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FINITE-LARMOR-RADIUS ANALYSIS 

O F  LAMINAR COLLISIONLESS SHOCKS 

Ferdinand V. Coroniti 

ABSTRACT 

The structure of finite-B laminar collisionless fast and 

slow shock waves is investigated from the finite-Larmor-radius 

Chew-Goldberger -Low (FLR-CGL) hydromagnetic fluid equations. 

As a motivation for the shock studythe linear dispersion relation 

for the three hydromagnetic waves is derived including ion FLR 

dispersion. 

To calculate the shock structure two criteria must be 

satisfied: (1) a complete set of Rankine -Hugoniot conservation 

laws must exist; (2) the moment hierarchy of the Vlasov equation 

must be truncated. 

tions a r e  attained since the temperature parallel to the magnetic 

field is conserved across  the shock and the parallel heat flow 

vanishes. F o r  non-perpendicular shocks neither condition is 

satisfied, and some approximations a r e  required to continue the 

fluid approach to collisionles s shocks, Two approximations 

which close the Rankine-Hugoniot relations a r e  considered: (1) 

for near -perpendicular fast shocks the parallel temperature is 

taken to  be approximately constant; (2) for arbi t rary propagation 

angle the parallel and perpendicular components of the pressure 

tensor a r e  taken to be equal. 

by neglecting the parallel heat flow. 

For  perpendicular fast shocks these condi- 

The moment equations a r e  closed 
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With these approximations a wave t ra in  differential equation 

fo r  the magnetic field is derived in the weak shock approximation. 

A linearized analysis about the Rankine-Hugoniot stationary poirits 

is then performed to  determine the wave t ra in  properties. The 

major results are:  (1) near-perpendicular B > 1 fast and slow 

shocks possess a trailing ion gyro-radius wave train;  (2) oblique 

B < 1 slow shocks have a trailing ion inertia wave train;  (3) the t 
structure of near-parallel fl, > 1 fast shocks consists of a leading 

ion gyro-radius wave train; (4)  near-parallel Bt > 1 slow shocks 

have a trailing ion gyro-radius wave train. 

t 

Recent observations on the earth 's  bow shock obtained by 

the OGO-V satellite indicate an electron inertia trailing wave 

t ra in  to be the most persistent laminar feature. 

wind never satisfies the low+ and almost perpendicular propagation 

cri teria required for the classical electron inertia wave train to 

occur. To understand these observations a set of fluid equations 

is obtained to describe the short  scale length layer. Both 

electron inertia and electron gyro-radius produce a trailing wave 

t ra in  in the magnitude of the magnetic field. This wave t ra in  i s  

relatively insensitive to the shock propagation angle. It is then 

argued that for strong shocks the long scale lengthwave trains 

may possess insufficient group velocities to  convect away the 

shock compression energy and thus limit the shock steepening. 

The solar 

The shock continues to steepen until either a short dispersion 

scale length establishes a steady shock or  the shock flow becomes 

turbulent. This effect is termed a dispersion discontinuity and is  

presented as  an interpretation of the bow shock observations. 
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Finally, some non-self-consistent estimates a r e  made of 

the turbulent ion sound dissipation observed at the electron 

inertia wave t ra in  in the bow shock. A crude argument on 

the amplitude of the saturation ion sound electric field and the 

quasi-linear linear theory permit a rough determination of 

anomalous electron-ion and ion-ion collision frequencies. With 

these estimates it is shown that the pressure should be 

approximately maintained at isotropy and that the electron and 

ion parallel heat flows should be suppressed by the turbulence. 

The length of the electron ibertia wave t ra in  required to therma- 

lize the solar wind ions is estimated and found consistent with 

observations . 
Another possible turbulent dissipation mechanism, the 

parametric three-wave decay of the wave train,  is considered. 

As an example, the trailing ion gyro-radius wave train of the 

perpendicular fast  shock is found to be decay unstable to per- 

turbations containing Alfvhn waves. 



1 e 0 Introduction 

1.1 Collisionless Shocks 

The development of a physical theory for collisionless 

plasmas has proceeded vigorously over the past decade and a half, 

spurred on primarily by the possibility of achieving a controlled 

thermonuclear reaction. Residing on the periphery and yet : 

embodying many of the fundamental difficulties of such a theory 

is the problem of collisionless shocks. Here the basic non- 

linearity of shock phenomena combined with the requirement that 

the shock dissipation be accomplished by plasma turbulence forces 

consideration of the more advanced but least understood aspects 

of plasma physics. 

Theoretical investigation of collisionless shocks has developed 

along two main schools of thought. The laminar shock theory 

employs fluid equations to resolve the shock structure into an 

oscillatory wave train;  here the turbulent dissipation is of secon- 

dary  importance. Proponents of this school include Sagdeev 

(1958; 1966, 1967), Adlam and Allen (1958), Davis -- et al. (1958), 

Gardner -- et al. (1958), Auer -- et al. (1961, 1962), Cavaliere and 

Englemann (1967), Kennel and Sagdeev (1967b) and Goldberg 

(1 969). Alternatively Petschek (1958, 1965) and his co-workers, 

Fishman -- et al. (1960) and Camac I- et al. (1962),developed a fully 

turbulent shock theory in which standing whistler mode waves a r e  

amplified in the shock and produce dissipation by wave-wave 

scattering. In the same philosophy a high-8 turbulent shock was 

constructed by Kennel and Sagdeev (1 967a); here the turbulent 

dissipation is  accomplished by firehose unstable Alfvkn waves. 
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An attempt to  unify the whistler and AlfvAn turbulence theories 

is discussed in Kennel and Petschek (1968), A very high-f3 

shock model based on ion sound turbulence driven by multi- 

streaming ions has been developed by Tidman (1 967). 

Although both of these general methods have received some 

confirmation from experiment ( see  Patrick and Pugh, 1969, for a 

discussion), the emphasis here  will concentrate almost exclusively 

on the fluid approach. 

however, is to what extent can a collisionless plasma be des- 

cribed by fluid equations? Observations of collisionless fluid 

behavior, as differentiated from kinetic or  Vlasov phenomena, 

a r e  still scarce,  but there exists considerable evidence that the 

space plasma, which is t r u l y  collision-free, exhibits some fluid 

properties. 

wind with the ear th 's  magnetic field a fast bow shock is formed 

whose average position and flow properties a r e  well described 

by hydromagnetics (see the review by Spreiter and Alksne, 1969). 

In addition, many of the phenomena observed inside the magneto- 

sphere a r e  explicable in t e rms  of an internal hydromagnetic 

convective flow (Axford and Hines, 1961; Levy -- et al., 1964; 

An unresolved question which persists,  

In the interaction of the super -magnetosonic solar 

Axford -- et al., 1965; Axford, 1969). 

Hence the fluid theory might provide a more accurate 

description of a collision-free plasma than had been previously 

anticipated, Collisionless turbulent dissipation arising from high 

frequency instabilities may often be sufficiently intense to permit 

low frequency-long wavelength phenomena to be described by 

fluid equations. 

the shock structure, although left qualitatively and quantitatively 

Therefore the plasma turbulence occurring in 
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ill-defined, forms the philosophical foundation for the fluid theory 

of collisionless shocks. (For a more general discussion of these 

and related concepts the reader is referred to  Kennel, 1969.) 

1.2 Review of Laminar Shock Theory 

The fluid approach to  collisionless shocks commenced with 

the investigation of a hydromagnetic pulse or  shock propagating 

perpendicular t o  the magnetic field into a cold plasma (Sagdeev, 

1958; Adlam and Allen, 1958; Davis -- et al. , 1958; Gardner -- et ale,  

1958). If dissipation is neglected, the time independent solution 

of the fluid equations consists of a non-linear pulse o r  solitary 

wave which maintains its shape as it propagates in the plasma 

and has a characteristic thickness given by the electron inertia 

scale length, C/wp (see section 2.0 for definition of symbols). 

Being dissipationless the fluid state ahead of and behind the 
- 

soliton is identical. With the addition of a weak amount of 

dissipation, the solitary wave is converted into a shock. The 

upstream and downstream states, which sa t i s fy  the Rankine- 

Hugoniot conservation relations, a r e  connected b y  an oscillatory 

wave train which trails the leading jump in the plasma parameters,  

and spatially damps to the uniform downstream state. The oscil- 

lation wavelength is also of the order of the electron inertial 

length. This particular case is reviewed in more detail in section 

2.0. 

The next evolution of the fluid theory was to relax the res t r ic -  

tion of st r ic t  perpendicular propagation while still retaining the 

simplicity of the cold plasma approximation (Sagdeev, 1966; 

Cavaliere and Englemann, 1967). For  angles sufficiently fa r  from 
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perpendicular, the contributions f rom ion inertia dominate those 

of electron inertia. The wave train is now found to  lead the 

sharp jump in the magnetic field and consists of both rotational 

and compressional magnetic components ; the oscillation wavelength 

is characterized by the ion inertia length, C/w ( see  section 6.0). 

This work is restricted to  fas t  shocks by the zero pressure 

as sumption. 

pi- 

In several laboratory plasmas and most plasmas of space and 

astrophysical interest  the thermal pressure is not negligible 

compared with the magnetic pressure .  The scale length associated 

with the particle gyro-radius introduces new effects in the wave 

t ra in  structure, and therefore must be included in the fluid equa- 

tions. 

(1969) attempted to  construct a wave t ra in  for a finite-B perpen- 

dicular fast shock in which the ion gyro-radius was the dominant 

oscillation length. Unfortunately the fluid equations employed by 

these authors were incomplete, and the incorrect sign for  the 

waye t ra in  dispersion was obtained (MacMahon, 1968; Fredricks 

and Kennel, 1968)- 

Kennel and Sagdeev (1 967b) and subsequently Goldberg 

The above review is altogether too short  to  do justice to  

the above work. In addition, many interesting investigations such 

as Auer -- et aL(1961, 1962), Morowetz (1961, 1962), Moiseev 

and Sagdeev (1963), Kellogg (1964), and Bardotti 7- et al. (1966) 

cannot be mentioned. The interested reader  is referred to the 

collisionless shock literature. 
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1,3 Purpose and Content 

The main direction of this work is motivated by recent 

observations on the structure of the earth 's  bow shock. At 

t imes the magnetic shock transition exhibits a laminar -like 

wave train which, at least on one occasion, possessed a 

multiple scale length structure (Fredricks and Coleman, 1968). 

i 

Since in the solar wind both the electron and ion thermal pressures  

a r e  comparable t o  the magnetic pressure,  the wave train shock 

structure must be calculated from fluid equations which contain 

the effects of finite Larmor radius. The fluid set  chosen here 

is the Chew-Goldberger-Low (CGL) (1 956) hydromagnetics with 

finite Larmor radius (FLR) corrections as developed by Mac- 

Mahan (1965). In addition to fast shocks, consideration of finite 

pressure permits an investigation of the structure of collisionless 

slow shocks, a hitherto virtually unexplored subject. 

The structure of the FLR-CGL equations is quite complicated, 

and many assumptions and approximations, not all  of which can be 

rigorously justified, will be made in order to pursue the fluid 

approach. 

founded within the historiaal and philosophjcal development of the 

The attitude taken here toward these equations is 

fluid theory. The primary purpose of the calculations is to 

determine the sign of dispersion and the scale lengths of the fast 

and slow shock wave trains. 

mation about the shock structure will be sacrificed in the attain- 

ment of this objective. Little will be said about the details of 

the turbulent dissipation processes. However, it is explicitly 

Unfortunately much important infor- 

assumed that the turbulence is of sufficient strength so that the 
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plasma may be considered to  behave as a fluid, but .not so strong 

that the wave t ra in  structure is obliterated. Furthermore, only 

the leading and trailing edges of the shock a r e  readily analysable; 

no details will be obtained about the structure in the middle of 

the shock. 

The fundamental concepts of the fluid theory a r e  most easily 

demonstrated by the example of what might be called "the classical 

hydromagnetic collisionless shock. " This shock propagates per - 
pendicular to the magnetic field into a plasma with El+ < M-/M+; 

here the only important dispersion scale length is C/w 

steepening of the shock is inhibited when the non-linearly excited 

harmonics attain wavelengths of the order of C/m (section 2 .2 ) .  

A steady wave t ra in  is formed which is describable by a 

. The 
p- 

P- 

differential equation for the magnetic field (section 2 . 3 ) ;  the weak 

shock approximation is used to simplify this equation and recover 

the results of Sagdeev (1966). 

the differential equation is linearized about the Rankine -Hugoniot 

To obtain the wave train structure, 

stationary points. Finally it is noted that many of the wave train 

properties could have been obtained by examining the linear fast 

wave dispersion relation. The methods developed and reviewed 

in this section f o r h  the basis for the remaining work. 

The investigation of the FLR-CGL equations commences 

by studying the linear response of the plasma. 

themselves a r e  exhibited and discussed in section 3 .2 .  Dispersion 

The equations 

relations for the fast, intermediate, and slow waves a r e  derived 

in section 3 .3 .  The dispersion properties of the fast and slow 

waves select the appropriate scale lengths and the sign of dis- 

persion for the wave t ra in  solutions, and hence form a check on 

later work. 
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In order to calculate the wave t ra in  structure, two conditions 

must be satisfied by the FLR-CGL fluid equations: (1) a closed 

se t  of Rankine -Hugoniot conservation relations must exist; (2) the 

moment equations must be truncated. 

shocks sat isfy these criteria. Here the temperature parallel to 

the magnetic field is isothermal so that the parallel heat flow 

vanishes. F o r  non-perpendicular propagation of both fast  and 

slow shocks there a re  insufficient conservation laws to determine 

the plasma variables uniquely; furthermore, the parallel heat 

flow is not specified by the moment equations (section 4.2). 

implication of these results is that the downstream state is no 

longer independent of the details of the shock structure; deter- 

mination of the energy distribution between the parallel and per-  

pendicular degrees of freedom depends on the turbulent dissipation. 

Only perpendicular fast  

The 

To proceed with the fluid approach within the FLR-CGL 

equations, several  assumptions a r e  required. Fo r  near-perpendi- 

cular fast shocks taking the parallel temperature to be an approxi- 

mate constant of the motion closes the Rankine-Hugoniot relations 

(section 4.3). If the analysis is to include arbi t rary propagation 

angles and slow shocks, a relation between the parallel and per-  

pendicular pressures  is needed to complete the conservation 

relations; here the calculations a re  performed assuming the two 

pressures  to  be equal (section 4.4). 

equations it is assumed, without justification, that the turbulent 

dissipation suppresses the parallel heat flow (section 4.5). 

To truncate the moment 

With the above considerations separate wave t ra in  differential 

equations for the magnetic field a r e  derived for each of the two 

approximations, constant parallel temperature (section 5.3) and 
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isotropic pressure (section 5.4). The weak shock approximation 

is  invoked to simplify the calculations. The dispersion properties 

of the wave t ra in  differential equation a r e  analyzed by linearizing 

about the Rankine-Hugoniot stationary points (section 6.2). Both 

the near-perpendicular fast  (section 6.3) and slow (section 6.5) 

high-13 shocks possess trailing ion gyro-radius wave trains. F o r  

near-parallel propagation the fast high-8 shock (section 6.3) has 

a leading ion gyro-radius wave train whereas the ion gyro-radius 

wave train t ra i ls  for the analogous high+ slow shock (section 6.6). 

The low-fl oblique slow shock structure consists of a trailing ion 

inertia wave t r a in  (section 6.5). 

\ 

Recent results f rom the ear th 's  bow shock have indicated 

trailing wave t ra in  is the most persistent laminar that a C/w 

structure observed (Fredricks 7 -  et al, 1968; Fredricks and 

Coleman, 1968; section 8.2). The solar wind never satisfies 

the low+ criteria required for the classical C/w 

occur. In an attempt to  understand the bow shock observations 

a wave t ra in  differential equation is  derived and analyzed from a 

set  of fluid equations based on the small parameter expansions 

Ls/R+ < < 1 and R /Ls < < 1 (sections 7.2 and 7.3); L 

characteristic shock thickness. Both finite electron inertia and 

finite electron gyro-radius produce a trailing wave t ra in  (section 

7.4). 

P, 

wave train to 
P- 

is a 
S 

To understand the occurrence of a short scale length wave 

t ra in  in a high+ shock it is noted that in the oblique fast wave 

(section 3.3) and in the near-perpendicular fast shock wave 

t r a i n  differential equation (section 6.3) ion inertia and ion gyro- 

radius dispersion produce opposite contributions. Hence a 
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mathematical cancellation between these two dispersion effects 

is possible, leaving only electron inertia and electron gyro-radius 

dispersion. However, the precision required for the cancellation 

effect to occur probably excludes it f rom being observed in 

physical shock flows. 

A more reasonable explanation of the bow shock observations 

follows from a reconsideration of the dispersion limitation on 

the shock steepenhg (section 7.5). If the shock is  weak, the long 

scale length wave trains a r e  capable of convecting the compression 

energy out of the shock front and establishing a steady shock. Fo r  

strong shocks, however, the long scale length wave trains may be 

inadequate t o  limit the shock steepening. Hence the shock continues 

to steepen until a short dispersion scale length establishes a steady 

wave t ra in  o r  the shock flow becomes turbulent. In analogy with 

the dissipation discontinuities in hydromagnetic shocks (Mar shall, 

1955; Coroniti, 1969) this effect is called a dispersion discon- 

tinuity. It is suggested that the C/w wave train in the ear th 's  

bow shock can be interpreted a s  a dispersion discontinuity. 
P, 

The weakest part of the fluid approach is  the indefiniteness 

of the plasma turbulence providing the shock dissipation. In an 

attempt to at least  partially rectify this situation, some quantita- 

tive, although non-self-consistent, estimates of the ion sound 

turbulence observed in the C/w 

a r e  made in section 8 .3 .  The currents supporting the sharp 

magnetic field gradients in the wave t ra in  a r e  unstable to the 

emission of ion sound waves. A very crude argument which 

assumes that the turbulent wave spectrum saturates by ion 

absorption permits an estimate of the electric field amplitude. 

layer of the earth 's  bow shock 
P, 



10. 

Quasi-linear theory is then used to construct anomalous 

electron-ion and ion-ion collision frequencies. The resulting 

dissipation rates  a r e  sufficiently high to maintain the ion pressure 

isotropic and to  suppress the electron and ion parallel heat flows. 

As a check on the ion sound turbulence calculations, the length 

of the C/w wave t ra in  needed to provide ion thermalization is 

estimated, and found to be consistent with observations. 

Another turbulence process which might contribute to the 

- 

p- 

shock dissipation is the non-linear three-wave decay of the wave 

train. Fo r  the particular example of a high+ perpendicular 

fast  shock the trailing ion gyro-radius wave train is found to be 

decay unstable to perturbations containing Alfvbn and magneto - 

sonic waves (section 8.4). A decay length €or the wave t ra in  

is estimated using the instability growth rate. 

Section 9.1 reviews the philosophy of the fluid approach to 

collisionless shocks and indicates how a self-consistent shock 

theory might be formulated. The problems associated with the 

dispersion discontinuity a r e  further commented upon in section 9.2, 

Finally, section 9 . 3  mentions the importance of slow shocks in  

providing magnetic dissipation in neutral sheet flows, and specu- 

lates on a possible turbulent structure for low -8 oblique slow 

shocks. 
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2.0 The Fluid Description of Collisionless Shocks 

2.1 Introduction 

The fluid approach to  the structure of collisionless shocks 

commences with the equations of ideal hydromagnetics. Although 

the time independent, cdnservation o r  Rankine -Hugoniot form of 

these equations permit discontinuous o r  shock solutions, the 

equations contain no basic scale length; hence a more general 

set  of equations is required to  resolve the shock structure. The 

appropriate modification of hydromagnetics is to  include the dis - 

persive effects of finite electron and ion inertia characterized by 

the induction scale lengths C/wp,, 'up* = [(4nNfe2*)/M,t]', and of 

finite Larmor  radius (FLR), R* = C+/Of, C + is a typical thermal 

speed, Qf = (e* B)/M, C ) ,  the gyro-frequency, e = f e ,  where 

e is the magnitude of the electronic charge, B the magnetic field 

strength, M+ the ion and electron mass, and C is the velocity 

of light. Gaussian units a r e  used throughout. Only a single 

species of ions, protons, will be considered. The shock thick- 

1 

f 

ness  will be proportional to  one o r  more  of these basic scale 

lengths. 

The investigation of the collisionless shock structure begins 

with a discussion of the limitation of the shock steepening. 

Section 2.2 reviews the arguments presented by Sagdeev (1966), 

Petschek (1965), Kennel and Sagdeev (l967b), and many others. 

To introduce the methods of the fluid approach and to further 

elaborate the fundamental concepts, a particularly simple example 

of a fast shock which includes only the effects of finite electron 

inertia is discussed in section 2.3, 
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2.2 Limitation of Shock Steepening 

Consider a finite amplitude, spatially limited compressional 

wave which propagates at an a rb i t ra ry  angle to a homogeneous 

magnetic field and obeys the hydromagnetic dispersion relation 

is either the fast o r  slow propagation speed for  w = kC 

l inear hydromagnetic waves defined by (Kantrowitz and Petschek, 

1966) 

HM; 'HM 

= B2/4np is the Alfvhn speed, Cz = y p/p is the sound speed, cl 
and Cf = C L  cos20 is the intermediate speed; 0 is the angle 

between the wave vector - k and B; - p is the mass density, P is the 

pressure,  and y the ratio of specific heats. Being compressional, 

the wave steepens into a shock. If the wave is resolved into its 

Fourier  components, the steepening can be viewed as the non- 

l inear excitation of higher harmonics of the fundamental frequency 

generated by the non-linear terms in the hydromagnetic equations. 

