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DYNAMIC ADSORPTION OF CARBON DIOXIDE ON MICROPOROUS CARBONS
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y The dynamic adsorption of CO;, at a partial pressure : f‘L;7;;;
' z of about 4 Torr (total pressure, 1 atmosphere), has been A '#{5}\
AL studied on two relatively pure carbon sieves and one . S A &
& <?g commercial active carbon at 25°C. Regeneration of the ’ <2 1 ©
g -?L)E carbon activity over a ¢ +ber of adsorption-desorption . . AY 1
z Q)g\f)g cycles has also been stuuicd. The capacity of the carbon . ' 4 ~Zy b
) g(?)gS§£§ for COp and its regeneration depends not unly upun the porous Aﬂb/iw,:ﬁ) A
w T Ne nature of the carbon but also on the amount and type of o O NS
< e the impurities present on the carbon surface. The results N W o
< NU p P e A e CIN S
&\45 show that a substantial proportion of CO2 adsorbed on the "ifjiggﬁiy
z active carbon is held on impurities, the carboa with its

large surface area acting as a support for these impurities.,
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1. INTRODUCTION
Control of atmospheres in space vehicles is a major concern. For short
space missions, undesirable contaminants, like COZ’ are recovered and dumped.
For long space missions, a regenerable system where 002 is converted back to a

desirable constituent of the atmosphere is mandatory.
An adsorption process for the recovery of CO2 from the atmosphere is strongly

being considered. Synthetic zz2olite molecular sieves are strong contenders for
CO2 recovery for both short and long space missions (1). In dry atmospheres,

they have greater capacity for CO2 than do activated carbons. (2,3). However,
space vehicles contain moisture; and since the zeolites have a greater affinity
for water than for C02, their capacity for CO2 is quickly reduced through water
uptake. Major et al (2) have studied the dynamic adsorption of CO2 (0.5% in

air) from a wet stream by zeolites and a number of commercial active carbons.

They studied the effect of cycling, where adsorption is continued for 1 hr and
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desorption of the bed (by evacuation) is conducted for 15 min at room temperature.
They find that the zeolite sieve has the greate. capacity for the first four
cycles; however, for additional cycles the active carbon is clearly superior,

The active carbon was cycled 300 times without any loss in CO, adeorption

2
capacit .

Recently, a number of carbon molecular sieves (CMS) have been pr:pared
in this laboratory (4-6). The CMS have most of their pores in the 4-7 A range,
compared to relatively larger pores present in commercial active carbons,
The sieves are potentially of interest in adsorbing CO2 because of thelr

smaller pores; CO, would interact significantly with more than one pore wall

2
and thus have a higher heat of adsorption than on active carbon. More 3d-
sorption would thus result per unit adsorbent area in the low relative pressure
range.

In the present work, the adsorption of CO, has been studied at 25°C, both

2
under static and dynamic conditions, on one commercial active carbon and two
carbon sieves prepared from Saran 489. In the dynamic adsorption work, 002

sorption was studied from a He~CO., mixture containing about 0,57% C02. the upper

2

limit considered acceptable in space vehicles for long space missions.
2. EXPERIMENTAL

2.1 Materials

2.1.1 Activated carbon. Barneby-Cheney medium activated coconut shell

charcoal of 4x10 mesh particle size was used. It had 1100 m2/g N2 BET surface
area, 0.6 g/cm3 apparent density, and 1.6Z ash content.

2.1.2 Carbon molecular sieves. The two carbon sieves studied were prepared

from Saran 489 using 207%, by weight, lignite pitch and 17% coal tar pitch as
binders. They are designated as CMS-A and CMS-B, respectively. Details of their

preparation have been described elsewhere (6). The two sieves exhibit 4A



molecular sieve properties. That is, they adsorb large quantities of Coz.
as will be seen shortly, but show only slight uptake of n~butane. The n-butane
surface area for the two sieves 1s only about 20 m2/g.

2.2, Sorption Studies.

