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DEVIATION ANGLE PREDICTION METHODS -~ A REVIEW

Max J. Miller

ABSTRACT

Predicting the diréction of flow leaving an annular cascade of bladeg is a
key p;ﬁblém in axial-flow turBomachinery. This report is a réview of methods
which have been‘ptoposed for the prediction of deviation angles in axial~

}flow punps and cumptessérs. A large number of vsriables influence deviation
angle, however methods of preaicting the effects of many variables have rot
been published, hence this review was limited to the effects of |

® two-dimensional geometric éatameters

e incidence angle

® axjal velocity ratio

® secondary.flow '

e sweep and dihedral.
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INTRODUCTION

Predicting the direction of flow leaving an annular cascade of blades is
a key problem in axial-flow turbomachinefy. In the design problem, blades
nust be selected which will produce a prescribed fluid velocity, pressure,
and angle distribution at the exit of the blade row for specified inlet flow
conditions. n the performgnce.prediction problem or analysis problem, biade
geometry is prescribed and for given inlet flow conditions the uﬁtlet flé&
conditions musé be computed. Sclutions to both problems are often obtaineq
using the blade-element method in which'flaw is assuﬁed to be éxisymmetric
(i.e. no gradients in the tengential direction), stream surf;ces are assumeg
» tc be conica.. and the flow conditions are computed at stations betwecn blade
rows. The flow is assumed steady and localvviscous effects »..:. neglected
although cumulative viscous effects are included in the solution in the fofmv
of total pressure loss between computing stations; |

In the usual iérmulation of the blade-element method for the design
problem, the exit floy conditions and in particular the average flcw angles
are ;omputed from an estimated distributién 6f total preésuré loss and a
specified distribution of another parameter such as ené;sy addition or preséure
ratio. Blade sections must then se selected to producé the desired average
flow angles at each radius. The bla&e sections chosen must reflect the fact
that the average angle of the leaving flow is not parallel tec the outlet
blade angle (the tangent to the blade section mean. iine Qt the trailing
cdge). The discreéancy betweer the average leaving flow angle and the outict
blade angle is defined as the deviation angle (Fig. 1) and must be estimate&
to conplete the blade-section specification.

In a blade-clement method solution of the analysis problem, estimates of




‘FCOW R the deviation angle and total pressure
"loss for a number of blade sections
along tﬁe ‘span, the equation of motion
in the. radial direction, and the

continuity equation are sufficient

to compute the exit flow conditions.
/i A :
DEVIATION/ Both accurate design and performance
ANGLEY /| - o | |
/ BLADE ANGLE prediction thus depend on accurate

AVFRAGE RELATIVE prediction of devistion angle.
FLOW ANGLE - '

This report is a review of methods

. Figure 1 — Flow deviation angie in a A which héve been proposed for the
cascade of blades. (See nomenclature ’ ‘
for definition of biade and flow ©  prediction of deviation angles in
angle.) :

axial—f;ow pumps and compressérs.
The m;thods are discussed f;cm é blade-element approach,‘and only incoﬁpressible
‘and low-speed coﬁpressiblg flow (essentially qonstantAdensity flow) are.
considered. The review is aividédvinto sectibns-dealing with parameters and
phenomené which are recognizéd to influéhceAdeQiation angle. . The vari..s
parameters included are not concidered to be independent and in faét some are’
probably quite interdependent. A large nunber of variables which influence
deviation angle, given by Serovy (Ref. i), arée listed in the Apﬁendix. ~ Because
of ihsdequa:e experimental information or because a theoteticai analysis
{s too difficult, no quantitative meéh?ds have_beeh develoéed to pfedict the
effects of many-of these vafiables on deviaticn angie. Bg:ause of this it
was decided to’liﬁi£ this review to the ef;eéts éf :

® twojdimensional geométric parameterg

e incidence angle

e axial velocity ratio




@ secondary flqw

e sweep and dihedral :
for which quaﬂtifativé methods "have been publishsd. With a few exceptions,
only refgreﬁces writtén in English.are given. In sections such as Secondary
Flow Qhera a vér& large amount of work has buen nublished no attempt wéé
nade to-include all applicable references, but instead reprasgntaﬁive and

significant pépérs were reviewed,

- CASCADE NOMENCLATURE

.

General césgade notation used throughout this repdrtAis defined in this
section. Specialized definitions are given in the secticas where they are
usod.  All symbols are defined in the symbol list,

A meridional view of an axial flow roior is shown in Figure 2. if the

YLl L
- < » N—casinG

‘AXIS OF ROTATION

Figure 2 — Meridional plane view of an exial-flow rotor.

flow is assumed to be axixymmetric, then a typical streamline EF can be
revolved intc the meridional plane. The surface developed by rotating the
streamline aburt the axis of rotation is called an axisymmetric stream

s:riace. The axiaymmatfié stream‘sutface is often assumed to be conical if



computation étations_are bétween,blade rows, “ut ‘it usually is nct conical if
computation stations'also are placed inside the blade row. TIf the cylindrical
stream sur face corresponding to GH in Figure 2 is developed with the blade

intersections shown, a view similar to Figure 3 results. Blade parameters and

SUCTION
SURFACE

PRESSURE SURFACE

- AXIAL DIRECTION

Figure 3 -- Two-dimensional cascade'yiew and blade nomenclature.-

their relationships to the f?vw relative velocityAvectoés are defined
schematically in Figu?e 3. The blade chord, c, is defined as the liﬁe ]
connecting the end po;nts of the mean camber iine.. The angle bétween the chofﬁ
line and the axiai ditecﬁion is ;he bladé stagger gngle, Y. Blade angles,

€y and Ké, are defined as the angle betwcen the axial Q;cecgion and the tangent

to the blade- mean line at the'leading and trailing edges. The relative




flow angles, B;; B;, are’byadg;:o-blade average values (idgally‘mass;aQGraged Lo

valuws) of the flow angles measurgd'in a éoordinate-system fixed te b;ade§.<A' 3”'

A typical blade-to-blade distribution §f‘flow'angle is stown in Figure 4.

A - Deviation angle, &, is the difference

'»Betweén'the‘averagg feaving relative
flowlangle;vﬁé,'and the b1a¢e'angié,~‘

KZ? as shown in Figure 3, -

" TWO-DIMENSIONAL GEOMETRIC PARAMETERS

/Il u
DE

ﬁltimately, the deviation

angle distribution in an cnnular
cascade, rotating or stationary, is
- - . - ‘determined (for a givén fluid, flow
Figure 4 — Blade-to-blade variation of ‘ S A
relative flow angle. » o T rate, and votational speed) by the
geométtic shape ' and atrangément of the blades and the boundaries at the'hub‘

and tip. To consider the_brqblem in its full three-dimensionaltfofmfwould be . .

a formidable task and accordingly siﬁplifying approximatibns have Been sought. .

The problem has been reduced to a two-dimensional problem by assuming that the

deviation angle is:detérmined>by4the‘geomgtric paramefégs of the blade:séctions-
cut ty an axisymmetric stream:surféce.énﬂ‘is'ﬁot.depéngﬁt on the Bléﬁe-’

geometry -at othér posit?ons aloug the span. Two-dimensional éascadefrééults
and to a lesser extent foteﬁti@l flow have been ugeC-:Q estgblish the values

of deviation angle for various two-dimensional cascade gen&étries. The

.plausibility of the dependence of deviation angle in two~jiﬁensionaliflow on

geometric paramctérs :an be established by considering the cascades drawn in

Figure 5. The cascades in Figure 5a each have the same chord. solidity, and
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difference i~ chaanel length of the two cascades in Figure 5b. Although it
is not so.graphically obvious, (Fig. 5¢) deviation angle does facrease with
increasing camber, and according to Lieblein (Ref. 2) the relat;onship
between deQiation angle and camber is linear for potential flow.A Other
parameters such as blade thickness distribution; camber line shape, surface
finish, and trailing ecdge radius usually haveiless influence on deviation
angle than c&mbér, solidity, and blade setting angle.

Consequenti, an c¢arly deviation ang1e1prediction method, calied Carter's

rule, expresses deviation angle as

5 = = . . . - (1)

where_mr is é function of blade setting angle and Fhe position of maximum
camber. Curves of m,as a fu ion of blade setting angle are.given in
Carter and Hughes (Ref. 3) for circular arc and parabolic arc (m;kimum
camber at 40 percent of the chord ffom the leading edge) camberline blades,
These curves were deduced from both tﬁeoretical and experimental results. For
accelerating cascades the exponent on.solidity should be ‘unity rather than
one-half according to Carter (Ref. 4). Howell (Ref. 5) ascribed to Constant
(Ref. 6) an carly version of Equation (1) in éhich m. = 0,26 was used.
Lquation (1) applies sgpecifically to ﬁhe “nominai" incidence angle

wnich Howell (Ref. 5) dgfinés as the incidence angle for which the turning
angle, (5{ - 6;), is equal to (.8 of the turning angle at which the loss is
twice the minimum value; however it is frequently applied throughout the low-
toss incidence anglc rangé (dofined in the locidence Angle.Section) under the
assumption that deviation angle does not changc appreciably‘with incidence

angle in the low-loss vange.

A deviacion angle prediction method which includes more geometric



- parameters was presented by Lieblein (Ref. 23. The method was based on

covrrelations of two-dimensional cascade data for NACA 65-series compressor

blades which were presented by Emery, et al. (Ref. 7). The correlations were

made for operation at a:referenge incgdence angle defined to be midway -
between the incidence angles at which the total pressure loss across the

cascade was equal to twice the minimum-loss value (se¢« Fig. 6). At the

~ NACA 65(12) 10
_plzéoda_rg.
0.107 o= 1.0 |
- 2
s .
i
L9 0.06
Mo
e
80.04r-
(723
8
—80002'_ w
‘ 1rir§f : 1
{1 1 | IS | N N
-12 =10 -8 <6 -4 -2 0. 2 4 6 8. :

* INCIDENCE ANGLE, i, deg.

Figuré 6 — Schematic definition of refer ce incidence angle.‘ Data from .
Re ference 7. ’ ' ' .