If the dispersion relation Rw = RkCm, where R is a harmonic 

number, is satisfied, the higher harmonics propagate with the 

phase velocity of the fundamental, and therefore remain in the 

wave front. Eventually, however, the wavelengths of the excited 

modes become comparable to one of the basic scale lengths thus 

r e su l t i ng  in dispersive propagation. 
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To understand dispersive propagation, consider the effect 
i 

of finite ion inertia on a magnetically polarized hydromagnetic 

wave, The wave electric field accelerates the ions (and electrons) 

to  a velocity of the order of the Alfvkn speed. At long wave- 

lengths all the ions experience the same average phase of the 

electric field since the spatial gradient of the electric field is 

much smaller than the "gyro-radius" based on the AlfvLn speed, 

kCA/Qt = kC/u, When kCA/Qi- - 1, ions at different 

points in their gyro-orbits experience a different phase of the 

I 

< < 1. 
pi- 

electric field; the result is a phase lag between the force and 

ion response which depends on the wavelength. Dispersive pro-  

pagation results since different wavelengths propagate at  different 

phase velocities. Similar arguments can be constructed to  

describe the dispersive effects of C/u, and Rs 
p- 

The non-linear excitation of short wavelength modes pro - 

duces waves which no longer remain in the wave front but propagate 

either ahead of or  behind depending on whether the dispersion 

increases the phase velocity above o r  decreases it below the 

hydromagnetic velocity. A steady state is  possible in which the 

compression energy associated with the non-linear excitation is 

balanced by  the energy loss due to dispersive propagation. Thus 

a non-linear pulse o r  solitary wave, investigated by Adlam and 

Allen (1958), Davis -- et al. (1958), Gardner -- et al. (1958) and 

Sagdeev (1958), is formed which, since it propagates non- 

dispersively, maintains its shape. Since no dissipation processes 

a r e  involved, the plasma state behind the wave is the same as  

that ahead. 
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2 . 3  Example of Cpp-, Perpendicular Shock 

To demonstrate the above concepts and to clarify the t ran-  

sition from a solitary wave to a shock solution, a differential 

equation is derived which describes the shock structure for the 

following parameters: 

magnetic field, 8, < M-/M+ and l3 

N 

studied by Sagdeev (1966) in the zero 8 limit; the derivation here 

is only slightly more general in that the energy equation is used 

to account for a small, but finite, pressure. For the above 

parameters,  C/wp exceeds R*; C/w does not enter into the 

equations. The physical principles uncovered by this example 

as well a s  the methods used a r e  those employed throughout the 

remainder of this work. 

shock propagation perpendicular to the 

< < 1; 8, = (8rr N,Tk)/B2 where 

is the number density and T* the temperature. This case was 
& 

- pi- 

Consider a plane, time stationary shock propagating in the 

x-direction perpendicular to  a magnetic field in the z-direction. 

In the shock frazne, the equations which describe the shock 

structure a re  
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U is the flow velocity in the x-direction and V* - the ion and 

electron velocity. Subscript l ( 2 )  denotes upstream (downstream) 

values. v is the electron-ion collision frequency, arising either 

f rom weak Coulomb collisions o r  f rom anomalous turbulent dissi-  

ei 

pation, and introduces irreversibil i ty into the above equations. 

In deriving 2.1-2.5, quasi-neutrality was assumed thus restricting 

consideration to  plasmas where Sa /w < < 1 o r  C /C < < 1. Quasi- 

neutrality will be assumed throughout this work; thus electrostatic 
- p- - 

shocks, which require Debye scale lengths, will not be considered. 

The above equations differ f rom those of hydromagnetics only in 

the presence of the electron inertia t e r m  on the LHS of 2.4. 

Differentiation of 2.5 with respect to  x, and use of the 

differential fo rm of 2. 1, 2.5 yields 

Eliminating P f r o m  2.3 by substitution of 2.2, the following equa- 

tion for the flow velocity as a function of the magnetic field 

strength is obtained 
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Solution of this quadratic gives U U(B). Differentiating both 

2.2 and 2 . 3 ,  and eliminating dP/dx between them gives 

where C: depends on U(B). 

and the result  into 2.5, yields a differential equation for the 

magnetic field 

Finally substituting 2.8 into 2 .6  

2.9) 

where u.? 

2.2 and 2.7. 

= 4rrNle2/M and U and P a r e  to be eliminated by 
P, - 

First note that on the  RHS of 2.9 only hydromagnetic 

terms, i. e . ,  no dispersion o r  dissipation derivatives, occur. 

W i t h  2.7 the solution UB-UIB1 = 0 yields the values of U and B 

at either the upstream o r  downstream stationary points of the 

differential equation. (In general more  than one solution exists 

at the downstream point; however, only one solution is consistent 

with the constancy of the tangential component of the electric field 

across  the shock.) Therefore the RHS is a form of the Rankine- 

Hugoniot relations. 
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The differential operator on the LHS of 2. 9 is extremely 

complicated since it is not only non-linear, but the coefficients 

of the derivatives a r e  fqc t ions  of X. 

linear function of B. Clearly an  analytic solution, even in this 

simplest of all possible cases,  is impossible, and numerical 

methods must be employed. However, it is not always necessary 

to solve the differential equation in order to obtain important 

physical information about the solutions. Simplifying assumptions 

Also the RHS is a non- 

and linearization techniques permit continuation of the fluid 

approach to collisionless shock waves. 

One such simplifying assumption is the weak shock approxi- 

tion. 

the Mach number, is assumed small compared to unity. Returning 

to  2. 9, it is anticipated that the derivative t e rms  a r e  proportional 

to M g  - 1 < < 1. 

"linearize" o r  evaluate the coefficients of the derivative t e rms  

Here the shock strength, M g  - 1, where MF = U1/CF1 is 

Hence a legitimate approximation is to 

about the upstream or  downstream stationary points. 

the non-linear t e r m  in 2.9 is of order  (dB/dx) dB/dx x 0 since 

Secondly 

dB/dx vanishes at a stationary point. This assumption, however, 

requires some care  since the coefficient of (dB/dx)' becomes 

unbounded at the sonic point U = Cs. Hence the neglect of the 

non-linear t e r m  in the weak shock approximation also requires 

that U not become comparable to Cs. 

becomes 

If this is satisfied, 2. 9 

- _ _ _ I  - 23 
(2.10) 
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The differential equation is now in the form obtained by 

Sagdeev (1966) and is readily interpretable. The RHS can be 

written as the derivative with respect to B of an effective 

potential, cp (B), where Cp (B) is in principle known 'from an  

integration of the Rankine -Hugoniot relations with the normali- 

zing condition cp (B1) = 0. 

is a complicated non-linear function of B, and integration 

I 

In practice, however, [acp (B)]/a B 

requires numerical techniques. The LHS is in the form of the 

harmonic oscillator equation, including resistive dissipation, if 

x is interpreted as time and B as position. Therefore 2.10 

is interpretable in  terms of an analogic particle B moving in 

a non-linear potential Cp (B) (Figure 1) .  

Being a non-linear differential equation, 2. 10 is still too 

difficult to solve analytically. However, the basic features of 

the solution a r e  obtainable by studying the behavior in the 

vicinity of the Rankine -Hugoniot stationary points by lineariza- 

tion techniques. It is convenient to  linearize the set of equations 

2.1,-2.5 directly by taking, for  example, U = U1 t 6 U, SU/U 

< < 1. Neglecting the non-linear terms, 2.1-2.5 reduce to 

(2.11) 

where the subscripts 1 and 2 have been dropped. 

The RHS of 2-11 can be interpreted as the second derivative 

of the potential. If a2cp/aB2 < 0 as it is for the upstream point, 
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since U1 > C by the shock evolutionary conditions 

(Kantrowitz and Petschek, 1966), the analogic particle is at  
F1  

an unstable equilibrium in the potential well, and the pertur- 

bation grows. 

a2cp/aB2 is positive, and the analogic particle undergoes damped 

F o r  the downstream point CF > U2 > C s  , 
2 2 

oscillations about the downstream stationary point. 

the particle would make one t raversal  of the potential well and 

If vei = 0, 

return to its original position. This solution is the dissipation- 

less  solitary wave. 

it moves in the potential well and eventually must come to res t  

at the potential minimum. Since a t  the final state U and B 

Withvei # 0 the particle loses energy a s  

satisfy the downstream Rankine -Hugoniot relations, the shock 

transition has been accomplished, 

Performing the ansatz 6B  N exp(hx), the solution of 2.11 

is 

(2.12) 

where tkrms of order v2 have been neglected. The boundary 

condition on the solution is that the perturbation not grow at 

e i  

x 4 &CQ . 
square root is rea l  and the appropriate solution is the positive 

For  the upstream stationary point, U1 > CF1, the 

sign. The magnetic field undergoes an exponential r i s e  with 

a scale length given by 

c 
(2.13) 
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if B < < 1. Therefore a typical scale length or  shock thickness - 
is  of the order of C/w . About the downstream point if 

Cs < 
field undergoes damped oscillations about its downstream 

P, 
U2 < CF , the radical is imaginery so that the magnetic 

2 2 

Rankine -Hugoniot value with wavelength 

and damping length 

(2. 14) 

(2.15) 

The laminar structure, sketched in Figure 2, is often called 

a wave train. F o r  C/w dispersion, the wave train t ra i l s  the 

leading jump in the magnetic field. 
p, 

If U2 < Cs , 2.12 yields an unbounded solution which does 

not sa t i s fy  the boundary conditions. In this situation, resistivity 

alone is no longer sufficient to provide the shock dissipation, 

and a stronger dissipation mechanism, such as viscosity, is 

required (see Marshall, 1955; Kantrowitz and Petschek, 1966; 

Coroniti, 1969). Further discussion of this point is  given in 

sections 5.0 and 6.0. 

2 

The detailed properties of the above solution depended on 

the sign of the potential t e r m  as compared with that of the dis- 

persive t e r m  in 2.11. In many problems such as the low 6 
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oblique fast  shock (Sagdeev, 1966; Cavaliere and Englemann, 

1967), the relative sign between these two t e rms  is opposite 

to  that of 2.11. Hence the upstream solution is oscillatory 

so that the wave t ra in  leads the jump in  the magnetic field. 

This type of solution is sketched in Figure 3. 

Reconsider the above example by returning to 2.9, the 

full non-linear differential equation. If 2. 9 had been linearized 

about the stationary points, 2.11 could have been obtained 

directly, a s  long as U # Cs, without utilization of the weak 

shock approximation since the non-linear t e r m  does not contri- 

bute to  the linearized solution in lowest order. Also the co- 

efficients of the derivati;fes would then be evaluated at the 

r e  spe ct ive stationar y points . 
obtained in the weak shock approximation actually applies to 

strong shocks provided U # C s ,  

Therefore the perturbation solution 

Many of the properties of the C/w wave train could have 
P- 

been derived f rom the dispersion characteristics of the linear 

perpendicular fast  wave. The 

(Formisano and Kennel, 1969) 

WL 

low B dispersion relation i s  

(2.16) 

When kC/w > > 1, finite electron inertia decouples the fast wave 

from the magnetic field and slows the phase velocity to  the sound 

speed. To form a wave t ra in  a wave on the same branch of the 

dispersion relation a s  the shock wave must stand in the flow. 

Since for  kC/w 

p- 

- 1, the fast wave speed is reduced below the 
P, 
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hydromagnetic speed, the wave stands in the downstream flow 

and hence is trailing. The approximate os ciliation wavelength 

can be obtained from 2.16 by setting w/k = U2 and solving for k. 

[M / (1-M2 I*], in agree- - F2 F2 
In low 8 ,  the wavelength is 

ment with 2. 14. 

Note that at the intersection of the dispersion curve with the 

downstream flow velocity, the group velocity, aw/ak, is negative 

so  that energy is directed away from the shock front a s  required 

f rom the steepening arguments of section 2.2. 

c / w p  
The dispersion relation is sketched in Figure 4. 

2.4 Summary 

Although somewhat lengthy, the physical principles reviewed 

in  this section a r e  fundamental in the fluid approach to collision- 

less  shocks. In addition the methods employed in dischssing 

the C/w 

to discuss the structure of both fast and slow shocks in finite B 

wave t ra in  will be used repeatedly throughout this work. 
P- 

plasmas. Two points should be stressed again: 

1) Although the differential operator governing the shock 

structure is non-linear with variable coefficients, the 

linearized solutions about the stationary points obtained 

from a simplified differential operator in the weak 

shock approximation a re  valid for strong shocks. 

2) The character of the wave t ra in  solutions is obtainable 

f rom the dispersion properties of linear waves. 

Therefore the next section investigates linear waves 

from the finite Larmor radius - Chew-Goldberger- 

Low (FLR-CGL) equations. 
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3,O Linear Waves from the FLR-CGL Fluid Equations 

3 . 1  Introduction 

The simplicity of the C/w shock was achieved only by 
p, 

severely restricting the available parameter space to  very low 

B and motion perpendicular to the magnetic field. Since some 

laboratory plasmas and most space plasmas occupy a much 

larger  volume of parameter space, the above restrictions must 

be relaxed. The appropriate equations to  continue the fluid 

approach to collisionless shocks a r e  the FLR-CGL equations 

which a r e  presented in section 3.2.  

2.0, having demonstrated the conceptual benefits of knowing 

the dispersive properties of linear waves in selecting the scale 

The discussion of section 

lengths and direction of wave trains,  motivates the discussion 

of linear wave propagation f rom the FLR-CGL equations in 

section 3 .3 .  

3 . 2  The FLR-CGL Equations 

Various methods have been employed to  derive fluid and 

kinetic equations which describe the consequences of a finite 

particle gyro-radius; all  involve expansion in the small para- 

meter G % RI/L, where LA is a basic scale length of the system 

perpendicular to the magnetic field. The FLR corrections to 

the CGL equations have been derived by Frieman -- et al. (1966) 

by systematically expanding the Vlasov equation to first order 

in 8 .  They obtained a set of fluid equations to describe the 

motion perpendicular to the magnetic field while retaining the 

kinetic equation for the dynamics along the magnetic field. 

MacMahon (1965), expanding the exact moments of the Vlasov 
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equation to first order in Cy obtained a set  of fluid equations 

for both parallel and perpendicular motion to  the magnetic 

field. 

MacMahon's equations a r e  more tractable than those of Frieman 

-- et al. ; however, they a r e  more restricted in applicability since 

phenomena which depend on details of the particle distribution 

functions, such a s  the parallel Landau resonance and parallel 

heat flow, cannot be treated. 

In considering a fluid approach to collisionless shocks, 

The FLR-CGL equations can be written in the following form: 
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Equations 3. 1, 3 .2 ,  and 3 . 3  a r e  the equations of continuity, 

momentum and energy, respectively; 3 . 4  and 3 . 5  a re  the two 

self -consistent Maxwell equations; 3 . 6  is the generalized collision- 

less  Ohm's law, 

replacing in the electron inertia t e r m  d/dt(xt - - V') by l / N e  

dJ/dt. 

in the linear wave calculation, is obtained by taking the curl 

of 3 . 6  and using 3 . 4  and 3 . 5  to  find 

Equation 3 . 6  has already been linearized by 

An alternative form for the Ohm's law, which is useful 

(3 .8 )  

Note that quasi-neutrality has been assumed in 3 . 6  and 3.8. 

Equation 3 . 7  advances the pressure tensor for ions and 

electrons, pf M+ J (v, - ?)(E - E*) 8 d3V, in time. 
w 

Q* is the heat flow tensor. 

by Q*, it is 6 ( l / ~ )  larger  than the LHS; the lowest order 

Since the RHS of 4 . 7  is  multiplied 
M 

pressure tensor is found by setting the RHS equal to zero. 
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Defining an orthogonal set  of unit vectors gi s.uch that e"3 = 

_ B / I € 3 l P  in the direction of the principal normal, and = 

e"3 x gl, the lowest order solution of pf is 
M 

11 and 1 denote projections parallel and perpendicular to the 

magnetic field; I is the unit tensor;  the zero superscript 

denotes 0 (EO). Equation 3.9 is the familiar CGL pressure 

tensor. 

7 3  

The FLR corrections to pressure tensor were obtained 

by MacMahon (1965) by substituting 3.9 into the RHS of 3.7 

and using appropriate tensor annihilators to determine the first 

order corrections (denoted by superscript (1)). The results 

a r e  

(3.10) 

(3.11) 

(3.12) 
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where I = gl^e2 t G2Sl and I = - e^ze^2; 0, = 0 V, 

I = Note that sincent = (M-/Mt)\n-\ ,  the FLR d 2 2" 
corrections in 3.10-3,12 a r e  usually only needed for the ions 

w w6 N 

t ê  ê  

unless s < M  /Mt. 

I n  the fluid approach it is often convenient to define the 

pressure tensor with respect to the fluid velocity _V = 

MtVt - t M -- V-/Mt t M , pf = M+ 

Summing the equivalent of 3.7 for electrons and ions, the 

following equation for P 

1969) 

(E' - V _ ) ( V _ '  - V - ) ?(VI) - d3V1. 
- M  

= P(')' t PC1)- is obtained (Goldberg, 
M M M 

(3.13) 

= Q")' t Q(')-. Pi l l and  Pi') a r e  still needed 
M M 

where Q 
M 

since they are not determined by the annihilation procedure, 

Double dotting 3.13 with S3S3 and & gives 
N 

(3.14) 
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where c. 

(3.15) 

(3.16) 

t- 

r and 

and qll’o), where 
I1 

are proportional to the zero order  heat flow, 911 I ( Q )  

and will not be written here (see MacMahon, 1965). 
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ll(o) 

do) is the analagous flow of perpendicular heat, 
II 

is the flow of parallel heat along the magnetic field; 
qll 

The first order FLR heat flows perpendicular to the 

magnetic field, CJ-)") and s!'), a r e  obtained by a similar 
I I 

annihilation procedure as in the pressure equation of the 

moment equation for Q . The components needed a re  f 
M 

third 

A 4.&, 

(3 .19)  

f Ri a r e  the zero order 4th order moments defined as 

(3.20) 
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(3.21) 

(3.22) 

f f Both Q and R a r e  advanced in time by equations that can be 

found in MacMahon (1965). 

M M 

Several important features of the FLR-CGL equations should 

be noted: 

1. The moment equations a r e  not closed since lower 

order moments a r e  determined in t e rms  of higher 

order ones. Therefore, some truncation approxi- 

mation is anticipated. 

2. The moment equations do not determine the zero 

order heat flows q N(o)  and q'(O). Detailed knowledge 

of the distribution function and the collision operator 

is needed to specify these. 

II  II  

3. Since these equations a r e  derived by expanding in 

powers of c = R*/LL, they can only describe 

phenomena on a space scale larger  than the gyro-  

radius. Fo r  example, if kL is a typical wave 

number in the wave spectrum, the FLR-CGL equa- 

tions a r e  valid only for k l R  4 l .  t 
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4. The equations for Pll(l) and Pl(l), 3.14 and 3. 15 

a r e  coupled by CY and cy2. a1 ar i ses  from two 

te rms ,  P :  6 d6/dt and P: VV, - 
1' 

al is often called 
M M 

the collisionless o r  gyro-viscosity since, being 

quadratic in V, - it resembles the ordinary collisional 

viscosity. Unlike collisional viscosity, however, 

gyro-viscosity couples the three degrees of freedom 

but does not produce any dissipation. In the pressure 

equations the gyro-viscosity accomplishes a transfer 

between fluid and thermal energy. 

the t e r m  ê  * a :  '75 and couples the flow of heat 

between the parallel and perpendicular directions. 

In the FLR heat flows, CJI'~) and gl'('), the t e r m  

V *  P'l) occurs rather than, a s  might be expected, 

V P ' O ) .  

retained in the momentum equation since, by 

a2 ar i ses  f rom 

3 m  

5. 
I I 

R3 

This t e r m  is in the same order as those 
N N 

coupling the degrees of freedom, the lowest order 

FLR correction is the product of two FLR terms,  

and hence is of the same order a s  l / Q * V *  ,P ( 1 )  . 
N 

MacMahon (1 968) demonstrated that for the perpen- 

dicular fast wave the above t e r m  provides the 

dominant dis pe r sion. 

The FLR-CGL equations a r e  obviously too complicated to 

analyze in complete generality and throughout this work various 

simplifying assumptions a r e  necessary to  render the calculations 

tractable. However these assumptions often raise  significant 

questions which a r e  unresolvable within the context of the FLR-CGL 

equations and require knowledge of the distribution function, the 
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turbulent wave spectrum, and the precise dymanics of the 

fluid, 

3 . 3  Linear Wave Theory 

To begin the investigation of the FLR-CGL equations and 

to establish an intuitive foundation for  later work, the linear 

response of the above equations is determined in the form of a 

dispersion relation. As written the equations contain 4 scale 

lengths which produce dispersive propagation, C/w and R* . 
Since R - w d w  Rt, R - effects can be neglected In the long 

wavelength limit, kAR- < < 1, and only ion gyro-radius cor rec-  

tions retained. exceeds Rt so that ion 

inertia is the dominate dispersion effect except for near perpen- 

p* 

F o r  B+ < 1, C/w 
p-t 

dicular propagation; likewise for  Bt > 1, R 

dominate. 

dispersion should t 

Consider the equilibrium configuration - Bo = BogZ, 

The calculation proceeds by expanding the plasma variables 

about their equilibrium value, e. g., p = po t 6 p, 6p/po < < 1, 

and neglecting non-linear terms in the perturbation. In calcu- 

lating the dispersion relation an  assumption which greatly sim- 

plifies the algebra and permits a clearer presentation of the 

dispersion properties, which a r e  of pr imary interest  here, is 

to take the pressures  isotropic, L e . ,  p = pl(')*, and 
II 

P (I)* = P,(')*. 

pressure anisotropy is small, PI\ - PI/B 

it need only be retained i n  the lowest order ,  o r  CGL terms.  

Alternatively it could be assumed that the 

2 
II  

k lR+  M 6 ,  so that 
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Here, however, the effect. of anisotropic pressure in pro- 

ducing the firehose o r  mi r ro r  instabilities is well understood. 

A possible justification fo r  the above assumption in 

collisionless plasmas is to  note that there a r e  many higher 

frequency modes such as ion and electron cyclotron waves, 

electrostatic loss cone instabilities, etc. , which a r e  destabi- 

lized by anisotropic velocity space distributions. The non- 

linear effects of such instabilities is to reduce the available f ree  

energy by isotropizing the distribution function (Kennel and 

Englemann, 1966). Hence even collisionless plasmas often tend 

toward isotropy on a time scale more rapid than that of interest 

in the fluid equations. 

