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A MODIFIED METHOD O F  INTEGRAL  RELATIONS  APPROACH  TO  THE 

BLUNT-BODY EQUILIBRIUM AIR. FLOW FIELD, INCLUDING 

COMPARISONS WITH INVERSE SOLUTIONS 

By L.  Bernard  Garrett,  John  T.  Suttles 
Langley  Research  Center 

and 

John N. Perkins  
North  Carolina  State  University 

SUMMARY 

A modified  approach  to  the  first-order  approximation of the  method of integral 
relations is presented  for  the  numerical  calculation of the  inviscid,  adiabatic flow  field 
around a blunt-nose body traveling  at  hypersonic  speeds.  Solutions  have  been  obtained 
and  computed  flow-field  data are  presented  for  the  adiabatic  steady flow of a perfect  gas 
and air in  chemical  equilibrium.  The  results  obtained by the  present  method of solution 
are  compared with results  obtained by using  inverse  methods,  property-derivative  inte- 
gral  relations  methods,  and  experiment.  The  results  indicate  that  the  present  method 
provides  an  accurate,  versatile  solution of the  blunt-body  flow  field,  and  the  relative  sim- 
plicity of the  method  should  allow  extension  to  coupled  radiating  flow-field  analyses. 

INTRODUCTION 

Design  for  interplanetary  spacecraft  depends on a realistic  definition of the  entire 
flow  field  surrounding  the body. The  flow-field  solutions  should  provide  the  necessary 
inputs  required  for  the  calculation of aerodynamic  loads,  shear  stresses,  radio  attenua- 
tion  regions, and  convective  and  radiative  heating. At hyperbolic  speeds a predominant 
consideration is the  radiation  fluxes which are strongly  dependent  upon  the  distribution 
of the  fluid  properties  and  the  chemical  species  between  the  shock  and  the body. At these 
velocities  the  energy  losses  due  to  radiation  can  have a significant effect on  the  entire 
flow  field. 

The  purpose of this  report  is to  develop  an  approximate  numerical  method  which 
has  promise  for  application  in  coupled  radiating  flow-field  analyses  and  to  compare 



adiabatic-shock-layer  results  with  other  existing  numerical  solutions  and  with experi- 
mental  data. 

A method of integral-relations  approach,  which  was first applied  by  Belotserkovskii 
(ref. 1) and  Traugott  (ref. 2) to   the flow of a perfect  gas  over a blunt  body, is employed 
in  this  analysis. A one-strip  approximation is used.  The  solution is obtained  by  inte- 
grating a se t  of governing  differential  equations  which are cast  in t e rms  of the "fluxes" 
(mass,  momentum,  etc.)  or  "complexes" which was  originally  recommended by Lun'kin 
et  al. (ref. 3) and Kao (ref. 4) and is employed  extensively by Belotserkovskii  (ref. 5) 
near  the  sonic  region of the  flow  field.  This  approach is in  contrast  to  prior  approaches 
(see ref. 6, for  example)  in which the  governing  equations are written  in  terms of deriva- 
t ives of properties  (velocity,  pressure,  etc.).  The flow  equations are developed  without 
imposing  the  constancy of the  entropy  along  streamlines;  thus,  the  method  can  be  extended 
to  coupled  radiation  flow-field  analyses.  The  approach is made  more  flexible  in  that  the 
thermodynamic  characterization of the  fluid  does not enter  directly  into the governing 
differential  equations,  but  enters  the  governing  system of equations  only  through  auxiliary 
equations of state. 

Flow-field  results  are  presented  for  the  adiabatic  steady  flow of a perfect  gas  and 
air in  chemical  equilibrium.  The  primary  goal of this   research is to  examine  the  equi- 
librium air results  obtained  from  the  relatively  simple  one-strip  integral  approach  to 
determine  whether  the  solution is sufficiently  accurate  for  use  in  adiabatic  radiation  com- 
putations  such as were  done by  Kuby, et al. (ref. 7) .  

The  perfect  gas  model is employed  primarily  to  study  the  basic  flow-field  approach, 
namely,  to  determine  whether  the  formulation of the  problem  using  the "flux" o r  "com- 
plex"  method  has  any  computational  advantages  in  the  sonic  region  over  the  property- 
derivative  method.  The  perfect  gas  model  also  permits a direct  comparison of the 
flow-field  results with other  numerical  procedures which use  the  same model:  hence, 
differences  in  the  results cannot  be  attributed  to  differences  in  real  gas  models. 

SYMBOLS 

4 coefficients  in  governing  differential  equations,  defined  in  appendix A 

Bj coefficients  in  governing  differential  equations,  defined  in  appendix A 

7'0 defined by equations (22) 

C coefficient  in  governing  differential  equations,  defined  in  appendix A 
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Ej coefficients  in  governing  differential  equations,  defined  in  appendix A 

Gj functions  appearing  in  governing  partial  differential  equations  which are dif- 
ferentiated  with  respect  to  y  (see  eq. (5)) 

h  static  enthalpy 

* 
h  specific  enthalpy  divided by gas  constant  for  cold air, OK (see appendix C )  

H total  enthalpy, u2 + v2 
2 

1 j functions  appearing  in  governing  partial  differential  equations  which are 
differentiated  with  respect  to  x,  defined by equations (9) 

Kj  nonhomogeneous  functions  in transformed  governing  partial  differential 
equations,  defined by equations (9) 

j ,k,N integers 

M Mach  number 

1 

Pj = 6 P j  

P 

PEef 

Q 

qR 

qRx 7qRy 

R 

r 

pressure  

reference  pressure  used  for  appendix C ,  1.01325 X lo6  dynes/cm2 

curvature of reference  surface,  1 
ii;; 

radiation  flux  vector 

radiation  flux  components  in  x  and  y  directions,  respectively 

nondimensional  gas  constant, R’ Tb, 
WUL2 

radius  measured  from axis of symmetry of body (see  fig. 1) 
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11111 I" 

R' universal gas constant 

R;ef gas  constant  used  in  appendix C and  based  on pkef, pEef, and Wref, 

Rb 

RF 

R;s 

T' 

VR 

- 
W 

X 

Y 

Z 

z 

P 

Y 

6 

60 

body radius of curvature  (see  fig. 1) 

radiation flux term,  defined  in  appendix A 

body radius of curvature at x = 0 

temperature,  OK 

free-stream  velocity 

velocity  components  in  the x and  y  directions,  respectively 

resultant  velocity 

mean  molecular  weight of equilibrium air, g/g-mole  (see  appendix C) 

mean  molecular  weight of cold air, 28.96 g/g-mole  (see  appendix C) 

coordinate  along body surface  (see  fig. 1) 

coordinate  normal  to body surface  (see  fig. 1) 
- 

compressibility, W r  e f 
W 

axial coordinate  (see  fig. 1) 

constant 

ratio of specific  heats 

shock  displacement  distance  (see  fig. 1) 

shock  displacement  distance at axis of symmetry (x = 0) 
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60* converged  value of shock  displacement  distance at axis of symmetry 

r expression  defined  in  appendix C (eq. (C8)) 

rl transformed  y-coordinate, 8 
Y 

eb body  inclination  angle  (see  fig. 1) 

K metric  coefficient, 1 c Q6q 

V expression  defined  in  appendix C (eq. (C16)) 

5 expression  defined  in  appendix C (eq. (C18)) 

P density 

PE ef reference  density  used  in  appendix C,  1.29313 X g/cm3 

expression  defined  in  appendix C (eq. (C12)) 

w shock-wave  angle  (see  fig. 1) 

Subscripts: 

b re fers   to  body 

j re fers   to  a particular  governing  differential  equation: 
1 shock  geometry  equation 
2 continuity  equation 
3 x-momentum  equation 
4 y-momentum  equation 
5 energy  equation 

shock-oriented  properties  (see  sketch (a), appendix D) 

r e fe r s   t o  conditions at axis of symmetry on  the  body 

refers  to  conditions at body surface,  q = 0 
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1 refers t o  conditions  immediately  behind  shock  wave, r] = 1 

stag refers to  stagnation-point  conditions 

r ]  variation  with 7 

00 dimensional  free-stream  conditions 

P r imes  have  been  used  to  denote  dimensional  quantities. (See eqs. (7).) Unprimed 
quantities are dimensionless  and  those with circumflexes 6 ,  c ,  and fi are based  on 
reference  values as shown  in  appendix C. Double subscripts  refer  to first, j 
(governing  equation  number)  and  second, 7 (location  within  the  shock  layer, 0 for 
body and 1 for  shock). 

