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PREFACE

This study was performed under NASA Contract No. NAS2-4985 by the Human
Performance Laboratory of the Engineering Psychology Department, McDonnell
Douglas Corporation, St. Louis. Charles O. Hopkins was the program manager
and Barry J. Cohen the principal investigator. Robert J. Randle of the NASA
Ames Research Center was the technical monitor.

Kieth J. Maxwell initially defined the physical properties of an orbiting

optical system. He also developed a major portion of the Functional Description
of the IMS system.

Wilbert N. Manzelli helped determine the navigational tasks and aided in
establishing the Functional Requirements for the Stabilization Subsystem.
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ABSTRACT

An analytical study was performed to determine the requirements for stabi-
lizing images of visual targets to be detected and observed by astronauts in
future NASA space missions. An Earth resources survey mission, a Moon landing
mission, and a Mars landing mission were used to define physical characteristics
that would influence the performance of visual tasks. Expected image velocities
of targets in each task were compared with the image velocities defining smear
thresholds for human vision, photographic films, and electronic sensors to
determine image motion stabilization (IMS) requirements. These requirements
were used to develop the functional requirements for an IMS system and a plan
for its laboratory and airborne testing.
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INTRODUCTION

Some of the most important tasks performed by crew members of manned space-
craft are visual ones involving visible objects (targets) outside the spacecraft.
Certain characteristics of man's vision, in conjunction with his decision-making
capability, make him a potentially highly effective subsystem for performance of
tasks that require detection, recognition,and identification of visual targets,
The sensitivity of the human eye is so great that man can detect as few as three
light quanta (ref. 1). Man's visual acuity is somewhat less remarkable, but
nevertheless, he is often capable of resolving a line separation of approxi-
mately 168 microradians (35 seconds of arc) (ref. 2), This degree of acuity can
be achieved only under ideal conditions of illumination, brightness contrast,
atmospheric transmissivity, and stability of the target image., The determination
of requirements for achieving acceptable values for this last condition was the
purpose of this study.

Relative motion between a spacecraft observer's eye and a viewed target
results in instability of the target image. At certain critical rates of rela-
tive motion the target image will blur.

When the target is on the planetary surface, the direction and rate of
relative image motion depend, in part, upon the characteristics of the orbit that
determine spacecraft velocity and upon the spacecraft attitude rates. With this
type of relative motion the image appears to translate across the field of view.
Another source of relative image motion is vibration (relatively small amplitude,
high frequency oscillatory movements) of the line of sight. For example, if
“he observer were using a hand-held optical device, muscle tremor and other
extraneous vibrations might cause the image to "jump" around independently of
any translational movements.

Increasing magnification affects both types of image motion adversely.
Vibratory motion is increasingly exaggerated with increased magnification. 1In
fact, at high magnifications, vibratory relative image motion could be a problem,
even if the optical device was mounted to the spacecraft, rather than being
hand held. 1In the case of translatory image motion, as magnification is
b increased, the field of view is decreased proportionately, thereby causing the
A apparent velocity of the image to increase.

Image Motion Stabilization

Image motion stabilization (IMS) refers to the stopping or slowing down of
relative image motion. We will distinguish two types of IMS. One type is
concerned with stopping target image motion due to vibration of the line of
sight. A stabilization system using angular-rate-sensing gyros would be used to
damp out vibrations with certain amplitude and frequency characteristics. This
might be called '"damping" TIMS.

from rotation of the line of sight due to the orbital velocity of the spacecraft

i ( The other type of IMS is concerned with stopping target motion resulting
and to the spacecraft attitude rates. If the observer follows or "tracks' the

MCDONNELL DOUGLAS CORPORATION
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target with a line of sight rotation rate proportional to the target's velocity,
image blur can be eliminated. This is '"tracking' IMS.

In addition to eliminating image blurring, tracking IMS increases the time
that a given area is in the field of view. If the observer is searching for a
target in a given area, tracking IMS will increase the probability of his detect-
ing the target. Thus, tracking is a type of image motion stabilization that is
generally applicable to a wide variety of visual tasks performed by crew members
during a manned space mission. This study is concerned with the requirements
for tracking IMS,

Study Objectives
An objective of this study is to correlate human dynamic visual acuity with
the visual tasks that are expected to be performed by astronauts in some typical
NASA space missions. By bringing together minimum task performance requirements
and maximum human performance capabilities, we identified those tasks requiring
some form of image motion stabilization. Thus, for each visual task this study

hag asked two basic questions:

(1) Is image motion stabilization required for successful visual .
task performance?

(2) 1If IMS is required, what are the requirements for achieving it?

Study Approach

The study was approached from three base areas of interest:

Area I - The capabilities and limitations of human, electronic, and

F photographic sensor systems for gathering data about the visual

'i environment likely to be encountered in manned space missions.
Area IT - The visual tasks to be performed by man in these missions.

;i Area TIII - The design and evaluation of an image motion stabilization system.

In Area I, the question was asked, 'What potentially useful auxiliary capa-
bilities do man and his equipment have to assist him in extending his capability
to gather visual information beyond the limitations of the naked eye?"

\,;.WA...,,ii,

In Area II, we asked,'What does man have to see during a typical NASA space
mission?" Finally, in Area III, we attempted to reconcile the differences
between what man may be required to do and what he is capable of doing unaided. ,

e

Study Methods

e ng

A deductive, rather than inductive,approach was used to cerive IMS require-
ments for future manned space flight. We began with a review of human visual

i ¢
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characteristics and of other sensor characteristics. The general missions likely
to be flown in the next few decades were analyzed to select the most typical
missions for further study. Within each selected mission, all visual functions
were identified and broken down into their most critical visual tasks.

Each task was evaluated in terms of the physical characteristics of each
visual target, the altitude and velocity of the observer, the amount of magnifi-
cation required to resolve the target and the relative velocity of the target
with respect to the observer's line-of-sight. The resulting target movement,
stated in terms of angular velocity, was then compared with the "smear threshold"
for each sensor system, including the human eye. The tasks were then analyzed
for criticality and defined in tabular format. A specification for an image
motion stabilization system was developed and a test plan written. Figure 1
outlines the basic steps taken to accomplish the present study.

Determination of human visual characteristics.- The ability of an observer
to see the target is affected by the size, brightness, and contrast of the
target, and by the amount of time the observer has to detect the target before it
passes from his field of view. The observer's ability to resolve the details of
the target is affected by the target's angular velocity with respect to his line
of sight. The factors which may degrade the observer's vision, and the upper
and lower limits of static and dynamic visual acuity, are discussed under
Human Visual Characteristics.

Resolution of aerial film and electronic sensors.- Relative target motion
j degrades the resolution of both photographic and electronic sensors. High speed
| photographic films are typically grainy and are therefore unable to resolve fine
detail. In order to increase the resolving power of a camera system, it is
necessary to use a fine-grain, low-speed film. Thus the higher the resolution,
the lower the film speed, and the greater the likelihood of image smear as a
function of target movement with respect to the camera line of sight. Similarly
the signals of various electronic sensors that will be used in the missions
3 considered in this report are also subject to degradation as a function of rela-
: tive target movement. The image motion criteria for both photographic and elec-
tronic sensors are described under Electronic and Photographic Characteristics.

[ .

RS

g Mission selection.- A large numbe’ of potentizl manned space missions were
' reviewed to select the most appropriatz missions for this study. Those chosen
were the Earth Resources Survey Mission, the Lunar Landing Mission, and the
a Mars Landing Mission. This effort is described in Mission Analysis.
Identification of visual functions.- The selected missions were broken down _
on functional flow diagrams into a sequence of visual functions and tasks. A -
single flow diagram was developed for each mission and each diagram was, .

in turn, divided into mission segments. The visual functions were arranged
sequentially beneath each segment and were alpha-numerically coded. The diagrams
are contained in Mission Analysis. ‘

Analysis of visual tasks.- Once the visual tasks were identified, they were
analyzed into sequential task elements which described the nature of the task,
the task performance requirements, and the modes and possible results of
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incorrect task performance. The task descriptions are contained in tables in

the section titled Task Analysis. Once defined, the tasks were evaluated in

terms of resolution requirements and sensor classification. Next the magnifi-
cation required to achieve the desired resolution was determined, Once the
magnification requirements were defined, two separate analytical efforts were
initiated., One was aimed at determining the amount of IMS required to insure

a 957 probability of target detection (assuming the target would be above thresh-
old under completely static conditions) and the other was aimed at determining
the amount of IMS required to maximize the resolution of the visual, photographic,
and electronic sensors. The steps used are shown in Figure 1.

Determination of task criticality.~ Once the visual tasks requiring image
motion stabilization were identified, they were arrayed in order of task criti-
cality. This was done to aid NASA in deciding the nature of priorities that
should be used in future mission planning. The task criticality coefficients

; are presented in tabular form arranged in order of magnitude in Table 72 under
‘ Determination of IMS Requirements. This section also contains a tabular summary
. of the IMS requirements for optical tracking and target detection (Table 73).

@ Development of the IMS system functional description.- Following the deter~
B mination of IMS requirements is the IMS System Functional Description. This
description was written in general terms rather than in terms of detailed design
requirements. It was developed on the basis of the image motion stabilization
requirements defined by this study and provides an acceptable target acquisition
system in terms of light gathering power, magnification range, field of view, and
resolution capability.

