A COMPUTER PROGRAM FOR COMPOSING COMPRESSOR BLADING FROM SIMULATED CIRCULAR-ARC ELEMENTS ON CONICAL SURFACES

by James E. Crouse, David C. Janetzke, and Richard E. Schwirian

Lewis Research Center
Cleveland, Obio

1. Report No.

NASA TN D-5437

2. Government Accession No.	3. Recipient's Catalog No.
FOR COM POSING COM PRES-	5. Report Date September 1969
ULATED CIRCULAR-ARC SURFACES	6. Performing Organization Code
David C. Janetzke, and	8. Performing Organization Report No. E-4828
Address	10. Work Unit No. $720-03-00-64-22 .$
Space Administration	11: Contract or Grant No.

12. Sponsoring Ageney Name and Address

National Aeronautics and Space Administration
Washington, D.C. 20546
13. Type of Report and Period Covered

Technical Note
14. Sponsoring Agency Code
15. Supplementary Notes
16. Abstroct

A blade-element-layout method is developed and combined with a stacking procedure in a computer program to compose a complete compressor blade. The layout method simulates the circular-arc-type blade element on a cone with the preservation of the constant rate of angle change. The computer program is capable of handling a multiple-circulararc blade element. It calculates blade cross-section coordinates and geometric properties for mechanical design and stress analysis.

*For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virgina 22151

A COMPUTER PROGRAM FOR COMPOSING COMPRESSOR BLADING FROM SIMULATED CIRCULAR-ARC ELEMENTS ON CONICAL SURFACES
 by James E. Crouse, David C. Janetzke, and Richard E. Schwirian
 Lewis Research Center

SUMMARY

In axial flow compressors, the design blade elements lie on conical surfaces which approximate the actual stream flow surfaces. A blade-element-layout method is developed which preserves the constant-angle change characteristic of the circular-arc profile. More specifically, the mean camber line and the suction and pressure surface lines of a blade element are lines with a constant rate of angle change with path distance on a specified conical surface. The layout method developed in this report and incorporated in a computer program has the capability of handling a multiple-circular-arc blade element. A complete blade is composed by stacking design blade elements on a line which may be tilted in the tangential and axial directions to minimize blade stresses.

Blade surface coordinates for plane sections through the blade are computed for use in the mechanical design and fabrication of the blade. The area, center of area, and moments of inertia for each blade section are computed for use in stress analysis of the blade.

INTRODUCTION

In present-day aircraft compressors, the annulus area converges sufficiently through a blade row that the meridional (radial-axial plane) streamlines near the hub and/or tip have significant slopes. Compressor blading is usually constructed from blade elements which are designed to turn the flow on the meridional streamlines. Each individual blade element is generally assumed to lie on a conical surface representation of the axisymmetric streamsurface through a blade row (see fig. 1). However, the layout of a blade element on a cone cannot retain all the properties of a conventional blade shape (e.g., double circular arc). The blade-element-layout problem is to preserve the de-

Figure 1. - Axisymmetric streamsurface approximated by conical surface.
sirable properties of a conventional blade shape. There is no standard method of simulating conventional blade shapes on a cone. Commonly used methods are (1) layout of a reference blade element directly on the conical surface and (2) projection of a reference blade element laid out on a plane or a cylindrical surface to the conical surface. With low streamline slopes, each of these methods gives essentially the same shape on a cone. However, with large streamline slopes, these methods can give significantly different blade shapes on a cone.

Blade surface velocities and pressures are influenced by several interacting forces, but probably the most direct factor controlling local flow on a blade element is the rate of surface-angle change (surface curvature) along the streamline. Then, perhaps, the most fundamental method of simulating a desirable blade element is to retain the rate of surface-angle change. This approach is taken in this report to develop a computerized method for simulating circular-arc-type blade elements.

The design of high-speed compressors has made wide use of blade rows composed of double-circular-arc (DCA) blade elements. A DCA blade element consists of one circular arc forming the suction surface and another forming the pressure surface. This type of blade element has performed very successfully, and extensive data from both twoand three-dimensional cascades has been incorporated into blade design procedures (ref. 1).

More recently, the need to control shock loss and throat area in the blade passages of transonic compressors has led to the use of multiple-circular-arc (MCA) blade elements. An MCA blade element consists of two circular arcs forming the suction surface and two others forming the pressure surface. This type of blade permits additional control of the chordwise turning (loading) distribution and aids in controlling the shock loss in blade passages with supersonic flow (refs. 2 to 5).

The main part of this report is a detailed development of a layout method which simulates an MCA blade element on a conical surface. The developed blade-elementlayout method preserves the constant rates of angle change of the centerline and the surfaces. Following the layout-method development, a step-by-step procedure for composing a complete blade by stacking the blade elements is given. The layout method and the stacking procedure are incorporated in a computer program to calculate the coordinates, areas, and other related properties of the blade cross-sections. This computer program eliminates the lengthy graphical procedures previously used in the mechanical design of a compressor blade.

COMPARISON OF SOME LAYOUT METHODS

In order to illustrate the potential effect of layout method on the rate of angle change of a blade-element centerline, a comparison of five layout methods is presented. The differences are best shown with an example of a DCA blade element at the hub of a compressor. The blade parameters selected and held constant on the hub cone are the following:
Streamline slope in the meridional (r-z) plane, α, deg 45
Ratio of blade-section outlet radius (trailing edge) to inlet
radius (leading edge), $\mathrm{r}_{\mathrm{o}} / \mathrm{r}_{\mathrm{i}}$. 1.4
Leading-edge blade angle, κ_{i}, deg . 45
Trailing-edge blade angle, κ_{o}, deg . 0
These parameters and other nomenclature for the layout on a cone are shown in figure 2.

Figure 2. - Conical coordinate system for blade-element layout.

Blade elements which have circular-arc centerlines on a plane were laid on the cone by using the following layout methods: (1) a constant rate of change of local blade angle on the cone with distance (constant $\mathrm{d} \kappa / \mathrm{ds}$), (2) a circular-arc element laid on a cone, (3) a circular-arc element laid on a plane perpendicular to the stacking axis and projected to the cone by lines parallel to the radial stacking axis, (4) a circular-arc element laid on the cylinder of blade-element outlet radius and projected to the cone by lines parallel to the radial stacking axis, and (5) a circular-arc element laid on the cylinder of blade-element outlet radius and projected to the cone by radial lines from the axis of rotation.

The rates of change of local centerline blade angle with distance along the bladeelement centerline on the cone $\mathrm{d} \kappa / \mathrm{ds}$ were computed for each of the layout methods. The results are compared in figure 3. Each curve has the same κ change from inlet to

Figure 3. - Comparison of circular-arc-layout methods.
outlet; but the s distance varied slightly to match the specified radius change and cone angle conditions. The values of $\mathrm{d} \kappa / \mathrm{ds}$ are negative since κ decreases with s .

The line of constant $\mathrm{d} \kappa / \mathrm{ds}$ in figure 3 is from the first layout method. With all of the other layout methods, κ changes the most rapidly at the leading edge of the blade. The percentage increases of $\mathrm{d} \kappa / \mathrm{ds}$ for the other layout methods at the blade leading edge, as compared with the constant $\mathrm{d} \kappa / \mathrm{ds}$ method (method 1) are 23 percent for the geometric layout (method 2), 35 percent for the parallel projection methods (methods 3 and 4), and 127 percent for the radial projection method (method 5). Figure 3 shows
that the blade-element-layout method can have a significant effect on the $d \kappa / \mathrm{ds}$ properties of a blade airfoil. If an important blade shape property, such as $\mathrm{d} \kappa / \mathrm{ds}$, is changed significantly by the layout method, similar changes in blade-element performance may also be expected.

DEVELOPMENT OF EQUATIONS FOR BLADE-ELEMENT LAYOUT

The layout of blade elements is one of the latter steps of a compressor design. In the steps preceding the layout, the selections of values for the blade-element properties are made. For the purpose of this report, the following values are presumed to have been established:
(1) Radial distance from the axis of rotation to the leading-edge center, $r_{i c}$
(2) Radial distance from the axis of rotation to the trailing-edge center, $r_{o c}$
(3) Thickness at the leading edge, t_{i}
(4) Thickness at the maximum thickness point, t_{m}
(5) Thickness at the trailing edge, t_{o}
(6) Angle of the centerline at the leading edge, $\kappa_{i c}$
(7) Angle of the centerline at the transition point, $\kappa_{\text {tc }}$
(8) Angle of the centerline at the trailing edge, $\kappa_{\text {oc }}$
(9) Axial distance from the leading-edge center to the maximum thickness point on the centerline, $z_{m c}-z_{i c}$
(10) Axial distance from the leading-edge center to the transition point on the centerline, $\mathrm{z}_{\mathrm{tc}}-\mathrm{z}_{\mathrm{ic}}$
(11) Axial distance from the leading-edge center to the trailing-edge center, $\mathrm{z}_{\mathrm{oc}}-\mathrm{z}_{\mathrm{ic}}$
These parameters and some of the nomenclature used to describe the blade elements are shown in figures 4 and 5 .

In the following development the constant $\mathrm{d} \kappa / \mathrm{ds}$ property of the MCA blade element is preserved in the layout onto a conical surface. The centerline, pressure surface, and suction surface are each formed by two segments, an inlet segment and an outlet segment. Each segment has its own constant $d \kappa / d s$ value which, generally, is different from that of any other segment. The development and the forms of the equations used in a computerized MCA blade-element-layout method are given in the following sections.

Figure 4. - Blade-element centerline and surface nomenclature.

Figure 5. - Definition of blade thickness path.

Coordinate System for Blade Element

The most convenient coordinate system for describing a blade element on a cone is the $R-\epsilon$ system shown in figure 2. Since a cone is a single curved surface which can be unwrapped on a plane, the following development can be considered to be carried out on a plane with the $R-\epsilon$ coordinate system of a cone. In the $R-\epsilon$ system, R is the length of a ray from the cone vertex to an arbitrary point, and ϵ is the angle from a reference ray to a ray passing through the arbitrary point.

Mathematical Description of Constant-Turning-Rate Segment

The blade angle κ is the angle between the ray R and a tangent to the blade centerline or surface path s. For a fixed turning rate, κ decreases at a constant rate C as s is increased; that is,

$$
\frac{\mathrm{d} \kappa}{\mathrm{ds}}=-\mathrm{C}
$$

or

$$
\begin{equation*}
\mathrm{ds}=-\frac{\mathrm{d} \kappa}{\mathrm{C}} \tag{1}
\end{equation*}
$$

From figure 4 note that

$$
\begin{align*}
& \mathrm{d} \mathrm{R}=\cos \kappa \mathrm{ds} \tag{2}\\
& \mathrm{Rd} \epsilon=\sin \kappa \mathrm{ds} \tag{3}
\end{align*}
$$

Substituting ds from equation (1) into equations (2) and (3) gives

$$
\begin{align*}
& \mathrm{dR}=-\frac{\cos \kappa \mathrm{d} \kappa}{\mathrm{C}} \tag{4}\\
& \mathrm{~d} \epsilon=-\frac{\sin \kappa}{\mathrm{RC}} \mathrm{~d} \kappa \tag{5}
\end{align*}
$$

Equation (4) integrated is

$$
\begin{equation*}
\mathrm{R}-\mathrm{R}_{1}=\frac{1}{\mathrm{C}}\left(\sin \kappa_{1}-\sin \kappa\right) \tag{6}
\end{equation*}
$$

where the subscript 1 refers to a point where R and κ are known. (All symbols are defined in appendix A.) By regrouping the terms in equation (6), a particular constant ζ is formed.

$$
\begin{equation*}
\zeta=\mathrm{RC}+\sin \kappa=\mathrm{R}_{1} \mathrm{C}+\sin \kappa_{1} \tag{7}
\end{equation*}
$$

Solving equation (7) for R gives

$$
\begin{equation*}
\mathrm{R}=\frac{\zeta-\sin \kappa}{\mathrm{C}} \tag{8}
\end{equation*}
$$

Equation (8) gives R as a function of κ on a segment with known constants, C and ζ. The differential equation for ϵ is obtained by the substitution of equation (8) into equation (5).

$$
\begin{equation*}
\mathrm{d} \epsilon=\frac{\sin \kappa}{\sin \kappa-\zeta} \mathrm{d} \kappa \tag{9}
\end{equation*}
$$

However, if $C=0, \kappa$ is a constant, and the following differential equation for ϵ applies:

$$
\begin{equation*}
\mathrm{d} \epsilon=\tan \kappa \frac{\mathrm{dR}}{\mathrm{R}} \tag{10}
\end{equation*}
$$

In general, ϵ is given by

$$
\begin{equation*}
\epsilon=\epsilon_{1}+\mathrm{f}\left(\kappa, \kappa_{1}, \zeta, \mathrm{R}, \mathrm{R}_{1}\right) \tag{11}
\end{equation*}
$$

where $f\left(\kappa, \kappa_{1}, \zeta, R, R_{1}\right)$ is the integral of equation (9) if $C \neq 0$, or equation (10) if $C=0$. The integral of equation (9) has three solutions dependent on the value of ζ. Details of the solutions for $\mathrm{f}\left(\kappa, \kappa_{1}, \zeta, \mathrm{R}, \mathrm{R}_{1}\right)$ are presented in appendix B .

Definition of Blade-Element Centerline

In this blade-element-layout procedure, it is first necessary to establish the bladeelement centerline. Desired blade properties (e.g., $\kappa_{i}, \kappa_{t}, \kappa_{o}, C_{i}, C_{o}$) are generally related to the centerline, and the blade thickness is applied to the centerline.

In this development, the blade-element centerline is composed of two constant $\mathrm{d} \kappa / \mathrm{ds}$ segments, an inlet segment and an outlet segment. These segments are tangent at a point called the transition point (see fig. 4).

In order to determine the $\mathrm{R}-\epsilon$ coordinates of the centerline segments, it is first necessary to calculate the cone half-angle α. From the input data,

$$
\begin{equation*}
\alpha=\tan ^{-1}\left(\frac{\mathrm{r}_{\mathrm{oc}}-\mathrm{r}_{\mathrm{ic}}}{\mathrm{z}_{\mathrm{oc}}-\mathrm{z}_{\mathrm{ic}}}\right) \tag{12}
\end{equation*}
$$

The R coordinate of the leading-edge center is given by

$$
\begin{equation*}
\mathrm{R}_{\mathrm{ic}}=\frac{\mathrm{r}_{\mathrm{ic}}}{\sin \alpha} \tag{13}
\end{equation*}
$$

Note that $\alpha=0$ cannot be used in equation (13). However, a separate set of equations for this special case is not warranted. A sufficiently equivalent blade element can be calculated by using a small cone half-angle ($\alpha=0.1^{\circ}$).

The R coordinates of other points specified on the centerline are determined by equation (14)

$$
\begin{equation*}
\mathrm{R}=\mathrm{R}_{\mathrm{ic}}+\frac{\mathrm{z}-\mathrm{z}_{\mathrm{ic}}}{\cos \alpha} \tag{14}
\end{equation*}
$$

After the R coordinates of the leading-edge point, the transition point, and the trailing-edge point on the centerline are determined, the turning constants for both centerline segments can be calculated. Since the blade angles at the endpoints of these segments are given in the input, the turning-rate constant C for a segment is obtained from a rearrangement of equation (6)

$$
\begin{equation*}
\mathrm{C}=\frac{\sin \kappa_{1}-\sin \kappa}{\mathrm{R}-\mathrm{R}_{1}} \tag{15}
\end{equation*}
$$

It should be noted that the value of C for the centerline is calculated rather than specified. The reason for this is that small errors in C and in κ for small values of C will produce large errors in $R_{t c}$ and $R_{o c}$. Thus, the relative axial locations of the segment endpoints are specified instead.

For convenience, the angular coordinates of a blade element are referenced from the leading-edge center (i.e., $\epsilon_{i c}=0$). The angular coordinates of the other endpoints of the two segments are calculated by equation (11).

Determination of Blade-Element Surfaces

The blade-element surface curves are also composed of two constant $\mathrm{d} \kappa / \mathrm{ds}$ segments. The pressure surface and the suction surface each have an inlet segment and an outlet segment which are joined at a transition point. These surface curves must satisfy the tangency requirement at the transition point and the thickness specifications. The thickness is specified at three points: the leading edge, the trailing edge, and the maximum thickness point.

The constants for each surface segment are determined from two points on the segment and the slope at one of these points. The general equations needed and the methods used for calculating the coordinates of these points, the surface slopes at these points, and the resulting constants for each segment are given below. Specific applications of these equations are given in appendix B.

The initial points for establishing the surface curves are calculated by applying the thickness specifications at three points on the centerline: the leading edge, the maximum thickness point, and the trailing edge. On a plane surface, thickness is generally measured along a line perpendicular to the blade centerline. On the conical surface, the thickness path is described by a constant angle κ_{n} path which is normal to the centerline, where

$$
\begin{equation*}
\kappa_{\mathrm{n}}=\kappa_{\mathrm{c}} \pm \frac{\pi}{2} \tag{16}
\end{equation*}
$$

(see fig. 5). The plus sign in equation (16) gives the path direction to the suction surface, and the minus sign gives the path direction to the pressure surface.

The differential equations for this slightly curved thickness path are

$$
\begin{equation*}
\mathrm{dR}=\cos \kappa_{\mathrm{n}} \mathrm{~d} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
R d \epsilon=\sin \kappa_{\mathrm{n}} \mathrm{~d} \alpha \tag{18}
\end{equation*}
$$

where is the distance from the centerline, as shown in figure 5. Equation (17) integrates to

$$
\begin{equation*}
R-R_{c}=\alpha \cos \kappa_{n} \tag{19}
\end{equation*}
$$

Elimination of do by combining equations (17) and (18) gives

$$
\begin{equation*}
\mathrm{d} \epsilon=\tan \kappa_{\mathrm{n}} \frac{\mathrm{dR}}{\mathrm{R}} \tag{20}
\end{equation*}
$$

Equation (20) integrates to

$$
\begin{equation*}
\epsilon-\epsilon_{c}=\tan \kappa_{n} \ln \left(\frac{R}{R_{c}}\right) \tag{21}
\end{equation*}
$$

For the special case of $\kappa_{c}=0$, equation (21) becomes indeterminate because $\kappa_{n}= \pm \pi / 2$, and equation (19) yields $R=R_{c}$. Since R is constant for this case, equation (18) can be directly integrated to give

$$
\begin{equation*}
\epsilon-\epsilon_{c}= \pm \frac{f}{R_{c}} \tag{22}
\end{equation*}
$$

where the plus sign is for $\kappa_{n}=\pi / 2$ and the minus sign is for $\kappa_{n}=-\pi / 2$.
The coordinates of the leading edge, the maximum thickness point, and the trailing edge on the suction surface and the pressure surface are determined by equations (19) and either (21) or (22). The necessary R_{c} values for these equations are determined from the input by equations (13) and (14). The κ_{c} values for the leading and trailing edges are given in the input. The κ_{c} value for the maximum thickness point is determined from the rearrangement of equation (7), which gives

$$
\begin{equation*}
\kappa=\sin ^{-1}(\zeta-\mathrm{RC}) \tag{23}
\end{equation*}
$$

where ζ and \mathbf{C} are constants of the segment containing the point.
The κ angle at the maximum thickness point on either the suction or pressure surface is equal to the κ angle at the maximum thickness point on the centerline, or

$$
\begin{equation*}
\kappa_{\mathrm{mc}}=\kappa_{\mathrm{ms}}=\kappa_{\mathrm{mp}}=\kappa_{\mathrm{m}} \tag{24}
\end{equation*}
$$

This angle κ_{m}, along with the coordinates of the maximum thickness point and either the leading-edge point or the trailing-edge point, provides sufficient conditions for establishing the surface curve for the segment containing the maximum thickness point.

(a) Case 1 : coincident maximum thickness and transition points.

(b) Case 2: maximum thickness behind transition point.

(c) Case 3: Maximum thickness ahead of transition point.

Figure 6. - Locations of maximum thickness with respect to transition point.

To permit design flexibility, the maximum thickness point can be located on either segment, inlet or outlet, or at the transition point. These three cases, as shown in figure 6, are
(1) Maximum thickness at the transition point
(2) Maximum thickness on the outlet segment behind the transition point
(3) Maximum thickness on the inlet segment ahead of the transition point

In establishing the surface equations, the calculations begin on the segment containing the maximum thickness. On this segment, two points and a slope are known for both the pressure surface and the suction surface. Use of these known surface conditions in equations (7), (11), and (15) gives three equations with three unknowns: ζ, C, and κ. Elimination of ζ and C leaves an equation with one unknown, к. However, the complexity of this equation makes it difficult to solve explicitly. So an iterative method is used to solve for ζ, C, and κ. This iterative method consists of estimating κ and checking the resulting ϵ-coordinate with the known ϵ-coordinate.

The next step in establishing the surface equations is the calculation of the transition point on both the pressure surface and the suction surface. This calculation involves finding the intersection of the surface curves with the thickness path of the transition point. Use of the known conditions in equations (11), (21) or (22), and (23) gives three equations with three unknowns: κ, R, and ϵ. Again, the complexity of equation (11) makes it difficult to solve for the unknowns explicitly. An iterative method is used to solve for the unknowns. This iterative method consists of estimating R, then comparing a calculated $R_{\text {tc }}$ with the known $R_{\text {tc }}$. The calculated $R_{t c}$ is determined by a rearrangement of equation (21)

$$
\begin{equation*}
\mathrm{R}_{\mathrm{tc}}(\mathrm{R})=\frac{\mathrm{R}}{\exp \left[\tan \kappa_{\mathrm{tc}}\left(\epsilon_{\mathrm{tc}}-\epsilon\right)\right]} \tag{25}
\end{equation*}
$$

This step does not apply to case 1 , where the maximum thickness and the transition points coincide.

The final step in establishing the surface equations is to obtain the unknowns ζ, C, and κ for the surfaces of the remaining segment. Two points, the transition point and either the trailing-edge or the leading-edge point, and the angle at the transition point on the pressure surface and the suction surface of the remaining segment are now known. The iterative method used in the first step is used in this step to calculate the final unknowns.

