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fROM: J. S. Vandergraft

ABSTRACT

A FORTRAN IV subroutine has -been written which, when
used in conjunction with the subroutine TRIDMY. in the UNIVAC 1108
MATH-PACK, will find the eigenvalues, and a set of orthogonal eigen-
vectors, for any real symmetric matrix.* The subroutine applies
the QR algori*hm to a symmetric tri-diagonal matrix. This algo-
rithm finds a sequence of matrices, which are orthogonally similar
to the original matrix, and which converges to a diagonal matrix.
The product of the similarity transformations converges to the
matrix of eigenvectors; hence the algorithm produces orthogonal
eigenvectors, even when some eigenvalues are multiple.

Also included is a subroutine which uses the output of
TRIDMX to transform the eigenvectors of the tri-diagonal matrix
into the eigenvectors »f the original matrix.

* The subroutine TRIDMX uses Householders' method to transform
a symmetric matrix into tri-diagonal form.
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1.0 INTRODUCTION

b ]

The QR method was developed by Francisll‘ as a method
for finding the real and complex eigenvalues of an arbitrary
matrix. When applied to a symmetric matrix, the algorithm also
produces a complete set of orthogonal eigenvectors. Comparison

with the procedures given by Wilkinson[2'3] for solving this
same problem using Householder's reduction to tri-diagonal form,
the Sturm sequence method, and inverse iteration, shows that

the QR algorithm is about 60% faster[4]. Moreover, the eigen-
vectors produced by Wilkinson's routines are often not ortho-
gonal, and in fact, if multiple eigenvalues exist, special
techniques must be used to obtain a full set of eigenvectors.

The QR method should not be used, however, if only a
few selected eigenvalues and eigenvectors are needed. For
this problem, the Wilkinson techniques are superior.

If TRIDMX has been used to transform the matrix into
tri-diagonal form, prior to applying the QR method, the eigen-
vectors produced by QR must be transformed into eigenvectors
of the original matrix. A separate subroutine has been pro-
vided to do this transformation.

2.0 THE QR ALGORITHM

Let A be any symmetric matrix. It can be shown
(see Section 2.4) that there is an orthogonal matrix Q and an
upper triangular matrix R such that A = Q*R. Let A, be the

1l
matrix R-Q, and decompose A, into the product Q,°R,, where Q,
is orthogonal, Ry is upper triangular. Let A, = Rl-Ql and
repeat this process to obtain a sequence of matrices Al'AZ"°"

The k-th step is:

Given A, ., find an orthogonal matrix
Qk—l' and an upper triangular matrix R,_, SO that

Bg-1 = Q-1"Rg-y- Then, let Ay = Ry Q-
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Since

- . - T . .
B = Rpe1°Qpy = Qg Qo Ryo1" %y

T
Ox-1 Px-1 %-1

it follows that A, is similar to A, _,+ and hence by induction,
all of the matrices A, Ay/By, e are similar and therefore have
the same eigenvalues.

2.1 Convergence Theorem

Let A be any real symmetric matrix, and let Al,AZ---

be the sequence of matrices defined above. Then this sequence
converges to a diagonal matrix, where the diagonal elements are
the eigenvalues of A. Moreover, if ), denotes the i-th diagon-

i
al element, then lei 2 a2 e 2 Ikn[.

In the special case when all of the eigenvalues have
distinct moduli, (i.e., [All > gl > eee > |xn|,) it can be

shown that the (i,j) element, i>j, tends to zero like

k

>[ >
. |-

Because of symmetry the (j,i) element also tends to zero. If

the eigenvalues do not all have distinct moduli, the off-diagonal

17

elements still tend to zero, but in a more complicated manner

2.2 Shift of Origin

To increase the rate at which the off-diagonal elements

tend to zero, the matrix A, is replaced by A - S Is where Sy
is a scalar. Since the eigenvalues of A, - SkI are iy - Sk’

kz-sk'...'. n

_ e 1k
Ay - Sy
[%5= 5

A = Sp¢ the (i,j) element, i>j, tends to zero like
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Hence, if Sk is chosen to be close to Ai' the ratio

Ixi - Skl/lxj - Sk] is very small, and convergence to zero is
accelerated. The method for choosing Sk is described in
Section 2.3.

In order to preserve the similarity of the matrices
Al,Az,---, and still incorporate the shift of origin idea, the

basic algorithm is replaced by:
(2 - st) = 9cmy

Byl = Ry O + 51

It should be observed that the use of origin shifts
may destroy the ordering of the eigenvalues along the diagonal.

