General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

BELLCOMM, INC.
955 L'ENFANT PLAZA NORTH, S.W.

WASHINGTON, D. C. 20024

SUBEET: Eigenvalues and Eigenvectors of Symmetric Matrices - Case 320

B63 07092

fROM: J. S. Vandergraft

ABSTRACT

A FORTRAN IV subroutine has been written which, when used in conjunction with the subroutine TRIDMY. in the UNIVAC 1.108 MATH-PACK, will find the eigenvalues, and a set of orthogonal eigenvectors, for any real symmetric matrix.* The subroutine applies the $Q R$ algori'hm to a symmetric tri-diagonal matrix. This algorithm finds a sequence of matrices, which are orthogonally similar to the original matrix, and which converges to a diagonal matrix. The product of the similarity transformations converges to the matrix of eigenvectors; hence the algorithm produces orthogonal. eigenvectors, even when some eigenvalues are multiple.

Also included is a subroutine which uses the output of TRIDMX to transform the eigenvectors of the tri-diagonal matrix into the eigenvectors :sf the original matrix.

* The subroutine TRIDMX uses Householders: method to transform a symmetric matrix into tri-diagonal form.

BELLCOMM. INC.

SUBEECT Eigenvalues and Eigenvectors of
Symmetric Matrices - Case 320

DATE, July 31, 1969
FROM: J. S. Vandergraft

MEMORANDUM FOR FILE

1.0 INTRODUCTION

The QR method was developed by Francis ${ }^{[1]}$ as a method for finding the real and complex eigenvalues of an arbitrary matrix. When applied to a symmetric matrix, the algorithm also produces a complete set of orthogonal eigenvectors. Comparison with the procedures given by Wilkinson $[2,3]$ for solving this same problem using Householder's reduction to tri-diagonal form, the Sturm sequence method, and inverse iteration, shows that the $Q R$ algorithm is about 60% faster ${ }^{[4]}$. Moreover, the eigenvectors produced by Wilkinson's routines are often not orthogonal, and in fact, if multiple eigenvalues exist, special techniques must be used to obtain a full set of eigenvectors.

The QR method should not be used, however, if only a few selected eigenvalues and eigenvectors are needed. For this problem, the Wilkinson techniques are superior.

If TRIDMX has been used to transform the matrix into tri-diagonal form, prior to applying the $Q R$ method, the eigenvectors produced by QR must be transformed into eigenvectors of the original matrix. A separate suivroutine has been provided to do this transformation.

2.0 THE QR ALGORITHM

Let A be any symmetric matrix. It can be shown (see Section 2.4) that there is an orthogonal matrix Q and an upper triangular matrix R such that $A=Q \cdot R$. Let A_{1} be the matrix $R \cdot Q$, and decompose A_{1} into the product $Q_{1} \cdot R_{1}$, where Q_{1} is orthogonal, R_{1} is upper triangular. Let $A_{2}=R_{1} \cdot Q_{1}$ and repeat this process to obtain a sequence of matrices A_{1}, A_{2}, \cdots. The k-th step is:

$$
\begin{aligned}
& \text { Given } A_{k-1}, \text { find an orthogonal matrix } \\
& Q_{k-1} \text {, and an upper triangular matrix } R_{k-1} \text { so that } \\
& A_{k-1}=Q_{k-1} \cdot R_{k-1} . \quad \text { Then, let } A_{k}=R_{k-1} \cdot Q_{k-1} .
\end{aligned}
$$

BELLCOMM, INC. - 2 -

Since

$$
\begin{aligned}
A_{k}=R_{k-1} \cdot Q_{k-1} & =Q_{k-1}^{T} Q_{k-1} \cdot R_{k-1} \cdot Q_{k-1} \\
& =Q_{k-1}^{T} A_{k-1} Q_{k-1}
\end{aligned}
$$

it follows that A_{k} is similar to A_{k-1}, and hence by induction, all of the matrices A, A_{1}, A_{2}, \cdots are similar and therefore have the same eigenvalues.

2.1 Convergence Theorem

Let A be any real symmetric matrix, and let $A_{1}, A_{2} \cdots$ be the sequence of matrices defined above. Then this sequence converges to a diagonal matrix, where the diagonal elements are the eigenvalues of A. Moreover, if λ_{i} denotes the i-th diagonal element, then $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \cdots \geq\left|i_{n}\right|$.

