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SUMMAF ¢

A method of multivariate interpolation for the production of a smooth surface which passes
exactly through o set of given points in three~dimensional space is discussed, Two methods of
projecting this surface onto a plane are developed. A Fortran computer program which employs
the above techniques to produce three~dimensioral plots of the interpolated surface is described.
The utilization of this program to produce mode plots of vibrating structures is indicated.

T L




TABLE OF CONTENTS

Page |
SUMMARY ii
TABLE OF CONTENTS iii
LIST OF FIGURES v
LIST OF SYMBOLS : vi
1.0 INTRODUCTION ]
1.1 The Input Data ]
1.2 Multivariate Interpolation 1
1.3 Projection of the Surface onto a Plane [
1.4  The Computer Program 2
2.0 MULTIVARIATE INTERPOLATION TECHNIQUE 3 'y
3.0  SURFACE PROJECTION 7
8.1  Normal Projection 7
3.2  Perspective Projection 8 P
4.0 THE COMPUTER PROGRAM : 10 **
4.1 The Main Program (Review) - | 10
4.2 Subroutine ACCEL (X, M) 12 o
4,3  Subroutine MATMULT (A,P,S,M, MJP) 12 o
4.4  Subroutine CUBIC (Y, X,T,M,N) 13
4.5  Subroutine NEWJAC (NX,N,A) 13 o
4.6 Subroutine TRANS (XP,YP,X,Y,Z, IPER) 13 o
4.7  Input to the Program 13 L
4.8  Output From the Program 13 o
o
5.0 APPLICATION OF THE PROGRAM 16
5.1 Presentation of Input Data 16
- 5.2  Choice of the Plane of Projection .- 16
5.3  Tangential Boundary Conditions 16
6.0  CONCLUSIONS 7 18

REFERENCES ~ L N [




TABLE OF CONTENTS (Continued)

APPENDIX A - COMPUTATION OF THE x AND y COORDINATES OF A POINT
P(u,v) ON THE INTERPOLATED SURFACE

APPENDIX B - ISOMETRIC SURFACE PROJECTION
APPENDIX C - LISTING OF COMPUTER PROGRAM REVIEW '

iv

Page

20
22

27




Figure

A-1

B~1

B~2

LIST OF FIGURES

Page
A Typical Grid in the x-y Plane, Formed by Connecting the x,y
Coordinates of the Input Data 3
Diagram Showing Typical Surface Segments, Input Data Points (P;j, etc.)
and Surface Tangents (Sij' Tij)' 4
Illustration of the Perspective Projection of the Point p(x,y,z) onto the
Plane of Projection (IT) 8
Surface Plot of Cylindrical Structure at its 16 Hz Resonant Mode 17
Ilustration of Interpolated Surface Showing the Projection of a Point P
Onto the Plane of the Grid 20
Diagram Showing the Relationship Between the Original Axes and the
Plotting Axes for the Normal Projection 23
Diagram Showing the Angular Relationship Between the Projections of
the Original Axes on the Normal Plane of Projection and the Plotting
Axes 23
Diagram Showing the Angular Relationships Between the Projections of )
0z and Ox on the Piot Plane and the Normals to These Projections | 24




X,, OF X
J

yij ory

zZ,,0orz

47

LIST OF SYMBOLS

A vector defining an input data point (x, i’ ylj, zu)

The parametric form for the ordinates ofthe surface segments .J

Coefficients of u and v in P(u,v). (Note that the interpolation fechmque
revolves around the computation of the various sets of qu )

The tangent to the surface at '5' with respect to v

The surface segment fitted to the input data points P. ., P. and

— ij+1’ P ,J
P, 41
The tangent to the surface af'l?.'- with respect to u

Where 0 <u <1, parometric variable used to define the surface segment«.d

Note that u =0 along P P P,

and u =1 c:longP P|+1J+l

ij+l i+1]

Where 0< v <1, parame'rrlc variable used to define the surface segment J
Note that v—~00|ong Pj P. ] and v =1 along P i+ P|+l i+

The x coordinate of the projected point Pij
The x coordinate of the input data poinf—i;;j

The y coordinate of the projected point F;j

The y coordinate of the input data point F:J

The z coordinate of the input data point T’:J

vi




1.0

1.1

1.2

1.3

INTRODUCTION

The value of a three=dimensienal representation of the distorted shape of o structure
subjected to random or sinusoidal vibrations has been recognized for some time.
Normal mode theory provides a convenient method of exbressing the vibration of a
dynamic system and the determination of the low order normal modes of o complex
system is best performed by a surface interpolation of the meusured respense of the
system, In order to obtain such a surface, the coordinates in x,y,z space of a set of
points on the distorted structure must be obtained, such that the set form o reasonable
grid (hot necessarily rectangular) over the whole surface of the structure., An accept-
able model of the distorted shape of the structure can be obtained by employing a
multivariate interpolation technique. Transformation of this model to a two=
dimensional set of axes facilitates the plotting of the surface on an X-Y plotter,

The Input Data

If the structure under consideration is a flat plate, then the set of points on the

distorted structure may be fairly easily obtained. For convenience the original axes
are chosen such that the stationary plate is contained entirely in the x~y plane. Tha
displacements of the distorted plate are measured by transducers whose locations form

the grid of points. Thus the x and y coordinates of the required set of points are merely

the x and y coordinates of the transducers attached to the stationary plate, and the z

coordinates are the displacements measured by the transducers at resonance. A detailed

account of the application of this plotting technique will be published in a separate
report. Similar techniques may be employed for cylinders and spheres except that the
positions of the transducers are best expressed in cylindrical and spherical cosrdinates,
respectively, and the displacements measured by the transducers must be added to the
r coordinates in both cases provided that the axis of the cylinder coincides with the

z-axis , and in case of the sphere, the origin of coordinates is at the centre of the sphere.

Multivariate Interpolation

The multivariate interpolation technique employed divides the surface into four-
sided segments such that each corner of each segment is defined by a point an the
input grid. Cubic surfaces are then fitted to each segment such that there is con-
tinuity of first and second derivatives between adjacent segments.