DESCRIPTION OF COMPLETE BLADE

The complete blade is described from a selected number of blade cross-sections. These cross-sections, hereinafter called blade sections, lie on planes perpendicular to a radial line. The blade-section surface coordinates are obtained by stacking the blade elements (which lie on conical streamsurfaces) in a suitable manner and fairing between them. A primary objective in the stacking process is to minimize blade stresses. This is accomplished by allowing the straight stacking line to be leaned (from a true radial line) at prescribed angles in both the tangential and axial directions.

The blade-element stacking procedure requires an iterative positioning of the blade elements until the centers of area of the blade sections are coincident with the stacking line within a given tolerance. The specific steps used in the stacking procedure are the following:
(1) Initial positioning of blade elements along the stacking line. The intersections of the stacking line with the conical streamsurfaces of the blade elements are called the blade-element stacking points. For the first iteration the stacking points are located at the centers of area of the blade elements.
(2) Calculation of stacking points relative to common reference. The coordinates of the blade-element stacking points are translated into cylindrical coordinates and referenced from the center of the leading edge of the hub blade element.
(3) Calculation of blade-element coordinates. Blade-element surface coordinates in a Cartesian coordinate system ($x-y-z$) are calculated at specific z values for fairing convenience.
(4) Calculation of blade-section coordinates. Blade sections lying on planes through each blade-element stacking point are defined. The surface coordinates of a blade section are obtained from the intersections of the plane of the blade section and the z-fairings of the blade-element surface coordinates.
(5) Calculation of centers of area of blade sections. The center of area for each blade section is found by integrating over the area defined by the blade-section coordinates.
(6) Calculation of new blade-element stacking points. A new stacking point for each blade element is obtained from the intersection of a line faired through the centers of area of the blade sections and the conical streamsurface of each blade element. If the new stacking points are sufficiently close to the old stacking points, the stacking procedure is considered to be converged or finished. If not, the procedure is repeated starting at step 2 using the new stacking points.

The blade-element stacking procedure, including these steps, is described in detail following a description of the coordinate systems used.

Coordinate Systems for Complete Blade

In addition to the $R-\epsilon$ coordinate system for the blade elements, two other coordinate systems are used in the stacking procedure for describing the complete blade. A cylindrical coordinate system ($\mathrm{r}-\theta-\mathrm{z}$) is used for describing the stacking line and alining the stacking points of the blade elements along the stacking line (see fig. 7). A Cartesian coordinate system ($x-y-z$) is used for obtaining plane sections of the complete blade (see fig. 8). The z -axis is common to both systems and lies along the machine axis of rotation. The direction of the z-axis is defined as positive from blade inlet toward blade outlet. The origin, $\mathrm{z}=0$, is defined by the axial location of the center of the hub-bladeelement, leading-edge radius.

The orientation of the cylindrical coordinate system is shown in figure 7. The angular coordinate θ is measured from the $\mathbf{r - z}$ plane which contains the hub-bladeelement, leading-edge center. The positive θ-direction is from the blade pressure (lower) surface toward the blade suction (upper) surface.

Figure 7. - Cylindrical coordinate system.

Figure 8. - Cartesian coordinate system for blade.

The orientation of the Cartesian coordinate system is shown in figure 8. The x-axis is parallel to the radial line which passes through the hub-blade-element stacking point. The positive x -direction is from hub to tip. The positive y -direction is from the blade pressure surface toward the blade suction surface.

Stacking Procedure

The objective of the stacking procedure is to position each blade element such that the centers of area of all blade sections lie on the stacking line. The steps in the iterative procedure are as follows:

Initial positioning of blade elements along stacking line. - The first step in the stacking procedure is the initial positioning of the blade element along the stacking line. A good first approximation to the desired stacking of the blade elements is obtained by alining the centers of area of the blade elements along the stacking line. A sufficiently accurate calculation for these centers is given by the following equations:

$$
\begin{align*}
& \mathrm{R}_{\mathrm{sp}}=\frac{\int \mathrm{RdA}}{\int \mathrm{dA}} \tag{26}\\
& \epsilon_{\mathrm{sp}}=\frac{\int \epsilon \mathrm{dA}}{\int \mathrm{dA}} \tag{27}
\end{align*}
$$

where

$$
\begin{gather*}
\int d A=\int_{R_{i c}}^{R_{o c}} \int_{\epsilon_{p}(R)}^{\epsilon_{s}(R)} R d \epsilon d R=\int_{R_{i c}}^{R_{o c}} R\left[\epsilon_{s}(R)-\epsilon_{p}(R)\right] d R \tag{28}\\
\int R d A=\int_{R_{i c}}^{R_{o c}} \int_{\epsilon_{p}(R)}^{\epsilon_{s}(R)} R^{2} d \epsilon d R=\int_{R_{i c}}^{R} R^{2}\left[\epsilon_{s}(R)-\epsilon_{p}(R)\right] d R \tag{29}
\end{gather*}
$$

$$
\begin{equation*}
\int \epsilon d A=\int_{R_{i c}}^{R_{o c}} \int_{\epsilon_{p}(R)}^{\epsilon_{s}(R)} \epsilon R d \epsilon d R=\frac{1}{2} \int_{R_{i c}}^{R_{o c}} R\left[\epsilon_{s}^{2}(R)-\epsilon_{p}^{2}(R)\right] d R \tag{30}
\end{equation*}
$$

The integrals in equations (26) to (30) are evaluated by numerical integration techniques since the functions $\epsilon_{s}(R)$ and $\epsilon_{p}(R)$ are very difficult to integrate.

Calculation of stacking points relative to a common reference. - The second step in the stacking procedure is the calculation of the cylindrical coordinates of the bladeelement stacking points relative to a common reference. For convenience, the reference for the $\theta-z$ coordinates is the center of the leading-edge radius of the hub blade element.

The simplest and perhaps most commonly used stacking line is a radial line. However, when blade stresses are high, the maximum blade stress can be lowered by leaning the stacking line slightly to introduce a centrifugal force bending moment to counterbalance the aerodynamic blading moment. In this report the stacking line is a straight line which can be leaned in both the θ-direction and the z -direction from a radial line at the hub-blade-element stacking point. The lean angle η is positive in the positive θ-direction, and the lean angle λ is positive in the positive z-direction (see fig. 7).

From geometric considerations, it can be shown that the blade-element stacking point location on the stacking line is given by

$$
\begin{gather*}
\mathrm{z}_{\mathrm{sp}}=\mathrm{z}_{\mathrm{sp}, \mathrm{~h}}+\left(\mathrm{r}_{\mathrm{sp}}-\mathrm{r}_{\mathrm{sp}, \mathrm{~h}}\right) \tan \lambda \tag{31}\\
\theta_{\mathrm{sp}}=\theta_{\mathrm{sp}, \mathrm{~h}}+\delta \tag{32}
\end{gather*}
$$

where

$$
\begin{gather*}
\mathrm{r}_{\mathrm{sp}}=\mathrm{R}_{\mathrm{sp}} \sin \alpha \tag{33}\\
\theta_{\mathrm{sp}, \mathrm{~h}}=\frac{\epsilon_{\mathrm{sp}, \mathrm{~h}}}{\sin \alpha_{\mathrm{h}}} \tag{34}\\
\delta=\sin ^{-1}\left\{\frac { \mathrm { r } _ { \mathrm { sp } , \mathrm { h } } } { \mathrm { r } _ { \mathrm { sp } } } (\frac { \operatorname { t a n } \eta } { 1 + \operatorname { t a n } ^ { 2 } \eta }) \left[\sqrt{\left.\left.\left(\frac{\mathrm{r}_{\mathrm{sp}}}{\mathrm{r}_{\mathrm{sp}, \mathrm{~h}}}\right)^{2}\left(1+\tan ^{2} \eta\right)-\tan ^{2} \eta-1\right]\right\}}\right.\right. \tag{35}
\end{gather*}
$$

The h subscript refers to the hub-blade-element values. The lean angles, η and λ, are input information for the computer program and, therefore, are presumed to have been calculated or estimated.

Calculation of blade-element coordinates. - The third step in the stacking procedure is calculation of the $x-y-z$ coordinates of the blade elements. The general conversion equations for calculating $x-y-z$ coordinates from the $R-\epsilon$ coordinates are

$$
\begin{gather*}
\mathrm{x}=\mathrm{R} \sin \alpha \cos \left(\frac{\epsilon}{\sin \alpha}+\theta_{\mathrm{ic}}-\theta_{\mathrm{sp}, \mathrm{~h}}\right) \tag{36}\\
\mathrm{y}=\mathrm{R} \sin \alpha \sin \left(\frac{\epsilon}{\sin \alpha}+\theta_{\mathrm{ic}}-\theta_{\mathrm{sp}, \mathrm{~h}}\right) \tag{37}\\
\mathrm{z}=\mathrm{z}_{\mathrm{sp}}-\left(\mathrm{R}_{\mathrm{sp}}-\mathrm{R}\right) \cos \alpha \tag{38}
\end{gather*}
$$

where the z value of the stacking point is z_{Sp} and the cylindrical coordinate of the center of the leading-edge radius is

$$
\begin{equation*}
\theta_{\mathrm{ic}}=\theta_{\mathrm{sp}}-\left(\theta_{\mathrm{sp}}-\theta_{\mathrm{ic}}\right)=\theta_{\mathrm{sp}, \mathrm{~h}}+\delta-\frac{\epsilon_{\mathrm{sp}}}{\sin \alpha} \tag{39}
\end{equation*}
$$

Since the $R-\epsilon$ corrdinates of the leading-edge, transition, maximum thickness, and trailing-edge points on the blade-element surfaces have been calculated previously, the $x-y-z$ coordinates of these particular points can be calculated directly with equations (36) to (38).

The blade surface curve fits are most conveniently made at constant z values. However, before particular values of z are determined, the maximum z range for the complete blade is found. The minimum z is found by searching the leading-edge coordinates of both surfaces of all blade elements. The maximum z is found by the same type of search on the trailing-edge surface coordinates. Then, equally spaced z values are calculated to cover the complete z range of the blade.

Before the surface x and y coordinates can be found, it is necessary to calculate the surface R and ϵ values at the prescribed z values. For a given element the R coordinate is given by equation (14). Before the ϵ-coordinate can be found, the surface tangent angle κ is calculated by equation (23). The ϵ-coordinate then is given by equation (11) when the known values at the transition point are used for reference values. Finally, the $x-y$ coordinates are calculated by the general equations (36) and (37), for each z value on each blade element to complete the information needed for the curve fits across the blade elements.

Calculation of blade-section coordinates. - The fourth step in the stacking procedure is interpolation of the blade-element surface coordinates to define blade sections. Each blade section has a constant x value, so the $y-z$ surface coordinates define the bladesection profile. The x values used in the program are the x-coordinates of the previously calculated stacking points of the blade elements.

A second-order Lagrangian interpolation technique is used to calculate $y_{(p, s)}$ for a given x on each of the surface lines of equal z values. The blade-element coordinates, $\left[\mathrm{x}_{1,(\mathrm{p}, \mathrm{s})}, \mathrm{y}_{1,(\mathrm{p}, \mathrm{s})}, \mathrm{z}_{\mathrm{j}}\right],\left[\mathrm{x}_{2,(\mathrm{p}, \mathrm{s})}, \mathrm{y}_{2,(\mathrm{p}, \mathrm{s})}, \mathrm{z}_{\mathrm{j}}\right]$, and $\left[\mathrm{x}_{3,(\mathrm{p}, \mathrm{s})} \mathrm{y}_{3,(\mathrm{p}, \mathrm{s})}, \mathrm{z}_{\mathrm{j}}\right]$, are consecutive points along a z-value line. The x-dimension falls within this group of points. The equation for $y_{(p, s)}$ is

$$
\begin{equation*}
y_{(p, s)}=y_{1,(p, s)} W_{1}+y_{2,(p, s)} W_{2}+y_{3,(p, s)} W_{3} \tag{40}
\end{equation*}
$$

where

$$
\begin{align*}
& W_{1}=\frac{\left.\left[x-x_{2,(}, s\right)\right]\left[x-x_{3,(p, s)}\right]}{\left[x_{1,(p, s)}-x_{2,(p, s)}\right]\left[x_{1,(p, s)}-x_{3,(p, s)}\right]} \tag{41}\\
& W_{2}=\frac{\left.\left[x-x_{1,(}, s\right)\right]\left[\mathrm{x}-\mathrm{x}_{3,(\mathrm{p}, \mathrm{~s})}\right]}{\left[\mathrm{x}_{2,(p, s)}-\mathrm{x}_{1,(p, s)}\right]\left[\mathrm{x}_{2,(p, s)}-\mathrm{x}_{3,(p, s)}\right]} \tag{42}
\end{align*}
$$

and

$$
\begin{equation*}
W_{3}=\frac{\left[x-x_{1,(p, s)}\right]\left[x-x_{2,(p, s)}\right]}{\left[x_{3,(p, s)}-x_{1,(p, s)}\right]\left[x_{3,(p, s)}-x_{2,(p, s)}\right]} \tag{43}
\end{equation*}
$$

The coordinates y_{p} and y_{s} are calculated for each z value.
Calculation of centers of area of blade sections. - The fifth step in the stacking procedure is the calculation of the center of area of each blade section. The coordinates of the center of area are determined by dividing the area moments of the blade section by the area of the blade section. Both the area moments and the area of the blade section are determined by numerical integration.

The equations for the area and the area moments of a blade section are as follows:

$$
\begin{equation*}
A=\int_{z_{\min }}^{z_{\max }} \int_{y_{p}}^{y_{s}} d y d z=\int_{z_{\min }}^{z_{\max }}\left[y_{s}(z)-y_{p}(z)\right] d z \tag{44}
\end{equation*}
$$

$$
\begin{gather*}
y_{c a} A=\int_{z_{\min }}^{z_{\max }} \int_{y_{p}}^{y_{s}} y d y d z=\int_{z_{\min }}^{z_{\max }} \frac{1}{2}\left[y_{s}^{2}(z)-y_{p}^{2}(\mathrm{z})\right] d z \tag{45}\\
\mathrm{z}_{\mathrm{ca}} A=\int_{\mathrm{z}_{\min }}^{\mathrm{z}_{\max }} \int_{\mathrm{y}_{\mathrm{p}}}^{\mathrm{y}_{\mathrm{s}}} \mathrm{zdydz}=\int_{\mathrm{z}_{\min }}^{\mathrm{z}_{\max }} \mathrm{z}\left[\mathrm{y}_{\mathrm{s}}(\mathrm{z})-\mathrm{y}_{\mathrm{p}}(\mathrm{z})\right] \mathrm{dz} \tag{46}
\end{gather*}
$$

Calculation of new blade-element stacking points. - The sixth step in the stacking procedure is the calculation of the new blade-element stacking points. A new stacking point for each blade element is calculated by curve-fitting the center-of-area coordinates of the blade sections and finding the intersections of the curve-fit with the conic streamsurface of each element. The first approximation for the new $y_{s p}$ and $z_{s p}$ coordinates of a new stacking point is made by interpolating the center-of-area coordinates at the old x_{sp}. Then, using the y_{sp} and z_{sp} approximations, an approximate x_{sp} is calculated from the following equations:

$$
\begin{gather*}
\mathbf{r}_{\mathrm{sp}}=\mathbf{r}_{\mathrm{sp}, \mathrm{old}}+\frac{\mathrm{z}_{\mathrm{sp}}-\mathrm{z}_{\mathrm{sp}, \text { old }}}{\tan \alpha} \tag{47}\\
\mathrm{x}_{\mathrm{sp}}=\sqrt{\mathrm{r}_{\mathrm{sp}}^{2}-\mathrm{y}_{\mathrm{sp}}^{2}} \tag{48}
\end{gather*}
$$

The approximate $x_{s p}$ is then used to interpolate the center-of-area coordinates for the new $y_{s p}$ and $z_{s p}$. A new $x_{s p}$ is calculated by using the new $y_{s p}$ and $z_{s p}$ in equations (47) and (48).

To determine whether repositioning of the blade elements is necessary, the absolute differences between the old and new $y_{s p}$ and $z_{s p}$ coordinates are summed in the manner of the following equation, and the sum is compared to the specified tolerance limit given in the input. The equation for summing the differences is

$$
\begin{equation*}
\mathrm{S}=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\left|\mathrm{y}_{\mathrm{sp}, \text { new }}-\mathrm{y}_{\mathrm{sp}, \text { old }}\right|+\left|\mathrm{z}_{\mathrm{sp}, \text { new }}-\mathrm{z}_{\mathrm{sp}, \text { old }}\right|\right) \tag{49}
\end{equation*}
$$

where n is the number of blade elements. If S is within the specified tolerance limit, the stacking procedure is considered to be converged or finished.

If repositioning is necessary, the new stacking point coordinates, $\mathrm{x}_{\mathrm{sp}}, \mathrm{y}_{\mathrm{sp}}$, and z_{sp}, are used to calculate the cylindrical coordinates of the new blade-element stacking points:

$$
\begin{gather*}
\left(\theta_{\mathrm{sp}}-\theta_{\mathrm{ic}}\right)_{\text {new }}=\left(\theta_{\mathrm{sp}}-\theta_{\mathrm{ic}}\right)_{\mathrm{old}}-\delta+\tan ^{-1}\left(\frac{y_{\mathrm{sp}}}{\mathrm{x}_{\mathrm{sp}}}\right) \tag{50}\\
\mathrm{R}_{\mathrm{sp}, \mathrm{new}}=\mathrm{R}_{\mathrm{ic}}+\frac{z_{\mathrm{sp}}-\mathrm{z}_{\mathrm{ic}}}{\cos \alpha} \tag{51}\\
\mathbf{r}_{\mathrm{sp}}=\sqrt{\mathrm{x}_{\mathrm{sp}}^{2}+\mathrm{y}_{\mathrm{sp}}^{2}} \tag{52}
\end{gather*}
$$

The cylindrical coordinates of the new stacking points are used in the second step of the stacking procedure to begin another iteration.

FINAL CF.LCULATIONS AND OUTPUTS

The final calculations and outputs of the computer program are primarily intended for use in the mechanical design and fabrication of a compressor blade. However, the calculated parameters and coordinates of the blade elements may be of interest in an analysis of the aerodynamic design. For this purpose, the parameters and coordinates of the blade elements are printed out.

The blade-element parameters printed out are
(1) Cone half-angle , α
(2) Blade angle at the maximum thickness, κ_{m}
(3) Centerline blade angles at the leading edge, the transition point, and the trailing edge, $\kappa_{\mathrm{ic}}, \kappa_{\mathrm{tc}}$, and κ_{oc}
(4) Pressure surface blade angles at the leading edge, the transition point, and the trailing edge, $\kappa_{\text {ip }}, \kappa_{\text {tp }}$, and $\kappa_{\text {op }}$
(5) Suction surface blade angles at the leading edge, the transition point, and the trailing edge, $\kappa_{\text {is }}, \kappa_{\mathrm{ts}}$, and κ_{os}
(6) Inlet and outlet segment turning rates for the centerline, $C_{i c}$ and $C_{o c}$
(7) Inlet and outlet segment turning rates for the pressure surface, $C_{i p}$ and $C_{o p}$
(8) Inlet and outlet segment turning rates for the suction surface, $C_{i s}$ and $C_{o s}$

The blade-element coordinates printed out define the surface profile and locate particular points of the blade elements. The coordinates which define the surface profiles of the blade elements are given as x and y for the suction surface and the pressure
surface at a z value for each element. These are the blade-element coordinates which are curve-fit to obtain the blade-section coordinates. The $x-y-z$ coordinates of particular points are given at the leading-edge point, maximum thickness point, transition point, and trailing-edge point on the suction surface, pressure surface, and centerline for each element.

The blade-section coordinates are the primary output of the computer program. The locations, or x values, of the blade sections are determined in the stacking procedure or can be specified in the input. The blade sections are described in two separate sets of coordinates. One set is called the unrotated coordinates and uses the $x-y-z$ coordinate system of the stacking procedure (see fig. 9). The other set is called the

Figure 9. - Unrotated blade section.
rotated coordinates and uses a conventional coordinate system for airfoils. In the rotated coordinate system, the abscissa is tangent to the radii of the leading and trailing edges on the pressure side of the blade, and the ordinate is tangent to the leading-edge radius. The abscissa is labeled L for length, and the ordinate is labeled H for height (see fig. 10).

The unrotated coordinates for each blade section are calculated by interpolation of the blade-element coordinates in the same manner as in the stacking procedure. The y_{S} and y_{p} coordinates, which define the suction and pressure surface profiles of the blade section, are calculated for the complete range of z values. Since the z values generally extend beyond both edges of a blade section, a few nonexistent points are calculated. The leading-edge and trailing-edge coordinates on the suction and pressure surfaces of the blade sections are calculated by interpolation of the $x-z$ coordinates of the blade elements to obtain the z-coordinates, and then interpolation of the $y-z$ coordinates of the blade-section surfaces to obtain the y-coordinates. The coordinates of the
maximum thickness points and the transition points on the suction and pressure surfaces are calculated in the same manner. The center-of-area coordinates are obtained by interpolation of the $x-y$ and the $x-z$ coordinates of the stacking line. The coordinates of the leading-edge, maximum thickness, transition, and trailing-edge points on the centerline are obtained by interpolation of the $x-y$ and $x-z$ coordinates of the points on the blade elements.

Figure 10. - Rotated blade section.

The rotated coordinates of a blade section are calculated by rotation and translation of the unrotated coordinates. The angle of rotation γ is the angle from the z -axis to the L-axis (see fig. 10) and is calculated by equation (53). The rotated coordinates of the leading-edge, maximum thickness, transition, and trailing-edge points on the centerline, the suction surface, and the pressure surface are directly calculated by equations (54) and (55):

$$
\begin{align*}
& \gamma=\sin ^{-1}\left[\begin{array}{c}
\left(y_{o c}-y_{i c}\right) \sqrt{\left(z_{o c}-z_{i c}\right)^{2}+\left(y_{o c}-y_{i c}\right)^{2}-\left(\frac{t_{0}-t_{i}}{2}\right)^{2}}-\left(z_{o c}-z_{i c}\right) \frac{t_{o}-t_{i}}{2} \\
\left(z_{o c}-z_{i c}\right)^{2}+\left(y_{o c}-y_{i c}\right)^{2}
\end{array}\right] \tag{53}\\
& H=\left(y-y_{i c}\right) \cos \gamma-\left(z-z_{i c}\right) \sin \gamma+\frac{t_{i}}{2} \\
& \mathrm{~L}=\left(\mathrm{y}-\mathrm{y}_{\mathrm{ic}}\right) \sin \gamma+\left(\mathrm{z}-\mathrm{z}_{\mathrm{ic}}\right) \cos \gamma+\frac{\mathrm{t}_{\mathrm{i}}}{2}
\end{align*}
$$

The coordinates of the center of area and a reference point, the stacking point of the hub blade element, are also calculated by equations (54) and (55). These two points will coincide if the stacking line is not tilted.

