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ABSTRACT

A FORTRAN IV subroutine has . been written which, when
used in conjunction with the subroutine TRIDMX. in the UNIVAC 1108
MATH-PACK, will find the eigenvalues, and a set of orthogonal eigen-
vectors, for any real symmetric matrix.* The subroutine applies
the QR algoriA-.hm to a symmetric tri-diagural matrix. This algo-
rithm finds a sequence of matrices, which are orthogonally similar
to the original matrix, and which converges to a diagonal matrix.
The product of the similarity transformations converges to the
matrix of eigenvectors; hence the algorithm produces orthogonal
eigenvectors, even when some eigenvalues are multiple.

Also included is a subroutine which uses the output of
TRIDMX to transform the eigenvectors of the tri-diagonal matrix
into the eigenvectors of the original matrix.

* The subroutine TRIDMX uses Householders' method to transform
a symmetric matrix into tri-diagonal form.
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1.0 INTRODUCTION

The QR method was developed by Francis l] as a method
for finding the real and complex eigenvalues of an arbitrary
matrix. When applied to a symmetric matrix, the algorithm also
produces a complete set of orthogonal eigenvectors. Comparison

with the procedures given by Wilkinson 
[2131 

for solving this
same problem using Householder's reduction to tri-diagonal form,
the Sturm sequence method, and inverse iteration, shows that

the QR algorithm is about 60% faster
141

. Moreover, the eigen-
vectors produced by Wilkinson's routines are often not ortho-
gonal, and in fact, if multiple eigenvalues exist, special
techniques must be used to obtain a full set of eigenvectors.

The QR method should not be used, however, if only a
few selected eigenvalues and eigenvectors are needed. For
this problem, the Wilkinson. techniques are superior.

If TRIDMX has been used to transform the matrix into
tri-diagonal form, prior to applying the QR method, the eigen-
vectors produced by QR must be transformed into eigenvectors
of the original matrix. A separate subroutine has been pro-
vided to do this transformation.

2.0 THE QR ALGORITHM

Let A be any symmetric matrix. It can be shown
(see Section 2.4) that there is an orthogonal matrix Q and an
upper triangular matrix R such that A = Q-R. Let Al be the

matrix R • Q, and decompose Al into the product Q1 • R1 , where Q1

is orthogonal, R1 is upper triangular. Let A2 = R1 • Q1 and

repeat this process to obtain a sequence of matrices A1,A2,•••.

The k-th step is:

Given Ak_ 11 find an orthogonal matrix

k-1" and an upper triangular matrix Rk  so that

p'k-1 - Qk-1*Rk-1' Then, let Ak = Rk-1"Qk-1'
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Since

_	 _ T
Ak - Rk-1 *Qk-1 - Qk-1 Qk-1oRk-1.Qk-1

_ T
Qk-1 Ak-1 Qk-1

it follows that Ak is similar to Ak_ l , and hence by induction,
all of the matrices A, Al , A2' .. - are similar and therefore have
the same eigenvalues.

2.1 Convergence Theorem

Let A be any real symmetric matrix, and let A1,A2•0•

be the sequence of matrices defined above. Then this sequence
converges to a diagonal matrix, where the diagonal elements are
the eigenvalues of A. Moreover, if X  denotes the i-th diagon-
al element, then Ix 1 1> IX 2 1 > ••• > 1^nl.

In the special case when all of the eigenvalues have
distinct moduli, (i.e., Ix 1 1> ia 2 1 > ••• > 1an 1,) it can be

shown that the (i,j) element, i>j, tends to zero like

k

i 7

Because of symmetry the (j,i) element also tends to zero. If
the eigenvalues do not all have distinct moduli, the off-diagonal

elements still tend to zero, but in a more complicated manner171.

2.2 Shift of Origin

To increase the rate at which the off-diagonal elements
tend to zero, the matrix Ak is replaced by Ak - SkI, where S 
is a scalar. Since the eigenvalues of Ak - SkI are X1 - Sk,
x 2 - Sk' ... ' an - Sn , the (i,j) element, i>j, tends to zero like

a i - S  k

a j - S 
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Hence, if S  is chosen to be close to X i , the ratio

Ix  - Sk1/!aj - Sk ) is very small, and convergence to zero is

accelerated. The method for choosing S  is described in

Section 2.3.

