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AN ACCURATE STRAPDOWN DIRECTION COSINE ALGORITHM

By John W. Jordan
Electronics Research Center

SUMMARY

This report presents an algorithm for computing the direction

cosine matrix of a strapdown inertial system. It is designed for

efficient computation on a general purpose digital computer. It

includes a correction for commutativity error and has no trunca-

tion error. Its high accuracy is demonstrated by simulation.

The simulation technique can be applied to the evaluation of other

direction cosine algorithms as well, permitting a comparative

evaluation.

INTRODUCTION

Strapdown inertial systems involve two computational pro-

cesses which are not present in conventional inertial systems

employing a gimbal structure. One is associated with the trans-

formation of vehicle acceleration from body coordinates to navi-

gational coordinates:

where

a N(t) = C T(t) a B(t) (i)

a B = vector acceleration of the vehicle in body coordinates

a N = vector acceleration of the vehicle in navigational
coordinates

C = the 3x3 matrix of direction cosines which represent the

transformation from body to navigational coordinates.

The second process is the determination of the direction

cosine matrix by the real-time integration of the matrix differ-

ential equation:

C(t) = _(t)C(t) (2)



where _(t) is a skew-symmetric matrix of vehicle rates measured
in body coordinates:

_(t) =

I 0 Wz (t) -Wy (t) ]
-w z (t) 0 w x (t)

Wy (t) -W x (t) 0

Both Eqs. (1) and (2) can be solved by a general-purpose computer

if they are replaced by finite difference equations. The frequen-

cy with which the equations must be solved is determined by a

system accuracy specification and the anticipated environment;

that is, by the vehicle acceleration and angular rate profile.

Generally, the solution of Eq. (I) is not too demanding of the

available computational resources (ref. i). Eq. (2), on the

other hand, may require a substantial percentage of the computer's

time because of the inherent complexity of the numerical methods

used and the high iteration rates which may be required to achieve
l

the specified accuracy. This report is concerned with the solu-

tion of Eq. (2) on a general-purpose digital computer. In general,

the airborne computer will calculate a matrix B(t) which only

approximates the true cosine matrix C(t).

FINITE DIFFERENCE EQUATION

The computer will employ a finite difference equation for

propagating the cosine matrix:

B* = CB (3)

where

B* is the new solution at step n

B is the old solution at step n-l.

A suitable transition matrix is given in reference 2:

2

= I + k18 + k28 (4)

where 8 is the skew-symmetric rotation matrix:

I 0 _z -_y 1

0 = -¢z 0 _x

_y -¢x 0

(5)



Let:

_o 2 = _x 2 + _y2 + _z 2.

The scalar parameters k I and k 3 are given in Table I along

with a scalar k 3 which will be used subsequently.

TABLE I

k I k 2 k 3

sin _o

_O

1 - COS _O

2

_o

tan (_o/2)

_o

Equation (4) has appeared frequently in the literature

(refs. i, 4, 5, 7) as an analytical solution of the differential

Eq. (2) for a special form of the vehicle rate matrix O(t). For

that particular case, the rotation matrix (Eq. (5)) is simply

the integral of _(t). In this report, Eq. (4) is used in a

different way than in the previous literature. It is presented

as a general, exact expression for describing the rotation of a

cosine matrix. The problem then becomes the determination of an

appropriate rate matrix (Eq. (5)), so that the difference equation

(Eqs. (3) and (4)) represents the solution of the direction cosine

problem. In general, the rotation matrix is no longer equal to

the integral of _(t), although it must, of course, reduce to this

form for the special case when Eq. (4) does represent the solution

of Eq. (2).

Before considering the determination of the required rotation

matrix, Eqs. (3) and (4) will be put in a form suitable for effi-

cient computation on a general=purpose computer.

COMPUTATIONAL ALGORITHM

An efficient computational algorithm may be'devised by

expressing the matricies in terms of vectors. The direction

cosine matrix requires three vectors.

S E 1l b2 JJ b 3bl I
!
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The rotation matrix, being skew-symmetric, can be represented by
one vector.