Development of the IMS system test plan.- As the last step in the study, a
test plan was developed for evaluating the effectiveness of the image motion
stabilization system described in the previous section. The plan encompasses
both airborne and laboratory testing of the system under conditions designed to
represent the relative target velocities experienced by the observer.

T

Review of the literature.- During the study, we reviewed the literature in
the fields of dynamic visual acuity, visual perception, target detection, mission
requirements, sensor capabilities and limitations, and space navigation. The
references compiled during the literature search are contained in the last
section,

porer e

5 Assumptions

The conclusions that were developed in this study were based upon a combi-
nation of analytic and empirical data. This approach necessarily involves cer-
tain assumptions about the physical environment and man's performance character-
istics in this environment. The following set of assumptions was used in this

study:

a. The visual tasks performed during an Earth Resources Survey Mission, a
~ Lunar Landing Mission, and a Mars Landing Mission are representative of
the majority of visual tasks that will be performed in manned space
missions in the next two decades.
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b. The smallest object that can be detected subtends a visual angle of

2.9 milliradians (ten minutes of arc) under worst-case viewing condi-
tions, namely 0.0032 candela/meter? (.00l Foot Lamberts), 10% bright-
ness contrast, 507 atmospheric transmission, and 75% cloud cover.

The spacecraft will be in a circular, equatorial orbit about a flat
non-rotating body beneath the spacecraft nadir.

The probability of target detection will be largely a function of the
amount of time the target is in the observer's field of view., A 1.31
radian (75°) field of view will allow greater than chance detection of
an above-threshold target for all three missions. Also, there is an
equal probability of target detection anywhere within the field of view.

A small, hand-held monocular optical device (telescope) that can be
mounted in the spacecraft will provide the primary visual information
considered in this study. Weight and volume will constrain the overall
size of the optical device, limiting it to 6.8 kilograms (15 pounds)
overall with optics weighing between 1.81 kilograms and 2.27 kilograms
(10 pounds) and being 22.9 centimeters (9 inches) in length, and 7.62
centimeters (3 inches) in diameter.

The sensor smear thresholds are applicable to both tracking IMS and
damping IMS.

The ground resolved distances selected represent reasonable and useful
values that will be within the sensor state of the art during the time

period of the migsions described in this study.

The values of task criticality that were derived are numerically addi-
tive and represent at least an interval scale of measurement.
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fIUMAN VISUAL CHARACTERISTICS

Human vision depends on the complex interaction of many physiological,
psychophysiological, and physical factors. A great deal of research has been
devoted to assessing the effects of airecraft and spacecraft environments on
the functioning of the human visual system in general, and on the visual tasks
of detection, identification, and interpretation in particular.

Classes of Visual Tasks

It was recognized at the beginning of this study that image motion stabi-
lization might be required for the following types of visual tasks:

a., Target Search and Acquisition - Detection, recognition, and identi~
fication of surface and aerial targets.

b. Optical Tracking - Sustained visual surveillance of surface and
aerial targets in order to aim another sensor system at the target.

Figure 2 summarizes the classes of visual tasks considered in the study.

Target search and acquisition.- In this type of task the observer must
visually locate an object that may be embedded in a highly complex background,

or in an area filled with geologically similar surface features.
consists of the following:

The activity

a. Detection - The perceptual segregation of the visual field into two

parts - figure and ground (i.e., the determination that there is
"something of possible interest there.')

Recognition - The assignment of the object to a general class (e.g.,
"It looks like a river.'")

c. Identification -~ The determination that the object is a specific
member of the general class based on various perceptual and navi-

gational cues (e.g., "It is the Mississippi River between Natchez
and New Orleans.')

Optical tracking.- To perform optical tracking, the observer attempts to
keep the target within his field of view (FOV) by compensating Z£or the motion
of its image. In this study, all image motion compensatory-tracking tasks
are referred to as image motion stabilization (IMS). As the spacecraft
approaches a target and passes over it, apparent movement is a function of the
speed, altitude, and attitude rates of the spacecraft, and the magnification
of the target. Image moticn stabilization is accomplished by moving the center
of the optical system (e.g., the naked eye, a telescope, a camera platform, or
a multispectral sensor system) in the same direction as, and at a rate pro-
portional to, the image movement, thus stabilizing the image with respect to
the observer. 1In addition to improving the visual capability of the observer,
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IMS also minimizes any photographic smear that might be caused by the long
exposure interval required of high resolution film.

IMS is applicable t~ many sensor-pointing tasks, because the effective
use of many sensor subsystems will depend on critical adjustment and alignment
between the sensor and the area under examination, Tor example, in radar map-
ping, the antenna line of sight angle must be maintained within +17.45 milli-
radians (1°) pitch and +34.9 milliradians (2°) in roll or yaw. In addition,

a present state-of-the-art radar system requires that spacecraft attitude
rates be held to less than 872 microradians (0.05°) per second (ref. 3).

IMS requires that a high contrast area be availahle on the earth as a
visual reference to enable the observer to determine if he has effectively
stabilized the image (ref. 4).

Navigation.- Navigation is a special category of visual tasks containing
elements of both detection and tracking. The importance of navigation tasks
can be inferred from the fact that they are consistently judged to be critical
(See the Criticality Analysis). Although onboard navigational tasks in earth
orbit missions ave often given a back-up role, in the event of ground track
failures, these tasks ware considered in the present study because certain
situations could arise in which this secondary function would supply vital
information for mission success and crew safety (e.g., an abort entry.) There
are also certain migsions for which the onboard syst~m is more accurate than
earth-based tracking (e.g., orbiting about a distant planet). In this case, ‘
the navigation system onboard the spacecraft could supply the primary source '
of information.

Depending on the type of mission and the mission phase, the unavigation )
task will be one of the following general types:

a. Orbital Navigation - A vehicle's state (position and velocity). _
relative to the planet about which it is orbiting must be estimated.
This navigation task is important for the determination of sensor
pointing commands, decrbit maneuver for re-entry, or perhaps a trans-
planetary injection maneuver for an interplanetary mission.

b. Rendezvous Navigation - The primary interest in rendezvous navigation
is in determining the relative state of a target vehicle. Rendezvous
guidance maneuvers can then be calculated to accomplish the rendezvous.

c. Midcourse Navigation - The aim of midcourse navigation is to define
E the vehicle's state during the transplanetary phase of an inter-
planetary mission. Midcourse maneuvers can the , be determined which
would guide the vehjicle into specific approach corridors at the
destination planet. '

Different measurements are required for each of the above navigation
tasks., The measurements depend upon the information required by the task and
the availability and accuracy of data. Measurements containing the most basic
information are those which have the greatest change with time (i.e., the most

0
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dynamic ones). These rapidly changing measurements are more difficult to
observe, however, resulting in poorer accuracy. 1In this study, the data that
have evolved for these tasks represent a trade-off between the information in
the more dynamic measurement and the projected accuracy of that measurement.

As a mavigator, the astronaut is exposed to particularly dynamic viewing
conditions. In addition, vehicle attitude changes make observation more
difficult.

The navigation task requires the acquisition of two celestial bodies, and
a measureiient of the angle subtended by them in relation to the space vehicle
An alternative method is the measurement of the angle subtended by the per-
imeter of a single planetary body. These measurements require highlv accurate
instruments and readings, and precise determination of the time intervals
between measurements,

To gather the data the observer must first locate a planetary body or the
limb uf a planet, and a known star in a scanning telescope. The observer then
uses a sextant to bring one of the objects to a reticle type reference by
orienting the space vehicle until the required reticle placement is achieved.
The optical system then superimposes the second celestial body over the primary
one and the resultant angle is noted. Once obtained, these data are inserted
into an onboard computer, to be compared with pre-designated "true" flight
paths or with ground-supplied navigational updates (refs. 5, 6, 7, 8, 9, 10,
and 11).

A probable sextant accuracy of +4.8 microradians (10 arc sec) would be
required for the missions described herein, although a +2.4 microradian
(5 arc sec) measurement accuracy would be more desirable., A 1970 state-of-the-
art sextant would probably have a resolution capability of slightly less than
4.8 microradians (10 arc seconds) with a 34.9 milliradian (2°) field of view
(ref. 12). These accurac¢ies have not yet been obtained, however, in either

simulation studies or in actual orbital flights.

The sources of variance are extensive and only a relatively few can be
adequately controlled in an experiment which attempts to simulate navigational
tasks. TFor this reason, the accuracies obtained in simulations are higher
than those obtained in actual missions. 1In short, dynamic viewing conditions
increase the complexity of the navigator's task, and indicate that image motion
gtabilization would be beneficial. Table 1 (refs. 8, 10, 11, 13, 14, and 15)
compares some representative results of navigational accuracies obtained under
both overational and simulated conditions. This table also summarizes some of
the more desirable types of measurements that can be obtained during the three
missions that have been considered in the present study.