: » _ o )
rveference incidence angle, deviation angle is expressed as
N o S ’
6 =6 +mp R (2)

: . " . ) R i o .
where 5 is the reference deviation angle for zero camber, ¢ is camber,
o ) B - . ) :

and m is the slope of the deviation angle function with camber. Curves are

_presented by Lieblein (Ref. 2) giving the slope factor m. as a function of



inleé air angle and solidity for circular-arc-mean-line blades. 1Inlet air
angle was used instead of blade stagger angle because the cascade data of
Emery, et al. (Ref. 7) were obtained at a constant inlet air angle rather

than a constant blade stagger angle. The zero-camber zZeviation angle is

giﬁcn By Lieblein (Ref. 2) as

: 60 N (Ké)sh(ké)t(bo)lé ; )
where (65)10 represents the zéro-camber deviation angle for a 10-percent-thick
NACA 6S~ser;es distribution, (Ké)sh is a correction for blade shaées with
thickness distributions different from the 65-series, and (Ké)t is a cor-
rection fof maximumn bladelthickness other than loipercent of the chord.
Empirical curves are éiv«n for (50)10 as a fun;tion of inlét air angle and
solidity and for (Ké)t as a function of maximum thickness ratio, tméx/c' A
value of 1.1 for (kb);h is ecommended for C-series circular-arc blades aqd
0.7 for double-circu1a£~arc blades. Both of thesé values are based on
‘ limited data. Plots of deviation angle versus qamBer comparing values from
Equation (2) with ¢cascade data of Emery, et al. (Ref. 7) are given by Lieblein
(Ref. 2). The liaear curves from Equation (3) approximate the data gquite well.
However, at hiéh cambers where D-factors exceed 0,62, the experimental data
tends to fali above the pfedicted values. D-factor is used as a measure of
blade loading and was developed by Ligbleiu, et al. (Ref, 8). Blade sections

operating at D-factors gréater than 0.62 evidently have blade s..face boundary

layers thick enough at ire to cause the flow to differ significantly from

f
potential flow where a linear relation between deviation angle and cauber
angle is predicted. A quantitative evaluacion of deviation angle as a

» function of camber for D~-factors greater than 0.62 is currently lacking, and

is an area where fhrther.research'efEOtc could make a significaht contribution

to axial-flow. pump ahd compreséor-téchnology.

LS L Fe oy S L L
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Both netlods described in this section assumed the incidence angle to

(TR .

be fixed at some ‘'design' value. In tue following section, methods to predict

the deviation angle at 'off-design" values of incidence angle are reviewed.

" INCIDENCE ANGLE

Plane Cascades

The deviation angle of a plane cascade is a function-of the incidence
angle and bléde geometzry. A typical curve of deviation angle as a function
of incidence angle for a cascade with z fixed inlet flow angle is shown in
Figure 7. The deviation angle curve can be roughly divided into two parts,

one corresponding to the so-called

L]

5? 16~ low-loss incidence angle interval-
ZS ’

o - \ . Yy
o, ! and the other corresponding to
_w 120 £
55{5 ¢ incidence angles outside the low-
>7 = f‘ .
14 Vief 1
ag 8 | D T WD VNS I A S B $ S

loss interval. Wwnen the incidence

w

angle is in the low-loss interval,

~0.085 .

SO%8F  Low-Loss INTERVAL

fre} - i the blade surface boundary layers

g : .

&0.04— H are pr bably quite thin so that the
wv
oy =3 i
00 o 41+ Ry flow closely approximates potential

0
-12 -8 -4 0 4 8
INCIDENCE ANGLE, i, deg.

flow. Therefore in the low-loss

region, the fuacticnal relationship

Figure 7 = Typical cascade results. between deviation angle and incidence
angle for a two-dimensic cascade is quite similar to the relationship for
potential flow. Lieblej. €ei. 9) concluded, based on calculstions using the

potential flow theory of Weiniy (Ref. 10), that d5/di is positive for potential
flow and that it is a function of solidity and blade chord angle. Smith
(Ref. 11), in a discussion of Reference 9, indicated that db/di is also a

strong function of camber.
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Using the low-speed cascade data for 65-(A10) 10 blades of Reference 7,
Lieblein developed an empirical method to estimate .ne vavriation of deviacion
angle in the low-losé incidence interval. He assumed that since operation
could be considered to be in the low-loés vegion for only a small incidence
angle interval, the following linear function could be used to compute

deviation angle:

_ . d&. _ .
&= 6tef +a 1ref) (di)ref (%
where i___ is the reference inclidence angle as defined in the Two-Dimensional

ref

Geometric Parameters section ahove, § the measured deviation angle at

is
ref

= i and (d5/di)}
ref’ (d5/ Yee

£ is the graphically determined slope of the deviation
angle curve at i = iref' Lieblein presgnted a family of curves from which
values of (db/di)ref may be obtained for solidities ranging from 0 to 1.8
and for inlet air angles.ranging from 0 to 70 degrees. These correlations
are also presented in Refervrence Z.
Because the 65-Series cascade data (Ref. 7) were obtained with inlet air
angle fixed, the (dS/di)ref obgained from Lieblein's curves is applicable to
a cor;stanc inlet air angle cascade, while, as Smith (Ref. 11) pointed cut,
in practical applications the blade stagger angle, Yy, is fixed and the inlet
air angle varies. Smith‘(Ref. 11) developed rélations to ot:ut:.si.n'(dé»/di)‘:ef
applicabie to fixed~y blade rows from Lieblein's correlatioﬁs and gave a
numerical example in which tﬁe fixed-y derivative was larger than the
fixed-B, derivative by a factor of three for NACA 65-(12) 10 blades with
g =1 and Bi = 60 degrees. Figure 8 shows the variation of deviation angle
with incidence angle from Reference 7 for the NACA 65-(12) 10 blades (sce
Ref. 12 for bladé nomenclature) of Smith's (Ref. ll) example at a conscant
inlet air angle, Bl = 60 degrees. Data of Reference 7 were crossplotted to obtain
a second curve shown in Figure 8 for the same Blﬁdes:with a constant stagger angle

of 47.6 degrees which is the stagger angle of a cascade of NACA 65-(12) 1C blades
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NACA 65-(12)10 p,=6o°=c y = 47.6°
g 1.0
Graph  Ref, 9 Graph  Ref, 11
18 0.05  0.10 0.33  0.30

g’? )rof

51 = constant = 60—
~

+ = constant = 47 ,6°-

DEVIATION ANGLE, &, deg.
s
|

o
T

4 1 . i3 1 ALA-
- 16 - 12 -8 -4 0 4 8
INCIDENCE ANGLE, i, deg.

Figure 8 — Comparison of deviation angle as a function ot incidence angle for
constant inlet angle and constant stagger angle. Data from Reference 7.

with ’pl = 60 degrces, o = 1.0, and i = iref where irc was computed using the cor-
oY

relations of Reference 9. Graphically determined values of (dé/di)f ¢ are compared
o
with valucs from Lieblein's (Ref. 9) correlation and Smith's (Ref. 1l1) calculation.
Baged on the differences in this example it zppears that the fixed-y derivative
should be used in prefercnce to fixed~;1 derivatives in analysis applications when
computing the change of deviation angle for a change of incidence angle in the low-loss
incidence angle interval. Smith (Ref. 11) also pointed out that the fixed-v
derivative was strongly dependent oun camber and thervefore the fixed-sl
derivative should be also.
: . ; -5

Howell (Ref. 13) presented a single curve for (& nom)/enom as a

function of (i - i Y/e where the nominal conditions occur at .8 of
nom’’ nom

the turring angle at which the loss is twice the minimum value.

Apparently no method (empirical or analytical) has becn published as yet

to predict the functional relation between deviation angle and incidence angle
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outside the low-loss incidence angle interyal cven ior a plane two-dimensional
caacade flow. It seems highly probable that the blade surface boundary

layers play a decisive role in determining the deviation aﬂgle outside th:
low-loss region and therrforeAboundary tavzr considerations would strongly
enter inte any successful correlation or analytical method which might be

devised.

Annular Cascades

No correlations arce available which express the relationship betwéen
deviatioa angle. and incidence angle specifically for annular cascades. The
alternative is to apply the plane cascade methods to annularvcascaées, although
because of the complicated three-dimensional flow in the latter the deviation
angle is sometimes observed to deqrease as incidence angle.increases
(e.g. Ref. 14) rather than increase as in plane cascades.

In these first two sections, mcthods of predicting chigtion angle were
reviewed which assuned that the streamAsurfaccs are surfaces of revolution and
that the flow around a given blade section is not influenced by tﬁe flow around
ad jacent blade sections. In some blade rows the flow deviafes sufficiently
from this two-dimensional model that corrections accounting for the three-
6imensionality of the flow must be applied to the two-dimensional deviation
angles. These correctioné are usually obtained by considering the predicted
axisymmetric exit flow [ield (obtained using two-dimensicn~l §) rather than
attempting to define further goeometric parameters. The scctions which
tollow revicw a number cf attempts to incorporate the cffects of three-

dimensionil flou into deviation angle prediction methods.
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AXIAL VELOCITY RATIO

It is well known that the deviation angle in a rectilinear or plane
cascade depends on the ratié of the leaving to the entefiqg’axial velocities
(AVR). Katzoff, ct al. (Ref. 15) among others reported the phenomenor in 1947.
Because of this effect, discrepancies exist between deviation angle da
measured under tuo-dimeqsional ccnditions in cascades with side and end wall
suction and data measured in similar cascades ﬁith solid w-lls. The leaving
axial velocity in a solid wall cascade is usually higher because of the general

~increase of boundary layer thickness and particuiarly because of repions of
separation in the cornet where the bilade suécion surface intersects the side
Qall. These regions of separation reduce the effoctive flow area which raises
the géneral level of axigl velocity leaving the blade row. Elimination of
these regions of separation and establishment of a constant axial velocityv
through the cascade can be accomplished by continuous boundary-layer removal
through porous walls as described in Erwin and Emery (Rel. 16). A constant
axial velocity is a eonsequence of continuity for the two-dimeffsional flow of
an incompressible fluid.