ANALYSIS 

Governing  Equations 

The  conservation  equations  for  the  steady  axisymmetric flow of an  inviscid  radiating 
gas  are:  

For continuity: 

For x-momentum: 

For y-momentum: 

For energy: 

These  equations  have  been  written  in  the  "divergence"  form (ref. 8): 

( j = 1 , 2  . . . k) 

6 

c I 



where  x,y are the  independent  variables,  u1 . . Uk are the unknown functions,  and 
I-,G.,K- are the known functions of x,y;ul . . . Uk. 3 3 3  

The  relationship  between  the  shock  and  the body geometry  in  the  body-oriented 
orthogonal  coordinate  system  shown  in figure 1 is 

The  quantities  have  been  nondimensionalized as follows  (primes  denote  dimensional 
quantities): 

y = -  Y'  
R.;j 

Q = Q'RL 1 
H = -  PI' 

(UL,) 

It is desirable  to  transform  the independent  variables x,y to  the  normalized 
variables x , ~  where q = y/6 and 6 = 6fx). When the  transformation is made,  equa- 
tion (5) becomes 

where . 
6 

I1 = i; GI = 0 IC1 = --(I + Q6)tan w - 
I2 = pu G2 = pv K2 = 0 

( 

14 = ~ U V  G4 = p + pv K4 = -(Qr + K COS eb)P - Qrpu2 

I5 = puH Gg = pvH K g = - -  : :qPrqR) 
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The  relation Kg has  been  established by  making  the  local-tangent slab approximation 
where  flow  properties  for  the  radiation  computations are assumed  to  be  constant  in  planes 
tangent  to  the body and  therefore 

Application - of the ~~ method . of integral  relations.-  The  method of integral  relations 
reduces  the  system of nonlinear  partial  differential  equations  to  an  approximate set of 
nonlinear  ordinary  differential  equations  which  can be integrated  numerically. 

.~ . 

The  basic  approach is first to  divide  the  region  between  the body and  the  shock  into 
N s t r ips  by using  arbitrary  values of 77 and  then  to  represent  certain  combinations of 
the  properties by interpolation  polynomials  in 77, the  coefficients of which are evaluated 
at  the  strip  boundaries.  Finally,  the  system of equations is integrated  from q = 0 to 
the  boundary of each of the  str ips  to  give N(j - 1) + 1 independent  equaiions. (It is noted 
that  the j = 1 equation  relates  the  shock  shape  to  the body geometry  and  thus is inde- 
pendent of the  number of strips  taken.) 

The  one-strip  approximation is employed  in  this  analysis.  For  simplicity,  the 
functions  Ij are assumed to  vary  l inearly  in q ac ross  the shock  layers;  that is, 

Higher  degree  interpolation  polynomials  have  been  tried  in  the  one-strip  approach;  they 
complicate  the  method  without a noticeable  improvement  in  the  accuracy of the 
computations. 

The  governing  equation (8) can now be integrated  once  over  the  shock  layer  from 
the body ( q  = 0) to  the  shock ( q  = 1) and then  differentiated  with  respect  to  x  to  yield 
ordinary  first-order  differential  equations of the  form: 

A  detailed  development of the  governing  equation (11) and  the  coefficients  are  given  in 
appendix A. 

Equations (6) and (11) constitute a system of five  governing  differential  equations 
with  the  five unknown dependent  variables 6, w ,  120, ICJ~ ,  and 150. (Note thzt 140 = 0 
for  all x when the  boundary  conditions vo = 0 and  dvo/dx = 0 are applied.) The 
derivatives which are specified by the  governing  differential  equations  are  computed  suc- 
cessively  in  the  following  order: 

a 



dx C 

dx C 

Note  that  the  exact  x-momentum  equation (15) is used  in  lieu of the  approximate 
relation.  Experience  has  shown  that  numerical  instabilities  can  be a serious  problem 
in  the  €low-field  calculations. For the  one-strip  approach  with a linear  approximation 
(the  method  being  reported),  this  problem  can  be  eliminated by replacing  the  approximate 
x-momentum  equation at the body with the  exact  x-momentum equatior:  Equation  (15) 
can  be  used for nonequilibrium  and  radiating  flow-field  analyses  where  the  flow  along  the 
body streamline is not isentropic. 

Initial  values.- In order  to  begin  the  integration of the  governing  differential  equa- 
tions  (eqs. (12) to  (16)), it is necessary  to  obtain  initial  values of the  quantities  appearing 
in  the  right-hand  side of these  equations.  Direct  substitution of the  initial  values at 
x = 0 results  in  indeterminate (O/O) expressions.  Application of L'Hospital 's  rule  yields 
the  proper  starting  values  for  the  nonzero  derivatives 

dx 
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where RF is the  radiation  transport  from  the slab and is defined  in  appendix A 
(eq.  (A12)).  In  the  present  analysis  the  radiation  flux  term RF is set equal  to  zero.  
(For a radiating  shock  layer,  an  iteration  scheme  can  be  used  in which RF is initially 
assumed  and  compared  with  the  computed  radiation  flux at the  stagnation  streamline.) 
Appendix B presents  a detailed  development of the  initial  value  expressions. 

The  equations  for  the  initial  values  (eqs. (17) to  (19))  contain 6, the  shock  dis- 
placement  distance at the  axis of symmetry (x = 0). Since  this  term is an unknown in  the 
problem, it is necessary  to  have a basis  for  establishing  the  correct 6, and  hence a 
unique  fiow-field  solution.  The  logic  for  the  uniqueness is based  on  the  existence  in  the 
solution of the  "sonic  singular point."  (See ref. 1.) The  singular  behavior  in  the  solu- 
tion  provides a basis  for  i terating  to  establish  the  correct 6,. This  aspect of the  prob- 
lem is discussed  in  detail  in  the  section  on  the  initial-value  sensitivity  study. 

___ F h x  and .. . properky  evaluations.-  The  basic  governing  differential  equations  and  the 
coefficients  have  been  developed by considering  only  the fluid. mechanics of the flow  field. 
In order  to  solve  these  equations, it is necessary  to  evaluate  the  thermodynamic  proper- 
ties properly.  The  present  analysis is conducted for  both perfect  gases ( y  = Constant)  or 
equilibrium air. The  thermodynamic  properties  for  the  equilibrium air model  are  cor- 
related  in  appendix C from  the  equilibrium air data of Hilsenrath  and  Klein (ref. 9). 

. .  . 

The  conditions  immediately behind the  shock are computed  from  standard  Rankine- 
Hugoniot relations  for  oblique  shocks.  The  detailed  shock  equations  used  in  this  analysis 
are  presented in  appendix D for  the  perfect  gas  and  equilibrium air models. 

Perfect  gas  analysis: In the  perfect  gas  analysis  the  stagnation  properties on the 
body a r e  computed  exactly  from  the  following  relations: 

In this  modified  method  the  properties on the body surface ( q  = 0) a r e  functions of 
the  fluxes  and are computed  from  the  following  simple  algebraic  equations: 

10 



212 0 uo = 

-bo * (bo2 - 4c0 

where 

-2~130 
b -  

o - y(2R + 1) - 1 

(Y + 1)1202 
co = 

y(2R + 1) - 1 I 
I2 0 

P o  = - 
UO 

The  sign  outside  the  radical  in  the  uo  expression  is  positive  in  the  subsonic  region  and 
negative  in  the  supersonic  region. 