In the special case when all of the eigenvalues have distinct moduli, (i.e.. $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\cdots>\left|\lambda_{n}\right|$,) it can be shown that the (i, j) element, $i>j$, tends to zero like

$$
\left|\frac{\lambda_{i}}{\lambda_{j}}\right|^{k}
$$

Because of symmetry the (j, i) element also tends to zero. If the eigenvalues do not all have distinct moduli, the off-diagonal elements still tend to zero, but in a more complicated manner ${ }^{〔 7]}$.

2.2 Shift of Origin

To increase the rate at which the off-diagonal elements tend to zero, the matrix A_{k} is replaced by $A_{k}-S_{k} I$, where S_{k} is a scalar. Since the eigenvalues of $A_{k}-S_{k} I$ are $\lambda_{1}-S_{k}$, $\lambda_{2}-S_{k}, \cdots, \lambda_{n}-S_{n}$, the (i, j) element, $i>j$, tends to zero like

$$
\left|\frac{\lambda_{i}-s_{k}}{\lambda_{j}-s_{k}}\right|^{k}
$$

BELLCOMM, INC.

Hence, if S_{k} is chosen to be close to λ_{i}, the ratio
$\left|\lambda_{i}-s_{k}\right| /\left|\lambda_{j}-S_{k}\right|$ is very small, and convergence to zero is accelerated. The method for choosing S_{k} is described in
Section 2.3.
In order to preserve the similarity of the matrices A_{1}, A_{2}, \cdots, and still incorporate the shift of origin idea, the basic algorithm is replaced by:

$$
\begin{aligned}
\left(A_{k}-S_{k} I\right) & =Q_{k} \cdot R_{k} \\
A_{k+1} & =R_{k} Q_{k}+S_{k} I
\end{aligned}
$$

It should be observed that the use of origin shifts may destroy the ordering of the eigenvalues along the diagonal.

2.3 QR Applied to Tri-diagonal Matrices

It is easily seen that if A is symmetric and tridiagonal, then so also are A_{1}, A_{2}, \cdots. Hence a preliminary reduction to tri-diagonal form, using Householder's method for example, results in a drastic reduction in computation time, program complexity, and storage requirements. Furthermore, if A is tri-diagonal, then the last row of A_{k} contains only two non-zero elements, $a_{n, n-1}(k), a_{n, n}^{(k)}$. By the Gerschgorin Theorem ${ }^{[5]}$, the element $a_{n n}^{(k)}$ differs from an eigenvalue by less than $\left|a_{n, n-1}\right|$, provided $\left|a_{n, n-1}^{(k)}\right|$, is small. If this is true, then $a_{n, n}^{(k)}$ is close to λ_{n} and can be effectively used as the shift parameter S_{k}, defined in the previous section. In this case, the ($n, n-1$) element will tend to zero very rapidly. As soon as this element is suitably small, $a_{n n}^{(k)}$ can be accepted as an eigenvalue, and the last row and column can be dropped from the matrix. The algorithm is then applied to the resulting ($n-1$) $x(n-1)$ matrix.

A somewhat better choice for S_{k} is to use the smallest eigenvalue of the 2×2 matrix

BELLCOMM, INC.

$$
\left(\begin{array}{cc}
\begin{array}{c}
(k) \\
a_{n-1, n-1}^{(k)} \\
a_{n-1, n}^{(k)} \\
a_{n, n-1}^{(k)}
\end{array} & a_{n n}^{(k)}
\end{array}\right)
$$

See [2].

2.4 Calculation of A_{k+1}

The matrices A_{k}, A_{k+1} are related by

$$
A_{k+1}=Q_{k}^{T} A_{k} Q_{k}
$$

where Q_{k} is an orthogonal matrix, such that $Q_{k}{ }^{T} A_{k}$ is upper friangular. (For simplicity, in this section we will assume $s_{k}=0.1$ Let U_{1} be tho rotation matrix

$$
\mathrm{U}_{1}=\left[\begin{array}{ccccc}
\cos \theta & \sin \theta & 0 & \cdots & 0 \\
-\sin \theta & \cos \theta & 0 & & \\
0 & 0 & 1 & & \\
\vdots & & & \ddots & 0 \\
0 & \cdots & \cdots & \cdots & \cdots \\
0 & 1
\end{array}\right]
$$

where θ is chosen so that the $(2,1)$ element of $U_{1} \cdot A_{k}$ is zero. That is,

$$
\begin{array}{r}
\cos \theta=\frac{a_{11}^{(k)}}{r}, \quad \sin \theta=\frac{a_{21}^{(k)}}{r} \\
r=\left(a_{11}^{2}+a_{21}^{2}\right)^{1 / 2}
\end{array}
$$