Projection of the Surface Onto a Plane

Two methods of projection are used. The first method projects the surface isometrically

onto a predetermined plane. The second method projects the surface perspectively

_onto a predetermined plane.

s S A, it g b e st i S gt e

S




1.4

The Computer Program

A Fortran computer program has been written which employs the techniques outlined
above to produce three-dimensional plots of interpolated surfaces. The plots are in
the form of o series of curves which outline the interpolated surface (see Figure 4),
It is of interest to note that the projections of these curves onto the x-y pleane of the
three~dimensional set of axes form a series of straight lines.




2.0 MULTIVARIATE INTERPOLATION TECHNIQUE

LefT’;j be an array of m,n distinct points in space, i =0,1,2, .., (m=1)

1=0,1,2, ...(n=1), arranged so that the structure obtained by connecting adjacent

points by atronghtwllne sagments is topologically equivalent to an m x n planar
rectangular grid (see Figure 1),
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Figure 1 = A Typical Grid in the x~y Plane, Formed by Connecting
the ¥,y Coordinates of the Input Data

Then, given a knowiedge of the tangents around the boundaries of the grid it is possible
to construct a smooth surface which passes exactly through the P (see Reference 1)

points.
The method flfs a serles of surfc,we segments A of the parametric form
t 1 / O<U, V<] B . ) - 'l

such that there is continuity of first and second derivatives between adjacent surface
segments (see Figure 2)
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Figure 2. Diagram Showing Typical Surface Segments, Input Data Points
Pij’ ¢te,) and Surface Tangents (Sij' Tij)

—

The R__ coefficients for any surface segmenf,zdij are given as functions of the four

Pijls at the corners of the segment and the eight tangents at these points:

(Let the vector arrows in the following equations be assumed .)

Reg = 2Py = Piju) + (555 + Spg)
Rio = T t
R” = 0
R|2 = 3(T|J+] - 1”) 1
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Ry = 2 (Tij = Tijsﬂ)

Reo = S(PIHJ Pl) (ZT T|J+1)

Rar = 3 Giygj - Syy)

R = 3 I3 a1 = Pijay Py = Prag) 2 (Tij = Tiga) (Mg = Tha )

F2(Si) = Sy F Sy = Sia ja)]

Res = 2 [8(Pryq = Py Pyt = Praa o) * 2 Ty = T (g - T
F 8yt S e 7 Sy Sy

Roo = 2Py = Pryg ) + T + T

Rt = 2(S;;= Spy))

R = 312 Py = Prs g " Py = P " i * T ) = Ty # Ty
H4(S0; 7 Sip) Y2 (S 54 7 Sigw)

Reg = 2 [2(PU - P;Hj ¥ PH—? i+ Pij+1) * (Tij Ti+lj) B (Tij+l * Ti+l j+1>

TGS Sy T Sia T Sk e @)

The recursive relationships between the tangents at the points F;j are:
| + 4 Slyi-'l +S ij+2 = 3 (Pij+2 - Pij) i=0,1,...(m=3)

Thus for the grid line implied by P2 (say) it is required that Sy and So 1 be known

so that the set of simultaneous ||necr equations implied by Equation (3) above may be
solved.

Lons o o

Note that for the surface segment A:i Pij = P(Q,0), Pi+lj
T>'| = p(0,1), P. = p(1,1). |

= P(1,0),

i+ j +l

j +1




R,

If some point P on the surface has coordinates (x,y,z) with respect to some predefined
set of axes, then:

x = X(u,v)

y = Y(u,v)

z = P(u,v)
where

J A v (1 =u) x,

Xw,v) = (1 =v)[(] =u) x,, +ux, |j+1+uxi+1j+l]

i i+ ”

Y(u,v) = (1 -v) [(1 - v) yij tu YH.-IJ-] +v [(T~v) yij'” tu YH‘] j+'|] .

A proof of Equations (4) is offered in Appendix A.




3.0

3.1

SURFACE PROJECTION

Section 2.0 above shows how to obtain a multivariate interpolated surface with
respect to o rectangular set of axes 0,x,y,z. There remains the problem of trans-
forming to a two~dimensional set of axes XOY for the purposes of plotting.

Isometric Projection

It is assumed that the origins of XOY, 0,x,y,z are coincident and that the point
in space p(x,Yy,z) is transformed to P (X,Y) on the projection plane. It can be shown
(see Appendix B) that:

X = = xsin B, sin (8, + ¢) +y sin Gy sin (ezy = ¢) = zsin 6, sin¢

Y = = xsinB, cos (0, *+¢)-ysin®, cos(0,, ~¢) +2zsinb, cos ¢ [

4 zy

where [cos 8, , cos Oy, cos 0] =[2,m,n] are the direction cosines of the normal f

to the projection plane at the origin.

¢ is the angle measured anticlockwise from OY to the projection of OZ on the
projection plane.

-
8 - mn
gy = W™ COS i
4 Y (7 +m?) (27 +n?)
i
- In
6, =m-cos ! >
f/(4F +m?) (m? +n?)

Thus in order to define the plot, ¢ and two of [2,m,n] must be defined, (Note

2 . . .
that £° + m? +n? =1, because they are direction cosines.)




3.2

Perspective Projection

/ p(x,y,2)

Figure 3. Ulustration of the Perspective Projection of the Point p(x,y,z)

onto the Plane of Projection (I1)

Given the center of projection (c,, Sy cz), the direction of sight, [cos @, cos 8,

cos y], and the distance d from the center of projection to the origin on the plane of
projection (1) then it can be shown (see Reference 2) that the transformed coordinates
P(X,Y) of p(x,y,z) are given by

where

it

il

X = [(& -qx)cosﬁ—(r]-qy) cos a]/siny

Y =(-q,)/siny

c, T Kix-cyp)
Sy + K(y - cy)

o, +K(z-c)

d/[(x e Cx) cos d +(y = Cy) cos B + ( z - cz) cos y]

¢ +dcosa
x | 9CS




Wk

9, g"~c:>,-‘*°dc:osﬁ

q, = ¢, tdcosy,

Thus in order to define the plot, c,, Cyr Cyr d and two of @, 8, y must be defined.