Factors Affecting Visual Performance
Man's ability to perform the required visual tasks depends, to a large

degree, on the characteristics of visual perception. As pointed out by Gibson
(ref, 16), visual perception is the processing of information about the visual

MCDONRNNELL DOUGLAS CORPORATION




L owemk

ot

REPORT G864
15 JANUARY 1965

Image Motion Stabilization

For Dynamic Visual Tasks

TedT3I8A T
- - - - Te20T-2ToTU=2A (P
- - - - U0ZTIOH-9TITY2A (° ;
- - 09+ (8°301)887+ | 2uST1 Buryseri-aeas (q | uvoriESTABN aeTiae
09+ (%1 °391)887+ - - 9TOTUaA-2B3S (®B SNOAZIPUIY Ieun]
- - 1 - —1 - JjoueTqd Jo I93auweld (° _ T
0T+ (ST F21)8%+ AR (QUAFSEILAVASY | re3g-1e3g (4 | uorIESTAEN UETIIER
8+ (1T 323) % 8¢+ 0T+ (TT*F21) 66+ IsueTd-1e3s (® 9SANOVPTIH deuny
] ot -+ ﬁ
- - - - WoT3IBITNOD00-181S {3
- - - - *g @1 Jaewpue] (=
- - - - Naeuwpue]-1els (P ueTIABR
- - - - *3a2p Teo0T-1e1§ (O Ieun’y
- - 0T+ (0T "F21) 66+ uooeag-1els (q uorledtaeN | s20anosay
80T-8T (ST ¥X)E°¢C-L°¢ 09+ (€T°323)887+ UOZTAOH-1®B3S (B Te3Tq10 ylaeq
SANODIAS 0¥V | SNVIAYVYOIDIN | SANODAS 0¥V | SNVIAVAOIOIN urf %
TYNOILVEddO HOLVTINRIS INTRTINSYHAR ]
SHIJVENOOV 40
qIANTIVIIO SHdAL FTIIISSO0d l_r NOTIIONAL NOISSIK

SOILSTEILOVIVHD TVNOLLVOIAVN

‘T 419VL

o

MCDONNELL DOUGILAS CORPORATION



>l

Image Motion Stabilization REPORT G864
For Dynamic Visual Tasks 15 JANUARY 1969

environment, and is a function of the characteristics of the visual field which
allow the observer to reduce any uncertainties about this environment. The
characteristics which segregate the target from its surroundings will naturally
enhance the observer's ability to detect and identify the target. This process
is influenced by the following factors:

Brightness contrast.- If the brightness of targets does not differ greatly
from that of the background, target contours will blend into the background and
detection will be difficult.

Ambient illumination.- Under low lighting conditions, detection will be
less likely, particularly if the eyes are not yet dark-adapted. In viewing the
moon, this problem is aggravated by the sharp brightness gradient between the
shadowed and unshadowed portions. The sensitivity available to scotopic vision
and the acuity of photopic vision will both tend to be compromised. If segre-
gation of figure from ground is based upon color cues, the Purkinje shift phe-
nomenon will minimize this discrimination capability, particularly on the long
end of the visible spectrum.

Atmospheric transmission.- The environment outside the spacecraft may
influence man's visual capabilities. The effects of varying levels of clouds,
glare, and haze upon image motion stabilization performance have been studied
under simulated conditions {(ref. 4). Although these factors have detrimental
effects on the image motion stabilization task, such effects can be almost
eliminated with extensive training. A related study (ref. 17) has indicated
that image motion compensation skills, when acquired through overlearning, show
a wminimal decrement for up to 200 days.

Reports of orbital observations have emphasized the visibility restric-
tions imposed by natural and artificial pollutants and cloud coverage over the
earth's surface (refs. 18, 19, 20, and 21). The amount of light falling on
the eye is greatly attenuated by the tramnsmission properties of the atmosphere,
with the transmission coefficient varying from .56 to .83 (refs. 22, 23, 24,
and 25). The atmosphere is a colloidal system of water vapor in various forms,
plus solids, liquids, and gases in complex combinations. The sun's energy must
penetrate this conglomerate, hit the earth, and reflect back to the observer's
eye. The result is that the observer sees only about 4% of the original solar
electromagnetic energy from direct ground reflectance (ref. 26). When photons
of light from the sun move through the atmosphere and a high proportion of
their energy is refracted, an intervening layer of light is effectively super-
imposed over the earth., This phenomenon is called "air light", and is the
prime cause of atmospheric glare.

Cloud cover is another atmospheric hinderance to light transmission. The
mean cloud cover for the entire earth is estimated at 547 and the cloud concen-
tration over a particular area on successive orbits can range from complete to
nil. The amount of light energy reflected depends on the thickness and water
content of the cloud formation, with a wide cloud albedo (reflectance) range
of .05 to .85 (refs. 27, 28, and 29). Clouds lead to a significant attenuation
in light transmission and produce shadows on sparsely illuminated ground areas.

12
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A number of investigators (refs. 22, 30, 31, and 32) have singled out
figure-ground contrast as the most crucial determinant of visual observation
of objects on the ground from orbit. Glare and clouds both effectively reduce
figure-ground contrast. It is safe to assume, therefore, that both glare and
cloud cover will have an adverse effect on visual performance, with their
combined effect being particularly detrimental,

Figure-ground differentation.- An isolated object (such as a super-
highway) contrasted against a visually homogeneous background (such as a
desert) tends to stand out, even under very adverse viewing conditions. If
the figure is embedded in a complex background, the probability of detection
is lowered considerably, since highly articulated background provides a large
amount of information which overloads the observer, making it less likely that
he will be able to resolve the uncertainty in the visual field.

Image magnification.- Some form of image magnification improves the con-
tour discrimination between figure and ground and thus enhances target detec-
tion. As Morgan (ref. 2) has pointed out, the probability of detection in-
creases as an ogive function of the size of the visual angle subtended by the
target. - However, as image magnification is inereased beyond certain values,
the probability of detection begins to decrease. A recent study (ref. 33)
demonstrated that 10-power magnification was significantly more effective than
30-power at the .005 level of significance. On the basis of that study, it
was concluded that the following factors contributed to the advantage of lower
magnification:

a. Contextual Cues Available - With 30-power magnification, the field of
view covered only one-ninth of the area obtained under 10-power magni-
fication. Thus, the number of natural and man-made surface features .
available as positional cues in searching for a specific target was
reduced 89 percent. Also, the paucity of contextual cues under high
magnification tends to shift an observer's perceptual set from ter-
restial surroundings to the configuration of specific targets and
their immediate surroundings. Previous investigators (ref. 34) have
indicated that superior observers gained cues from the entire visual
field, whereas the inferior observers memorized specific routes and
tried to find specific targets.

b. Relative Target Velocity - The second contributing factor is the
apparent relative velocity of ground objects with respect to the
observer. This factor has previously been pointed out by another set
of investigators (ref. 35) who summarized the effects of this factor
as follows: '"Angular velocities of objects across the display are
inversely proportional to the field of view."

Method of viewing the target.- Although the present study considers visual
search and acquisition only in terms of imagery being presented directly to an
observer, research has been conducted in which a television link was placed
between the observer and the telescope optics. Such studies have demonstrated : z
that such a link can be used successfully in some tasks with appropriate magni- i
fication, training procedures, and control-display directional relationships L o
(refs. 35 and 36). o : | AN
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Eye-hand coordination.- Target detection, recognition, and identification
rely on man's visual perception, but they also involve certain psychomotor
skills that control the optical system in search,and maintain image motion
stabilization once the target is acquired. One such study (ref. 36) has shown
that the directional relationship between telescope and hand control movement
significantly influences target search and acquisition performance.

Static and dynamic visual acuity.- Under given physical conditions, the
absolute threshold of vision can be defined as the visual angle subtended by
an object that can just be detected 50% of the time by an observer with normal
emmetropic vision. The term "visual acuity" has been u 2d by many researchers
such as Graham (ref. 37) as a method of uniformly expressing the observers
"capacity to discriminate the fine details of objects in the field of view,"
and is "conventionally defined as the reciprocal of the threshold visual angle,
in minutes ...." On the other hand, most of the people who have studied the
effects of target motion on vision such as Ludvigh and Miller, (ref. 38) have,
by convention, made the term "visual acuity" synonymous with 'the smallest
visual angle that can be resolved" (ref. 2). This convention has been used
in the present study.

Target acquisition and tracking is directly related to the observer's
visual acuity, which is in turn a function of the following factors:

a. Illumination of the target.

b. Target contrast with its background.

c. Atmospheric transmissivity.

d., Fidelity of the viewing system.

e. Relative motion of the target with respect to the observer.

The last factor brings into consideration the differences between static and
dynamic acuity. A target that is statiomary or whose relative angular velocity
is stabilized with respect to the observer's line of sight is more likely to be
resolved than a moving target, which is subject to blur, accommodation error,
possible impingement of the center of the image on the peripheral retina, and
lateral inhibition (refs. 38 and 39).

In other words, if the relative motion is stabilized, target acquisition
may be treated as being a function of those factors affecting static visual
acuity (SVA). The term '"dynamic visual acuity" (DVA) is used to designate the
ability of an observer to discriminate an object when there is relative move-
ment between him and the object. Recent increased interest in DVA is an out-
growth of the realization thatrdiscrimination of moving objects (or of stsztionary
objects while one is moving) plays a key role in many activities, such as
driving and flying, and that DVA may be more closely correlated with task
performance than is SVA,

14
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Regardless of the basic differences between SVA and DVA, there are certain
™ fundamental characteristics common to both types of visual acuity. For example,
;g visual acuity gets better as the illumination on the target is increased and

also as the contrast ratio of the target and its background is increasedl.
, There are three ways of expressing visual acuity; namely, minimal separable
l1 acuity, minimum perceptible acuity, and vernier acuity (ref. 2). Minimal
separable acuity or '"gap resolution' is the visual angle subtended by the
smallest difference between two lines or the smallest gap in a Landolt ring
that can be detected 507 of the time. The effects of variations in illumi-
nation and brightness contrast on minimum separable acuity are shown in Tables
2 and 3 (ref. 2).