The  linear  variations  between body and  shock  values fo r  Ijv and also for p,u17 2 
are  employed.  Thus,  at ail other  values of 
a r e  computed  from  the  following  relations: 

q across  the  shock-layer,  the  properties 

Equilibrium air analysis:  The  thermodynamic  properties  for  the  equilibrium air 
model are correlated  in  appendix C from  the  Hilsenrath  and  Klein  data  for air in  chemi- 
cal  equilibrium  at  temperatures up to   15 OOOo K. (See ref. 9.) The  work  in  appendix C 
is presented  in  the  form of a set of correlation  formulas  for  the  equilibrium  thermo- 
dynamic  properties of air. These  formulas are used  in  the  present  method  since  their 
use  resul ts   in  a considerable  savings  in  computational  time.  The air correlation  results 
are of the  form: 

11 



P = P(P,h) 

Z = Z(p,h) 

where 

u + v  2 2  
2 

h = H -  

The  temperature,  in  degrees  Kelvin, is given by 

In  the  perfect  gas  analysis  the  stagnation  properties  are  computed  exactly as func- 
tions of  M, and y ;  this  computation is consistent  with  the  formulation of the  problem. 
However,  in  the  equilibrium air analysis, which  contains  the  pressure  correlation,  no 
convenient  expressions  exist  for  determining  the  exact  stagnation  properties. An 
approach is desired  for  computing  the  stagnation  properties which is consistent with the 
approximations of the  basic  numerical  approach, is extendable  to  the  coupled  radiating 
flow problem,  and is not  unduly  complicated.  Two  approaches  which  meet  these  require- 
ments  are: (1) an  assumption  that  the  stagnation  pressure is equal  to  the  total  pressure 
immediately  behind  the  normal  shock;  that is, 

1 2 " p  + - p  v Pstag 1 2 1 1 

which is accurate  to within 2 percent of the  exact  stagnation  pressure  for  hypersonic 
f ree-s t ream Mach numbers;  and (2) use of the  limiting  form of the  x-momentum  equa- 
tion  in  the  set of initial  value  equations  (eqs. (17) to  (19)), which gives 

and  an  assumption of Newtonian form  for  (3)x=o, that is, 

where p is a constant. For a spherical  body,  modified  Newtonian  theory  indicates  that 
p = -2.0  and  modified  theory  with  centrifugal  correction  indicates /3 = -2.67,  whereas 
the  pressure  correlation of reference 10 gives p = -2.5. The  numerical  results  obtained 
from  these two assumptions  are  discussed  in  subsequent  sections of this  report. 

12 



A Newton-Raphson  iteration  technique is used  to  obtain  the  set of properties on the 
body  which are  consistent  with  the Ijs fluxes.  The  distributions of the  properties  across 
the  shock  layer are then  computed  from  the  following  relations: 

where  the  linear  approximations  for  the Ijq (j = 2,4,5) terms  are  employed.  (See 

eq. (IO).) 
As a result  of observing  the  near-linear  resultant  velocity  distribution  across  the 

shock  layer,  which was  generated by the  inverse  solutions,  the  resultant  velocity  in  the 
present  equilibrium air analysis is assumed  to  vary  linearly  in q; that is, 

VRq = vRO (vR1 - vRO)q (33) 

The  tangential  velocity  component  and  the  static  enthalpy  expressions  become 

The  pressure  distribution is then  computed  from  the  quadratic  expression 

The  coefficient of the  f irst-order  term in  equation (36) is obtained  from  the  exact y o r  
' q  momentum  equation  upon  applying  the  boundary  conditions at q = 0 that  vo = 0 and 
Emo/& = 0. The  remaining  state  properties  are  computed  from  the  thermodynamic 
correlations: 

(37) 

Initial-Value  Sensitivity  Study 

The  blunt-body flow field is of the  mixed flow type  which  requires  the  solution  to 
elliptic  equations  in  the  subsonic  region  and  hyperbolic  equations  in  the  supersonic  region. 
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The  supersonic  solution  introduces  no  special  problems beyond  hyperbolic  stability  con- 
siderations.  However,  singularities are present  in  the  governing  equations  in  the  tran- 
sonic  region  which  require,  for  uniqueness,  the  solution of a. two-point  boundary  problem. 
(See ref. 1.) The  subsonic  solution,  in  the  one-strip  approximation,  requires an initial 
value of the  shock  displacement  distance 6, (at  the axis of symmetry)  which wil l  satisfy 
a regularity  condition  at  the  natural  sonic  point on the  body,  the  location of which is not 
known a priori .  

In  the  property  derivative  formulation of the  problem  (refs. 1, 2 ,  5, and S), the 
singularity  in  the  transonic  region is manifested in the  equation  for duo/& which has 
a denominator  that  vanishes when uo attains  the  sonic  value.  The  basic  procedure  is 
to  refine 6, until both the  numerator and  denominator of the  equation  for duo/& 
simultaneously  approach  zero  within  some  predetermined  accuracy  constraint.  The 
velocity  derivative is then  extrapolated  into  the  supersonic  region from a point where 
the  velocity is within a certain  percent of sonic  velocity  (around 95 percent).. 

Xerikos  and  Anderson  (ref. 6) conclude  that 6, must  be  refined beyond  eight sig- 
nificant  figures  in  order  to  maintain  downstream  accuracy.  Calculations  (unpublished) 
have  been  made by J e r r y  C. South, Jr., of the  Langley  &search  Center by using a 
property-derivative  integral  method.  South's  analysis  has  shown  for  the  sphere  at 
M, = 5.017, y = 1.4, that  for a perturbation in the  fifth  place  in 6,, the  tangential  veloc- 
ity  derivative  behaves  erratica.!ly  for a sxall   distance  downstream of the  sonic  point. 
However,  the  integral  curve of uo  was  virtually  unchanged  from  the  solution  generated 
with a 6, which w a s  accurate  to about  eight  significant  figures. 

In the  flux  formulation of the  problem  (refs. 3 ,  4, 5, and l l ) ,  the  boundary  condi- 
tions,  at  the  sonic point on the body, of finite  velocj.ty  uo and a zero  mass  flux  deriva- 
tive  (that is, dI2o/dx = 0 provide  the  convergence  criterion  for  the  proper 6,. ) 

In the  present  perfect  gas  analysis, it i s  required  that d120/dx and the  term within 

the  surface  velocity  expression, /-; (eqs. (21) and (22)) reach  zero (within some 
specified  accuracy  criterion)  simultaneously.  The  initial  vahe of 6, is   perturbed by 
an  automated  halving  mode on the  upper and lower  limits of 60 until  the  sonic-point 
convergence  criterion is satisfied.  The  calculation is then  continued  into  the  supersonic 
region by a sign  change on the radica.1 of the  velocity  expression  (eq. (21)) from  positive 
to  negative and by the  suppression of any  negative  values of the  term within  the  radical 
which  inevitably arise  because of the  error  in satisfying  the  exact  sonic  cofiditions. 

The  saddle-point  singular  behavior of the  subsonic  solution is shown  in figure 2 for 
the flow of a perfect  gas, y = 1.4 over a sphere  at M, = 5.017. The  surface  velocity 
distributions,  calcuhted by the  present  method, which uses  flux  derivatives,  and by the 
property-derivative  method  (South's  analysis  previously  mentioned)  are  shown.  The 
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resul ts  are for  various  perturbations  in  the  respective  converged  shock  displacement 
distances.  The 60* is the  value of the  shock  displacement  distance which the  com- 
puter  accepts as being  within  the  specified  accuracy of the  convergence  constraints 
(60* = 0.15297 in  the  present  analysis and 0.15723534 in  the  property-derivative method). 
In  the  present  method  the  requirements  for  the unique  flow-field  solution was  for  dI2o/dx 

and (bo2 - 4c0 to  be  less  than  simultaneously.  This  criterion  produced  an  accu- 
racy of 60* t o  about  four  significant  figures  whereas  the 60* in  the  property- 
derivative  method was  refined  to  eight  significant  figures.  The  comparison  in  figure 2 
of the  behavior of the  surface  velocity  distributions  obtained by using  the  two  approaches 
shows  that  the  numerical  computations  are  less  sensitive  to  perturbations  in 6, in  the 
flux  formulation  than  in  the  property-derivative  formulation of the  problem. 