‘(Note cos? @ +cos? B +cos? v =1 becduse they are direction cosines.
Y Y

It will be noticed that the above transformation depends on sin y # 0. It can be
shown (Reference 2) that if sin y =0, the x~axis can be defined as the intersection of
of the plane of projection and the vertical plane n = g, = 0. If, furthermore, up
corresponds to an increasing y=component, positive X ‘is to the right and positive Y is
up, then the perspective transformation is:

X =[=-(& -qx) c:osy'i‘(C-qZ) cos &) /sin B

Y = (n- qy)/sin 8 .




4,0

4.1

THE COMPUTER PROGRAM
A computer program has been prepared in the Fortran language to utilize the methods
of Sections 2.0 and 3.0, which yields three~dimensional plots of interpolated surfaces
obtained from a given set of input conditions. This program is an extension of an
existing program. The hew program has four distinct advantages over the old one --
(i) It has a much larger general application, f

(i)  Two methods of projection are offered to the user.

(iif) The user has a choice of three coordinate systems for the input
data; namely, Cartesian, cylindrical polars, and spherical

polars,
(iv)  All the two=dimensional arrays involved in the computation
are held as one~dimensional arrays so that best use is made of
the available amount of data storage space in the computer.
The Main Program (REVIEW) ,‘
The main program performs the following functigns:
(i) Inputs and decodes the control parameters. (A more detailed
account of the function of these parameters will be given later i
in this section.)

(i) Computes those parameters required for the transformation of
coordinates and places them in convenient locations in COMMON
for use in subroutine TRANS. '

(iii) Inputs the data points.

(iv) Uses subroutine ACCEL (EUpplied by the user) to input further
data (e.g., transducer data) and adds the input vector ADDIT
to: o

(@) Adds to z coordinate for Cartesians
(b) Adds to u coordinate for cylindrical polars

(c) Adds to r coordinate for spherical polars.

(v)  Converts the data to Cartesian coordinates .

10




(vi)

(vii)

(viii)

(ix)

(x)

Normalizes the data so that the modulii of the maxima of the x, y
and z coordinates are each equal to unity. It is worth noting here
that the user must be careful in the selection of units for (iii) and
{iv) above, or the data may be ruined by the normalization process.

Sets up the initial boundary conditions, according to the values of
parameters ITT, ITS input at stage (i) above. This may involve sub-
routine CUBIC.

Fits the interpolated surface. This invelves the use of subroutines

NEWJAC and MATMULT.,

Transforms the interpolated surface for the purposes of plotting. This
utilizes subroutine TRANS,

Plots the three~dimensional surface.

4.1.1  The Control Parameters

ITAX

MIP
MJP

ITS,ITT

the value of ITAX determines the coordinate system of the input
data:

if ITAX =1 then Cartesian coordinates

=9 then cylindrical polars {u,¢,z)
where x =u cos ¢, y=usin¢, z =z

=3 then spherical polars (r,0,¢)
where x = rsin 8 cos ¢, y =rsin 0@ sin ¢,
z=rcos0

#1,2,3 thenend of run.
the number of rows on the input grid

the number of columns on the input grid (Note: there are (MIP-1)
(MJP=1) surface segments).

these parameters define the initial boundary conditions for the S and T
tangents, respectively.

=] then the boundary tangents are input from

cards. Note that 2x MIP S's and 2x MJP T's
are required. '

m




=3 then a cubic is fitted through four data points
(see example below) and the required tangent
estimated from the cubic, For example, for

$3n~1 the poinfs P3n-'l ’ Psn_2, van_s and
P3n-gq are used .

#1,2,3 then end of run.
IPER this parameter determines which form of projection is to be used

if IPER <0 then the normal projection as described in
Section 3.1 is used.

>0 then the perspective transformation as described
in Section 3.2 is used,

IUSTOP this parameter determines how many contour lines per surface segment
are to be plotted. That is, u will vary between zero and unity in steps
) of USTEP where USTEP = 1/(IUSTOP-1),

IVSTOP this parameter determines how many peints per contour line are to be

plotted. That is, v will vary between zero and unity in steps of VSTEP
where VSTEP = 1/(IVSTOP = 1),

“‘ 4.2 Subroutine ACCEL (X, M)

This subroutine must be supplied by the user. On exit the array X must be filled with
supplementary data (e.g., transducer data). M is the number of input data points.

The tnain program will add the array X to the input data according to the conditions
described in Section 4.1(iv),

i

) 4.3 Subroutine MATMULT (A,P,S,M, MJP)

i This is @ matrix multiplication routine. The matrix A is multiplied by the vector P

i to give the tangent vector S. M is the number of tangents to be computed and MJP
the number of columns of input data.

j Entry MULTMAT deals with the case where the T tangents are rquired.

B
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4.4

4.4

4,7

4.8

Subroutine CUBIC (Y, X, T,M,N)

This subroutine fits the model

- i 2 3
wbo**'blx-i*bzx + by x

by the method of least squares, where y and x are assumed to be arrays of four elements
each, If N =1, then the tangent at x = X(1) is computed and placed in T(1), i.e.,

T() = b, +h, X(1) +by [X(1)]°

If N =2, then the tangent at x = X(4) is computed. Entry RECUBE decls with the T
tangents and CUBIC with the S tangents, M is the number of columns of input data,

Note N =1 for the computation of tangents along the "top" and "left hand side" of
the grid and N = 2 for the opposite boundaries,

Submuﬁ e NEWJAC (NX, N, A)

This subreutine inverts tha matrix A. NX is the number of columns nominated in the
deceleration statement for A in the calling routine and N is the actual number of rows
(and columns) in A,

Subrouﬁ ne TRAINS (XP,YP,X,Y,Z,IPER)

‘This subroutine transforms the three~dimensional coordinates (X,Y,Z) to the two~

dlmensmnal set (XP,YP). If IPER > O then the transformation is as described in
Section 3.2 (i.e., perspective). If IPER < 0 then the transformation is as described
in Section 3.1 (i,e., normal).

Input to the Program

This is best illustrated in tabular form on the following page.

Qutput From the Program

The output from the program consists merely of o three=dimensional plot.