The changes in flow through a cascade as axial Qelocity fatio changgs
may be dgscribed by éodsidering the accompanying change in bressure distribution.
1f the losses are assumed constant for a small change in AVR then the static
pressure risc across a blade in a cascade decreases (incteasés) as AVR
increases (decreases) assuming incompressible flow. The resulting change in
pressure discribution is ilidstrated in Figure 9. In general the airfoil
circulation may also be expected to change as AVR varies. The magnitude of
the change in circulation has a direct effect on the change in deviation

angle. Evaluating circulatien using the path EFGH of Figure 10, assuming
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H
—
*
(=]

COEFFICIEMT OF PRESSURE, Cp

LEADING

TRALING
EDGE

CHORDWISE EDGE

POSITION

Figure 9 — Effect of axial velocity ratio
un cuscade blade pressure distribution
(Rei. 17).

sy = Sy yields the result

P=s@ -V ). )

Ffom the velocity diagrams in Eigure 10
iz is app;rent that the deviation apgln
will decrease as AVR increases if-

circulation'incroages (i.e. Vﬂ’2

decreases) or unless the circulation

decreases enough so that Vé 2 increases
L

-4

/ !

[/ v

G H z,2
_ Va'z

V] vz,] =vz,?
Ve’z
0,1

,27%.)

by more than d units. Similarly if

Figure 10 — Effect of axial velocity

ratio on plane cascade velocity

circulation decreases (or increases

diagrams.

less than a critical amount) deviation angle will increase as AVR decreases.

In fact available experimenﬁal results (Refs. 15 — 18) indicate that deviation

angle does decrease with increasing AVR and increases with decreasing AVR,




1€

although the data of Reference 16 indicate that .circulation decreases slightly

as AVR increases.

Plane Cascades

Espivical Methods

Pollard and Gostelow {Ref. 17) and Montgomery (Ref. 18) have presented
experimental results which indicate deviation angle is aylinear function of
axial velocity ratio over a limited interval. Pollard and Gestelow's (Ref. 17)
datauwetv obtained in a porous wall tunuel by varying the amount of wall
suction to contrel axial velocity ratio. A cascade wiﬁh Y0C430C30 blade
sections {see Ref. 5 for blade nomenclatuve) wés tested at solidicies of 1.0
ard 1.14. Stagger angle was 36 degroes and the nominai inlet air angle wes
52 degrees 30 minutes. Deviation angles measured for the interval

0.93 > AVR = 1.1 can be approximated by the equation

& =‘5aVR=1 -AIO(AVR -1 . (6}
vhére'éAvﬂ?l is the deviation angle for AVR = 1, For a solidity of 1,
6AVR#1 = 9.5 é@gtees.

Montgomery (Refs. 18 and 19) obt#ined his data in a solid wall tunnel
using a 9-blade cascade with an aspect ratio of 4.1. The blzdes had a

RAﬁA 65-410 profile, (equivalent circular arc cambzr = 10 d- grees),

4.875-inch choré; 20-inch span,vand a soliéity of 1. The inlet flow angle

was varied from 48 to 62 degrees. Turaning angle data at various axigi velocity
ratios were obtained hy ﬁperating the tunoel in ghreé éonfiguragions. Th;
first vonfiguration consisted of exhausting to atmuspﬁere ‘na conventio;
uanner; The second configuration featured a &-inch‘diameter cylinder placed

at midspar with its centerline 6 inches downstream of the trailing edge of the

LAt e
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cascade. The thivd configuration consisted of the cascade with an 8-inch.

channel shaped, screen placed & inches downstream of the cascade trailing

edge. The obstructions downstream reduced the outlet axial velocity (hence

AVR) by varying amounts over the wmidspan portion of the cascade, with the

maximmi Teduction at midspan. A further variation of AVR was obtained by

varying thevinlet air angle (hence incidence angle).

Twe sceries of tests are reported by Montgomery (Ref. 18), the first

being measurements at midspan for various inlet air angles with no obstructiorn 2nd
with the screen obstruction downstream. The second series oﬁ tests were madg

at an inlet air angle near stall with the circular cylinder and the screen
obstacles downstream. Measurements of flow angles and velocities were m
obtained at several spanwise positions from midspan-té onc end of the blade.

The difierence between meaéured and two-dimensional (Ref. 7) deviation Angles
"was plotted versus axial velocity*ratio.in Reference }8 for all data in both

series of tests and can be reasonably appfoximated by

5 =

= Spgey T 12 AR - D). M

Extreme cadtion_shbuld be exercised in the interpretation or use of
Montgomery's (Ref. 18) results however, because of the.three-dimensional
flows which existed in his cascade flow field.

Part of the results of the much more extensive investigation of;Heilmann
(Ref. 20) is -eported by Heilmann, ct al. (Ref. 21) and is repr&ddced as
Figure 11.  The change of turning angle (the negative of the change in:dcviation
angle) is shown as a function of inlet angle for a NACA fl-(lBAbléb)OS cascade
(see Ref. 22 for blade noﬁonclatute). The angle of attack was heid constant

by restaggering the cascade for each volue of o The band represehts the

1"

range of values of the slope of the turning angle versus axial velocity




“density ratio, (I, curve and therefore

"indicat:es :tlxat a nonlinéar var’iation'cf,

”,~dev1at10n angle and ax1a1 veloc1ty

B .densa.ty ratlo was obtalned.: This_

“‘curve’ alsO' 1nd1cat:es ’-that »correctibns

'usmg Equatlons (6) and (7) have

- :4’quest1onable valldlty because of the

NACA T .~ (]%6|Ab)
o= 1.5, ]“-26 5
-2 3"10 M 00,3} R Sem:. Emgnlcal Methods ) o
25 . ,.35°" ! 55 i Sc‘.olz (Ref 23) consxdered a
AIR INLET ANGLE——’ p‘ o

lxmlted data on whlch they are based. .

S).mpli‘ied f10n model 1n which t:he

F:Lgure 11 —Denvative of flu1d turning blade turnlng action was concentrated at
angle with —espect to axial velocity N - :
density ra. io for. varlous air inlet - 'a plane b located 1nsxde the blade
angles (ReL. Zl) : RN

- i v_'frow (see Flg. 12) The flow

angle at plane b, B - ‘was’ assumed to

: INLET FLOW SURVEY o :
S OUTLETFLOW SURVEY

be the angle whlch would be measured

at the outlethth no '1f10w,Acont::act;on: o

: Dol CONTROL
;(i.e - two-dimens iona:l . flow.);. A S’URE,ACE.} ,
further change in-.flnvliangle'whi?ﬁv - ‘_ -
occurs botween pla.ne b and the ex.t . ' 4 :"_--"‘" === E
plane, 2, duo to contractxon of the
o

. flow was vcalculatecl by applying the‘ é ‘

momentum theorem cn a cnn.t'fél' '5ui‘face- CASCADE- S DISPLACEMENT
: TUNNEL WALL CTHICKNESS OF - .7 -
between plane b and plane 2 (Fig. 12) e BOUNDARY LAYER :

'rhe fellowing relationship was obtamed Figurc 12 —'Flcvw in a. plane, solicl B
. . . : . wall cascade after Re[ereme }.3.




can z, 0= (Q:/Qb)tan Sy (8) .

e T QL and ., are the mass rate of flow at plancs b and 2 per unit of width
» -

:d ler ome spacing of the cascade. Scholz {(Ref. 23) asserts that Qb mav be

= constant = k(b) 0« k(b) < 1 o 9y

wheTe k13 to be cxperimentally determined.

Ervin and Emery {Ref. 16) presented three methods of correcting
por the vial velocity increase in a solid wall cascade. The first method
compuies the correctec turning from an exit velocity diagram which has axial
wziociry equal to the entrance axial velocity and tangential velocity equal
to the measured value (Fig., 13a), The inlet velocity diagram is assumed
tznchanged. In the sccond method the inlet-diagrgm is unchianged, but the outlet
e=iai velocity is correctid to the mean of‘the inlet and outlet values
€¥1iv. i3bj. Outlet taunwential velocity is assumed constant. The third method

=2 justs both inlet and outlet axial velocities. The inlet axial velocity is

ZRen U

rr

3 be less than the mean axial velocity by one-halr the axial velocity
Encrease due to the blockage effect of the wake, The corrected outlet axial

va locity is greater than the me «n axial velocicy by one~-nalf the wake increment

13c). Al threermvthgds assume tangon:iél leocitios, and hence
circulation, ;emain unchanged. All these corvections werc applied to solid
w2ll cascade data presented in Reference 16. The data wcré obtained for |
ACA b%-(li)lo (equivalent circular arc camber.= 30.2 degrees) profiles at
inlet air angle of 60 degrces, solidity of ., and aspect ratio of 4. Data>
wre also obtained iﬁ a porous wall cascade for an aspect ratio of 1 and 2.

Incid-nce angle was varied by restaggering the cascade over the interval
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(c? Outlat axial velocity corrected to -
inlet axial velocity.

(c) Outlet and inlet velocities corrected
to mean walues . ‘

Figure 13 — Axial velocity ratio
corrections of Reference 16. :

Potential Flow Methods

‘-—f—.—-——-— Ve,] o s e

(b) OQutlet axial velocity carracted. fo
mean axial velecity.

from 39 to 50 degrees. The deviation
angles measured in the solid wall
cascade were 2 to 4 degrees less than

phoée from the porous wall cascade ‘in

which the flecw was two-dimensional.
[ ]

. The second and third methods reduced

the discrepancy bv about one-half
(under correction). The first methcd
tended overcorrect, but the resulting

corrected deviation angles were

"within 1 degree of the two dimensional

values.

€

The cffects of changing axial velocity through a plane cascade "have heen

"calculated using’the method of singularities by Pollard and Horlock (Ref. 24},

by Mani and Acosta (Ref. 23), and.by Shaalan and Horlock (Ref. 26).
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Kubota (Ref. 27) has made a similar calculation using conformal transformations.

Pollard and HKorlock (Ref. 24) extended the method of singularities as
presented in Re ference 28 for computing cascade performance. The method of
singuiarities as applied by Pollard and Horlock (Ref. 24) basically consists
of superimposing a uniforin flow and the flow from a distribution of sources,
sinks, and vortices on the chord lines of an infinite cascade. The source
and vortexrsﬁrength distributions are seleéted so that each blade surface of
the cascade coincides with a streamline, the velo ity normal to the mean camber
iines i3 zero, and the Qorticity is zero at thé t a2iling edges {Kntta-Joukowski
condition), Since the net outflow of the sources and sinks is required to be
zere, no change in axial velocity through the cascade occurs.