Fourier analyzing the perturbed quantities in space and 

time a s  exp[i(kLx t kllz) - i w t ]  the following dispersion relation 

is derived in Appendix A .  1. 

where 

- 7 cs % c - 

(3 .23 )  

(3.24) 
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= ( l )=  Piif'. Note that even though isotropy was and Po pJ-O 

assumed, use of 3. 14  and 3.15 retains the collisionless CGL 

ratios of specific heats. 

contains the ion inertial corrections to the hydfomagnetic waves 

2 2  2 The term multiplied by k C /Q A t  

(Stringer, 1963; Formisano and Kennel, 1969); N,  M, and L, 

defined by Al. 22, A l .  23 and Al. 24 a r e  the lowest order FLR 

corrections. Note that the electron inertial correction, 

2 2 2  k C /wn , is here contained in the definition of the Alfvbn speed, 

r-2 2 2 2  Ci = (Bo/4n p o ) [ l / ( l  t k C /w )I. 
p, 

3 . 3 . 1  Oblique Fas t  Wave 

When cos0 << 1, CF > > C  I, CsL; dropping CI and 

CsL with respect to w/k, 3 .23  for the oblique fast wave 

becomes 

(3 .24)  

2 2  2 2 where M "  (3/4)(P0 (o)t/po) k l  R,, N/MCF N cos 0, and 

r = k CA/Qt. 

proportional to r, drops out. 

Rt and the leading dispersion comes from the electron 

inertial t e r m  contained in C2 = CA t (2P0(')/oO). 

noted in section 2 . 3 ,  electron inertia SlOWS down thc  

First take cos0 = 0; the ion inertial t e rm,  

If Bt < M /Mt, C/wp exceeds - 
2 A s  F 

fast  wave. C/wp continues to dominate over the range of - 
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angles 0 < n / 2  - J.M_/M+ 

region of parameter space. 

@,, R, dispersion dominates 

fast wave. If cos 0 >  et, Bt 

if 

2 

'3+ < M /Mt, a very  small 

2 If 8, > M /Mt, and cos 0 <  

and also slows down the 

1, and 0 > n / 2  - //M - t '  

the ion inertial term exceeds both C/w 

increases the phase velocity of the fast wave. 

persive effects of ion and electron inertia have also been 

found by Stringer (1963), Formisano and Kennel (1969), 

and many others. 

and R,, and 
P- 

The dis- 

If p, > 1, ion FLR dispersion dominates, and 

decreases the fast wave phase velocity, in agreement with 

MacMahon (1968) and Fredricks and Kennel (1968). The 

transition between ion inertia and ion FLR dispersion 

occurs approximately for  cot 8 M J5/4 B, /[I - ( ( 2 ~ ~  (1 ) /P,)/CF)] 2 Q  

M J3/4 @, CF/C, if  13+ > M /M+. When this transition 

occurs, it is possible that ion inertia and ion FLR dis- 

persion cancel. Care must be takenhere ,  however, since 

in obtaining 3.24 only the lowest order  FLR t e rms ,  

&(kf R: < l), were retained. On the other hand, even 

if all the FLR corrections were retained to arbi t rary 

2 2  order  in k l  Rt, the FLR t e r m  in 3.23 would only be 

slightly modified f r o m  its present form; a small change in 

either 0 o r  Bt 4 1 would still produce a cancellation. 

this occurs,  the only dispersion term remaining in 3.24 is 

electron inertia; of course if €3 - 1, electron FLR correc-  

tions a r e  comparable to electron inertia and must also be 

included. 

If 

- 
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For  linear wave propagation this cancellation 

effect is not significant since it will not be valid up to 

wavelengths -C/wp- e 

dispersion changes sign, and the wave speeds up to become 

the high frequenct whistler if i3+ <- (see section 7.0; 

Formisano and Kennel, 1969). However in determining the 

When kRt > > 1, the fast wave 

wave t ra in  solution the important wave is the one that 

stands at  a given point in the flow. If the wave train 

cannot be formed by C/w 

the only possibility that remains is a C/w 

train. 

8 > > n/2 - &- - 
oblique fast wave t ra in  be dominated by electron inertia and 

possibly electron FLR. This effect is further considered 

at  the end of this section and in sections 7 .0  and 8.0 where 

the C/w 

with some recent observations of the structure of the earth’s 

bow shock wave. 

or  Rt because of a cancellation, 
p-t 

- R wave 
P- - 

Hence it is possible, even for 8, - 1 and 

that the dispersion properties of the 

- R - wave t ra in  is calculated, and is compared 
P, I 

3.3.2 Oblique, Intermediate Wave 

Although the intermediate wave does not steepen to 

form a shock (Kantrowitz and Petschek, 1966), its disper- 

sion properties a r e  included here  for completeness. 

Performing the opposite expansion in 3.23, w/k C < C 

yields a bi-quadratic for the intermediate and slow waves. 

Solving this equation and taking the intermediate wave 

root yields 

F’ 
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(3 .25)  

First consider @ < 1 so that ion inertia dominates. 

always exceeds C sL, ion inertia slows down 

t 

Since C 
2 the intermediate wave if cos 8 > B and speeds up the wave 

I 

2 if cos 8 < @ 4 1, in agreement with the 

(1963) and Coroniti and Kennel (1969). 
2 A.l.22-A.l.24, N/CI M L/CtM - B > 1 

dispersion slows down the intermediate 

results of Stringer 

F o r  B > 1 f rom 

so that ion FLR 

wave. 

t 

3.3.3 Oblique Slow Wave 

Taking the slow wave root of the bi-quadratic when 

(3 .26)  
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2 (1) 2 For  B < < 1, CsL m 3 P  

t e rms ,  3.26 becomes 

/po cos 0; neglecting the FLR 
0 

(3.27) 

(1) 2 Since Po /po > > CsL, finite ion inertia decreases the 

phase velocity of the slow wave. 

If B > 1, ion FLR dispersion dominates. Substitu- t 

ting the expressions for M, N, L to  lowest order in 

(kLRt)2 and neglecting t e rms  6 (1/B) 3.26 becomes 

(3.28) 

Ion FLR dispersion also decreases the slow wave phase 

velocity unless Pr)/P(o)t  > 8, which can happen only if 
0 

T /TS> 8. 

3.3.4 Near-Parallel Fas t  Wave 

Taking the opposite limit cos0 1 in 3.23, the dis- 

persion relation can again be split into a quadratic and 

bi-quadratic form in the high and low B limits. For 
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2 B < < 1, CsL << CI, CF; dropping CsL compared to 

w2/k2 in 3 . 2 3  yields a bi-quadratic for the fast and 

intermediate waves. The fast  wave root is 

(3 .29)  

Finite ion inertia again speeds up the fast wave. 

If B > > 1, CF > > CI, CsL; retaining te rms  to lowest 

2 2  
II  

order in k R+ and kf Rt in the expressions for N , M , L ,  

the dispersion relation becomes 

(3 .30)  

For  kL = 0 the parallel high B fast wave is unaffected by 

ion FLR dispersion, or ,  as it is easy to show, ion inertia 

dispersion. This wave is electrostatically polarized, being 

the ordinary sound wave, and is non-dispersive until wave- 

lengths the order of the Debye length a r e  reached. F o r  kL 

# 0, and kLR+ > kllhD, AD = C /w 

FLR increases the fast wave speed, 

f f  the Debye length, ion * P& 

3 . 3 . 5  Near-Parallel Intermediate Wave 

In low f3 the intermediate wave root of the bi-quadratic 

gives 

I '  
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(3.31) 

Since CF > CI, ion inertia slows down the wave. 

high B, the intermediate and slow waves a r e  coupled in 

a bi-quadratic. 

wave root gives 

In 

2 2  To lowest order in kll R+ the intermediate 

(3. 32) 

Ion FLR dispersion increases the phase velocity, an 

effect opposite to that of ion inertia. 

3.3.6 

Taking 

Near -Parallel  Slow Wave 

the limit cu/k < < CF, CI and B < < 1 in 3.23, 

the dispersion relation for the slow wave is 

(3.33) 

Note that for parallel propagation the slow wave is non- 

dispersive up to k A,, - 1, and is the ordinary ion sound 

wave. It sh.ould be recalled from kinetic theory that the 
6 
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ion sound wave is heavily Landau damped unless 

T - /Tt > > 1. 

inertia slows the wave speed. 

F o r  slightly oblique propagation, ion 

The slow wave root of the bi-quadratic in high E l  

yields 

(3 .34)  

IonFLR decreases the slow wave phase velocity. 

3 . 4  Discussion 

Section 2 demonstrated that b y  knowing the dispersive pro- 

perties of linear waves, information about the laminar wave t ra in  

structure could be determined. If dispersion increased (decreased) 

the wave phase velocity, the corresponding wave t ra in  stands in 

the upstream (downstream) flow. The oscillation wavelength is 

comparable to  the dispersion scale length. The results of 

section 3 . 3  a r e  summarized in t e rms  of the wave t ra in  structure 

for fast  and slow shocks. 

A. Near -Perpendicular Fast Shocks 

B, < M /M+, 0 

wave train. 

B, > M - /M+, 0 < n / 2  - f M T + ,  - trailing Rt 

wave train. 

1 PB,, 8 > n /2  - /mt , leading C/w 

t ra in  

1.  rr/2 - J I M , ,  trailing C/W 
P- 

2. 

wave 
pi- 

3. 
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4. 8 > 1 trailing R, wave train. t 

-4/~3 (1 t 2py)/pOcF 2 cote, ion inertia 5. 8, 

and ion FLR dispersion cancel. In this region 

the only dispersion left is C/W and R both 
P, 

much smaller than either C/w or  R+. Before 
p t  

a wave t ra in  can be formed, two difficulties 

must be resolved. At scale lengths of order 

C/wp 

down since the R /L < 1 expansion is no 

longer valid. To describe the C/w - R 

structure a new expansion of the fluid equations 

- R , the FLR-CGL equations break - - 
t s  

P- - 

in which L /R < < 1 and R /L  4 1 is required. 

This is performed in section 7.0. Secondly, in 
s t  - s  

order for the C/w -R structure to occur, the 

shock must steepen to these short scale lengths; 
p- - 

which implies that the long scale length wave 

trains be insufficient to limit shock steepening. 

Hence the C/w -R structure might be important 

only for strong shocks. In this case the steepe- 
P, - 

ning arguments given in section 7.0 suggest that 

the C/w -R wave t ra in  might occur independent 

of whether o r  not the ion inertia and ion FLR 

, P, 

dispersion cancel; hence this short scale length 

wave train could be a more general feature of 

strong shocks. The steepening to shorter dis-  

persion scale lengths is the collisionless analogue 

of the dissipation discontinuities discussed by 
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Coroniti (1969); therefore the C/w -R 
p- - 

structure will be referred to as a dispersion 

discontinuity. 

B. Near-Perpendicular Slow Shocks 

1. 1 b Pt, trail ing C/w wave t ra in  

2. B > 1, trailing Rt wave t ra in  
pt  

t 

C. Near-Parallel  Fast Shocks 

1 B 4 1 leading C/w wave t ra in  

2. f3 > 1 ,  kl = 0, non-dispersive until k h - 1 

3. 

p t  

t D 
8 

train. 

> 1, k l  # 0, klRt > kll A D ,  leading Rt wave 

D. Near-Parallel  Slow Shocks 

1. B < 1, k l  = 0, non-dispersive until kll h 1 

2. 

t D 

B, <1, kl # 0, k l  C/w > kll A D ,  trailing 
pi- 

C/w wave t ra in  
p t  

3. 13, b 1, trailing Rt wave train. 

These results a r e  summarized in Figures 5-8. 
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4.0 Discussion of FLR-CGL Equations 

4.1 Introduction 

The theory of linear waves provided a deceptively simple 

method for investigating the laminar wave t ra in  structure, 

deceptively simple since the basic non-linear features of the 

equations were suppressed f rom the outset. Although virtually 

no progress will be made here  toward solving the non-linear 

equations (recall  that even the relatively simple C/w low R 

fast  perpendicular shock involved an almost hopeless differential 

equation), i t  is imperative to struggle with the non-linear aspects 

of these equations in order  to completely understand the implica- 

tions and limitations of the FLR-CGL equations. This section 

will be devoted to  a discussion of the difficulties encountered and 

the approximations required to  solve the FLR-CGL equations for 

the laminar shock structure. The full calculation, following the 

methods outlined in section 2.0, is performed in section8 5.0 and 

p- 

6.0. 

To c a r r y  out the discussion, the time independent form of 

FLR-CGL equations is needed. Again choose a coordinate system 

moving with the shock such that the shock propagates in the x 

direction, x = -a being upstream, with the upstream (and down- 

s t r eam by the co-planarity theorem) magnetic field lying in the 

x-z plane, All quantities have spatial dependence only in the 

x-direction. The three conservation laws possess first integrals 

and can be written as 
,I 

P” .2 
(4.1) 



Using  the Maxwell equation 3.5 and linearizing the coefficients of 

the derivative terms a s  in section 2.0, the Ohm's law becomes 
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Note that even though B = B = 0, ion inertia couples the 

BZ and B 

An effective electron-ion collision frequency is included to intro - 

Y 1  y2 
components together so that B 

Y Y 
# 0 inside the shock. 

duce irreversibil i ty into the equations. The pressure equations 

3.14 and 3.15 become 

(1) (1) (1) L ( 1 ) .  ê  
X 

where V = ê  (dldx). The quantities Pxx, Pxy, Pxz, CJ~ 
X 

( l)  ê  a j ,  and a a r e  derived i n  Appendix A. 2. 
5J.L X' 2 

Recall f rom section 2.0 that the wave t ra in  differential 

equation is derived by using the conservation o r  Rankine- 

Hugoniot relations to  eliminate the velocity in the Ohm's law. 
\ 
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This method, of course, is usable only if  there exist sufficient 

conservation relations to determine all the variables, i. e. , the 

equations are closed. Section 4.2 discusses the Rankine-Hugoniot 

relations for the FLR-CGL equations and the physical reasons why 

they a r e  not closed. 

mation is required which closes the Rankine -Hugoniot relations. 

Two such approximations a r e  considered in sections 4.3 and 4.4: 

(1) for perpendicular and near -perpendicular shocks the parallel 

pressure equation provides the required conservation law; (2) 

assuming the pressure to be isotropic throughout the flow also 

closes the Rankine-Hugoniot relations. Furthermore,  the moment 

equations a r e  not closed until the zero order  parallel heat flow i s  

specified. Since this determination requires knowledge of the 

particle distribution function and hence is beyond the scope of the 

fluid approach, a further assumption is necessary and is discussed 

in section 4.5. 

To continue the fluid approach an approxi- 

4.2 The Rankine -Hugoniot Relations 

Before proceeding to  the FLR-CGL equations, the significance 

of the Rankine -Hugoniot relations is best appreciated by reviewing 

hydromagnetic shocks. The hydromagnetic equations a r e  a closed 

set  of non-linear hyperbolic partial differential equations; the 

Cauchy problem is, therefore, well posed, and the solution is 

obtainable by the method of characterist ics (Kantrowitz and 

Petschek, 1966). The time independent hydromagnetic equations 

can be written in the form V * i = 0 where i is the mass, 

momentum, o r  energy flux. Hence there exist three integrals 

of the motion which are the Rankine -Hugoniot conservation laws. 
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The time independent equations permit discontinuous changes in 

the characteristics with the final state determined from the 

initial one by the conservation laws. The significance for shock 

waves i s  that no information about the internal structure and dissi- 

pation processes is required to determine the downstream state. 

Now consider the CGL system of equations assuming that 

the characteristics a re  real, i.e., that the conditions for the 

firehose o r  mi r ro r  instabilities a r e  not satisfied (Goldberg, 1969;  

Morioka and Spreiter, 1968). There a r e  nine variables, E, B, 
p ,  PII ,  PI, but ten equations, continuity, 3 momentum, energy, 

3 Ohm's and 2 pressure equations, only eight of which a r e  in 

the form of conservation laws. Therefore one further relation in 

the form V i = 0 is needed for a closed set  of Rankine-Hugoniot 

relations. 

It might be thought that the above difficulty could be 

resolved by writing separate equations for the parallel and per- 

pendicular energies. Within the CGL system the following two 

energy equations a r e  obtained 

(4.10) 

(4.11) 
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If the las t  t e rms  in 4.10 and 4.11 were ignored, these equations 

would be in the form of conservation, laws and the Rankine-Hugoniot 

relations would be closed. Abraham Shrauner (1967) has dis- 

cussed the conservation laws in this form. 

However, except for perpendicular shocks where dg3/dt = 

0, it is incorrect to neglect the las t  term in 4.10 and 4.11. 

This t e r m  couples the parallel and perpendicular energies, and 

represents the change in energy arising from the centripedal 

acceleration of the plasma along the magnetic field due to varia- 

tions in the direction of the field. Since the Vlasov equation 

always conserves total energy, changes in parallel energy must 

come, in part, at the expense of the perpendicular energy and 

vice -versa. In hydromagnetics this coupling never occurs since 

the assumption of pressure isotropy implies that any gain in 

parallel energy is transferred back to perpendicular energy by 

collisions. 

Another possibility for obtaining a closed set of Rankine- 

Hugoniot relations is to consider the separate equations for PII 

and PI. In the CGL system use of the continuity equation and 

Ohm's law reduces the pressure equations to the well-known double 

adiabatic laws 

(4.12) 

a 

(4.13) 
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Equation 4.12 expresses conservation of the first adiabatic 

invariant, 4. 13 the conservation of the longitudinal invariant. 

With 4.12 and 4.13, there a r e  ten conservation equations in 

nine unknowns so that the shock problem in the CGL system is 

over -determined. 

To resolve this difficulty Goldberg (1969) suggested that 

if the FLR te rms  were retained in the pressure equations, only 

one of the double adiabatic invariants (4.13) is conserved across  

the shock. As discussed in section 4.3 this argument is valid 

only for perpendicular shocks. Fo r  oblique propagation there 

a r e  additional coupling t e rms  in the equations for P!') and 

P arising from the FLR corrections to P:  e^3 dg3/dt and 

P :  V V - a s  well as coupling through the heat flow tensor of the 

M ll 

M 

(a ,  and rx2 in 4.14 and 4.15 represent the 1 form ê  * Q: Vg3. 3 

sum of these couplings.) None of these t e rms  is in the form 

In neither the CGL o r  the FLR-CGL system of equations 

does there exist a well-defined set  of Rankine-Hugoniot relations. 

Hence these equations a r e  not of hyperbolic form, and the solu- 

tion of the initial value problem does not permit discontinuous 

changes in the characteristics. To solve for the downstream 

state, it is necessary to know the dissipation processes and the 

detailed changes of the fluid parameters within the shock:' in 

general these must be determined by numerical integration of 

the equations of motion through the shock, including at least  the 

kinetic equation for parallel motion. Therefore, unless some 

simplifying assumptions a r e  made, the fluid approach to collision- 

less  shocks stops here. 
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4.3 Perpendicular and Near Perpendicular Shocks 

The quest for appropriate assumptions s tar ts  by considering 

perpendicular shocks. Here e"3 0 V = 0 implies that cy - - a2 = 0 ;  1 

since no gradients exist along the lines of force, 

With - JII * V = 0, 4.8 upon rewriting becomes 

n(o) = ' ( O )  = 0. 
I1 I I  

(4. 14) 

and yields the required additional conservation law to close the 

Rankine -Hugoniot relations. 

gradients in the flow, it vanishes upstream and downstream so 

Since CJ I '  (' depends on1 y on the 
I 

constant, and the longitudinal invariant is conserved through the 

shock, a result found by Goldberg (1969) but without considering 

the FLR heat flow. 

Now consider 4.9 for the perpendicular pressure. F rom the 

x component of Ampere's equation J = 0 so that 4.9 becomes 
X 

or  using the continuity equation 

(4.16) 



52. 

Since 4.16 is not in the form V j = 0, in the FLR-CGL system 

the magnetic moment is never conserved, even for weak shocks 

a s  assumed by Kennel and Sagdeev (1967a) and "substantiated" 

by Goldberg (1969). 

For  near perpendicular shocks, 4.14 should constitute an 

approximate conservation law since the parallel temperature 

change across  the shock should be small compared to that of the 

perpendicular temperature. Comparing t e rms  in 4.14, first 

note that since J = 0, JJ V always vanishes. From A.2.29 
X 

an order of magnitude estimate for d /dx@ I W  . e x ) ,  ,% if q II ( 0 )  
II  I 

and qL(0) a r e  neglected, is 
I1 

(4.17) 

2 2 Estimating CY f rom A.2.27, using dV /dx N (P1°)t/4~pi2+) d U / d x  

f rom the y momentum equation and P ( l ) f r o m  A. 2.19, a1 is of 

order 

1 Y 

XY 

N 

(4.18) 

where BZ/B 1. Similarly estimating R1 - Pll(')PLo)/p, from A. 2.28 

is of order @2 
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(4.19) 

* N pU(d/dx)(Pll/p), the importance 
ex) Since from 4.14 d/dx(q 

I 

of CY can be estimated as 2 

(4.20) 

Hence for the range of angles near perpendicular such 

that Bx/B < < 1, 4.14 will be an approximate conservation law 

to & (Bx/B ). Note, however, that this approximation is valid 

only  for fast shocks, where the magnetic field increases across  

the shock, and not for oblique slow shocks, where the magnetic 

field decreases in magnitude. Furthermore the above estimates 

were made neglecting q 

a s  s umption. 

2 2  

and qL(0), a still unjustified 
II II 

4.4 Pressure  Isotropy Assumption 

A simpler approximation which closes the Rankine-Hugoniot 

conditions without restricting the angle of propagation o r  discri-  

minating against slow shocks is to take the pressure isotropic, 

PII = P,, in the energy equation. As mentioned in section 3 . 3 ,  

a collisionless plasma may often be maintained at approximate 
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pressure isotropy on fluid time scales by high frequency wave 

turbulence. Care must be taken, however, since anisotropy 

driven turbulence could be an important part of the shock 

structure, a s  it is for Alfv&n shocks (Kennel and Sagdeev, 

1967a) and might be for finite+ whistler shocks (Kennel and 

Petschek, 1968). Here both the non-resonant and resonant 

anisotropy instabilities must be investigated from the Vlasov 

equation ( see  Kennel and Scarf, 1968), and such shocks a re ,  

therefore, not amenable to  the fluid approach. 

is sufficiently anisotropic so that the firehose o r  mi r ro r  insta- 

bility conditions a r e  satisfied, the basic assumption of time 

independence is also violated; alternatively stated, the fluid 

characteristics in such unstable flows a r e  imaginary. 