13




Card

Type Symbol | Nmemonic | Columns | Format Description

] ITAX ITAX 1-5 15 This parameter defines the coordinate
system of the input data, See Section
40 , l] ]

] M MIP 6-10 | 15 The number of rows of input data.,

1 N MJP 11-15 I5 The number of columns of input data,
These parameters define the tangential

} g.?. g? ;?_gg }g boundary conditions for S and T,

| | respectively, See Section 4,1.1,

] IPER IPER 26-30 | 15 This parameter defines the type of plot
transformation to be used, See Section
4,1.1.

1 IUSTOP| IUSTOP | 31-35 15 The number of contour lines to be
plotted per surface segment.

1 IVSTOP| IVSTOP | 36-40 15 The number of points to be plotted per
contour line.

*2 |9 PHI 1-10 | F10.0 | Theangle ¢ in degrees. See Section 3.1,

2 16, THX 11-20 | F10.0 | The angle 8y in degrees, where
cos B, = L. See Section 3.1.

2 Gy THY 21-30 F10.0 The angle 0, in degrees, where
cos By, =m. See Section 3.1.

2 6, THZ 31-40 F10.0 The angle 8, in degrees, where
cos B, =n, See Section 3.1,

2 TI TI 41-50 F10.0 TI=1,2 or 3 and indicates which of
Bx, By, 6, above is redundant, as only
two of them need to be defined. See
Section 3.1,

*%2 | d D F10.0 The distance from the center of projec-

tion to the plane of projection, (Units
as per input data.) See Section 3.2.

14




L=

$;;: Symbol | Nmemonic | Columns | Format Description
2 Cx CX 11=20 F10.0 The coordinates of the center of pro=
2 Cy cY 21=30 F10.0 | jection. See Section 3.2,
2 le, cZ 31-40 F10.0 Units as for D above
g g ’mé g}:gg ﬂgg The angles in degrees, of the direction
2 y THZ 61=70 F10.0 | of saght. See Section 3.2,
2 | TI Tl 71-80 | F10.0 | TI=1,2 or 3 and indicates which of
@, B, y above is redundant as only
two of them need to be defined. See e
Section 3.2,
—
. ; )\:28 ]}:;g l;}gg } The coordinates of one input data point,
z Z(L) 21-30 F]0.0 See Section 2.0;
" 4t S < 1-80 | 8F10.0| The boundary values of the S tangents. i
Here the tangents Sy1 through Sy are
read up to eight per card. .
o St S(I) 1-80 | 8F10.0| Tha boundary values of the § tangents.
) Here the tangenis Sy through Sy, are
read up to eight per card.
+?51+' Tij T(1) 1-80 8F10.0| The boundary values of the T tangents. |
Here the tangents Ty through Ty, are
1 n
read up to eight per card.
T Tij T(I) 1-80 8F10,0! The boundary values of the T tangents. *
| Here the tangents Ty, through T, are
read up to eight per card

* This card type 2 required if [PER<O.

** This card type 2 required if IPER >0,
*%% There will be MIP x MJP type 3 cards. Note also that following the type 3- cords
extra data cards may be requnred for wbrouhne ACCEL (See Section 4.2).
I - Note that the values of these tanigents

+ There will be MIP S tungents, if required at all . { must be adjusted to allow:for the nor-

*+ There will be MJP T tangents, if required at all. { malization of the input data described
' , in Section 4.1(vi).

15




2.0

5,1

5.2

5.3

3

APPLICATION OF THE PROGRAM

Outlined in the following subsections are some important aspects of using the
program.,

Presentation of Input Datc

Due consideration should be given to the best way fo present the input data so that
the required information is best illustrated in the resulting plot. For instance, the
structure involved in Figure 4 is basically a cylinder. Cartesian coordinates with the
x=axis along the axis of the cylinder were obviously used to express the input data.
Had cylindrical polar coordinates with the z~axis clong the axis of the cylinder been
used, then Ine surface curves in the plot would have been approximately at right
anrles to those shown in Figure 4.

Choice of the Plane of Projection

The choice of the plane of projection determines the view that the user will obtain

of the interpolated surface, In practice it may be desirable to repeat the plot several
times, each with a different plane of projection, so that an optimum overall view of
a structural vibration mode is obtained. It is of importance, however, to note that
"poor" choice of the plane of projection may result in the plot being distorted beyond
recognition,

Tangential Boundary Conditions

It is important to note that the tangznts S and T are aP(u,v)/3v and 8P(u,v)/du,
respectively, (or 8z/dv, 9z/0u, respectively). Only when a rectangular grid is

used with the grid lines parallel to the x and y axes, are these tangents equivalent

to 9z/dy and 8z/8x, respectively. Subroutine CUBIC should only be used to esti-
mate tangential boundary conditions when the user has no knowledge of these values.
It must also be noted that subroutine CUBIC provides better estimates of the tangential
boundary conditions w hen a rectangular grid with the grid lines parallel to the x and y
axes is employed.

16
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6.0

Y ’:‘\
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CONCLUSIONS

The techniques and computer program described in this report are very powerful
engineering tools, particularly when used to provide plots of mode shapes of
structures vibrating at resonance., The options offered the user in methods of
presentation of data, and choices of methods of, and planes of projection, provide
versatile means of ensuring that the required information is best illustrated in the
plots produced. A subsequent report will provide illustrations of the application of
the program to provide modal plots of vibrating structures subjected to sinusoidal
and random excitations.

18




6.0 CONCLUSIONS

The techniques and computer program described in this report are very powerful
engineering tools, particularly when used to provide plots of mode shapes of
structures vibrating at resonance. The options offered the user in methods of
presentation of data, and choices of methods of, and planes of projection, provide
versatile means of ensuring that the required information is best illustrated in the
plots produced. A subsequent report will provide illustrations of the application of
the program to provide modal plots of vibrating structures subjected to sinusoidal

and random excitations.
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APPENDIX A

COMPUTATION OF THE x AND y COORDINATES OF A POINT P(u,v)
ON THE INTERPOLATED SURFACE

Interpolated Surface

v

1 Pit j

Grid

X

Figure A=1. Illustration of Interpolated Surface Showing the Projection
of a Point P Onto the Plane of the Gridl

e

Let the coordinates of the points Pij’ P...

o=

1 i

Now Pij = P(0,0), Pij+1 = P(0,1), PH’]] = P(1,0), Pi+] i+ = P(1,1). Consider some point

P(u,v) = (x,y,z) on the interpolated surface. Its x,y coordinates are given by the position of
P' on the x-y plane (see Figure A-1).

be <xij’ yij' zij)’ etc.