The rotated coordinates of the suction and pressure surface profiles for a blade section are obtained at equal increments along the L-axis. These coordinates are calculated by interpolation of coordinates obtained by rotation and translation of the unrotated coordinates. These coordinates are calculated only for points actually on the blade-section surfaces.

Along with the blade-section rotated coordinates, several parameters which pertain to the stress analysis of the blade are calculated. These parameters include the following:
(1) Blade-section area, A
(2) Center-of-area coordinates, \bar{L} and \bar{H}
(3) Moment of inertia about the L-axis, $I_{L L}$
(4) Moment of inertia about the H -axis, I_{HH}
(5) Product of inertia associated with the $\mathrm{L}-\mathrm{H}$ axes, P_{HL}
(6) Moment of inertia about L-axis translated to the center of area, $I_{\text {LLCA }}$
(7) Moment of inertia about H -axis translated to the center of area, $\mathrm{I}_{\mathrm{HHCA}}$
(8) Product of inertia associated with the $\mathrm{L}-\mathrm{H}$ axes translated to the center of area, $\mathbf{p}_{\text {HLCA }}$
(9) Angle to the axis of minimum moment of inertia from the L -axis, β
(10) Minimum moment of inertia about an axis through the center of area, $I_{m i n}$
(11) Maximum moment of inertia about an axis through the center of area, $I_{\max }$ The equations for calculating these parameters are

$$
\begin{gather*}
A=\int_{L=0}^{L_{\max }}\left(H_{S}-H_{p}\right) d L \tag{56}\\
\bar{L}=\frac{\left.\int_{L=0}^{L_{\max }} L_{\left(H_{S}\right.}-H_{p}\right) d L}{A} \tag{57}\\
\bar{H}=\frac{\int_{L=0}^{L_{\max }} \frac{1}{2}\left(H_{S}^{2}-H_{p}^{2}\right) d L}{A} \\
I_{L L}=\int_{L=0}^{L_{\max }} \frac{1}{3}\left(H_{s}^{3}-H_{p}^{3}\right) d L \tag{58}
\end{gather*}
$$

$$
\begin{gather*}
I_{H H}=\int_{L=0}^{L_{m a x}} L^{2}\left(H_{s}-H_{p}\right) d L \tag{60}\\
P_{H L}=\int_{L_{L=0}}^{L_{\max }} \frac{1}{2} L_{L}\left(H_{s}^{2}-H_{p}^{2}\right) d \mathrm{dL} \tag{61}\\
I_{L L C A}=I_{L L}-\bar{H}^{2} A \tag{62}\\
I_{H H C A}=I_{H H}-\bar{L}^{2} A \tag{63}\\
P_{H L C A}=P_{H L}-\overline{H L A}-\frac{1}{2} \tan ^{-1}\left(\frac{2 P_{H L C A}}{I_{H H C A}-I_{L L C A}}\right) \tag{64}\\
I_{\text {min }}=\frac{1}{2}\left(I_{L L C A}+I_{H H C A}\right)+\frac{1}{2}\left(I_{L L C A}-I_{H H C A}\right) \cos (2 \beta)-P_{H L C A} \sin (2 \beta) \tag{65}\\
I_{\text {max }}=I_{L L C A}+I_{H H C A}-I_{\min } \tag{66}
\end{gather*}
$$

The integrals in the preceding equations are evaluated by a numerical integration technique.

The form of the output is shown in appendix C for a sample case.

CONCLUDING REMARKS

The equations and procedure for defining a complete compressor blade have been presented in the preceding sections. Specific details of a computer program which incorporates these equations and procedures are given in appendix C. The details include a FORTRAN IV source deck listing of the program, definitions of the program variables,
descriptions of the subroutines, the input format, and an output listing for a sample blade.

Lewis Research Center,

National Aeronautics and Space Administration,
Cleveland, Ohio, June 26, 1969,
720-03-00-64-22.

APPENDIX A

SYMBOLS

A	area of blade section
C	rate of turning, $-\mathrm{d} \kappa / \mathrm{ds}$
$\mathrm{f}\left(\kappa, \kappa_{1}, \zeta, \mathrm{R}, \mathrm{R}_{1}\right)$	function describing relation of $\epsilon-\epsilon_{1}$ to κ and R for given values of $\mathrm{R}_{1}, \kappa_{1}$, and ζ
H	height coordinate for blade section
I	blade section moment of inertia
L	length coordinate for blade section
R	distance from vertex to point on cone
r	radial coordinate in cylindrical system
s	path length along blade-element centerline or surface
a	path length along blade thickness line
t	blade thickness
x	distance from axis of rotation along radial line passing through hubelement stacking point (fig. 8)
y	coordinate perpendicular to z in constant x-plane (fig. 8)
z	axial coordinate from hub-element, leading-edge center
α	cone half-angle (fig. 1)
β	angle of axis of minimum moment of inertia to L-axis (fig. 10)
γ	angle of axis of rotation to L-axis (fig. 10)
δ	circumferential angle coordinate of stacking line
ϵ	angular coordinate on conic surface as measured from ray passing through blade-element, leading-edge center (fig. 1)
ζ	convenient constant on a segment, eq. (7)
η	lean angle of stacking line in $\mathrm{r}-\theta$ plane (fig. 8) (positive in positive θ-direction)
κ	local blade angle, the angle between the local R and the tangent to the local blade-element centerline or surface path (fig. 1)

Subscripts:
c blade centerline
ca center of area
h hub element
i inlet segment or leading edge
j index denoting axial location
m maximum thickness point
\max maximum value
\min minimum value
n normal to blade-element centerline
o outlet segment or trailing edge
p pressure surface
s suction surface
sp stacking point
$t \quad$ transition point between segments of blade
1 arbitrary reference or known value
2 known value
3 known value
Superscript:

- center-of-area coordinate

APPENDIX B

PARTICULAR FORMS OF THE GENERAL EQUATIONS

$$
\text { Solutions of } \mathrm{f}\left(\kappa, \kappa_{1}, \zeta, \mathrm{R}, \mathrm{R}_{\mathrm{l}}\right)
$$

For a line of constant turning rate C on a conical surface, the differentials of the radial and angular coordinates can be expressed as follows:

$$
\begin{equation*}
\mathrm{dR}=-\frac{\cos \kappa}{\mathrm{C}} \mathrm{~d} \kappa \tag{B1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{d} \epsilon=-\frac{\sin \kappa}{\mathrm{RC}} \mathrm{~d} \kappa \tag{B2}
\end{equation*}
$$

Equation (B1) integrates to

$$
\begin{equation*}
\mathrm{R}-\mathrm{R}_{1}=\frac{1}{\mathrm{C}}\left(\sin \kappa_{1}-\sin \kappa\right) \tag{B3}
\end{equation*}
$$

Rear rangement of equation (B3) yields a characteristic constant ζ for a line of constant C

$$
\begin{equation*}
\zeta=R C+\sin \kappa=R_{1} C+\sin \kappa_{1} \tag{B4}
\end{equation*}
$$

By solving equation (B4) for $R C$ and replacing $R C$ in equation (B3), $d \epsilon$ becomes a function of κ

$$
\begin{equation*}
\mathrm{d} \epsilon=\frac{\sin \kappa}{\sin \kappa-\zeta} \mathrm{d} \kappa \tag{B5}
\end{equation*}
$$

However, if $\mathrm{C}=0$, κ is a constant, and equation (B5) is indeterminate. A different equation is required for this special case. For $C=0$ or for constant κ, ϵ is a function of R, and the differential can be expressed as follows:

$$
\begin{equation*}
\mathrm{d} \epsilon=\tan \kappa_{1} \frac{\mathrm{dR}}{\mathrm{R}} \tag{B6}
\end{equation*}
$$

In general, the indefinite integral of $\mathrm{d} \epsilon$ is given by

$$
\begin{equation*}
\epsilon-\epsilon_{1}=f\left(\kappa, \kappa_{1}, \zeta, R, R_{1}\right) \tag{B7}
\end{equation*}
$$

where the function $\mathrm{f}\left(\kappa, \kappa_{1}, \zeta, \mathrm{R}, \mathrm{R}_{1}\right)$ has four different solutions dependent on κ, κ_{1}, and ζ. The forms of the function are as follows:
(1) If $\kappa=\kappa_{1}$ (i.e., $\mathrm{C}=0$),

$$
\begin{equation*}
\mathrm{f}\left(\kappa, \kappa_{1}, \zeta, \mathrm{R}, \mathrm{R}_{1}\right)=\tan \kappa \ln \left(\frac{\mathrm{R}}{\mathrm{R}_{1}}\right) \tag{B8}
\end{equation*}
$$

(2) If $\kappa \neq \kappa_{1}$ and $\zeta^{2}>1$,

$$
\begin{equation*}
\mathrm{f}\left(\kappa, \kappa_{1}, \zeta, \mathrm{R}, \mathrm{R}_{1}\right)=\kappa-\kappa_{1}+\frac{2 \zeta}{\sqrt{\zeta^{2}-1}}\left\{\tan ^{-1}\left[\frac{1-\zeta \tan \left(\frac{\kappa}{2}\right)}{\sqrt{\zeta^{2}-1}}\right]-\tan ^{-1}\left[\frac{1-\zeta \tan \left(\frac{\kappa_{1}}{2}\right)}{\zeta^{2}-1}\right]\right\} \tag{B9}
\end{equation*}
$$

(3) If $\kappa \neq \kappa_{1}$ and $\zeta^{2}<1$,
$\mathrm{f}\left(\kappa, \kappa_{1}, \zeta, \mathrm{R}, \mathrm{R}_{1}\right)=\kappa-\kappa_{1}$

$$
\begin{equation*}
+\frac{\zeta}{\sqrt{1-\zeta^{2}}}\left[\ln \left|\frac{1-\zeta \tan \frac{\kappa}{2}-\sqrt{1-\zeta^{2}}}{1-\zeta \tan \frac{\kappa}{2}+\sqrt{1-\zeta^{2}}}\right|-\ln \left|\frac{1-\zeta \tan \frac{\kappa_{1}}{2}-\sqrt{1-\zeta^{2}}}{1-\zeta \tan \frac{\kappa_{1}}{2}+\sqrt{1-\zeta^{2}}}\right|\right] \tag{B10}
\end{equation*}
$$

(4) If $\kappa \neq \kappa_{1}$ and $\zeta= \pm 1$,

$$
\begin{equation*}
\mathrm{f}\left(\kappa, \kappa_{1}, \zeta, \mathrm{R}, \mathrm{R}_{1}\right)=\kappa-\kappa_{1} \pm\left[\tan \left(\frac{\pi}{4} \pm \frac{\kappa_{1}}{2}\right)-\tan \left(\frac{\pi}{4} \pm \frac{\kappa}{2}\right)\right] \tag{B11}
\end{equation*}
$$

Equations for Inlet Segment of Centerline

The equations for the inlet segment of the centerline are derived from equations (B4) and (B7) with the appropriate constants

$$
\begin{gather*}
\zeta_{i c}=R_{i c} C_{i c}+\sin \kappa_{i c} \tag{B12}\\
\kappa_{c}=\sin ^{-1}\left(\zeta_{i c}-C_{i c} R_{c}\right) \tag{B13}\\
\epsilon_{c}=\epsilon_{i c}+f\left(\kappa_{c}, \kappa_{i c}, \zeta_{i c}, R_{c}, R_{i c}\right) \tag{B14}
\end{gather*}
$$

These equations apply for $R_{c} \leq R_{t c}$. For convenience, the center of the leading edge is used as a reference and, thus, $\epsilon_{i c}=0$.

Equations for Outlet Segment of Centerline

The equations for the outlet segment of the centerline have the same form as those for the inlet segment centerline, but have different C and ζ constants

$$
\begin{gather*}
\zeta_{\mathrm{oc}}=\mathrm{R}_{\mathrm{tc}} \mathrm{C}_{\mathrm{oc}}+\sin \kappa_{\mathrm{tc}} \tag{B15}\\
\kappa_{\mathrm{c}}=\sin ^{-1}\left(\zeta_{\mathrm{oc}}-\mathrm{C}_{\mathrm{oc}} \mathrm{R}_{\mathrm{c}}\right) \tag{B16}\\
\epsilon_{\mathrm{c}}=\epsilon_{\mathrm{tc}}+\mathrm{f}\left(\kappa_{\mathrm{c}}, \kappa_{\mathrm{tc}}, \zeta_{\mathrm{oc}}, \mathrm{R}_{\mathrm{c}}, \mathrm{R}_{\mathrm{tc}}\right) \tag{B17}
\end{gather*}
$$

where $\epsilon_{\text {tc }}$ is evaluated at the end of the inlet segment centerline or centerline transition point by equation (B14). These equations apply for $R_{c}>R_{t c}$.

Surface Coordinates at Ends of Thickness Path

In the R-E coordinate system, a thickness path is described by a line of constant angle κ_{n}, which is perpendicular to the centerline

$$
\begin{equation*}
\kappa_{\mathrm{n}}=\kappa_{\mathrm{c}} \pm \frac{\pi}{2} \tag{B18}
\end{equation*}
$$

In equation (B18), the angle to the suction surface is given by the plus sign, and the angle to the pressure surface is given by the minus sign.

The differential equations for the thickness path in terms of the path direction κ_{n} and the path distance ore

$$
\begin{equation*}
d R=\cos \kappa_{n} d \tag{B19}
\end{equation*}
$$

and

$$
\begin{equation*}
R d \epsilon=\sin \kappa_{\mathrm{n}} \mathrm{~d} d \tag{B20}
\end{equation*}
$$

Integration of equation (B19) gives

$$
\begin{equation*}
R-R_{c}=\delta \cos \kappa_{n} \tag{B21}
\end{equation*}
$$

Substitution of do from equation (B19) into equation (B20) gives

$$
\begin{equation*}
\mathrm{d} \epsilon=\tan \kappa_{\mathrm{n}} \frac{\mathrm{dR}}{\mathrm{R}} \tag{B22}
\end{equation*}
$$

Integration of equation (B22) gives

$$
\begin{equation*}
\epsilon-\epsilon_{\mathrm{c}}=\tan \kappa_{\mathrm{n}} \ln \left(\frac{\mathrm{R}}{\mathrm{R}_{\mathrm{c}}}\right) \tag{B23}
\end{equation*}
$$

However, if $\kappa_{c}=0, \kappa_{n}= \pm \pi / 2$ and $R=R_{c}$, and equation (B23) becomes indeterminate. Since R is a constant for this special case, equation (B20) can be integrated as

$$
\begin{equation*}
\epsilon-\epsilon_{\mathrm{c}}=\frac{\sin \kappa_{\mathrm{n}}}{\mathrm{R}_{\mathrm{c}}} \tag{B24}
\end{equation*}
$$

where $\kappa_{n}= \pm \pi / 2$.
Blade thickness is specified at three locations: the leading edge, the maximum thickness point, and the trailing edge. At these three locations, the suction surface and pressure surface coordinates are calculated by the use of the appropriate thickness value and corresponding blade centerline angle in equations (B21) and either (B23) or (B24).

On the suction surface,

$$
\begin{array}{r}
R_{(i, m, o) s}=R_{(i, m, o) c}-\frac{t_{(i, m, o)}}{2} \sin \kappa_{c} \\
\epsilon_{(i, m, o) s}=\epsilon_{(i, m, o) c}+\cot \kappa_{c} \ln \left[\frac{R_{(i, m, o) c}}{R_{(i, m, o) s}}\right] \tag{B26}
\end{array}
$$

Or, if $\kappa_{c}=0$,

$$
\begin{equation*}
\epsilon_{(i, m, o) p}=\epsilon_{(i, m, o) c}+\frac{t_{(i, m, o)}}{2 R_{(i, m, o) c}} \tag{B27}
\end{equation*}
$$

On the pressure surface,

$$
\begin{gather*}
R_{(i, m, o) p}=R_{(i, m, o) c}+\frac{t_{(i, m, o)}}{2} \sin \kappa_{c} \tag{B28}\\
\epsilon_{(i, m, o) p}=\epsilon_{(i, m, o) c}+\cot \kappa_{c} \ln \left[\frac{R_{(i, m, o) c}}{R_{(i, m, o) p}}\right] \tag{B29}
\end{gather*}
$$

Or, if $\kappa_{c}=0$,

$$
\begin{equation*}
\epsilon_{(i, m, o) s}=\epsilon_{(i, m, o) c}-\frac{t_{(i, m, o)}}{2 R_{(i, m, o) c}} \tag{B30}
\end{equation*}
$$

APPENDIX C

DESCRIPTION OF COMPUTER PROGRAM

The blade coordinate computer program incorporates the equations and calculation procedures presented in this report to compute the cross-section coordinates of a compressor blade composed of multiple-circular-arc elements on conical surfaces. In addition to the coordinates, parameters for stress analysis (such as area, center of area, and moments of inertia) are also computed. The program consists of a main program and several subprograms. It is written in FORTRAN IV. The run time on a directcoupled IBM 7044-7094 system is approximately 0.01 minute per given blade element.

The information in the following sections is intended to aid in the use of the program and in the understanding of its logic. Included are a description of the input, definitions of program variables, descriptions of subprograms, a listing of the program, and a sample output.

Description of Input

The format for the input cards is shown in table I. The first card in a set of data is the title card. It is used to identify the data with alphanumeric information, which is printed out with the output data. The second card is a general card for specification of single-value variables. The definitions of these variables are as follows:
ETA tangential lean angle of stacking line η, in degrees (positive in direction from pressure surface toward suction surface)
LAMDA axial lean angle of stacking line λ, in degrees (positive in direction from inlet toward outlet)
XNR number of blade elements
OP1 number of specified radial locations for desired blade sections (If none are specified (i.e., OP1 $=0.0$), program computes blade sections at radial locations of stacking points for all blade elements.)
OP2 control variable for output of calculated blade-element parameters (angles and turning rates) and coordinates (Blade-element output is printed out if $\mathrm{OP} 2=1.0$.)
TNLMT tolerance limit for blade-element stacking iteration (If the tolerance limit is set too small, the stacking procedure will require an excessive number of iterations and may not converge.)

TABLE I. - INPUT FORMAT FOR COMPUTER PROGRAM

The next set of cards specifies the geometry of the blade elements. As shown in table I for the first variable, RI, data for each variable begins in the first data space on a card and continues in succeeding spaces and cards for a total of XNR spaces. The maximum number of data per variable (i.e., number of blade elements) is 24 . The definitions of the input blade-element variables are given in the main text under the section DEVELOPMENT OF EQUATIONS FOR BLADE-ELEMENT LAYOUT. The correspondence between variable names and variable symbols is as follows:

RI inlet radius, r_{ic}
RO outlet radius, r_{oc}
TI inlet blade thickness, t_{i}
TM maximum blade thickness, t_{m}
TO outlet blade thickness, t_{o}
KIC blade centerline angle at inlet, $\kappa_{\text {ic }}$
KTC blade centerline angle at transition point, $\kappa_{\text {tc }}$
KOC blade centerline angle at outlet, $\kappa_{\text {oc }}$
ZMC axial distance to maximum thickness point from inlet, $\mathrm{z}_{\mathrm{mc}}-\mathrm{z}_{\mathbf{i c}}$
ZTC axial distance to transition point from inlet, $z_{t c}-z_{i c}$
ZOC axial distance to outlet from inlet, $\mathrm{z}_{\mathrm{oc}}-\mathrm{z}_{\mathrm{ic}}$
The last set of cards specifies the radial locations $X Q$ of the desired blade sections. The XQ input begins in the first data space and continues in succeeding spaces for a total of OP1 spaces. The maximum number of blade sections is 24 .

All input data are floating-point numbers. All input angles are in degrees. All variables with length dimensions must have the same unit length. The inlet and outlet radii $r_{i c}$ and $r_{o c}$ of a blade element cannot be identical. A difference in radii of at least 0.1 percent of the axial length of the blade element is recommended.

Main Program Variables and Definitions

The following is a list of program variable names with their corresponding symbols or definitions.