2.2.1. Dynamic adsorption. Twenty grams of the adsorbent was packed into a

quartz tube of 3/4 in I.D. The adsorbent bed was held in position between two
quartz wool plugs. Before an adsorption run, the bed was heated in He or in
vacuo at a given temperature, The bed was then cooled to 25 t+ 0.2°C. This
temperature was maintained by two air coolers connected through a temperature
controlling relay system. The He—CO2 mixture was dried by passing through an
Anhydrone column. Anhydrone has been suggested as being the best drying

agent for CO2 (7). If a wet stream was desired, the mixture was passed

through a water bubbler, maintained at 25°C, to introduce 23.7 Torr of water to
the stream. The mixture was passed through the adsorbent bed at a flow rate of
300 cc/min., The effluent gas, after drying with Anhydrone, was analyzed by a
Gow-Mac Gas Analyzer, Model 20-100, the output signal from which was fed to a
150 AR microvoltmeter-ammeter. The concentration of CO2 in the effluent stream
was monitored as a function of time. Ease of regeneration of the bed was
studied in flowing He or H2. A number of cycles were run to study possible

loss in bed capacity.

2,2.2. Static adsorption. Sorption was followed gravimetrically using a Cahn

RG Electrobalance. A sample weight of ca 0.4 g was placed in a quartz bucket,
which in turn was suspended from the balance arm by a Pt wire. Before adsorption
runs, the sample wae outgassed at a given temperature to 10-6 Torr. The pressure
range studied was ca inlO-3 Torr to 300 Torr. The extent of adsorption was
measured after 30 min; equilibrium was attained within this time. The

saturation vapor pressure of CO, at 25°C was taken as 63.5 atmospheres (8).

2



3. RESULTS AND DISCUSSION

The effect of recycling on the bed capacity of the medium activated
charcoal (referred hitherto as active carbon in the text), originally outgassed
at 400°C, is shown in Figure 1. Between each cycle, the bed was regenerated in
flowing He at 25°C. The He flow was continued till no CO2 could be detected
in the exit stream; this required about 2 hr. Bed capacities, computed from
the graphical integration of the break through curves, are shown in Table I.

It is seen that after the first two cycles, the bed capacity decreases only
slowly for additional cycles. The bed capacity was restored to its original
value after 8 cycles by heating the active carbon in flowing He at 150°C for 6 hr,

Break through curves and data for the two 400°C outgassed carbon sieves are
also presented in Figure 1 and Table I. It is seen that both the break through
times and bed capacities are significantly less than those for the active carbon.
However, unlike the active carbon these values do not change with cycling.

The decrezse in the bed capacity of the active carbon on recycling (Table I)
cannot be attributed to closure of some of the pores due to CO2 adsorption, because
such a possibility should have been more pronounced in the case of the carbon
sieves which contain pores of molecular dimensions. The higher sorption
capacity of the active carbon relative to that of the carbon sieves was contrary
to expectations, rLecause it was believed that the sieves with their smaller

5

pores will adsorb more CO, at the low relative pressure used, that is 7.9 x 10 °.

2
In order to check the pcssibility of whether the lower sorption capacity of the

carbon sievi:s might be due to blocking of some of the pores of the filler carbon

by the binder, the two sieves were activated in CO2 at 800°C to 1.3 and 1.8%

burn-off, respectively, in the manner described elsewhere (6). This treatment

should have opened any pores blocked by the binder phase. When the results of

adsorption on the activated sieves are considered (Table I), it is seen that

activation produces only a slight increase in bed capacity.
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In order tc compare the sorption capacities of the active carbon and

MS for CO, over a significant pressure range, CO, isotherms (25°C) were

2 2

determined on the 400°C outgassed samples. The results are plotted in Figures

2 and

3. It is seen that the active carbon adsorbs more CO2 than the CMS

at lower pressures, whereas at higher pressures the latter are the superior

adsor

where

where

bents.

The sorption results have been plotted according to the Dubinin equation (9):

9
log V= log V_ - D(log pS/P)"

V = amount adsorbed at equilibrium pressure p

<
]

micropore capacity

o
Py = saturation vapor pressure of the adsorbate
BT2
D = 0.434 ==
B
B = a constant which is a measure of the micropore size
B = affinity coefficient of the adsorbate relative to N, or benzene

2

The values of V0 and slopes of the linear regions of the plcts for the active

carbo

relrc

studi

n and carbon sieves are given in Table II. A very good straight line
ionship is obtained for the carbon sieves over the entire pressure range

ed (cf. Figure 4). However, in the case of the active carbon (Figure 5),

a linear relationship is observed only below (log ps/p)2 = 10. For larger

value

limit

s, sorption volumes lie above the extrapolated straight lines. The lower

of the applicability of the Dubinin equation is V/Vo = 0.05 (10). In

the case of the active carbon, this limit is seen to be significantly higher. The

autho

energies for the initial amounts of CO

That

rs feel that this is probably due to significantly higher adsorption

2 adsorbed on the active carbon sample.

such a conclusion is justified will become evident shortly.