Let the coordinates of A, B be (xc' Y 0), (X Y 0), then

(-T2 VY




Exij (1 'U)+Uxi+lj '

Similarly,
X, = X141 (1 =u)+u X1 1
but

X""XQ “xb-xu

1

'.x=xd(l-v)+vxb '

X
il

(1 -v) [f<ij (1 =u)+u xi+lj] +y [xij-H (1 -vu)+u xi+lj+1]

The argument to find y is similar to the above, hence

y = (1 -v)[yij (1 =u) +u yi+1j] +V[yij+l (1 -U)+U>'i+1j+]] ,
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APPENDIX B

ISOMETRIC SURFACE PROJECTION

Given the surface z = f(x,y) the problem is to project this surface onto a plane, which shall be
called the "plot" plane or plane of projection, such that the projected surface may be plotted
by a computer on an X=Y plotter. Thus it is required that a new set of axes X0Y be defined in
the plane of projection to facilitate the plot. For convenience let it be assumed that the plane
of projection passes through the origin of the 0,x,y,z coordinate system; the notmal to this
plane has direction cosines [£,m,n], where £=cos 0,, m =cos 8,,, n=cos 0,; the Y axis of

the new coordinate system is at an angle ¢ measured anticlockwise from 0Y to the projection
of 0z on the plane of projection; the angle between the projections of 0z and Oy on the
plane of projection is ez‘y and the angle between the projections of 0z and 0x on the plane

of projection is 0,, (see Figures B=1 and B~2). Thus to define the plot, ¢, and two of [£,m,n]
must be defined, (Note that P 4man?=1-q property of direction cosines.)

Let the projections of Ox, Oy, 0z onto the plane of projection be O0x', Oy', 0z'. Then,

x' = x sin B, (B~1)
y' = ysin Sy (B~2)
z' = zsin@, . (B~3)

It is required fo find the coordinates of the points x', y', z' with respect to X0Y, and thus

I ezy must be found.

Let the equation of the plane containing the hormal [£,m,n] and the z~axis be given by:
Ax+B y+Cx+D =0 .

As the plane passes through the origin, D; = 0. As the plane contains the z axis, C; = 0. As
the plane contains [£,m,n], then

A,!Z +B, m=0
Hence,
A' """'B] m/,ﬂ
m x
- e =
| o]
22




%
x;} i
Figure B~1. Diagram Showing the Relafionship Between the Original Axes
and the Plotting Axes for the Normal Projection ﬁ
%

Y

Figure B-2. Diagram Showing the Angular Relationship Between the Projections of
the Original Axes on the Normal Plane of Projection and the Plotting
Axes

23




Thus, the equation of the plane is given by
-mx t Ly =0 (B~4)

Similarly, it can be shown that the plane containing the normal [£,m,n] and the x-axis is
given by

ny = mz =0 (B~5)

Obviously, the two planes mentioned above are normal to the plane of projection, contain
0z' and 0z', respectively, und the angle between them is sz.

First Plane Perpendicular
to Paper 3‘

\" Second Plane Perpendicular

to Paper

X

Figure B~3. Diagram Showing the Angular Relationships Between the Projections of
0z and Ox on the Plot Plane and the Normals to These Projections
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If AB, CB are normals to the two planes and intersect at an angle @ (see Figure B3) then

Oz = 1~ @

because 0ABC is a cyclic quadrilateral in which opposite angles sum to .
Now the ditrection cosines of the normal to the plane
Ax+By +Cz+ D=0

are given by
A,B,C
‘/A2 + % +c?

Thus the direction cosines of the normals to the planes given by (B~4) and (B-5) are

[2,m,n] =

-m, £, 0
[Bllm’!fn‘lz ,21 2'
V m° + 4
and
X 0, nf -m |
[ﬂkzrmzlhg]“ 7 5

Now the angle 8 between twe rays [£,m,nl, [£',m',n'] is given by (Reference 3)

cos® =00 +mm' +nn'

and thus
in
cos A = 5
Y@+ m?) (n? + m?)
Thus by solving (B=8) and substituting in (B=6), 0, can be found
~1 In
0, = mw~cos

ZX

YT wt) (aF )

25
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(B-9)




t
By a similar argument it can be shown that
- mn
62 =q - cos : (B=10)
4 yu? +m2) (¢ +n?)

Thus the (X,Y) coordinates of a projected point p(x,y,z) are given by

X = =xsin Oy cos(@Zx 'l=q>---12-r->- x sin 0, cos(-—%-— ¢)) +y? sin ey cos (97_),- ¢—--g—-)

= - sin 8, sin (6, + ¢) *+y sir By sin (ezy - ¢) - zsin B, sin ¢

Y = ~><sin6xcos(n-62x-cp)—ysineycos(ﬂ-ez +¢) +2z5in @, cos ¢

Y

= - X s’in B, cos (B,, *+ ¢) = ysin By cos (ezy ~ ¢) *+ z sin 6?_ cos ¢
26 ) 7
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3200 FORTRAN 1 2.2) /

PROGR /i* REVIEWY

MOMMON S1,825s83,04,02:C%2,075CY>,CZ,NDCLDOMIDCN,QY,QY, 07580, M, SN

COMMON Z(250),X(250),Y(280),TC2500»3(250),4(255,50)»1°(25)

COMMON/DATA/ZF T, 0NN

tATA(DT=34444%927)

ATA(CO»=180.N0)

DIMENSION ADDIT(252), -(d,4),YM(4)0XM04)

READC - 5 2)TTAXSMIP, ' IP, ITS, ITT»IPER, TUSTOP, TYSTOP

FORMAT (4615)

M]JP=MTRaMJP

U=FLO TOIUSTOR=4)

HSTER=4 ,9/Y

V=FLO TOIVSTOP=")