FORTRAN	Mathematical	Definition
variable	symbol	

AREA
A
Area of blade section

FORTRAN
variable

Mathematical symbol

Definition

Cone half-angle
Angle of $I_{\min }$ axis (eq. (65))
Blade centerline, inlet segment constant (eq. (7)
Pressure surface, inlet segment constant (eq. (7))
Suction surface, inlet segment constant (eq. (7))
Blade centerline, outlet segment constant (eq. (7))
Pressure surface, outlet segment constant (eq. (7))
Suction surface, outlet segment constant (eq. (7))
Local blade angle (eq. (23))
Distance from vertex to point on cone (eq. (14))
Suction surface, outlet segment, rate of turning (eq. (15))

Blade centerline, inlet segment, rate of turning
Pressure surface, inlet segment, rate of turning
Suction surface, inlet segment, rate of turning
Blade centerline, outlet segment, rate of turning
Pressure surface, outlet segment, rate of turning
Stacking point radius
Axial coordinate increment
Blade centerline, inlet segment, angular coordinate $(\mathrm{EIC}=0.0)$

Pressure surface, inlet segment, angular coordinate (eq. (11))

Suction surface, inlet segment, angular coordinate
Blade centerline, maximum thickness point, angular coordinate

Pressure surface, maximum thickness point, angular coordinate

FORTRAN
variable

Mathematical
symbol

Definition

ϵ_{ms}

ϵ_{oc}
$\epsilon_{\text {op }}$
$\epsilon_{\text {os }}$
ϵ_{c}
ϵ_{p}
ϵ_{S}
η
ϵ_{tc}
$\epsilon_{\text {tp }}$
ϵ_{ts}
γ
$\overline{\mathrm{H}}$

IHH
IHHCG
ILL
ILLCG
IMAX

IMIN
I_{HH}
$\mathrm{I}_{\mathrm{HHCA}}$
${ }^{\text {I }}$ LL
${ }^{I}$ LLCA
$I_{\text {max }}$
$I_{\text {min }}$

Suction surface, maximum thickness point, angular coordinate

Blade centerline, outlet segment, angular coordinate

Pressure surface, outlet segment, angular coordinate

Suction surface, outlet segment, angular coordinate
Blade centerline, angular coordinate on z cuts
Pressure surface, angular coordinate on z cuts
Suction surface, angular coordinate on z cuts
Lean angle of stacking line in $\mathrm{r}-\theta$ plane
Blade centerline, transition point, angular coordinate

Pressure surface, transition point, angular coordinate

Suction surface, transition point, angular coordinate

Angle of L-axis from axis of rotation (eq. (53))
Blade section, center-of-area coordinate (eq. (58))
Index used to denote blade element
Integers 1, 2, or 3 denoting whether transition is ahead of, equal to, or behind maximum thickness

Blade section moment of inertia (eq. (60))
Blade section moment of inertia (eq. (63))
Blade section moment of inertia (eq. (59))
Blade section moment of inertia (eq. (62))
Blade section, maximum moment of inertia (eq. (67))

Blade section, minimum moment of inertia (eq. (66))

FORTRAN variable	Mathematical symbol	Definition
J	j	Index denoting position in z-direction
K	----	Index denoting position in x -direction
KIC(I)	$\kappa_{\text {ic }}$	Blade centerline, leading-edge, local blade angle
KIP(I)	$\kappa_{\text {ip }}$	Pressure surface, leading-edge, local blade angle
KIS(I)	$\kappa_{\text {is }}$	Suction surface, leading-edge, local blade angle
KM(I)	κ_{m}	Maximum thickness point, local blade angle
KOC(I)	$\kappa_{\text {oc }}$	Blade centerline, trailing-edge, local blade angle
KOP(I)	$\kappa_{\text {op }}$	Pressure surface, trailing-edge, local blade angle
KOS(I)	$\kappa_{\text {os }}$	Suction surface, trailing-edge, local blade angle
KTC(I)	$\kappa_{\text {tc }}$	Blade centerline, transition point, local blade angle
KTP(I)	$\kappa_{\text {tp }}$	Pressure surface, transition point, local blade angle
KTS(I)	$\kappa_{\text {ts }}$	Suction surface, transition point, local blade angle
LAMDA	λ	Lean angle of stacking line in $\mathrm{r}-\mathrm{z}$ plane
NR	----	Number of input radii
NXQ	----	Number of blade sections
NZ	----	Number of z values
OP1	----	Number of blade-section locations specified in input
OP2	----	Control variable for printed output of bladeelement coordinates and parameters
PHL	P_{HL}	Blade section product of inertia (eq. (61))
PHLCG	$\mathrm{P}_{\text {HLCA }}$	Blade section product of inertia (eq. (64))
RCG(I)	$\mathrm{R}_{\text {sp }}$	Stacking point radius
RI(I)	r_{ic}	Blade centerline, leading-edge, radial coordinate
RIC(I)	R_{ic}	Blade centerline, leading-edge radius
$\operatorname{RIP}(\mathrm{I})$	R_{ip}	Pressure surface, leading-edge radius
RIS(I)	$\mathrm{R}_{\text {is }}$	Suction surface, leading-edge radius

FORTRAN variable	Mathematical symbol	Definition
RMC(I)	R_{mc}	Blade centerline, maximum thickness point radius
RMP(I)	R_{mp}	Pressure surface, maximum thickness point radius
RMS(I)	R_{ms}	Suction surface, maximum thickness point radius
$\mathrm{RO}(\mathrm{I})$	r_{oc}	Blade centerline, trailing-edge, radial coordinate
ROC(I)	R_{oc}	Blade centerline, trailing-edge radius
ROP(I)	R_{op}	Pressure surface, trailing-edge radius
ROS(I)	R_{oS}	Suction surface, trailing-edge radius
RTC(I)	$\mathrm{R}_{\text {tc }}$	Blade centerline, transition point radius
RTP(I)	R_{tp}	Pressure surface, transition point radius
RTS(I)	$\mathrm{R}_{\text {ts }}$	Suction surface, transition point radius
$\begin{gathered} \mathrm{T}, \mathrm{~T} 1, \mathrm{~T} 2, \mathrm{~T} 3, \\ \mathrm{~T} 4, \mathrm{~T} 5 \end{gathered}$	----	Temporary storage locations
THECG(I)	$\theta_{\text {sp }}-\theta_{i c}$	Relative stacking point, circumferential angle coordinate
THETA(I)	$\theta_{i c}$	Blade centerline, leading-edge, circumferential angle coordinate
THETAC(I, J)	$\theta_{\text {c }}$	Blade centerline, circumferential angle coordinate
THETAP(I, J)	θ_{p}	Pressure surface, circumferential angle coordinate
THETAS(I, J)	${ }^{\text {S }}$	Suction surface, circumferential angle coordinate
TI(I)	\dot{t}_{i}	Leading-edge blade thickness
TM(I)	${ }^{\text {t }}$ m	Blade thickness at maximum thickness point
TNLMT	----	Blade-element stacking tolerance limit
TNORM1	S	Blade-element stacking tolerance (eq. (99))
TO(I)	t_{0}	Trailing-edge blade thickness
$\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}$	----	Temporary storage locations
$\mathrm{X}(\mathrm{K})$	x	Computed values of x -coordinate for blade sections
XCG(I)	x_{sp}	Stacking point x -coordinates
XHCG	----	Blade section, center-of-area H -coordinate
XHIC	----	Blade section, centerline, leading-edge H-coordinate

FORTRAN variable	Mathematical symbol	Definition
XHIP	----	Blade section, pressure surface, leading-edge Hcoordinate
XHIS	-	Blade section, suction surface, leading-edge H coordinate
XHMC	----	Blade section, centerline, maximum thickness point H-coordinate
XHMP	----	Blade section, pressure surface, maximum thickness point H -coordinate
XHMS	----	Blade section, suction surface, maximum thickness point H -coordinate
XHOC	H_{oc}	Blade section, centerline, trailing-edge H coordinate
XHOP	H_{op}	Blade section, pressure surface, trailing-edge H coordinate
XHOS	H_{OS}	Blade section, suction surface, trailing-edge H coordinate
XHTC	$\mathrm{H}_{\text {tc }}$	Blade section, centerline, transition point $\mathrm{H}-$ coordinate
XHTP	H_{tp}	Blade section, pressure surface, transition point H -coordinate
XHTS	H_{ts}	Blade section, suction surface, transition point H coordinate
XIC(I)	$\mathrm{x}_{\text {ic }}$	Blade centerline, leading-edge x-coordinate
XIP(I)	x_{ip}	Pressure surface, leading-edge x -coordinate
XIS(I)	$\mathrm{x}_{\text {is }}$	Suction surface, leading-edge x -coordinate
XLCG	----	Blade section, center-of-area L-coordinate
XLIC	$\mathrm{L}_{\text {ic }}$	Blade section, centerline, leading-edge Lcoordinate
XLIP	$L_{i p}$	Blade section, pressure surface, leading-edge Lcoordinate

FORTRAN variable	Mathematical symbol	Definition
XLIS	$L_{\text {is }}$	Blade section, suction surface, leading-edge Lcoordinate
XLMC	$L_{\text {mc }}$	Blade section, centerline, maximum thickness point L-coordinate
XLMP	$L_{\text {mp }}$	Blade section, pressure surface, maximum thickness point L-coordinate
XLMS	$L_{\text {ms }}$	Blade section, suction surface, maximum thickness point L-coordinate
XLOC	$L_{\text {oc }}$	Blade section, centerline, trailing-edge Lcoordinate
XLOP	$L_{\text {op }}$	Blade section, pressure surface, trailing-edge Lcoordinate
XLOS	$L_{\text {OS }}$	Blade section, suction surface, trailing-edge Lcoordinate
XLSP	----	Blade section, reference point (hub blade element stacking point) L-coordinate
XLTC	$L_{\text {tc }}$	Blade section, centerline, transition point Lcoordinate
XLTP	$L_{\text {tp }}$	Blade section, pressure surface, transition point L-coordinate
XLTS	$L_{\text {ts }}$	Blade section, suction surface, transition point L-coordinate
XMC(I)	x_{mc}	Blade centerline, maximum thickness point x coordinate
XMP(I)	x_{mp}	Pressure surface, maximum thickness point xcoordinate
XMS(I)	x_{ms}	Suction surface, maximum thickness point x coordinate
XOC(I)	x_{oc}	Blade centerline, trailing-edge x -coordinate
XOP(I)	x_{op}	Pressure surface, trailing-edge x -coordinate
XOS(I)	x_{OS}	Suction surface, trailing-edge x -coordinate

FORTRAN variable	Mathematical symbol	Definition
$\mathrm{XQ}(\mathrm{K})$	----	Input values of x-coordinate for desired blade sections
XP(I, J)	----	Blade pressure surface abscissa
XTC(I)	$\mathrm{x}_{\text {tc }}$	Blade centerline, transition point x -coordinates
XTP(I)	x_{tp}	Pressure surface, transition point x -coordinates
XTS(I)	$\mathrm{x}_{\text {ts }}$	Suction surface, transition point x -coordinates
YIC(I)	$\mathrm{y}_{\text {ic }}$	Blade centerline, leading-edge y-coordinates
YIP(I)	$\mathrm{y}_{\text {ip }}$	Pressure surface, leading-edge y-coordinates
YIS(I)	$\mathrm{y}_{\text {is }}$	Suction surface, leading-edge y-coordinates
YMC(I)	y_{mc}	Blade centerline, maximum thickness point y coordinates
YMP(I)	$y_{\text {mp }}$	Pressure surface, maximum thickness point y coordinates
YMS(I)	y_{ms}	Suction surface, maximum thickness point ycoordinates
YOC(I)	y_{oc}	Blade centerline, trailing-edge y-coordinates
YOP(I)	y_{op}	Pressure surface, trailing-edge y-coordinates
YOS(I)	$\mathrm{y}_{\text {OS }}$	Suction surface, trailing-edge y-coordinates
YP(I, J)	y_{p}	Blade pressure surface y-coordinates
YS(I, J)	y_{S}	Blade suction surface y -coordinates
YTC(I)	$\mathrm{y}_{\text {tc }}$	Blade centerline, transition point y-coordinates
YTP(I)	y_{tp}	Pressure surface, transition point y -coordinates
YTS(I)	$\mathrm{y}_{\text {ts }}$	Suction surface, transition point y-coordinates
YICX(K)	----	Value of y_{ic} at a given blade section
YIPX(K)	----	Value of $y_{i p}$ at a given blade section
YISX(K)	-	Value of $y_{\text {is }}$ at a given blade section
YMCX(K)	----	Value of y_{mc} at a given blade section
YM PX(K)	---	Value of y_{mp} at a given blade section

FORTRAN variable	Mathematical symbol	Definition
YMSX(K)	----	Value of y_{ms} at a given blade section
YOCX(K)	----	Value of y_{oc} at a given blade section
YOPX(K)	----	Value of y_{op} at a given blade section
YOSX(K)	----	Value of $y_{\text {os }}$ at a given blade section
YTCX (K)	----	Value of $y_{t c}$ at a given blade section
YTPX(K)	----	Value of $y_{t p}$ at a given blade section
YTSX (K)	----	Value of $y_{t s}$ at a given blade section
ZCG(I)	$z_{\text {sp }}$	Stacking point axial coordinate
ZIC(I)	$z_{i c}$	Blade centerline, leading-edge z-coordinates
ZIP(I)	z_{ip}	Pressure surface, leading-edge z-coordinates
ZIS(I)	$z_{\text {is }}$	Suction surface, leading-edge z-coordinates
ZMC(I)	z_{mc}	Blade centerline, maximum thickness point zcoordinates
ZMP(I)	z_{mp}	Pressure surface, maximum thickness point zcoordinates
ZMS(I)	z_{ms}	Suction surface, maximum thickness point zcoordinates
ZOC(I)	z_{oc}	Blade centerline, trailing-edge z-coordinates
ZOP(I)	$z_{\text {op }}$	Pressure surface, trailing-edge z-coordinates
ZOS(I)	$z_{\text {os }}$	Suction surface, trailing-edge z-coordinates
ZTC(I)	$z_{\text {tc }}$	Blade centerline, transition point z-coordinates
ZTP(I)	$z_{\text {tp }}$	Pressure surface, transition point z-coordinates
ZTS(I)	$\mathrm{z}_{\text {ts }}$	Suction surface, transition point z-coordinates
ZX(J)	z_{j}	Values of equally spaced z-increments computed to obtain $x-y$ cuts
ZICX(K)	----	Value of $z_{i c}$ at a given blade section
ZIPX(K)	----	Value of $z_{i p}$ at a given blade section
ZISX(K)	----	Value of $z_{i s}$ at a given blade section

FORTRAN variable	Mathematical symbol	Definition
ZMCX(K)	----	Value of z_{mc} at a given blade section
ZMPX(K)	----	Value of z_{mp} at a given blade section
ZMSX(K)	----	Value of z_{ms} at a given blade section
ZOCX (K)	----	Value of $z_{o c}$ at a given blade section
ZOPX(K)	----	Value of $z_{o p}$ at a given blade section
ZOSX (K)	----	Value of $z_{o s}$ at a given blade section
ZTCX(K)	----	Value of $z_{\text {tc }}$ at a given blade section
ZTPX(K)	----	Value of $z_{t p}$ at a given blade section
ZTSX (K)	----	Value of z_{ts} at a given blade section

Description of Subroutines

The subroutines used in this program are listed below along with their call sequence, purpose, and variable definitions.

Subroutine ITER(K2, C, B, K1, E1, R1, E2, R2, XK). - A routine to iteratively solve for the equation of a constant $\mathrm{d} \kappa / \mathrm{ds}$ curve which passes through two known points and at a given slope at one of the points. Refer to equations (7), (11), and (15) for the functional relations.

K2	κ_{2}	Unknown slope at point 2
C	C	Unknown curvature constant
B	ζ	Unknown curve constant
K1	κ_{1}	Known slope at point 1
E1	ϵ_{1}	Angular coordinate of point 1
R1	R_{1}	Radial coordinate of point 1
E2	ϵ_{2}	Angular coordinate of point 2
R2	R_{2}	Radial coordinate of point 2
XK	---	An initial estimate of κ_{2}

Subroutine ITER1(KT, RT, ET, KM, RM, EM, B, C, RTC, ETC, KTC). - A routine to iteratively solve for the $R-\epsilon$ coordinates of the transition point on either the pressure surface or the suction surface. Refer to equations (11), (21) to (23), and (25) for the functional relations.

FORTRAN variable	Mathematical symbol	Definition
KT	$\kappa_{t(p, s)}$	Unknown surface transition point blade angle
RT	$\mathrm{R}_{\mathrm{t}(\mathrm{p}, \mathrm{s})}$	Unknown surface transition point radial coordinate
ET	$\epsilon_{t}(p, s)$	Unknown surface transition point angular coordinate
KM	$\kappa_{m}(p, s)$	Surface maximum thickness point blade angle
RM	$\mathrm{R}_{\mathrm{m}(\mathrm{p}, \mathrm{s})}$	Surface maximum thickness point radial coordinate
EM	$\epsilon_{m}(p, s)$	Surface maximum thickness point angular coordinate
B	$\zeta_{(i, o)(p, s)}$	Surface curve constant
C	$\mathrm{C}_{(i, o)(p, s)}$	Surface curvature constant
RTC	$\mathrm{R}_{\text {tc }}$	Blade centerline, transition point, radial coordinate
ETC	$\epsilon_{\text {tc }}$	Blade centerline, transition point, angular coordinate
KTC	$\kappa_{\text {tc }}$	Blade centerline, transition point, blade angle
Subroutine $\operatorname{SINTP}(\mathrm{Z}, \mathrm{W}, \mathrm{N}, \mathrm{X1}, \mathrm{Y} 2)$. - A routine which uses a second-order Lagrangian		
algorithm for interpolation and a linear extrapolation method. Refer to equations (40) to (43) for the functional relations.		
Z	$\mathrm{x}_{\mathrm{j}}(\mathrm{p}, \mathrm{s})$	Abscissa vector
W	$\mathrm{y}_{\mathrm{j}(\mathrm{p}, \mathrm{s})}$	Corresponding ordinate vector
N	---	Number of points in the given vector
X1	x	Given argument
Y1	${ }^{\mathrm{y}}(\mathrm{p}, \mathrm{s})$	Interpolated ordinate, (i.e., Y1 $=\mathrm{W}(\mathrm{X} 1)$)

Subroutine CGS(YCG, ZCG, YIPX, ZIPX, YISX, ZISX, YPX, YSX, NZ, ZX, YOPX, ZOPX, YOSX, ZOSX). - A routine to calculate the center of area of a blade section.

FORTRAN	Mathematical	Definition
variable	symbol	

| YCG | Value of $y_{c a}$ of the blade section |
| :--- | :--- | :--- |
| ZCG | Value of $z_{c a}$ of the blade section |
| YIPX | Value of $y_{i p}$ of the blade section |
| ZIPX | Value of $z_{i p}$ of the blade section |
| YISX | Value of $y_{i s}$ of the blade section |
| ZISX | Value of $z_{i s}$ of the blade section |
| YPX(J) | Blade pressure surface ordinates of the blade |
| | section |

$\operatorname{YSX}(\mathrm{J})$	y_{S}
NZ	---
ZX(J)	z_{j}
YOPX	---
ZOPX	---
YOSX	---
ZOSX	---

Blade suction surface ordinates of the blade sec-
tion
Number of z stations
Values of z for all z stations
Value of $y_{o p}$ of the blade section
Value of $z_{o p}$ of the blade section
Value of $y_{o S}$ of the blade section
Value of $z_{o s}$ of the blade section

Subroutine $\operatorname{FLX}(A, B)$. - A routine to determine the arcsin of a given value and prevent computation of the arcsin of a value greater than 1.0 or less than -1.0 .

A	---	Given value
B	---	Computed $\arcsin (A)$

Subroutine CGS1(X). - A routine to calculate the center of area, moment of inertia, minimum moment of inertia, and axis of minimum moment of inertia for a blade section in the $\mathrm{L}-\mathrm{H}$ coordinate system.

X	L	Chordwise abscissa
HP	H_{p}	Blade pressure surface ordinate
HS	H_{s}	Blade suction surface ordinate

FORTRAN variable	Mathematical symbol	Definition
N	---	Number of chordwise abscissas
X1	---	Chordwise abscissa
V	---	Blade suction surface ordinate associated with X1
V1	---	Blade pressure surface ordinate associated with X1
V2	---	Temporary storage for function value
V3	---	Temporary storage for integral value
AREA	A	Blade-section area
LBAR	$\overline{\mathrm{L}}$	Center-of-area coordinate
HBAR	$\overline{\mathrm{H}}$	Center-of-area coordinate
IHH	I_{HH}	Moment of inertia about H -axis
ILL	I_{LL}	Moment of inertia about L-axis
PHL	P_{HL}	Product of inertia, $\mathrm{P}_{\mathrm{HL}}=\iint \mathrm{HL} \mathrm{dA}$
Subroutine XMAX(X, XM, N). - A routine which selects the maximum value of a vec-		
X	---	Given vector
XM	---	Maximum value of \mathbf{X}
N	---	Number of points in X
$\text { tor. } \underline{\text { Subroutin }}$	IN(X, XM, N).	routine which selects the minimum value of a vec-
X	-	Given vector
XM	---	Minimum value of X
N	---	Number of points in X
Subroutine NEED(IC, I). - A routine which directs the computation of the curves for		
the pressure and suction surfaces of a blade element.		
IC	-	Integer (1, 2, or 3) denoting whether transition point is at, ahead of, or behind maximum thickness point
I	---	Index corresponding to blade element to be computed

Function $\operatorname{SUBF}(\mathrm{X}, \mathrm{XO}, \mathrm{B}, \mathrm{R}, \mathrm{RO})$. - A subprogram to compute the function $f\left(\kappa, \kappa_{0}, \zeta, R, R_{o}\right)$ as given in appendix B.

FORTRAN	Mathematical	Definition
variable	symbol	

X	κ	Slope of curve at a point
XO	κ_{0}	Slope of curve at a reference point
B	ζ	Curve constant
R	R_{o}	Radial coordinate of point
RO	R_{o}	Radial coordinate of reference point

Subroutine INTGR(L, X1, X2, X3). - A routine to evaluate three definite integrals defined by equations (28), (29), and (30).

L	--	Index denoting blade element
X 1	--	Value of integral $\int_{\epsilon d A}$
X 2	---	Value of integral $\int_{\mathrm{RdA}}^{\mathrm{dA}}$
X 3	--	Value of integral \int_{dA}

Function $\mathrm{ADJ}(\mathrm{D})$. - A subprogram to adjust the increment D to a value not less than D and having a single significant figure of 1,2 , or 5 .

D
Increment
Subroutine RAEP(RP, RS, EP, ES, RC, EC, XKC, TC). - A routine to calculate the conical coordinates of surface points at the ends of a thickness path of a blade element. Refer to equations (16), (19), (21), and (22) for functional relations.

RP	$R_{(i, m, o) p}$	R-coordinate for pressure surface point
RS	$R_{(i, m, o) s}$	R-coordinate for suction surface point
EP	$\epsilon_{(i, m, o) p}$	ϵ-coordinate for pressure surface point
ES	$\epsilon_{(i, m, o) s}$	ϵ-coordinate for suction surface point
RC	$R_{(i, m, o) c}$	R-coordinate for centerline point
EC	$\epsilon_{(i, m, o) c}$	ϵ-coordinate for centerline point
XKC	$\kappa_{(i, m, o) c}$	κ at centerline point
TC	$t_{(i, m, o)}$	Blade thickness

Subroutine FNTGRL(N, DX, FX, SFX). - A Lewis system subroutine to numerically evaluate the integral of a function defined at any number of equally spaced intervals.