However, in the extended method of Pollard aﬁd Horlock (Ref. 24), iafinitely
lcag sirip scurces and sinks, exténding in the tangential direction, were added
to the flow field bewween the leading and trailing edge planeé:of the cascade
(Fig. 14). The combined flow was again required to have a streamline identical
with each blade of the cascade and to
satisfy the Kutta-Joukowski condifion
at the trailing edge. The number of

AXIAL DIRECTION . RLOW

strip singularities per unit length

in the axial dircction was constant

Ili:::;? 7 V4 as was the strength per unit length

77 17 77 - - . in the tangential direction. This
4 . .
l[/l Z/I 1]// uniform distribution of source

strength produced a linear variation

STRIP smeumamesj

of axial velocity through the cascade.

Figure 14 — Distribution of strip Half the flow from the styrip sources
singularities. ’ : . ’

flows upstream and half downstream
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leaving the axial velocity unchanged at the mid-chord position, but addiﬁg to

tﬁe flow field at each point E, Figure 14, an axial compenent of velocity

proportional to the source flow between the point E and the mid~chord position.

Since the source strength was uniform in the axial direction a line§r variation

of velocity within the cascade resulted. By computing the total ecirculation on

a blade with and without the strip sources the change in deviation angle for

various gxial velocity ratios was computed.

Results were given for a cascade of 10C430C50 profile blades with a

stagger angle of 36 degrees. Solidity was 1 and the incidence angle was

1.8 degrees. The calculated results are shown in Figure 15. The change in
deviation angie for the axial veloc-
ities shown can be approximated within

0.1 degree by the linear equation

&
- .

- = 8 - 57 ( -
iy $ S AVR=1.0 7.67 (AVR -~ 1.0). (10}
w\
gg Note that Equatien (i0) differs
;; from Equation (6) which was obtained
g% experimentally by Pollard and Gestelow
5 .
z . \ ¢° \ . (Ref. 17) although the deviation
00.8 0.9 1.0 1.1 1.2

. angle calculated at AVR = 1 by
AXIAL VELOCITY RATIO, Vzg.z/Vz"

‘ Pollard and horlock is very close to
Figure 15 — Calculated variation of
deviation angle with AVR for a cascade the experimental values. Whether
of 10C430C50 profiles at 36 degree .
stagger (Ref. 24). the difference between Equauions (6)
and (10} is due to an errof in the analysis, in the experimertal data, or in
both is not apparent.

In a later paper Shaélan and Horlock (Ref. 26) present 2 dififevrent

approach which also employs the method of singulhrities. - In this approach
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the continuity equation was reduced by an approximation into a Poisson partial

differential equation for the velocity potential

325 o% . 1 02 .
byz * cyz . £G, y) = - ® (éx) (1)

This equation was solved by an iterative process. First, the incompressible,

two-dimensional solution.ﬁas obtained (i.e. Ozalaxz + 523/6y2 = () and then
fix, y)‘was evaluated from this approximation. Plane sources were then located
in the blade passage with strength equal to f£(x, y,. Velocities induced at

the blade surface by these piane sources were éomputed and canceled by a line
cf sources and siukg at the profile. From this combination of velocity
potentials a new evaiuation of f£(x, y).is obtained and used to discribu:e
more plane sources, etc, until convergence is reached. The circulation and
exit flow angle can be computed from the final singularity distributior and
the basic unifbrm flow. The mean axial velocity varies linearly through the
cascade. It was also assumed in the solution that axial velocity varied

linearly from the suction surface of one blade to the pressure suriace of the

next blade.

L4
Pressure distributions and turniag angles were computed for the same

100430C50~caécade mentioned above. The deviation angle calqulafed for
AW =1 wasv8 degrees and for AVR = 1.10,‘6 = 7,5 degrees. Thus both the
magnitude and the change in deviation angle calculated with this method seem‘
to be less than those measured by Follard and Gostelow (Ref. 17) for the same
cascade. A possible ¢xplanation of this diécrepancy may lie in the fact that
the results of Shaalan and Horlock (Ref. 26) were obtaincd from only one
itefation of‘the solution method.

Kubota (Ref. 27) has presented a method of predicting the effect of axias

velocity changes on cascade turning in which sources (or sinks) were uniformly




distributed in the blade passages to produce a linear variation of axial
velocaty through the blade row. He considered three elementary fiows:
1) The cascade flow with no change in axial velocity; 2) Flow from thovsourco
{or sink) distribution which provided the desired ax:ial velocity change, but
¢id not satisfy the boundary condition of zero normal velociﬁy at the blade
surface (applicd at a.corfesponding point along the chord as 1 thin airfoil
theory); and 3) Flow from additional sources, siﬁks, and vortices distributed
on the chord line to satisfy the b>undary condition and the Kutta-Joukowski
condition at the trailing edgés ®

To determine the third‘elémentary flow, the blade was mapped onto a
unit circle. A relation wés thus obtained té‘compute the difference ié
circulation between the first elementary flow and the superposition of the

three elementary flows. This difference in circulation then represeats the
citculation change due te the change in axial velocity. Kubota presented
curves which allow this changé in circulation to be computed for r;scades of
zerohthigkness flat plates and for NACA 65-series compressor cascades. He
then divided the corresponding change in circumferential velocity equaliy
between the inlet and outlet flow to obtain the deviation angle for axial
velocity ratios other than one.
Mari and A:osta (Ref. 25) considered flow éhrough an infinite plane

cascade in which the distance between stream surfaces is a slowly varyiag

function of axial distance. They averaged the continuity equation across

the stream tube "o obtain a Poisson equation for the average velocity potential

T 2a 2a . ‘f\ ’ )
30 | o9 _ (dh/dz) o9 az)
L2 2 h 3x
ox oy

where h is the stre .ntube height. The method of solution was modeled on that

of Mellor (Ref. 29) and consisted of distributing sources and vortices on the




blade chord iline which, yhen superimposed on a uniform flow, result in a flow
approximately tangential to the blade surface. The sing&lari:ies used were
required to satisfy the Poisson Equation tlZ) rather than the waplacc equation,
Stream surface or channel shapes were restricted to those with constant height
both upstream and downstream of a segmeng with exponentially decreasing height.
The cascade was located arbitrarily wifh respect to the converging section.
Deviation angle results were presented for a circular arc cascade lhaving

CE0 = 1.00 (camber = 25 degrecs), stagger angle = 45 degrees, an axiai velocity
ratio of 1.13 and 1,0, and solidities ranging from C.5 to 1.15. At an angle

of attack of 15 degrees (incidence angle 2.5 degrees) the computed deviation
angle for AQR = 1.13 was larger than the deviation angle at AVR'= 1,13 for

all solidities and was, for example; about 1.3 degrees larger at a soliditv of
1.00. This result does not seem to be consistant wicl, measurements from
similar cascades such as that of Reference 17. At zero angle of attack
(incidence angle = - ‘2.5 degrees), tiic deviation angles ior AVR = 1.13

were smaller than those for AVR = 1.0 for all solidities except the solidity
0f 1.25, where they were approximately the same. The results are not presented

in a readily usable form, however a computer program is available (Ref. 30).

Annular Cascades

Axial vélocity changes across annular cascades result from annulus
boundary layer growth and corner stall effects as in plzue cascades. However
additional and perhaps dominant causes for annular cascades are noncylindrical
hub and casing contours, radially varying énergy transfer and pressure losses,
and curvature which because of radial equilibrium and éontinuity requirements

usually result in a change of axial velocity from inlet to cutlet along a

stream surface.
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When two-dimensional cascade data are applied in the design or analivsis
of annular»cascades it must be corrected to reflect the effect of the annular
cascade agial velocity ratio. If it is assumed that the change in deviation
angle from the two-dimensional value depends only on the value of the axial
velocity ratio and not on the manner in which it arises, then the plane
cascadGAco?rections from the previous section may be applied.

For exdmple, Schulze, et al. (Ref. 31) used a two-dimensional method to
correct data from a compressor rotor for comparison with two-dimensjional
cascade data. In the rotor test axial velocity ratio was varied by atteching
fairings to the rotor hub thereby changing the annulus area. Measured rotor
turaning angles for three blade sections were given for exit to c¢ntrance annulus
area ratios .7 1.15, 1.0, 0.85 and 0.70. These rotecr turning angles were
corrected- back to "two-dimensional" values using two methods. In the first
method (see Fiy. 13a), circulation was assumed constant and the>equivalen:
exit axiat veiocity was taken to be equal to the inlet axial velocity. This
method substantially overcorrected the rotor da;a as compared with twn-
dimensional cascade data. The second method (see.?ig. 13b), also assumed
constant circulation, but adjusted both theAentrance and exit axial velocitics
to a mean value. This method was more satisfactory, but also tended to over-
correct.

. The mean axial velocity method was also used to vorrect two-dimensional
cascade dat# for comparison withkthe measured rotor data taken near design
angle of attack. The coﬁparisons for AZ/AI of 0.85 were quite good, however
tﬁey were less. favorable for Az/Ai of 1.15, 1.0, and 0.70. The limitations of.
the method were acknowledged (Ref. 31) and recommended appiication was limited
to axial velocity changes of 15 éeréent ér‘less. Eséentially the same method

is given by Jansen and Moffatt (Ref. 32).




SECONDARY FLOW

Secondary flow in turbomachines has been defined in several ways.
Herzig, et al. (Ref. 33) define secondary flows as "any motion of boundary-
layer fluid having components of motion normal to the through-flow directions.'
Louis (Ref. 34) and Rohlik, et al. (Ref. 35) give similar definitions terming
secondary flow the deviation in boundary-layer flow from the free stream or
main stream flow direction. Smith (Ref. 36) defines secondary flow as the

' where the ‘“primary

difference between the actual flow and the ''primary flow,’
flow™ is that flow obtained from successive application of the axisymmetric
and blade-to«blade methods assuding the flow to be frictionless. Smith's
definition includes as seccndary flow znv nonboundary-laver flow which is
normal to the akisymmetric stream suarfaces of revolution in addition to all
ﬁoundary-layer flow. Because the Yprimary flow" is weil defined it is pos-
siblg to exéressAthe secondary flow quantitatively. Using Smith's deffinition,
Lakshminarayana and Horlock (Ref. 37) have listed the following secondary
flows: . ‘

1. ©Cascade secondary flow

2. Mainstrean secondary floﬁ

3. Tip clearance leakage fiow

4. Scraping vortices

5. 'Radial ficws of the blade surface boundary layers.