Minimum perceptible acuity or '"spot resolution'" is the visual angle sub-
tended by the smallest target that can be detected 50% of the time. The effects
of variations in illumination and brightness contrast on minimum perceptible
acuity are shown in Table 4 (ref. 2).

The third type of acuity, vernier acuity, is a special case that probably
has limited applicability to the present study. It is defined as the minimum
lateral displacement of one segment of a broken straight line that can be
detected 50% of the time. Table 5 (ref. 2) shows the relationship between
illumination and vernier acuity.

"‘l' > omrtg B

Because of the particular,relevance of DVA to the present study, an ex-
tensive review of the scientific literature was accomplished to investigate
the capabilities and limitations of human vision under dynamic viewing
conditions. In our literature search we found that the most frequently used
methods of producing real or apparent motion of the test object are:

(1) movement of the object of interest, (2) movement of the observer,

(3) filming real movement of the object for use with observers, (4) use of an
optical device to produce apparent motion of the object, and (5) use of a
movable projector or background. The test objects typically employed consist
of: Landolt rings, Snellen letters, checkerboard transparancies, numerals,
highway signs, Morse code characters, and two-bar resolution figures. Most
of the experiments reviewed here have employed these motion-producing methods
and test objects. :

Blackburn (ref. 40) moved an object subtending 0.58 milliradians (2 min) of
arc in a horizontal plane, and noted the angular velocity above which visi-
bility was seriously impaired. He found that the target was barely visible at
an angular velocity of 436.3 milliradians/sec (25°/sec), and disappeared com-
pletely at 872.5 milliradians/sec (50°/sec). '

Warden, Brown, and Ross (ref. 41) conducted an experiment to assess the
effects of varying angular velocity and level of illumination on DVA, and to
determine if there was any correlation between DVA and static visual acuity.

Background Brightness -~ Target brightness
~ Background Brightness
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TABLE 2

MINIMUM SEPARABLE ACUITY AS A FUNCTION OF BACKGROUND BRIGHTNESS!
(FROM MORGAN ET AL, REF 2)

Background Brightness (mL)

Minimum Visual Angle (Minutes of Arc)

0.001
0.0

0.1
1.0
10.0
100.0
1000.0
10000.0

10’

3’
1'10"
42"
33"
2
25"
24"

REPORT G864
15 JANUARY 1969

1A|l values shown are the minimum visual angle subtended by a target that will be seen 5% of the time.
To determine the size target required to be detected nearly 100% of the time, multiply the tabled angles

by two.

TABLE 3
MINIMUM SEPARABLE ACUITY AS A FUNCTION OF BRIGHTNESS CONTRAST!
(FROM MORGAN ET AL, REF 2)

Contrast Ratio Background Brightness

(%) - 1FRt-L 10 Ft-L 100 Ft-L
2 11 8'30" 4'45"
5 5’ 3'54" 2'20"
10 312" 2'20" 1'36"

20 2'20" 1'36" 16"

50 1'30" § 48"

100 1’6" 48" 30"

lA|| values shown are the minimum visual angle subtended by a target that will be saen 50% of the time.
To determine the size target required to be detected nearly 100% of the time, multiply the tabled angles

by two. o :
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TABLE 4
MINIMUM PERCENTABLE ACUITY AS A FUNCTION OF BACKGROUND
BRIGHTNESS AND BRIGHTNESS CONTRAST!

(FROM MORGAN ET AL, REF 2)

| | Contrast Ratio
Background Brightness (Ft-L)
1% 10% 100%
.00001 - - 88’
.0001 - - 52'
001 - 194 16"
01 - 16 424"
’1 6’481’ 2'48"
1.0 40 4'18" 56"
10.0 9'18" 3'42" 49"
100.0 g'6" 3'15" 46"

W M W s I o . ﬁfﬁ“ﬁ - 1i: -H‘ﬁ‘ " °, I .

— -~

LAll values shown are the minimum visual angle subtended by a target that will be seen 50% of the time.
To determine the size target required to be detected nearly 100% of the time, multiply the tabled angles
by two.

TABLE 5
VERNIER ACUITY AS A FUNCTION OF BACKGROUND BRIGHTNESS!
(FROM MORGAN ET AL, REF 2)

Background Brightness (mL) Minimum Visual Angle (Seconds of Arc)
.05 6"
.08 4.5"
.3 3.3"
1.0 2.8"
6.0 2.6"
130.0 2.6"

o

bl

111 values shown are the minimum visual angle subtended by a target that will be seen 50% of the time.
To determine the size target required to be detected nearly 100% of the time, multiply the tabled angles
by two.

MCDONNELL DOUGLAS CORPORATION
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Dynamic visual acuity decreased as a functicn of increasing angular velocity
and decreasing 7llumination, and showed no relationship to static visual
acuity.

Low (ref. 42), using moving objects, investigated simple form acuity in
the peripheral retina. The test objects were Landolt rings, moved in a hori-
zontal meridian by means of a modified perimeter so as to produce a constant
angular velocity of 261.8 milliradians/sec (15°/sec). It was found that form
discrimination deteriorated as a function of object movement.

Ludvigh (ref. 43) determined foveal visual acuity during ocular pursuit.
It was found that movement of the test objects (Snellen letters) in the hori-
zontal plane led to a marked deterioration in visual acuity as angular velocity
increased from 0 to 2.18 radians/sec (0 to 125°/sec). Ludvigh (ref. 44), using
Landolt rings as test objects, found a marked ducrement in DVA performance as
a function of increasing angular velocity from 436.3 to 3490.0 milliradians/sec
(25 to 200°/sec). 1In a subsequent series of investigations, Ludvigh (ref. 45)
determined visual acuity while the test object moved through a circular path
in a plane perpendicular to the line of sight. 1In these experiments a rotating
prism was placed beftween the observer's eyes and the test objects (Landolt Rings)
to achieve the circular path. Visual acuity deteriorated more rapidly when the
movement was in a circular path in a frontal plane than when the movement was
linear. 1In addition, it was observed that high-intensity illumination improved
visual acuity.

O'Hara (ref. 46) determined the maximum distance at which various test
objects were visible from an automobile moving at various speeds. It was found
that visual acuity decreased as vehicle speed increased.

Rose (ref. 47), using Morse code characters as test objects, measured
visual acuity during ocular pursuit in the horizontal plane. The test objects
were moved by means of a projector mounted on a rotating turntable. A sizable
decrement in visual acuity was noted as a function of increasing test-object
angnlar velocity in the range 349.0 to 1745 milliradians/sec (20 to 100°/sec),
with maximal deterioration occurring at angular velocities greater than 1745
milliradians/sec (100°/sec).

Ludvigh and Miller (ref. 38) investigated the general relationship of
visual acuity to angular velocity. For the purpose of analysis, the observers
were assigned to one of three groups on the basis of the rate at which visual
acuity deteriorated as a function of increasing angular velocity of the test
object. Group I consisted of five observers tested at angular velocities of
1919.5 milliradians/sec (110°/sec), Group II of eight observers tested at up
to 2443,0 milliradians/sec (140°/sec), and Group III of five observers tested
at up to 2966.5 milliradians/sec (170°/sec).

The results of this investigation indicated that when a test object moving
in a horizontal plane attains an angular velocity of approximately 872.5 milli-
radians/sec (50°/sec), the ability of the eye to pursue it accurately is seri-
ously impaired. (See Figure 3).

18k
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FIGURE 3 ~ DEPENDENCE OF VISUAL ACUITY ON ANGULAR
VELOCITY OF THE TEST OBJECT e
(FROM LUDVIGH AND MILLER, REF 38) "4

Miller and Ludvigh (ref. 48) examined the effect of direction of test-
object motion on DVA. The results of DVA testing for nine observers with the
test object moving in the horizontal plane are presented in Figure 4. The
corresponding results for these same observers obtained with the test object
moving in the vertical plane are plotted on the same axes. These findings in-
dicate that movement along the vertical meridian of the retina is somewhat
easier to perceive than movement aloug the horizontal meridian. Pollock
(ref. 49) has presented evidence indicating that, even in the absence of pur-
suit, motion along the vertical plane is better perceived than motion along the
horizontal plane. Monocular luminance thresholds were determined for a spot of

" white light moving, in either the vertical or horizontal plane, at angular
velocities ranging from 872.5 to 34900.0 milliradians/sec (50 to 2000°/sec).
A consistent difference between the vertical and horizontal thresholds was ,
evidenced. For seven of the eight speeds examined, the thresholds for vertical
movement were lower than those for horizontal movement.

