,  + 26l)1 ti1 11 2 + b%02121

and

k2 	 Cyl + 1 8 1 0 a ti1 11 2 + a 11 til l 2 - al - a2

are constants independent of 2N.and N. Since a > 0 (by assumption), '(43)
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Implies that X'2 E 1n. Since eLl U -ti2 and til E Rn, we have til E Rn.

it follows from (12) that yE X 2 Finally ti2 E kn because ti2 u + yl.

Proof of Theorem lA

We shall prove the theorem by applying Theorem 1.

By a standard system transformation, we obtain from the system
ti

(Fig. 1) the new transformed system ^ (Fig. 3), where the linear sub-

system A in the forward path and the nonlinearity T t in the feedback
AU

path become respectively

H	 (I + GK) -1G	 (44)
AU	 1%0

and

tit	 tit Aur	
(45)

The variables yl, ti2 and ti2 are preserved in the system
	 and the new

variables til, —el and ti2 are related to the old variables 
mil , el and ti2 by

til 
a 

til 1^2	
(46)

til	 tit + Ky	
(47)

ly2 _ ti2 Kw2	
(48)

Since is a constant matrix, it is clear from the above relations that

til' ti2' til' ti2' Yl and ti2
 are in ^,n if and only if that }^l , u^2 , gel, ti2 , ;yl

-26-
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and
2
 are in Rn. Therefore the original system ^ and the transformed

system 'J are equivalent as far as stability is concerned.

Now by assumptions (16) and (18), it follows from (44) and Theorem

2 of Part I that

H D 
{Hi }0 	

-1
l[I + GWK]-1GW E 

Znxn

consequently H has a finite norm denoted by OHH l . Therefore for any

fixed p E [l,m]

I (	 H	
N Hp ^^ a ^^	 d e E En V N E J	 (49)

v1,1
He

 N p	
ti 1 1%0 p	 til	 '	 +

This shows that condition (8) of Theorem 1 (Small Gain Theorem) is satis-

fied with ul JHJ 1 and vl = 0. Relation (45) and assumptions (17) and

(19) show that conditions (9) and (10) of Theorem 1 are met. Thus it

follows from Theorem 1 that ^1, 
ti2 

E Rn im plies that tit
, tit , yl and tit

are in XPn and by (46)-(4-8), a y2 are also in kn.Y2

Proof of Theorem 1B

Perform the system transformation as in the proof of Theorem 1A;

we obtain the systemj with

H = (I + GK)-1G	 (44a)
ti	 ti vv ti

and

A

K	 K -- K	 (45a)
fu 	 ru



y

From the proof of Theorem 4 {n Part I and the fact that the system 	 is

determinate, we see that the system J is also determinate. Furthermore
ti

because of (18a), AHp < w . Now, by assumption, JK < M Vi E J and
ti	 +

K-
♦ K as i	 thus for any e E (0,1) there exists an N(e) E J+ such

Vi -V

that for all i ? N (e) , OH IK - 10^ s 1 - e. Therefore the claimed re-

sult of the theorem follows immediately from Theorem 1 applied to the

system j for i Z N(e).

Note that we have actually proved that if JK I < w Vi, and if for

some N. i > N implies that IK i - Kl • 11HIJ l 5 1 - E. then the conclusion

of Theorem 1B still holds. In other words, it is not necessary for the

to tend toN but only that they eventually get sufficiently close to

K and remain there.N

root of Theorem 2A

We shall prove the theorem by applying Theorem 2.