A complete review of thevlarge amount of literature treating various
aspevts of secondary flow was considered imprgctical, theréfote only selected,
rcpres;ntative work whi&h is applicable to the prediction of deviation angles
in turpomachinery will be reviewed in this section. No-discussion will
be given concerning items 4 and 5 of the above list because of an apparent

lack of quantitative methods of deviation angle prediction.




Cascade Secondary Flow

Cascade secondary flow occurs when a flow with annulus wall boundary
lavers is turned in a blade row. It is simply the cross-flow component of
tl.e skewed annulus boundary layers which form in the blade passage together
with the resulting circulatory flow set up in the surrounding fluid.

Within the blade passage a blade-to-blade static pressure gradient exists
in the free stream flow outside‘the boundary layer. This static pressuré
gradient, caused by the curvature of tﬁe streamlines in the blade-to-blade
plane, is priﬁcipally determined at any point by the local radius of curvature

of the screamline, Rc, and by the magnitude of velocity. The relatioaship is

approximately given by

op _ V. ‘ (13)
= A ,

171
P

< C

If the boundary layer is thin, the freestream static pressure gradient may be
assumed to be impressed upon the boundary layer which because of its lower
velocity must then have streamlines with a smaller radius of curvature (see

Eq. (13), giving rise to a crossflow component as illustrated in Figure 16.

{e) Annulus bcuﬁdary layer velocity (b) C;rculorory represemahon of cascade
componants. secmdary ow.

Figure 16 — Cascade secorndary flow.
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The cross-flow results in an overturning of the boundary layer fluid (decreasecd
deviation angle) as compared to the free stream fluid. Underrurning is usuali§
observed near the edge of the boundary layer {e.g. Ref. 34) sugpesting that a
small cross-flow component exists in th: opposite directicn and extends a
short distance into the free stream as indicated in Figure l6a. The resviting
secondary flow pattern is sometimes represented as shown in Figure 16b.

In a real blade rcw it is necessary to be able to predict the under- or
over-turning as compared to the turning which is predicted froﬁ rwo—dimgnsional [
cascade results, Because exact solutions to turbulent, three dimensional
boundary layer problems arve not attainable at present, theoretical attempts
to predict cascade secondary flow turning ﬁave becn basad on épproximations
to the real flow. Usually the flow is assumed to be inviécid and incompressible,
but not irrotational, that is vorticity components due to previous viscousA
actibn are allowed. The entering flow in Figure 16 for example has a vbrticity
component normal to the streamwise direction in the boundary layer. At the
outlet, as a result of the turning imposed on the main stream, a vorticity
component iﬁ the streamwise direcfion also appears {n the regions where
over- or under-turning occurred. If thevstreamuige vorticity component is
known, then for inviscid, incompressible flow the correspondiﬁg secondary
"(or cross-flow) velocities may b found from which the‘ovetf and under-turniung
may be determined. Hawthorne (Ref.. 38) derived an expression for the change
in the strearviseivorticity éomponent for inviscid, incompressible flqw in
a curved channel, Figuvre 17. His equation is

. P
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, . o ' where
STREAMLINE P = stagnation pressure -
\BERNOULLI NORMAL TO

un’
I

= streamwxse vortlclty

SURFACE BERNOCULLI
SURFACE

M
[}

‘«ngle of turnlng of tne fluid
n= apgle betwqen the'nor@alitq

the Bernoulli surfaces and

the principal normal to the

streamline

(U

V= fluid velocity

p = fluid density.

PRINCIPAL A Bernoulli surface.is composed of
¢/ NORMALTO L
STREAMLINE intersecting vortex lines and stream-

lines and is a surface of constant

- . stagnation pressure in a steady, -/
Figure 17 — Inviscid, rotational flow V';4
through a curved duct. . . inviscid flow. Starting with' .

* Equation (14) and assuming the inlet streamwise vorticity component to be =

zexo and.that the - stagnatlon pressure varleé only 1n the . spanwlse dxrect;cn,
Lskshminarayana and Horlock (Ref. 39) have presentad a solutlon for the
caacade secondary veloc1t1es at the outlet of a stationary cascade thch 15> '
valid .for small tu:ning angles.- Their solqtiqn includes ;he effect of--w
Bernouili surface rotationlénd viscous diffusion of the velocity prpfilg,ffom
the inlet station to the trailing edge cf the cascade. Accountingvfér fhe
latter effect tailors the solution for‘an idealized experirentalAsituacicn
where an annulus boundary 1ayer proflle is 51mu1ated at the midspan of the
cascade by a wake cteated drt1f1c1a11y upstream of the cascade (Flg. 19).
Appl;cabzlity of thlS part of the analysis to annulus wall boundary layer

regions depends on the similarity of viscous diffusion at .the edges of wakes
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Rather lengthy expressions (ot
fgure 1§ = Centrai wake pvofilé. reprodu?ed here) are given in
Reference 39 f{or ;s and for the change in angle [rom the free-stream angle
25 a function of b;S/éf. Numerical methods using a digital computer would.
wsuzily be necessary to obtain a quantitative ¢ lution, Theoretically
caleuiated turning angles are combared in Referencé 39 with the experimental
reosults of Lakshminarayana and Horlock (Ref. 40), Soderberg {(Ref. 41) and
touis (Ro{. 34). The‘three sefs of experimental results were obtainea from

cascades with central wakes, Figure 18, si&ulating an inlet boundary layer

profile. Detailed information on the three cascades is given below.

lakshmicarayans's Soderbery's Louls’

{Ref. BO).cuc&dtv {hkaf, &1) cescade (Bef. 34) Ceascade

Profile description . xccaaacso' MACA 6409 10C40CK0
Camber, deg. ' W0 28 . 3

Blade choré, 1n. 6 4.5 ' e

Aaprct ratio L.83 3.56 3.0
Solidity ‘ .00 1.0 1.00
$inde setting ancle, deg. k1Y }‘ 10 36
' Incidence angle, deg. ' ‘ ok ‘ 15 &

Blade chord Reyoolds cumber 2 x 100 2.8 x 10° 1.5 x 18°

o s st At



Tbe thecfecical>re§ults éompéged vefy‘cioseiy with expérimental values
with only a few-exceptiohs and even these discrepancies were 1 degree or less.
“ome question remains however reéarding accuracy of thie procedurc near a wall
which is the réal configu:ation of'interest. For examplé;‘Louis (Ref. 3%)
alsc gives turningvangle data for a cascade idehtical to Lakshminarayana's
except that a~thin‘wa11 was installedbbetweeﬁ‘chg blades at midépan dividing
the inlet wake f}ow, a éonfiguration which more nearly épproximates annqlus
wall flow. Very much larger ovefcurnipg was megsurgd;for this confiéurafion
which had a region of separéted flow near the corner formed by tbe suction
surfacé of the blade and the Qall, indicating that the énaiysis‘would not
give correct predictions'when corneyr stall is preéent. An evaluation of the

method ‘using data near a wall in-the absence of corner stall apparently has

not been made.

Mainstream Secondary Flow

A key assumption necessary to obtain an axisymmetric solution is that the
scream .surfaces arve surfaces of revolution or axisymmetric stream surfaces as

shown in Figure 19,

Any flow perpendicular to the axisymmetric stream surface is defined as

-secondary flow. It is very unlikely tnat stream surfaces in any real annular

cascade are sgrfaﬁes of'revolution. Vavra (Ref. 42) has discussed at some
length tﬁe requiremenEs for the existence of axisymmetric stream surfaces in
both stationary and rotating cascades for s;eadf,;isentropic (irrotational

for stators) flow and ﬁas concluded it is un}ikef} thét blgdes can be desiined
to produce axisymmetric stream surfaces even fof‘this idealized flow. Real
stream surfaces are warped as illustrated in Figure 19 with the directi?n and

magnitude of the warbing.dependent on the blade geometry.




AXISYMMETRIC

AXISYMMETRIC
STREAM SURFACE

Figure 19 — Axisymmetric and warped stream surfaces.

Some insight iito the reasons the stream surfaces are warped may be
gained by considering a simple example: irrotational, incompressible flow
through a stationary, free-vortex blade row with cylindrical annulus walls.

One blade passage is represented in Figure 19. The governing equations for

the flow in cyiindrical coordinates are the irrctationality condition,

A" s (xV,,) av v 2(rV.) sV
- a1 TV : 1 2z r r =

7 Vo= = (i e - - s - — . ommn——) e — - —)

XV rr(::- oz ) t(ar az) z ( or :~) 0

and the continuitv equation,

; 2@ev) ov. m/z . .
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chh term of Equation (18) is equal to zero giving,

Voo (rV;‘,)
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Upstream of the cascade all derivatives with respect to - are zero because of
the symmetry of the {iow. Thus by Equation 720) two flow configurations arve
pcosible, either ¥V is a constaﬁt or V. is zero. In a cylindrical annulus
derivatives with respect to z will also vanish in the flow upstream of the

rascade and thus by Equation{21}.

o - (23

indicating the stream surfaces are cylindrical as would be expected. Because
the cascade is compoesed of free-vortex blaéing the circumferential average
value of TV, is assumed tc be constant doﬁnstream of the cascade although
circumfarential gradiencs of velocity exist. In a real, viscous flow mixing
would occur so that axisymmetric flow would be approached at some distance
downstream from the cascade. 1f the effiéiency of thebmixing was constant and
2ot a function of radius, then after the mixing rV, would be constant
throughout the fléw and cylindrical stream surfaces would exist. Perhaps
because of this it is often assumed that axisymmetric stream surfaces exist

in the blade passages of free-vortex cascades. For ;his to be true, it would

be necessary that
— =0 (24)

inside the blade passage. From Equation (21) this is true only if

eV )y
—— = 0. : ‘ (25

[3%4
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Vavra (Ref. 42) show that it is not possible to design a stationary
cascade with an infinite number of blades which will satisfy Equation {(25)
and concludes that it is also unlikely that a cascade with a finite number of
blades could satisfy it. It is, however; difficult to speculate on the
directions of secondary flow in a free-vortex cascade. For a free-vortex

cascade with irrotational flow it is assumed that

rzvg’z = gonstant (26}

and the circulation of a blade element

= s(v -V, ) @2

NG § 5,2
2nr -
o= —— (1] - Y Vo= g .
o (\G,l JB,Z’ congtant (28)

because the product rVv, is constant both upstream and downstream of the blades.

o

Thus circulation is ccnstant along the span of the free-vortex cascade.
The circulation will increase along the span of a stationary cascade if

for example,

rVe,l = constant . 29)
and
v = constant < O, (30)
9 ’2 .