In the case of microporous adsorbents the micropore capacities determined
trom the C02 isotherms at 25°C can be used to estimate surface areas (11-13),
The surface areas of the three samples, using 25.3A2 for the molecular area of
Coz (14), are given in Table II. They are found to vary in the order:

CMS-A > active carbon > CMS-B. Although the surface area of the active carbon
is less than that of CMS-A, the former adsorbs more CO2 at lower pressures
(Figure 2).

When the results for the active carbon are considered, it is surprising to
note that even though the Dubinin plot indicates higher adsorption energies for
the initial amount of CO2 adsorbed the value of D, which is inversely pro-
portional to the heat of adsorption, is higher for the active carbon than for
the carbon sieves. A higher value for the slope of the Dubtinin plot would lead
to the prediction of somewhat less adsorption for the active carbon, at least
at low pressures (15).

It has recently been shown by Mahajan and Walker (15) that at low pressures
the CMS take up at least comparable amounts of Kr relative to the active
carbons; at higher pressures the active carbons are the better adsorbents.
Lamond and Marsh (11) have also reported that upon increasing the extent of
activation of a polyfurfuryl alcohol carbon (which results in enlarging the
pore size), the extent of CO2 adsorption at lower pressures decreases, although
the surface area of the sample increases. At higher pressures adsorption varied
in the same order as the surface area. In the light cf the above observations,
't was expected that the dynamic adsorption of CO2 would be greater on the
CMS than the active carbon.

It appears that the disparity in the trend of the present results relative
to those of Kr adsorption (15) is probably due, at least in part, to different

forces involved in the sorption of the two adsorbates on the same type of

adsorbents. Since Kr is a non-polar isotropic mole.ule, its adsorption shculd



involve only van der Waals dispersive forces. However, the CO2 mole:ule has a
quadrupole moment. Beebe et al (16) have reported that the polar centers due to
oxygen sites on the carbon surface may interact with the quadrupole associated
with the CO2 molecule and result in higher uptake of the adsorbate. These

workers argue that the non-polar CO, molecule in the adsorbed state, and par-

2
ticularly in the field of polar centers, may behave like a molecule with a
permanent dipole. Deitz et al (17) have also reported that the anount of 002
adsorbed per unit area of surface and its heat of adsorption increase with the
fraction of the carbon surface covered by hydroxyl groups.

In order to check on the possibility of whether a stronger interaction
of CO2 with surface-oxygen complexes 1s responsible for the enhanced adsorption
of the active carbon at lower pressures, the dynamic adsorption of CO2 was

measured after heat treatment in flowing He or H, at increasing temperatures

2
from 400 to 900°C. The soak time at the final temperature for each treatment
was 6 hr. The break through curves are plotted in Figure 6. The amount of CO2
adsorbed per gram of adsorbent in each run is also given. It is seen that an
increasing temperature of heat treatment enhances the uptake of C02, the uptake
increasing from 2,06 cc/g for the 400°C heat-treated sample to 4.18 cc/g for
the 900°C heat-trrated sample. It is also seen that heat treatment in H2 at a
given temperature is more effective in increasing the adsorption of CO2 than
is heat treatment in He. With increasing heat treatment temperature, removal
of surface-oxygen complexes (if present) would be more complete. Thus,
enhanced CO2 adsorption cannot be attributed to greater amounts of oxygen
complex. Obviously some other explanation must be sought.

The sorption isotherm on the 900°C outgassed active carbon (Figures 2

and 3) gave a larger amount of CO, adsorbed over the entire pressure range

2
than that for the 400°C outgassed active carbon and the CMS. The Dubinin plot

gives the same value of V0 as for the 400°C outgassed sample (Table II), suggesting



that the enhanced uptake of CO, cannot be attributed to a change in the pore

2
structure of the carbon as a result of heating at 900°C. A comparison of the
Dubinin plots for the 400 and 900°C outgassed samples (Figure 5) shows that

below (log ps/p)2 = 10, sorption on the latter is associated with higher adsorption
energies. The higher adsorption energy for the 900°C outgassed sample is

also indicated by a smaller value of the slope for the linear region of the

Dubinin plot (Table II).