VATF =4 ,2/V

[FCIP2EYy 400,4090,10

100 READC v 70PHT s THY, THY» THZ, T ' ‘
IT=1FTX(TI) |
PHT=PAT &P /00w ﬂ
THX=THY#F1/00
THY=THyY R /00"
TilZ=TursF1/00 -
SLESTNITAX)
SUsGINCTHY )
SN=RTV(THZ)
NCL=CaF THY) |
NCM=0ASE(THY ) :
NON=COAF(THZ)
2 T c404,102,003),1T

104 DOL=SRT(41.0=D0Y%aNCM=DCN»NCN )
SLESORT(AL . 0=-N0L=D0L)Y i
B T 1444

102 NOoM=2 W T{ 4. 0=-NONaNCN=DCL#DCL )
AMRBORTLA L O=~DOMANOM)
G070 404

1073 D“N“aqu(i N=DCL#DCL~DCM#DCM)

SNESQRT(L . 0«DON#DON Y ’

104 ARCi Ull#UCN/SORz((HLL*U(I+DPMﬂDCV>#(DPM*DCM+DCN#DPN)r
ARGL=SORT( L 0=-ARGL#ARGY ) /ARG
ALF=ATAN(ARGH )
TECALF)I105,106,106 : ;

105  ALF=ALF+P] , e

106 THZX=PI=-ALF »
AQG1~DFM¢DCN/SORT((HQLﬂDCL+DCM»DCM)*(DCL*PCL+DCN*DCN))
ARGL=38ART(1.,0=ARGL#ARGL /ARG
AILF=ATANCARGY )
IFCALF)Y107,108,108

107 ALF=ALLF+PI

N
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108 THZY=RI=ALF
ARGL=THZX+PHI
$1=S1“( ARG1)
C1=CNS( ARG1)
ARGL=THZY=PHI
S2=SIv(ARGL)
nP=0NS1,ARGL )
S%=81 (PHI)
Ol=N0otPHTL ) .
SNOTH 445 |
1ne SEADC-157) DolXsCYrZsTHX» THY,THZ,TI
IT=IFIX(TI)
THUX=T-X#P1/C0
TAY=THYaP1/CO :
THZ=T«7#P1/CO |
OCL=CYS( THX)
DOM=CATLTHY) e
DCWN=CO%(THZ) 3
G0 TO (4140,144,1442), T
110 HOL=SORT(4.,0=DCMaDCM=DEN2DCN) :
AN TO 114 i
141 DOM=S RT(4.3=-DCNaDCN=DCL»DCL)
B0 TH 144
112 DIN=S RT(1.0=NCL#DCL-DCM5DCM)
11/,  1X=CX+D#LCL
"Y=0Y+DalCM
N7=C7+DaDity :
$3=8QRT(4.,0~DCN#DCN) /
S2=SHRT(1, N=DCMBDCM) )
113  “ONTINUE , i
IFCIT v)13,3.5
3 e ITES64,4) :
4 FORMAT (GX,14~ENN OF J083.)
-TOP ,
5 (1T v=4)6,3,3
“ N B T=d,HUIP %
K=(]= YaMJP ;
Qi J=1,MJIP ‘ |
L=K+.1 : . t
© WEAD (40,7 X(L)sY(L),Z(L) o
7 FORMAT (8F10.0) . o
AL)=0,0 - ‘ ’ -
A T/LIY=0.0 : SR
CALL ACCEL (ADDIT,MIJ®?)
10 13 I=1,MIP
K=(1=1)sMIP , ) : 3
043 JU=1,MIP , S T -
L=K+.) L : . » S
B0 TO0 (125,%,9), ITAY ' U o
9 X(L)IEX(L)+ADDTT(L) , , o ' , S
B0 T0 (13,105,11) ITX ' K | '
10 YC(L)=x(L)eSINF(Y(L)) B

28




11

12
13

600
6014
602
603
6504
605

e
Ul A

16
3.7

19
20

21

22

23

24

25
26

X(L)=X(L)aCOSF(Y{(L))

GO 70 12

X4=X(L)#SIN(Y(L))
Y4=X(L)2COSCLY(L))
ACL)=X12C0SCZ(L))
YCL)=x1aSINCZ(L))

2L )=v1

GO TN 13

2CL)=Z2(L)+ADDIT(L)

CONTINUE

X4AX==1,0E200

ZMAX=XMAX

YMAX=ZMAX

N0 605 I=4,MIUP
TFCABQ(XCT ) )=XMAX)YAN1,6N01,600
XMAX=ABS(X(I))
IFCABRCYCT))=YMAXI6N3,603,602
YMAX=ABS(Y(I))
TF(ABR(Z(TI))=ZMAX)BENS,605,604
ZMAX=ARS(Z(1))

CONTINUE

N0 606 I=1,MIJUP
X(T)=X(1)/XMAX

YCID)=YCT)/YMAX

2¢1)=Z¢ 1)/ ZMAX

SONTINUE

IF (ITR) 14,14,1¢6
ARITE(641,15) ,

FORMAT (410X»27HERROR IN TANGENT PARAMETE®Y.)
50 70 =

IFCIT =-4)47,14,14

50 Y0 125,518,195, 1TS
1F=MJPs(MIP=-1)+1
READCA,7)CS(L ), 1=4,1E,1JP)
ITEaMIPUMJIP

READC» »72)X(S(TI ) I=MIPTESMIP)
S0 T0 5

[F(MJP=5)20,22,22
JCITE %4 ,21)

FORMAT (40X»48HTANGENT BOUNDARY CONDITIOMS CANNOT BE SATISFIFD,.)
G50 T0O 3

(F=MJPs(MIP=1)+1

NN 23 I=4,1E,MJP

CALL CUBIC(ZCINsY(1)s8(1)sMIPs1)
SONTINUE

TE=MIPaMJP

nNo 24 1= VJP)IE:MJP

Ksl=4 5 _ 7 LTl e

CALL CUBIC tz(K),«(K),9<r7 MJP»2)
SONTINUE |

15C1TT)14,14,26
IF(IqT-4927,14,14\
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27
28

29
30

31

32

33

34

35
36

<7

39

40
a1

L4

59 TD (33,28,29), ITT
READC «vis2ITL1 ) 1=4)MIP)
[S=(M]P~] )uMJP
[#=18+ " JP

19=185«1

SEADC 27X TC1)s1=1S,IE)
0 T0 33
IF(MI2~6)20,30,30

10 31 I=14,MJP

CALL RECUBECZ(I)»XC(I)»T(I)aMIPs1)
CONTINUE

[S=(M[P=1 )aMYP
IE=1S+MJP

[S=18+1

a0 32 I=18,1E
K=l=4aMJP

CALL RECUBE (Z(K)»X(K)»TS1)sMUIP,2)
CONTINUE

MJJ=MJP =2

NO 34 T1=1,MJP

NN 34 Jd=1,MJP

A( I;‘J)-‘-0.0

CONTINUE

NO 36 I=1,MJJ
ACI,1)=4,0
TF(T=MJJ)35,346,36
ACTI+4,1)=ACT,1+1)=1.0
CONTINUE

CALL NEWJAC(25,MJJ»r»b)
NN 38 I=1,MIP
K=(]=1)eMJP

N0 37 J=i,MJdJd

Li=K+.!