Suzh a cascade is represented in Figure 20. Along a line of constant radius EF

ﬁhe change in Vr is determined by Equation (22). 1If rVB is on the average a

strongly increasing function of r then it seems reasonable that at most or all
points of EF

oV
r

-

> 0. ' - @1)




36

e
/
//

v,
{
I -
I Pl

P
s

Figure 20 — Main stream secondary flow.

Thus the radial velocity is~iarger on the pressure surface than on the suction
surface. Three possible relationsnips between thg radial velocity on the

- pressure and suction surface ére illustrated at the tréiling edges of the
blades in Figure 0. Regqrdiess cf the absoiute level éf magnitude of Vr’

the stream suiface will at least qualitétively resemble the surface shown in
Figure 20, and velocities normal to the stream surfaces of the axisy@metric’
solution will exist and are defined as main-stream secondary flow  used by

a spanwise gradient of circulation. This discontinuity in radijal Felocity

is often represented by a shee: nf vortices extending downstream -from the
trailing edges of the blades. This flow field te2nds to caﬁse undertﬁrning

towerd the tip of the blade and overturning toward the hub. This trend can




also be inferred from Equation (22) as noted by Lieblein and Ackley (Ref. 43)

since at the casing and at the hub because of the boundary

\yr = 0 (32)
and hence
c(r“/n‘)
- = (. ‘3-5)

Thus ]V__: ,)! and £y must decreasce from the specific or design value. at the tip
BN )
and increase at the hub as indicated qualitatively ip Figure 21, It is the pre-

diction of the over-turoing and under-
- :

t’.
turning or the change in deviation
OVERTURNING - angle which is of interest in this
d
® section.
;T' - = Lieblein and Ackley (Ref. 43)
> .
— have presented a method to compute
UNDERTURNING the change in deviation angle due. to
HUB " RADIUS Tjp  the combined effects of cascade

secondary -flow and mainstream sacondary
Figure 21 — Effect of mainstream, - :

. condary flow in a cascade with span- flow for inlet guide vanes. They de-
wise ircreasing circulation. :
rived an approximacte theoretical
expression for ;hv secondary velocities in the trailing edge plane containing

a censcant vhich was evaluated experimentally. The main flow was assumed to be
irrotational and the blades were replaced by lifting lines or vortex bundles of
strenszth equal to the blade circulation at each radius. For blades with radially
virving circulation, vortex lines from the lifting line were assumed -to trail
cCownstream of the trailing edge forming a vortex sheet (Fig. 22). However, for
some- uncxplained reason 1t wzs necessary to superimposc the induced velocities

from a vorter system of magnitude equal to the trailing vortex sheet, but
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having opposite sign and from associated
vortex images located outside the annutuas
on the blade element axisymmetric main
flow to obtain an an~provimation to

the actual radial variations of

deviation angle. The vortex images

shown in Figure 23 were required

Figure 22 — Trailing vortex sheet.

to satisfy the boundary condition at the ¢

annulus walls. An additional vortex was
. . e
located ii. the boundary layer region

near each annulus wall to approximate

the effects of cascade secondary flow Figare 23 — Trailing vortex sheet and

' R . associated imagec i .
(Fig. 23). The secondary fiow velocity ociat 4ge vortices

Vn induced normal to the streamliﬁe by all vortices from all blades in the
cascade was calculated only on a radiél line at the blade Erailing edge rather
than being averaged across the blade spacing at each radii. An experimental

-correction factor was applied to the resulting secoddary flow iuduced turning

angle (Fig. 24)

Turning angles. predicted using

this theory were compared with

Y

expurimental results for five compressor

Vé Vn
Figure 24 — Induced turning angle
correction. -
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guide vanes and one turbine nozzle. A satisfactory comparison resulted when
a correction factor, €, of 0.42 was used.

Smith (Ref. 36) has presented a more pereral analysis considering
frictionless, compressible flow with distributed vorticity (but no eatropy
gradients) for both rotating and stationafy cascades. His analysis allows
secondary velocities to be.calculated-for both cascade and mainstreaﬁ secondary
flows using the conventional axisymmetric solution as the basic fiow. In an
axisymmetric solution the‘fldw through the cascade is assumed to remain on
surfaces of revolution. but as mentioned pre#iously in real fiow, duc tc
what are'defiﬂed as secondary velo;ities, the stream surfaces may be warped
leading to a discontinuity of velocity-ac the blade trailing -edge which
creates a vortex sheet extending downstream from the blade. A major assumption
of Smith's (Ref. 36) analysis is that the distortion of these stream surfaces -
is not large. A relation for the éécondary s;feamwise vorticityAiﬁ the flow
at the trailing edge plane was derived with the aid of the vortex laws of
fluid mechanics for a channel consisting of the axisymmetric étagnation

streamlines and the two blade surfaces. The expression obtained is

: r ar, dh ~

. ‘" VA v, N ‘

$Sa=(VE T ) : (35)
s 1 ;,1(Vm)2 dn, dhg , _

. \ .
wherc.a is the distance between the exi* streamlines (Fig. 25), Vl is the inlet

N . - 1
is the component of inlet vorticity normal to V

a1 1 fva
1

~is the blade circulation in the actual'flow (primary and secondary), V_ is the

@€

relative velocity,

vector mean of the inlet and exit relative velocities, ', is the blade

‘7

and h, are inlet and exit streamtube

circulation in the primary flow, and hl

heights. Blade circulation is always considered positivé and the secondary
vorticity is considered pesitive when it induces secondary velocities on the

suction surface which are in the positive h~direction. From Equation(35)§s
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Figure 25 — Exit pléne in which secondary flow is assumed to occur.

can be determined for all points in the exit flow.

1t is assumed that the secondary velocities corresponding to Z_ can be
expressed as
av ov_ . . :
= —t . == ‘ : 36
gs _oox oy (39

where the x-y plane is normal to the stagnation streamline surfaces. That is,
it was assumed that the secondary flow takes place in a plane bounded by the
- annulus walls and- the exit axisymmetric stagnation streamline surfaces

C(Fig. 23).. A secondary flow stream function was Jefined such that

-

3% 52 \(J - . ‘

s s _ : .
2t T 27 % | | | (31)
0X ay

uv
-
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This equation was solved subject to the boundarv conditions of v, = constant crn
the boundary of a rectaugle which approximated the surface EFGH shown in

Figure 25. The details of the solution of this equation are not given in
Refereace 36 but they are given in Referencs 43 together with the resulting
equations necessary to find the average secondary tangeutial velocity. The
equations ‘are presented in graphical form in Reference 36 and 44 for aspe&t
ratios of 1/ and U.0/~, however for other aspe;t ratios the equations.must

be evaluated to obtain a value uf the average secondary tangential velocity.
The secondary velocity would then be superimposed on the axisymmetric §c1ution

to obtain the change ia deviation angle‘(Fig. 25).

Tip Cleavancc Leakage Flow

Leakage fiow through the clearance gap between the end of a biade and an-

annulus wall (Fig. 26) tends to decrease the difference in pressure between

Figure 26 — Leakage flow.
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~e

the suction ~d pressﬂre surfaces of the bléde sections~néar the gap. The
tlow around the séctions ne;r the tip is turned through a-smaiier angle on
the averdée (i.e. the deviation angle is laréer) thén it would be}if no
leakage flow ex.sted. The éctual ﬁléw fieid near the clearance gaﬁ is
complicated by the interaction of the leak;ge flow and the three-dimensional
annulus-walil boﬁndary layer flow which was désc;ibed in the section on‘cascade
secondéry flow. |

Lakshiminérayana'and Horlock (Ref. 40) ﬁave deVeloped an approximate
theoretical mefhoa to obtain the change in de§iacioﬁ‘angle caused by the
leakage fiow in a stationary cascade. Thé& assﬁmedvthe flow to be stea&y,
inviscid, and incompr'e'ssible° The Elow'model,assﬁmed that the leakage flow
caused the actuatl Slaae.clomedt civculation co;decrggse only partialiy from
the two-dimensional circulation. The decrease in circulation was assumed to
.be (1 - K)FZD (where K is therfractiqn of»lift reﬁainedvat the tip):ané was_
treated asltrailing vo:ficity distributed bétween the blades from Ehe Qallvﬁo
the edge of the boundary layer és indicated in'figure 27.

The strength of'thé ybrticity was gssumed to be constant ftpm blade-~to-
blade, but tq vary.sinusoidaliy ia the épanwise direction'increésing from
zero at the wall to a maximum at 61/2 from the wall~ana-£hen decreasiﬁg to

zero at the edge of the boundary layér.
) sin ZX, : 138)
61 : . ‘

A stream function was defined for the leakage secondary flow which satisfied

<
i

v 2 0<x< 8, o : A ‘ - (39

V5 =0 . x> & ' - S (60
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Tigure 27 — Leakage flow model.

and e = ¢ on the boundary EFGHE in Fig@re»27. Tﬁe change in'the.avetage

cutlet angle (also the change in deviation aﬁgle).wag showit to be

. oy ’ . o - ) )
AR Y = 2 L2l : . . . _
) =yl Ty L o e 1.
where ‘
™, -
. . . . 1 o .
' S s ’ -sinh (—————) = ) . .
K o= 4 (°6)max 5, s cos 3, T i . o
..}-C J L] -. - cosh 3 oS :— (1. - T) . (_r“>.
’ ﬁl - . 'r-2 i ~ !
Jﬂ Ll + (J $ cos a s cos 3] Sinh(s cos 82) . '

Theoretical Eredictions-pf the change in the average outlet ang}e using an

" experimental vaiua of K were eomparedei;h experibental dgté from a reétilinear
cascade of 10C430C50 prafile blades having a 36 deéreé blade setting‘angle.