The effect of recycling on the bed capacity of the 900°C outgassed active
carbon, when adsorption is studied from a dry stream, is shown in Figure 7.

The bed capacities computed from graphical integration of the break through cur-es
are given in Table I. It is seen that che bed capacity decreases sharply after
the first cycle. The decrease continues, though less sharply, for subsequent
cycles up through the fourteenth, where the value has dropped to 1.38 cc/g.

For subsequent cycles, the bed capacity remains unchanged.

It is interesting to note that althcugh either outgassing or heat treatment
in He at 900°C results in the same bed capacity (Figure 6 and Table I), the shapes
of the break through curves in the two cases are different (Figures 6 and 7).

The effect of cycling in the case of a wet COZ-He stream is shown ir Figure 8
and Table I. In the first cycle, it is seen that following break through the
outlet concentration of CO2 climbs to a value which exceeds the inlet con-
centration for a short period. It appears probable that water displaces some
of the adsorbed C02. Water markedly affects the adsorption capacity of the
sample. For instance, the bed capacity for the first cycle is 3.48 cc/g
compared to 4,17 cc/g for the dry stream. Furthermore, the bed capacity becomes

constant after only four cycles or when the amount of CO, adsorbed equals

2

1.77 cc/g. This amount is significantly greater than the constant value

finally attained after fourteen cycles for the dry stream.



In order to study the ease of regeneration and, hence, the stability

2i adsorbed CO the active carbon bed after the seventeenth cycle (in the

2’

dry stream studies) was heated in flowing H, at increasing temperatures, The

2

soak time for each treatment was 6 hr. The dynamic adsorption of CO2 was
mensured after each heat treatment. Hydrogen was specifically chosen for
this study because there is interest, in the space program, in reacting

C02 and H2 over a nickel catalyst to produce water, which can then be electro-

lytically dissociated to O2 and Hz. The bed capacities for each heat treatment

are given in Table III. It is seen that the adsorbed CO, is fairly stable;

2

its desorption does not start at 100°C. Increasing amounts of CO2 are

desorbed between 200-400°C. Between 400-600°C heat treatment, the bed capacity
remains essentially constant. However, following heat treatment at 700°C

there is a slight, though significant, decrease in bed capacity. It may be
mentioned that when He was used for regenerating the bed, the bed capacity
monotonically increased with increasing temperature of heat treatment. It

appea:s likely that the decrease when H, is used is due to its chemisorption

2

at sone of the 'active' sites on the carbon surface which otherwise would have
been involved in the adsorption of C02. Chemisorption of H2 is known to occur on
graphite (18-20), charcoals (21,22) and graphitized carbon blacks (23).

Since above 700°C H, causes gasification of carbon to give methane (23),

2

heat treatment in H, was not carried out at higher temperatures. Instead,

2
above 700°C, regeneration of the bed was studied in flowing He. It is seen
(Table III) that there are slight increases in the bed capacity following

heat treatment at 800 and 900°C. The sample was then outgassed at 900°C

for 72 hr. Even after this drastic treatment, the original bed capacity is

not restored, suggesting that a part of the chemisorbed H2 is still not desorbed

under these conditions. Walker and co-workers (23) have observed recently that

H

9 chemisorbed on a Graphon sample is held very strongly; and its complete
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elimination takes place only after outgassing for 72 hr at 1000°C. 1In the
present study, a higher temperature of cutgassing was not used so as to avoid
the possibility of sintering of the 'active' sites on the porous carbons

cresponsible for CO, adsorption.