Similarly, let

BELLCOMM. INC. - 5 -

where

$$
\begin{aligned}
\cos \theta & =\frac{a_{i i}^{(k)}}{r}, \quad \sin \theta=\frac{a_{i+1, i}^{(k)}}{r} \\
r & =\left(a_{i i}^{2}+a_{i+1, i}^{2}\right)^{1 / 2}
\end{aligned}
$$

Then, if A_{k} is tri-diagonal, and

$$
U_{n-1} \cdot U_{n-2} \cdot \cdots U_{2} \cdot U_{1} \cdot A_{k}=R_{k}
$$

R_{k} will be upper triangular, and $Q_{k}^{T}=U_{n-1} \cdot U_{n-2} \cdot \cdots U_{1}$ is orthogonal.

2.5 Program Details

The subroutine $Q R$ is essentially a FORTRAN IV version of the algorithm QR 2, as described in [6], and including the modification suggested in [2]. The logic has been changed slight$1 y$, and the "zero" tolerance has been set to $\varepsilon=10^{-8}\|A\|_{\infty}$ where

$$
\|A\|_{\infty}=\max _{i=1, \ldots, n} \sum_{j=1}^{n}\left|a_{i j}\right|
$$

The matrix is assumed to be in tri-diagonal form, with diagonal elements $A(1), \cdots, A(N)$, off-diagonal elements $B(2), \cdots B(N)$. The two-dimensional array X is initially set equal to the $N \times N$ identity matrix, and the transformations Q_{1}, Q_{2}, \cdots are applied to

BELLCOMM. INC. - 6 -
X as they are generated. Since Q_{k} is a product of simple plane rotations, they need not be stored as a two-dimensional array; hence, the only two-dimensional array which is needed is the array X which wil? finally contain all of the eigenvectors.

2.6 Accuracy

All of the transformations involved in the $Q R$ algorithm are stable with respect to round-off error. Hence, good accuracy can be expected, even for very large problems. In practice, it is found that the largest eigenvalues are accurate to at least seven significant figures, and the corresponding eigenvectors to six significant figures. The smaller eigenvalues will have fewer accurate significan't figures because, in general, all eigenvalues have the same absolute accuracy.

2.7 Test Problems

The subroutine was tested on the following problems.
A) The matrix W_{21}^{+}, defined in Wilkinson ${ }^{[4]}$, page 308. This is a 21×21 symmetric tri-diagonal matris, which has three pairs of eigenvalues which agree to 8 figures. The subroutine found all eigenvalues and vectors accurate to at least 7 figures. The maximum element of the matrix $I-X^{T} X$, where X is the matrix of computed eigenvectors, was less than 10^{-7}.
B) A 5×5 symmetric matrix, given in [6]. The matrix was first reduced to tri-diagonal form, using TRIDMX. The eigenvalues and vectors were found using $Q R$, and the vectors were transformed using ITRANSF (see Section 4). The answers were correct to 7 figures, and the orthogonality test, used in problem A, was 10^{-7}.
C) 120×120 symmetric matrix, produced by S. N. Hou. This matrix has eigenvalues of the order 10^{7}, and zero is an eigenvalue of multiplicity three. The three smallest calculated eigenvalues were of order .l, and the orthogonality test was 10^{-6}. As a further check, the maximum element of the matrix AX-DX was computed. Here X is the matrix of computed eigenvectors, D is the diagonal matrix of eigenvalues. This quantity, divided by the maximum element of A, was $\sim 10^{-6}$.

2.8 Calling Sequence

CALL QR (N, A, B, E, X, W1, W2, W3, M)

BELLCOMM, INC.