The tip cledrance gap was 51mulated by a- gap at midspan and .a wake was

generated upstream to sxmulate.the annulus wall boundary layer. ;he cascade
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secondary flow angle changes were computed using the theory of Louis (Ref. 43)
and were superimposed directly on the changes due to leakage flow. . Quantitati:«
agreement between theory and experimertal data was closest near the blade tip

vith the discrepancy increasing to about 2 degrees near the edge of the wake.

SWEEP AND DIHEDRAL

The term sweep i. applied to turbomachinery blades when the flow directicn
is nct perpendicular to the spanwise direction and the sweep angle, A\, is Jdefined

in Figure 28. A turbomachine blade has a nonzero dihedral angle, v, whenever

- “=BLADE

’ \AXISYMMETREC'
"~ STREAM SURFACE

Figure 28 — Biade with sweep and dihedral.

the intersection of an axiéymmetric stream surface and the blade surface is

€ ' .
not perpendicular (see. Fig. 28). Smith and Yeh (Ref. 46) have given a
numericzl example which shows that épplyipg tvo-dimensional czscade deviation

anglics to the geometry of view A-A, Figure 29 gives too large a deviation
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SWEPT BLADE -

© STREAM SURFACE-_ :

A =3
zl" E ' \ : \
SECTION B-8 v

. .
Figure 29 — Two views of blade scctions of a swept blade.

.angle for a cascade with an.infinite span in inviscid, steady flow. They

show that the correct deviation angle is obtained by viewing the flow along



)

a line barallel to the blade axis, applving two-dimensional cascade data to
the corresponding cascade (view B-B, Fig. 29), and projecting the flow angles
in wview B-B back into the cascade of view A-A, Figurc 29. The same method is
rocomnended for-use on bladeu with dihedral. Smith and Yeh (Rei. 36) have
developéd relationships which can be used to accrunt fcr the crffect of sweep
and dihedral angle on deviation angle in the design problem. The basic
efiects arc incorporated by projecting the flow angles i1rom the axisymm tric
desizn solution ont& surféces which are norﬁal to the blade axis. The fléw

angle in the normal stream surface is given by

. _tan » = cos u tan T _ (cos . tan g + sin ) (43)
tan { = — T ’
T

i
(cos w - sin . tan 1)\le+vcos . tan

where 1 = arctan (Vr/vz)’ 3 = arctan (Va/V"), and where ~, T,

and [ are defined in Figures 29 and 30. Equations are also

BLADE AXES .

SECTIOND-D | . LD

MERIDIOM AL SECTION

Figurc 30 — Annular cascade of blades with sweep and dincdral.



given for the determination of the sweep and dihedral angles. Biade sections
corresponding to view B-B of Figure 29 can then be obtainzd using two-
dimensional cascade data and the flow angies g.from Equation (43). The angle [
obtained from Ecuation (43) is appropriate only for a blade with an infinite
span, thus a correction for the effect of the annulus end walls is required.
Smith and Yeh (Redi. 46) deveioped an approximate correction in the form of
a downwash ov induced tangential velocity which attains z maxipum value at
the annulus walls and decays to zero.at some distance from the wall. Fof ¢
the special case of =2lliprical loading (circular-arc camber line) alcng the
chord a polyromial equation was presented for the downwash velocity at the wall
and-additional equations permit computation of the spanwise locations wheqs
the downwask velocity has decayed'to 0.5 and 0.1 of the maximum magnitudé.
" Smith and Yeh (Tef. 46) recommend obtaining an axisymmetric solution at
several stations within the blade row as well as upstream and downstreamf
Eqﬁation (43) can then be used to obtair the flow angle { at several points
along the chord. It is not clear, however, "w cascade data can be applied
within the biade row to obtain blade angle as a Fuﬁction of chord unless some
chordwise distribution of deviaticu angle is assumed. If thé chordwise
distribution of deviation angle is known then it can be readily corrécced‘.
for endwall effects using Smith and Yeh's (Ref. 46) results éqd the desiga
blade angles projected into the surface normal to the blade axis can be computed
fret. { and 5.. Blade profiles on cylindrical Jurfaces or other surfaces
must be obtained by application of descriptive geometry.

No similar treatment Af the effects of sweep and dihedral has been
formulated fof the off-design or aitalysis problem although the design method

of Smith and Yeh (Ref, 46) could be adapted to the analysis problem.

Experimental investigations of the efrect of sweep angle have been



cozducted by Beatty, et al. (Ref. 47), Murai, et al. (Ref. 48), and Stark (Rc!.
using plane cascades and by .dwin (Ref. 50} using a rotor. However no

empirical methods for predicting the effect of sweep on deviation angle have

bezn proposed cn the basis of these limited results,

SUMMARY

Methods of predicting deviation angles on a blade clement basis in
axial-flow pumps and compressors were reviewed. The effect of two-dimensional
geometric parameters on deviation angle may bte accounted for with the methods
of Carter and Hughes (Ref. 3) and Lieblein (Ref. 2). Smith (Ref. 11) and
Lieblein (Ref. 9). have presented corrections ro obtain deviation angles
over a range cf incidenpe angles. Correctiens for axial velocity ratio in
rectilinear cascades may be based on the velécity diagram methods of Erwin
and Emexry (R-f. 16) or the potential flow analyses of Shaalan and Horiock
(BRef. 26) and Kubota (Ref. 27).

Smith (Ref. 36) presents the most general approach to correct deviation
anzle for the effects of ca#cade and mainstream secondarr flow. Lakshiminarayana
and Horlock (Ref. 40) have developed a correction for th: change in deviation
angle due to tip clearance leakage flow in a plane cascade. A method of
correcting deviation éngle for the effects of blade swezp and dihedral in

the deéign problem is given by Smith and Yeh (Ref. 46).

Ji)
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RECOMMENDATIONS FOR FUTURE RESEARCH

4n cxtension of the two-dimensional cascade tests reported in Reference
to higher cambers would provide a significant contribution to axial-tlow
pump technology. As indicated in the Two-Dimensional Geometric Parameters
Sectioa, at high values of camber where-the D-factor is greater than 0.62,
deviation angle appears to become a nonlinear function of camber. This
nonlinear tendency :hould be clarifiad e#perimentally.

The effect of noncenstant axial velocity through a cascade is of
considerable irterest since in génera] the axial velocity ratio in a real
machine is not equal to one. A systematic study in a plane cascade in which
axial velocity ratio could be varied over a wideé range could produce fundamental
results in this area. A thorough comparison of the experiméntal results with
potential flow solutions would contribute toward the establishmenﬁ of ‘the
applicability and acéuracy of the potential flow solutions. The vélidity
of applying two-dimensional axial velocity ratic corrections to annular

. ) €
cascades also_deserves study to determine how important the chordwise distri-
bution of local axial velocity ratio is in determining the deviation angle

for a given value of the overall axial velocity ratio.

ACKNCWLEDGMENTS

The guidance and help given to'the author by Professor George K. Serovy
during the preparation of this reviéw is gratefully acknowledged. Appreciation
is also expressed for the support given to the Engineeting Research_institute
by the Natic..al Acronautical and Space Administration through Grant NGL |

16-002-005.

JuW/1lmc



14,

50

REFERENCES

Serovy, Georze K., "Jtilization of Cascade Data in Axial-Flow Compressor
Design and Analysis — A Critical Review," Icwa State University,
Engineering Research Institute, Ames, Iowa. .Preprint ERI 555. 1969,

Lieblein, Seymour, ""\perlmental Flow in Two-Dimeasional Cascades, " in
Johmsen, Irving A. and Bullock, Robert O., eds. Aerodvnam.c Design of
Axial-Flow Compressors, U. S. National Aeronautics and Space Adninistration
Special Publication 36. pp. 183~ 226. 1956,

Carter, A. D. S. and Hughés, Hazel P., "A Theovetical Investigation Into
the Effect of Profile Shape on the Performarce of Aerofeils in Cascade,”
Asronautical Research Council Reports and Memoranda No. 2384. 1946,

Cartef, A. D. S., "The Low Speed Performance of Related Aerofoils in
Cascades,'" Asronautical Research Council Current Papers No. 29. .1950.

Bewell, A. B., "The Pr esent Basis of Axial Flow Compressor Design.. Pert 1.
Cascade Theory anc¢ Performance," Aeronauticsl Research Council Reports and
Memoranda No. 20¢5. 1342, : '

Ceastant, K., "Perfoi:mancg of Cascades of Aerofoils," Unpublished document.
Aeronautical Research Council No, 4155. 1939.

Erery, James C., Herrig, L. Joseph, Erwin, John R., and Felix, A. Richard,

" "Systematic Two-Dimensional Cascade Tests of NACA 65-series Compressor -

Biades at icw Speeds,” U, S. National Advisory Committee for Aernnautlcs
Report 1368. 1958, .

Lieblein, Seymour, Schwenk, Francis C., and Broderick, Robert L.,
"Diffusion Factor for Estimating Losses and Limiting Blade Loadings in
Axial ~-Flow-Compressor Blade Elements,” U. S. Natwnal Adv:.sory Committee
for Aeronautics Research Memorandum E53D01l. 1953,

' Lieblein, Seymour, "Inci.dence-and Deviation-Angle Correlations for

Campressor Cascades,"” American Society of Mechanical Engineers Trans.
Series D: Journal of Basic Engineering 82:575-584. 1960.

weinig, Fritz, 'Dl-. Stromung un die Schauflen von Turbomachlnen,

"Johann Ambrosms Barth, Leipzig. 193s.

Swith, Leroy H., Jr., "Discussion, American Society of Me. hanical
Ergineers Trans. Series D- Journal of Basic Engire ermg 82 585 596. 1960.

Abbdtt, Ira H., Von Donenhoff, Albert E., and Stivers, Louis S., Jr., -
‘Summary of Airfoil Data,'" U. S. ‘iutional Advisory Committee for
Report No. 824, 1945. .

Howell, A R:, "F‘ow in Casc:\des,'-" in Hawthorne, W. R., ed. High Speed

“Aerodynamics and .Jet Propulsion, Vol. 10, Aevodynamics of Turbines and
" Compressors. Princeton -Univ, Press,'Princeton. -'NewAJetsey, 1954,

Miller, Max J., and Sandercock Donald M., "Bl‘de Element Perfomance

of Axial-Flow Pump Rotor with Blade Tip Diffusion Factor of 0.66,"

0. S. National Aeronauticq and Space Administrat:.on Techn1ca1 Note -
D-3602. 1966 .



15.