2
Since the adsorbed CO2 is extremely stable, it is evident that it is not
held at the carbon surface by mere van der Waals forces. It appears that some
chemical or quasi-chemical forces are responsible for the adsorption of that
portion of the CO2 which is not desorbed on H2 treatment at 100°C. Most likely,

the impurity content of the active carbon is interacting with CO The active

2
carbon used in the present work has an ash content of 1.6%. The major impurity
constituents, as determined by qualitative spectrochemical analysis of the low-
temperature ashed material, are Si, Fe, Al, Mg, Ca, Na, K; B, Mn and Cu are
present as minor constituents. Infra-red analysis reveals the presence of
sulfate and nitrate functional groups and silica. The impurities, when present
in an appropriate chemically combined form, are capable of interacting chemically
with C02. The enhanced uptake of CO2 with increasing temperatures of heat
treatment strongly suggests that the impurities are decomposing thermally

or/and are reduced by carbon or CO evolved during the thermal decomposition

of surface oxygen complexes, to give products which can react with C02.

The latter view is supported by the fact that the bed capacity is significantly

greater when the active carbon is heated at 600°C in H, than in He (Figure 5).

2

This increase occurs in spite of the fact that H, is capable of being chemisorbed

2
on carbon at 600°C,

It has been shown by Puri and co-workers (24,25) that heat treatment of
charcoal ip flowiné H2 at 600°C eliminates surface complexes to an extent which
is observed in vacuc or N, at 1000°C. Furthermore, it is known that H, is
chemisorbed at the same sites as oxygen (19,23). Therefore, enhanced uptake of

002 following H2 treatment cannot be attributed to adsorption on additional

sites rendered vacant by the ~“2sorption of oxygen complexes.
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It has been reported by Emmett and Brunauer (26) that the presence of
1% or so of KZO on surfaces of iron synthetic ammonia catalysts significantly

erhances the adsorption of CO For instance, a catalyst containing 1.07% K20

2
adsorbed, at @ pressure of 300 Torr, 78% more CO2 at -78°C than N2 at the same
pressurc at -183°C., These workers suggest that the surface alkali causes a
very rapid chemisorption of CO2 to ocrur, in addition to usual physical adsorption.
By assuming that each molecule of alkali present on the surface can hold one
molecule of chemisorbed COZ’ they report that for a catalyst containing
1.07% K2O*, the alkali covers about 75% of the catalyst surface.

The fact that in the present study the impurities are adsorbing CO2 and
thus enhancing the extent of adsorption is confirmed when results on the de-ashed
sample are considered. The active carbon was de-ashed with a HC1-HF mixture in
a boiling water bath. It was washed free of Cl ions with demineralized water.
The 25°C isotherms on the 40C and 900°C outgassed, de-ashed samples are shown
in Figures 2 and 3. It is seen that for the same temperature of outgassing, the
sorption uptake, over the entire pressure range, is significantly less for the
de-ashed material than for the as-received sample. For the de-ashed carbon,

the 900°C outgassed sample adsorbs more CO, than the 400°C outgassed sample,

2
Moreover, the desorption isotherm on the former shows a small hysteresis loop
over the entire pressure range. However, subsequent adsorption on the sample
was found to be completely reversible. The higher sorption capacity and the
irreversibility of adsorntion on the 900°C outgassed sample could be due to the
influence of traces c{ impurities which may still bc left in the de-ashed
material. In this context, Emmett and Brunauer (26) have suggested that a few

hundreths of a percent of alkali oxide can significantly influence the adsorption

of COZ'

*Although the catalyst initially contained 1.07% K,0, the workers report that
during the reduction of the catalvst, 55-65% of the alkali had volatili-zed.
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It may incidentally be mentioned that Magnus et al (27) have also reported
that de—ashing of a wood charcoal decreases the adsorption of COZ' These wo ers
rave attributed the higher sorption capacity of the untreated charcoal to the
nresence of alkali or alkaline earth oxides on the surface.

Dubinin plots on the de-ashed sample are shown in Figure 5 and the parameters
of the equation are given in Table II. It is seen that after the removal of
impurities, the plots are linear over a wider pressure range. The slopes of
the linear regions of the plots increase after de-ashing, indicating that sorption
is now associated with a lower adsorption energy, that is heat of adsorption.

The Dubinin plot for the 400°C outgassed sample is found to be linear above
V/VO = 0,02, the lower limit of the applicability of the equation (10).
Therefore, it appears that departure from linearity above this limit can be
attributed to sorption on sites associated with higher adsorption potentials,
an assumption made elsewhere in the paper.