FORTRAN	Mathematical	Definition
variable	symbol	

N	---	Number of stations
DX	$d x$	Size of interval
FX	$f(x)$	Values of function at each station
SFX	$\int_{0}^{x_{n}}{ }^{f}(x) d x$	Values of integral

Subroutine $\operatorname{SORTXY}(\mathrm{X}, \mathrm{Y}, \mathrm{N})$. - A Lewis system subroutine to rearrange the N values in the X -array in order of increasing size and move the values of the Y -array to maintain the original pair relations.

\mathbf{X}	--	Independent array
\mathbf{Y}	--	Dependent array
N	---	Number of values

FORTRAN IV Source Deck Listing

C	blade coordinate program for blade with
C	2 PARTS DF DIFFERENT CURVATURE
c	
C	OPI--ENTER OWN \times COORDS
C	OP2---X-Y-Z CONICAL SECTION COORDINATES
	DIMENSION ALP(24), BIC (24), BIP(24), BIS(24), BOC(24), BOP(24), BO
	1S(24). CIC(24), CIP(24), C(S 24) , COC(24), COP(24), CAS(24), DELT
	224), EIP(24), EIS(24), EMC (24), EMP(24), EMS(24), FOC(24), EOP(24)
	3. EOS ${ }^{24)}$, ETC(24), ETP(24), ETS(24), ICASE(24), KIC(24), KIP(24),
	$4 \mathrm{KIS}(24), \mathrm{KM}(24), \mathrm{KOC}(24), \mathrm{KOP}(24), \mathrm{KOS}(24), \mathrm{KTC}(24), \mathrm{KTP}(24), \mathrm{KTS}$
	6, RMS(24), RCC(24), ROP(24), ROS(24), RTC(24), RTP(24), RTS(24), T
	7HECG(24), THETA(24), TI(24), TM(24), TO(24), XCG(24), XIC(24), XIP
	8(24), XIS 24$)$, XMC (24), XMP(24), XMS(24), XOC(24), XOP(24), XOS 24
	9), XTC. 24 , XTP(24), XTS(24), YCG(24), YIC(24), YIP(24), Yis ${ }^{\text {(24), }}$
	\$YMC(24), YMP(24), YMS(24), YOC (24), YOP(24), YOS(24), YTC(24), YTP
	(\$(24), YTS(24), ZCG(24), ZIC(24), ZIP(24), ZIS(24), ZMC(24), ZMP(24
	\$), ZMS(24), ZOC(24), ZOP(24), ZOS(24), ZTC (24), ZTP(24), ZTS(24)
	1). YS 32,24 , THETAC $(32,24), \mathrm{THETAP}(32,24)$, THETAS $\mathbf{3 2 , 2 4)}$
	DIMENSION V(56), V1(56), V2(56), V3(56), V4(56), V5(56)
	DIMENSION $\mathrm{X}(24), \mathrm{XO}$ (24), GAMX(24), TIX(24), TMX(24), TOX(24), YCGX
	1(24). YICX(24), YIPX(24), YISX(24), YMCX(24), YMPX(24), YMSX(24),
	フYOCX(24), YOPX(24), YOSX(24), YTCX(24), YTPX(24), YTSX(24), ZCGX(2)
	34), ZICX(24), ZIPX(24), ZISX(24), ZMCX(24), ZMPX(24), ZMSX(24), Z0

```
4CX(24), 20PX(24), 2OSX(24), ZTCX(24), ZTPX(24), ZTSX(24)
    DIMENSION XL (56), XHP(56), XHS(56)
    DIMENSION RO(24), ZI(24), CRCG(24), TITLE(12)
    DIMENSION TALP(24), SALP(24), CALP(24)
    COMMON ALP,BOC, BIC,BIP,BIS,BOP,BOS,CIP,CIS,COP,CAS,CIC,EIP,EIS,EMC
    L, EMP, EMS, EOC, EOP,EOS,ETC, ETP,ETS,KIC,KIP,KIS,KM,KOC,KOP,KOS,KTC,KT
    2P,KTS,RI, RO,RIC,RIP,RIS,RMC,RMP,RMS,ROC, ROP,ROS,RTC,RTP,RTS,TI,TM,
    3TO,ZMC,ZOC,ZTC,NR,COC
    REAL KIC,KIP,KIS,KM,KOC,KOP,KOS,KTC,KTP,KTS,LAMDA
    REAL LBAR,ILL.IHH,ILLCG,IHHCG,IMIN,IMAX
    COMMON /EXTRA/ XL,XHS,XHP,LOUT,LBAR,HBAR,ILL,IHH,PHL,AREA,ILLCG,IH
    IHCG,PHLCG,BETA,IMIN,IMAX
    DATA. DEGRAD/57. 2958/
    READ (5,43) TITLE
    READ {5,44) ETA,LAMDA, XNR,OP1,OP2,TNLMT
    REWINO 2
    NR=XNR
    RFAD (5,44) (RI(I), I=1,NR)
    READ (5,44) (RO(I),I=1,NR)
    READ (5,44) (TI(I),I=1,NR)
    READ (5,44) (TM(I), I=1,NR)
    RFAD (5,44) (TO(I),I=1,NR)
    READ (5,44) (KIC(I),I=1,NR)
    READ (5,44) (KTC(I),I=1,NR)
    READ (5,44) (KOC(I),I=1,NR)
    READ (5,44) (ZMCII),I=1,NR)
    READ (5,44) (ZTC(I), I=1,NR)
    READ (5,44) (ZOC(I),I=1,NR)
    WRITE (6,45) TITLE
    WRITE (6,46) ETA,LAMDA,OP1,OP2,TNLMT
    DO }2\textrm{I}=1\mathrm{ , NR
    WRITE (6,47) I,RI(I),RO(I),TI(I),TM(I),TO(II,KIC(I),KTC(I),KOC(I),
    1ZMC(I),ZTC(I),ZOC(I)
                            Calc. bF blade element parameters
    ETA=ETA/DEGRAD
    L AMDA=L AMDA/DEGRAD
    DO 3 I=I,NR
    KIC(II=KIC(I)/DEGRAD
    KTC&I)=KTC(I )/DEGRAD
    KDC(I)=KnC(I )/DEGRAD
    FIC=0.0
    DO 4 I=1,NR
    SINKIC=SIN(KTC(I))
    SINKDC=SIN(KOC(II)
    SINKIC=SIN(KIC(I))
    TNALP=(RO(I)-RI(I))/2OC(I)
    TALP{I}=TNALP
    ALP(.I)=ATAN(TNALP)
    CALP|I)=SORT(1./(TALP(I)**2+1.)|
    SALPII)=TALP(I)*CALP(I)
    SNALR=SALP(I)
    CSALR=CALP(I)
    RIC(I)=RI(I)/SNALP
    ROC(I)=RIC(I)+ZOC(I)/CSALP
    RTC(I)=RIC(I)+2TC(I)/C SALP
    RMC(I)=RIC(I)+ZMC(I)/C SALP
    CIC(I)={SINKIC-SINKTC)/(RTC(I)-RIC(I))
    COC(I)=(SINKTC-SINKOC)/(ROC(I)-RTC(I))
    T 1=ZIC(I)
    T2=ZMC(1)
```

```
IF (T1.EQ.T2) ICASE(I)=1
    IF (T1.LT.T2) ICASE(I)=2
    IF (T1.GT.T2) ICASE(I)=3
    CALI RAEP (RIP(I),RIS(I),EIP(I),EISII),RIC(II,EIC,KICII),TI(I)
    BIC(I)=CIC(I)*RTC(I)+SINKTC
    BOC(I)=COC(I)*RTC(I)+SINKTC
    ETC(I)=SUBF(KTC{I),KIC(I),BIC(I),RTC(I),RICII))
    EOC(I)=ETC(I)+SUBF(KOC(I),KTC(I),BOC(I),ROC(I),RTC(I))
    CALL RAEP (RCP(I),ROS(I), EOP(I),EOS(I),ROC(I),EOC(I),KOC(I),TO(I))
```

T5=2IC(I)-RIC(I)*CALP(I)
T6=CALP(I)
$\operatorname{ZIP}(I)=T 5+R I P(I) * T 6$
$2 \operatorname{IS}(1)=T 5+R I S(I) * T 6$
ZTC(I) $=T 5+R T C(I) * T 6$
ZTP(I) $=T 5+R T P(I) * T 6$
ZTS(.I) $=$ T5 + RTS(I)*T6
$Z M C(I)=T 5+R M C(I) * T 6$
2MP(I)=T5+RMP(I)*T6
ZMS(I)=T5+RMS(I)*T6
ZOC(I)=T5+ROC\{(I)*T6

```
    ZOP(I)=T5*ROP(I)*T6
    ZOS(I)=T5*ROS(I)*T6
C
    YCG(I)=RCG(1)*SIN(DELT(II)
    YIC(I)=RI(I)*SIN(T4)
    YIP(I)=RIP(I)*T*SIN(EIP(I)/T+T4)
    YIS(I)=RIS(I)*T*SIN(EIS(I)/T+T4)
    YTC(1)=RTC(I)*T*SIN(ETC(I)/T+T4)
    YTP(I)=RTP(I)*T*SIN(ETP(I)/T+T4)
    YTS(I)=RTS(I}*T*SIN(ETS(I)/T+T4)
    YMP(I)=RMP(I)*T*SIN(EMP(I)/T+T4)
    YMC(I)=RMC(I)*T*SIN(EMC(I)/T+T4)
    YMS(I)=RMS(I)*T*SIN(EMS(I)/T+T4)
    YOC(I)=ROC(I)*T*SIN(EOC(I)/T+T4)
    YOP(I)=ROP(I)*T*SIN{EOP{I)/T+T4)
    YOS(I)=ROS(I)*T*SIN(EOS(I)/T+T4)
    XCG(I)=RCG(I)*COS(OELT(I))
    C
    NX=NR
    nO 7 K=1,NX
    L=NR+1-K
    X(K)=XCG(L)
    DO 8 K=1,NX
    CALL SINTP (XIP,ZIP,NR,X(K),ZIPX(K))
    CALL SINTP (XIS,ZIS,NR,X(K),ZISX(K))
    CALL SINTP (XOP,ZOP,NR,X(K),ZOPX(K))
    CALL SINTP (XOS,ZOS,NR,X(K),ZOSX(K))
    CONTINUE
    CALL XMIN (ZIPX,ZI,NX)
    CALL XMIN (ZISX,Z2,NXI
    ZMIN=AMIN1(Z1.Z2)
    CALL XMAX (ZOSX,ZI,NX)
    CALL XMAX (ZOPX,Z2,NXI
    ZMAX=AMAX1(Z1,Z2)
    DZ=(ZMAX-ZMIN)/30.
    DZ=ADJ(DZ)
    ZX(I)=DZ*(AINT(ZMIN/DZ)-1.)
    DO 9 I=2,32
    ZX(1)=ZX(I-1)+DZ
    IF (IX(I).GT.ZMAX) GO TO 10
    NZ=I
lo
C
DO 17 J=1,NZ
    DO 17 I=1.NR
    T=SALP{I}
    T2=TALP(I)
    RZ=RII(I)+(ZX(J)-ZIC(I))*T2
    C APRZ=RIC(I)+1ZX(J)-ZIC(I)|/CALP(I)
    IF (EAPRZ.GT.RTC(I)) GO TO 11
    SNCP=BIC(I)-CIC(I)*CAPRZ
    CALL FIX (SNCP,CAPPA)
    EPC=SUBF(CAPPA,KIC(I).BIC(I),CAPRZ,RIC(I))
    GOTQ 12
    SNCP*BOC(I)-COC(I)*CAPRZ
    CALL FIX (SNCP,CAPPA)
    EPC=ETCII)+SURF(CAPPA,KTCII),BOC(I),CAPRZ,RTCII|)
    IF (CAPRZ.GT.RTP(I)) GO TO 13
    SNCP=BIP(I)-CIP{I|*CAPRZ
    CALL FIX (SNCP,CAPPA)
```

```
    EPP=EIP(I)+SUBF(CAPPA,KIP(I),BIP(I),CAPRZ,RIP(I))
    GO TR }1
```

 SNCP=BOP (I)-COP\{1)*CAPRZ
 CALL FIX (SNCP, CAPPA)
 \(E P P=\operatorname{ETP}(1)+S U B F(C A P P A, K T P(I), B U P(I), C A P R Z, R T P(I))\)
 IF (CAPRZ.GT.RTS(1)) GO TO 15
 SNCP=BIS(I)-CIS(I)*CAPRZ
 CALL FIX (SNCP, CAPPA)
 EPS=EIS(I)+SUBF(CAPPA,KIS(I),BIS(I),CAPRZ,RIS(I))
 GO TO 16
 SNCP=BOS(I)-CAS(I)*CAPRZ
 CALL FIX (SNCP, CAPPA)
 EPS=ETS(I) +SUBF(CAPPA,KTS(I),BOS(I),CAPRZ,RTS(I))
 THETAC(J, I)=THETA(I)+EPC/T
 THETAP \((J, I)=T H E T A(I)+E P P / T\)
 THETAS \((J, I)=\) THETA(I) +FPS \(/ T\)
 XP(J,I)=RZ*CCS(THETAP(J,I)-THECGD)
 XS(J.I)=RZ*COS(THETAS(J.I)-THECGO)
 YP(3, I) \(=\) RZ*SIN(THETAP(J,I)-THECGO)
 YS(J,I)=RZ*SIN(THETAS(J,I)-THECGO)
 CONTINUE
 CALC. OF BLADE SECTION COORDINATES THRU BLADE ELEMENT
 STACKING POINTS
 DO \(20 \mathrm{~K}=1, \mathrm{NX}\)
 DO \(19 \mathrm{~J}=1, \mathrm{NZ}\)
 DO \(18 \mathrm{I}=1\), NR
 \(V(I)=X P(J, I)\)
 V11I)=YP(J,I)
 V2(I)=xS(J.I)
 V3(I)=YS(J.I)
 CALL SINTP \((V, V I, N R, X(K), Y P X(J))\)
 CALL SINTP (V2,V3,NR, \(X(K), Y S X(J))\)
 WRITE (2) (YSX(J), \(J=1, N Z),(Y P X(J), J=1, N Z)\)
 CALL SINTP (ZX,YSX,NZ,ZISX(K),YISX(K))
 CALL SINTP (ZX,YSX,NZ, ZOSX(K), YOSX(K))
 CALL SINTP (ZX,YPX,NZ,ZIPX(K),YIPX(K))
 CALL SINTP (ZX,YPX,NZ, ZOPX(K), YOPX(K))
 CONTINUE
 REWIND 2
 TNORMI=0.
 DO \(21 \mathrm{~K}=1\), NX
 READ (2) (YSX(J),J=1,NZ), (YPX(J),J=1,NZ)
 CALL CGS (YCEX(K),ZCGX(K),YIPX(K),ZIPX(K),YISX(K),ZISX(K),YPX,YSX,
 1NZ, ZX, YOPX(K), ZOPX(K), YOSX(K), ZOSX(K))
 CALC. OF DIFFERENCES BETWEEN BLADE ELEMENT STACKING
 POINTS AND BLADE SECTION CENTERS OF AREA
 DO \(22 \mathrm{I}=1\), NR
 CALL SINTP (X,ZCGX,NX,XCGII),ZCGR)
 CALL SINTP (\(X, Y C G X, N X, X C G(I), Y C G R)\)
 DRCG=(ZCGR-ZCG(I))*TALP(I)
 \(X C G R=S Q R T((R C G(I)+D R C G) * * 2-Y C G R * * 2)\)
 CALL SINTP (X,ZCGX,NX,XCGR,ZCGR)
 CALL SINTP (\(X\), YCGX,NX, XCGR,YCGR)
 DRCG=(ZCGR-ZCG(I))*TALP(I)
    ```
    XCGR=SORT((RCG(I)+DRCG)**2-YCGR**2)
    V(I)=7.CGR
    V1(In=YCGR
    V2(I)=XCGR
    TNORM1=TNORM1+ABS(ZCGR-ZCG(I))+ABS(YCGR-YCG(I))
    WRITE (6,48) TNORM1, (THECG(I),I=1,NR)
    WRITE (6,49) (CRCG(I),I=1,NR)
    IF (INORMI.LT.TNLMT) GO TO }2
        REALINEMENT OF BLADE ELEMENTS
    DO 23 I=1,NR
    THECG(I)=THECG(I)-DELT(I)+ATAN(VIII)/V2(I))
    CRCG(I)=RIC(I)+(V(I)-ZIC(I))/CALP(I)
    RCG(I)=SQRT(V1(I)**2+V2(1)**2)
    REWIND 2
    GO T.O }
    REWIND 2
    IF (OP2.EO.O.) GO TO 27
                                    PRINT DUT BLADE ELEMENT PARAMETERS AND CODRDINATES
    DO 25 I=I,NR
    KIC(I)=KIC(I )*DEGRAD
    KIP(I)=KIP(I)*DEGRAD
    KISIII=KIS(I)*DEGRAD
    KM(I)=KM(I)*CEGRAD
    KTC(1)=KTC(1)*DEGRAD
    KTP(I)=KTP(I)*DEGRAD
    KTS(1)=KTS(1)*DEGRAD
    KOC(I)=KOC(I)*DEGRAD
    KOP(I)=KOP(I)*DEGRAD
    KOS(I)=KOS(I)*DEGRAD
    ALP(I)=ALP(I)*DEGRAD
        WRITE (6,50) (I,ALP(1),KM(I),KIC(1),KTC(I),KOC(I),KIP(I),KIP(I),KO
    1P(I),KIS(I),KTS(I),KOS(I),I=1,NR)
        WRITE (6,51)(I,CIC(I),COC(I),CIP(I),COP(I),CIS(I),CAS(I),I=1,NR)
        WRITE (6.52)
        DO 26 J=1,NZ
    WRITE (6,53) ZX(J),(I,YS(J,I),XS(J,I),YP(J,I),KP(J,I),I=1,NR)
        WRITE (6,54)
        WRITE (6,55) (I,YISII),XIS(I),ZIS(I),YIP(I),XIP(I),ZIP(I),YIC(I),X
    IIC(IA,ZIC(I),I=1,NR)
    WRITE (6,56)
    WRITF(6,55)(I,YMS(I),XMSII),ZMS(I),YMP(I),XMP{I),ZMP(I),YMC(I),X
    IMC(I),ZMC(I),I=1,NR)
        WRITE (S,57)
        WRITE (6,55) (I,YTS(I),XTS(I),ZTS(I),YTP(I),XTPII),ZTP{I),YTC(I),X
    ITC(IJ,ZTC(I),I=1,NR)
        WRITE (6,58)
        WRITE (6,55) (I,YOS(I), XOS(I),ZOS(I),YOP(I),XOP(I),ZOP(I),YOC(I),X
    10C(I),ZOC(I),I=1,NR)
    CONTINUE
    IF (OP1.EQ.O.) GO TO 28
                        READ IN X-YalueS for blade sections
    NXQ=OP 1
    RFAD (5,44) (XQ(K),K=1,NXQ)
    GO TD 30
                                    blade SECTION X-VAluES at blade elemENT STACKING pOINTS
    NXO=NX
        DO 2.9 K=1,NXC
    XO(K.\=X(K)
    GO IO 34
                                    CALG. OF UNROTATED BLADE SECTION COORDINATES
    DO 3.3 K=1.NXO
```

```
    DO 32 J=1,NZ
    DO 31 I=1,NR
    V(I)=XP(J,I)
    V1(L)=YP(J,I)
    V2(1)=XS(J,I)
    V3(I)=YS(J,I)
    CALL SINTP (V,VI,NR,XO(K),YPX(J))
    CALL SINTP (VZ,V3,NR,XQ(K),YSX(J))
    CALL. SINTP (XIP,ZIP,NR,XQ(K),ZIPX(K))
    CALL SINTP (XIS,ZIS,NR,XO(K),ZISX(K))
    CALL SINTP (XOP,ZOP,NR,XO(K),ZOPX(K))
    CALL SINTP (XOS,ZOS,NR,XQ(K),ZOSX(K))
    CALL SINTP (ZX,YSX,NZ,ZISX(K),YISX(K))
    CALL SINTP {ZX,YSX,NZ,ZOSX(K),YOSX(K)}
    CALL SINTP (ZX,YPX,NZ,ZIPX(K),YIPX(K))
    CALL SINTP (ZX,YPX,NZ,ZOPX(K),YOPX(K))
    WRITE (2) (YSX(J),J=1,NZ),(YPX(J),J=1,NZ)
    CONTINUE
    REWIND 2
    C
    ZICX(K)=.5*(ZISX(K)+ZIPX(K))
    CALL SINTP (XMC,ZMC,NR,XQ(K),ZMCX(K))
    CALL SINTP (XMP,ZMP,NR,XQ(K),ZMPX(K))
    CALL SINTP (XMS,ZMS,NR,XO(K),ZMSX(K))
    ZOCXAK)=.5*(ZOSX(K)+ZOPX(K))
    CALL. SINTP (XTC,ZTC,NR,XO(K),ZTCX(K))
    CALL SINTP (XTP,ZTP,NR,XQ(K),ZTPX(K))
    CALL SINTP {XTS,ZTS,NR,XQ(K),ZTSX(K)|
    YICX(K)=, 5* (YISX(K)+YIPX(K))
    CALL SINTP (XMC,YMC,NR,XO(K),YMCX(K))
    READ (2) (YSX(J),J=1,NZ),(YPX(J),J=1,NZ)
    CALL SINTP (ZX,YPX,NZ,ZMPX(K),YMPX(K))
    CALL SINTP (ZX,YSX,NZ,ZMSX(K),YMSX(K))
    YOCX(K)=.5*(YOSX(K)+YOPX(K))
    CALL SINTP (XTC,YIC,NR,XO(K),YTCX(K))
    CALL SINTP (ZX,YPX,NZ,ZTPX(K),YTPX(K))
    CALL SINTP (ZX,YSX,NZ,ZTSX(K),YTSX(K))
    TIX(K)=SORT((ZISX(K)-ZIPX(K))**2+(YISX(K)-YIPX(K))**2)
    TOX(K)=SORT((ZOSX(K)-ZOPX(K))**2+(YOSX(K)-YOPX(K))**2)
    CALL.SINTP (XMC,TM,NR,XO{K),TMX(K))
    CALL SINTP (XCG,YCG,NR,XQ(K),YCGX(K))
    CALL SINTP (XCG,ZCG,NR,XQ(K),ZCGX(K))
    CONTINUE
    REWIND 2
                    PRINT QUT UNROTATED BLADE SECTION COORDINATES
    DO 36 K=1,NXO
    WRITE (6,59) XO(K),ZICX(K),ZMCX(K),ZTCX(K),ZOCX(K),ZIPX(K),ZMPX(K)
    1, ZTPX(K),ZOPX(K),ZISX(K),ZMSX(K),ZTSX(K),ZOSX(K),ZCEX(K),YICX(K),Y
    2MCX(K),YTCXIK),YOCX(K),YIPX(K),YMPX(K),YTPX(K),YOPX(K),YISX(K),YMS
    3X(K)&YTSX(K),YOSX(K),YCGX(K),TIX(K),TMX(K),TOX(K)
    READ (2) (YSX(J),J=1,NZ),(YPX(J),J=1,NZ)
    DO 36 Jx1,NZ
    WRITE (6,60) ZX(J),YPX(J),YSX(J)
    REWIND 2
                    CALC. OF ROTATED BLADE SECTION COORDINATES
    DO 42 K=1,NXO
    READ (2) (YSX(J),J=1,NZ),(YPX(J),J=1,NZ)
    T1=2OCX(K)-ZICX(K)
    T2=.5*(TOX(K)-TIX(K))
    T 3=YOCX(K)-YICX(K)
```