In order to preserve the similarity of the matrices
A1 ,A2 , ••• , and still incorporate the shift of origin idea, the

basic algorithm is replaced by:

(Ak - SkI ) ^ Qk'R1c

Ak+1 - Rk Ok + SkI

It should be observed that the use of origin shifts
may destroy the ordering of the eigenvalues along the diagonal.

2.3 OR Applied to Tri-diagonal Matrices

It is easily seen that if A is symmetric and tri-
diagonal, then so also are Al ,A2 , ••• . Hence a preliminary re-

duction to tri-diagonal form, using Householder's method for
example, results in a drastic reduction in computation time,
program complexity, and storage requirements. Furthermore, if
A is tri-diagonal, then the last row of A  contains only two

non-zero elements, an (k) 1 . ank)	 By the Gerschgorin Theorem [51

)the element ann differs from an eigenvalue by less than

j an (n, L 1 , provided 1 an (k) l I is 	small. If this is true, then

anki is close to an and can be effectively used as the shiftt

parameter Sk , defined in the previous section. In this case,

the (n,n-1) element will tend to zero very rapidly. As soon as

this element is suitably small, a nn) can be accepted as an

eigenvalue, and the last row and column can be dropped from the
matrix. The algorithm is then applied to the resulting (n-1)
x (n-1) matrix.

A somewhat better choice for S  is to use the smallest

eigenvalue of the 2x2 matrix

t

s
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W	 Wa	 an-1,n-1	 n-ln
(

a	 (k)	 a (k)n,n-1	 nn

See	 21

2.4	 Calculation of
Ak+l

The matrices Ak , Ak+, are related by

Ak+l 2- Qk 
T 

A k Qk

where	
k

Tis an orthogonal matrix, such that Q
k	Ak 

is upper tri-
angular. (For simplicity, in this section we will assume
S

k	
0.) Let U	 be tbi rotation matrix

cose	 sine	 0	 0
-sine	 cose	 0

U	 0	 0	 1

0

0	 i j

where 0 is chosen so that the (2,1) element of Ul • A
k 

is zero.
,j

That is,
(k)	 Wa	 a

cose	 sine
rlr

2 )1/2
r	 ^ a11 	 + a21

k



1 ,
1
cose sine	 thUi 	 4-- i --- row
-sine cose

1

1
where

z	 (k)	 (k)a.
cose r aii	 sine = 1+1,ir	 r

1/2

r - f aii + a i+1 l

Then, if Ak is tri-diagonal, and

If Un-l•Un-2...U20Ul.Ak = Rk

Rk will be upper triangular, and Qk = Un-l•Un-2•••Ul is orthogonal.

2.5 Program Details

The subroutine QR is essentially a FORTRAN IV versipn
of the algorithm QR 2, as described in [6], and including the
modification suggested in [2]. The logic has been changed slight-

ly, and the "zero" tolerance has been set to e = 10 -8 
JJ Ajj . where

n

J J A J I., = i^ ^ .. , n F J ai I	 .

j=1

The matrix is assumed to be in tri-diagonal form, with
diagonal elements A(1) , • • • ,A(N) , off-diagonal elements B(2) , • • • B(N) .
The two-dimensional array X is initially set equal to the N x N
identity matrix, and the transformations Q1102 , ••• are applied to

..µ



X as they are generated. Since Q  is a product of simple plane

rotations, they need not be stored as a two-dimensional array;
hence, the only two-dimensional array which is needed is the ar-
ray X which will. finally contain all of the eigenvectors.

2.6 Accuracy

All of the Transformations involved in the OR algorithm
are stable with respect to round-off error. Hence, good accuracy
can be expected, even for very large problems. In practice, it
is found that the largest eigenvalues are accurate to at least
seven significant figures, and the corresponding eigenvectors to
six significant figures. The smaller eigenvalues will have fewer
accurate significant: figures because, in general, all eigenvalues
have the same absolute accuracy.

2.7 Test Problems

The subroutine was tested on the following problems.

A) The matrix: W2 1 , defined in Wilkinson [4) , page 308.

This is a 21 x 21 symmetric tri-diagonal matrix, which has three
pairs of eigenvalues which agree to 8 figures. The subroutine
found all eigenvalues and vectors accurate to at least 7 figures.