It is noteworthy that although the shape of the isotherms (Figures 2 and
3) and the slopes of the Dubinin plots (Table II) differ for different
treatments, the value of the micropore capacity, within the limits of accuracy
and reliability of these logarithmic plots, remains constant.

The striking influence of the impurities on CO2 adsorption is brought out

more clearly when the results of dynamic adsorption on the de-ashed sample

b

outgassed at 900°C are considered (Figure 9). It is seen that the break through
time and the bed capacity are very much less than those for the as-received
active carbon sample (Figures 1 and 7, Table I). In the present case, the bed
capacity decreases only slightly after the first cycle; the value remains
constant tnereafter. This slight decrease is consistent with a small amount of
irreversibly adsorbed CO2 as suggested from static adsorption experiments.

When the results for the wet stream in contact with the de-ashed active

carbon are considered, it is seen (Table I) that water has a negligible
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intluence on the adsorption of C02. This result is in contrast to the result
for the as-received active carbon, where the presence of water affected the

dynamic adsorption of CO It suggests that water is not conpeting with CO2

9
for adsorption on carbon sites, but is competing for adsorption on inorganic
impurity sites.

The sorption isotherms on the active carbon show (Figures 2 and 3) that
the percentage increase in the CO2 adsorption, brought about by the impurities,
decreases with increasing equilibrium pressure. For instance, when the
sorption capacity of the active carbon, both before and after the removal of
impurities, is considered at a pressure of 4 Torr (which closely represents
the partial pressure of CO2 at which the dynamic adsorption has been studied
in the present work) it is seen that 1.67% impurities can enhance 002 adsorption
by about 300%. At a pressure of 250 Torr, the impurities increase CO2 up take
by only 20%. 1In the light of the present work, it appears that a substantial

proportion of CO, adsorbed at low relative pressures on the active carbon is held

2
on impurities and that the active carbon, with its large surface area, acts
as a support for these impurities.

It was shown earlier (Table I) that, in the case of CMS-B, activation in
CO2 to a burn-off of 1.8% results in only a minor increase in adscrption of

Co 1t was thought probable that oxygen chemisorbed during the process of

9
activation with CO2 might possibly be blocking some of the finer pores. In
order to check this possibility, a sorption isotherm on the 900°C outgassed
sample was measured (Figure 10). It is seen that there is a significant increase
in the extent of adsorption throughout the pressure range.

The coal tar pitch used as a binder had an ash content of 0.24%. The
Saran carbon is relatively very jure. Since 17% of coal tar pitch was used as

a binder, the ash content of the resultant sieve would be about 0.041%. In

view of the profound influence of impurities on the adsorption of'CO2 observed
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“he present work, enhanced adsorption on the 900°C outgassed sample could

be due to the influence of small amounts of impurities. However, when the
Dubinin plot is considered, it is seen (Figure 4 and Table II) that, unlike
the active carbon, the value of Vo increases following outgassing at 900°C.
The slope of the Dubinin plot and, hence, the adsorption energy remain essentially
unchanged on increasing the temperature of outgassing, suggesting that additional
C02 is adsorbed in some of the pores which were previously blocked by chemi-
sorbed oxygen.

When the sorption isotherms on the de-ashed active carbon are compared
with those on the carbon sieves, it is seen (Figures 2 and 3) that the latter
adsorb more CO2 than the active carbon throughout the pressure range studied,
thus confirming our expectations that the carbon sieves should be better
adsorbents than the active carbon.

The effect of recycling on the bed capacity of the as-received active
carbon shows (Table I) that the initial capacity, as well as the constant
capacity attained after a number of cycles, increases with increasing temperature
of outgassing of the sample. In each case, the values are considerably greater
than those obtained for the de-ashed sample. It appears, therefore, that on
heating at increasing temperatures, the impurities are 'activated' to different
extents and that in each case CO2 adsorbed on some of the impurities is capable
of desorption by He.

Since water decreases the adsorption of CO2 on the as-received active carbon,
it appears that some of the impurities have a greater affinity for water

than CO thus leading to preferential adsorption of water. It was observed

2’
that the constant value of bed capacity obtained for the wet stream was signifi-
cantly greater than for the dry stream. The exact mechanism for this behavior

is open to speculation, but it may involve absorption of CO2 in water.