Ludvigh and Miller (ref. 50) sought to evaluate the reliability of DVA test
scores. Twenty successive DVA thresholds were determined with a test-object
angular velocity of 349.0 milliradians/sec (20°/sec), and another 20 were
established at 1919.5 milliradians/sec (110°/sec). Half of the observers were
tested first at 349.0 milliradians/sec (20°/sec) and then at 1919.5 milli-
radians/sec (110°/sec), and the remaining half were tested first at 1919.5

19
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FIGURE 4 — EFFECT OF DIRECTION OF MOTION OF THE TEST OBJECT
(FROM MILLER AND LUDVIGH, REF 48)

milliradians/sec (110°/sec) and then at 349.0 milliradians/sec (20°/sec). The
relaibility of this method of assessing DVA was examined by correlating the
means of the odd= and even—numbered thresholds obtained at an angular velocity
of 1919.5 milliradians/sec (110°/sec). The resulting product-movement correla-
tion coefficient was 0.99. An additional 120 observers were then utilized to
determine whether a test-retest measure of reliability would yield a result
similar to that obtained with the split-half method, and it did. It was con-
cluded that the method of determining DVA utilized by Ludvigh and Miller was
internally consistent and highly reliable.

Ludvigh and Miller (ref. 51) investigated the effect of practice on DVA.
The DVA thresholds for 200 naval aviation cadets tested at 349,0 and 1919.5
milliradians/sec (20 and 110°/sec) test-object velocities are shown in Figure 5.
Examination of the curves indicatis that the effect of practice at 1919.5 milli-
radians/sec (110°/sec) was substantial, while the effect of practice at 349.0
milliradians/sec (20°/sec) was negligible. 1In addition, it is obvious that a
substantial amount of the improvement at 1919,5 milliradians/sec (110°/sec)
occurred during the initial four test trials. So it appears that when improve-
ment in DVA performance does occur with practice, it occurs quite rapidly.

Ludvigh and Miller then took the 20 best and 20 poorest performers and
determined the effect of practice at 1919.5 milliradians/sec (110°/sec) on DVA
performance. It can be seen from Figure 6 that practice at 1919.5 milliradians/
sec (110°/sec) was much more beneficial for good performers than for poor per-

20
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FIGURE 5 - THE EFFEC/T OF PRACTICE ON DYNAMIC VISUAL ACUITY
(FROM LUDYIGH AND MILLER, REF 50)

formers. The question remained, however, as to whether the rapid improvement
shown in the initial trials represeénted asymptotic performance or merely a
plateau on the learning curve for the average observer. TFigure 7 shows the
effects of greatly prolonged training on DVA skill. Extending training over

a three week period id not improve DVA performance. In brief, it appears that
any improvement in DVA performance as a result of practice oncurs rapidly, that
practice has a differential effect for good and poor performers, and that ex-
tended training does not enhance DVA skills.

Ludvigh and Miller (ref. 52), using two groups of observers, studied the
problems of retention and transfer of training within the context of a DVA
task., Substantial retention of the DVA skill was found after seven months.
With regard to transfer, practice at 349.0 milliradians/sec (20°/sec) produced
a very slight improvement in performance at 1919.5 milliradians/sec (110°/sec).
Practice at 1919.5 milliradians/sec (110°/sec) resulted in a still smaller
improvement in performance at 349.0 milliradians/sec (20°/sec). This is proba-
bly because angular velocities of less than 436.25 milliradians/sec (25°/sec)
have little effect upon DVA performance.

. R e ] . [ o
S D N R M N RNt C

Miller (ref. 53) compared the results of testing visual acuity in the hori-
zontal plane with those obtained when the pursuit path was circular and in a
plane perpemsilcular to the line of sight. The 120 observers in Miller's study
were divided into two equal groups. One group was tested at a horizontal
angular velocity of 1919.5 milliradians/sec (110°/sec), and a rotary velocity
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of 872.5 milliradians/sec (50°/sec). The other group was also tested at a
horizontal angular velocity of 1919.5 milliradians/sec (110°/sec), but at a
rotary velocity of 1343.7 milliradians/sec (77°/sec). The two types of pursuit
were significantly correlated. The correlation between the thresholds obtained
for 1919.5 milliradians/sec (l1(°/sec) linear and 872.5 milliradians/sec
(50°/sec) circular velocities was 0.61l. The correlation between the 1919.5
milliradiradians/sec (110°/sec) linear and 1343.7 milliradians/sec (77°/sec)
circular thresholds was 0.60. These results and those of Miller and Ludvigh
(ref. 38) and Pollack (ref. 49) suggest that acuity deteriorates most rapidly
for circular wovement and least rapidly for vertical movement, with horizontal
movement falling between.

mined the relationship between the perception of a sharp contour and angular
velccity. The test object, a black square, was exposed to the observer in a
2 fixed position both before and after movement. The observer was to indicate

I Smith and Gulick (ref. 54), in a study dealing with form perception, deter-

when the black square was perceived with sharp contours. The existence of

sharp contours was investigated as a function of the duration of exposure of

the stimulus in various fixed positions. It was found that the contour of the
moving stimulus could be maintained as angular velocity was increased by con-
current increases in exposure time, both before and after movement. The

results showed that as the angular velocity increased from 244.3 to 436.3 milli-
radians/sec (14 to 25°/sec), the pre- and post-movement fixation time required
for sharp contour perception during movement increased from O msec to 300 msec.

Q Foley (ref. 55) investigated the relationship between digit identification
o and angular velocity as a function digit separation and direction of movement.
E The digits were projected onto a screen and moved either vertically or hori-
zontally. The speed of the digits was increased in discrete steps of 34.9
BT milliradians/sec (2°/sec) until the observer was no longer able to identify
A any of the digits presented. Observers performed better when digit separation
was pronounced, and the movement of the digits was from right to left or upward
rather than when the movement was from left to right or downward.

Hulbert, Burg, Knoll, and Mathewson (ref. 56) have investigated DVA in
connection with automobile driving. The test objects employed were checker-
- board transparencies which were moved by means of a rotating projector similar
i ‘to that used by Rose. The range of angular velocities utilized was 349.0 to
3140.0 milliradians/sec (20 to 180°/sec). The findings of the four essentially
7 agree with those already reviewed: Visual acuity deteriorates as the angular
H} velocity of the test object increases.

Ludvigh and Miller (ref. 57) also evaluated the effect of variations in
test-object angular velocity on DVA, The angular velocities employed were
349.0, 872.5, 1396.0, 1919.5, 2443.0, 2966.5 milliradians/sec (20, 50, 80,
110, 140, 170°/sec). DVA performance deteriorated markedly at angular veloci-
ties exceeding 872.5 milliradians/sec (50°/sec).

All of the empirical work discussed thus far concerns the effect on visual

) acuity of moving the test object relative to a stationary observer. Miller
‘i (ref. 58) investigated visual acuity when the observer was moving relative to

a fixed test object. The apparatus employed to rotate the observers was a

23
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modified Link trainer which could be rotated in the horizontal plane at angular
velocities ranging from 0 to 2722.2 milliradians/sec (0 to 156°/sec). The test
objects were Landolt rings, the level of illimination was 269.1 lumens/meter
(25 ft-candles), and the exposure time was 0.4 sec. Monocular thresholds were
obtained at five angular velocities ranging from 349.0 to 2094.0 milliradians/
sec (20 to 120°/sec), Figure 8 shows a comparison of DVA scores obtained with
the test object moving and scores obtained with the observer moving. The data
indicate that the effect of test-object angular velocity chiefly depends on

the presence of relative motion between the object and the observer; and, it

1s relatively unimportant whether the test object or the observer is moved.

20 . ' .
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FIGURE 8 - COMPARISON OF VISUAL ACUITY WITH TEST OBJECT
MOVING VERSUSOBSERVER MOVING
(FROM MILLER, REF 58)

Van den Brink (ref. 59) evaluated the cumulative effects of angular velocity
and exposure time on DVA. The test objects consisted of two luminous bands
separated by a dark band. 1In general, visual acuity deteriorated as the angular
velocity of the test object increased. The results also indicated that acuity
for moving targets was a function both of exposure time and angular velocity
up to a critical point at which the two factors became independent.

Burg and Hulbert (ref. 60) compared binocular DVA scores at target veloci-
ties of 1047.0, 1570.5, 2094.0, and 2617.5 milliradiens/sec (60, 90, 120, and
150°/sec) with critical flicker frequency (CFF), ACA ratio {(derived from near
and far phoria measurements), and static acuity measured on the Bausch and
Lomb Ortho-Rater. No evidence was found for a statistically significant corre-
lation between DVA score and either CFF or ACA ratio. In addition, the corre-
lations between ACA ratio and either CFF or static acuity, or between CFF and
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static acuity, were not significant. Low but significant product-moment corre-
lations were found between DVA and static acuity, but these decreased with
increasing target velocity.

Goodson and Miller (ref. 61) conducted a study in which the dynamic acuity
of 15 observers was measured during actual flight over ground targets of known
size at altitudes ranging from 100 to 500 feet, Visual acuity became succes-
sively worse at angular velocities of 523.5, 1047.0, 1570.5 milliradians/sec
(30, 60, 90°/sec).