N : Dimension of all matrices and vectors.
A : A one dimensional array, containing the diagonal elements of a symmetric tri-diagonal matrix.
B : A one dimensional array, containing the offdiagonal elements of the tri-diagonal matrix, in locations $B(2), \cdots, B(N)$. The subroutine sets $B(1)=0$.

X : A two dimensional array, which is used to store the eigenvectors. The eigenvector corresponding to the k-th eigenvalue is stored in $X(1, K), X(2, K)$, $\cdots, X(N, K)$. The subroutine initializes this array so that $X(I, J)=\delta_{I J}$.

E : A one dimensional array which is used to store the eigenvalues.
M : The maximum value that N can assume.
w1,w2,
W3 : One dimensional working arrays.

3.0 TRANSFORMATION SUBROUTINE

If the FORTRAN statement
CALL TRIDMX ($\mathrm{N}, \mathrm{M}, \mathrm{T}, \mathrm{A}, \mathrm{B}$)
is used to transform the symmetric matrix T into tri-diagonal form, then the transformation matrix is stored in the lower triangular part of T, but in the following form:

$$
Q=\left(I-2 W_{2} W_{2}^{T}\right)\left(I-2 W_{3} W_{3}^{T}\right) \cdots\left(I-2 W_{n-1} W_{n-1}^{T}\right)
$$

where

$$
W_{r}=\left[\begin{array}{l}
0 \\
\vdots \\
0 \\
T(r, r-1) \\
T(r+1, r-1) \\
\vdots \\
T(N, r-1)
\end{array}\right]
$$

The subroutine TRANSF applies the transformation Q tc the eigenvectors of the tri-diagonal matrix to transform them into eigenvalues of the original matrix.

3.1 Calling Sequence

CALL TRANSF (N, T, X, W, M)
N: Dimension of all matrices and vectors.
T: The two dimensional array which results from using TRIDMX to transform T into tri-diagonal form.

X: A two-dimensional array which contains the eigenvectors of the tri-diagonal matrix. That is, $X(1, K), X(2, K)$, $\cdots, X(N, K)$ is the k-th eigenvector.

W: A one dimensional working array.
M: The maximum value of N.

3.2 Example

The statements

CALL TRIDMX (N, M, T, A, B)
CALL QR (N, A, B, E, X, WI, W2, W3, M)
CALL TRANSF (N, T, X, WI, M)
can be used to find a matrix X of orthogonal eigenvectors, and a vector E of eigenvalues, for the symmetric matrix T. In addition to the two-dimensional arrays $X, T, ~ f i v e ~ o n e-d i m e n s i o n a l$ working arrays $A, B, W 1, W 2, W 3$, and the vector E, are required.

2031:JSV: jct
f. S. Vaudiralt

Attachment

```
SUBROUTINE QR(U,A,F,E,X,SN,CS,C,L)
```

C THIS SUGROUTINE FINDS THE EIGEINALUES ANO EIGENVECTORS OF A C SYMMETRIC TRIDIAGONAL MATRIX.N IS THE DINENSION, A(1)....A(H) TIE C DIAGONAL,E(2)...A(N)THE OFF-DIAGONAL,E(1)....E(H) THF EIGFIJVALUFS. C $X(1, K) \ldots X(N, K)$ IS THE FIGENVECTOR CORRESPONDING TO E K I, AND SN. C CSIC ARE ONE DIMENSIONAL WORKING ARRAYS.

OIMENSION $\wedge(L), B(L), E(L), X(L, L), S N(L), C S(L), C(L)$
REAL NOTM MU.LAM
C SET THE X ARRAY EQUAL TO THE NXN IDENTITY
DO $200 \quad I=1, N$
DO $201 \mathrm{~J}=\mathrm{I}, \mathrm{N}$
$x(I, J)=0$.
$201 \quad X(J, I)=0$.
$200 \quad X(I, I)=1$.
$F(1)=0.0$
$\operatorname{NORM}=A R S(B(N))+A B S(A(N))$
$N 1=N-1$
DO $10 \quad I=1, N 1$
$S \cup M=A B S(A(I))+A B S(B(I))+A B S(B(I+1))$
IF (SUM .GT.NORM) NORM=SLM
10 CONTINUE
EPS $=$ NORM * (1C.E-R;
$M U=0$.
$M=N$
IF (M.LE.O) GO TO 500
C CHECK FOR POSSIULE DECOUPLIIJG OF THE MATRIX
20 IF (ARS(R(M)).GT. EPS) GO TO 40