If the pressure 

Most of the calculations to be done in sections 5.0 and 

6.0 a r e  based on the isotropy assumption since both arbi t rary 

propagation angle and slow shocks can be treated. 

for any particular case, the validity of this assumption must be 

checked against either a calculation of the turbulent collision 

operator o r  observations. The effects of pressure anisotropy 

a r e  discussed further in sections 5.3, 6.3 and 8.3. 

However, 

4.5 Problem of the Parallel  Heat Flow 

By far the most difficult and uncertain aspect of the fluid 
/ 

approach to collisionless shocks is the indeterminancy within the 

moment equations of the zero order parallel heat flow. Since 

non-perpendicular shocks have temperature gradients along the 

magnetic field, there could exist a large heat flow upstream 

from the shock layer which could either greatly broaden the shock 
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transition o r  might, in certain circumstances, render the whole 

concept of a shock transition meaningless. 

The usual argument used in constructing the CGL equations 

is that on lya  few collisions a r e  needed to suppress the heat 

flow along the lines of force. Since collisionless shocks must 

involve turbulent dissipation which replaces ordinary Coulomb 

collisions, the parallel heat flow will probably be suppressed 

within the shock layer. Every line of force must pass through 

the turbulent region in the shock layer so that if the heat flow 

is  negligible there, it can also be neglected in the upstream and 

downstream flow. 

Furthermore,  Coroniti (1969) showed that heat flow alone 

can provide the required dissipation only for very weak shock 

waves; therefore, for most shocks other types of dissipation 

a r e  necessary. With the above considerations the zero order 

parallel heat flow will be neglected in the calculations that 

follow; it is mandatory, however, that before these calculations 

can be applied to the interpretation of collisionless shock data, 

this approximation must be justified. In section 8.0 the parallel 

heat flow problem for the particular example of the ear th 's  bow 

shock is considered where some knowledge of the turbulent 

dissipation permits an estimate of its effect. Section 9.0 dis- 

cusses the likelihood that this approximation be valid for other 

shock flows. 
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5.0 The Wave Train Differential Equation 

5.1 Introduction 

W i t h  the approximations of section 4.0 the Rankine -Hugoniot 

relations can be closed thus permitting the reduction of 4.1-4.7 

to a coupled set of differential equations for the magnetic field. 

Symbolically, these equations can be written as 

a 'a, 
differential operators representing 

the dispersive effects of C/w , Rt, and C/w respectively; ivei 
P, p t  

represents the dissipation, either collisional or  anomalous. The 

C/wp 

perpendicular shock; for  i3 

negligibly except for fast oblique shocks when ion inertia and 

operator is retained to make contact with the 13 < M-/M+ + - 
> M /M+ this t e r m  will contribute t - 

FLR dispersion may cancel. 

obtained by integration of the Rankine -Hugoniot conditions with 

Cp(Bz,By) is an effective potential 

T(BZ 9 0 )  = 0. 
1 

In  general the differential operators in 5.1 and 5.2 a r e  

non-linear ( recal l ' the  discussion of 2. 9); Cp(BZ, B ) is also a non- 
Y 

linear function of its arguments. In order  to obtain an 
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algebraically tractable differential equation, two simplifying 

assumptions will be made: 

1. Weak Shock Approximation. Here the non-linear 
h 

t e rms  in the L operators a re  assumed small 

compared to the linear te rms;  the coefficients of 

the derivatives a r e  linearized about the upstream 

stationary point. Equations 5.1 and 5.2 then 

reduce to  coupled non-linear harmonic oscillator 

differential e quat ions. 

2. The operators L and ccIw a r e  calculated only 

to the first non-vanishing order in 6 ;  for example, 
Rt p t  

2 N (R+/Ls)’ t 0 (e3). Therefore onlythe lowest 
Rt 

order F L R  effects a r e  considered thereby restricting 

possible shock scale lengths to Rt /Ls  SF 1. 

The calculation proceeds in section 5.2 by eliminating v 
a n d v  , from the energy equation 4.5. This equation is then 

reduced in the two limits corresponding to the two approximations 

Y 

Z 

of sections 4.3 and 4.4. Then the differential equation for near- 

perpendicular fast  shocks is dervied in section 5.3. Shocks with 

isotropic pressure a r e  considered in section 5.4. 

In this section the only dissipation process which is included 

in the analysis is resistivity. Viscosity could, in principle, be 

included but the equations become much more difficult algebrai- 

cally; in addition any approximation scheme involves an internal 

ordering between the coefficients of viscosity and the F L R  terms,  

a difficult consideration since the magnitude of the viscosity is 

unknown. However, it is anticipated from Coroniti (1969) and 
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section 2.3 that difficulty will be encountered at the sonic point 

and for sub-sonic flow, which must occur behind f3 >> 1 fast 

shock waves. This problem will be considered further in section 

6.7. 

5.2 Reduction of the Energy Equation 

In Appendices A.2, A.3 and A.4 the required components 
2 2  of P (l)  a r e  calculated to 0 (R+/Ls) for both near perpendicular 

x 

propagation (A. 3) and arbitrary propagation for pressure isotropy 

(A.4). Following the general method presented in section 2.0, 

4.1-4.5 a r e  to be reduced to expressions involving only U, B 

and BZ in preparation for substitution into 4.6 and 4.7. 
Y 

Substituting A. 2.3 into 4.2 and solving for P(') gives 
I 

N 

where the "effective" ratio of specific heats, y ,  is defined by 

N 

Note that for perpendicular propagation y = 2,the usual CGL 

value. Similarly substituting A. 2.17 into 4. 3 gives 



and A.2 .22  into 4.4 gives 

59. 

(5.4) 

(5.5) 

Substitution of 5.3, 5.4 and 5.5 into the energy equation yields, 

after a little manipulation, 
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7 

Note that PI,'') and P>') have not been entirely eliminated. 

The t e r m  involving (T (l))' and (Txz (l\' is non-linear in the 
XY 

derivatives, and will henceforth be dropped, as will the zero 

order  heat flows. 

F o r  nearly perpendicular fast shocks the parallel pressure 

can be eliminated by the approximate conservation law 4.14. 

Then to  order (Bx/B), 5.6 becomes 
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Note that the term proportional to [(PI\ (''-P>'))/B'] Bx 

2 2  ( l ) -  B T(l))  was dropped since it is order Bx/B times (By Txy z xz 

derivative terms. Also note that 91 "(') 0 2 drops out; in this 

approximation the lines of force a r e  isothermal. 

For  isotropic shocks 5.6 is readily reduced to  the follow- 

Note that here the sum of the FLR heat flows enters. On 

comparing 5.8 with 2.7 the ratio of specific heats has become 

5/3, the isotropic value. 

5 . 3  Near-Perpendicular Fast  Shocks 

The calculation proceeds by eliminating the flow velocity in 

t e r m s  of the magnetic field components B 

is a quadratic equation for  U and hence is easily solvable. Note 

first, however, that under the radical sign of this solution there 

and BZ. Equation 5.7 
Y 

will be two separate types of te rms ,  hydromagnetic and FLR. 
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Since the FLR t e rms  involve spatial derivatives and a r e  assumed 

smaller than hydromagnetic t e rms  by the weak shock approxi- 

mation, the radical can be expanded in the usual manner and 

only the lowest order FLR t e rms  retained. Solving for U, 

performing the above expa.nsion, and linearizing all coefficients 

of FLR te rms  about the upstream state yields 

(5.10) 
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The square root is to  be taken such that U(B ) = U Equation 

5.9 is now in the form to be substituted into the Ohm’s law, 

4 . 6  and 4 . 7 .  

-1 1‘ 

Eliminating V by 5.5 and using 5.9, 4.6 becomes 
z 

Substituting A. 2.17 for P(’) using A. 36 for T ( l )  and noting 

‘(‘I 2 becomes that the PtJ is of order  (Bx/B ), A . 2 . 3 0  for  q r ~  
XY’ XY’ 

‘ 2 2  

(5.12) 
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Finally substituting 5.12, A.3.5 for Txx, (1) and A . 3 . 7  for  

T ( l )  into 5.11, the y component of the Ohm's law becomes xz 

(5. 13) 

Equation 5.13 is not yet completely 2 = (0)t 2 where here  Rt - PLl 

reduced since Plf') and P!') occur on the RHS and the LHS con- 

/a+ p l .  

2 2 tains the d U/dx term. P,fl)  could be eliminated by 4.14 and 

P!') by 5.2. Since these t e r m s  are small, multiplied by 

2 2  B / B  , their effect on the fast shock BZ structure is probably 
X 

negligible. This conclusion is substantiated by noting that the 

oblique fast wave is relatively insensitive to  pressurc anisotropy 
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since its driving force is the total pressure and not the tension 
2 2 along the magnetic field; d U/dx could be calculated from 5.9. 

However, it is more convenient to  note that for near perpe.ndicular 

shocks UBZ w UIBZ1; in the same spirit of approximation that 

went into deriving 5.13, B (d U/dx ) can be replaced by 2 2 
2 

-U1 (d2B /dx2) .  Furthermore the derivative t e r m  multiplied by 
z 

€3 has been retained even though B = 0. 
Y Y1 

Without actually performing the above substitutions, note 

that the C/w 
P, 

F rom section 2.3 the C/w 

the dominant derivative te rm,  the R wave train will also trail.  

The ion inertia derivative term,  that multiplied by cBx/4n,  

contains FLR corrections which depend on the pressure anisotropy. 

and R+ derivative t e r m  have the same sign. 

wave t ra in  t ra i ls ;  hence when Rt is 
p- 

t 

(Ry)+-  R?)'/4 is also roughly proportional to P/')' - PI ) 

It might be thought possible that if the pressures were sufficiently 

anisotropic, the sign of the ion inertia t e r m  could be changed. 

However this would require B+ > > 1 in which case the R 

vative t e r m  dominates any way. 

deri-  t 

A similar ser ies  of substitutions into 4.7 yields the other 

component of the Ohm's law 

(5.14) 
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5.4 Isotropic Shocks 

If isotropic pressure is assumed in order  t o  close the 

Rankine -Hugoniot relations, the starting point in obtaining the 

wave t ra in  differential equation is the reduced energy equation 

5.8. Proceeding exactly as in 5.3, the quadratic is solved 

for  U, the FLR terms under the radical are expanded to first 

order ,  and the coefficients of the FLR terms are linearized 

about the upstream point. The result is 

where 

(5.15) 

(5.16) 

The square root is again to be taken such that U(B1) - = U1. 

The appropriate components of P") are derived to  order  
M 

(R+/Ls)2 in the Appendix A.4.  Substituting for P") and Pxz ( 1 )  
XY 

in A. 2.29 and A. 2.30, dropping the fourth order  moment terms 

R3 - 4R1 and R1 - R2/4  since both are N (Pi1 - P-J, and sum- 

ming, the total FLR heat flow becomes 



(5.17) 

Note that 5.17 vanishes for B = 0, that is for parallel shocks. 
Z 

Substituting for  T 2  f r o m  A. 4. 1 ,  T ( l )  f rom A. 4 . 3 ,  and xz 
5.7 into 4.6, the y component of Ohm's law becomes 
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After a similar series of substitutions, the z-component of 

Ohm's law 4.7 becomes 

Again, 5.18 and 5.19 are not yet completely reduced since 
2 2 dU/dx and d U / d x  occur; these could be eliminated by differen- 

tiating 5.16 o r  by the approximation mentioned in section 5.3. 

Further  note that in 5.13, 5.14, 5.18 and 5.19, the coefficient 

of some of the FLR terms is proportional to  (U -Cs) , so that 

the familiar difficulty with the sonic point remains. Recall also 

that the above differential equations a r e  valid only if BZ # 0. 

F o r  parallel propagation the low fl slow shock and at  least  the 

leading edge of the high B fast shock have no magnetic structure 

2 2 -1 



69. 

since the shock steepens from an electrostatic wave. F o r  

these shocks Debye scale lengths become important (Tidman, 

1967) and must be included in any attempt a t  a laminar differen- 

tial equation. 

Even though these wave t ra in  differential equations have 

been drastically simplified by invoking the weak shock approxi- 

mation to linearize the coefficients of the derivatives, and by 

expanding the derivatives to lowest order in (R+/LS)', they 

a r e  still far  too difficult to  solve analytically. Most of the 

physical information about the solutions can be obtained by 

studying their behavior near the stationary points, a familiar 

method in the study of non-linear differential equations which 

permits determination of the phase plane structure. 
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6.0 Dispersion Properties of the Wave Train Differential Equation 

6.1 Introduction 

Although perhaps suitable for numerical integration in the 

weak shock limit, the wave t ra in  differential equations derived 

in section 5.0 do not reveal the maximum information obtainable 

about the shock structure. As  may be recalled from the discus- 

sion of section 2.0, the investigation of a differential equation 

linearized about the Rankine -Hugoniot stationary points determined 

the general physical features, although not the precise details, 

of the shock structure. Furthermore the discussion of section 2.3 

demonstrated that in the analysis by means of the linearized equa- 

tions the weak shock approximation is overly restrictive and may 

even be unnecessary. In this section the linearization approach 

will be pursued to  determine the laminar wave train structure of 

fast and slow shocks. 

On comparing 5.13 and 5.14 with 5.18 and 5.19 in the 

oblique fast shock limit, i. e., drop all dispersion t e rms  

L! (B2/B2) note that the only significant difference between them, 
X 

aside f rom small differences in  the numerical factors multiplying 

the derivative t e rms ,  is the presence of pressure anisotropy 

corrections in the ion inertial t e r m  of 5.13. Therefore, to limit 

the discussion below to reasonable length, only the linearized 

analogues of 5.18 and 5.19 a r e  discussed; the effects of pressure 

anisotropy on the oblique fast wave a r e  then commented on 

separately. In section 6.2 the coupled linearized differential 

equations a r e  derived starting f rom 4.1-4.7. Sections 6.3-6.6 

analyze these equations for fast and slow shocks in the near-  
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perpendicular and near-parallel limits. In order to resolve the 

difficulty with the sonic transition, the fast high-8 perpendicular 

shock with viscous dissipation is discussed in section 6.7. 

Section 6.8 summarizes this aspect of the work. 

6 . 2  Linearized Wave Train Differential Equation 

At the upstream o r  downstream Rankine -Hugoniot points 

Y Y 
U, BZ and Vz a r e  finite but B = V = 0; all derivatives on 

plasma quantities also vanish. Assuming that PI1) = (l), the 

linearized form of 4.2-4.7 becomes 

PI1 
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(1) = p(l) + P") and Pxz (1 1 
T x x p  xyy The linearized forms of Pxx 

a r e  obtained from A. 4.1 -A. 4.3. Note that the coefficients 

of all  derivative te rms  a re  to be evaluated at either the 

upstream or  downstram stationary points. 

Using 6.1 to  eliminate 6 P"), 6 . 3  and 4.4 to eliminate 

6 V z  and Vz, 6.4 becomes 

4.6 and 4.4 evaluated at a stationary point yield 
I 
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Substituting 6.8 into 6.7, the following expression fo r  6 U is 

obtained 

-7 

(6.10) 

The FLR terms contain derivatives with respect to U which must 

be eliminated to  obtain a homogeneous equation in 6 B  . 
Noting f rom 6.5 and 6.8 that in hydromagnetics, neglecting 

I, 6 U  is 

z 

e i' 

(6.11) 
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2 where C2 = Bx /4np ; 6.11 is valid only if BZ # 0. 

the zero order  6 U of 6.11 can be substituted into the 

FLR terms. 

( b c p  t 6 q L  

Therefore 

2 0- ( E :  ) 

I 

Eliminating 6 T E  and 6T:; by  A.4.1 and A . 4 . 3 ,  

2 by 5.17, 6. 10 can be written as 

( 6 .  1 2 )  

where 

(6.13) 

(6. 14) 
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(6.15) 

Note that the t e r m  in 5.18 proportional to  (B /U) (dU/dx) does 

not appear in 6.12 since it is of order  6B 
Y 
6U. 

Y 
A similar series of substitutions reduces 6.6 to 

where 

(6.17) 

(6.18) 

(6. 19)  
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2 2 

Again note that the t e r m s  in 5.19 - B (d U/dx ) do not appear Y 

in 6.16. 

If B = 0, the substitution 6.11 is invalid; the correct  
2 

equation follows immediately, however, f rom 6.10 after sub- 

stituting for STxz (1) 

Similarly the equation for 6B is 
Y 

(6.21) 

Note that except for  an opposite sign in the ion inertia te rm,  

which is just a phase difference, 6.20 and 6.21 a r e  identical 

as required by symmetry. Recall, however, that for BZ = 0 

these equations are not valid for  low 8 slow shocks since they 

do not include Debye length dispersion; also the t3 > 1 parallel 

slow shock is of zero strength. 
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In analyzing 6.12 and 6.16 it is convenient to have asymptotic 

forms  for  6.14, 6.15, 6,18, and 6.19 in the near perpendicular 

and near parallel propagation limits; the limits for  fast and slow 

shocks differ. 

1. Fast Shocks 

a. Near-perpendicular - Bx/B < < 1; C,/U < < 1 

2 2  b. Near-parallel - B / B  < < 1 ;  B / B  
Z Z 

(6.22) 

(6.23) 

(6.24) 

(6.25) 

(6.26) 

(6.27) 

(6.28) 



78 * 

(6 .29)  

Equations 6.26-6.29 are not valid about the downstream 

point for  very  strong switch-on fast shocks since 

B /B need no longer be small. 

would be appropriate for  the strong switch-on limit. 

Furthermore,  note that for  Bx/B < < 1, G (Bx/B) 

is much smaller than the other terms. Hence for the 

high B oblique fast wave the FLR coupling to  B is very 

weak and only ion inertia couples the two polarizations. 

If BZ/B 1, 6.22-6.25 
Z 

4 

Y 

2. Slow Shocks 

a. Near-perpendicular - B / B < <  1 ,  U < <  Cs 
X 

(6 .30)  

(6.31) 

(6. 32) 

(6.33) 
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2 2  Note that the t e rms  proportional to  Bx/B 

for slow oblique shocks since U - Bx/B 

a r e  important 

c: for ~ < < 1  2 

2 2 2  o r  U2 - B /B CA for @ >> 1. Furthermore 6.30-6.33 
X 

are invalid about the downstream point of nearly complete 

switch-off shocks since BZ/B < < 1; here the appropriate 

expressions a r e  the near parallel ones. Assuming for 

B < < 1 that U < <  CI, the signs of 6.30-6.33 a r e  D >  0, 

F > 0, G < 0,  H > 0; similarly for B > > 1 ,  D <  0,  F < 0 ,  

G < 0, and H < 0. Actually the above signs hold even if 

- the maximum strength switch-off shock. u1 - cI., 
2 2  1 

b. Near-parallel B Z / B < <  1, (B Z /B  ~ ( P ( o ) t / p ) / U 2 - C ~ ) ]  

(6.34) 

(6.35) 

(6.36) 

(6.37) 

Note that in going f rom B << 1 to  @ > > 1, D changes sign. 

Recall that for BZ = 0, B > 1, U1 = C 

is of zero strength. 

and the slow shock I 
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Equations 6.12 and 6.16 form a set of coupled linear 

differential equations for 6 BZ and 6 B which are easily solved 

by assuming 6BZ = Azexp(Ax) and 6B = A exp(hx). Substitu- 

tion yields the following fourth order  algebraic equation for h 

Y 

Y Y 

Note that dissipation occurs in odd powers of h and dispersion in 

even powers. Setting v = 0, 6.38 has solutions ei 
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The relative magnitudes of AZ and A are 
Y 

(6.40) 

(6.41) 

The solutions 6.38-6.41, although formally correct, a r e  

often too cumbersome to manipulate. In addition, 6.37 gives 

only the dispersion properties of the solution; to satisfy the 

boundary conditions that no solutions grow at x = fa, it is 

necessary to  include the dissipation, v 

is often more  convenient to  make approximations on 6.12 and 

6.16 directly rather than attempt to  solve 6.38. 

In what follows it ei' 

6.3 Near-Perpendicular Fast Shocks 

First consider the perpendicular fast shock. Since 

CI = 0, the ion inertia term drops out and 6.12 and 6.16 decouple. 

The perpendicular fast wave has only a 6BZ polarization so that 

6.16 can be neglected. The solution of 6.12 is 

(6.42) 
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If B+ < M - /M+ and 1 > > @  - , but possibly exceeding M - /M+, upon 

neglect of vei compared to  C 

immediately r e  covered 

2 the results of section 2 . 3  a r e  
Z 

(6 .43 )  

At the upstream point Cz > 0, and the magnetic field undergoes 

an exponential r i s e  with a scale length given by 2.13.  

U2 > Cszl  Cz < 0 and the solutions a r e  damped oscillations with 

the wavelength given b y  2.14 and the damping length by 2 .15 .  

If 

When pt > M - /M+, ion FLR dispersion dominates electron 

inertia. The solution at the upstream point is 

(6.44) 

where 6 .22  was substituted for D and vei was neglected. 

the downstream point the appropriate solution is 

About 

(6 .45 )  
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where+ is a phase factor, which, along with A , can be determined 

when the origin x = 0 is selected. Equation 6.45 describes a 
=2 

trailing wave t ra in  with the oscillation wavelength characterized by 

If U2 > C , the wave t ra in  is damped; however, i f  U 2 < C s  
s2 2 Rt' 

as is likely if f3 > 1, the solutions grow exponentially unless 

v = 0. Here resistivity alone fails to provide the required dissi- 

pation, and viscosity is necessary to  complete the shock transition. 

2 

e i  

Viscous dissipation is considered in section 6.7 where it is found 

that the R+ wave t ra in  trails and damps out. 

Now consider the near perpendicular shock limit when ion 

inertia dispersion exceeds that of electron inertia, i. e., 

CI/U C/w > C/w or  B / B  > U/C, /- When Bt < M - / M + ,  
X P t  p- 

the ion FLR t e rms  can be neglected in 6.39; then since the ion 

inertia t e r m  is larger  than the t e r m  proportional to  C C the 

square root can be expanded. Keeping only the lowest order 
Y z' 

t e rms  the solutions a r e  

(6.47) 

Now note that 6.46 can be obtained from considering only the last  

three te rms  of 6.38 whereas 6.47 is obtainable f rom the first 

three te rms  of 6.38. Splitting 6.38 in this manner yields 
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c- 1w - - 
k’ (6.48) 

(6.49) 

These solutions have been obtained and exhaustively dis- 

cussed by Cavaliere and Englemann (1967); therefore, the 

results will only be briefly mentioned here. Since C C > 0,  
y = 1  

6.48 yields a leading C/w wave t ra in  (see Figure 3 )  which 
pi- 

grows exponentially if v # 0; the oscillation wavelength is ei 

(6.50) 

About the downstream point C Cs < 0, so that the solution 
y2 2 

damps out to  a uniform state. For  the upstream point 6.49 

violates the boundar,y conditions and must be discarded. The 

downstream solution consists of very short  wavelength damped 

, and is probably unphysical. os cillations , - d m  C/w 
LS p, 

The short-scale solutions given by the first three t e r m s  

of 6.38 a r e  a general feature of most of the solutions developed 

here. Their origin can be understood by considering the dis- 

persion relation for  oblique whistlers (Formisano and Kennel, 
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1969; and equation 7.5) w/k = CA/[l t (k2C2/w2 )] kCA/C2+ cos 0 .  