```
SGX=1-T1*T2+T3*SORT(T1**2+T3**2-T2**2)I/(T1**2+T3**2)
GX=ARSIN(SGX)
CGX=COS(GX)
GAMX(K)=DEGRAD*GX
Tz=TIX(K)/2.
DO 3A J=1,NZ
T=ZX(J)-ZICX(K)
V1(J)={YSX(J)-YICX(K))*CGX-T*SGX+T2
V2(J)=(YPX(J)-YICX(K))*CGX-T*SGX+T2
V3(J)={YSX(J)-YICX(K))*SGX+T*CGX+T2
V4(J)=(YPX(J)-VICX(K))*SGX+T*CGX+T2
XHICFT2
X HOC=TOX(K)/2.
T 3=YICX(K)
T4=ZICX(K)
XHMC=(YMCX(K)-T3)*CGX-(ZMCX(K)-T4)*SGX+T2
XHTC=(YTCX(K)-Y3)*CGX-(ZTCX{K)-T4)*SGX+T2
XHIP=(YIPX(K)-T3)*CGX-{ZIPX(K)-T4)*SGX+T2
XHMP=(YMPX(K)-T3)*CGX-(ZMPX(K)-T4)*SGX+T2
XHOP=(YOPX(K)-T3)*CGX-(ZOPX(K)-T4)*SGX+T2
XHTP禾(YTPX(K)-T3)*CGX-(ZTPX(K)-T4)*SGX+T2
XHIS=(YISX(K)-T3)*CGX-(ZISX(K)-T4)*SGX+T2
XHMS=(YMSX(K)-T 3)*CGX-(ZMSX(K)-T4)*SGX+T2
XHOS=(YOSX(K)-T 3)*CGX-(ZOSX(K)-T4)*SGX+T2
XHTS=(YTSX(K)-T 3)*CGX-(ZTSX(K)-T4)*SGX+T2
XHSP=(YCG(NR)-T3)*CGX-(ZCG(NR)-T4)*SGX+T2
XHC.G=(YCGX(K)-T 3)*CGX-(ZCGX(K)-T4)*SGX+T2
XIIC=T?
XLMCF(YMCX(K)-T3)*SGX+(2MCX(K)-T4)*CGX+T2
XLOC=(YOCX(K)-T3)*SGX+(20CX(K)-T4)*CGX+T2
X&TC=(YTCX(K)-T3)*SGX+(ZTCX(K)-T4)*CGX+T2
XLIP=(YIPX(K)-T3)*SGX+(ZIPX(K)-T4)*CGX+T2
XLMP=(YMPX(K)-T3)*SGX+(ZMPX(K)-T4)*CGX+T2
XLOP=(YOPX(K)-T3)*SGX+(ZOPX(K)-T4)*CGX+T2
XLTP=(YTPX(K)-T 3)*SGX+(TTPX(K)-T4)*CGX+T2
XLIS=(YISX(K)-T3)*SGX+(ZISX(K)-T4)*CGX+T2
XLMS=(YMSX(K)-T3)*SGX+(ZMSX(K)-T4)*CGX+T2
XLOS=(YOSX(K)-T3)*SGX+(ZOSX(K)-T4)*CGX+T2
XLTS=(YTSX(K)-T3)*SGX+(ZTSX(K)-T4)*CGX+T2
XLSP=(YCG(NR)-T3)*SGX+(ZCG(NR)-T4)*CGX+T2
XLCG=(YCGX(K)-T3)*SGX+(ZCGX(K)-T4)*CGX+T2
XL(1)=0.
DL=XLOC/53.
DL=ADJ(DL)
x+S(i)=xHIC
XHP(1)=XHS(1)
XL(2)=XLIC
XL(3)=DL
DO 38 J=4.55
LOUT=J
XLIJ:=XL(J-1)+DL
IF (XL(J).GE.XLOC) GO TO }3
LOUT:=LOUT +1
XL(LOUT-1)=XLOC
XL(LOUT)=XLOC+XHOC
XHS(LOUT) = XHOC
XHP(LOUT) =XHS(LOUT)
JM=LOUT-1
DO 40 J=2, JM
```

C

```
            CALL SINTP (V3,V1,NZ,XL{J),XHS(J))
                    CALL. SINTP (V4,V2,NZ,XL(J),XHP(J))
C
    CALL CGSI
    BETA=BETA*DEGRAD
                PRINT OUT ROTATED BLADE SECTION COORDINATES
        WRITE (6,61) XQ(K),GAMX(K),TIX(K),XLSP,LBAR,AREA,IMIN,ILLCG,PHLCG,
        IILL,PHL,TMX(K),TOX(K),XHSP,HBAR,BETA,IMAX,IHHCG,IHH,XLIC,XLMC,XLTC
        2, XLOC, XLIP, XLMP,XLTP, XLOP, XLIS, XLMS,XLTS,XLOS,XLCG,XHIC, XHMC, XHTC,
        3X HOC, XHIP, XHMP, XHTP, XHOP, XHIS, XHMS,XHTS,XHOS,XHCG
        DO 41 J=1.LOUT
        WRITE (6,60) XL(J), XHP(J),XHS(J)
        CONTINUE
        GO TO 1
        C
C
4 3
4 4
4 5
46
FORMAT (12A6)
FORMAT (8F10.5)
FORMAT (1H1//12A6)
FORMAT (1HK/30X,34HINPUT FOR BLADE COOROINATE PROGRAM//34X,3HETA, 7 \(1 \mathrm{X}, 5 \mathrm{HLAMDA}, 5 \mathrm{X}, 3 \mathrm{HOP} 1,7 \mathrm{X}, 3 \mathrm{HOP} 2,7 \mathrm{X}, 5 \mathrm{HTNLMT} / 29 \mathrm{X}, 5 \mathrm{~F} 10.5 / / 1 \mathrm{X}, 7 \mathrm{HELEMENT}, 4 \mathrm{X}\) 2, \(2 H R I, 9 X, 2 H R C, 9 X, 2 H T I, 9 X, 2 H T M, 9 X, 2 H T O, 9 X, 3 H K I C, 8 X, 3 H K T C, 8 X, 3 H K O C, 8\) \(3 X, 3 H Z M C, 8 X, 3 H Z T C, 8 X, 3 H Z O C I\)
FORMAT ( 3 X, I2, \(2 \mathrm{X}, 1 \mathrm{IF} 11.5\) )
FORMAT ( \(1 \mathrm{HJ} / 43 \mathrm{H}\) BLADE ELEMENT STACKING PARAMETER--TNORMI \(=\), G10.3// 16H THECG/8G16.7/8G16.7/8G16.71
FORMAT (1HJ/5H CRCG/8G16.7/8G16.7/8G16.7)
FORMAT / \(1 H 1 / / 20 \mathrm{X}, 20 \mathrm{HBLADE}\) ELEMENT ANGLES//1X,7HELEMENT, \(4 \mathrm{X}, 3 \mathrm{HALP}, 8 \mathrm{X}\) 1. \(2 H K M, 9 X, 3 H K I C, 8 X, 3 H K T C, 8 X, 3 H K O C, 8 X, 3 H K I P, 8 X, 3 H K T P, 8 X, 3 H K O P, 8 X, 3 H K\) \(21 S, 8 \mathrm{~K}, 3 \mathrm{HKTS}, 8 \mathrm{X}, 3 \mathrm{HKOS} /(3 \mathrm{X}, \mathrm{I} 2,2 \mathrm{X}, 11 \mathrm{~F} 11.5) \mathrm{S}\)
FORMAT !1HK, 20X,24HBLADE ELEMENT CURVATURES//1X,7HELEMENT,4X,3HCIC 1, \(8 \mathrm{X}, 3 \mathrm{HCOC}, 8 \mathrm{X}, 3 \mathrm{HCIP}, 8 \mathrm{X}, 3 \mathrm{HCOP}, 8 \mathrm{X}, 3 \mathrm{HCIS}, 8 \mathrm{X}, 3 \mathrm{HCAS} /(3 \mathrm{X}, \mathrm{I}, 2 \mathrm{X}, 6 \mathrm{~F} 11.5) \mathrm{I}\)
FORMAT ( \(1 \mathrm{H} 1 / / 20 \mathrm{X}, 25 \mathrm{HBLADE}\) ELEMENT CODRDINATES)
FORMAT ( \(1 \mathrm{HL} / 30 \mathrm{X}, 3 \mathrm{HZ}=, F 10.5, / / 20 \mathrm{X}, 7 \mathrm{HELEMENT}, 15 \mathrm{X}, 2 \mathrm{HYS}, 12 \mathrm{X}, 2 \mathrm{HXS}, 28 \mathrm{X}\), 12HYP, 12X, 2HXP/(22X,I2,10X,2F14.5,16X,2F14.5))
FORMAT (1HL/IX, 7HELEMENT, \(9 \mathrm{X}, 3 \mathrm{HYIS}, 9 \mathrm{X}, 3 \mathrm{HXIS}, 9 \mathrm{X}, 3 \mathrm{HZIS}, 13 \mathrm{X}, 3 \mathrm{HY} I \mathrm{P}, 9 \mathrm{X}, 3\) 1HXIP, \(9 \mathrm{X}, 3 \mathrm{HZIP}, 13 \mathrm{X}, 3 \mathrm{HYIC,9X,3HXIC,9X,3HZIC)}\)
FORMAT \((3 X, I 2,6 X, 3 F 12.4,4 X, 3 F 12.4,4 X, 3 F 12.4)\)
FORMAT \(11 H L / 1 X, 7 H E L E M E N T, 9 X, 3 H Y M S, 9 X, 3 H X M S, 9 X, 3 H Z M S, 13 X, 3 H Y M P, 9 X, 3\) 1HXMP, \(9 \mathrm{X}, 3 \mathrm{HZMP} 13 \mathrm{X},, 3 \mathrm{HYMC}, 9 \mathrm{X}, 3 \mathrm{HXMC}, 9 \mathrm{X}, 3 \mathrm{HZMCI}\)
FORMAT \((1 H L / 1 X, 7 H E L E M E N T, 9 X, 3 H Y T S, 9 X, 3 H X T S, 9 X, 3 H Z T S, 13 X, 3 H Y T P, 9 X, 3\) 1HXTP, \(9 \mathrm{X}, 3 \mathrm{HZTP}, 13 \mathrm{X}, 3 \mathrm{HYTC}, 9 \mathrm{X}, 3 \mathrm{HXTC}, 9 \mathrm{X}, 3 \mathrm{HZTC}\)
FORMAT (1HL/1X,7HELEMENT, \(9 \mathrm{X}, 3 \mathrm{HYOS}, 9 \mathrm{X}, 3 \mathrm{HXOS}, 9 \mathrm{X}, 3 \mathrm{HZOS}, 13 \mathrm{X}, 3 \mathrm{HYOP}, 9 \mathrm{X}, 3\) 1HXOP. \(9 \mathrm{X}, 3 \mathrm{HZOP}, 13 \mathrm{X}, 3 \mathrm{HYOC}, 9 \mathrm{X}, 3 \mathrm{HXOC}, 9 \mathrm{X}, 3 \mathrm{HZOC}\)
FORMAT ( \(1 H 1 / 40 X, 44\) HBLADE SECTION COORDINATES (UNROTATED) AT \(X=, F 9\) 1. \(4 / 5 \mathrm{X}, 3 \mathrm{HZIC}, 7 \mathrm{X}, 3 \mathrm{HZMC}, 7 \mathrm{X}, 3 \mathrm{HZTC}, 7 \mathrm{X}, 3 \mathrm{HZOC}, 7 \mathrm{X}, 3 \mathrm{HZIP}, 7 \mathrm{X}, 3 \mathrm{HZMP}, 7 \mathrm{X}, 3 \mathrm{HZTP}\), \(27 X, 3 H Z O P, 7 X, 3 H Z I S, 7 X, 3 H Z M S, 7 X, 3 H Z T S, 7 X, 3 H Z O S, 7 X, 3 H Z C G / 13 F 10,4 / 5 X, 3\) 3HYIC. \(7 \mathrm{X}, 3 \mathrm{HYMC,7X,3HYTC,7X,3HYOC,7X,3HYIP,7X,3HYMP,7X,3HYTP,7X,3HYO}\) 4P, 7X, 3HYIS, \(7 \mathrm{X}, 3 \mathrm{HYMS}, 7 \mathrm{X}, 3 \mathrm{HYTS}, 7 \mathrm{X}, 3 \mathrm{HYOS}, 7 \mathrm{X}, 3 \mathrm{HYCG} / 13 \mathrm{~F} 10.4 / 5 \mathrm{X}, 2 \mathrm{HT} \mathrm{I}, 8 \mathrm{X}\), \(52 \mathrm{HTM}, 8 \mathrm{X}, 2 \mathrm{HTO} / 3 \mathrm{~F} 10.4 / 44 \mathrm{X}, 1 \mathrm{HZ}, 9 \mathrm{X}, 2 \mathrm{HYP}, 8 \mathrm{X}, 2 \mathrm{HYS})\)
FORMAT (39X, 3F 10.4 )
FORMAT ( \(1 \mathrm{HI} / 40 \mathrm{X}, 42 \mathrm{HBLADE}\) SECTION COORDINATES (ROTATED) AI \(X=, F 9.4\) I/ 5X, 5HGAMMA, \(5 \mathrm{X}, 2 \mathrm{HTI}, 8 \mathrm{X}, 5 \mathrm{HL}(\mathrm{SP}), 5 \mathrm{X}, 5 \mathrm{HL}-\mathrm{BAR}, 5 \mathrm{X}, 4 \mathrm{HAREA}, 8 \mathrm{X}, 4 \mathrm{HIMIN}, 8 \mathrm{X}, 5\) 2HIILCG, \(7 \mathrm{X}, 5 \mathrm{HPHLCG}, 7 \mathrm{X}, 5 \mathrm{HI}\) (LLI, \(7 \mathrm{X}, 3 \mathrm{HPHL/4F10.4,2X,6G12.4/5X,2HTM,8X}\), 32HTO, \(8 \mathrm{X}, 5 \mathrm{HH}(\mathrm{SP}), 5 \mathrm{X}, 5 \mathrm{HH}-\mathrm{BAR}, 5 \mathrm{X}, 4 \mathrm{HBETA}, 8 \mathrm{X}, 4 \mathrm{HI}\) MAX, \(8 \mathrm{X}, 5 \mathrm{HIHHCG}, 19 \mathrm{X}, 5 \mathrm{HII}\)
```



``` 6. 5HLAMS), \(5 \mathrm{X}, 5 \mathrm{HL}(\mathrm{TS}), 5 \mathrm{X}, 5 \mathrm{HL}(0 \mathrm{~S}), 5 \mathrm{X}, 5 \mathrm{HL}(\mathrm{CG}) / 13 \mathrm{~F} 10,4 / 5 \mathrm{X}, 5 \mathrm{HH}(1 \mathrm{C}), 5 \mathrm{X}, 5 \mathrm{H}\) 7H(MC), \(5 \mathrm{X}, 5 \mathrm{HH}(T \mathrm{C}), 5 \mathrm{X}, 5 \mathrm{HH}(\mathrm{OC}), 5 \mathrm{X}, 5 \mathrm{HH}(I P), 5 \mathrm{X}, 5 \mathrm{HH}(\mathrm{MP}), 5 \mathrm{X}, 5 \mathrm{HH}(\mathrm{TP}), 5 \mathrm{X}, 5 \mathrm{H}\) \(8 \mathrm{H}(\cap \mathrm{P} . \mathrm{J}, 5 \mathrm{X}, 5 \mathrm{HH}(\mathrm{IS}), 5 \mathrm{X}, 5 \mathrm{HH}(\mathrm{MS}), 5 \mathrm{X}, 5 \mathrm{HH}(\mathrm{TS}), 5 \mathrm{X}, 5 \mathrm{HH}(0 \mathrm{~S}), 5 \mathrm{X}, 5 \mathrm{HH}(\mathrm{CG}) / 13 \mathrm{~F} 10\) 9. \(4 / 44 \mathrm{X}, 1 \mathrm{HL}, 9 \mathrm{X}\), ? \(\mathrm{HHP}, 8 \mathrm{X}, 2 \mathrm{HHS}\) )
END
```

```
    SUBROUTINE ITER (K2,C,B,KL,EL,R1,E2,R2,XK)
```

 REAL K1,K2
 Z=E2-E1
 K 2 = XK
 \(1 \mathrm{GO}=1\)
 IT=0
 \(D K=.1\)
 $G=(S I N(K 1)-\operatorname{SIN}(K 2)) /(R 2-R 1)$
B=C*21+S1N(K1)
$F=2-S U B F(K 2, K 1, B, R 2, R 1)$
IT $T=I T+1$
IF (建T.GE. 10) 1G0=3
GOTO (2,3,6), 1G0
$T K=K, 2$
$T F=F$
$K 2=T K+D K$
$160=2$
GO TO 1
IF (F*TF.LE.O.O) GO TO 5
IF (ABS(F).GT.ABS(TF)) GO TO 4
$T K=K 2$
$T F=F$
$K 2=T K+O K$
GO T0 1
$D K=-D K$
$K 2=T K+D K$
GOTB 1
IF (ABS(R2*F).LT..0001) IGO=3
DK $=T F * D K /(T F-F)$
$K 2=T K+D K$
60 TO 1
RETURN
END
SUBRDUTINE ITERI (KT,RT,ET,KM,RM,EM,B,C,KTC,RTC,ETC)
REAL, KM,KT,KTC
I GO=1
IT $=0$
RT=RTC
SNKTESIN(KM) +C* (RM-RT)
C. ALL. FIX (SNKT, KT)
$E T=E M+S U B F(K T, K M, B, R T, R M)$
RTC $2=$ RT/EXP (TAN(KTC)*(ETC-ETI)
$F=R T C-R T C 2$
$I T=I T+1$
IF (IT.GE. 10) IGO=3
GO TG $(2,3,6)$, IGO
R2=R.I
F2=F
DEL=F
RT $=$ RT+DEL

```
    G0 Ta l
```

```
    IF (E*F2.LE.0.0) GO T0 5
    IF (ABSIF).GT.ABS(F2)) GO TO 4
    R 2=RT
    F2=F
    RT=RJ+DEL
    GO Tg 1
    DEL=mDEL
    RT=R2+DEL
    60 TG 1
    IF (ABS(F2).LT..0001) IGO=3
    DEL = E2*DEL/( F2-F)
    RT=R2+DEL
    GO TA 1
    RETURN
    END
```

```
    SUBROUTINE SINTP (Z,W,N,XI,YI)
```

 SUBROUTINE SINTP (Z,W,N,XI,YI)
 DIMENSION X(56), Y(56), Z(56), H(56)
 DIMENSION X(56), Y(56), Z(56), H(56)
 DO 1 I= 1,N
 DO 1 I= 1,N
 X(1)=2:I!
 X(1)=2:I!
 YAI)mW(I)
 YAI)mW(I)
 CALL SORTXY (X,Y,N)
 CALL SORTXY (X,Y,N)
 K=1
 K=1
 DO 2, 1=1,N
 DO 2, 1=1,N
 IF (XI.GT.X(II) GO T0 2
 IF (XI.GT.X(II) GO T0 2
 IF (M1.EQ.X(I)IGO T0 3
 IF (M1.EQ.X(I)IGO T0 3
 IF(XI-LT'X(I)) GO TO 4
 IF(XI-LT'X(I)) GO TO 4
 K=I +i
 K=I +i
 G0 TO4
 G0 TO4
 Y l=Y{K)
 Y l=Y{K)
 RETURN
 RETURN
 IF (K.EO.1) GO TO 5
 IF (K.EO.1) GO TO 5
 IF (G.GT.N) GO TO 6
 IF (G.GT.N) GO TO 6
 IF (K.EO.N) K=N-1
 IF (K.EO.N) K=N-1
 W1=GX1-X(K))*{X1-X(K+1))/{X(K-1)-x(K))/(X(K-1)-x(K+1))
 W1=GX1-X(K))*{X1-X(K+1))/{X(K-1)-x(K))/(X(K-1)-x(K+1))
 H2=(X1-X(K-1))*(X1-X(K+1))/(X(K)-X(K-1))/{X(K)-X(K+1))
 H2=(X1-X(K-1))*(X1-X(K+1))/(X(K)-X(K-1))/{X(K)-X(K+1))
 H3=({1-X(K-1))*(X1-X(K))/(X{K+1)-X(K-1))/(X{K+1)-X(K))
 H3=({1-X(K-1))*(X1-X(K))/(X{K+1)-X(K-1))/(X{K+1)-X(K))
 Y1=Y{K-1)*W1+Y(K)*W2+Y(K+1)*W3
 Y1=Y{K-1)*W1+Y(K)*W2+Y(K+1)*W3
 RETURA
 RETURA
 J=1
 J=1
 1=2
 1=2
 G0 TH 7
 G0 TH 7
 L=N-A
 L=N-A
 L=N
 L=N
 Y{=Y{J)+(X1-X(J))*{Y(L)-Y(J))/(X(L)-X(J))
 Y{=Y{J)+(X1-X(J))*{Y(L)-Y(J))/(X(L)-X(J))
 RETUGN
 RETUGN
 END
    ```
    END
```