The  continuation of the  solution  into  the  supersonic  region is shown  in  figure  3, 
where  the  surface  velocity  distribution is plotted  for  various  deviations  in  the  fourth 
place  in  the  initial  shock  displacement  distance.  Values of the  surface Mach  number Mo 
for  the 6 ,  - 60* = 0 case   a re  shown in the  figure. Although  the  solutions  for  the  three 
values of - 60* do agree in the  supersonic  region,  figure 3 illustrates  that  the  initial 
conditions a r e  not sufficiently  accurate  to  produce  well-behaved  results in the  transonic- 
low-supersonic  regions of the  flow. No notable  improvement was observed in the  tran- 
sonic  solution when the  accuracy  criterion was  refined  from  to on dI2o/dx 

and  ibo2 - 4c0 since both accuracy  constraints  produced a 60* to  about four-figure 
accuracy. 

The  study  results  indicate  that  the  disadvantage  in  the  present  flux  approach is that 
the  method  does not conveniently  lend  itself  to  further  refinements  in 6o beyond  about 
four  figures;  hence, a very  smooth  continuation  into  the  supersonic  region  is not obtained. 
The  Runge-Kutta  integration  step  sizes had to be  repeatedly  halved  in  the  sonic  region 

in order  to  generate  the  convergence  constraints on {bo2 - 4c0  and 121 simul- 

taneously  and it was noted  that  values  in 6 ,  ranging  from 0.1527 to  0.1531  would satisfy 
these  boundary  conditions.  Further  refinements  in  the  accuracy  constraints  are  undesir- 
able  in  terms of machine  time  required by the  Runge-Kutta  numerical  integration  proce- 
dure  and  in  terms of round-off e r r o r s .  

Thus,  the  apparent  advantages  in  the  flux  method  over  the  property-derivative 
method is that  the  subsonic  solution  can  be  generated  with less refinement  in So (a 
distinct  advantage in performing  the  time-consuming  coupled  radiation  calculation)  and 
that  the  solution  can  be  continued  into  the  supersonic  region  without  extrapolation of the 
derivatives  through  the  sonic  point.  However,  within  the  limits of the  accuracy on fj0*, 

the  method  does not  produce  well-behaved  results  in  the  transonic  region. 

15 



It should  be  noted  that  Belotserkovskii  (ref. 5) recommends a hybrid  procedure, 
wherein  the unknown init ial   parameters are refined,  and  the  solution  advanced by using 
the  property  derivative  equations. When the  regularity  condition at the  sonic  point is 
satisfied  to  the  specified  accuracy,  the  flux  equations are used  to  pass  through  and beyond 
the  sonic  point. 

Figures 2 and 3 are for  the  perfect  gas  model, but  about  the  same  techniques  can  be 
used  for  equilibrium air to  generate  similar  results.  It should  be  noted  that no convenient 
algebraic  expression is available  for  uo  for  the  equilibrium air model  and  thus  the 
analysis  requires  either  an  extrapolation of uo  into  the  supersonic  region or  the  selec- 
tion of the  proper  values of the  surface  properties  which wil l  yield  velocities  greater  than 
sonic  just beyond the  sonic  point. 

RESULTS AND  DISCUSSION 

The  results of the  numerical  approach  to  the  blunt-body  flow-field  solution  are 
presented  here.  The  solutions  are  applicable  for  the  inviscid  adiabatic  steady flow of a 
perfect  gas  or  equilibrium air over a spherical  body. 

Flow-field  results  are  presented  for  the  perfect  gas  model at a free-s t ream  pres-  
su re  of 0.01 atmosphere, a density of 1.562 X gram  per  cubic  centimeter,  and a 
specific  heat  ratio of 1.4 at   free-stream Mach numbers of 5.017, 10.0,  and  16.6.  The 
equilibrium air cases  which are  examined  are as follows: 

Case I: Ub, = 4.572 X l o5  cm/sec  (15 000 ft/sec);  altitude = 45.72 km  (150 000 f t )  

Case 11: Ub, = 9.144 X l o 5  cm/sec  (30 000 ft/sec);  altitude = 45.72 km 
(150 000 ft) 

Case 111: Ub, = 1.3714 X l o 6  cm/sec  (45 000 ft/sec);  altitude = 60.96  km 
(200 000 ft) 

A  resume of the  free-stream  conditions  and  the  results  for  each of the  perfect  gas  and 
the air cases  are given  in  tables I and 11, respectively. 

Flow-field  results are compared with the  results of the  inverse  flow-field  programs 
of Marrone  (ref.  12),  Garr and Marrone  (ref.  13),  Lomax  and  Inouye (ref. 14),  and  Inouye 
(ref.  10); with the  results of a property-derivative  method  solution  obtained by J e r r y  C. 
South of the  Langley  Research  Center;  and  with  the  experimental  data of Sedney  and 
Kahl  (ref.  15). 

Perfect  Gas  Results 

Property  distributions -~ along  the body surface.-  The body surface  pressure  distribu- 
tion  for  the M, = 5.017 case is shown  in  figure  4  in both the  subsonic  and  supersonic 
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flow  regions.  The  pressure  distributions  predicted by  "modified"  Newtonian  theory  with 
and  without  the  centrifugal  correction are plotted  for  comparison.  The  two  modified 
Newtonian theories  tend  to  bracket  the  data  obtained by the  present method.  In  the  sub- 
sonic  region,  the  present  results  for  the  sphere  tend  to  agree  more  closely  with  the 
centrifugal  correction  theory.  Also  shown  in  figure  4 is the  pressure  distribution which 
was  correlated  from  the  inverse-flow-field  solution.  (See refs. 10  and 14.) As evidenced 
by the  f igure,   the  pressures  agree  very  well  with  the  inverse  correlation  except  near  the 
sonic  point.  The  disagreement  in  the  pressures  in  the  transonic  region (x =: 0.7 to  0.8) 
is associated  with  the  limited  three  to  four  place  accuracy of 60* and, as previously 
mentioned,  this  accuracy is not  sufficient  to  produce  well-behaved  results  near  the 
singularity. 

The  surface  velocity  and  pressure  results of the  three  perfect   gas  cases are shown 

in  figures  5  and  6,  respectively.  The  accuracy  criterion of dbo2 - 4c0 5 and 
d120/dx 5 10-3  was  required  in  the M, = 10.0  and M, = 16.6 solutions.  The  pres- 
su res  in  the  subsonic  region are of acceptable  levels;  however,  in  the  supersonic  region 
for  the M, = 10.0 and M, = 16.6 cases ,   the   pressures  are obviously  too low since 
they  become  negative on the  sphere.  The  surface  velocities  are  correspondingly  too  high. 
It is further  evident  in  figure  6  that  the  surface  pressures  obtained  in  the  present  analysis 
are lower  in  the  supersonic  region  than  the  experimental  values  (ref.  15)  for  the  sphere 
at M, = 5.017 and are lower  than both the  one-strip  property-derivative  results 
M, = 5.017, y = 1.4  and  the  two-strip  results of Belotserkovskii  (ref. 5) for M, = 10.0, 
y = 1.4. 