DO $100 \mathrm{~J}=\mathrm{K}, \mathrm{M1}$
$A O=A(J)$
$A 1=A(J+1)-L A \because A$

$B O=B(J+1)$

$T=S Q R T(A 0 * * 2+B F T A * * 2)$

COSE: AO/T

$\operatorname{cs}(J)=\cos E$
SINE =RETA/T
$\operatorname{SN}(J)=S I N E$
$A(J)=\operatorname{COSE} * A O+S$ INE $*$ BETA
$A(J+1)=-51 N E * 130+\operatorname{COSE} * A 1$
$B(J+1)=\operatorname{CosE} * 30+S I N E * A 1$

BETA=B $(J+2)$

$B(J+2)=\operatorname{COSE} *$ BETA
$C(J+1)=S$ INE $*$ RETA
CONTINUE
DO THE TRANSFORMATION ON THE RIGHT

$$
B(K)=0 \text {. }
$$

$C(K)=0$.
$00110 \quad J=K \cdot 11$
SINE $=5 N(J)$
$\cos E=\operatorname{cs}(J)$
$A 0=A(J)$
$B O=B(J+1)$
$B(J)$) $B(J) * C O S E+C(J) * S I N E$
$\Lambda(J)=A O * C O S E+B O * S I N E+L A M$
$B(J+1)=-A O * S I N E+B O * C C S E$
$A(J+1)=A(J+1) * \operatorname{COSE}$

DO $120 \quad i=1, N$
$X_{0}=X(1, J)$
$X 1=X(I, J+1)$
$X(I, J)=X 0 * \operatorname{COSE}+X 1 * S I N E$
$X(1, J+1)=-X 0 * \operatorname{SINE}+X 1 * \operatorname{COSE}$
120
continue
110
continue
$A\left(\mathrm{H}_{\mathrm{i}}\right)=A\left(\mathrm{~N}_{\mathrm{i}}\right)+\operatorname{LAM}$
GO TO 15
500
RETURN
END
FOR,IS TKANSF,TRANSF
SUBROUTIME TRANSF (N,A,X,C,M)
C THIS SUBROUTINE TRAHSFORIAS THE EIGENVFCTORS OF A TRIDIAGONAL
C MATRIX INTO THE EIGENVECTORS OF THE ORTGINAL MATRIX.
C
A IS THE MATRIX WHICH WAS USED AS INPITT TO TRIDMX. AND X IS THE MATRIX OF EIGFNVECTORS

OIMENSION $A(M, M), X(M, N), C(M)$
$\mathrm{N} 2=\mathrm{N}-2$
DO $102 \mathrm{~K} 1=1 \cdot \mathrm{~N} 2$
$K=N-K 1$
$K 2=K-1$
DO $103 \mathrm{~J}=1 . \mathrm{N}$
SUM $=0$
DO $104 \mathrm{I}=\mathrm{K}, \mathrm{N}$
104
SUM $=$ SUM $+A(1, K 2) * X(I, J)$
103 $C(J)=2 . *$ SUM

	DO $105 J=1, N$
105	X(I, J) $=X(I, J)-A(I, K 2) * C(J)$
102	CUNTINUE
	RETURN
	END

BELLCOMM, INC.

REFERENCES

1. J. G. F. Francis, The QR Transformation - A Unitary Analogue to the LR Transformation, Parts $1 \& 2$, Comp. Journal, 4, 265-271 and 332-345, (1961/62).
2. J. H. Welsch, Certification of Algorithm 254: Eigenvalues and Eigenvectors of a Real Symmetric Matrix by the QR Method, Comm. ACM, Vol. 10, No. 6, 376-377 (1967).
3. J. H. Wilkinson, Handbook Series Linear Algebra, Numer. Math 4, 354-376 (1963).
4. J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.
5. A. S. Householder, The Theory of Matrices in Numerical Analysis, Blaisdell, New York, 1964.
6. P. A. Businger, Eigenvalues and Eigenvectors of a Real Symmetric Matrix by the QR Method, Algorithm 254, Comm. A.C.M. Vol 8, No. 4, 218-219, (1965).
7. B. N. Parlett, Convergence of the QR Algorithm, Numer. Math, 1, 187-193, (1965).