Setting w/k = U and solving for k yields the two solutions 
p- 

corresponding to 6.48 and kC/w 
kCA/Qt U/CA case p- 
CAcos 0/U d v -  - corresponding to  the short wavelength 

solutions, F r o m  the kinetic theory for linear waves (Stix, 

1962) the whistler is critically cyclotron damped by thermal 

electrons when kC/w >> 1. Hence the short wavelength solu- 

tions probably cannot be excited during the non-linear steepening 
p- 

of the shock, and therefore cannot establish a wave train. A 

similar situation occurs if the waves a r e  heavily Landau damped. 

Although when 1 > @+ > M - /Mt a similar splitting of 6.46 

F rom occurs, it is easier to consider 6.12 and 6.16 directly. 

6.18, 

electron inertia a r e  small compared to  ion inertia. 

also small, 6.16 can be solved for 6B and the result substituted 

in 6.12 to obtain 

4 
G N (Bx/B) < < 1 so that in 6.16 both ion FLR and 

If vei is 

Y 

(6.51) 

F o r  the same parameters the full wave t ra in  differential equations 

of section 6.0 could be combined to obtain the analogue of 6.51. 

The ion inertia and ion FLR derivative terms in 6.51 are of 

opposite sign, a result which was anticipated from the linear 

theory of section 3.0. When ion inertia dispersion exceeds that 

of ion FLR, the dispersion t e r m  is opposite that of the potential 
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te rm,  and the wave t ra in  leads. 

nates, the wave t ra in  trails. 

Alternatively if ion FLR domi- 

It is possible, however, that the effects of ion inertia and 

ion FLR dispersion cancel. The cancellation occurs for approxi- 

mately 

o r  

Neither 6.53 nor the assumption of small 

the critical angle or  B+ for cancellation. 

(6. 52) 

(6.53) 

G severely restr ic t  

Hence the cancellation 

of ion inertia and ion FLR should occur over a wide range of 

propagation angles and plasma B's. 

calculated only to 0 ( 6  ) so that 6.53 is only approximate; how- 

ever since the corrections to 6.53 a r e  small, @ ( c 3 ) ,  the above 

cancellation will still occur. 

Recall that F , H ,  and D were 

2 

At the cancellation point the only remaining dispersion 

t e r m  is electron inertia. 

must also be considered; this calculation is performed in  section 

7.0 where it is found that electron FLR contributes a dispersion 

t e r m  of the same sign as electron inertia. Since 6.51 determines 

the wave that stands in the flow, when ion inertia and ion FLR 

cancel, the only such wave has C / o  - R - scale lengths. Care 

If 8- - 1, electron FLR dispersion 

p- 
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must be taken here, however, It would take only a slight 

deviation away from precise cancellation to also cancel the 

C/wp 

in the opposite sense would permit many oscillations of the 

- R te rms;  on the other hand, the same slight deviation - - 

C/op - R wave t ra in  within one C/w scale length. If the - - p t  
shock has C / w  - R lengths, the small ion FLR ordering, 

P- - 
upon which 6.51 is based, breaks down, and a new calculation 

based on the ordering Ls/R+ < < 1, and R /Ls 4 1 is required. 

This calculation is performed in section 7.0. Furthermore 

even if ion inertia and ion FLR cancel, the shock may not 

steepen to C/w - R scale lengths. In section 7.0 it is argued 

that only sufficiently strong shocks might possess the short 
P- - 

C/qp - R 

train is the collisionless dispersion analogue of the dissipation 

scale length structure; the short scale length wave - 

discontinuity. 

The solutions of 6.51 a r e  

(6.54) 

If ion inertia dominates, there is a leading wave train with 

oscillation wavelength 

(6.55) 
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The downstream solutions damp to a uniform state. If ion FLR 

dominates, there is an exponential rise in the magnetic field up- 

s t r eam with a scale length given by 6.55 with the signs of the 

ion inertia and ion FLR t e r m s  reversed. About the downstream 

point there is a trailing wave t ra in  given by 

Note again that if Uz < C , D is negative so that 6.54 is un- 

bounded at x = a. Solutions for  6B  follow irnmediately f rom 

those of 6B  and 6.40, and won't be written here. Since the 

only coupling between 6B and 6 B  is ion inertia, i f  ion FLR 

dispersion dominates, 6 B  

s2 

Y 

Z 

Z Y 

Y 
is smaller than 6BZ by roughly 

c,/u l / q -  * 

Consider the R, wave t ra in  when B > > 1; f rom 6.55 the t * 2 2  shock thickness is of order  Ls - [(P(O)'/p)/CF(MF - l)] R+. 

M: - 1 >> 1, L < R F o r  strong shocks, 

ordering scheme breaks down in the strong shock limit, and 

6.55 and 6.56 no longer describe the shock structure. 

difficulty arises since FLR dispersion is basically weak, being 

effective only when kR, 4 1; if kR, > > 1, section 7.0 demon- 

hence the ion FLR t; S 

The 

s t ra tes  that ion FLR no longer contributes to  wave dispersion. 
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Hence ion FLR alone limits the steepening only if the shock is 

weak; for strong shocks either another dispersion scale length 

enters o r  the wave train breaks resulting in a fully turbulent 

shock ( see  section 7.0). 

Now return to 5.13 and 5.14 and consider the effect of 

anisotropic pressure on the near perpendicular fast shock. 

The anisotropy t e rms  on the RHS of the differential equations 

have little effect since they a r e  multiplied by Bi /B2 < < 1; the 

near perpendicular fast wave, driven primarily by total pres sure, 

is relatively insensitive to  changes in tension along the magnetic 

field. 

the coefficient of the ion inertia t e rm is approximately 

Since R1 -3 R2/4 is roughly equal to P!o)s/p (PI! - PJ,  

2 Note that 1 - [4rr(Pll - P J / B  3 is the usual factor multiplying 

the Alfvhn speed in CGL linear wave theory. 2 For 1 - [4rr(Pll-PJ/B 1 
to be negative, and hence have the possibility of changing the 

sign of the ion inertia term,  

Sagdeev, 1967a). However when B > 1, the ion FLR t e rms  

must exceed unity (Kennel and 

dominate the dispersion so that slight changes in the ion inertia 

t e r m  cannot be too important. Also note that if 1 - [4rr(Pl1-P,)/B ] 
2 

< 0, the flow is unstable to firehose waves, and the whole fluid 

approach breaks down. 
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6.4 Near-Parallel  Fast Shocks 

As discussed above for  propagation at small angles to the 

magnetic field, 6.12 and 6.16 for  BZ # 0, o r  6.20 and 6.21 for  

B = 0 are of restricted validity. The leading edge of the 

fl < 1 parallel fast shock can be investigated with 6.20 and 6.21; 

z 

since this is the switch-on shock, however, 6.12 and 6.16 are 

needed about the downstream point. The (3 > 1 parallel fast 

shock and the (3 < 1 parallel slow shock cannot be investigated 

f rom the above equations since Debye length dispersion is 

required (recall f rom section 3.0 that the corresponding linear 

waves were non-dispersive when k l  = 0). These shocks a r e  per-  

haps better investigated f rom the Vlasov equation directly 

(Bernstein A -  et al., 1957; Montgomery and Joyce, 1969). F o r  the 

(3 > 1 fast shock propagating at angles 8 > > hD/Rt - R /w 

and 6.16 a r e  valid; similarly for  8 >  > h D / ( C / w  

$ C 1 slow shock can be treated by 6.12 and 6.16. 

for typical solar wind conditions 0 /w 

, 6.12 
-k p t  

) - C,/C the 
p t  

Note that 

< < 1, Ct /C < < 1.  
+ p t  

Turning now to the full expression for  A ,  (6.39), if tit 4 1, 

ion inertia dominates ion FLR and electron inertia, and the radical 

can be expanded in an analogous fashion as for the fast oblique 

shock. The last three terms of 6.3 yield the solutions 

(6.57) 
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Since D and G are 

terms is possible; 

the upstream point 

wave t ra in  with an 

negative, no cancellation between dispersion 

C/wp dispersion has been dropped. About - 
C , C > 0, and 6.57 describes a leading Y l  z 
- I  

oscillation wavelength of the order  of 

(6.58) 

if 13, < 1. 

damp exponentially to a uniform state if U2 >Cs2 and a r e  expo- 

nentially growing oscillations if U2 < Cs2. 

The solutions of 6.57 about the downstream point 

The solutions given by the first three te rms  of 6.38 a re  

(6.59) 

If 13, < M - /M+, the same result  as 6.49 is obtained giving a 

very short scale length trailing wave train, Ls --Jm, - ( C / w  ) ;  
P- 

the upstream solution violates the x = - m  boundary condition. 

If 1 > 13+ > M /Mt, 6.59 describes a leading wave train with an 

oscillation length 

(6.60) 
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which is much less than the C/w 

The downstream solutions are exponentially growing. These 

wave train given by 6.58. 
p t  

short  scale length solutions are probably unphysical since the 

corresponding linear waves, which fo rm the wave train, should 

be critically Landau or  cyclotron damped. 

When p+ > > 1, ion inertia is unimportant so that 6.12 and 

6.16 are almost decoupled. Here 6.38 splits into two quadratic 

forms  with solutions 

(6,61) 

(6.62) 

Equation 6.61 (6.62) is the solution of 6.16 (6.12). The ion 

inertia corrections to  6.61 and 6.62 are obtained by expanding 

6.39 to  lowest order  in C /w . The resul ts  are 2 2  

p t  

(6.63) 

(6.64) 
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It is easily shown that lDlC - \GIG > 0. Y Z 

Equation 6.64 describes a leading wave t ra in  in BZ with 

oscillation scale length 

\ -  .------I (6.65) 

L 

The second bracket in 6.65 is roughly equal to (1 - 
If B > 1, U2 < C 

exponentially growing oscillations which must  be excluded b y  the 

boundary conditions. The leading oscillations in B have a 

different wavelength than those in Be; i f  8, > > 1, the two com- 

ponents of the magnetic field a r e  decoupled. About the down- 

stream point 6.63 also gives exponentially growing oscillations. 

1 /6 , ) -2  

must hold so that downstream 6.64 exhibits 
s2 

Y 

6.5 Near-Perpendicular Slow Shocks 

A curious anomaly in the l i terature on collisionless shocks 

is that virtually nothing is known about the structure of slow shock 

waves. Even the question of whether or not slow shocks exist 

has, apparently, not been fully resolved. According to  the c r i -  

teria discussed by Akhiezer -- et al. (1959), the hydromagnetic 

equations admit stable slow shock solutions; except for the 

complete switch-off shock, there are always six waves emanating 

f rom the shock front as required to satisfy the six boundary con- 

ditions at the front. Germain (1960), by studying the integral 

curves between stationary points, concluded that most slow shocks 
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were stable but did construct an unstable counter example, 

Leonard (1 966), however, demonstrated that this example vio- 

lated the evolutionary conditions of Kantrowitz and Petschek 

(1966). 

Anderson (1963) studied the shock stability problem by 

examining the topology of the shock integral curves and the 

stability to hydromagnetic perturbations. 

difficulties sometimes prevented an absolute determination, he 

concluded that most slow shocks were stable. The complete 

switch-off shock, however, he found to  be unstable to intermediate 

wave perturbations. (A similar conclusion was reached with 

respect to the complete switch-on shock.) Here the confluence 

of the flow velocity with the intermediate speed appears to allow 

intermediate waves to be driven resonantly unstable and collect 

in the shock front; since this situation cannot continue, the shock 

must break up into other shocks o r  discontinuities. An alternate 

resolution of this difficulty (Petschek and Thorne, 1967) might be 

for 1 the intermediate wave and switch-off shock to  simply propa- 

gate together in the fluid. 

Although mathematical 

I 
Recently Lessen and Deshpande (1967) investigated the 

stability of fast and slow shocks to  two dimensional hydromagnetic 

perturbations which excluded the intermediate wave. 

a computer to  determine the temporal eigenvalues of the perturbed 

shock system, they found that the slow shock was generally unstable 

over a wide range of propagation angles. There a r e  several  

troublesome aspects about their results, however. First they found 

that the 13 < 1 parallel slow shock, the ordinary gas dynamic shock, 

By utilizing 
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was unstable. Second many of their slow shock parameters vio- 

lated the shock evolutionary conditions, It is, therefore, not 

clear what confidence should be placed in their  results. 

The discussion here will attempt to  avoid the existence pro- 

blem of slow shocks; however, certain aspects of the shock 

structure solutions indicate that it may be difficult to maintain a 

steady slow shock structure. These problems will be discussed 

in section 9.0. 

Consider now obliquely propagating slow shocks so that 

B / B  < < 1  and U < <  Cs. (The slow shock, of course, does not 

propagate perpendicular to the magnetic field but reduces to a 

X 

non - pr o pagating tang entia1 di s continuity a c r  o s s which hydro static 

pressure balance must hold. The perpendicular slow shock limit 

changes the magnitude of the magnetic field across the discontinuity; 

the perpendicular intermediate wave limit accomplishes the rotation 

of the magnetic field direction.) If @ < 1, ion inertia is the domi- 

nant dispersion t e r m  so that 6 . 3 9  again splits into solutions 

representing the first three and last  three te rms  of 6.38. 

f 

The 

latter solution is given by 6.57 provided that the shock strength 

is far from the switch-off shock limit where C = 0. 
Y1 

About the upstream point Cz > 0 and C < 0; fo r  8, < 1, 
1 Y1 

H F >  0 so that the magnetic field undergoes an exponential decrease 

with the characteristic scale length 
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which for 13 < < 1 and U1 < < CI is approximately 
1 

(6.67) 

where MSL = U/Cs,. At the downstream point C 

that 6.57 describes a trailing wave train given by 

< 0,  so 
z2  

(6.68) 

The solution is sketched in Figure 9. The solutions arising 

f rom the first three terms of 6.38 either do not satisfy the 

boundary conditions at fQ) o r  yield oscillation lengths which a r e  

so short  as to  be critically Landau damped. 

When B > 1, the linear slow wave propagation speed differs 

little f rom the intermediate speed so that the wave is almost 

t r ansve r s e polarized and incompr e s sible (Kant r owit z and Pet s che k, 

196 6). Considering the evolutionary conditions the high f3 slow 
2 2  2 shocks are very weak; hence 1 - CI / U  < < 1 and MSL- 1 < < 1, 

which hold about both stationary points since, f rom the continuity 

equation, the flow velocity can change only slightly across  the 

shock. Therefore 6.39 can again be expanded since C C < < 1, 
Y Z  
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the solutions of 6.38 split, and 6.57 is again valid. 

First note that for B > > 1, and Bx/B < < 1, 
2 2  2 2  4 4  2 2 2 2  I-IF(cI/u )(c /w - (c,/u )(p(O)+/pu ) ( B ~ / B  )R+, and is the 

pi- 2 i 
same order as DR: and GR+. Since C < 0, 6.57 describes 

Y1 
an exponential decrease in the magnetic field about the upstream 

point with a scale length 

L, - (6.69) 

'Note that 6.69 is not valid for switch-off shocks. About the 

downstream point there is a trailing wave t ra in  given by 

2 2  2 Note that since C /wo < < R+, the damping 
2,. 

is v e r y  slow so that the oscillations should 

(this holds for 6.68 also). 

(6.70) 

of the wave t ra in  

persist far downstream 

Equation 6.59 yields the solutions f rom the first three 

t e rms  of 6,38. 

tory solution with a wavelength of the order  of 

Since D < 0 and G < 0, there  is a leading oscilla- 
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(6.71) 

which is much shorter than 6.69. These waves a r e  probably 

heavily ion Landau damped. The downstream solutions grow 

exponentially and a r e  disallowed by the boundary conditions 

6.6 Near-Parallel  Slow Shocks 

F o r  B C 1 slow shocks propagating along the magnetic 

field, the equations developed here  are invalid since Debye scale 

lengths are required to  resolve the shock structure. 

electrostatic treatment starting f rom the Vlasov equation 

(Bernstein e t  al. $ 1957; Montgomery and Joyce, 1969) is more 

appropriate than the fluid approach. 

1 / K w  C /C ,  ion inertia produces a la rger  dispersive effect 

than does the Debye length. Hence at least the magnetic structure 

is describable by 6.38 and 6.39. Coroniti (1969) showed that 

Here an 

F r o m  3.33 if 0 > Ct/C 

t A 

for  near parallel slow shocks resistively provides the shock 

dissipation only for  weak shocks with U1 < Cs . 
the parallel slow shock is of zero strength since the flow velocity 

equals the intermediate speed; slightly oblique shocks are, there-  

fore, very  weak. 

When 8 >  1, 
1 

First consider the low fl near parallel slow shocks for  which 

6.57 .and 6,59 are again valid. 

C 

upstream boundary condition. Here the slow shock is almost the 

If U1 > C s  , both Cz < 0 and 
1 1 

C 0 so that 6. 57 yields leading oscillations which violate the 
Y 1  
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gas  dynamic shock so that the magnetic field changes across  the 

shock a re  negligible. If C > U1 > CsL9 C > O  and C t C z  > O ;  
s1 Y 1 

6.57 describes an exponential decrease in the magnetic field with 

a scale length 

(6.72) 

Equation 6.72 is invalid in the switch-off shock limit. The down- 

s t ream state is characterized by a trailing wave train given by 

Again the solutions from 6.59 a r e  either of very short wavelengths, 

and hence damping, or  violate the boundary conditions. 

Now consider B > 1 slow shocks; since C C << 1, 6.57 and 
Y Z  

6.59 can again be used. 

C 

scale length 

For  the upstream flow Cz > 0 and 
1 

< 0, and the magnetic field decreases exponentially with a 
Y1 

(6.74) 
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Note that 6.74 is much larger  than R,. 

yields a trailing wave t ra in  

The downstream solution 

$3, = 

The downstream oscillations damp very slowly. 

Equation 6.59 describes a leading wave train with a 

characteristic oscillation length given by 

(6.75) 

(6.76) 

Since 6.76 is much less  than 6.74, it probably is ion Landau 

damped. 

dar  y conditions. 

The downstream solutions from 6.59 violate the b o w -  

6.7 Perpendicular Fas t  Shock with Viscosity 

The dissipation for fast shocks in which the downstream 

sound speed exceeds the flow velocity cannot be provided by 

resistivity alone but requires a stronger dissipation mechanism 

such a s  viscosity. Hence the trailing R, wave train (6.56) for 

the B, > I fast shock exhibited unstable growth if only resistivity 

is included. To resolve this difficulty the particularly simple 

case of a perpendicular fast shock is considered for which it is 

assumed that viscosity provides all the dissipation. 
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The desired demonstration is obtained by passing imme- 

diately to the linearized equations. Fo r  simplicity, resistivity 

is neglected. The linearized equations a r e  

(6.79) 

where IJI = 38q -t c; [ and r\ a r e  the two coefficients of viscosity. 

and 6% . 2 have been eliminated from the energy 

equation by 4.14. Neglecting products of ion FLR te rms  and 

viscosity terms, 6 Txx and 6 q ~  2 become 

(6.81 ) 
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6T( l )  is simply 
XY 

(6.83) 

After eliminating 6 I?!') and 6 BZ, 6.77-6.80 become 

2 Neglecting terms proportional t o  IJ. , the solutions of 6.84 a r e  

The upstream flow velocity undergoes an exponential decrease 

with a characteristic scale length 

(6.86) 

Downstream there is a trailing wave train given by 

(6.87) 
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As anticipated, viscosity damps the trailing R wave t ra in  to t 

a downstream uniform state. 

6.8 Discussion 

The calculations of this section have considerably extended 

the range of parameter space investigated by the fluid theory. ‘ 

Whereas previous efforts have been concerned primarily with 

very low B fast  shocks (Cavaliere and Englemann, 1967) and 

some early work on finite B perpendicular fast shocks (Kennel 

and Sagdeev, 1967b; Goldberg, 1969), the fluid approach taken 

here has covered for arbi t rary fl and propagation angle not only 

fast  shocks, but the hitherto virtually unexplored problem of 

slow shock waves. Unfortunately it has not been possible here 

to develop a completely general fluid shock theory since several 

restricting assumptions were necessary in order to pursue the 

fluid approach. 

CGL Rankine -Hugoniat conditions do not close; to even initiate 

the fluid calculations a closure assumption was required. The 

approximate conservation law relating PI[’) and CJL 2, 4.14, 

restricted consideration to  near perpendicular fast shocks. The 

more useful, but far less  general, assumption of pressure iso- 

For  all but perpendicular fast shocks the FLR- 

tropy permitted arbi t rary propagation of both fast and slow shocks 

to be investigated. Furthermore, the effect of zero order parallel 

heat flow, which is not determined by the moment equations, was 

neglected. 

In deriving the wave train differential equation only the lowest 

order ion FLR corrections to the fluid equations were considered. 

In addition, the weak shock approximation was invoked, an 
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assumption which greatly simplified the algebra. In performing 

the linearized analysis about the Rankine -Hugoniot stationary 

points, however, the weak shock approximation was relaxed, 

and the results are probably valid for at least  moderate strength 

shocks. Fo r  strong shocks the wave t ra in  probably breaks, and 

a fully turbulent theory is required (Sagdeev, 1966). 