2.3 OR Applied to Tri-diagonal Matrices

It is easily seen that if A is symmetric and tri-
diagonal, then so also are SRR Hence a preliminary re-

duction to tri-diagonal form, using Householder's method for
example, results in a drastic reduction in computation time,
program complexity, and storage requirements. Furthermore, if
A is tri-diagonal, then the last row of A, contains only two
k) (k) [5]
(X) n,n-1’ "n,n° '
the element a differs from an eigenvalue by less than
la (k) (k)
n,n-1 n,n-1
(k)
%n,n .
parameter Sk' defined in the previous section. In this case,

non-zero elements, a By the Gerschgorin Theorem

|, provided |a |, is small. If this is true, then

is close to A and can be effectively used as the shift

the (n,n-1l) element will tend to zero very rapidly. As soon as

(k)

this element is suitably small, a . can be accepted as an

eigenvalue, and the last row and column can be dropped from the
matrix. The algorithm is then applied to the resulting (n-1)
x (n-1) matrix.

A somewhat better choice for Sk is to use the smallest

eigenvalue of the 2x2 matrix

[—

SR
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2 (k) (k)
n-1l,n-1 n=-1,n
(k) o (K)

See [2]).

2.4 Calculation of Ak+1

The matrices Ak’ Ak+1 are related by

where Qk is an orthogonal matrix, such that QkT B is upper tri-

angular. (For simplicity, in this section we will assume
Sk = 0.) Let U, be tb~ rotation matrix

- . -
cosb6 siné 0 ¢« 0

-sind cos6 0

U, = 9 0 1.
: . 0
b 0 ...'.QC‘...OCO‘ 0 1—

where 6 is chosen so that the (2,1) element of Ul-Ak is zero.
That is,

. L
(k) (k)
cosb = 11 sing = 221
r ’ r
" 1/2
_ 2z 2
r = (all + asy )

Similarly, let

TR, . 0 W Y

i s e s . Sy e -
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5
'§ 13% column
§ ..l. -
% Ui = cos6 sind — iEh row
: -sineé cosé
. 1,
. ! .lJ
where
g o (K) a ulo
g _ 843 - _i+l,i
E cosé = T ' sino -
1/2
i I 2 !
i r= (all tain 1) !
o Then, if Ak is tri-diagonal, and
Un-1"Un-2" Uy Uy By = ;
R.k will be upper triangular, and Qg = Un_l'Un_z---U1 is orthogonal.

2.5 Program Details

The subroutine QR is essentlally a FORTRAN IV version
of the algorithm QR 2, as described in [6], and including the
modification suggested in [2]. The logic has been changed slight-

ly, and the "zero" tolerance has been set to ¢ = ||AH°° where

Halle =125 .. 0 Zlau :

The matrix is assumed to be in tri-diagonal form, with
diagonal elements A(l),~--,A(N), off-diagonal elements B(2),+-*B(N).
The two-dimensional array X is initially set equal to the N x N
identity matrix, and the transformations Ql'QZ'°" are applied to
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X as they are generated. Since Q) is a product of-simple plane

rotations, they need not be stored as a two-dimensional array:
hence, the only two-dimensional array which is needed is the ar-
ray X which will finally contain all of the eigenvectors.

2.6 Accuracy

All of the transformations involved in the QR algorithm
are stable with respect to round-off error. Hence, gnod accuracy
can be expected, even for very large problems. In practice, it
is found that the largest eigenvalues are accurate to at least
seven significant figures, and the corresponding eigenvectors to
six significant figures. The smaller cigenvalues will have fewer
accurate significant figures because, in general, all eigenvalues
have the same absolute accuracy.

2.7 Test Problems

The subroutine was tested on the following problems.

(4]

This is a 21 x 21 symmetric tri-diagonal matrix, which has three
pairs of eigenvalues which agree to 8 figures. The subroutine

found all eigenvalues and vectors accurate to at least 7 figures.
T

A) The matrix Wzl, defined in Wilkinson , page 308. -

The maximum element of the matrix I - X X, where X is the matrix

of computed eigenvectors, was less than 1077,

B) A 5 x 5 symmetric matrix, given in [6]. The matrix
was first reduced to tri-diagonal form, using TRIDMX. The eigen-
values and vectors were found using QR, and the vectors were
transformed using TRANSF (see Section 4). The answers were correct
to 7 figures, and the orthogonality test, used in problem A, was

1077,

C) 120 x 120 symmetric matrix, produced by S. N. Hou.