First we perform the system transformation as in the proof of The-

orem lA to obtain the system J (Fig. 3). We have noted that system NI

is stable if and only if system j is stable. Next we introduce the mul-

tiplier M into the system 	 y	 ^M^ to obtain the system 	 Q can be obtained

from Fig. 2 b replacing u , el ,	 H and H with u e	 H and ^
g	 Y P	 g tit AV X2 til	 "V21,1 -.1X2 ti	 tit

respectively.) Now by assumptions (16) and (18) and the relation (44), it

follows from the same reasoning as in the proof of Theorem lA that H has
AU

finite gain J H^ l as is defined in (49) , i.e., d N E J+

^el) N^ 2 <-	 , 11 ti1N1) 2	 (50)

-2s-
r

y'
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By assumption Ml and (50), we obtain

(V".L NB 2 S r Mj l^ , 1 i ti1Nl 2	 d 
ul 

E E n , d N E J+	 (51)

This shows that condition (12') of Theorem 2M is satisfied with Yl a

1MI 10tiu 1 and 01 = 0. Now by assumption (26) and Parseval's theorem, we

have

ti	 ti	 ti	 _ ti	 ti

til' vwe1 N	 2^	 1N(z) [M(z ) lti + ti(z)ti^ 1ti(z) UN(z) z-ldz

Iz! =1

ti
= l	 e (z) CM(z) (I + G(z )K)-1G(z)4n	 ti1N	 ti	 ti It, ti ti

(zl=1

_	 ti

+ Cti(z) ^ti + ti^ti(z)^ 1M^'`(z)
	

ti1N(z) 
z-1 dz

61 
a 

2> 0	 d el E En , dN E J+ (52)

Thus the condition (43') of Theorem 2 is satisfied with 6' 
A 

6 > 0 and

ai = 0. It remains to check the conditions of (14 1 ) and (15') cf Theorem

2. The assumption N1 and the relation (45) give us

^til ti2)' [^JCY VM) '1t (ti2'm)] ' 0	 dtil' tit E En . t/m E J+ (53)

This coupled with assumption N2 implies that ti t is an odd, monotonically

-29-



nondecreasing nonlinearity. Since the assumption M3 implies that the

matrices Mi 's are doubly dominant [7] for all i E J +, it follows that

(Theorem 4 of Willems and BrockeLt]

ti2' 
tirM 

lQ ) N	 veZ' tite2 ' N

^N'`
L^ N-i^2i't(ti2i)
i=0

N

1: Tt(ti21)MN-iti2i > 0
i=0

where we have used the assumptions M1 and M2 to guarantee the existence

of M 1 in the above equation. (In fact M1 and M2 imply Lhat W" e 21ti	 ti	 nxn

see proof of Theorem 2, Part I). (54) shows that condition (14') of

Theorem 2 is satisfied with e2 = a2 = 0. Clearly condition (18 1 ) of The-

orem 2 is indeed satisfied because a' 	 (61 + e2) = d > 0. Therefore

have demonstrated that all conditions of Theof4m 2 are satisfied. Now

U 
u.2 r= I implies that 

ti 
and ti2 are in in because Ni

= til KU u  =

M
U2 , where K is an nxn constant matrix and M e RA xn . Therefore we con-

clude from Theorem 2 that ,eel , ti2 ,
 til and ti 2 are in In. From Fig. 4, we

can easily see that 	 andand 
ti2
a re in Rn because M and k-1  are in inxn

which map Rn into 1nr espectively. ' From the system equations (47) and

(48) we obtain easily that 
a 

and 
2 

are in ka.

Before we prove Theorem 2B, we first quote a lemma j8, 17, 181 which

x^

r

(54)
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we will use it in our proof later.

Lemma

Let f : E -► E satisfy the following conditions:

01 - o2f [f (a l) - f (°2), '- 0
	

Vc1, °2 E E

Then for all j E J+

N	 N

E ai-j	 6.rf (ad ^ 	Gif (Qi)
i=0	 i-0

WO  E E, VN E J+

If, in addition, f (-Q) a -f (v), then for all j E J+

^N"`L., ai-j f (ai)
i•0

N

Fa aif (Qi)
i•0

Vai E E, VN E J+

Proof of Theorem 2B

We prove the theorem by means of Theorem 2.