 \(160=2\)
    ```
        SUBR@UTINE CGS IYCG,ZCG,YIPX,ZIPX,YISX,ZISX,YPX,YSX,NZ,ZX,YOPX,ZOP
        1X,YOSX, ZOSXI
```

$6 \quad D Z=(2 M A X-Z M I N) / 50$.
DYI=YISX-YIPX DZI=ZISX-ZIPX D $20=$ Z0S $X-20 P X$ O YO=YOS $X-Y O P X$

TIR=DYI**2+DZI**2
T02=BYO**2*DZO**2
TIX=SQRTITI2)
TOX=SQRT(TO2)
SINBI=-DZI/TIX
S INBD=-DZO/TOX $\cos B L=D Y I / T I X$ COSBA=DYO/TOX
$K Z 1=2$
IF(BZI.GE.O.O) KZI=1
GO TO (1.2),KZI
ZMINFZIPX
ZMINZ=ZISX
GO TO 3
ZMIN=ZISX
ZMINZ=ZIPX
$K 20=2$
IF (DZO.GE.0.0) KZO=1
G0 TO $(4,5), K Z 0$
ZMAXIFZOSX
2 MAX $2=20 P X$
GO T0 6
ZMAX=2OPX
2 MAX2 $=205 x$
$Z=Z M, I N$
DO 1.4 $I=1,51$
IF (Z.GE.ZMINZ) GO TO 9
GO TO (7, 8), KZ I
$Y S=Y I P X+(Z-Z I P X) * D Y I / D Z I$
CALL SINTP (ZX,YPX,NZ, Z,YP)
GO TH 13
$Y P=Y . I S X+(Z-Z 1 S X) * D Y I / D Z I$

```
    DIMENSION V(51), V1(51), V2(51),V3(51), YPX(50), YSX(50), 2X(50)
```

```
    CALL SINTP (ZX,YSX,NZ,Z,YS)
    G0 TO 13
    IF (2.GT.ZMAXZ) GO TD 10
    CALL SINTP ( ZX,YSX,NZ,Z,YS)
    CALL SINTP (ZX,YPX,NZ,Z,YP)
    GO Ta }1
    G0 Ta (11,12),K20
    YP=YapX+(Z-ZOPX)*OYO/0ZO
    CALL SINTP (ZX,YSX,NZ,Z,YS)
    GO TB 13
    YS=Y@SX+(Z-20SX)*DYO/DZO
    CALL SINTP (ZX,YPX,NZ,Z,YP)
C
    13 V(I)|YS-YP
    V1(I)=.5*(YS+YP)*V{I)
    V2(I)=Z*V(I)
    Z=Z+10Z
    PIRAD=3.1415927
C
    T=PIRAD/8.0
    AI=TA2*T
    AO=T02*T
C
C
    YBI=(YISX+YIPX)/2.-T*TIX*SINBI
    YBO=(YOSX+YOPX)/2.+T*TOX*SINBO
    ZBI=AZ1SX+ZIPXI/2.-TIX*COSBI*T
    Z RO=4 20SX+20PX)/2.+T*TOX*COSBO
C
    CALL FNTGRL (51,0Z,V,V3)
    A=V3151)+AI+AO
    CALL FNTGRL (51,DZ,V1,V3)
    YCG=(V3(51)+YBI*AI+YBO*AO)/A
    CALL FNTGRL (51,DZ,V2,V3)
    ZCG={V3(51)+ZBI*AI+ZBO*AO)/A
C
RETURN
END
```

```
SUBROUTINE FIX {A,B)
```

SUBROUTINE FIX {A,B)
IF LABS(A).LT.1.) GO TO I
IF LABS(A).LT.1.) GO TO I
T=1.
T=1.
IF CA.LT.O.)T=-1.
IF CA.LT.O.)T=-1.
B=T*\&.570795
B=T*\&.570795
RETURN
RETURN
B=ARSIN(A)
B=ARSIN(A)
RETURN
RETURN
END

```
END
```

```
    SUBROUTINE CGSI
    DIMENSION X(56), HS(56), HP(56), V(56), V1(56), V2(56),V3(56), X1
    1(56)
    LOMMON /EXTRA/ X,HS,HP,N,LBAR,HBAR,ILL,IHH,PHL,AREA,ILLCG,IHHCG,PH
    IL CG, BETA, IMIN, IMAX
    REAL LBAR,ILL.IHH,ILLCG,IHHCG,IMIN,IMAX
    DX=X,NN//49.
    X1114=0.
    D0 1 I=1,50
    CALL SINTP (X,HS,N,XI(II,VIII)
    CALL SINTP (X,HP,N,X1{I),VI(I))
    X1(I+1)=X1(I)+DX
    DO 2, I=1,50
    V2(L)=V(I)-V1(I)
    CALL FNTGRL (50,DX,V2,V3).
    AREA=V3(50)
    DO 3. I= 1.50
    V2(I.)=V21I)**I(I)
    CALL FNTGRL (50,DX,V2,V3)
    LEARFV3(50)/AREA
    00 4 I=1.50
    V2(I.|=V2(I)**1(I)
    CALL FNTGRL (50,DX,V2,V3)
    I HH=V3(50)
    DO 5I I=1,50
    V2(I.d=V(1)**2-V1(1)**2
    CALL FNTGRL (50,DX,V2,V3)
    HBAR =V 3(50)/2./AREA
    DO 6 I =1,50
    V2(L)=V2(I)*X1(I)
    CALL. FNTGRL (50,DX,V2,V3)
    PHL=Y3(50)/2.
    DO }7\textrm{I}=1,5
    V2(I)=V(I)**3-V1(I)**3
    CALL FNTGRL (50,DX,V2,V3)
    ILL=V3(50)/3.
    IHHCG=IHH-AREA*LBAR**2
    ILLCG=ILL - AREA*HBAR**2
    PHLCG=PHL - AREA*HBAR *LBAR
    BFTAFATAN(2.*PHLCG/(IHHCG-ILLCG))
    IMIN#(ILLCG+1HHCG)/2.+(ILLCG-IHHCG)/2.*COS(BETA)-PHLCG*SIN(BETA)
    I MAX=(ILLCG+IHHCG)-IMIN
    BETAま8ETA/2.
    RETURN
    END
```

 SUBRDUTINE XMAX \((X, X M, N)\)
 DIMENSION X(100)
 \(X M=X(1)\)
 DO \(11=2\).N
 IF (X(I).LT.XM) GO TO 1
 \(X M=X(1)\)
 CONTINUE
 RETURN
 END
    ```
SUBRQUTINE XMIN (X,XM,N)
DIMENSION X(100)
XM=X(1)
DO 1 I=2,N
IF (XII).GT.XM) GO TO I
XM=X{(I)
CONTINUE
RETURN
ENO
```

SUBROUTINE NEED (IC.I)
DIMEASION ALP(24), BOC(24), BIC(24), BIP(24), BIS(24), BOP(24), BO 1S(24), CIS(24), COP(24), CAS(24), CIC(24), EIP(24), EIS(24), EMC(2 24), EMP(24), EMS(24), EOC(24), EOP(24), EOS(24), ETC(24), ETP(24), 3 ETSA24), KIC(24), KIP(24), KIS(24), KM(24), KOC(24), KOP(24), KOS 4(24). KTC(24), KTP(24), KTS(24), RI(24), RO(24), RIC(24), RIP(24), 5 RISA24), RMC(24), RMP(24), RMS(24), ROC(24), ROP(24), ROS(24), RT 6C(24), RTP(24), RTS(24), TI(24), TM(24), TO(24), ZMC(24), ZOC(24). 7 2TC\&24), COC(24), CIP(24)
COMMDN ALP, EOC, BIC, BIP, BIS, BOP, BOS,CIP,CIS, COP, CAS,CIC,EIP, EIS, EMC 1. EMP, EMS, EOC ,EOP, EOS, ETC, ETP, ETS,KIC, KIP, KIS, KM, KOC, KOP, KOS, KTC, KT 2P, KT,, RI, RO, RIC,RIP,RIS,RMC,RMP,RMS,ROC, ROP,ROS,RTC,RTP,RTS, TI,TM, 3TD, ZMC, ZOC, ZTC, NR, COC
REAL KIC, KIP, KIS,KM, KOC, KOP, KOS, KTC, KTP ,KTS, LAMDA
CALC OF BLADE ELEMENT SURFACE PARAMETERS
GO TO (1,2.3), IC
TRANSITION AT MAX, THICKNESS
KM(1)=KTC(1)
EMC(I)=ETC(I)
CALL RAEP (RMP(1),RMS(I), EMP(I), EMS(I), RMC(I), EMC(I),KM(I),TM(I))
$K T P(I)=K T C(I)$
KTS(I)=KTC(I)
ETP(H)=EMP(I)
ETS (I) =EMS(I)
RTP(I)=RMP\{I)
RTS(I) x RMS(I)
CALL ITER (KIP(I),CIP(I),BIP(I),KTP(I),ETP(I),RTP(I),EIP(I),RIP(I) 1, KICAI)
CALL ITER (KISII),CIS\{I), BISII),KTSII),ETS(I),RTS(I), EIS(I),RIS(I) 1,KIC(I))
CALL ITER (KOP(I), COP(I), BOP(I), KTPII), ETP(I),RTP(I), EOP(I),ROP(I) 1.KOCIIJ)

CALL ITER (KOS(I),CAS(I), BOS(I),KTS(I), ETS(I),RTS(I), EOS(I),ROS(I) 1, KOCA1)
RETURN
transition ahead of max. thickness
SINKM=BOC (I)-COC(I)*RMC(I)
KMI IA=ARS IN(SINKM)
EMC(I)=ETC(I)+SUBF(KM(I), KTC(I), BOC(I),RMC(I),RTC(I))
CALI RAEP (RMP (I), RMSII), EMP (I), EMS(I), RMC (I), EMC(I),KM(I), TM(I))
CALL ITER (KOP(I),COP(I), BOP(I), KM(I), EMP(I), RMP(I), EOP(I), ROP(I), 1KOC(1)
CALL ITER (KOSIII,CAS(I), BOS(I),KM(I),EMS(I),RMS(I), EOS(I),ROS(I).

1KDC(1)
CALL ITERI (KTP(I),RTP(I), ETP(I),KM(I),RMP(I), EMP(I),BDP(I),COP(I) 1.KTC(I),RTC(I),ETC(I))

CALL ITERI (KTS(I),RTSII), ETS(I), KM(I), RMS(I), EMS(I), BOS(I), CAS(I) 1, KTCAII,RTC(I), ETC(I)
CALL ITER (KIP(I),CIP(I), BIP(I),KTP(I),ETP(I),RTP(I),EIP(I),RIP(I) 1, KIGA1) CALL ITER (KISII),CIS(I),BISII),KTSIII,ETSII),RTS(I),EIS(I),RIS(I) 1. KIC(I) RETURN

TRANSITION BEHIND MAX. THICKNESS
SINKM=BIC(II-CIC(I)*RMC(I)
KMI I I=ARSIN(SINKM)
EMC(I)=ETC(I)+SUBF(KM(I), KTC(I), BIC(I),RMC(I),RTC(I))
CALL RAEP (RMP\{I),RMS(I), EMP(I), EMS(I),RMC(I), EMC(I),KM(I),TM(I)) CALL. ITER (KIP(I),CIP\{I),BIP(I),KMII),EMP(I),RMP(I),EIP(I),RIP(I),
1KIC(1))
CALL ITER (KIS(I),CIS(I), BIS(I),KM(I),EMS(I),RMS(I),EIS(I),RIS(I), 1KIC(I)
CALL ITERI (KTP\{I),RTP(I), ETP(I),KM(I),RMP(I), EMP(I), BIP(II,CIP(I) 1,KTC(I),RTC(I),ETC(I))
CALL ITERI (KTSII),RTS(I), ETS(I), KM(I), RMS(I), EMS(I), BIS(I),CIS(I)
1, KTC\&I),RTC(I),ETC(I))
CALL ITER (KOP(I), COP(I), BOP(I), KTP(I), ETP(I), RTP(I),EOP(I),ROP(I)
1, KOC(I) CALL ITER (KOS(I),CAS(I), BOS(I),KTS(I), ETS(I),RTSII),EOS(I),ROS(I) 1, KOC\&I) RETURN END

```
    FUNCTION SUBF (X,XO,B,R,RO)
```

 IF (X.EO.XO) GO TO 3
 B 2 \(=B * B\)
 IF (B2.LT.1.) GO TO 1
 IF (B2.GT.1.) GO TO 2
 \(T=1\) 。
 IF (B.EQ.-1.01 T=-1.
 \(T 1=.7854+T * \times / 2\).
 T \(2=.7854+T * \times 0 / 2\).
 SUBF \(=(X-X O)-T *(T A N(T 1)-T A N(T 2))\)
 RETURN
 \(\mathrm{T}=\mathrm{TAN}(\mathrm{X} / 2.1\)
 T1=TAN(XO/2.)
 T \(2=\operatorname{SQRT}(1 .-82)\)
 SUBF\# \((X-X 0)+B / T 2 *(A L O G(A B S I(-B * T+1 .-T 2) /(-B * T+1 .+T 2)))-A L O G(A B S(1-\)
 $18 * T 1+1 .-T 2) /(-B * T 1+1 .+T 2)\})$
RETURN
$T=T A N \& x / 2.1$
$\mathrm{T} 1=\mathrm{TAN}(\times 0 / 2$.
T 2xSORT(B2-1.)
SUBF=2.*B/T2*(ATAN($(-B * T+1.) / T 2)-A T A N((-B * T 1+1.1 / T 2))+(X-X O)$
RETURN
SUBF=TAN(X)*ALOG(R/RO)
RETURN
END

```
    SUBROUTINE INTGR (L,X1,X2,X3)
    DIMENSION ALP{24), BOC(24), BIC(24), BIP(24), BIS(24), BOP(24), BO
    1S(244, CIS(24), COP(24), CAS(24), CIC(24), EIP(24), EIS(24), EMC(2
    24). EMP(24), EMS(24), EOC(24), EOP(24), EOS(24), ETC(24), ETP(24),
    3 ETSI24), KIC(24), KIP(24), KIS(24), KM(24), KOC(24), KOP(24), KOS
    4(24). KTC(24), KTP(24), KTS(24), RI(24), RO(24), RIC(24), RIP(24),
    5 RIS(24), RMC(24), RMP(24), RMS(24), ROC(24), ROP(24), ROS(24), RT
    6C(244, RTP(24), RTS(24), TI(24), TM(24), TO(24), ZMC(24), ZOC(24).
    7. 2TC(24), COC(24), CIP(24)
    COMMON ALP, BOC,BIC,BIP,BIS,BOP,BOS,CIP,CIS,COP,CAS,CIC,EIP,EIS,EMC
    1. EMP, EMS, EOC, EOP,EOS,ETC,ETP,ETS,KIC,KIP,KIS,KM,KOC,KOP, KOS,KTC,KT
    2P,KTS,RI,RO,RIC,RIP,RIS,RMC,RMP,RMS,ROC,ROP,ROS,RTC,RTP,RTS,TI,TM,
    3TO, 2MC,ZOC,ZTC,NR,COC
    REAL KIC,KIP,KIS,KM,KOC,KOP,KOS,KTC,KTP,KTS,LAMDA
    DIMENSION F1(101), F2(101), F3(101), V(101)
    RMAX=ROC(L)
    RMINWRIC(L)
    DR=(RMAX-RMIN)/100.
    R=RMIN
    SNKLS=SIN(KTS(L))
    SNK TR=SIN\KTP(L))
    IF (R.GE.RTP(L)) GO TO 3
    SNKP=BIP(L)-R*CIP(L)
    XKP=ARSIN(SNKP)
    EMIN=ETP(L)+SUBF(XKP,KTP(L),BIP(L),R,RTP(L))
    GO TG 4
    SNKP=BOP(LI-R*COP(L)
    XKP=ARSIN(SNKP)
    EMIN=ETP{L}+SUBF{XKP,KTP(L),BOP(L),R,RTP(L))
    F3(I)=(EMAX-EMIN)*R
    F2(1)=R*F3(1)
    F1(1I=.5*(EMAX+EMIN)*F3(II)
    R=R+DR
    CALL FNTGRL (101,DR,F1,V)
    X1=VR1011
    CALL FNTGRL (101,DR,F2,V)
<2=V&1011
```

```
    IF (R.GE.RTS(L)| GO TO 1
    SNKS:BIS(L)-R*CIS(L)
    XKS=ARSIN(SNKS)
    EMAX;ETS(L)+SUBF(XKS,KTS(L),BIS(L),R,RTS(LI)
    GO TO 2
    SNKS*BOS(L)-R*CAS(L)
    XKS=ARSIN(SNKS)
    EMAX=ETS(L)+SUBF(XKS,KTS(L),BOS{L),R,RTS{LI)
```

CALL,FNTGRL (101,DR,F3,V)
X 3xv(101)
RETURN
ENB

FUNCIITON ADJ (D)
$A=1.0$
A FA/io.
$D=D * 10.0$
GOTO 1
IF CD.LE. 10.01 GO TO 3
$A=A * 10.0$
$D=0 / 20.0$
60102
IF (1.0.LT.D.AND.D.LE.2.0) ADJ=2.0*A
IF (2.0.LT.D.AND.D.LE.5.0) $A D J=5.0 * A$
IF (E.O.LT.D.AND.D.LE. 10.0) ADJ=10.0*A
RETURN
END

SUBRDUTINE RAEP (RP,RS,EP,ES,RC,EC,XKC,TC)
IF (XKC.EQ.O.O1 GO TO 1
$V=T C / 2 . * S I N(X K C)$
$R P=R C+V$
RS=RC-V
$V=\operatorname{COTAN}(X K C)$
$E P=E C+V * A L O G(R C / R P)$
$E S=E C+V * A L O G(R C / R S)$
RETURN
$R P=R C$
R $S=R C$
$V=T C / 2 \cdot / R C$
$E P=E C-V$
$E S=E C+V$
RETURN
END

| INPUT FOR BLADE COORDINATE PROGRAM | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | $\begin{gathered} \text { ETA } \\ -1.00000 \end{gathered}$ | | $\begin{array}{r} \text { LAMDA } \\ 1.00000 \end{array}$ | $\begin{array}{cc} 0 P 1 & 0 \\ 5.00000 & 1.0 \end{array}$ | $\begin{array}{lr} \text { P2 } & \text { TNLMT } \\ 0000 & 0.00010 \end{array}$ | | | | | 200 |
| ELEMFNT | R I | Ro | | TI | TM | T0 | KIC | KTC | KOC | ZMC | 275 | |
| 1 | 20.00000 | 19.00000 | | 0.10000 | 0.10000 | 0.10000 | 0. | 0. | 0. | 1.70000 | 1.00000 | 2.00000 |
| $?$ | 18.00000 | 17.80000 | | 0.10000 | 0.10000 | 0.10000 | 8.50000 | 0 . | -8.50000 | 1.00000 | 1.00000 | 2.00000 |
| 3 | 15.00000 | 15.01000 | | 0.10000 | 0.10000 | 0.10000 | 24.00000 | 0. | -24.00000 | 1.00000 | 1.00000 | 2.00000 |
| 4 | 12.00000 | 13.00000 | | 0.10000 | 0.10000 | 0.10000 | 37.00000 | 0. | -37.00000 | 1.00000 | 1.00000 | 2.00000 |
| 5 | 10.00000 | 12.00000 | | 0.10000 | 0.10000 | 0.10000 | 45.00000 | 0. | -45.00000 | 1.00000 | 1.00000 | 2.00000 |
| BLADF ELEMENT STACKING PARAMETER--TNORMI $=0.287 \mathrm{E}-01$ | | | | | | | | | | | | |
| THECG | | | | | | | | | | | | |
| 0 | | C. 2764833 E | 02 | 0.9418 | 329F-02 0 | $0.2063697 \mathrm{E}-01$ | 0.38657 | E-01 | | | | |
| CRCG | | | | | | | | | | | | |
| -43.60 | 5685 - | -179.89311 | | 3001.0 | 398 | 27.955353 | 15.5705 | | | | | |
| GLADE FLFMENT STACKING PARAMETFR--TNORMI $=0 .-116 \mathrm{~F}-02$ | | | | | | | | | | | | |
| THECG | | | | | | | | | | | | |
| 0.297 | 1571F-04 | 0.2676411 E | -02 | 0.9004 | 142F-02 | $0.1988389 E-01$ | 0.38243 | F-01 | | | | |
| CRCG | | | | | | | | | | | | |
| -43.60 | 4660 - | -179.89522 | | 3001.0 | 386 | 27.954099 | 15.5690 | | | | | |
| BLADE FLEMENT STACKINS PARAMETER--TNORMI $=0.106 \mathrm{E}-03$ | | | | | | | | | | | | |
| THECG | | | | | | | | | | | | |
| 0.226 | 0716F-04 | 0.2676398 E | -02 | 0.9004 | 064E-02 | $0.1984415 \mathrm{E}-01$ | 0.38232 | E-01 | | | | |
| CRCG | | | | | | | | | | | | |
| -43.60 | 4774 - | -179.89527 | | 3001.0 | 386 | 27.95400? | 15.5688 | | | | | |
| BLADE ELFMENT STACKING PARAMETER--TNORMI $=0.407 \mathrm{E}-04$ | | | | | | | | | | | | |
| THECG | | | | | | | | | | | | |
| 0.726 | $718 \mathrm{BF}-04$ | C. 2676431 E | -02 | 0. 9004 | 018E-02 | $0.1983933 E-01$ | 0.38231 | F-01 | | | | |
| CRCG | | | | | | | | | | | | |
| -43.604 | 4771 | -179.89527 | | 3001.0 | 386 | 27.953982 | 15.5688 | | | | | |
| | blade element angles | | | | | | | | | | | |
| FLEMFNT | ALP | KM | | KIC | KTC | KOC | KIP | KTP | KOP | KTS | KTS | |
| 1 | -26.56506 | 60. | | 0. | 0. | 0. | -0.12886 | 0. | -0.13253 | 0.12886 | 0. | 0.13253 |
| 2 | -5.71060 | 0 0. | | 8.50000 | 0. | -8.50000 | 8.46652 | 0. | -8.53109 | 8.53185 | 0. | -8.46941 |
| 3 | 0. 28648 | 30. | | 24.00000 | 0. | -24.00000 | 23.99986 | 0. | -24.00399 | 23.99423 | 0. | -24.00585 |
| 4 | 26.56506 | 6 0. | | 37.00000 | 0. | -37.00000 | 37.20314 | 0. | -36.80192 | 36.80208 | 0. | -37.19270 |
| 5 | 45.00002 | 2 O. | | 45.00000 | 0. | -45.00000 | 45.36453 | 0 . | -44.65568 | 44.64394 | 0. | -45.33531 |