Shock  and body shapes.-  The  stagnation-line  shock-displacement  distances which 
were  obtained  from  the  three  perfect  gas  cases  are shown  in  figure  7 as functions of the 
free-s t ream Mach number. Also shown  in  the  figure  are  the  results of the  two-strip 
property-derivative  integral  method  (ref.  16),  the  results of the  inverse  solution  (refs. 12  
and  13),  the  correlation  equation  given  in  reference  10,  and  the  experimental  data of ref- 
erence  15.  The  shock-displacement  distances  computed by the  present  method  are  within 
5  percent of the  other  results  presented  in  this  f igure.  

- _- 

Shown in  figures 8, 9 ,  and  10 are the  shock  shapes  which  were  obtained  in  the  pres- 
ent  approach  for M, = 5.017,  10.0,  and  16.6,  respectively.  For  the M, = 5.017 case 
(fig. 8), a comparison is shown  between  experimental  data  (ref.  15)  and  analytical  results 
of the  present  method  and  the  inverse  method  (ref.  13).  These  data are in good agree- 
ment;  however,  some  deviations  begin  to  appear  in  the  transonic  region  (x =: 0.6). For  
the M, = 10.0  and 16.6 cases  (figs. 9 and lo) ,  a comparison is shown  between resul ts  
of the  present  method,  results of the  two-strip  property-derivative  integral  method 
(ref.  16),  and  results of the  inverse  method  (ref.  13).  These  data  also  compare  favorably 
but  indicate  some  deviations  beginning  in  the  transonic  region. 
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Property  distributions  across  the  shock  layer.-   Comparisons of the  properties 
across  the  shock  layer  which  were  obtained  from  the  present  analysis with the  results of 
reference  13 are shown  in figures 11, 12,  and  13 at various body stations  in  the  subsonic- 
transonic  regions. 

Shown in  figures l l (a) ,  l l (b ) ,  and l l ( c )  are the  pressure,  density,  and  resultant 
velocity  distributions,  respectively,  across  the  shock  layer  for M, = 5.017 at x = 0.04, 
0.28, 0.52,  and 0.76 radian.  The  flow is subsonic at the x = 0.52 and  lower  and is in  the 
transonic  region at x = 0.76  (Mo = 1.1). The  property  distributions  across  the  shock 
layer  agree with the  inverse  solution  to  within 2 to 3 percent  in  the  subsonic  region. At 
x = 0.76, the  present  solution  gives  properties  near  the body (7 = 0 and 0.2) which  deviate 
from  those  obtained  from  the  inverse  solution by approximately  10  percent.  This  dis- 
agreement is associated  with  the  sonic  singularity  problem as mentioned  previously. 

The  property  distributions  across  the  shock  layer at M, = 10.0 and  16.6 a r e  
shown  in  figures 12  and  13,  respectively,  for  various  locations  in x. As in' the 
M, = 5.017 case,   the  pressure,   density,  and  resultant  velocity are within 2 to 3 percent 
of the  inverse  solution  values  in  the  subsonic  region.  In  the  transonic-supersonic  region, 
x = 0.76 and x = 0.73 at M, = 10.0  and M, = 16.6,  respectively,  the body surface 
propert ies   are  within  about  10  percent of the  inverse-solution  values. 

Since  the  inverse  solution is restricted  to  the  subsonic-transonic  regions of the 
flow  field, no comparisons of the  properties  distributions  were  made  in  the  supersonic 
regions with this  method. 

Comparisons of the  density  and  pressure  results  which were obtained by the  present 
approach  in  both  the  subsonic  and  supersonic  regions  with  the  experimental  results of 
reference 1 5  a r e  shown  in  figures 14  and 1 5  for  the M, = 5.017 case.  There  appears 
to be  some  disagreement  in  the  densities  obtained  from  the  experimental  data  (ref.  15) 
and  the  present  method as shown in figure  14.  However, it should be noted  that  the  shape 
and  location of the  constant  density  curves  are  extremely  sensitive  to  the  density  values, 
particularly  in  the  stagnation  region.  (Observe  the  character  and  location of the  curves 
for  pf/pb, = 5.0 and  pf/p, = 4.8 where  the  difference  in  the  density is only 4 percent.) 
The  largest  discrepancies  in both  the  densities  and  the  pressures  occur  near  the body in 
the  supersonic  region  where  the  present  approach  predicts  values  too low. 

Belotserkovskii  and  Chushkin  (ref.  17)  recommend  in  the  free-stream Mach num- 
ber  range of 4 to  6 that a second-order  approximation  to  the  fluxes is required  for  an 
adequate  subsonic  solution  over  the  blunt  body,  and  above M, = 10  the  f irst-order 
approximation is sufficient.  The  present  analysis  indicates  that  the  first-order  approxi- 
mation  yields  adequate  subsonic  flow-field  results  even  for  the M, = 5.017 case. 
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It is appropriate  to  note  that  apparently,  the  results which  one  obtains from  the 
integral-relations  approach  depend  somewhat on the  choice of the  quantities which a r e  
assumed  to  vary  linearly  across  the  shock  layer.  For  instance,  Xerikos  and  Anderson 
(ref. 18) indicate  that  the  use of the  unaltered  continuity  equation, as was  employed  in  the 
present  analysis,   produces  surface  pressures which are lower  than  those  obtained  from 
a combined  continuity-entropy  equation, as was  employed  in  both of the  Belotserkovskii 
analyses  (refs. 5 and  16),  and  lower  than  experimental  data.  This  effect was not fully 
investigated  in  this  analysis  because  the  use of the  equation  for  isentropic  flow on the 
body surface p p?' = Constant) is not convenient  in  an  equilibrium air analysis  and is not 
valid  for  nonadiabatic  shock  layers  (radiating flow fields).  However, it was  observed in 
the  present  analysis,   that  when the  exact  x-momentum  equation  was  replaced  with  the 
isentropic  expression p pY = Constant),  the  results  obtained  from  the  two  approaches 
were  identical. 

( 1  

( 1  

Xerikos and  Anderson (ref. 18)  recommend  consideration of the  continuity-entropy 
formulation  in  equilibrium air analyses;  however,  this  procedure  requires  an  additional 
correlation  (for  entropy)  and  further it is unlikely  that  this  method  can be effectively 
applied  to  radiating  flow-field  analyses  where  the  entropy  along  the body surface  is  not 
constant. 

Equilibrium  Air  Results 

As mentioned  in  the  analysis  section,  there  are  several  ways  in which 
stagnation  pressures  can  be  generated.  The two methods  considered  here  are 
(1) pstag = p1 + 1 p1v12 approximation  and (2) the  second  derivative  approximation, 

is otherwise  specified,  the  first  approximation  for  pstag is employed. 

Property - distributions  along  the body.- The body surface  pressure  distributions  for 
the  equilibrium air solutions of cases  I,  11, and III are  presented  in  figure  16.  The  pres- 
sure  distribution  which  was  correlated by Inouye  (ref.  10)  from  the  inverse  flow-field 
solution of reference 14 is also shown  in  figure  16.  The  surface  pressures  for  the  three 
cases  are within 8 percent of the  correlation. 

. " " 

The  surface  density  distributions  for  the  three  cases are shown  in  figure  17  along 
with  the  corresponding  density  distributions of the  inverse  solution (ref. 14). Of the 
three  cases  examined, a maximum  disagreement of 6 percent  occurred in  the  density 
obtained by the  two  approaches. 

The  surface  temperature  distributions which were  obtained  in  the  present  analysis 
are shown  in  figure  18.  The  surface  pressure  results of the  inverse  solution (ref. 14) 
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were  used as inputs  to  generate  surface  temperatures  in  the  equilibrium air program of 
reference 19. These  temperatures are also  shown  in  figure 18. The  temperatures 
generated by the  present  method are within 2 percent of the  temperatures  obtained by the 
free-energy  minimization  approach of reference 19. 