_X

= #y

_z

The computational algorithm is as follows:

Compute kl, k 3

2

q5° = _'_ (6)

¢i = kl¢

¢3 = k3¢

for j = 1,2

_j = bj x _i

8j = _j x _3

• • + (_j + 8j)b 3 = b 3

b 3 = b I x b 2

The last step is based upon the fact that the direction

cosine matrix is orthogonal. The _ calculation of kl and.k3 is
discussed in an Appendix. The following section will dlscuss

the determination of the rotation vector _.

DETERMINING THE ROTATION VECTOR

Strapdown inertial systems measure vehicle rotation by

gyroscopes mounted ("strapped down") to the frame of the vehicle.

Reference 3 provides an expression for the rotation vector in

terms of the integral of the body rates sensed by the gyroscopes

t

=I _(I) dl +¢ a

O

(7)



where

¢ = The rotation vector

= The vehicle rate vector sensed by the system gyroscopes

a = A vector equal to the area traced out by each body axis
on a unit sphere.

Most inertial systems use rate-integrating gyroscopes which
provide the integral of the vehicle rates:

h
A =_ 0_(_) dl

o

The quantity A is the vector output of the system gyroscopes

over a sampling interval h.

The area vector, a, is found (ref. 3) by applying the two

dimensional Green's theorem:

a = - ifh ¢ x $ dl

o

Then Eq. (7) becomes

1 h

o

(8)

The problem now is to determine _ from the gyroscope output

vector A. Figure 1 illustrates the idea of a pre-processor.

The gyroscopes provide the vector, A, which is sampled at a

frequency fs. The pre-processor calculates ¢ from A and uses ¢

to update the direction cosines at a frequency fc" The pre-

processor algorithm has two constraints - it must provide suffi-

cient accuracy and it must be computationally simple.

PRE-PROCESSOR ALGORITHM

One possible pre-processor algorithm can be obtained from

Eq. (8) by considering the cross-product term to be small com-

pared to the other right-hand term. This is equivalent to choos-

ing the sampling frequency, fs, high enough so that the direction

of the rotation vector changes little over the sampling period.

5



This assumption results in the approximation

ifo & A - _ Ax_ dl (9)

In order to evaluate the integral, it is necessary to obtain

the vehicle rate vector, _, from its integral, A, which is pro-

vided by the system gyroscopes. This can be done by fitting a

polynomial to a sequence of A vectors and then analytically dif-

ferentiating the polynomial to obtain the vector _. Reference 3

introduced the concept of a pre-processor and a polynomial approx-

imation in order to obtain an estimate of the vehicle angular

rate matrix, _(t), given a sequence of gyroscope outputs. The

angular rate matrix was then used to integrate Eq. (2) directly,

using a Runge-Kutta algorithm. In this report, the pre-processor

and polynomial approximation are used to determine the equivalent

Euler angle rotation from the gyroscope outputs. Reference 6

discusses the use of a pre-processor to provide increased accuracy

for direction cosines calculated by the method of quaternions.

However, the pre-processor algorithm is equivalent to Eq. (ii) of

this note; the more general form of Eq. (10) is not derived or

simulated. Reference 5 also derives a correction term equal to

Eq. (ii) by a completely different method.

Let

2

A(1) = d O + dll + d21

with ¢ = d O being the accumulated value of the rotation vector
since the last calculation of the direction cosines. The two

remaining coefficients can be determined by two gyroscope samples

A 1 and A 2. See Figure 2. The pre-processor algorithm is then

determined by substution to be

= A 1 + A 2 (i0)

* 1 2

= ¢ + _ + _ _ x _ + _ (A 1 x g2 )

The vector, ¢, is updated every two gyro samples or at a frequency

fs/2. This high-speed calculation is continued until the direction

cosines are updated at a lower frequency, fc" The vector ¢ is

then set equal to zero and the high-speed calculations are re-

sumed. For the case where fc = fs/2, the initial value of ¢ will

always be zero and the pre-processor algonithm is simply

* 2
¢ = A 1 + A 2 + _ (A 1 x A 2) (ii)



COSINE ERRORS

For some applications, a simplified form of Eq. (4) is
sufficient. Approximations for k I and k 3 can be used instead of
the true values of Table I. The resultant error may be called a

truncation error. The truncation error is completely under the

control of the designer and it will vanish when the calculations

of k I and k 3 are made exact. For the remainder of this note,
it will be assumed that the accurate values of Table I are used

and that there is no truncation error involved in updating the

direction cosines. However, the Appendix will consider trunca-

tion error resulting from the approximate calculation of k I and k 3.