L2=L1+2
POJIS(Z0L2)=-7(LL))el.n
SONTINUE

K1i=K+1

K2=K1+1
P(1)=P(1)=-5(K1)

K=K+ 2P :
P(MJII)=P(MIJ)=S(«<1)
CALL MATMULT(AA,P,S(K2)sMJJ,MIP)
OONTINUE S
MIT=M]P=-D

M 39 I=41,MI1

nn 39 J=1,MI1
ACTsd)=0e0

2N 41 I=1,MI11
ACI»IN=4,0
IF(1-~11)40,41, 41
ACT+1,1)=ACI,1+4)=1."
SONTINUE

30




43

200

F 201
- 202
203
204

CALL NE@JAC(RE,MIT,4)
) 43 1=1,MJP
10 42 J=d,MI1]
Lis(Jd=4)oMJPe+d
La=Li+28MJP
POJ)=(Z(L2)~Z2(L1))In3.0
CONTINUE
K2s(MIP=4 )sMJIP+]
RP(4)=0(L)~-T(1)
Kisl+JP
REMITII=P(MIT)=T(K2)
SALL MULTMATCAASP,T(KL)»MIT»MIP)
SONTINUE
XX=X( )
YY=Y ()
Z2=4( ")
CALL TRANS (XP,YP»XXsYY5,ZZ»1PER)
X (1)=XP
YM(1)=YP
XX=X(41,;P)
YY=Y( JP)
22=Z(H1JP) .
CAalL TRANS (XPsYP,XXsYY»ZZ»1PER)
X2 )=XP
YM(2)=YPR
Kas(M]P=1 }aMJP
Ki=K+1
XX=X(K1)
YY=Y(<1)
ZI=72(K1)
CALL TRANS (XP,YP,XXsYY,ZZ5»1PER)

XME3)=XP

YM{3)=yP
K=K+M |P

XX=X{%)

YY=Y(K)

2Z=72(K)

CALL TRANS (XP,YP, XX;YY’Z7;IPLR)
XMOd)=XP-

YH(4)=yYP

XMAX==1,0E+200

YMAX=XMAX

XMIN==YMAX

YMIN=XMIN

0y 207 1=1,4

IF (XM(I)=XMAX) ?01;203 200

CXMAX=XMOT)

50 T0 203 i
TFOXMOT)=XMINY 202;303 9&3
XMIN=XM(T)

IECYMOT)=YMAX) 205;?07:?04
YMAX= YM(I) : ‘

31




e
P2NA
267

80 TO 207
IFCYM(CI)=YMIN) 206,207,207
YAIN=YM(])
CONTINUE
SANGEX=XMAX=XMIN
RQANGEY=YMAX=YMIN
YSCALE=5+.0/RANGEX
YSCALE=b6+N/RANGEY
CALL PLOT(=3e0Ns0.40,~3)
MJd=sM. P~
MI4=MTP~9q

a0 557 1P=4,MI4
K=(IP-1)aMJP

1 55 JP=1,MJ1
K=K+

K2=K1+1

K3=K4 «MJP
K4=K2+~ P

Wi=Z(K1 )=Z(K3)
WREZ(KAY=-7(K?2)
W3=Wqay2

WASZ(K )=2{K2)
WHe=S(K1)=5(K3)
N728(K2)=S(K4)
WB=Wh=W7
WO=S (KA DI+S5(K3)
WAO=WI+S (K1)
H14=T (KL I+T(KR)
HA2=T(KL)=T(K2)
WAIET(K3)~T(K4)

W d=wA4+T(K1)
W1 )e7(KL)
“(4,2)=5(K1)

2(Ar3)==Wha3 , n=Wlin

MAsd)=udaR N +WG

Be2,4)=T(K1)

D(Ry3 )= 283,10

I(2,4y=W1292,7

(3,1 )==W1n3,n=W14

REI,2)==WHu3

RE3»3)=3 o0 ( 3.0 W3+2 0P (WI2+WE)I+WLI3+W7)
RE3,A4)2=2,09(3.09W3+2,(02WL24W13)~3.02UW8
R(A,1)=2.02W1+W11

R(4,2)=2.02UWb i )
REA4,3)==F, 08 ( 2., 00 W3I+WL2+W13)=4,08W6=2,0%47
R(A4,4)=2.08(2.02W3+WL124WL1X+W8)

U=0.0 '

90 556 1U=1,1USTOP

V=0.0
DO 555 [V=1,I1VSTOF
ZZ=0.0




547
544
549
551

554
552

553
554
555
556
557

) ERRORS

o
~
L34
C
C
»
~

4

v ERRQORS

LE-R

nHo

LS

ng 550 1=1,4
N 554 J=1,4
HM=q , 0
(VAL 3 L
IF (1=4) 548,548,547
UM=lea(I~1)
IF (J=1) 550,550,549
VM=Vaa(J=1)
22=27+2(1,J)eUMaVM
XX=(L o 0=VIS((deD=11)aXCKLIEX(KI)OU)HVO(X(KR2)IW (4 ,0~LI)+UnX(KA))
YY2(L,0=V)o( (1o d=0)aY(KLI+Y(KI)IOU)I+VE(Y(K2)e(d0=U)+UrY({Kd4))
GALL TRANS (XPyYPXX,YY,»ZZ5 IVER)
Xo=f Xo-XVINIBXSCALE
YR=(YR-YMIN)®YSCALE
GU Tl BBZ