BLADE ELEMENT CURVATURES

| FLFMENT | CIIC | COC | CIP | COP | CIS | CAS |
| :---: | :--- | :--- | :---: | :---: | :---: | ---: |
| 1 | 0. | 0. | -0.00201 | 0.00207 | 0.00201 | -0.00207 |
| 2 | 0.14708 | 0.14708 | 0.14759 | 0.14870 | 0.14655 | 0.14548 |
| 3 | 0.40674 | 0.40674 | 0.41517 | 0.41525 | 0.39853 | 0.39873 |
| 4 | 0.53828 | 0.53828 | 0.55577 | 0.55063 | 0.52177 | 0.52651 |
| 5 | 0.50000 | 0.50000 | 0.51607 | 0.50973 | 0.48476 | 0.49065 |

blade element codrdinates

| | $Z=-0.00000$ | |
| :---: | :---: | :---: |
| ELEMENT | YS | XS |
| 1 | -0.10329 | 20.07893 |
| 2 | -0.13970 | 18.01263 |
| 3 | | -0.18675 |
| 4 | -0.22718 | 14.99844 |
| 5 | | -0.31272 |

| | $Z=0.10000$ | |
| :---: | :---: | :---: |
| ELEMENT | YS | XS |
| 1 | -0.10276 | 20.02893 |
| 2 | -0.12341 | 18.00274 |
| 3 | -0.14173 | 14.99943 |
| 4 | | -0.14975 |
| 5 | | |
| | | |

$Y P$
-0.20261
-0.22456
-0.25078
-0.27015
-0.32172

YP
-0.20236
-0.20236
-0.20965
-0.20891
-0.19779
-0.21232

XP
19.97817 19.97817 17.99195 14.99914
12.08232 10.19779
$z=0.40000$

| ELEMENT | YS | XS |
| :---: | :---: | :---: |
| 1 | -0.10131 | 19.87893 |
| 2 | -0.08375 | 17.97297 |
| 3 | -0.03630 | 15.00155 |
| 4 | 0.02258 | 12.18392 |
| 5 | 0.06156 | 10.39982 |

| $Y P$ | $X P$ |
| :---: | :---: |
| -0.20177 | 19.87817 |
| -0.18444 | 17.97222 |
| -0.14035 | 15.00094 |
| -0.08436 | 12.18365 |
| -0.04582 | 10.39990 |

$z=0.50000$
FLEMENT
1
2
3
4
5

| YS | XS |
| :---: | :---: |
| -0.10088 | 19.82893 |
| -0.07357 | 17.96302 |
| -0.01033 | 15.00209 |
| 0.06314 | 12.23378 |
| 0.12006 | 10.49931 |

| $Y P$ | $X P$ |
| :---: | :---: |
| -0.20144 | 19.82817 |
| -0.17413 | 17.96232 |
| -0.11323 | 15.00167 |
| -0.04121 | 12.23387 |
| 0.01608 | 10.49999 |

$z=0.60000$
FLEMENT
1
2
3
4
5

| YS | XS |
| :---: | :---: |
| -0.10047 | 19.77894 |
| -0.06489 | 17.95305 |
| 0.01128 | 15.00259 |
| 0.09625 | 12.28356 |
| 0.16732 | 10.59868 |

| $Y P$ | $X P$ |
| :---: | :---: |
| -0.20109 | 19.77817 |
| -0.16533 | 17.95241 |
| -0.09066 | 15.00232 |
| -0.00617 | 12.28394 |
| 0.06570 | 10.59980 |

ELEMENT
1
2
3
4
5

Y -0. 1000 -0.05770 0.02869 0.12228 0.20405 9.72894 17.94307 15.00307 12.33334 12.33334
10.69805 -0.20070
-0.15804
-0.07250 0.02120 XP 19.72817 17.94247 15.00292 15.00292 12.33392
10.69950

YP -0.20031
-0.15226
-0.05866
0.04125 0.13126

| $z=0.90000$ | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| element | | ys | $\times 5$ | Yp | xp |
| 1 | | -0.09939 | 19.62894 | -0.19988 | 19.62817 |
| 2 | | -0.04781 | 17.92310 | -0.14797 | 17.92256 |
| 3 | | 0.05119 | 15.00401 | -0.04905 | 15.00402 |
| 4 | | 0.15402 | 12.43299 | 0.05418 | 12.43382 |
| 5 | | 0.24752 | 10.89719 | 0.14814 | 10.89899 |
| $z=1.00000$ | | | | | |
| element | | Ys | $\times \mathrm{S}$ | Yp | XP |
| 1 | | -0.09909 | 19.57894 | -0.19942 | 19.57818 |
| 2 | | -0.04510 | 17.91311 | -0.14518 | 17.91258 |
| 3 | | 0.05640 | 15.00449 | -0.04363 | 15.00453 |
| 4 | | 0.16002 | 12.48292 | 0.06013 | 12.48380 |
| 5 | | 0.25468 | 10.99705 | 0.15469 | 10.99891 |
| $z=1.10000$ | | | | | |
| ELEMENT | | Ys | XS | Yp | XP |
| 1 | | -0.09881 | 19.52894 | -0.19894 | 19.52818 |
| 2 | | -0.04386 | 17.90311 | -0.14388 | 17.90259 |
| 3 | | 0.05762 | 15.00499 | -0.04239 | 15.00504 |
| 4 | | 0.15948 | 12.53293 | 0.05914 | 12.53380 |
| 5 | | 0.25207 | 11.09714 | 0.15098 | 11.09897 |
| $z=1.20000$ | | | | | |
| ELEMENT | | YS | $\times \mathrm{S}$ | Yp | XP |
| 1 | | -0.09854 | 19.47894 | -0.19844 | 19.47818 |
| 2 | | -0.04411 | 17.89311 | -0.14408 | 17.89259 |
| 3 | | 0.05484 | 15.00550 | -0.04528 | 15.00553 |
| 4 | | 0.15232 | 12.58302 | 0.05129 | 12.58384 |
| 5 | | 0.23947 | 11.19744 | 0.13689 | 11.19916 |
| $z=1.30000$ | | | | | |
| ELEMENT | | YS | xS | yp | X ${ }^{\text {P }}$ |
| 1 | | -0.09826 | 19.42894 | -0.19796 | 19.42818 |
| 2 | | -0.04582 | 17.88311 | -0.14577 | 17.88257 |
| 3 | | 0.04806 | 15.00602 | -0.05235 | 15.00601 |
| 4 | | 0.13843 | 12.63318 | 0.03626 | 12.63389 |
| 5 | | 0.21659 | 11.29792 | 0.11208 | 11.29944 |

$z=1.40000$

| ELEMENT | Ys | xs | Yp | XP |
| :---: | :---: | :---: | :---: | :---: |
| 1 | -0.09796 | 19.37894 | -0.19750 | 19.37819 |
| 2 | -0.04901 | 17.87310 | -0.14897 | 17.87255 |
| 3 | 0.03723 | 15.00655 | -0.06363 | 15.00646 |
| 4 | 0.11764 | 12.68340 | 0.61404 | 12.68393 |
| 5 | 0.18293 | 11.39853 | 0.07601 | 11.39975 |
| $z=1.50000$ | | | | |
| flement | Ys | $\times \mathrm{s}$ | Y ${ }_{\text {P }}$ | XP |
| 1 | -0.09763 | 19.32894 | -0.19707 | 19.32819 |
| 2 | -0.05366 | 17.86309 | -0.15367 | 17.86251 |
| 3 | 0.02234 | 15.00708 | -0.07917 | 15.00689 |
| 4 | 0.08966 | 12.73363 | -0.01574 | 12.73393 |
| 5 | 0.13783 | 11.49917 | 0.02794 | 11.49997 |
| $z=1.60000$ | | | | |
| element | Ys | $\times \mathrm{s}$ | Yp | XP |
| 1 | -0.09728 | 19.27895 | -0.19666 | 19.27819 |
| 2 | -0.05979 | 17.85307 | -0.15988 | 17.85245 |
| 3 | 0.00327 | 15.00760 | -0.09905 | 15.00727 |
| 4 | 0.05414 | 12.78383 | -0.05351 | 12.78383 |
| 5 | 0.08034 | 11.59972 | -0.03320 | 11.59995 |
| $z=1.70000$ | | | | |
| element | Ys | xs | Yp | XP |
| 1 | -0.09690 | 19.22895 | -0.19627 | 19.22819 |
| 2 | -0.06739 | 17.84304 | -0.16760 | 17.84238 |
| 3 | -0.02008 | 15.00808 | -0.12342 | 15.00759 |
| 4 | 0.01059 | 12.83394 | -0.09982 | 12.83355 |
| 5 | 0.00921 | 11.70000 | -0.10889 | 11.69949 |
| $2=1.80000$ | | | | |
| elfment | Ys | $\times 5$ | Yp | XP |
| 1 | -0.09650 | 19.17895 | -0.19592 | 19.17819 |
| 2 | -0.07647 | 17.83300 | -0.17683 | 17.83229 |
| 3 | -0.04779 | 15.00852 | -0.15239 | 15.00782 |
| 4 | -0.04163 | 12.88387 | -0.15543 | 12.88300 |
| 5 | -0.07736 | 11.79975 | -0.20119 | 11.79828 |

| blade sectinn coordinates (rgtaten) at $\mathrm{X}=15.0000$ | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r} \text { GAMMA } \\ -0.0103 \end{array}$ | $\begin{aligned} & \mathrm{T} I \\ & 0.1000 \end{aligned}$ | $\begin{gathered} \text { L(SP) } \\ 0.9784 \end{gathered}$ | $L-B A R$ | AREA | imin | Illcg | | PHLCG | $\begin{aligned} & I(L L) \\ & 0.8585 E-02 \end{aligned}$ | PHL | | |
| | | | 1.0487 | 0.2133 | 0.117 | E-02 0.1 | 6E-02 0 | | | 0.4175 E | | |
| TM | T0 | H(SP) | H-bAR | BETA | Imax | | | | I (HH) | | | |
| 0.1000 | 0.0999 | 0.2549 | 0.1864 | 0.4202F-0 | 010.778 | E-01 0.7 | 2E-01 | | 0.3124 | | | |
| (110) | L(MC) | L(TC) | L(00) | (1P) | (1 MP) | L(TP) | L(OP) | L(15) | L(MS) | L(TS) | (${ }^{\text {dos) }}$ | L(CG) |
| 0.0500 | 1.049 c | 1.0499 | 2.0498 | 0.0703 | 1.0499 | 1.0499 | 2.0294 | 0.0296 | 1.0498 | 1.0498 | 2.0701 | 1.0481 |
| Hitc) | H(MC) | H(TC) | H (OC) | H(IP) | H(MP) | H(TP) | H(0P) | H(IS) | H(MS) | H(TS) | h(os) | H(CG) |
| 0.0500 | 0.2628 | 0.2628 | 0.0499 | 0.0043 | 0.2128 | 0.2128 | 0.0043 | 0.0957 | 0.3128 | 0.3128 | 0.0956 | 0.1853 |
| | | | | 1 | $\mathrm{H}^{\text {P }}$ | HS | | | | | | |
| | | | | 0. | 0.0500 | 0.0500 | | | | | | |
| | | | | $0.0500-0.0$ | -0.0048 | 0.1046 | | | | | | |
| | | | | $0.0500-0.0$ | -0.0048 | 0.1046 | | | | | | |
| | | | | 0.1000 | 0.0173 | 0.1257 | | | | | | |
| | | | | 0.1500 | 0.0381 | 0.1455 | | | | | | |
| | | | | 0.2000 | 0.0576 | 0.1641 | | | | | | |
| | | | | 0.2500 | 0.0758 | 0.1816 | | | | | | |
| | | | | 0.3000 | 0.0928 | 0.1978 | | | | | | |
| | | | | 0.3500 | 0.1086 | 0.2129 | | | | | | |
| | | | | 0.4000 | 0.1232 | 0.2269 | | | | | | |
| | | | | 0.4500 | 0.1367 | 0.2398 | | | | | | |
| | | | | 0.5000 | 0.1490 | 0.2516 | | | | | | |
| | | | | 0.5500 | 0.1602 | 0.2623 | | | | | | |
| | | | | 0.6000 | 0.1703 | 0.2720 | | | | | | |
| | | | | 0.6500 | 0.1792 | 0.2806 | | | | | | |
| | | | | 0.7000 | 0.1871 | 0.2882 | | | | | | |
| | | | | 0.7500 | 0.1940 | 0.2947 | | | | | | |
| | | | | 0.8000 | 0.1997 | 0.3002 | | | | | | |
| | | | | 0.8500 | 0.2044 | 0.3048 | | | | | | |
| | | | | 0.9000 | 0.2081 | 0.3083 | | | | | | |
| | | | | 0.9500 | 0.2107 | 0.3108 | | | | | | |
| | | | | 1.0000 | 0.2123 | 0.3123 | | | | | | |
| | | | | 1.0500 | 0.2128 | 0.3128 | | | | | | |
| | | | | 1.1000 | 0.2123 | 0.3123 | | | | | | |
| | | | | 1.1500 | 0.2108 | 0.3109 | | | | | | |
| | | | | 1.2000 | 0.2082 | 0.3084 | | | | | | |
| | | | | 1.2500 | 0.2045 | 0.3049 | | | | | | |
| | | | | 1.3000 | 0.1999 | 0.3004 | | | | | | |
| | | | | 1.3500 | 0.1941 | 0.2949 | | | | | | |
| | | | | 1.4000 | 0.1873 | 0.2884 | | | | | | |
| | | | | 1.4500 | 0.1794 | 0.2808 | | | | | | |
| | | | | 1.5000 | 0.1705 | 0.2722 | | | | | | |
| | | | | 1.5500 | 0.1604 | 0.2625 | | | | | | |
| | | | | 1.6000 | 0.1492 | 0.2518 | | | | | | |
| | | | | 1.6500 | 0.1369 | 0.2400 | | | | | | |
| | | | | 1.7000 | 0.1234 | 0.2271 | | | | | | |
| | | | | 1.7500 | 0.1088 | 0.2131 | | | | | | |
| | | | | 1.8000 | 0.0930 | 0.1980 | | | | | | |
| | | | | 1.8500 | 0.0759 | 0.1817 | | | | | | |
| | | | | 1.9000 | 0.0576 | 0.1642 | | | | | | |
| | | | | 1.9500 | 0.0381 | 0.1456 | | | | | | |
| | | | | 2.0000 2.0498 | 0.0172 -0.0049 | 0.1256 0.1046 | | | | | | |
| | | | | 2.0997 | 0.0499 | 0.0499 | | | | | | |

| | | | BLADE SEC | | O COORDINATES (ROT | | AT $\mathrm{X}=19.5000$ | | | PHL | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GAMMA | TI | L (SP) | L-BAR | AREA | IMIN | | | 37E-03 | I(LL) | | | |
| 0.6883 | 0.0999 | 0.9084 | 1.0534 | 0.2079 | 0.1762E-03 0. | | . $1829 \mathrm{E}-03$ | | 0.6261E-03 | 0.9409E-0? | | |
| TM | T0 | H(SP) | H-BAR | BETA | I MAX | | | | I(HH) | | L(0s) | |
| 9.1000 | 0.0992 | 0.1961 | 0.0462 | -0.5393 | $0.7494 \mathrm{E}-010.7494 \mathrm{E}-01$ | | | | 0.3056 | L(TS) | | L(CG) |
| LIC) | L (MC) | L(TC) | $1(00)$ | L(IP) | L(MP) | L(TP) | (109) | L(IS) | $L(M S)$ | | | |
| 0.0500 | 1.0561 | 1.0561 | 2.0673 | 0.0511 | 1.0555 | 1.0555 | 2.0698 | 0.0488 | 1.0567 | 1.0567 | 2.0649 | 1.0548 |
| H(IC) | H(MC) | H(TC) | H(OC) | H(IP) | H(MP) | H(TP) | H(OP) | H(IS) | H(MS) | H(TS) | H(OS) | H(CG) |
| 0.0500 | 0.0457 | 0.0457 | 0.0496 | 0.0000 | -0.0043 | -0.0043 | 0.0001 | 0.0999 | 0.0957 | 0.0957 | 0.0991 | 0.0462 |
| | | | | 1 | HP | HS | | | | | | |
| | | | | 0. | 0.0500 | 0.0500 | | | | | | |
| | | | | 0.0500 | -0.0000 | 0.0999 | | | | | | |
| | | | | 0.0500 | -0.0000 | 0.0999 | | | | | | |
| | | | | 0.1000 | 0.0013 | 0.1013 | | | | | | |
| | | | | 0.1500 | 0.0023 | 0.1025 | | | | | | |
| | | | | 0.2000 | 0.0032 | 0.1035 | | | | | | |
| | | | | 0.2500 | 0.0040 | 0.1043 | | | | | | |
| | | | | 0.3000 | 0.0045 | 0.1049 | | | | | | |
| | | | | 0.3500 | 0.0048 | 0.1053 | | | | | | |
| | | | | 0.4000 | 0.0050 | 0.1055 | | | | | | |
| | | | | 0.4500 | 0.0050 | 0.1056 | | | | | | |
| | | | | 0.5000 | 0.0049 | 0.1054 | | | | | | |
| | | | | 0.5500 | 0.0046 | 0.1052 | | | | | | |
| | | | | 0.6000 | 0.0042 | 0.1048 | | | | | | |
| | | | | 0.8500 | 0.0036 | 0.1042 | | | | | | |
| | | | | 0.7000 | 0.0030 | 0.1035 | | | | | | |
| | | | | 0.7500 | 0.0022 | 0.1027 | | | | | | |
| | | | | 0.8000 | 0.0013 | 0.1018 | | | | | | |
| | | | | 0.8500 | 0.0003 | 0.1007 | | | | | | |
| | | | | 0.9000 | -0.0007 | 0.0996 | | | | | | |
| | | | | 0.9500 | -0.0018 | 0.0984 | | | | | | |
| | | | | 1.0000 | -0.0030 | 0.0972 | | | | | | |
| | | | | 1.0500 | -0.0042 | 0.0959 | | | | | | |
| | | | | 1.1000 | -0.0054 | 0.0945 | | | | | | |
| | | | | 1.1500 | -0.0066 | 0.0932 | | | | | | |
| | | | | 1.2000 | -0.0078 | 0.0919 | | | | | | |
| | | | | 1.2500 | -0.0089 | 0.0907 | | | | | | |
| | | | | 1.3000 | -0.0100 | 0.0895 | | | | | | |
| | | | | 1.3500 | -0.0110 | 0.0884 | | | | | | |
| | | | | 1.4000 | -0.0119 | 0.0875 | | | | | | |
| | | | | 1.4500 | -0.0127 | 0.0866 | | | | | | |
| | | | | 1.5000 | -0.0134 | 0.0859 | | | | | | |
| | | | | 1.5500 | -0.0138 | 0.0854 | | | | | | |
| | | | | 1.6000 | -0.0140 | 0.0852 | | | | | | |
| | | | | 1.6500 | -0.0141 | 0.0851 | | | | | | |
| | | | | 1.7000 | -0.0138 | 0.0854 | | | | | | |
| | | | | 1.7500 | -0.0133 | 0.0859 | | | | | | |
| | | | | 1.8000 | -0.0123 | 0.0869 | | | | | | |
| | | | | 1.8500 | -0.0111 | 0.0881 | | | | | | |
| | | | | 1.9000 | -0.0094 | 0.0899 | | | | | | |
| | | | | 1.9500 | -0.0073 | 0.0920 | | | | | | |
| | | | | 2.0000 | -0.0046 | 0.0947 | | | | | | |
| | | | | 2.0500 | -0.0014 | 0.0980 | | | | | | |
| | | | | 2.0673 | -0.0001 | 0.0993 | | | | | | |
| | | | | 2.1169 | 0.0496 | 0.0496 | | | | | | |

REFERENCES

1. Johnsen, Irving A.; and Bullock, Robert O., eds.: Aerodynamic Design of AxialFlow Compressors. NASA SP-36, 1965.
2. Seyler, D. R.; and Smith, Leroy H., Jr.: Single Stage Experimental Evaluation of High Mach Number Compressor Rotor Blading. Part I: Design of Rotor Blading. Rep. R66FPD321, pt. 1, General Electric Co. (NASA CR-54581), Apr. 1, 1967.
3. Gostelow, J. P.; Krabacher, K. W.; and Smith, L. H., Jr.: Single Stage Experimental Evaluation of High Mach Number Compressor Rotor Blading, Part 6 Performance Comparison. General Electric Co. (NASA CR-54586), 1968.
4. Monsarrat, N. T.; and Keenan, K. J.: Experimental Evaluation of Transonic Stators, Preliminary Analysis and Design Report. Rep. PWA-2749, Pratt and Whitney Aircraft (NASA CR-54620), 1967.
5. Kennan, M. J.; and Bartok, J. A.: Experimental Evaluation of Transonic Stators, Final Report. Pratt and Whitney Aircraft (NASA CR-72298), 1968.

National Aeronautics and Space Administration
 Washington, D. C. 20546
 OFFICIAL BUSINESS

POSTAGE AND FEES PAID
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

```
00U1701 33 シ1 355 69255 00903
```


'The aeronautical and space activities of the United States shall be conducted so as to contribute . . to the expansion of buman knowledge of phenomena in the atmosphere and space. The Administration sball provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

- National Aeronautics and Space Act of 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Notes, and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