There is another error source which results in what is often

called commutativity error. For the algorithm presented in this

note, it is caused by the approximate nature of the pre-processor

algorithm. In general, the pre-processor provides an estimate

of the required rotation vector ¢. Although the commutativity

error could be defined as the difference between the vectors
and _, in this note it will be defined as the er[or in the

direction cosines which results from the use of _ instead of the

truerotation vector ¢. See Figure 3. One special case is

important. If

_ x _ = 0

then Eq. (8) reduces to

¢ = A

and the pre-processor is error free.

expressed as

This condition can also be

x A = 0 (12)

which is satisfied if the vehicle rate vector, _, has a fixed

axis in space over the sampling interval. If this condition is

satisfied, there is no commutativity error and the direction

cosines can be determined exactly. When Eq. (12) is satisfied,

the vehicle rate matrix, _(t), corresponding to the vector _ is

said to be "self-commutative" (ref. 5). For this special case,

the rotation vector is simply the gyroscope output vector.

SIMULATION

The effectiveness of the pre-processor can be demonstrated

by simulation. In order to do this, it is necessary to have an

analytical solution for the direction cosines with a non-self-



GYROS

fs
i

PROCESSOR _ _

DIRECTION
COSINES

/ go

A I

4-- h----_

L time

Figure i.- Pre-processor Figure 2.- Gyro samples

PROCESSOR

_ (t)-----_

_ B*--_B I B(t)

ANALYTIC ! C(t)SOLUTION

Ec(t)

ROR

Figure 3.- Error definition



commutative rate matrix. Although no general solution is known,

a class of test solutions are easily constructed as follows. Let

C = CAC B

where

C= _C

CA = DACA

CB = _BCB

If _A and _B are self-commutative, then CA, SB and hence C
are easily found. The angular rate vector for C is easily shown
to be

= _A + CA _B

and

t + h

A = AA + ; CACOB dX
t

Next, _A and _B are chosen so that the integration can be done
analytically. A simple choice of

[6]_A = 0

0

_B [°]= .6

0

was used. This gives a vehicle rate vector of

[ 6 1.6 cos.6t ,

- 6 sin.6t

a severe coning motion. The commutativity error of Figure 3 can

be expressed as a single scalar parameter (ref. (4).

1

ec = k [ trace (EcTEc)]_

9



where k = (57.3) (60)/t s

t = simulation time (min)s

This error parameter has the units of degrees per hour. A value
of t s = 20 minutes was used for all simulations. An additional
parameter N was defined by

f = N f
s c

so that N is the number of gyro samples before the direction

cosines are updated. The results for N = 1 correspond to a

direct application of Eq. (6) everytime the gyros are sampled

without using a pre-processor. Since the accurate values of k 1

and k 3 of Table I were used, none of the algorithms have any

truncation error. The results are plotted as a function of fs and

fc in Figure 4 and 5. Since updating the direction cosines in-

volves the bulk of the computation, the plot of the commutativity

error vs. fc most closely approximates a plot of error vs. com-

puter loading. All algorithms except N = 1 involve the calcula-

tion of the pre-processor every two gyro samples. For larger

values of N, this requires proportionally more computation and

this fact should be kept in mind when interpreting Figure 5. The

solution with N = 2 has an additional advantage since its pre-

processor algorithm (Eq. (ii)) is less complex than that of the

others (Eq. (i0)).

CONCLUSION

The pre-processor significantly reduces the secular commu-

tativity error with the algorithm N = 2 providing the most accu-

racy for an equivalent computer loading. Eqs. (6) and (ii) pro-

vide a high-accuracy algorithm for general-purpose computers which

has low commutativity error and no truncation error.