Shock  and  body  shapes.-  The  initial  values of the  shock-displacement  distances  for 
the  three  cases  were found by iterating  until  three or four  significant  figures  were 
obtained  for  the  converged  value of the standoff distance 60*. 

The  values of 60* for  the  three  cases  are  given  in  table I and  are  plotted  against 
p,/pl in  figure 19, along  with  the  correlation  equation of reference 10. The  initial 
shock  displacement  distances  which  were  generated by the  present  method  are  in fair 
agreement,  within  about 6 percent,  with  the  shock  displacement  distances  obtained by 
the  inverse  solution  for  cases I1 and 111, as shown  in  table 11. The  case I result   for  the 
initial  shock  displacement  distance is 5 percent  lower  than  the  displacement  distance  pre- 
dicted by the  correlation  equation of reference 10 and is 9 percent  lower  than  the  value of 
reference 19. 

Shown in  figures 20,  21, and 22 are  the  shock  shapes which were  obtained  in  the 
present  approach  for  cases I, 11, and 111, respectively.  The  results  compare  favorably 
with  the  shock  and  body-shape  results of the  inverse  solution  (ref. 14). 

Property  distributions ~~~~~ . ~ across  - the - shock  layer.-  The  property  distributions  across 
the  shock  layer at various body stations  in  the  subsonic  region  are  shown  in  figures 23, 
24, and 25 for   cases  I, 11, and 111, respectively.  The  pressure,  density,  and  resultant 
velocity  distributions of the  inverse  solution  (ref, 14) are  also  presented  for  cases I1 
and III. A comparison of the  results  indicates  that  the  pressures  and  densities  obtained 
from  the two  approaches  agree  to  within 6 percent.  The  resultant  velocities  across  the 
entire  shock  layer  are  in  excellent  agreement  for  the  two  cases. 

-~ . 

Also  shown  in  figures 23,  24, and 25 are  the  stagnation  streamline  (x = 0) tempera- 
tu res  which  were  produced by the  equilibrium air program  (ref. 19). The  temperature 
results  are  within 2 percent of the  values  generated by reference 19. 

Stagnation  pressure .~ " assumption.- One of the  primary  advantages of using  the  second 
derivative  approximation  for  the  stagnation  pressure  rather  than  the  postshock  total- 
pressure  approximation is that  the  former  gives a more  accurate  value of the  stagnation- 
point  velocity  gradient  which is required  to  calculate  convective  heating  rates. Kuby, et 
al. (ref. 7) examined  the  stagnation-point  velocity  gradients  predicted by the  property- 
derivative  method of integral  relations  and  concluded  that  the  method  consistently  pre- 
dicted  values  which  were  excessively  high,  The  present  method  predicts  stagnation-point 
velocity  gradients  which  are  too  high  for  the  postshock  total-pressure  approximation 

." 
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= 0.69 for  case  whereas  the  second-derivative  approach  yields  values which 

are closer   to  Newtonian  and are more  accurate (($)x=o = 0.39 for   case 

The  large  differences  in  stagnation-point  velocity  gradient  however  have  little  effect 
on the  other  flow-field  results.  The  pressure  distributions  obtained by two  different 
stagnation-pressure  approximations are shown  along  with  the  inverse-solution  pressure 
correlation  (ref.  10)  in  figure 26 for case ID. The  pressure  distribution is slightly 
improved when the  postshock  stagnation-pressure  approximation is eliminated  in  lieu 
of the  second-derivative  approximation  for 0 = -2.5. The  values of 60* for  the  three 
cases   increased about 4 percent  for  the latter approximation  and  thus  improved  slightly 
in  comparison  with  the  inverse-solution  results. About the  same  percentage  changes 
were  noted  in  the  other  fluid  dynamic  and  thermodynamic  properties. 

CONCLUDING REMARKS 

A modified  method of integral  relations  approach  for a first-order  approximation 
of the  fluxes  has  been  used  to  study  the  inviscid  adiabatic  blunt-body flow  field.  Perfect 
gas  and  equilibrium air models are considered  in  the  analysis of the flow over  spheres.  

The  study  results  indicate  that  the  modified  method of integral  relations  produces 
subsonic  solutions  in  which  the  shock  displacement  distance,  the  shock  shape,  and  the 
thermodynamic  and  fluid  dynamic  properties  throughout  the  shock  layer  are  in good 
agreement  with  the  results of the  inverse  solutions  and  with  experimental  data. 

The  solution  generated  near  the  sonic  singularity is somewhat  less  sensitive  to  the 
accuracy on the  initial  shock  displacement  distance 6 ,  in  the  flux  formulation  than  in 
the  standard  or  property-derivative  formulation of the  method.  The  results of the 
perfect-gas  analysis  demonstrate  that  in  the  modified  method of integral  relations 
approach, a convergent  supersonic  solution was obtained  with  about  four  significant  fig- 
ures  for  the  initial  value of the  shock-displacement  distance.  However,  the  present 
approach  predicts  surface  pressures which a r e  low  in  the  supersonic  region.  Xerikos 
and  Anderson's  numerical  results  indicated  that  the  pressures  in  the  supersonic  region 
could  be  improved by employing a combined  entropy-continuity  equation  instead of the 
pure  continuity  equation as was  used  in  this  analysis. In radiating  flow-field  analyses 
the  combined  entropy-continuity  approach  may  have  merit  in  the  supersonic  region; 
however,  the  additional  complications are not warranted  in  subsonic  analyses. 
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The  equilibrium air flow-field  results  indicate  that  the  method  can  be  successfully 
applied  to  weak  radiating  flow-field  analyses.  But,  more  significantly,  the  relatively 
uncomplicated  method of integral  relations is sufficiently  accurate  and  versatile so that 
it continues  to  offer  promise  for  extension  to  coupled  radiating  flow-field  analyses. 

Langley  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Langley  Station,  Hampton, Va., July  18,  1969. 
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APPENDIX A 

DEVELOPMENT O F  THE GOVERNING DIFFERENTIAL EQUATIONS 

The  general  governing  differential  equations  which were developed  in  the  analysis 
section  (eq.  (11))  were  written  in  the  form: 

These  relations  were  obtained by integrating  the  governing  equation  (eq. (8)) over  the 
shock  layer  and  then  performing  the  necessary  differentiations  with  respect  to x. 

For  the  one-strip  approximation,  equation (8) is integrated  once  from  the body 
( q  = 0) to  the  shock ( q  = 1) to  yield: 

Interchanging  the  order of integration  and  differentiation  in  the  first  term of equation  (Al) 
and  integrating  the  second  term by parts  gives 

Examining  equation (A2) it is seen  that  integrals of the  form lo1 Ijr dq appear  where 

r = r  + 6 c o s O  q 
b (  b) (A3) 

and  from  equation (10) 

Ij  = 1j0 + (1j1 - 1j0)q ( j  = 2 ,  3 ,  4, 5) 

Note  that  the r t e rm is treated  separately  from  the  l inear flux  approximation. In 
some  analyses  (refs. 1 ,  2 ,  5, 6 ,  and 18) ,  the Ij and r a r e  "lumped" together as one 
linear  approximation  across  the  shock  layer  that is, Ijr = IjOrb + (Ijlrl - Ijorb)q). 