Crawford (ref. 62) examined the ability of observers to perceive detail
in moving :bjects as a function of target velocity, exposure time, and training.
Acuity markedly deteriorated (measured by ability to identify the orientation
of a Landolt ring) as angular velocity increased from 0 to 2191.3 milliradians/
sec (0 to 125°/sec), with significant decrements in performance beginning to
appear at an angular velocity of 1308.8 milliradians/sec (75°/sec). In the
second phase of the experiment, targets were exposed for 400, 500, 600, and
700 msec at angular velocities of 872.5, 1308.8, and 1745.0 milliradians/sec
(50, 75, and 100°/sec). Increases in exposure time improved acuity for all
observers. Finally, a comparison was made between two observers (the author
and his assistant) who had been present at all previous experimental sessions,
and two naive observers, both of whom were pilots. The field of view was
increased to subtend an arc of 2617.5 milliradians (150°) at the observers'
eyes, and the angular velocities were increased in steps of 436.3 milliradians/
sec (25°/sec) from 1745.0 to 3926.3 milliradians/sec (100 to 225°/sec). TFor
the experienced observers, the error rate was approximately 507 at 3490 milli-
radians/sec (200°/sec), and reached 85% at 3926.3 milliradians/sec (225°/sec).
The new observers exhibited much poorer performance and substantial failure
rates: 507 at 2617.5 milliradians/sec (150°/sec) and almost complete failure
at 3490 milliradians/sec (200°/sec).

Burg and Hulbert (ref. 63) examined DVA as it relates to age, sex, and
static acuity. The results indicated a low, but significant, correlation
between DVA and static acuity that was velocity dependent (a decreasing rela-
tionship with increasing velocity). Due to the small number of observers in
the higher age brackets, a generalization about the relationship between age
and DVA performance was impossible. Finally, the results suggested a con-
sistent and significant difference in performance between male and female ob-
servers, the latter performing less adequately.

Elkin (ref. 64) examined the effect of target velocities of 523.5, 1047.0,
1570.5, and 2094.0 milliradians/sec (30, 60, 90, and 120°/sec), two antici-
patory tracking times (0.2 and 1.0 sec), and two exposure times (0.2 and 0.5
sec) on DVA performance. The pairing of tracking time with an exposure time
was called an exposure-pair. For example, the shortest exposure-pair permit-
ted 0.2 sec for tracking and 0.2 sec for viewing, and the longest permitted
1 sec for tracking and 0.5 sec for viewing. After testing under dynamic
viewing conditions, each observer's static acuity was determined under the
same conditions that prevailed during DVA testing, except that the target was
stationary and the observer had unlimited viewing time. DVA deteriorated as
target velocity increased; acuity was improved by lengthening of either the

" tracking time or the exposure time, or the simultaneous lengthening of both;
© and good static acuity was necessary, but insufficient, for good dynamic
acuity. '
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Lippert (ref. 65) conducted a study on the ability of observers to identify
moving targets consisting of alphanumeric symbols. The targets, randomly
assigned, were regularly spaced on an euadless belt which was viewed from a
constant distance. The targets subtended an angle of 11.3 milliradians
(39 min) with the space between targets subtending an angle of 14.8 milliradians
(51 min). the target moved vertically from top to bc“tom in the frontal plane.

Six observers were tested on criteria of zero legibility and 100% legibility
(one symbol correctly identified and all symbols correctly identified, respec-
tively) when the tareets were viewed through apertures 5.08 cm (2 in.) wide

and 5.08, 20.3, or 50.8 em (2 in., 8 in., or 20 in.) high. As aperture height
increased both legibility criteria were met at higher angular velocities of the
stimulus materials. The mean angular velocities for the zero legibility cri-
terion were approximately three times as great as for the 100% legibility
criterion.

Eriksen (ref. 66) had 16 observers search for an incomplete ring (Landolt C)
among a number of solid rings in a square, moving field. Search performance
deteriorated as angular velocity or object density increased. Targets close
to the center of the field were more easily detected than those with peripheral
locations. The correlation between age of the observer and search performance
failed to reach significance.

Lippert and Lee (ref. 67) investigated the legibility of moderately spaced
alphanumeric symbols. A modified method of limits was employed. The targets
were black alphanumeric symbols regularly spaced 130.9 milliradians (7.5°)
apart on a brightly illuminated white background. Each target subtended an
angle of 11.31 milliradians (39 min). ZLegibility of the symbols was determined
as they moved vertically from top to bottom in a frontal plane. The mean
angular velocities for both the zero and 100% legibility performance levels
were found to be approximately three times higher for the 130.9 milliradians
(7.5°) symbol spacing than for their respective velocities for a previously
determined 26.2 milliradian (1.5°) symbol spacing (ref. 65). Performance was
approximately twice as good with a 523.5 milliradian (30°) aperture as with a
52.4 milliradian (3°) aperture.

Simon (ref. 68) noted that radar imagery can be presented to an observer
for near-real-time interpretation as a continuously moving display or in dis-
crete steps. He studied the effect of presentation mode on the probability
and speed of target acquisition. Different observers viewed the imagery on
different size displays, 15.24 or 30.48 cm (6-in. or 12-in.) square, for
different observation times (10, 20, or 40 sec.), and with differing amounts
of ground coverage, 14.48 or 28.96 km (9 or 18 miles). The results indicated

that: (1) there were no significant differences in the number of targets

26

acquired as a function of mode of presentation, (2) significantly less time
was required to find a target on the moving display, and (3) target recog-
nition increased significantly with increases in exposure time, area of ground
coverage, and display size.

Snyder and Greenihg (ref. 69) related DVA to relative stimulus velocity

when the movement of the stimulus contains a vector of motion toward the
observer. The specific parameters investigated included: (1) angular velocity
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of the stimulus perpendicular to the line of sight, and (2) rate of approach

’ or radial velocity of the stimulus directly toward the observer. The primary

3! difference between this study and previous studies of DVA lies in the inclusion
of a component of motion toward the observer. In general, the visual acuity
threshold increased in direct proportion to increases in angular velocity.

More importantly, the visual acuity threshold increased as the rate of motion
i toward the observer increased from 0 to 1.37 m/sec (0 to 4.5 ft/sec).

Weissman and Freeburne (ref. 70) experimented %o determine if there is a
relationship between static acuity and DVA at any speed. Thirty female college
students were given six speeds, 349.0, 1047.0, 1570.5, 2094.0, 2617.5, and
3140.0 milliradians/sec (20, 60, 90, 120, 150, and 180°/sec.), and one static

1% measure of acuity. Thresholds for the first four speeds exhibited a signifi-
cant linear relationship with the static acuity thresholds. The relationship
disappeared at the two highest speed thresholds.

Burg (ref. 71) measured static visual acuity and DVA for 17,500 observers,
(ages 16 - 92). The results show: (a) acuity declines progressively with both
increasing speed of target movement and advancing age, (b) males have con-
sistently better acuity (both static and dynamic) than females, and (c) high
intercorrelations exist between the static and dynamic tests, decreasing with
increasing target speed.

[ Methling and Wernicke (ref. 72) investigated the effect of variations in
target speed and exposure time on DVA, DVA deteriorated markedly at speeds

v greater than 872.5 milliradians/sec (50°/sec), and as exposure time was

L] shortened. With target velocities equal to or greater than 1047.0 milli-

’ radians/sec (60°/sec), recognition in the horizontal plane exceeded that in
the vertical,

Implications for This Study

To summarize, the data contained in this section warrant the following
conclusions regarding human vision as applied to the present study:

T oz -
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a, Most visual tasks involved in manned space flight can be categorized
as target search and acquisition or optical tracking, with navigation
being a highly important task grouping involving both categories.

b. Visual task performance is related to the following factors:
(1) Brightness Contrast - Performance improves as contrast increases,

(2) Ambient Tllumination - Target detection improves as ambient
illumination increases up to a point and then tends to level off.

(3) Atmospheric Transmission - Clouds, glare, haze, and distortion
all act to degrade visual performance.

(4) Tigure Ground Differentiation - Both information overload and
. contrast reduction enter in to degrade visual performance.

27
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(5) 1Image Magnification - Increased magnification, while providing
greater image resolution, causes greater image velocity, and
reduces ground cues for target detection.

(6) Method of Viewing the Target — Direct viewing provides the best
resolution but can be less convenient than viewing indirectly
with a videc link.

(7) Eye-Hand Coordination - Optimization of control-display relation-
ships can aid materially in improving visual task performance.

(8) Static Visual Acuity - An object can be most easily resolved when
it is stationary with respect to the observer.

(9) Dynamic Visual Acuity - A target becomes less distinct as its
velocity increases with respect to the observer.

Whether in terms of the resolution of a minimum line separation or
the smallest target that can be detected, static visual acuity is
strongly influenced by target brightness and by the contrast between
the target and its background. The following generalizations can be
made about static visual acuity:

(1) If the target brightness is less than .0032 candela/meter?
(0.001 foot lamberts), the contrast ratio must approach 1007
before a target can be detected or the separation of two lines
can be resolved.

(2) Acuity improves steadily as target brightness is increased,
irrespective of the target contrast. Acuity tends to level off
at about 32 candela/meter? (ten foot lamberts), and little
improvement is obtained between 32 and 32,000 candela/meter
(10 and 10,000 foot lamberts).

(3) Acuity improves as the contrast ratio increases from 1% to 100%.
The greatest increase is between 17 and 10%. At contrast ratios
above 10%, the rate of acuity improvement lessens, with orly a
slight improvement between 757 and 1007%.