Since the truncation error is easily analysed (Appendix A)

and is completely under the control of the designer, it follows

that the commutativity error represents a more significant test

of an algorithm's preformance. Quite possibly, a more effective

pre-processor can be designed, perhaps by using a higher order

polynomial approximation. However, it is not the inherent

accuracy of an algorithm which is important but rather its reali-

tive effectiveness at a specified level of computer loading.

i0
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APPENDIX A

TRUNCATION ERROR

Truncation error results from approximations made in calcu-

lating k I and k 3. This error may also be determined by simulation

as in Figure 3. For a self-commutative rate matrix, ref. (5)

provides an analytical solution for the truncation error. If the

approximations for k I and k 3 are of low accuracy, the resulting

cosine matrix may become non-orthogonal and an orthogonality

correction can be introduced. The correction, however, is com-

plex and the added computational time would be more advantageously

used in improving the accuracy of k I and k 3. Reference 5 con-

tains an analytical solution for the truncation error when an

orthogonality correction is used. It also considers the error

introduced by finite computer word length. Refs. (i) and (7) also

contain an analysis of these error sources.

CALCULATION OF kl, k 3

The calculation of k I and k 3 may be done using standard

proceedures for trigonometric functions. However, the expres-

sions in Table I cannot be used since they may require division

by zero. For some applications a very simple approximation may

be sufficient. For example, refs (i), (5), (6), and (7) discuss

k I = i, k 2 = 0, 1/2, and 1/3. However, by using the pre-processor

to correct the commutativity error and by calculating more accu-

rate values of k I and k 3, all the calculations can be done at a
lower frequency. An excellent discussion of the calculation of

trigonometric functions is contained in ref. (8). What follows

is based on that reference.

The calculation of tan (X/2) provides a good basis for all

the trig functions. For example:

sin X =
tan(x/2]

1 + tan2(x/2l

Hence

k I =

k 3

1 + _02k32

12



and it remains to calculate k 3. Let Pn(X) be the polynomial
n

Pn(X) = _ aj Xj
y=o

The tangent function can be calculated as

tan (_X) = X Pn(X 2)

with the coefficients for a nth order approximation given in
ref. (8). In order to determine k3, only Pn(X 2) is necessary.
This will be a polynomial in 402 , which is provided in Eq. (6).
The polynomial may be calculated by Horner's nested form

V = a
n n

Vk = X2Vk+I + ak k = n-l, n-2, ... 0

2
Pn (X) = VO

which requires n additions and n multiplications, Reference 8
discusses a streamlined form as well, which requires only 3
multiplications and 7 additions for a 6th order polynomial.
(The streamlined form was not used in the simulations reported
here.) The calculation of Pn(× 2) may also be done in a sub-

routine which is used for all trigonometric calculations in the

airborne computer.

13



•

•

•

•

•

•

•

•

REFERENCES

Wilcox, J. C.: A New Algorithm for Strapped-Down Inertial

Navigation. IEEE Transactions on Aerospace and Electronic

Systems, vol. AES-3, no. 5, September 1967.

Crandall, S. H. et al: Dynamics of Mechanical and

Electromechanical Systems. McGraw-Hill Book Company, New

York, 1968.

United Aircraft Corporate Systems Center: A Study of the

Critical Computational Problems Associated with Strapdown

Inertial Navigational Systems. NASA CR-968, April 1968.

Sullivan, J. J.: Evaluation of the Computational Errors of

Strapdown Navigational Systems. AIAA Journal, vol. 6,

no. 2, February 1968.

Jordan, J. W.: Direction Cosine Computational Error• NASA

TR-R-304, March 1969.

TRW Systems: Body-Fixed, Three-Axis Reference System Study,

Phase II, Final Report. Prepared for NASA George C.

Marshall Space Flight Center, Huntsville, Alabama, under

Contract No. NAS8-20209, 15 December 1966.

Morgan, A. M.: Computational Errors in the Generation of

the Direction Cosine Matrix in a Strapdown System. Journal

of the Institute of Navigation. vol. 14, no. I, Spring, 1967.

Hart, J. F. et al.: Computer Approximations•

and Sons, New York, 1968.

John Wiley

14
NASA-Langley, 1969 -- 21 C- 8 0