Now defining 

substituting  equations (A3) and (10) into  the  preceding  equation,  and  performing  the  quad- 
rature  yields 
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Now, defining  (see eq. (A2)) 

and  expanding  equation (A4) gives 

Differentiating  the  right-hand  side of equation (A5) gives 

The first term  in  equation (A2) can now be  replaced by its equivalent d Pj)/d., and 
becomes: 

( 

Substituting  the  expression  for  d P. dx (eq.  (A6))  into  equation  (A7),  evaluating  the 
remaining  terms  in  these  expressions,  and  combining  like  terms  yields 

( 3)/ 

Equation (A8) can now be  written  in  the  desired  form: 
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when it is noted  that 

thus,  the  coefficients of the  governing  differential  equations  become 

J 
An examination of the  Ej  coefficients  reveal  that  terms of the  form 66 J" Kj dq 

appear.  These  terms  may  be  evaluated  from  the Kj expressions of equation (9): 
'b 0 

K2 = 0 

Replacing  p  with its equivalent I3 - pu2  gives 
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The K- expressions  can  be  immediately  integrated  upon  assuming a linear  variation 
for ~ u 2  across  the  shock  layer.   The Kj terms  yield 

1 

66 j" 36 drb  6 Sin ob 

'b 0 %(I30 + ' 3 l ) Z  rb 

2 
- K3 dq = - + (I30 2 1 3 1 ) z  'b + 6Q(3 + 26 cos rb ob  )41 

36 drb  6 2 .  Sln ob 
'b 

Thus 

(Equations  continued on next  page) 
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2S2Q COS 8b 36 cos 8b 

'b (I30 + 2131) 'b (pouo2 + P1U12) 

where 
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DEVELOPMENT OF THE  INITIAL VALUES 

In  order  to  begin  the  integration of the  governing  differential  equations (12) to (16), 
it is necessary  to  obtain  initial  values  for all the  quantities  appearing  in  the  right-hand 
side of these  equations.  Direct  substitution of these  initial  values at x = 0 results  in 
indeterminate (O/O) expressions. At x = 0, the  symmetry  conditions are 

The  nonzero  derivatives are 
dw 
dx 
I 

In  the  limit as x  approaches  zero 

uo = 0 7 
cos ob drb 

l im -- - l im dx = l im Q = 1 
x-0 'b x-0  x-0 

deb lim - =  -1 

The  limiting  form of the  coefficients  in  equation  (21)  becomes 

A2 = A4 = Ag = B3 E1 = E3 = 0 

A3 = (3 + 26o)(Po - PI) 
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E4 = 6,(3 + 26,)p1v1 2 + 2(3 + 36, + 6,2)(po - p + (6 + 96, + 4602)pl~12 
1) 

where 

From  the  y-momentum  equation  (eq. (13)) 

lim - dw = l im (- 2) 
x-0 dx x-0 

Substituting  these  expressions  for  E4  and B4 yields 

In a similar  manner,  the  continuity  equation  (14)  yields 

and,  the  energy  equation (16) gives 

6,(3 + 26,)plH1 &l dx dw + (3 + 360 + 602)plv1H1 + 3 6 , R ~  
~- 
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A CORRELATION OF EQUILIBRIUM  AIR  PROPERTIES  TO  15 0000 K 

By  G. Louis  Smith  and  L.  Bernard  Garrett 
Langley  Research  Center 

In  order  to  compute  the  thermodynamic  properties of high  temperature  equilibrium 
air (or  any  other  mixture of reacting  gases)  from  basic  principles, it is necessary  to  
specify  the  pressure  and  temperature. If these  two  variables  are known, the  composition, 
density,  enthalpy,  etc.,  may be determined  directly.  Frequently,  in  flow-field  studies  the 
enthalpy  and  density  are  given,  and it is required  to  determine  pressure  and  temperature.  
In  order  to  accomplish  this  calculation  rigorously, it is necessary  to   resor t   to  a double 
iteration  whereby  through  some  numerical  process  one  seeks  the  pressure  and  tempera- 
tu re  which  corresponds  to  the  given  enthalpy  and  density.  This  procedure is rather 
lengthy  and  in  flow-field  studies,  where  differential  equations  must  be  integrated by using 
the  results of the  computations,  the  thermodynamics  computations  may  take  an  excessive 
amount of computer  time. 

This  problem  can  be  alleviated by use of correlation  formulas  expressing  pressure 
and  temperature  in  terms of enthalpy  and  density.  These  formulas  are  developed  from 
the  data of Hilsenrath  and  Klein  (ref. 9) which is used as a standard  for  thermodynamic 
data.  Correlation  formulas  have  been  written  expressing  the  pressure,  compressibility, 
and  temperature of equilibrium air as a function of density  and  enthalpy,  for a density 
ratio p'/PEef range of lom4 to  10  and  temperatures up to  15 OOOo K. The  pressure is 
correlated  to  about  5-percent  accuracy,  the  compressibility  about 2 percent  to  5  percent, 
and  the  temperature  to  about  10  percent,  although  through  most of the  range  the  accuracy 
is better  than  these  values. 

The  approach  taken is to  express  the  equation of state of the  mixture  in  the  form: 

6 = 86,fi) (C1) 

The  quantities  with  circumflexes 6, b ,  and 6 which are  used  in  this  appendix  are 
defined as follows: 
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.. h'Wref 
h=-  

R' 
so  that  for  conversion to the  nondimensional  values  used  in  the  text 

For  many  purposes,  the  relation  (Cl) is all that is required. If temperature  and/or  mean 
molecular weight are  required,   the following  relations  are  used.  The  compressibility Z 
defined by - *... 

is correlated  in  the  form 

z = Z(j5,h) 

The  temperature T' (OK) is then  given by 

For  the  correlation  for 6(;,f1), the  enthalpy  range 0 < < 600 OOOO K was divided  into 
five  regions as follows: 

L 

Region I: 0 < h 5 5800° K,  or  approximately 0 < T' < 1500° K. Within this  region 
air is calorically  perfect  for  practical  purposes,  and 

6 = (0.97513 X 10-3)66 (C 5) 

Region 11: 5800° K < 6 5 10 500° K; or  approximately 1500° K < T' < 2500° K. 
Within this  region air is a perfect  gas,  but  vibrational  modes are excited  and  energy 
invested  in  the  formation of nitr ic oxide is significant.  Within  this  region 

6 = (0.345 x 10-2)60.8546 (C6) 

For the  remaining  three  regions,  the  phenomena  are  much  more  involved  and  the  explana- 
tion  for  the  behavior is not obvious.  The  formulas which were  fitted  to  the  data are 
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Region ID: 10 500° K < & < 35 500' K 

+ 0.016<(2.75 - <)loglo 6 - O.O05r(4 - {)(1 + loglo 6) (C7) 

where 

r = 5  loglo h - 20  (C8) 

Region IV: 35 500° K 5 & < 178 000' K 

loglo fi = 1.565 + 1.036  loglo f i  +. 0.668 loglo - 4.8 + 1.1675  loglo - 4.8)3 (C9) 

Region V: 178 OOOo K 5 6 < 600 OOOo K 

( 1 ( 

loglo = -3.015 + 1.036  loglo 6 + 0.95  loglo i; (C10) 

These  correlations  hold  for  the  density  range 

10-  4 6 /3 5 10 

A comparison of the  correlation  formulas  (C5)  to (C10) with  data  from  reference 9 is 
shown in figure 27. The  correlation is accurate  to  about 5 percent or  better. 

The  partial  derivatives of the  pressure with respect  to  the  density  and  enthalpy are 
as follows: 

Region I: 

a5 = (0.97513 X 
ah 

- ?I? = (0.97513 X 
aij 

Region 11: 

Region 111: 

.% = 9 k . 1 5 4 5  + [0.0131 + 0.016(2.75 - 25gloglO /3 - 0.005(4 - z y ) ( l  + loglo b$ 
a6 h 

32 



APPENDIX C 

9 = p(1 + <[0.0131 + 0.016(2.75 - <) - 0.005(4 - <'J> 
6 , .  

86 b 

where 

< = 5  loglo fi - 20 

Region IV: 

fi - 4.8) l  
ah h 

A A 

$ = 1.036 
aP P 

Region V: 
A A 

2 = 0.95 P 
ah h 

ai; 
a; P 

A 

- = 1.036 

For  the  correlation of Z(b,G), it is first noted  that  in  regions I and I1 air behaves 
as a perfect  gas so  that 

z = 1.0 (6 < 10 500° K) (C11) 

(or  approximately  T < 2500° K). For  higher  values of it was  found that  curves of Z 
against  loglo 6 for  constant 6 very  nearly  coincide when translated  horizontally  an 
amount  dependent on 6. This  relationship is shown  in  figure  28,  where  the  abscissa is 

+ = loglo fi  - 0.044 loglo 6 - 0.004 ( loglo 6)2 - 3.952 ( C W  

A single  curve  may  thus  be  used  to  describe Z.  This  curve is broken  into  four  regions 
in  order  to fit low-order  polynomials  to it. 