This matrix has eigénvalues of the order 107 , and zero is an
eigenvalue of multiplicity three. The three smallest calculated
eigenvalues were of order .l, and the orthogonality test was

10-6. As a further check, the maximum element of the matrix AX-DX

was computed. Here X is the matrix of computed eigenvectors, D
is the diagonal matrix of eigenvalues. This quantity, divided by

the maximum element of A, was » 10-6.

2.8 Calling Sequence

CALL QR (N, A, B, E, X, W1, W2, W3, M)
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N Dimension of all matrices and vectors.

A : A one dimensional array, containing the diagonal
elements of a symmetric tri-diagonal matrix.

B ¢ A one dimensional array, containing the off-
diagonal elements of the tri-diagonal matrix, in
locations B(2),++,B(N). The subroutine sets
B(1l) = 0.

X : A two dimensional array, which is used to store
the eigenvectors. The eigenvector corresponding
to the k-th eigenvalue is stored in X(1,K), X(2,K),
«¢¢,X(N,K). The subroutine initializes this array
g2 that X(I,J) = 6_..

1J

E ¢ A one dimensional array which is used to store the
eigenvalues.

M : The maximum value that N can assume.

Wl,wW2,

w3 One dimensional working arrays.

3.0 TRANSFORMATION SUBROUTINE

If the FORTRAN statement

CALL TRIDMX (N, M, T, A, B)

is used to transform the symmetric matrix T into tri-diagonal
form, then the transformation matrix is stored in the lower tri-
angular part of T, but in the following form:

where

o treow W (Toow wEY .. T T .
Q = (I-2W,W,) (I-2W W3) -+« (I-2W _ W )

O e O

T(r,r-1)
r T(r+l,r-1)

| T(N,r-1)
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The subroutine TRANSF applies the transformation Q tc
the eigenvectors of the tri-diagonal matrix to transform them
into eigenvalues of the original matrix.

3.1 Calling Sejuence

CALL TRANSF (N, T, X, W, M)

N: Dimension of all matrices and vectors.

T: The two dimensional array which results from using
TRIDMX to transform T into tri-diagonal form.

X: A two~dimensional array which contains the eigenvectors
of the tri-diagonal matrix. That is, X(1,K), X(2,K),
ses, X(N,K) is the k-th eigenvector. :

A one dimensional working array.

=

M: The maximum value of N.

.

3.2 Example

The statements

CALL TRIDMX (N, M, T, A, B)
CALL QR (N, A, B, E, X, W1, W2, W3, M)
CALL TRANSF (N, T, X, Wi, M)

can be used to find a matrix X of orthogonal eigenvectors, and
a vector E of eigenvalues, for the symmetric matrix T. In addi-
tion to the two-dimensional arrays X,T, five one-dimensional
working arrays A,B,W1,W2,W3, and the vector E, are required.
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SUBROUTINE GR(:HrAsBEsXeSHICS,CoL)
THIS SUBROUTINE FINDS THE ETGENVALUES AND EIGENVECTORS OF A
" SYMMETRIC TRIDIAGONAL MATRIX.N IS THE DIVENSIOM»A(1)e.eeA(H) THE

BIAGONAL 15 (2) 04 soBIN)THE OFF=DIAGONALIE(1) 000 E(H) THF EIGFHVALUFS.,

R R

CX(L1K) reeas X(NoK) IS THE FIGENVECTOR CORRESPONDING TO E (K)o AND Sii,
'cs,c ARE ONE DIMEMNSIONAL WORKING ARRAYS, - |

o B

DIMENSION ALY, B(L)oE(L)uY(L oL).SN(L)'CQ(L)oC(L)

"REAL NORM ,MU,LAM

c "SET THE X ARRAY EQUAL TO THE NXN IDENTITY

DO 200 I=1,N
DO 201 J=I,N

X(I,J)=0,

200 XeJyDy=o0, i )
200 x(I,n=1, " '

T B(1)=0.0 o B

CNORM = ARS(B(N))+ABS(A(N))

T T NisNeY i

DO 10 I=1,N1

)  SUM=ABS(A(I))+ABS(B(I))+ARS(R(T41)) - -
" IF (SUM .GT.NORM) HORM=SLM '

10 CONTINUE
" EPSz NORM % (1n.E-a,'“"

 MU=0.