The results of the linearized analysis confirm the predictions 

of section 3 . 0  based on the linear wave theory; however, better 

quantitative estimates of the shock thickness and wave train 

oscillation scale lengths were obtained. The new results of 

section 6.0 a r e  summarized as follows: 

1. The oblique fast shock structure consists of a 

trailing R+ wave t ra in  when either 0 < n / 2  - ,/- 
Bi- > M-/M+ (6.45), o r  s+ b 1 (6.56 and 6.87). 

possible cancellation between ion inertia and ion FLR 

dispersion exists if, at any point in the flow, 6 . 5 3  

is satisfied. The only dispersive te rms  remaining 

(6.51) a r e  electron inertia and electron FLR; hence 

a short scale length sub-layer o r  dispersion discon- 

tinuity may be part of the shock structure. This 

sub-layer is further investigated in section 7.0. 

2. F o r  slightly oblique propagation when ion FLR domi- 

- i-’ 

A 

nates Debye length dispersion, the f3+ > 1 fast  shock 

possess a leading R, wave t ra in  (6.65). 

3. The structure of near- perpendicular propagating slow 

shocks consists of a trailing C/o, 

if 8, < 1 and a trailing R+ (6.70) wave t ra in  if 

(6.68) wave train 
pi- 

Bt > 1. 
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4. The slightly oblique B < 1 slow shock possess a 

trailing C/w (6.75) wave t ra in  if 8 ' >  C /C and 

U1 < Csl. 

A p t  
If B >  1, and 8 # 0, the shock structure 

consists of a trailing R+ wave train. 

The above results a r e  summarized in Figure 10 for fast  

shocks and Figure 11 for slow: shocks. where the angle 8, to 

be interpreted as either the upstream or  downstream angle a s  

appropriate, is plotted against the ion B .  

The solutions obtained in this section are not to be con- 

sidered to  represent the structure of actual collisionless shock 

waves. First only the structure in the vicinity of the Rankine- 

Hugoniot stationary points has been investigated; full details of 

the shock structure required solution of the complete non-linear 

differential equations. However the analysis does determine the 

qualitative nature of the shock structure. Second, the fundamental 

assumptions of pressure isotropy and neglect of the parallel heat 

flow a r e  not valid apriori  and must  be verified by a determination 

of the turbulent dissipation. Some qualitative speculations on 

the validity and possible breakdown of these assumptions a re  given 

in section 9.0. 

shocks (Kennel and Sagdeev, 1967a) requires a firehose unstable 

pressure anisotropy; here the fluid approach breaks down entirely. 

Also recall  that the theory of turbulent A l f d n  

Finally to obtain a complete collisionless shock theory the 

phenomenological dissipation coefficients employed in this work 

must be replaced with ones determined by plasma turbulence 

theory, Here a self-consistent solution of the fluid equations 

incorporating a turbulent collision operator as well a s  the energy 

and momentum flux of the turbulent wave fields is required. 
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This problem is further considered in section 8.0 where 

non- self -consistent estimates of the turbulent dissipation 

possibly appropriate to  the earth 's  bow shock wave a r e  dis- 

cussed. Here the usefulness of the fluid theory in arriving 

at such estimates is demonstrated. 
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7.0 The C/W - R - Dispersion Discontinuity - 
7.1 Introduction 

The analysis of the previous section indicated that for 

the B 4 1 oblique fast shock the competing effects of ion 

inertia and ion FLR dispersion may cancel in  the wave t ra in  

differential equation. At this point the long scale length 

waves no longer stand in  the flow to form the wave t ra in  

leaving only the possibility that short scale length waves on 

the fast branch might stand. Whether o r  not the above mathe- 

matical cancellation would occur in a physical shock is some- 

what dubious, however, since the disparity between the long and 

short scale length t e rms  in the wave t ra in  differential equation 

renders the precision required for the cancellation effect to 

occur unlikely. On the other hand, recent observations on 

the ear th 's  bow shock, to be reviewed in section 8.0, have 

demonstrated the occasional existence of a short  scale C/W 

structure. The well-established turbulent nature of the solar 
p- 

wind flow argues against the possibility that the cancellation effect 

might account for the C/W layer. Yet this structure occurs in 

a shock flow which almost certainly violates the restrictions on 

propagation angle and 6 required by the classical theory. Hence 

an alternative explanation is sought. 

p- 

First the short  scale length structure must be described in 

t e r m s  of the fluid equations. The only other dispersion lengths 

that affect the fast wave a r e  electron inertia and electron FLR. 

The ordering of the FLR-CGL fluid equations, however, breaks 

down at the short scale length sub-layer since R+/Ls  > > 1. 
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Clearly then a reordering of the fluid equations which has 

Ls/Rt and R - /Ls as small parameters  is required to  describe 

a C/w - R wave train. Since for Ls b C/w N R , 
P- P, 

, 

- - 

N J v  - < < 1, only the zero order  ion t e r m s  and 
LS/R+ 

first order  electron FLR t e rms  need be retained. The appro- 

priate expansion of the fluid equations is performed in section 

7.2. Proceeding as before, the wave t ra in  differential equation 

is calculated in section 7.3 with the same basic assumptions as 

discussed in sections 4.0 and 5.0. A linearized analysis about 

the Rankine-Hugoniot - stationary points, section 7.4, shows 

that both electron inertia and electron FLR dispersion produce 

trailing wave trains. 

Section 7.5 reconsiders the dispersion limitation of the 

shock steepening, reviewed in  section 2.2, and a qualitative 

argument is presented which suggests that only sufficiently strong 

fast shocks might possess a short scale length wave train. In 

analogy with the viscous dissipation discontinuity, this sub-layer 

is termed the C/w - R dispersion discontinuity. 
p- - 

7.2 Re-expansion of the Fluid Equations 

The equations of continuity, momentum, and energy (3.1- 

3.3), having been obtained by summing electron and ion contri- 

butions, remain valid under the new expansion and yield the 

familiar time independent conservation laws (4.1-4.5). The 

Ohm's law, 3 . 6 ,  is also valid to  t e rms  

to  order  3.7 to  obtain equations fo r  # when Ls/R'+ < < 1 and 

R /L 4 1. 

8 (M-/M+). It remains 

M 

- s  
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Considering 3.7 for  the ion pressure,  t e r m s  on the RHS 

a r e  

ion FLR ordering, so that to  lowkst order  P (O)' satisfies 

6 ( G )  smaller than those on the LHS, opposite to  the 

M 

Note that the only t e r m  in 7.1 which is influenced by the presence 

of the magnetic field is Q'O)'. 

is neglected, it is only consistent to  take P (O)' isotropic, 

P'O)' = P ( O ) '  I,, 

If the zero order ion heat flow 
M 

M 

Higher order  t e rms  in Ls/Rt will be neglected. 
M M 

The ordering of 3.7 for P-  is exactly analogous to that used 
M 

to obtain the ion FLR-CGL equations. 

is given by 3.9 to  lowest order  in R - /Ls, and 3.10-3.12, and 

3.14-3.19 to first order  where all terms a r e  evaluated only for  

eleqtrons. Recall that 0 = -eB/M C. Also note that it is V- - 
which occurs in the first order  terms. 

Hence the solution of 3.7 

- 

Attention now centers on formulating the appropriate Ohm's 

law. First consider the components of Newton's law for  ions 

parallel and perpendicular to  the magnetic field 

(7.2) 
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Ordering 7.2 for  Ls/Rt << 1, the RHS is 0 (1 / € )  compared to  

the LHS; hence to lowest order the RHS can be set equal to 

zero. 

e/Mt,  and can be neglected to  lowest order. 

and 7.3 become 

In 7 . 3  the t e r m  Ell is multiplied by the small parameter 

Therefore 7.2 

t Since P is isotropic, 7.4 describes the ion motion a s  
M 

independent of the magnetic field to lowest order ;  the ion trajec- 

tor ies  a r e  now straight lines. 

pretation, the high frequency electrostatic dispersion relation 

for the loss cone instability obtained by Rosenbluth and Post 

(1965) was based on the assumption that the ion orbits were 

straight lines. The justifying argument was that since the waves 

By way of comparison and inter-  

of interest had frequencies much larger  than the ion cyclotron 

frequency and wavelengths much shorter than the ion Larmor 

radius, the ions would move essentially rectilinearly on the time 

and space scales of the wave. Similarly here on space scales 

the order of C/u, - R , the ions a r e  decoupled from the magnetic 

field and therefore have straight trajectories. 
P, 
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t Now consider the Ohm's law 3.6 or  3.7. Since P is 
M 

isotropic, the only dispersion terms a r e  electron and ion 

inertia. Suppose the l inear waves described by the set 3.1-3.6 

were determined with the wavelengths now restricted to sat isfy 

kR+ > > 1 and kR << 1. If kC/w is also small, ion inertia 

is the only dispersion term. 
P- - 

Therefore the linear wave propaga- 

tion is described by the high frequency, Q+ < <u) < < \Q - I, disper- 

sion relation obtained by Formisano and Kennel (1969) for  

cos0 # 0 and Pi1 = PI 

2 2 2 2  where C2 = (Bo/4npo)(l/l t (k C /w >). The first bracket is 
A P- 

the high frequency whistler mode; the second is the isotropic 

sound wave o r  electroacoustic mode. Ion FLR dispersion has 

no effect on the wave propagation. 

is basically weak since it is important only when kR+ - 1 ( s e e  

Figure 5). 

Therefore ion FLR dispersion 

Passing now to consideration of the C/w - R sub-layer, 
P- - 

ion inertia effects must also be eliminated since (C/w )/Ls >> 1. 
p+ + 

Noting that V - M V_ , 7.4 can be substituted into 3.6 to obtain 

to lowest order in L /Rt, Ls/(C/w ) 
pi- S 
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Equation 7.6 is the desired Ohm's law since only electron 

inertia dispersion remains. 

7.3 C/wp -R- Wave Train Differential Equation - 
The time independent set  of equations a r e  4.1-4.5; the 

Ohm's law 4.6 and 4.7 is replaced by 

(7.7a) 

Note that the ion inertia coupling of B 

remains to determine the elements of P- with electron FLR 

corrections. Again assuming the electron pressure to be iso- 

and BZ is absent. It 
Y 

tropic, A. 2.13, A.2.17 and A.2.22 become 
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(7.10) 

To eliminate U; V- and V-  in te rms  of the fluid velocity 

and magnetic field, consider Ampere's law. When the magnetic 

field gradients a r e  of order C/w 

current is & ( 8 )  smaller than that of the electrons. 

Y z 

, the ion contribution to the 
P, 

Hence to 

& (8) the y and z components of 3.5 a r e  

(7.11) 

(7.12) 

4- Since the x-component of curl - B vanishes, U- = U . 
weak shock o r  linearized approximation, 7.8-7.10 become 

In the 

(7. 13) 
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(7.14) 

(7. 15) 

The sum of the two electron FLR heat flows is 

The reduction of the energy equation and the solution for 

U in terms of B and B proceeds exactly as in section 5.0. 

After iterating the Ohm's law with 6.11 the results a r e  
Y Z 
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(7.17) 

(7,18) 
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Note that the dominant electron FLR derivatives have the same 

sign a s  the electron inertia term so that R - dispersion also’ 

slows down the fast wave. 

7.4 Linearized Analysis 

The differential equation describing the linearized response 

about the Rankine -Hugoniot stationary points is obtained as in 

section 6.2. Considering only oblique fast shocks for simplicity, 
2 2 2  te rms  of order (Bx/B) and C,/U can be dropped. The resulting 

equations a r e  

(7.20 

where t e rms  8 r v + )  have been dropped in 7.20. 

that B and Be a r e  completely decoupled. If a completely 

arbi t rary propagation angle were considered, from 7.17 the sign, 

but not the magnitude, of the R - coefficient in the linearized 

equation would be the same a s  in 7.19. Hence the wave train 

results obtained below a r e  qualitatively correct for a wide range 

of propagation angles; i . e . ,  the C/W 

insensitive to shock angle. 

Note 

Y 

2 

- R - structure is relatively 
P, 
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Performing the familiar ansatz, the solution of 7.19 is 

At the upstream point the 1; component of the magnetic field under- 

goes an exponential r ise  whose scale length is 

(7.22) 

a combination of C/w and R if B N 1. The downstream solution 

is a trailing wave t ra in  given by 
P- - - 

(7.23) - 

Equation 7.23 exhibits the usual difficulty if U2 < Cs2 and viscous 

dissipation is required. 

The solutions of 7.20 a r e  exponentially growing at  the upstream 

point and damping about the downstream point; hence the only com- 

plete solution is the trivial one, 6B = 0. In the C/w - R- 
Y P, 
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sublayer, only the magnitude of the magnetic field changes since 

ion inertia, which drives the circular polarized component, is 

absent. 

7.5 Dispersion Discontinuities 

The physical process by which dispersion limits the steepening 

of a shock wave was reviewed in section 2.2. 

present, the resulting shock structure consists of a standing wave 

t ra in  whose group velocity is directed away from the shock. The 

wave train establishes a non-linear steady state in which the com- 

pression energy of the shock is convected away by the wave train 

group velocity. 

If dissipation is 

Consider a plasma with very weak dissipation in which a 

pulse is undergoing steepening from long wavelengths as it pro- 

pagates. 

which will have the longest wavelength, will form a wave t ra in  

which attempts to prevent further shock steepening. 

velocity is sufficient to  convect away the compression energy, a 

steady shock is formed. F o r  a strong pulse, however, the group 

velocity of the initial long scale length wave train may be incapable 

of preventing further steepening. Here either one of two possibili- 

t ies  exist. The pulse continues to steepen until another wave, 

on the sarne branch of the dispersion relation, stands whose group 

velocity is capable of maintaining a non-linear energy balance, 

The short scale length wave, having different dispersion characteris-  

t ics  f rom the long wavelength modes, will in general stand in 

another part of the flow. Hence the strong shock structure may 

consist of several  different flow regions, each with a separqte 

By the above arguments the first wave that stands, 

If the group 
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scale length standing wave train. There may, however, not 

exist a shorter dispersion length wave which stands, o r  even if 

there  a r e  such waves, their  group velocities may be insufficient 

to  limit the shock steepening. Here the wave t ra in  structure 

must break, and a fully turbulent shock results. 

The above argument suggests that a C/w - R wave t ra in  
P- - 

may be a general property of reasonably strong fast shock flows. 

The wave t ra in  calculation of section 7.4 indicated that this )short 

scale length layer was relatively insensitive to the shock propaga- 

tion angle and the plasma @, and therefore might occur for a wide 

variety of upstream flow conditions. 

To develop the above argument in mathematical t e rms  is 

quite difficult since it would involve solving the kinetic equation 

for the non-linearly excited wave modes in time and wave number. 

Here it is possible to give only a very crude argument which at  

least  outlines a probable approach to the problem. 

the pulse to have already reached steady state, the time indepen- 

dent kinetic equation for waves in a flow U is (Camac -- et al., 1962; 

Galeev and Karpman, 1963) 

Assuming 

(7.24) 

Nk is the wave action in the kth mode; the RHS is the non-linear 

excitation rate which has been expressed in the form yNL Nka 

If the explicit dependence of Nk on k is ignored, a very poor 
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assumption, 7.24 balances the non-linear generation of wave 

action with its convection loss. 

Since the non-linear excitation rate  is very difficult to 

calculate, yNL is estimated on physical grounds. 

should be proportional to  the amplitude of the pulse, p2/p1-  1, 

First y NL 

so  that yNL 4 0 when 

time, maximurny NL' 
the order of the t ime 

- 1 4 0. Second the minimum excitation M1 

that can exist in steady state must be of 

it takes the wave to cross  the pulse, T 
W. 

Clearly if yNLTw >> 1, wave energy accumulates inside the pulse, 

and the wave t ra in  cannot be established. 

T - Ls/(w/k). Hence 7.24 becomes 

T~ is estimated a s  

W 

(7.25) 

Since all characteristic gradients a r e  the order of the shock 

thickness, a lnNk/ax is estimated a s  L i l  so that 7.25 becomes 

The Rankine -Hugoniot relations for a perpendicular fast  shock 

were used to estimate p /p  - 1. 

Since the wave stands in the shock frame, w/k = U for either 

the upstream o r  downstream flow. 

2 Note that for M1 4 co, (3, = 2. 2 1  
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As examples, consider separate wave t ra ins  formed by 

ion FLR, electron inertia, and ion inertia. F rom 3.24 for 

perpendicular shocks the group velocity of the fast wave with ion 

FLR dispersion is 

Similarly for electron inertia, 2.16 yields 

(7.27) 

Note that when kC/w 

the group velocity approaches the phase velocity. 

whistlers, 7.5 gives the well-known result 

> > 1, corresponding to strong shocks, 
P, 

For  oblique 

(7.29) 

Upon substitution of 7.27, the relation 7.26 for the ion 

FLR wave t ra in  becomes 

(7.30) 
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2 2 -  2 2 2 

Setting w /k - CF(l - 3 kJ. R+) = U , 7.30 becomes 

(7.31) 

For  weak shocks, M2 N 1, B 
2 limits the shock steepening. 

and 7.31 is no longer satisfied. Hence, as mentioned above, 

ion FLR, being an  essentially weak dispersion effect, cannot 

prevent further steepening if the shock is strong, and another 

dispersion scale length is required. 

C 2, and ion FLR dispersion 

However for strong shocks M2 + 0 

W 

Now consider the electron inertia wave train. Using 

7.28 for strong shocks, kC/wp >> 1, 7.26 becomes - 

(7.32) 

Equation 7.32 is always satisfied for arbitrari ly strong shocks, 

M2 3 05; electron inertia is always capable of limiting the shock 

steepening. Also note f rom 2.16 that the C/w wave t ra in  

stands ahead of o r  near the sonic point. 

1 

P, 

Since the oblique whistler wave t ra in  stands in the upstream 

flow, the flow velocity inhibits the convection of wave energy in 

7.25. After substituting 7.29, 7.27 becomes 

(7.33) 
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Equation 7.33 is satisfied only if Mf 4 4; otherwise the whistler 

wave t ra in  alone does not prevent further steepening. 

The above semi-quantitative arguments should probably 

not be taken too seriously but only a s  an indication that a dis- 

persion discontinuity is possible. The actual structure of strong 

shocks will undoubtedly turn out to  be extremely complicated, 

and no more than qualitative "hints" at  various possibilities can 

be given here. In the next section some recent observations 

of the ear th 's  bow shock a r e  discussed for  which a possible 

interpretation can be made in t e rms  of a laminar wave t ra in  

structure and a C/w - R dispersion discontinuity. 
P, 
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8.0 The Earth's Bow Shock Wave 

8.1 Introduction 

The preceding calculations were performed in the spirit 

of investigating the content of the FLR-CGL equations with 

respect to laminar shock wave trains. Certain assumptions 

about the pressure isotropy andthe parallel heat flow were 

required to close the Rankine-Hugoniot relations; although the 

mathematical validity of the equations was thereby severely 

restricted, the dispersion properties of the wave train solutions 

a r e  probably approximately valid for a wider class of shock 

flows. Attention must now be concentrated on understanding 

the plasma turbulence responsible for the shock dissipation 

since not only the shock structure but also the final downstream 

state is dependent on it. 

Plasma turbulence theory contains a bewildering variety 

of unstable modes and several  different non-linear relaxation 

processes. 

turbulent shock dissipation may not be fruitful, and the problem 

In such a situation abstract theorizing upon the 

is placed on far surer  ground if  experimental information is 

available for guidance. Laboratory experiments have verified 

some aspects of the low+, C/wp and C/w laminar solutions - p t  
(Paul et al., 1965; P a u l . &  -2 a1 1 1967; Kurtmullaev et  al., 1966; 

Robeson et al., 1968), but problems of steady flow conditions 

and a fully collisionless plasma still persist. Observations 

performed on the earth 's  bow show afford, perhaps, the best 

opportunity to investigate finite-@ collisionless shocks over a 

wide range of upstream propagation conditions. Observations 
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f rom OGO-V have revealed that the shock transition often, but 

not alwaysI has a laminar form; these a r e  reviewed in section 

8.2 and compared with the above calculations. 

To legitimately make a comparison with experiment 

the assumptions of this work must be justified by determining 

some of the basic features of the turbulent dissipation. Guided 

by experiment a crude estimate of current driven ion sound 

turbulence, which is associated with sharp gradients in the 

magnetic field (Fredricks et  al. , 1968; Fredricks and Coleman, 

1968), is performed in section 8.3. The electron and ion 

parallel heat flows a r e  suppressed by this turbulence. Section 

8.4 discusses the stability of the wave t ra in  to  three wave non- 

linear decay. The trailing R+ wave train for perpendicular fast 

shocks is unstable to perturbations containing AlfvLn waves. 

8.2 Comparison with the Earth 's  Bow Shock 

Although there have been many observations of the bow 

shock, most suffered from either poor time resolution, inadequate 

diagnostic capability, o r  both. The most definitive results on 

the shock structure have been obtained by OGO-V, and hence 

the discussion here  will be limited to  data reported by Fredricks 

-- et al. (1968), Fredricks and Coleman (1968), and Fredricks 

-- et al. (1969). Caution should be exercised in interpreting these 

results a s  typical of the earth 's  bow shock since only a limited 

data sample has been analyzed to date. In addition, only those 

shocks which appear to be of laminar form a r e  discussed. 

bow shock at t imes also exhibits a turbulent magnetic structure 

which has been interpreted as large amplitude whistlers standing 

The 
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in the shock, which supports the shock theory of Fishman -- et al. 

(1960) and Camac 7- et ale (1962). 

Data for the shock crossing of March 12, 1968 from the 

UCLA fluxgate magnetometer and the TRW electric field experi- 

ment is reproduced in Figure 12. The shock parameters 

-5 -3 gauss, N~ - 10 cm were MA 9.5, B1 - 6 x 10 , p, - 2, 

T-/T+ - 10 where MA 5 U,/C . The magnitude of the magnetic 

field at the leading edge r i ses  sharply to  roughly seven times its 
A1 

upstream value, and then oscillates in a quasi-regular manner, 

reminiscent of a trailing laminar wave train. The data, of course, 

is observed as a temporal signal in the satellite frame. 

however, it is assumed that the relative speed of the shock and 

satellite was small, 4 10 km/sec ,  and that the wave train-like 

structure was time stationary, the temporal signal is interpre- 

table as a length. 

the leading edge and the trailing oscillatory wavelength i s  of the 

order  of several  t imes C/w . The C/w layer is the most f r e -  

quently observed laminar structure in the bow shock (Fredricks, 

private comrnunication). 