The following can be concluded about dynamic visual acuity (DVA):

(1) Dynamic visual acuity is inversely related to the angular
velocity of the test object, with marked performance decrements
evident at angular velocities equal to or greater than 0.8725
radians/second (50°/sec.). 1Increases in illumination, object
size, and target exposure time can counteract increments in
angular velocity to a certain extent, but the reciprocity
relationship breaks down at target velocities exceeding 2.443
radians/sec (140°/sec.)

 MCDONNELL DOUGLAS CORPORATION
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(2)

(3)

(4)

(5)

(6)

The effect of test-object angular velocity on visual acuity
depends on the relative motion between the object and the
observer, with focus of movement (either the observer or the
target) having a negligible effect.

DVA performance is direction-specific, with acuity deteriorating
most rapidly for circular movement and least rapidly for vertical
movement, and with movement in the horizontal plane falling
between the two extremes.

Any improvement in DVA performance as a result of practice occurs
quite rapidly. Practice at higher angular velocities, i.e.
greater than 1,920 radians/sec (110°/sec), results in substanti-
ally more improvement than practice at lower velocities, and is
more beneficial for "good" performers than 'poor" ones (selected
on the basis of prepractice thresholds). Extended training
(overlearning) does not enahnce DVA skill.

There is an improvement in DVA as a function of earlier experi-
ence. Once learned, the skill does not deteriorate with the
passage of time.

Good static acuity is a necessary, but not a sufficient, condition
for good dynamic acuity. In addition, males show consistently
better performance on DVA tasks, with both sexes experiencing a
decline in dynamic acuity as a function of increasing age.

, , 29
MCDONNELL DOUGLAS CORPORATION

REPORT G864
15 JANUARY 1969

; i m ; h’i’ﬁ‘f’”‘ e i R i ;’::‘.ﬂfgg‘bm Ry e Ve



g

=l

Image Motion Stabilization REPORT G864
For Dynamic Visval Tasks 15 JANUARY 1969

ELECLRONIC AND PHOTOGRAPHIC SENSOR CHARACTERISTICS

The lower limit of dypnamic visual acuity is the smear threshold for human
vision. The smear thresholds for the electronic and photographic sensors con-
sidered in the present study also depend on the relative velocity of a target
with respect to the sensor's line of sight. We have assumed that each sensor
will be collimated with the center of the optical telescope so that the observer
and the sensors will be looking at the same thing. Thus, by manually nulling
the movement that he detects visually, the observer will simultaneously be nul-
ling the movement of the target with respect to the electronic and photographic
sensors.,

The smear thresholds shown in Table 6 were determined from available
literature (refs. 3, 73, 74, 75 and 76). The values selected represent conser-
vative estimates of the angular rates which will result in degraded data

acquisition.,
TABLE 6
SMEAR THRESHOLDS FOR SENSORS CONSIDERED IN THIS STUDY
Sensor _#_ Smear Threshold

A. HighrResolution Color Film % 80 MicroraéZZﬁs/Sec (16.5 arc séc/sec)
B. 86—132 Aerial Film | 100 Microradians/Sec (20.6 arc sec/sec)
C. Infrared Scanner 500 Microradians/Sec (l.7iiarc min/sec)}
D. Radar Tmager - T 872.5 Microradians/Sec (0.05°/sec)

Microwave Radiometer ;
FE. IR Radiometer 3j29 Milliradians/Sec (0.2°/sec) ;
F. 80-130 Aerial Film 15 Milliradians/Sec (0.86°/sec) ‘:
‘ WU S s
r&. S0-102 Aerial Film 55 Milliradians/Sec (3.15°/sec)
H. TRI-X Aerial Film | ﬁ 200 Milliradians/Sec (12.61°/sec) .

- .

I. Slight Deterioration of

349 Milliradians/Sec (20°/sec) 3
Visual Acuity 3

—

J. Marked Deterioration of 872 Milliradians/Sec (50°/sec)
Visual Acuity ' L
| %‘ _ _
30 >
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MISSION ANALYSIS

Mission Selection

A large number of manned space misgions were considered as possible candi-
dates for a detailed visual task analysis. Table 7 (refs. 29, 77, 78, 79, 80,
81, 82, 83, 84, 85, and 86) contains only a sample of potential missions that
were considered. A careful review of these missions revealed that, except for
differences in mission duration and maneuver methods, there was a high degree
of overlap between the basic mission phases and therefore probably a high degree
of overlap between the visual tasks. 1In the interest of economy, it was de-
cided to restrict the analysis to as few missions as possible, each of which
was fairly unique, and all of which involved at least the following conditions:

]
;
’§
;

a. Orbit abouf the Earth.

b. Interplanetary travel.
c. A broad range of navigational tasks,
d. Direct viewing of visual targets.

e, Photographing objects on the ground using conventional, high resolution
films.

f. Precision aiming of multi-spectral sensors at objects on the ground,

g. Performance of visual tasks through a range of atmospheric composi-
tions ranging from no atmosphere to that of Earth,

h. A broad range of illumination conditions on the surface being viewed.
Indirect viewing of surface targets through a video link system.

Based upon the above considerations, the following three missions were
selected for detailed analysis of visual tasks:

a., Mars landing.
b. Lunar landing.

¢. Earth resources (agricultural, cartographic, geological, oceanographic,
and metrological).

Earth resources objectives.- Earth Resources Missions are aimed at col-
lecting data about the surface of the earth so that these data can be related

to social and economic requirements. The advantage of collecting data from

an orbiting spacecraft is that a very large surface area can he evaluated during
a single time period. With present techniques, data are collected about rela-
tively small surface areas at different time periods and then pieced together
in an attempt to determine the nature of ths observed phenomena. The economic

o
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DURATION

Geography
Agriculture

Forest Resources
Water Resources
Wildlife Management
Oceanography
Geology

Air Pollution

Archeology

MISSION  DATE ]
—t e
LUNAR AND PLANETARY MISSION
4. Mars Landing (Venus Swingby) 680 Days 1978
b. Mars Landing (Conjunction) 900 Days 1979
¢, Venus Orbit (Short Mission) 460 Days 1980
d., Mars Landing (Retrobraker 4 Men) 700 Days 1982
(30 Days on Surface)
e. Mercury Orbit 311 Days . 1988
(63 Days in Orbit)
f. Vesta Orbit 745 Days 1991
(60 Day Orbit)
g. Ceres Orbit 785 Days 1991
(60 Day Orbit)
h. Jupiter Orbit 1416 Days 1990
(60 Day Orbit)
i. Ganymede Orbit 1416 Days 1990
j. Lunar Orbit 6 Days 1969-1977
k. Lunar Landing 8 Days 197?
L (2 Days on wurface)
AAP EXPERIMENTS 30 Days + 1977
RESCUE MISSIONS | Unknown Unknown 1
rE;ATELLITE INSPECTION MISSIONS Unknown Unknownf
MATINTENANCE & LOGISTIC MISSIONS f“* Unknown Unknown :
EARTH RESOURCES MISSIONS 2 Days + 1977

, MCDONNELL DOUGLAS CORPORATION
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and scientific impracticality of the present approach has given the Earth Re-
sources Missions great importance(refs. 29, 87, 88, and 89). For this reason-
we emphasized these missions in our study. Table 7 contains the types of
potential earth resource missions that were analyzed in the present study,

Lunar landing objectives.~ The objectives of this mission will be similar
to those of the Mars Landing Mission. The basic difference between the two is
that the lack of a lunar atmosphere will provide greater light transmission,
different spectral characteristics, and sharper figure-ground differenciation
due to the high brightness contrast between shadowed and unshadowed areas on
the lunar surface (refs. 90, and 91),

Mars landing objectives.- The objectives of this mission will be to navi-
gate to Mars, orbit about the planet collecting photographic and multi-spectral
sensor data, find a suitable landing aite, and land the spacecraft,

4

Analysis of Mission Functions

The missions selected for analysis were broken down into an integrated fam-
ily of functional flow diagrams which presented the sequence of visual functions
and tasks, indexed by a numerical taxonomy. A single flow diagram was developed
for each mission. Each diagram was divided into mission segments which des-
ctribed the major aspects of each mission.

Earth resources survey mission.- This mission was included in the study
because it involves all of the basic visual tasks that will be performed in NASA
manned missions in the near future, namely navigation, surface surveillance,
and rendezvous. Of “hese tasks, rendezvous has not been emphasized here be-
cause it was felt that the navigation and surveillance tasks placed greater
emphasis on IMS requirements. It was alco felt that the Earth Resources Mission
typified the type of NASA mission that will predominate following the Apollo
Lunar Mission. Thus, the Earth Resources visual tasks in this report may well
encompass the majority of visual tasks requiring IMS under dynamic viewing con-
ditions.