Since, by assumption, g and m are in R 1 , we have

J (MGel) N12	 I (m * g * el) N12	 I m1 1191 11 el N12	
Vel E E, V N E J+

(55)

This shows that (12') of Theorem 2 is satisfied with Yi 4 Imi 1l go l and

Si = 0. Now by Parseval theorem, we.get



h^

J

M!

al , MGel> N a 2n	 *.(z) m(z) 8(z) e1N (z) z-1 dz

IzI-1

Re[m (z)e(z)] e^`N (z) e 1N (z) z-1 dz
2	 1

IZIM1

> 61 e
1N' 2	

(56)

where 6 0 inf Me(m(z) g(z)]) .
IzI.1

Clearly (56) is in the form of (13') of Theorem 2 with 6i 6 and

ai 0. Before we apply Theorem 2, we need only to check conditions (141)

and (15 1 ). Now consider

^N
	 ii`
 .(me 2

0 "2) N a , L, m j e2 (i- j )  (e2i)
1-0 j=0

Fa

N
	

N	 i-1

 moe2i^' (e2i) + Fa Fa mj e2 (i-j ) (e2i)
i=0	 i=1 J-0

an3 using the assumption Nl, N2 and Lemma B, we obtain successively

^ccme 2' @e2 ) N - > k E *2 (e2i )	 L+ Im I ^ I e2 (i_ )*(e 21) I
2 1=0	 j=0 

j 
i=1	

j
(cont.)

(57)
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MO 
N	 N

k E * (e 21) I®I 1 E e2i'(e21)
2 i•0	 1.1

(

mo ImI

 k 1 I y2NI 2
2	 1

E2 1 y2NI 2
(58)

where we have used (29b) and defined e 2 by

r 0 
m  - 

I mI 1

"2	 k2	
k 

So (58) is in the form of (14') of Theorem 2. By assumption, clear-

ly condition (15') of Theorem 2 is satisfied. Therefore it follows from

Theorem 2 that e l , e2 , yl and y2 are in Z2.

Proof of Theorem 2C

By identical, arguments as in the proof of Theorem 2B, we obtain

l ) N ? I ' I e 1NQ 2	
(59)

.. ti	 }
where di	 .`'	

1
r: ^ 	 q^.	 -	 ) l8(Z) •

Next we coL;sider

N

( Me2 , Oe2) N a	 (m * e2) i^ (e2i)	 (60)
i•=0
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Denote IV 	 = 1 + q(1 - a-1) _ (1 + q) - qz-1	©	 mO + mlz-1 , then m 	 - 1

+ q and ml -q. Since

(m * e2 )i = moe21 + m1e2(i+l)

(1 + q)e2i ge2(i+l)

We obtain from (60)

N	
^N

Me2 , Me2 ) N - E (1 + g)e21 (e2i) g Fa e2(i+l)^' e2i)
i=0	 1-0

Applying Lemma B to (61) and noting that q >- 0

N	 N

Me29 Oe2 ) N ? (1 + q) Ee2i* (e 21 ) g E e2 (i+l)* (e2i)
i®0	 i=0

N	 N

> (1 + q) E 
e2i* (e 21 	 g E e2i* (e 21)

i=0	 i=0

= rN a(e ) ? 1 rN * 2 (e ) = 1 J * (e ) ^^ 2
L..^ 2 i 21	 k L..	 21	 k	 21 N 2
i=0	 i=0

e2 1 *(e 21
)NI 2

Assumption (32) implies that 6i + e 2 > 0. So we have shown that all con-

dtions of Theorem 2 are satisfied, corseugently we conclude from Theorem

2 that u
1
 , u 

2 
E 12 implies that el, e 29 yl and y2 are in 12.

(61)
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Conclusion

Using some results of Part I and slightly generalized versions of

the Small Gain and of the Passivity theorems we obtain in a unified man-

ner several general stability criteria for multiple-input, multiple-

output discrete systems. We hope further work in this direction will

lead to a unified presentation of stability theory of nonlinear feedback

systems.

Y
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FIGURE CAPTIONS

Fig. 1.	 The system under consideration.

Fig. 2.	 The systemmM which is the system with the multiplier M.

Fig. 3.

	

	 The systemwhich is obtained from the system 9 by a standard
system transformation.
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