If, 

Viewed in this manner the scale length of 

I 

p, p- 

The electric field amplitude in the 1.3 khz channel of the 

TRW experiment was generally enhanced throughout this layer 

with peak amplitudes, about 27 mV/meter, occurring in associa- 

tion with the maximum magnetic field gradients, i. e . ,  the maximum 

current density. Comparison with the high frequency magnetic 

field detector reveals that these waves are almost purely electro- 

static. 

frequency, Fredricks and Coleman (1 968) suggested that the wave 

Since the wave frequencies a r e  near the ion plasma 
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turbulence is driven by an ion sound current instability. Further- 

more,  the Lockheed ion spectrometer observed that the ions were 

heated to roughly their downstream temperature at the C/w 

(Fredricks,  private communication). Hence it appears that the 

electrostatic ion sound turbulence i s  responsible for the shock 

dissipation in the C /w 

layer 
p- 

shocks. 
P, 

A more complicated shock crossing was observed on 

March 10, 1968, a sketch of which is shown in Figure 13. The 

shock parameters were M ' N 7, B1 - 8 x 10 

cm , and @ N .5. The upstream flow consisted of a standing 

-5 N1 - 10 gauss, A 
- 3  

oscillatory wave which 

a s  being a C/w wave 

again occurred a short 
p t  

Fredricks and Coleman (1 968) interpreted 

train. In the middle of the shock there 

C/wp structure with its attendant electro- - 
static turbulence. A third oscillatory wave t ra in  stood in the 

downstream flow which Fredricks and Coleman (1968) did not 

identify. If it is assumed that the relative velocity between the 

shock and satellite was about 10  km/sec,  tdis trailing structure 

has a scale length of the order of l o2  km. 

gyroradius downstream is of the same order. 

The thermal ion 

In attempting to interpret these shock observations in 

t e rms  of the above calculations several  points should be borne in 

mind: 

trailing edge of a time stationary shock flow; (2) no restriction on 

the shock strength was made; (3) the assumptions of pressure iso- 

tropy and zero parallel heat flow have not been justified; (4) the 

dissipation coefficients were completely ad hoc so that no estimste 

of the wave t ra in  growth o r  damping length can be made. 

(1) the above analysis is valid only for the leading and 

For  
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the March 10 shock the interpretation of the upstream structure 

a s  a leading C/w wave t ra in  appears secure. F rom the calcu- 

lations the downstream oscillations a r e  attributable only to a 

trailing R, wave train, a conclusion consistent with the estimated 

100 km scale length. Hence at this time the bow shock was 

either propagating obliquely to  the upstream interplanetary magnetic 

field o r  was sufficiently strong so that the downstream magnetic 

field was near-perpendicular. 

p t  

The occurrence of the C/w structure as the most dominant 
P- 

and persistent feature of the laminar-like bow shock observations 

is inexplicable in t e rms  of the wave t ra in  analysis of section 6.0 

since the solar wind ion @ far exceeds M /Mt. A possible, but 

perhaps not exclusive, explanation of the C/w layer is in t e rms  
P- 

of a dispersion discontinuity which occurs since the bow shock is 

of moderate strength. The analysis of section 7.0 then indicates 

that the scale length should be a combination of C/w 

if in the solar wind @-- 1. 

this interpretation remain unresolved, however: (1) aside from 

the crude arguments of section 7.5, which a r e  at best illustrative, 

there is as yet no determination of the Mach number at  which the 

G/wp - R dispersion discontinuity becomes important; (2) since 

the C/w - R discontinuity did not a r i s e  f rom a self-consistent, 

general wave t ra in  differential equation, its location in the shock 

flow cannot be calculated; (3) why does the C/w - R layer occur 

alone in most bow shock crossings without the long scale length 

wave t ra ins? Perhaps the strong turbulence associated with the 

C/wp - R 

thus obviating the necessity of further wave trains. The resolution 

and R 
p- 

Several difficulties o r  questions with 

- 
p- 

P- - 

wave t ra in  provides all the required shock dissipation - 
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of the above points awaits a more detailed analysis of strong 

shock flows, possibly withthe assistance of a computer. 

8.3 Ion Sound Turbulence in the C/w - R Layer 
p- - 

8.3.1 Linear Theory of Ion Sound Instability 

From the bow shock observations the currents 

required to  support the sharp magnetic field gradients 

in the C/w 
P- 

to the emission of ion sound waves. An estimate of the 

effective electron current velocity (recall that the ion 

trajectories a r e  straight lines, and therefore do not 

contribute t o  the current) is obtained from Ampere's law 

- R wave t ra in  appear to  become unstable - 

Hence V b  is close to the electron thermal speed if, as in 

the solar wind, B - N 1. Since T - /Tt is estimated to be of 

order 10 in the upstream flow, the conditions for the ion 

sound instability a r e  well satisfied. 

As  a zeroth order approximation the complicated 

C/w 

an electron current drift velocity Vb. 

- R structure is replaced by a uniform plasma with 
P- 

Since the unstable 

waves have frequencies around w which generally exceeds 
p t  

the electron cyclotron frequency, the effects of the magnetic 

field can, in this crude approximation, be neglected. For 

this simplified model the solution of the linear stability 
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problem follows from the electrostatic dispersion relation 

(Sagdeev and Galeev, 1966) 

where w Choosing 

the phase velocity intermediate between the ion and electron 

thermal speeds, the denominator can be expanded, and a 

= \ t iyk and y k / t  is assumed small. k 

dispersion relation is obtained which for %, yields 

2 I 

where Cs = T /M+ and AD = C /w 

Maxwellian for the electrons, the imaginary part of the 

dispersion relation gives an estimate of the growth rate 

. Assum,ag a Grifting 
pi- 

c- 

C ,  

which is sufficiently accurate for the purpose here. 

(8.4) 

8.3.2 Non-Linear Estimates 

Since the electron current velocity greatly exceeds 

the ion sound speed, the resulting turbulence will be strong. 
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The electron current must maintain the sharp magnetic 

field gradient so  that non-linear saturation of the wave 

spectrum will probably not proceed by diffusion of elec- 

trons but rather by absorption of the wave energy by 

the ions. Non-linearly the wave spectrum will broaden 

until the thermal ions a r e  in resonance. The wave 

spectrum should saturate if the turbulent electric fields 

can accelerate an ion to  C in one resonance time, 
S 

Since C+ < C the resonance time is less  than 
S’ 

7 res. 

the wave period by 

the turbulent wave 

k 

C+ICs, or  u) I- -/-. Hence 
P+ r e s  

amplitude can be estimated as  

where Ek is the wave electric field. 

course, is an upper limit to E 

Equation 8.5, of 

k’ 
The non-linear evolution of the electron distribution 

is crudely given by the quasi-linear theory (Drummond 

and Pines, 1962; Vedenov et al., 1961; Kennel and 

Englemann, 1966). An effective or  anomalous electron- 

ion collision frequency, which is a measure of the electron 

momentum loss  to ion sound radiation, is obtained by taking 

the velocity moment of the quasi-linear diffusion equation 

to find (Sagdeev and Galeev, 1966) 
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Retention of the resonance contribution to 8.6 and 

substitution for Ek from 8.5 yields 

Equation 8.7 is consistent with the result obtained by 

Sagdeev and Galeev (1966) f rom a much more elegant 

treatment employing the kinetic equation for waves and 

the quasi-linear theory. An effective ion-ion collision 

frequency, v.., is smaller than vei by roughly /=+. , 

11 - 
Since from 8.1 V,/C - 1 and w N b-1 for the 

p t  
solar wind, vei - IC2 I; hence in the C/w wave t ra in  

the effective collision frequency is large enough to satisfy 

- R 
p, 

the usual cri teria for the hydromagnetic assumption of 

pressure isotropy. Similarly v.. > > Ot so  that the ion 

pressure will also be isotropic in this layer. 
11 

8.3.3 Estimate of the Parallel  Heat Flow 

In section 4.0 the moments of the Vlasov equation 

were closed by neglecting the flow of heat along the lines 

of force. Since the heat flow depends on the detailed 
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distribution function, justification of the above assumptions 

requires information about the collision operator in the 

kinetic equation, i. e., about the dissipation coefficients. 

Fo r  the C/w 

collision frequencies arising from ion sound turbulence, 

albeit extremely crude, permit an estimate of the thermal 

conductivity if it is assumed that 

- R layer in  the bow shock, the anomalous 
p, .. 

The thermal conductivity can be related to the effective 

electrical conductivity by dimensional considerations a s  

where 

(8. 10) 

F o r  the bo* shock the ions were observed to approxi- 

mately thermalize across  the C/w - R wave t ra in  so that 

the maximum temperature gradient occurs there. Since 

every line of force passes through this wave train, the 

heat flow upstream will depend primarily on the value of 

>sf in this layer. 

p, 

The relative importance of electron thermal 
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conduction to resistive dissipation follows by comparing 

t e rms  in the energy equation 

Substitution of 8.9, 8. 10 and 8.7 into 8.11' yields 

(8.11) 

(8.12) 

Hence if the magnetic field and the temperature gradients 

have approximately the same scale length, electron thermal 

conduction contributes negligibly to the dissipation unless 

B - > > 1. 

for electrons by roughly /mi. - 
Ion thermal conductivity is smaller than that 

The above estimates a r e  probably only valid for the 

main part  of the electron o r  ion distribution where anomalous 

collisions are frequent enough to  suppress the heat flow, 

If a high energy tail develops in the shock, it may not be 

so constrained and could contribute a flow of heat upstream. 

8.3.4 Estimate of the C/u, -R Wave Train Length 
D- 

A possible check on the reasonableness of the above 

turbulence estimates is to determine the number of C/W - 
R - oscillations necessary to  accomplish the shock dissipa- 

P- 

tion and compare with observations. A phenomenological 
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quasi-linear velocity space ion diffusion coefficient can 

be constructed as 

(8.13) 

For  a reasonably strong fast shock the upstream flow 

kinetic energy is roughly converted to  thermal energy 

downstream so that A T 

total temperature change is approximately the number of 

steps n - L/(C/w ), where L is the length of the wave 

train, t imes the energy diffusion per step 

On the other hand t - aMtU1. 

p, 

(8.14) 

where A T  is the step time and should be approximately 

ii 
A T - (C/w ) /U.  Substitution for  c Ek i f rom 8.5 and v 

p- k 
t f rom 8.7 into D , the length L can be estimated as 

(8.15) 

For  typical solar wind parameters  8.15 yields L N 5 to  10 

C/wp in reasonable agreement with Figures 12  and 13. 

Furthermore,  since this length is still l e s s  than an ion 

gyro-radius, the approximation of straight line ion orbits 

used in analyzing this l a y e r  remains valid. 

- 
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8.4 Non-Linear Deday Instability of the Trailing 
Perpendicular R+ Wave Train 

In the previous section some estimates were made of the 

shock dissipation resulting from 

C/wp - R - wave train. Another 

received some discussion in the 
- 

ion sound turbulence in the 

dissipation process that has 

l i terature is the three wave 

parametric decay of the wave train structure (Galeev and 

Karpman, 1963; Sagdeev, 1966; Sagdeev and Galeev, 1966; 

Kennel and Sagdeev, 1967b). The generation of long wavelength 

turbulence, which does not stand in the flow, produces an 

irreversible shock t rans  it ion; the particle distribution functions 

adjust by damping, or  possibly amplifying, the turbulent waves, 

eventually producing a uniform downstream state. After briefly 

reviewing the fundamental concepts of the three wave decay 

instability, the stability of a trailing R wave t ra in  propagating 

perpendicular to the magnetic field is considered a s  an example. 

A non-linear wave is capable of interacting with two other 

t 

waves such that a resonant exchange of energy occurs between 

them. If the wave amplitudes a r e  sufficiently small so that the 

waves propagate, to  lowest order,  as if in a homogeneous system, 

perturbation theory permits a calculation of the matrix elements 

for the interaction. The matr ix  element couples the two perturb- 

ing waves with the non-linear wave, and vanishes unless the so- 

called decay conditions a r e  satisfied 

(8.16) 

(8.17) 
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w and k refer to  the non-linear wave; wl, k and w2, k refer 

to the perturbing waves. 

8.16 expresses the conservation of momentum and 8.17 the con- 

servation of energy. 

element must  be non-zero and have the appropriate sign for the 

0 0 -1 -2 
In analogy with quantum mechanics, 

In addition to 8.16 and 8.17 the matrix 

three wave decay to  occur. Three waves on the same branch of 

the dispersion relation may mode couple only if w increases with 

increasing k, a requirement imposed by 8.16 and 8.17. Inter.- 

actions between waves on different branches a r e  possible, but 

may be prohibited by polarization restrictions. 

As an example, consider a trailing R+ wave train propagating 

perpendicular t o  the magnetic field. Assume that the wave ampli- 

tude has been reduced sufficiently by either collisional o r  anoma- 

lous damping, so that the wave t ra in  may be approximated by a 

sinusoidal oscillation of frequency wo and wave vector ko, and obeys 

the linear polarization relations ; alternatively, consideration could 

be restricted to weak shocks so that the wave amplitudes a r e  
I 

always small. The wave t ra in  is to be perturbed by a slightly 

oblique fast  wave, w1 and lcl, and an intermediate wave, w2 and k2" 
For  simplicity the ion f3 is taken large enough so that ion and 

electron inertia a r e  negligible and only ion FLR dispersion is 

important. Pressure  isotropy is again assumed. 

The calculation follows the procedure outlined by Sagdeev 

and Galeev (1966) and hence will  be only briefly sketched here. 

The polarization of the R wave t ra in  is given by 6BZ, 6Vx, and 

6 V  

it is anticipated that kll > > kill; the intermediate wave polarization 

is b and V and k12 is taken to be zero. Reduction of Ohm's 

t 

the perturbing fast wave is characterized by El and bl, and 
Y' 

y2 y2, 
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law in the form of 3.8 yields the following relations 

(8.18) 

(8.19) 

(8.20) 

(8.21) 

(8.22) 

where * denotes the complex conjugate. Averaging over phases 

has eliminated the non-resonant te rms  so that only those satisfying 

the decay relations remain. Note that kill = k12. Similarly, the 

perturbed momentum equations a r e  

(8.23) 
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(8.24) 

(8.26) 

(8.27) 

(8.28) 

(8.29) 

Ion F L R  t e r m s  proportional to  kill have been neglected compared 

to  those containing kLla 
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The above equations could be reduced to obtain a growth 

rate  for the non-linear three-wave decay. The result is more 

transparent, however, if the equations a r e  reformulated in a 

Hamiltonian representation. The perturbations a r e  now taken to 

be of the form Vx = Vx (t) exp[-iwlt t ik r] where Vx (t) is 
1 -1 1 1 

considered to be slowly varying. 

Introduction of the action wave amplitudes 

(8.30) 

and use of the above linear polarizations yields the following 

(8.31) 

(8.32) 

where kllCA/wl < < 1 was used. 

for  Co(t). 

A similar equation could be written 
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If the amplitude Co is considered to be muchlarger  than 

the perturbation amplitudes C1 and C2, the time dependence of 

C can be neglected as a first approximation; 8.31 and 8.32 

then combine to give 

0 

2 If C,(t) = C1 eYt, the square of the growth rate,  y , f o r  the 

decay is given by the RHS of 8.33. 

only if sign (m u) ) < 0; otherwise the perturbations produce a 

non-linear shift in the frequency of Co. From 8.17, implies 

that I w 0 I  

lower frequency. 

There will be instability 

1 2  

> I w1 I ,  I m21 so that decay only occurs to waves of 

With the above determination of the non-linear decay rate,  

a crude estimate is possible for the length qf the R+ trailing 

wave train. The wave t ra in  should pers is t  downstream for a 

length of the order of L N M2CF/y. 

2 be weak, ICo\ is estimated as 

If the shock is assumed to 

(8.34) 

The wavelength of the R+ wave t ra in  is approximately k l  -' - 
R+(M1/ \M1 - 11 3. 

0 
1 2 Substitution into 8.33 for y then yields 

(8.35) 
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as an estimate of the damping length. 

The fast  waves generated by the three-wave decay a r e  pro- 

bably ion transit-time damped in the downstream flow since their  

propagation is oblique to the magnetic field and 8, > 1 (Barnes, 

1967). Actually for the decay to  occur, the non-linear decay 

rate.  must exceed the transit-time damping decrement within the 

wave train. Since the intermediate wave is undamped at any 

propagation angle, Alfvkn turbulence should persist  in the down- 

s t ream flow for large distances. Note, however, that the shock 

theories of Camac -- et al. (1962) and Kennel and Sagdeev (1967a) 

also predict downstream Alfvkn turbulence. 

The above calculation is illustrative of only one possible 

three-wave mode coupling; in principle, decay into other wave 

modes should also be considered. Hence 8.35 is an upper limit 

to the damping length. However the calculation was restricted 

to  consideration of only slightly non-linear wave trains. If the 

oscillation amplitude is large, which is certainly the case in 

Figure 13, there is no assurance that the above decay would occur 

and limit the wave t ra in  length; the application of this calculation 

to  the earth's bow shock is somewhat in question. 

8.5 Discussion 

This section has attempted to  illuminate several diverse 

points which may be summarized as follows: 

1. Observations of the earth 's  bow shock from OGO-V 

indicate that the magnetic field transition often assumes 

a laminar form. The leading oscillations a r e  probably 

correctly interpreted a s  a standing whistler with 
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scale length C/w . The trailing wave t ra in  is here 
p t  

interpreted as having an ion gyroradius scale length. 

2. The most persistent laminar feature of the bow shock 

is a short scale length C/w wave train. In associa- 
P- 

tion with the maximum magnetic field gradients the 

electrostatic wave amplitude with frequencies near 

w attain their largest  value. This turbulence is 

thought to result f rom an electron current driven ion 

sound instability. 

The presence of the C/w 
P- 

a s  a dispersion discontinuity required to limit the strong 

shock steepening. 

the observed short scale length in the bow shock should 

pi- 

3. wave t ra in  is  here interpreted 

Since in  the solar wind 13 - - 1, 

also be associated with the electron gyroradius. 

4. The non-linear effects of the ion-sound instability 

were very crudely estimated to  yield an anomalous 

dissipation rate for electron-ion and ion-ion collisions. 

The electron and ion parallel heat flows were suppressed 

by these collisions so that thermal conduction makes a 

negligible contribution to the total shock dissipation. 

The length of the C/w - R - wave t ra in  required to 

thermalize the ion distribution was estimated a s  5 to 
p- 

10  c / w p _ .  
5. An additional dissipation mechanism may occur due 

to the parametric three-wave decay of the wave train. 

-I- A particular example of a trailing perpendicular R 

wave t ra in  was  shown to be unstable to perturbations 

containing oblique fast waves and intermediate waves ; 
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an estimate of the R wave t ra in  damping length was 

made. Since the oblique fast waves should be damped 

when @+ > 1, the downstream flow should be characteri- 

zed by Alfvkn turbulence. 

t 

The discussion of this section should not be considered in 

any way to constitute a theory of the ear th 's  bow shock. 

assumptions required to perform the wave train analysis and the 

imprecise formulation of the dispersion discontinuity permit only 

the denotation of resemblances between theory and experiment, 

In addition, the estimates of the turbulent dissipation, aside from 

being very approximate, a r e  not self-consistent. 

The 
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9.0 Discussion 

Since adequate summaries of the calculational results a r e  

contained at the end of their  respective sections and in the 

figures, this section will be devoted to a few comments, generally 

non-rigorous, about collisionless shocks. After reviewing the 

fluid approach philosophy in section 9.1, some new directions 

for collisionless shock studies a r e  outlined. 

9.1 The Philosophy of the Fluid Approach 

The fluid approach describes the collisionless shock structure 

as an ordered o r  laminar wave train in which a standing wave 

pattern connects the uniform upstream and downstream states. 

The wavelength is characterized by one o r  more of the dispersion 

scale lengths which a r e  present in the theory of linear wave pro- 

pagation derived from either the Vlasov theory or  generalized 

hydromagnetic equations. Provided that a complete set of con- 

servation laws exist and the moment hierarchy of the Vlasov 

equation can be truncated, the fluid equations reduce to a system 

of differential equations from which the shock structure can be 

deduced. In this theory the shock dissipation is provided by very 

weak Coulomb collisions, micro-turbulence associated with the 

wave train structure, o r  the non-linear three-wave decay of the 

wave train itself. 

The main direction here has been to apply the fluid approach 

to finite+ collisionless shocks by investigating the FLR-CGL 

equations e An immediate difficulty was encountered, however: 

the FLR-CGL equations do not form a complete set of Rankine- 

Hugoniot conservation relations, Since the FLR dynamics couples 
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the degrees of freedom, the division of energy between the parallel 

and perpendicular directions cannot be followed independently. 

Stated in the language of classical mechanics, the number of 

particles is  conserved, translational invariance implies momentum 

is conserved, and time reversal  invariance yields conservation of 

total energy. Except for perpendicular shocks where the 

Hamiltonian would be independent of the angle between the flow 

velocity and magnetic field direction, there a r e  no rotational 

symmetries for oblique plane shock flows which might yield 

further canservation relations. Separation of the diagonal pressure 

tensor elements into parallel and perpendicular components intro- 

duces an additional degree of freedom into the system which is not 

accounted for in the fundamental conservation laws. 

In low+ plasmas where pressure effects a r e  relatively 

unimportant, the moment equations can be closed by neglecting 

the third order heat flow moments along the magnetic field. Also  

since perpendicular shock flows a r e  two dimensional, the parallel 

heat flow does not enter the fluid equations. 

perpendicular shocks, however, the moment equations a r e  not 

closed since the parallel heat flow is not determined by the fluid 

equations 

For  finite-B non- 

To continue pursuit of the fluid approach, two assumptions 

were made: 

reducing by one the number of degrees of freedom and closing 

the Rankine-Hugoniot relations; (2) the parallel heat flow was 

neglected. Clearly neither of these assumptions is wholly satis-  

factory since important details of the shock flow a r e  not determined. 

(1) the pressure was taken to be isotropic thus 
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To improve upon the above calculations, however, requires a 

self -consistent formulation for the kinetic theory of plasma 

turbulence within the structure of the fluid equations, Such 

a turbulence theory would provide a relation between the parallel 

and perpendicular pressure thus specifying the rate of isotro- 

pization by either macro- or  micro-turbulence o r  describing 

the approach to instability. Furthermore, knowledge bf the 

turbulent "collision" operator in the kinetic equation would permit 

a determination of the parallel heat flow. 

Given the above assumptions, what a r e  the restrictions 

placed upon the validity of the wave train solutions obtained here? 