The maximum element of the matrix I - XTX. where X is the matrix

of computed eigenvectors, was less than 10-7.

B) A 5 x 5 symmetric matrix, given in (6). The matrix
was first reduced to tri-diagonal form, using TRIDMX. The eigen-
values and vectors were found using OR, and the vectors were
transformed using TRANSF (see Section 4). The answers were correct
to 7 figures, and the orthogonality test, used in problem A, was

10-7.
..

C) 120 x 120 symmetric matrix, produced by S. N. Hou.

This matrix has eigenvalues of the order 107 and zero is an
eigenvalue of multiplicity three. The three smallest calculated
eigenvalues were of order .1, and the orthogonality test was

10-6 . As a further check, the maximum element of the matrix AX-DX
was computed. Here X is the matrix of computed eigenvectors, D
is the diagonal matrix of eigenvalues. This quantity, divided by

the maximum element of A, was N 10-6.

2.8 Calling Sequence

CALL OR (N, A, B, E , X , W1, W2, W3, M)
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N	 Dimension of all matrices and vectors.

A	 : A one dimensional array, containing the diagonal
elements of a symmetric tri-diagonal matrix.

B	 : A one dimensional array, containing the off--
diagonal elements of the tri-diaconal matrix, in
locations B(2),••,B(N). The subroutine sets
B(1) = 0.

X	 : A two dimensional array, which is used to store
the eigenvectors. The eigenvector corresponding
to the k-th eigenvalue is stored in X(1,K), X(2,K),
•••,X(N,K). The subroutine initializes this array
so that X(I,J) = 6 I

E	 A one dimensional array which is used to store the
eigenvalues.

M	 : The maximum value that N can assume.

W1,W2,
W3	 One dimensional working arrays.

3.0 TRANSFORMATION SUBROUTINE

If the FORTRAN statement

CALL TRIDMX (N, M, T, A, B)

is used to transform the symmetric matrix T into tri-diagonal
form, then the transformation matrix is stored in the lower tri-
angular part of T, but in the following form:

4 = (I-2W2W2)(I-2W3W3)n_1Wn-1)

where

W  = I

0

0

T(r,r-1)

T(r+l,r-1)

_T(N,r-1) _
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The subroutine TRANfSF applies the transformation Q tc
the eigenvectors of the tri--diagonal matrix to transform them
into eigenvalues of the original matrix.

3.1 Callin2 Se û ence

CALL TRANSF (N, To X, W, M)

N: Dimension of al l matrices and vectors.

T: The two dimensional array which results from using
TRIDMX to transform T into tki-diagonal form.

X: A two-dimensional array which contains the eigenvectors
of the tri-diagonal matrix. That is, X(1,K) , X(2,K) ,
•••, X(N,K) is the k-th eigenvectvr.

W: A one dimensional working array.

M: The maximum value of N.

3.2 Example

The statements

CALL TRIDMX (N, M, T, A t B)

CALL OR (N, A t B, E, X, W1 1 W2 1 W3 1 M)

CALL TRANSF (N, T, X, W1, M)

can be used to find a matrix X of orthogonal eigenvectors, and
a vector E of eigenvalues, for the symmetric matrix T. In addi-
tion to the two-dimensional arrays X,T, five one-dimensional
working arrays A,B,W1,W2,W3, and the vector E, are required.

S	 ?	 •.

2031:JSV:jct	 J. S. Vandergraft

Attachment

i



SUBROUTIN E OR(lrA,F? ► E,XtStJ#CS.G,L)

c	 THIS SUBROUTINE FINDS THE EIGE14VALUES ANn FIGENVECTORS OF A

C	 SYMMETRIC TRIDIAGONAL MATRIX.!! IS T!-!F' nI%*FNSIONr A (1) • 	 A (t!) THE

C	 IjIAG0t\lAL#6 (2) t...R(N)THE OFF-- 0IAGONAL ► E(1) v...F(N) THE EIGFtIVALUFS.

C	 X( 1  e-K) r ... r X ( N t K) : S THE F I GENVECTOR CORD; ESROND I t,!G TO E (K) . AND SlJ #

C	 CStC ARE ONE DIMENSIONAL WORKING ARRAYS,

DIMENSION A(L)tB(L)rE(L)vX(L PL- ) #SN(L)tCS(L)tC(L)

REAL NORM # MU ► LAM

C	 SLT THE X ARRAY EQUAL TO THE NXN IDENTITY

DU 200 I-1tN

DG 201 J»IPN

X(ItJ)=O.