The functions requiring dynamic vision performed in the Earth Resources
survey mission are shown in Figure Y. 1In general, the mission consists of
placing a combination of active and passive sensors above the @#rth to record
various features of interest. Some sensors require exact pointing and attitude
control while others are less dependent on precise settings. The criteria for
effective employment of these sensors were defined in Table 6. Man's stabiliza-
tion of the multi-spectral sensing system used in earth orbit depends on the
characteristics of the ground object, the degradation from the atmospheric
media, and the image stability required by the individual sensors. These
factors have been discussed in detail in previcus reports (ref. 29, and 87).
The visual tasks for this mission are described ' in the Task Analysis Section

Lunar landing mission.- The moon has no atmosphere; it has less mass and
a smaller diameter than earth; and the surface features of the moon are visually

unlike those of the earth. These differences will have a significant effect on -
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the visual tasks to be performed aboard a lunar orbiting spacecraft for the
following reasons:

a, The spacecraft will have a lower orbital velocity.
b. The orbital altitude of the spacecraft will be lower.

c. Due to lack of light gradations due to vegetation, the moon will have
a higher brightness contrast between shadowed and unshadowed areas.

d. Vision will not be subject to atmospheric degradation.

e. There will probably be a lack of easily didentifiable surface features,
e.g., while craters may be easily discerned, it may be difficult to
identify which crater is being viewed due to the lack of an exact
topographic reference system such as would be found on earth using
United States Coast and Geodetic Survey contour section maps.

In addition to the above, the astronauts will probably have a poorly
anchored visual frame of reference with which to judge size and distance on the
lunar surface.

For these reasons the visual tasks of the Lunar mission differ from the
Earth Resources mission with respect to the following:

a. Mid=-course navigation.

b. Target characteristics.

c. Orbiéal altitucde,

d. Orbital wvelocity.

e. Target illumination and contrast.
f. Atmospheric characteristics.

The functions requiring dynamic vision performed in the Lunar Landing
mission are shown in Figure 10, Along with the considerations of near lunar
observations, particular emphasis was placed on the tasks of navigation and
guidance in interplanetary flight. In general, by navigation and guidance, we
mean the process of computing the space vehicle trajectory at various time
periods and then exercising control so as to arrive at the terminal body within
acceptable end-of--flight conditions. Many studies have been conducted to con-

firm the fact that man can effectively navigate over interplane* 'ry distances
(rEfS. 5‘, 6’ 7, '8’ 9’ and 10).

Marsklanding mission.- The mission to Mars will involve problems similar
to those of the Lunar mission. Since Mars has different physical characteristics

35
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than the Earth or the Moon, the visual requirements will be different. The
najor differencer and their effects are:

a. Mar's small mass and diameter will mean that the spacecraft will
attain a lower orbit with a slower orbital velocity.

b. The atmosphere of Mars differs greatly from the Earth's. It is pre-
dicted that the visible spectrum (3800A to 7200 A) will be restricted

by Martian atmosphere which is probably opaque to human vision below
4500 A.

[P

c. The Martian surface is subject to what appear to be sand or dust storms.
These storms will attenuate existing illumination as well as degrade
figure-ground contours.

f aseas e
Srm————

Scaling problems due tv unfamiliarity with size of terrain features will
exist, but not to the extent of those of the Lunar mission. Contrast between
various features of the Martian landscape is expected to the lower than Lunar
or Earth contrasts.

S
TITEESS

The functions requiring dynamic vision performed in the Mars Landing
mission are shown in Figure 11. The visual tasks peculiar to the Mars mission
are described in the Task Analysis Section.

37
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TASK ANALYSIS

Each of the missions was broken down into appropriate visual tasks which
were analyzed to aid in the determination of mission and sensor constraints on
the performance of the tasks. The same taxonomy applied to mission analysis
was continued for the task analysis. The mission analysis determined the alti-
tude and velocity of the vehicle, while the task analysis determined which visual
tasks and sensors were appropriate. If mission and sensor constraints are known,
then magnification required, image velocity and the amount of time the image will
remain in the FOV can be determined. These data are developed in the next sec-
tion under Physical and Environmental Conditions,

Each mission was sub-divided into major segments. The visual tasks which
comprise each mission segment were then identified. Each visual task was then
evaluated in terms of desired performance criteria, potential task failures and
the effects of task failure. Performance criteria were determined by examination
of the literature regarding the resolution required in each mission segment and
the present or predicted state-of-the-art of the sensors (refs. 3, 12, 29, 87,
88, 89, and 95)., The information from all sources was integrated into tables 8
through 70. Each visual task has been provided with a separate table,

Another set of tables was constructed for each sensor-mission combination.
Expected or desired ground resolved distance for each sensor was extracted from
the task analyses. This information was then collated foy each sensor so that
probable ground resoluticn required for each visual task could be compared. The
ground resolved distances established for each task are representative of values
used in the references cited (refs. 3, 12, 29, 87, 88, 89, and 95).

et

s

Earth Resources Survey Mission

E Analysis of the Earth Resources Survey Mission into visual tasks is found
b in Tables 8 through 23. The visual tasks presented in the tables represent the
- most probable and productive missions of the near future. Probable targets and
; the estimated ground resolution required for each sensor are presented in Tables
A 24 through 29.

3 Lunar Landing Mission
Major visual tasks for the Lunar Landing Mission are shown in Tables 30
through 43. Probable targets, and the estimated ground resolution required for
each sensor are presented in Tables 44 through 49.
Mars Landing Mission
Major visual tasks for the Mars Landing Mission are shown in Tables 50

through 64. Probable targets, and the estimated ground resolution required for
each sersor are presented in Tables 65 through 70.

39
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DETERMINATION OF IMS REQUIREMENTS

The analytical efforts that have been documented so far describe (1) man's
visual tasks in representative space missions and (2) the constraints that de-
fine the limits of his performance of these tasks.

The characteristics of the visual environment that functionally depend on
spacecraft velocity and altitude, image magnification, and sensor smear thres-
holds have been analyzed to determine which visual tasks require image motion
stabilization. The criticality of these tasks was then determined empirically.

Physical and Environmental Considerations

Space missions were analyzed to establish visual requirements and the

physical parameters that determine expected target size and apparent angular
rate.

Determination of orbital velocity and altitude.- From the analysis,
characteristic mission altitudes were determined. The following simplifying
assumptions were made:

a. A circular, equatorial, direct orbit was used for all cases.

b, The surface beneath the satellite was considered to be flat and non-
rotational.

Since orbital velocity is a function of the altitude of the spacecraft and
the gravitational constant ot the planet, the following formula (ref. 79) was
used to determine the crbitsa! velocity for each mission:

r Radius)2 (1)
(orbital altitude + radius)

Velatcivwy

The apparent angular velocity of a point within the field of view can be
determined once “he spacecraft's altitude and velocity are known. If a ground
point is assvaned, a line of sight (LOS) can be established to the spacecraft.

If the spacecraft's orbit is assumed to be parallel to the planet's surface,

the distance that the spacecraft travels in one second forms a base of a
triangle witl the other legs equal to the LOS distance from the groundpoint to
the spacecrafcr at the initial and terminal points. Thus, if the velocity of

the spacecraft is known, the length of the base is known. The angle opposite
the base, 8, can then be calculated by the following expression (refs. 2 and 37):

© base length

SER = % faititude)

(2)

The above expression is the same as that used to derive the visual angle
subtended by an object of a known length. Therefore, a point traversing the
distance of the base length is equivalent to the angle generated expressed as
a function of time, i.e. radians per second. In this manner, the altitude,
linear velocity, and apparent angular rate for a nominal orbit can be established.
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Determination of Magnification Requirements.- Magnification will be required
from all nominal orbits, if desired ground resolution objectives are to be met.
Magnification alters the apparent altitude of the spacecraft although velocity
and tase length remain the same (Figure 12). Inspection of equation (2) indicates
that as the apparent altitude decreases (higher magnification), higher apparent
angular rates result (Figures 13, 14, and 15), Magnifications to achieve vari-
ous ground resolutions for the nominal missions are given in Table 71 and
Figures 16, 17, and 18, Figures 13, 14, and 15 show the extreme angular rates
of motion which will be encountered at the higher magnifications.

In addition to the increase of apparent angular rate, magnification also
decreases the field of view (FOV) of the observer (Figure 19). The combination
of increase in apparent angular rate of an object and decrease in fielu of view
reduces the time an object remains available for acquisition (Figures 20, 21,
and 22),.

Determination of target detection probabilities.- Target acquisition and
tracking are the two basic classifications of visual tasks considered in this
study. The technique that was used to determine target detection probabilities
is described here.

The optical system being considered has sufficient resolving power to
allow the observer to discriminate an object subtending a visual angle of
8.89 microradians (1.83 seconds of arc) under ideal conditions. We have con-
servatively assumed, however, that 2.9 milliradians (10 minutes of arc)
represents the typical resolution of the human visual system under the environ-
mental conditions described in the Task Analysis. The magnification required
to see a target of a given size is a function of the distance of the observer
from the target and the visual angle subtended by the target. Table 71 shows
the magnification required to enlarge various size targets so that they subtend
2.9 milliradians (10 minutes of arc) and thus become visible to the observer
under widely adverse viewing conditions. As magnification is increased, target
exposure time is decreased, since field of view is inversely proportional to
magnification. The relationship between target exposure time and the probabil-
ity of detection is positive and, according to Boynton and Bush (ref. 95,
page 25) can be expressed as follows:

P= 93,67 + (log2 N-2.75)(t=19.7) (3)

Where: P = Probability of detection (expressed as per cent).

N

The number of similarly configured targets in the
field of view.

t = The exposure time ir seconds.

Using the above equation, and assuming that the target to be detected is
embedded in a complex of 95 similarly configured targets (i.e. we conservatively
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