2TOP
CALL PLOT(XP,YP,»3)
"noTO 5855

[F(IV~1)554,5%2,554
CALL PLOT(XP»YPR,2)
VeV4+VYSTER

UzU+lISTEDP

CONTINUE

CALL CAONCR

Gn T0 4

END

320D FORTRAN DYAGNOSTIC RESULTS - FOR REVIEW

3200 FORTRAN  (2.2)

SUBROUTINE ACCEL(YX, )
RMIMENSTON X(4)

MOTS THAT THIS SUBROUTINE MUST BE SUPRLIED BY THE USER,
ON EXIT THE ARRAY X SHOULD CONTAIN ACCELEROMETER DATA

N0 1 T=4,M
¥i1)=n.0
RETUR

EAD

3200 FORTRAM DIAGHOSTIC RESULTS - FOR  ACCEL




N

T AW

NO ERRNRS

Roreowssiot

e

102
103

=
e

3200 FORTRAN

SUBROUTINE MATMULT (A,P,S»MsMJIP)
DIMENSION A(4),P(4),85(4),PP(25)
MK=4

nNg 2 I=1,M

PP(I1)=04.0

Ke=( =1 )M

no 2 J=11M

L=K+J
PPCIDN=PP(II+ACL)IBP(J)
30 TO (3,6 ),MK

1) 4 =M

S(I)=RP2(1)

RETLR"

K=1

nn 7 1=4,M

S(K)=PP(])

K=K+MJP

30 TO 5

ENTRY MULTMAT

MK=72

G0 TO 14

EAD

3200 FORTRAN DIAGNNSTIC RESULTS =~ FOR

3200 FORTRAN

SUBROUTINE CUHICIY, »Tr¥sN)

JIMENCTION YCA s XCA ) TCL)» XX{4)aYY(4)»S(3,4)s8V(3),B(3)

o4 T=1,4
XXCI)=XC1)
YY(I)=Y(])

(2.2)

MATMULT

(2.2)

8X¥1=8X2=5X3=3X4=SX5=8X6=SYNL=8YN2=8YN3I=SY=0,0

Z=XX(1)
IF(N=~4)3103,403,4092
Z=XX(4)

SONTINUE

") 3 1=1,4

H=XX(T1)
SX6=SXe+UeUsUsUsUsU
§X5=8X5+UsUelUslUny
SX4=8K4+UnljslUel
SX3=SX3+UslUaU
SX2=8X24UsU
SX1=SXx1+U

veYY(T)

34




s

N ERRORS

SYNS=YNI+Vols sl
GYM2sAYNS+VelaU
fYM{mAYNL+V U
3Y=LHY ¥
A1 )=8X2-8XuGX1/74. 0
Fl1,2)=8(2,1)=803=~5X228%4/4.1
S(2,2)=8XA~5XRe8¥XR/4,¢
S(4,3)=25(3,1)=8X4=-SX3ns)d/4. 1
S{Xy2)=8(2,3)=5X5=~8X4a8%p/4,
3,3 )=8X6~SXINEXI/4,
CaLl, MFWJIAC(R,3,%)
V(L )=8YNI~8YaSX1/74.0
AY(R)=4YN2-SYuSX2/4,9
SY(I)=SYN3~SYnEX3/74,1

ALL MATMULT(H,8V,B,3,4)
P(LI=(R(3)nZ4BC2))R748(1)
RETUR .
ENTRY RECUBE
ND 4 [=1,4
Ja(I=1)sM+d
XX(I)=%(J)
YY(T)=Y(J)
50 TN »
ENDR

3200 FORTRAN DIAGNOSTIC RESULTS -~ FOR

3200 FORTRAN

SUBRKOUTINE NEWJAC (4XsNsA)
DIMEN=TON A(1)
N2=N+N

NN=N+1{

no 2 J=NN,N2
LA=(J~1)oNX

N0 4 I=4,N
KA=LA+T
ACKAY=0,.0
KA=LA+. =N
AfKAY=1 .8

D& T=d,N
Ki=Tan
LA=(T =4 )aNX+1
B=A(LA)

A 3 J=T1,K1
LA=S(J=1 )aNX4+1
ACLAY=A(LA)Y/B
N0 7 X=4,N

IF (K=1) 4,7,4

35
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o

4 LA=( w1 )sNX+K
I (ACILA)Y) 5,7,5
5 RA=A(LA)
N b J=lK4
LA=s(J=1)9NX
KA=L A+K
LA=LA+T
ACKA)=A(KA)~A(LA)«BR
PONTINUE
TONT A NUE
IF (N oEQeN) 11,%
O LA=NXuo(NX=N)
90 4% =4 ,N
N2=N2-
Ml=N
{=N2oNX .
no 10 rI=4,N
KK=K+An ]
KA=KK:LA
ACKA) A(KK)
10 NI=NJ-1
14 RETURY
END

=N D

3200 FORTRAN DIAGNOSTIC RESULTS -~ FOR NEAJAC

s0 ERRORS
3200 FORTRAN (2.2) / /

SUBROUTINE TRANS (XP,YP»X»Y»2Z,IPER)
COMMON S$4,82,83,04502,C3,D,CX»CY,CZ,DCL,DCM,DCN,0OX,0Y,0Z,SLsSM, SN
IF (I®ER) 451,3

1, XP==XaSlL0S14+YH#SMe52~7Z8SNeS3
YP==XaSL#C1~-YoSMeC2+Z#SNeC3

2 . RETURN

3 AK=D/((X~CX)eDCL4+(Y~CY)eDCM+(2~CZ)®#DCN)
AL=CX+AKa(X~CX) .
AR=CY+AKa(Y~CY) g
A3=CZ+AKa(Z~C7) : %
IFCABS(DCN=1,0)=0,000004)5,5,4 @

4 XP=( (A{=0X)eDCM~(A2~-QY)»DOL)/S3 |
YRP=(A3~02)/S3 4
an 1O %

5 XPz(~NON2(AL=0X)+(A3=NZ)eNCL)/S2 i
YP=(AD=0Y)/S3 |
GO TO 2 | _ o Lo
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