201	 X(Jtl)=O.

2G0	 X(Itl)_1.

f^11I-4.0

NORM	 ARS ( D (N)) +ADS ( A ( N) )

Pl1=FJ-1

DO 10 I=1 tN1

--	 -	 SU14=ABS(
.
A(I))+ABS(D(I))+ARS(3(I+-1) )

IF ( SUM . GT. MORt") tlOR^1^SUM

i 0	 CONTINUE



-	 - -	 - --- K=1.11

	

41	 - -	 I F ( ABS (B Z K)) . LE. EPS ). - GO TO 42 _	 --

- ----- __.	 -- -- GO TO
a

C	 UETER'1INE rNE SHIFT OF ORIGIN

---- - ------- - --	 AI=SGRT((n_c.,41_).-A(M))**2 +^.* O^

T=A (-M1)*A04) —rqn -

FACT_1.0

IF(A0 .LT.O.) FACT=-1.0

LA A=0. S* (AO+FACT*A1)

T- T/l.Am

IF (ABS(T —MU)-0.5*A3S(T)) 70PAOtI0
F

LAM T

r- - -	 -	 GG-_T0 _90	 -- -	 -

	

A--80-	 0_.5*ABS_(LAM).)

81.-- __ -- .. - -- . - - _- MU=L!'it _

GO . TO 90

LAM=O.	 - -	 -

--- 9(1_	 - --	 -_A(K)=A(K)---LAM	 -- - - - ---

f 	 __-_BE.TA=S ( K+1)-

-c __- _.___ DO _THE-TRANSFORMAT I011 ON__THE LEFT...-



. DO 100 J=K, M1

Au=A(J)

A1=A(J+1)—LW4

Btl=[3 (J+1)

T=SORT ( Ate**2+PF—TA**2)

COSE:.:AO/T

CS(J)=COSE	 ——

SINE =IIFI'A/T

Sw(J)_SItir

A(J)=CGSE*AO+SINE*BETA

A (J+1) =--SANE*t1O+COSE*A1 .

B(J+1)y=C0SE*304-SINE*A1

BETA: B ( J+2 )

B(J+2)=COSE*SETA

C (J+1) =SINE*(SETA

100 CONTINUE

C DPI THE TRANSFORMATION ON THE RIGHT 

B(K)=0.

00 110	 J=K # Ml

COSE=CS(J)

Ao_A(J)

BO=S(J+i)	
_.

B(J	 )—FZ(J	 )*COSE + C(J	 )*SIVE
-	

A(J)=AO*COSE+80*SINE+LAM

B (J+1) =—AO*SINE+(30*CCSE

A(J+1)=A(J+1)*COSE

..

a.



APPLY THE TRANSFORMATIWIS TO THE X %AATPIX

--- DO 	 120	 1=1rN

XG=X ( I f J)

Xl::X ( 10 J+ 1)

X(ItJ)=XO*COSE + X1*S1NE

X(I#J+I)=-XO*SIMcL- +XI*COSE

_—CONTINUE

110 ----... _,.__,__C0N'TINUE

A ( 14)	 A W	 +L A '11_-,

T0_15

_-RETURit

500

--..,FGRt,-I-S---TkAt4SFPTRANS(7

- .SUBR. OU .T I NE . TRANSF Of o - A A. X r C t M)

C THIS SURRoUTPHE TRANSFORt4S THE EIGENVFrTc)RS OF A TRIDIAGONAL

C MATRIX INTO THE EIGENVECTORS OF THE ORTG T NAL MATRIX.

c A IS THE HATRIX WHICH ',.,JAS LISEr) AS I tiViiT TO TRIDMX#	 AfID

C X IS THE MATRIX OF EIGFNVECTorS

N2=i,,1-2

DO­ 102 - y"=1 V""12

K N-K I-

J=l-t.N

_DO -_ 104, I=K r N

104	 _-SUM _ =SUM+A(IPK2)*X(ItJ)----

 •yr

I=K#N-

4



'DO 105 J=1#N

105	 X(I,J)_X(I#J)-n(I,K?)*C(J)

102	 COt4T Ii HUE

RETURN

END

I

t
ri.

k
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