The assumption of pressure isotropy could probably be considerably 

relaxed without seriously modifying the solutions provided that the 

anisotropy never attains a sufficiently large value to satisfy the 

mi r ro r  o r  firehose instability conditions. To close the Rankine- 

Hugoniot relations all that is r ea l ly  required is some relation 

between PII and PA; for example, assuming that the anisotropy 

was a constant through the shock constitutes an alternative choice 

to  the isotropy a s  sumption. Actually the linearized analysis about 

the stationary points to determine the wave t ra in  structure depended 

only on taking 6P11 = 6Pl; as long as the fluid instabilities a r e  

avoided, the anisotropy PII # P A  could have been retained 

without substantially modifying the wave t ra in  solutions. Of 

course, taking PII = PI greatly simplified the algebra. 

The restrictions imposed by neglecting the parallel heat flow 

a r e  more difficult to  evaluate. For  both fast and slow hydro- 

magnetic shocks thermal conduction alone can provide the required 

shock dissipation only if the shock is weak (Coroniti, 1969); 
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resistivity and/or viscosity are needed for moderate strength 

shocks. Thus it might appear that the above solutions would 

not be seriously altered by neglecting the parallel heat flow. 

In a collisionless shock, however, it may not always be possible 

to separate the various modes of plasma turbulence into cate- 

gories analogous to  the collisional dissipation coefficients. For  

example, the propagation of unstable waves or  waves generated 

by three-wave decay out of the shock might contribute a large 

radiation transport or  effective heat flow ( see  Camac et al.,  

1962 and Kennel and Sagdeev, 1967a). If the waves propagate 

a large distance before they a r e  damped, this effective heat 

flow would greatly broaden the shock structure and contribute 

non-negligibly to the total dissipation. 

of heat flow cannot be assessed without first determining the 

turbulent di s s ipation. 

Therefore the importance 

To proceed further with the fluid theory of collisionless 

shocks will  require a reformulation of the fluid equations which 

includes a prescription for calculating the dissipation coefficients 

in a self -consistent manner. Starting from an appropriate kinetic 

theory of plasma turbulence, the moments of the kinetic equation 

will provide a closed set  of fluid equations which can then be 

solved to determine the shock structure. 

o r  quasi-linear theory will probably prove inadequate to describe 

the shock dissipation since only small wave amplitudes and often 

special resonant subsets of the particle distributions a r e  considered. 

Perhaps a kinetic theory based on the methods of Dupree (1966) 

might be useful for some shock applications since the diffusive 

broadening of the velocity space resonances implies that a large 

Weak plasma turbulence 
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fraction of the distribution function is affected by the wave 

turbulence. In any case no complete and self-consistent fluid 

shock theory can be developed until an adequate theory of strong 

plasma turbulence has been formulated. 

9.2 Dispersion Discontinuity 

Turning now to future applications 'of the fluid approach, the 

concept of the dispersion discontinuity and its possible importance 

in interpreting the observed structure of the earth 's  bow shock 

may provide an initiating point for a self-consistent shock theory. 

Before such a theory can be formulated, however, the dispersion 

discontinuity must be placed on f i rmer  theoretical ground. 

First the dispersion discontinuity should be deducible f rom 

a self-consistent set  of wave t ra in  differential equations. An 

indication of this is obtainable by considering the M -, 00 limit 

of 6.12 and 6.16, the linearized differential, equations but with- 

out the weak shock approximation. The coefficients of ion inertia 

and ion FLR vanish in this limit leaving only C/w 

the potential t e rms  remain finite. 

the equations now describe a C/w 

in the magnitude of the magnetic field which is completely 

dispersion; 
P, 

Since 6.12 and 6.16 decouple, 

fast  shock trailing wave t ra in  
p, 

insensitive to  the shock propagation angle . Hence infinite strength 

fast  shocks exhibit a C/w dispersion discontinuity. 
p- 

The earth 's  bow shock data indicates that the dispersion 

discontinuity becomes important for much smaller Mach numbers, 

however, and determination of the critical Mach number for the 

onset of this effect is an immediate theoretical problem. The 

self - consistent wave train differential equation may resolve this 
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question. Perhaps, however, a more accurate formulation of 

the energy balance arguments of section 7.5 may be necessary 

to determine the critical Mach number. 

9.3 Slow Shocks 

Whereas fas t  collisionless shocks have been verified experi- 

mentally and have received considerable theoretical attention, 

the existence and structure of collisionless slow shocks remain 

in doubt. Yet the slow shock presents an intriguing problem 

for plasma turbulence theory since in the oblique, near switch- 

off limit where magnetic energy is converted into kinetic and 

thermal energy, an efficient turbulent resistive dissipation 

process must be found. 

l i terature the large magnetic annihilation associated with neutral 

sheet flows bounded by slow shocks was originally investigated 

by Petschek (1964) in connection with solar f lares  and was also 

applied to the magnetospheric convective flow by Levy -- et al. 

(1964) and Axford -- et al. 

tance a few comments on the structure of slow shocks seems 

appropriate; discussion will be limited to  oblique, low-@ near 

switch-off shocks since the low+ parallel electrostatic shock 

has already received some attention (Bernstein _.- et al., 1957; 

Montgomery and Joyce, 1969). 

In the astrophysics and space physics 

(1965). Considering its possible impor- 

The primary difficulty in constructing an oblique collision- 

less  slow shock is that the shock propagation speed is much l e s s  

than the ion thermal speed downstream, provided ions and electrons 

share the annihilatedmagnetic energy. The problem is, can the 

hot ions be contained behind the shock or  will there exist a large 
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ion flow upstream? (Electrons, because of their  small inertia, 

can always be dragged through the shock by an electric field.) 

Penetration of the hot shocked ions upstream constitutes a large 

heat flow so  that the slow shock may simply degenerate into 

a broad thermal diffusion layer;  the concept of a shock in this 

instance may be meaningless. 

A possible resolution of this difficulty is to postulate that 

only the electrons a r e  heated in the shock with the ions remain- 

ing cold. Thermalization between the two species might occur 

far downstream. Since resistivity must be the primary dissipation 

process, a current instability is likely to be part of the shock 

structure and may preferentially heat electrons over ions. The 

wave train solutions of section 6.0 suggested that the magnetic 

gradients in the shock a r e  of the order of C/w . Again estimating 

the self-consistent electron current f rom Ampere's law yields 

a current drift velocity V- D 
T /T+ > > 1, should destabilize the ion sound wave. 

p t  

which, if B < < 1 and - cA 

- 
If the ions a r e  heated by the resistive current instability, 

a s  they a r e  i n t h e  earth 's  bow shock, then the ion heat flow up- 

s t ream must be considered as part of the shock structure. For 

the near switch-off shock the downstream ions a r e  flowing into 

a magnetic m i r r o r  at the leading edge of the shock; hence many 

of the ions will be reflected by the mi r ro r ,  but some ions, and 

electrons, at small  pitch angles will  penetrate the upstream flow. 

The distribution functions for both species upstream will be of 

a Mott-Smith type. Since the contribution from the downstream 

particles is aligned along the magnetic field, TI\& > > T L ~  f o r  

this component. If there a r e  a sufficient number of hot particles, 
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the combined distribution functions may be unstable to anisotropy- 

type instabilities; for example, the low frequency whistler mode 

is driven unstable if Til, >> TL+, and the instability is greatly 

enhanced if the electrons also have Til - >> TI - (Kennel and 

Scarf, 1968). The non-linear effects of the instability will be 

to isotropize the ion distributions by pitch angle diffusion and 

to cool off the hot upstream ions. The unstable whistlers may 

be eventually damped by the cold upstream plasma, and hence 

contribute t o  the overall shock heating. In any case the aniso- 

tropy instability should suppress the upstream ion heat flow, 

and thus limit the shock to  a finite and distinct thickness. 

The above crude model suggests that the turbulent dissi-  

pation for the low+ oblique slow shock may be of two forms: 

a downstream current driven ion sound instability which dissi-  

pates magnetic energy and an upstream anisotropy instability 

which limits the ion heat flow. Clearly the model does not 

exhaust the possible modes of turbulence which might contribute 

to the dissipation, and the detailed shock structure remains to  

be calculated. In this regard the method employed by Tidman 

(1967) based on the Mott-Smith distribution might be useful in 

calculating the structure of the leading edge. 
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Appendices 

A. 1 Linear Wave FLR-CGL Dispersion Relation 

The linearized form of equations 4.1, 4.2, 4.8, 4.9, 4.10, 

4.11, 4.12, 4.14, 4.15, 4.18, 4.19 after Fourier analysis become 

(A. 1.2) 

(A. 1.3) 

(A. 1.4) 

(A. 1.5) 

(A. 1.6) 
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(A. 1,7) 

(A. 1 .8 )  

(A. 1 .9 )  

(A. 1 .  1 1 )  

(A. 1 .12)  

(A. 1 .  13)  



(A. 1. 14) 

(A. 1. 15)  

The anisotropy will be retained until the final determination of 

the dispersion relation. 

have been included. 

Note that only the ion FLR corrections 

The calculation proceeds by eliminating all the perturbed 

quantities in t e rms  of - 6V. 

algebra, only the salient results a r e  given. Expanding A. 1 . 3  

yields the components of E 

Since this amounts to  straightforward 

(A. 1.16) 



I 

(A. 1 e 17) 

(A. 1.18) 

pressure perturbations are 



(A. 1.19) 

(A. 1.20) 

6 P") and 6 B a r e  now determined in te rms  of - 6 V .  - M 

Substitution of A. 1.16-A. 1.20 into A. 1.2 yields a 3 x 3 matrix, 

the determinant of which gives the dispersion relation. Assuming 

pressure isotropy the determinant can be written in the reasonably 

simple form 
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(1) = 2 2 2 2  2 2 2 2  
where k = kl t kll , CA = (Bo / 4 n p ) ( l / ( l t k  C /u, )), Po 

p p  = Pll0('), "y= 1 - k l  C t  - 2kll rt , 3c/ = 1 - cykl rt 

2 a  k\l r+ , X = 1 - 4 a k 3 r t 2 ,  X' = 1 t cvkl rt , cy = Po 

6 12 = k 2 ( P ( o ) s  / 2  p,) t k\:(P(O)' /po). 

P, 
2 2  2 2  2 2  - 

2 2  2 2  ( O H  ( 1 )  /Po , 



158. 

In expanding the determinant to obtain the first order 

corrections to  CGL hydromagneticterms of order (k 2 r 2 2  ) 
t 

can be neglected. The dispersion 2 2 2 2  and (k rt ) k C A t  
relation is 

(A. 1.21) 

where 
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(A. 1.24) 

2 2 where Rt = Po(0)t/2n p 

B 
-0. 

and 8 is the angle between - k and t 0' 
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II (1) 

2' A.2 Components of P( l ) ,  si('), 911 , a1 anda  
M 

In formulating the FLR-CGL equations it is convenient to 

employ a coordinate system oriented about the magnetic field 

direction, the unit vectors 6,, g2, 4. 
a r e  basically Cartesian in that the plasma quantities a re  taken 

to vary only in the x-direction. It is, therefore, necessary 

t o  transform the various tensors and heat flow vectors into a 

Cartesian system. 

Plane shocks, however, 

The magnetic field basis vectors become in Cartesian 

coordinates 

where 

(A. 2.1) 

(A. 2.2) 

(A. 2.4) 

The various tensor elements required in the calculation of E (1) 
N 

a re  



(A. 2. 5) 

(A. 2.6) 

(A. 2 . 7 )  



(A. 2. 8) 

Using A . 2 . 8 ,  4.10 becomes 

where all quantities a r e  to  be evaluated for  both ions and 

electrons. Similarly, 4.11 is 

(A. 2.10) 
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Equation 4.12 becomes 

(A. 2. 11) 

(A. 2. 12) 
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For  P(') only the components Pxx, P and P:' a r e  
M XY * 

needed. It is convenient for approximations to use A.2.4 in 

place of the trigonometric funtions. Taking the && kf, and 

k& components of A.2.9-A. 2.12 as well a s  those of PI (1) AI 4- 

P,l(l) g3g3, the needed components become 

where 

(A. 2. 13) 

(A. 2. 14) 
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and 

(A. 2. 15) 

(A. 2.16) 

Similar1 y 

(A. 2.17) 
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where 

(A. 2,19) 

(A. 2.20) 

F inall y 

(A. 2.22) 



(A. 2.24) 

Performing the indicated operations in 4.16, cul becomes 

(A. 2.25) 

(A. 2.26) 

(A. 2.27) 

Similarly, 4.17 becomes 

(A. 2.28) 
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Finally, noting that only the x-components of the FLR heat 

flow a r e  needed, 4,18 and 4-19 become 

(A. 2. 30) 

Recall that all the above equations a r e  to be evaluated for 

both ions and electrons. 
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A.  3 Calculation of T!:) for  Near-Perpendicular Shocks 

In the wave t ra in  of section 6.0 calculation the components 

for  the ions of P ('I , Tij ('It are needed to  order  (R,/Ls)' and 

as a function of dU/dx, L e . ,  the derivatives dV /dx and dV /dx 

should be eliminated. 

z3 

Y z 

F o r  the ions, to  6 (M /M+)  this can be 

accomplished by using the y and z components of the momentum 

equations 

(A. 3.1) 

(A. 3.2) 

where T") and TCJ are to  be evaluated for  the ions but Pi1 ( 1 )  
XY 

and Pi ' )  are the total pressures .  

a r e  needed only to Ti j  Fo r  near  perpendicular shocks, 

0 (Bx/B) so that all terms (g (B:/B2, B B /B2, B:/B2) 
X Y  

can be dropped. Since Ti(jl) is a functional of the velocity der i -  

vatives and they in  turn a r e  functionals of T.. (1) , the equations 
1J 

2 must be expanded up to  order  (Rt/Ls) . 
be performed for l": and the results simply quoted for the 

The calculation will 
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other components. In what follows the zero order  heat flows 

will be neglected. 

Substituting A. 3.1 and A. 3.2 into A. 2. 1 and using 2. 18 

and 2.23 gives 

Y T' are & (Bx/B),  the last term Noting that T L ,  TxZ, TXz, 

of A.33, proportional to  TL, can be dropped. 

X 

xz 
Also T y  is 

XY 

(9 (Bx2/B2) and can be neglected. Substitution of A. 3.1 and 

A.3.2 into A.3.3 gives 

(A. 3 .4 )  
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(Bx/B), the first three t e rms  on the LHS of Since TZ is 

A. 3 . 4  proportional to  TZ 
XY 

can be dropped. Now consider the 
XY 

order of the las t  t e r m  d/dx(TZ (dTxZ/dx)). (1 1 From A.2.23, 
XY 

this becomes 
1 

or  8 ( 6 )  smaller the lowest order t e rms  required. 

here since TZ TZz - 6 (Bx/B ), this t e r m  could have been 
XY 

dropped by the small angle expansion; however this will  not 

always be true for the other t e rms  below. 

Actually 
2 2  

In evaluating A. 3.4 the weak shock approximation is used 

to "linearize" the coefficients of dU/dx so  that 

Expanding T h  and TX to lowest order in Bx/B, A.3.4 becomes 
XY 

(A. 3 . 5 )  
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Similar calculations for T ( l )  and T ( l )  give XY xz 

(A. 3.6) 

(A. 3.7) 

Note that the t e r m  B 

about the upstream point B = 0. 

dU/dx has been retained even though 
Y 

Y 
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A . 4  Calculation of T!!) for Isotropic Pressure.  
1J 

Now consider the components of T!!) when P\i (O)+ = ,p+ 
1J 

and Pi1 

Bx/B. 

@ (Rt/L)2 the desired terms a r e  

= Pl(l) but making no approximation on the angle 

By calculations analagous to those of A . 3 ,  t o  

(A. 4 .1)  

(A. 4.2) 
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(A. 4.3) 

In calculating the above, the weak shock approximation was again 

invoked to linearize the coefficients. 
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Figure Captions 

Figure 1: A sketch of the non-linear potential Y(B) against B; 

B1(B2) is the upstream (downstream) value of the 

magnetic field. Interpreting B as a particle moving 

in a potential well, B leaves the upstream unstable 

maximum and commences oscillating. If there is 

no dissipation, B makes one oscillation and returns 

to B1; this motion corresponds to the solitary wave. 

With dissipation B fails to return to B1, having lost  

energy, and eventually must come to r e i t  at the 

potential minimum, B2. Since B2 satisfies the 

downstream Rankine -Hugoniot relations, a shock 

transition has been effected. 

A sketch of the perpendicular fast shock C/W 

t ra in  for 8+ < M /Mt, B 

motion of Figure 1 is here translated into the magnetic 

field and flow velocity a s  a function of the spatial 

Figure 2: wave 
P- 

< < 1. The potential well - - 

distance through the shock. At the leading edge of 

the shock B undergoes an exponential r i se  from its 

upstream value with a scale length proportional to 

C/wp . 
st ream value; the oscillation length is also -C/wP . 
The wave tra-h oscillations eventually damp due to 

Behind this r ise  B oscillates about i ts  down- - 
- 

the weak dissipation. 
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wave t ra in  for a low-B Figure 3: A sketch of a leading C/w 

oblique fast shock. Here the dispersion t e r m  in the 

wave t ra in  differential equation has the opposite sign 

to  the potential t e rm;  oscillations develop about the 

leading edge of the shock and grow exponentially in 

space until the downstream conditions a re  reached. 

t p t  

Figure 4: A plot of the phase velocity, w/k, vs. k for the 

linear perpendicular fast wave in a B+ < M - /M+ 

plasma. When kC/w N 1, the fast wave is decoupled 

from the magnetic field, and is slowed to the sound 

speed, Cs. 

U2, shock flow velocities a r e  also sketched. 

phase velocity equals either U1 o r  U2, it is possible 

for a wave to stand in the flow; dispersive propagation 

is required since U 

tionary conditions. If the group velocity, aw/ak, is 

directed away from the shock, the standing wave forms 

a wave train. 

stands in the downstream flow and forms the wave 

t ra in  described in Figure 2. 

p- 

Po s s ible upstream, U1, and downstream, 

If the 

> C F >  U2 by the shock evolu- 1 

Here a wave with a wavelength - C/wP - 

Figure 5: A sketch of the linear fast wave dispersion relation for 

propagation oblique to the magnetic field with 8, < 1 

and Bt > 1. 

wave until electron inertia becomes dominant and slows 

the wave to Cs. 

sect U1, a leading C/w 

If @+ > 1, ion FLR dispersion dominates that of ion 

If @ < 1, ion inertia speeds up the fast t 

Since the phase velocity can inter-  

wave t ra in  is  possible. 
p t  

inertia and slows down the fast wave; a trailing Rt 



183. 

wave t ra in  is possible. 

effective only when kRt - 1. 

Ion FLR dispersion is 

F o r  kRt > > 1, the 

ion motion, with respect to the wave, becomes 

decoupled from the magnetic field; the ion trajec- 

tories can be taken to be straight lines. Since 

only ion inertia remains when kC/w < < 1, the 

wave speeds up to become the high frequency 
p- 

whistler . 
A sketch of the oblique slow wave dispersion 

relation for B+ < 1 and s+ > 1. Trailing C/w 

Figure 6: 

Pt 
< 1) and R ( B  > 1) wave trains a r e  possible. 

Figure 7: A sketch of the fast wave dispersion relation for 

(Pi- t t  

near-parallel propagation. 

propagation angle 8 must exceed sd /w 

Debye length dispersion can be neglected. 

leading C/w 

a r e  possible. 

When Pt > 1 , the 

so that 
pt 

A 

(B, < 1) and Rt(i3+ > 1) wave trains 
p t  

Figure 8: A sketch of the near-parallel slow wave dispersion 

relation. When 8, < 1, neglect of Debye length 

dispersion requires 0 > C,/C. Since both C/w 
pt  

and Rt slow down the wave, trailing slow shock 

wave t ra ins  a r e  possible. 

Figure 9: A sketch of the magnetic field profile for a low-B 

oblique slow shock. Note that the magnetic field 

decreases across  the shock. The trailing wave t ra in  

has an oscillation length N C/w . 
pi- 
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Figure 10: A parameter space summary of the fast shock wave 

t ra in  calculations. The shock propagation angle 8 

and the ion-@+ a r e  to be interpreted a s  upstream 

(downstream) quantities depending on whether the 

wave t ra in  is leading (trailing). Note that when 

8 < n  /w and '3+ > 1 Debye length effects become 

important. The dispersion lengths simply represent 

the scaling length for the shock thickness. Boundaries 

between various regions a r e  only approximate, and 

near the edges, shocks a r e  probably characterized 

by a combination of scale lengths. The region 

representing typical solar wind and bow shock @+Is 

is shaded. 

+ Pt  

Figure 11: Similar to Figure 10 except for slow shocks. Again 

note electrostatic region where Debye length dispersion 

is important. 

Figure 12: (After Fredricks -- et al., 1968 and Fredricks and 

Coleman, 1968). The first two graphs a r e  a dynamic 

spectrum and the electric field amplitude obtained by 

the TRW electric field experiment on board OGO-V 

for the March 12, 1968 crossing of the ear th 's  bow 

shock. Upstream is to the left. The third graph is 

the magnitude of the magnetic field a s  measured by 

the UCLA fluxgate magnetometer. 

undergoes a sharp r i se  to roughly seven times its 

upstream value and then oscillates about a value 

roughly four t imes that upstream. Assuming the 

relative velocity between the satellite and shock to be 

The magnetic field 



-10 kni/sec, the 

interpreted as a 

order of several 

amplitude attains 
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temporal oscillations can be 

scale length which is of the 

t imes C/w e The electric field 
p- 

its maximum value at the maxi- 

mum magnetic field gradients, i. e . ,  the maximum 

current density, 

Figure 13: (After Fredricks and Coleman, 1968) A sketch of 

a bow shock crossing obtained on March 12, 1968. 

Same format for the data display a s  in Figure 12. 

Upstream the magnetic field oscillates with an 

interpreted scale length of C/w In the center of 
pi- 

the shock a short C/w scale length layer is 
, 

P, '\ 

observed; here the electric field attains maximum 

amplitude, Downstream the magnetic field possesses 

an oscillatory structure labeled C/W' . These 
Pi- 

oscillations a r e  interpreted on the basis of the calcu- 

lations performed here a s  a trailing ion gyro-radius 

scale length wave train. 
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