Region A :  For 6 5 10 500 

z = 1.0 

Region B: For  + 5 0.55 

Z = 1.0 + 0 . 5 3 9  

Region C: For  0.55 < + < 1.3 

Z = 2.0 - 1 . 7 8 ~  + 0 . 2 1 ~ ~  + 1 . 0 9 ~ ~  - 0 . 4 4 6 ~ ~  
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where 
v = 1.3 - + 

Region D: For 1.3 5 < 2.0 

Z = 3.831 - 5.019t + 3.41t2 + 0.24t3 (C17) 

where 

The  region $b > 2.0 is outside  the  range of reference 9, and  was not considered 
in  the  correlation.  The  boundaries of these  regions are shown  in  figure 29. The  dotted 
line  corresponds  to $b = 0. 

The  results of the  correlation  formulas (C13) to (C17) a r e  shown  in  figure 30, along 
with  data  from  reference 9. The  comparison is favorable,   the  error of the  correlation 
being less than 2 percent  except  in  the  region 150 000 < 6 < 250 000' K where a 
5-percent  error  occurs. 

The  temperature is computed  from  equation (C4) by using  the 6 and Z correla-  
t ions.   The  error of the  temperature  correlation is about 10 percent  in  some  places, but 
is usually less than  this  amount. (See  fig. 31.) 
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RANKCNE-HUGONIOT CONDITIONS 

The  conditions  immediately  behind  the  shock  are  computed  from  the  following 
Rankine-Hugoniot  relations.  In  the  shock-oriented  coordinate  system (see sketch (a)), 
these  expressions  in  nondimensional  form are: 

Shock 

Body 

For continuity: 

For  normal  momentum: 

Sketch (a).- Shock  and  body-oriented  properties. 

v m = p  v 1 s  

For  tangential  momentum: 

u, = us = cos w 
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For  energy: 

In  the  body-oriented  coordinate  system, 

where v1 is defined as positive  in  the  y- or q-direction. 

The  partial  derivatives of the  velocity  components with respect  to  the  shock  angle 
are   required in the  analysis.  They  are: 

"- - d u ~  sin(w - ob) + - dVS cos(w - e + us cos w - ob) - vs  sin(w - 
aw d o  dw b) ( 

Perfect  Gas  Analysis 

The  perfect  gas is characterized by the  fact  that  the  ratio of the  specific  heats y 

is a constant.  The  conditions  behind  the  oblique  shock a r e  computed  explicitly  from  the 
following relations: 

us = cos w 

- 1  2  2 1 +1/" -MM,s in  2 w 
vs = 

M5sin  w 
. " 

- li] 
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dp1 - 4y PwMm ' 2  
" - ~  sin w cos w 
dw y + l  1 1 2  

P,U, 

dP1 (y + l )Mwsin  w cos w 
dw 

2 
" 

- 

(1 + y+ M:sin 

Equilibrium  Air  Analysis 

The  expressions  in  appendix C for  equilibrium air thermodynamic  properties  and 
the Rankine-Hugoniot relations  (eq.  (Dl)) are sufficient  to  compute  the  properties  imme- 
diately  behind  the  shock.  A  Newton-Raphson  iteration  technique is employed t o  obtain 
a convergent  solution.  The  derivatives of the  properties are computed  from  the  deriva- 
tives of the  governing  Rankine-Hugoniot  equations  and  the  equilibrium  air-pressure 
correlations. 

dpl  - 
" 

dw 

- = s i n   d h l  w cos w 
dw 

dpl  - = 2 s in  w cos w 
dw 

The  expressions  for 3pl/ahl and  apl/8pl a r e  obtained  from  the  equilibrium air- 
pressure  correlations  and are given  in  appendix C.  
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Case 

I 
11 

111 

TABLE 1.- RESUME OF PERFECT GAS  SOLUTIONS 

[All quantities are nondimensional; y = 1.4 
" . .  

60* 
M, 

I Present method I (a) 

5.017  0.9229  5.448 
.9228 6.169 

16.6 .9209 6.331 

~ 

0.15297 
.12902 
.12461 

I 

0.157235 
.135240 
.130691 

Refs.  12  and  13 

0.1455 
.121 
.120 

aunpublished  data by J e r r y  South at Langley Research  Center. 

TABLE 11.- RESUME O F  EQUILIBRIUM  AIR  SOLUTIONS 

[All quantities are nondimensional  except as noted 3 
7 . .  

Free-stream  conditions 
. -  

1 I I _ I  

Case Altitude, I 1 km 1 atm 
PL, 

gm/cm3 
1. 

1.445 
45.72 

.3152  .2226 111 60.96 
1.837 45.72 
1.837 X 1.445 X 

I .  

~. . .  ~ . 

~~ . - 

Stagnation  conditions 

Pstag 

0.9577 
.9690 
.9699 

Present method 
~= " 

Pstag p k t a g '  OK 
_ _ _ ~  

11.28 
8 964 16.09 
5 113 

13 468 16.86 

~~ .. 

~ 

60* 

0.06568 
.04793 
.04458 

Inverse  solution 
(ref. 14) 

.. - 

Pstag 1 Pstag I 60* 
- .. . 

0.9591 

.0475 17.20 .9708 

.0495 16.29 .9701 
0.0721 11.34 

" 

I 

Ub,, 
cm/sec 

4.572 X l o 5  
9.144 

13.72 

Free energy  minimization 
(ref.  19) 

Pstag Pstag 

0.9659 1 11.39 
.9773 16.50 

.9775 1 17.29 

Tktag' 
OK 

5  024 
8 826 

13 586 
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Figure 1.- Flow-field  coordinate  system. 
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Figure 2.- In i t ia l -va lue  sens i t iv i ty  study - subsonic  behavior.  Perfect gas. 
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Figure 3.-  Ini t ial-value  sensit ivi ty study - supersonic  behavior.  Perfect gas. 
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Figure 4.- Surface  pressure distribution. Perfect gas. 
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Figure 5.- Surface  velocity  distributions.  Perfect gas. 
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Figure 6.- Surface  pressure  distributions.  Perfect gas. 
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Figure 7.- Variation of shock  displacement  distance with Mach  number.  Perfect gas. 
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Figure  8.- Shock  and body shapes. Perfect  gas; M, = 5.017. 
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Figure 9.- Shock and body shapes. Perfect gas; M, = 10.0. 
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Figure 10.- Shock and body shapes. Perfect gas; M, = 16.6. 
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F igu re  11.- Property  distr ibutions  across the shock layer.  Perfect gas; M, = 5.017. 
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(c)  Resultant  velocity. 
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(b)  Density. 

Figure 12.- Property distr ibutions  across the shock layer. Perfect gas; M, = 10.0. 
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F igure 13.- Property  distr ibutions  across the shock layer.  Perfect gas; M, = 16.6. 
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Figure 16.- Surface  pressure  distributions. Equitibrium air. 
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Figure 17.- Surface  density distributions. Equilibrium  air. 
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Figure  19.- Shock  displacement  distance a t  axis of symmetry.   Equi l ibr ium  air .  
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Figure 21.- Shock and body shapes. Equilibrium air; case I I .  
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Figure 23.- Property  d istr ibut ions  across  the  shock  layer.   Equi l ibr ium  air ;   case I. 
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Figure 30.- Compressibility 2 as a funct ion of enthalpy h for constant density p .  
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Temperature as a function of enthalpy ^h for a constant  density p .  
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