It is difficult to ascertain the exact nature and composition of the
impurities present on the carbon surface and the manner in which they are
affected on heating. The impurities distributed on the carbon surface are not
expected to have the same chemical characteristics as those of the bulk impurities.
Therefore, one cannot suggest with any certainty the exact mechanism for the

adsorption of CO, on the impurities or the manner in which it will be influenced

2

by water.
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TABLE 1
EFFECT OF CYCLING ON BED CAPACITY OF CARBONS

Bed Capacity

Cycle No. cc(NTP) /g
Active Carbon*
1 2.24
2 2.20
3 2.03
4 1.99
5 1.97
6 1.87
7 1.86
%k
Active Carbon
a) Dry Stream
1 4,17
2 3.08
3 2.83
4 2.64
5 2.45
6 2,32
7 2,22
8 2.07
9 1.89
10 1.83
11 1.61
12 1.50
13 1.48
14 1.38
16 1.40
17 1.42
b) Wet Stream
1 3.48
3 2.18
4 1.85
5 1.85
6 1.78
7 1.77
*
CMS-A
1 1.26
2 1.25
CMS-A, 1.3% burn—off*
1 1.39
*
CMS-B
1 1.10
2 1.08

*
CMS-B, 1.8%Z burn-off
1 1.21




TABLE I (continued)

Cycle No.

*k
De-ashed Active Carbon

a) Dry Stream

1
2
4

b) Wet Stream

1
2
4

*Initially outgassed at 400°C
**Initially outgassed at 900°C

Bed Capacity

cc(NTP) /g



PARAMETERS OF THE DUBININ PLOTS AND SURFACE AREAS

TABLE 11

Micropore
capacity
Sample cc(NTP) /g
Active carbon
outgassed at 400°C 137
outgassed at 900°C 137
De—-ashed active carbon
outgassed at 400°C 137
outgassed at 900°C 137
CMS-A
outgassed at 400°C 140
cMs-B
outgassed at 400°C 127
outgassed at 900°C 140
TABLE III

Slope x 10-2

12.61
11.68

13.81
13.23

12.43

12.00
11.80

REGENERATION OF THE ACTIVE CARBON BED
FOLLOWING THE SEVENTEENTH CYCLE OF CARBON DIOXIDE ADSORPTION

Regeneration
Conditions

Hydrogen
100°C

200
300
400
500
600
700

Helium
800°C
900

Qutgassing
900°C

Bed capacity

cc(NTP) /g

1.45
2.09
3.21
3.61
3.70
3.64
3.52

Surface area

mz[a

931
931

931
931

950

863
950



r2

lOs

FIGURE CAPTIONS

Effect of recycling on the break through curves of dry CO, at 25°C on
active carbon and carbon sieves, originally outgassed at 400°C. Active
carbor: «cycle 1, 0; 2, A; 3,[]; 6, V; 7, #. CMS~A: cycle 1, V; 2, X.
CMS-B: Cycle 1, A; 2,IN.

Sorpticn isotherms of CO, on active carbon and carbun sieves at 25°C.
As-received active carbon outgassed at 400°C, 0; 900°C, #. De-ashed
active carbon outgassed at 400°C, V; 900°C, ¥; CM5-A, )

and CMS-B, A, degassed at 400°C.

Sorption isotherms of COj on uactive carbon and carbon sieves in low
pressure region at 25°C. As-received active carbon om:igassed at 400°C,
0; 900°C, O. De-ashed active carbon outgassed at 400°C, V; 900°C, V.
CMS-A,[7], and CMS-B, A, degassed at 400°C.

Dubinin plots for CO, adsorption on CMS-B at 25°C.

Dubinin plots for CO2 adsorption on active carbon at 25°C.

Effect of heat treatment in He and H, at different temperatures on the

break through curves of dry CO, at 25°C on active carbon. Value given for

each curve is total uptake per gram of adsorbent.

Effect of recycling on the break through curves of dry 002 at 25°C on
active carbon, originally outgassed at 900°C.

Effect of recycling on the t~eak through curves of wet CO2 at 25°C on
active carbon,originally out -sed at 900°C.

Effect of recycling on the break through curves of dry CO, at 25°C on de-

ashed carbon originally outgassed at 900°C. 2

Effect of outgassing temperature on sorption isotherms of 002 on CMS-B
at 25°C,
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