T M=N

15 IF (M.LE.0) GO TO 500

¢ CHECK FOR POSSIBLE DECOUPLING OF THE wATRIX

m—— e e e wh o —————— - [PURSUNUR e

20 IF (ARS(B(M)).GT. EPS) GO TO 40
s s - - * - L T P et —n o ———r
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90

oL EAMIZAMMY

S M=M~}

606 TO 15

B 3 1 L UV

CK=MY
CIF(ABS(BK)) .LELEPS) 6O TO 42
KzK=1

60 TO &y .

L BOSBOMIMAN2

_ AL=SGERTO(A(ML) =A (M) ) %244, %30y

o T=AMLY A (MY =RO

CAOSAMMLYHACMY
_.._FaCT=1.0 e

. JE(AG .LT.0.) FACT=-1.0 = =
- LAM=0.5% (AO+FACT*AL)

U 4 S 1 S

_ IF_(ABS(T=tU)-0,5%A35(T)) 70+80,80

MUY

 LaM=T

.. 6070 90

e JE (ABSILAM=MU) =0.5%ABS(LAM) ) 01.82e82 . . . ™

o Mu=ULAM R

_ .60 .TO0 90 _ .

o MU o e e

LAM:OQ

_AK)Y=A(K)=LAM

¢ . ._DO _THE_TRANSFORNMATION ON THE LEFY. . _ .. .

“BEIA=B(K+1).WN.d.muww“pwwﬁ,”mmt_%u“m_mu“-Mﬂd“umm,mfwm«hu_m,,_,d;,”

W NG i




DO 100 J=K,M}

Fipn tumant % ik

L Ao=A(d) | .
:  BO=R(J+1)

H

COALSAGIHLI -LAY S

T=SORT (AD*+#24PETAX¥2)

-~ cose=mosT
 eswn=cosE

CSINE ZAETA/T

©oSN(O=SINE

Lt RN ]

 B(J+1)=COSE*30+SINE+AL
U BETA=B(+2)

T B(J+2)=COSEXRETA

 C(J+1)=SINEXBETA

~conNTINUE
DO THE TRANSFORMATION ON THE RIGHT

DO 110 J=K,™1

-  SINE=SN(J) ”
3 cosEzesty o
§? e em e e w v e ara - o -~ - i e e e i me a e e P - - JU—
Ad=A(J)

 BO=R(J+1)

B(J )-R(J )#COSE + C(J

 ACJ)=AD#COSE+BO*SINE+LAM

 B(J+1)=-A04SINF+BO*CCSE

s e ~EE s A am ATl 4 a eE—_m i oA— e

ACJ+1)ZA(J+1I4COSE

T AC(JIZCOSE*AO+SINE#BETA

A(J+1)=~SINE*RO4COSE*AL




G .- APPLY THE TRANSFORMATIONS TO THE X MATRIX

~..DO 120 iz1,N

S XO=X(Ted) .

X(IL,)=X0%COSE + X1%SINE

S X(Ipd+1)==X0+SINE +X1xCOSE

2120 0 _COWTINVE . . . .

110 ___ . COWNTINUE . _ . . . ..

e e e 200 TOLAS i

2500 . RETURN. . L

W FOR+IS TRANSF,TRANSK

 SUBROUTIME TRANSF (NyA,XeCoM)

¢ __THIS SUBROUTINE TRANSFORMS THE EIGENVFCTORS OF A TRIDIAGONAL
C_____MATRIX INTO THE EIGENVECTORS OF THE ORTGINAL MATRIX.
c__ WMAPLSMIHE“MATRIXbWHICUWWASHNSED“AS,INPHT_TQ_TRIDMXo“AND”““"M

€ X IS THE MATRIX OF EIGFNVECTORS

I & £ & & XS E 5 B R * e

o ANGRYEAMYELAM T

e m em m ke i e AR e a meaa ceia—m oo a

- DIMENSIOM _ACH M) o X(MoM) e C(MY

. Me=p=2

K=N=-K1 e e e e e e

T e - ——

K2z=K~-1

e POC103 J=L,N

e DO A0 TZKeN

. SUM_=SUM+A(TI,K2)%xX(Ted)

103 .. C(J)=2.xSUM__ — -

... DO_102 Kiz=deMN2

SUM . =0 o

e D005 YI=KON L

i

W i

T—
A
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