16.

17.

18,

19.

20,

21. .

22,

23.

24,

25.

26.

51

Katzoff, S., Bogdonoff, Harrict E., and Boyet, Howard, 'Comparisons of
Theoretical and Experimental Lift and Pressure Distribuiions on Airfoils
in Cascade," U. S. National Advisory Committeec for Aeronautics Technlgal
Note 1376. 1947.

Erwin, Juhn R., and Emery, James C., "Effect of Tunnel Configuration and
Testing Technigue on Cascade Performance,".U. S. National Advisory

. Committee for Aeronautics Report 1016, 1951.

Pollard, D. and Gostelow, J. P., "Some Experiments at Low Speed on
Compressor Cascades," American Society of Mechanical Engineers Traos.,
Series A: Journal of Engineering for Power. 89:427-436. 1967.

Montgomery, S. R., "Spanwise Variations of Lift in Compressor Cascades.
Part 1. "Experiments.” Journal of Me chanical Engineering Sc ence
1:293-304. 1959,

Montgomery, S. R., "Three-Dimensional Flow in Compressor Cascade,"
Mass. Inst. Tech. Gas Turbine Lab. Report No. 48. 1958.

Heilmann, W., "Experimentelle und grenzschichttheoretische Untersuchungen
an ebenen Verzogerungsgittern bei kompressibler Strdmung, insbesondare

bei Anderung des axialen Stromdichteverhiltnisses und der Zustromturbulenz,"
Deutsche Luft - und Raumfahrteforschungsbericht 67-88. 1967.

Heilmann, W., Starken, H., and Weyer, H., "Cascade Wind ~‘\mnel Tests on
Blades Designed for Transonic and Superscnic Compressors,' Advisory

Group for Aerospace Research and Development Conf. Proc. No. 34:12-1 - 12-16.
1668, -

Savage, Melvyn, Fellx, A. Richard, and Emery, James C., "High-Speed

Cascade Tests for a Blade Section Designed for Typical Hub Conditions of

" High-Flow Transonic Rotors," U. 5. National Advisory Commlttee for

Aeronautics Research Memorandum L55F07. 1955.

Scholz, N.; "Two-Dxméns1onal Correction of the Ou’.let Angle in Cascade
Flow,' Journal of the Aeronaut;cal Sc1ences, Readers Forum, 20:786-787.
1953,

Pcllard, D.; and Horlock, J. H., "A Theorctical Investigation éf the

_ Effect of Change in Axial Velocity on the Potential Flow Through a

Cascade of Aerofoils," Aeronautical Research Council Current Papers
No. 619. 1963,

"Mani, R. and Acosta, A. J., "Quasi Two-Dimensional Flows Through A

Cascade," American Society of. Mechanxcal Englneers Paper 67-WA/FE-9,
New York The Society. 1966,

Shazlan, M. R. A. and Horlock, J. H., "The Effect of Change in Axial

Velocity on the Po:iential Flow in Cascades,! Aeronautical Research

Council Reports and Memcranda No. 3547. 1968.



27.
28.
29.

30.

32.

33.

36.
37.

38.

.39,

Kubcta, Shigeo, 'Cascade Performance with Accelerated or Decelerated

Axial Velocity," Japan Societv of Mechanical Engineers Bulletin 5:450-460.
1962. : :

Pollard, D., and Wordsworth, J., "A Comparison of Two Methods for Predicting
the Potential Flow Around Arbitrary Airfoils in Cascade,' Aeonautical

Research Council Current Papers No. 618, 1962,

Mellor, G. L., "An Analysis of Axial Compressor Cascade Aerodynamics,"
American Society of Mechanical Engineers Trans., Series D: Journal of
Basic Engineering 81:362-378. 1959.

Mani, R., "A Method of Calculating Quasi Two-Dimensional Flous Through
Cascades,” California Institute of Technulog) Engineering Report No. E~79.10.
1967.

Schulze, Wallace M., Erwin, John R., and Ashby, George C., "NACA 65-series
Compressor Rotor Performance with Varying Annulus-Area Ratio, Solidity,
Blade Angle, and Reynolds Number and Comparisons with Cascade Results,"”

" U. S. National Advisory Committee for Aeronautics Technical Note 4130.

1957.

Jansen, W. and Moffatt, W. C., "The Off-Design Analysis of Axial-Fiow
Compressors,' American Society of Mechanical Enginrers Trans., Series A:

. ~Journal of Engineering for Power 89:453-462. 1567.

Herzig, Howard 3., Hansen, Arthur G., and Costello, George R., "A
Visualization Study of Secondary Flows in Cascades," U. S. Nationai
Advisory Committee for Aeronautics- Report 1163. 1954. .

Louié, Jean F., "Secondary Flow and Losses in a Compressbr Cascade,”
Aeronautical Rescarch Council Reports and Memoranda No. 3136. 1958.

Rohlik, Hareld E., Kofskey, Milton G., Allen, Hubert W., and Herzig, Howard
"Secondary Flows and Boundary-Layer Accumulations in Turbine, Nozzles,"
U. §. National Advisory Committee for Aeronautica Repott 1168.» 1954,

Smith, L. H., Jr., "Secondary Flow in Axial-Flow Turbomachinery,"
American Soc1ety of Mechanlcal Engineers Trans. 77:1065-1076. 1955.°

Lakshmlnarayana B. and Horlock, J. H., "REv1ew' Secondaryv Flows and
Losses in Cascades and Axial-Flow Turbomachines," Inuetnatlonax Journal

of Mechan1ca1 Sciences 5:287-307. - 1963.

Hawthorne, W. R., Secondarj'Circulation'in Fluid Flow,'" Royal Society
of London, Proc. 18:374-387. 1951.° ) :

Lakshminarayana, B. and Horlock, J. H., "Effect -of Shear Flows on the
Outlet Angle in Axial Compressor Cascad»s — Methods of Prediction and
Correlation with Experiments," American Society of Mechanical Engineerxs
Trans., Ser. D 89:191-200. . 1967. ‘



40.

£
88

43,

44,

45.

46.

47,

48.

50.

Lakshminarayana, B. and Horlock, J. H., “Leaikage and Sccondary Flows in

‘Compressor Cascades,' Aeronautlcal Research Council Reports and Memoranda

No. 3483. 1967.

Soderberg, Olof, "Secondary Flow and lLosses in a Compressor Cascade,”

- Mass. Inst. of Tech. Gas Turbine Lab. Report No. 6. 1958.

L 3

Vavra, M. H., Aero-Thermodynamics and Flow in Turbomachines. John Wiley
and Qons, New York.. cl960.

Lieblein, Se mour and Ackl:y, Richard H., "Secondarv Flows in Arnnular
Cascades and Effects on Flow in Inlet Guide Vanes," U. S. National
Alvisory Committee for Aeromautics Research Memorandum E51G27. 1951,

Smith, Leroy H., Jr., 'ﬁhree—Dimensional Flow in Axial-Flow Turbomachirncry,’

Wright Air Development Center Technical Report 55-348 Vol. 1. 1955,

Louis, Jean F., "Rotational Viscous Flow,'" International Congress for
Applied Mechanics, 9th, Brussels, 1956, Proc. 3:306-317. 1957,

Smith, Leroy H., Jr. and Yéh, Hsuan, 'Sweep and ‘Dihedral Effects in
Axial-Flow Turbomachinery,' American Society of Mechanical Enginecrs
Trans., Series D 85:401-414, 1963,

Beatty, Loren A., Emery, James C.,and Savage, Melvyn, "Low=-Speed
Cascade Tests of Two 45° Swept Compressor Blades wifh Constant Spanwise
Loading,' U. S.- National Advisory Committee for Aeronautics Research
Memorandum L53L0O7. 1954,

Murai, H., Hirata, Y., and Mikashiwna, Y., "Research on Swept-Back
Blades Laid Between Parallel Walls, Report 1 (Experimental Research on
Clark Y 11.77% Blade with Aspect Rutio of 2.0)," Sendai, .Japan, Tohuku
Univ., Institute of High.-Speed Mechanics, Report 17:185-231.  1966.

Stark. Udec, "Flow Investigations Around Swept Comptéssor Cascades at
Compressible Subsonic Elow," Deutsche Forschungsanstalt fur Luft=und
Raumfahrt DFL-0331. 1966, !

Godwin, William R., "Effect-of Sweep on Performance of Compressor Blade
Sections as Indicated by Swept-Blade Rotor, Unswept-Blade Rotor, and
Cascade Tests," U. S. National’ Advisory Committee for Aeronautius
Technical Note 4062. 1957.

g i oo



54

SYMBOL3

) 2
annuivs arvea, ft
distance betwien exit stagnation streamlines, in. (Fig. 25)
Vv
Z’Z./ Z,L'

plane located betwcen leading and trailing edge df_éascade (Fig. 12)

axial velocity ratioc, V

empirical correction factor

chord, in. (Fig. 3) |

isolated airfoil li.‘ft coefficier{t aﬁtv design angic of attack

coefficient of préés;ire; {r -—pl)/%pl\(i
: v - ]

\
: {
) Vv r,V. o -~ .,V BN .
diffasion factor, D = 1 - —%— 22,2 1 6:1 (+ rotor, - stator)

| vy S(rp + o V)
tangential-velocity inc-réase,'_jft/seg:' (Fig..bl(\))t_‘ A
functic?n, - ;l; (g‘;%) (Eq. 11) , A

force-mass conversion faétgt;’._:3.2...17{& lbmft/ lbfsec2
. streamtube heig_hé, in. ‘ ’ -
i_ﬁciéetice éﬁgle, deg.v: (Fié.' 3;) o 7
index of suninat:i,on . B
fraction o_‘f life rétaihed at tz.p
c‘onstant >(Eq.‘ 9) ' -‘ .
blade s'hépAg ',oor'x_.-ectioa‘_ kféc‘tc;r‘; -
biade thickness corréé#io-n. factor )
blade spa;i, ‘in.‘* A
Ma..!x number

slope factor (Eq.3) ‘

_“slope factor ir‘xVCa.:-ter"sr-t;\»]‘.e:, .
number of blades © -+ ¢
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4 total pressure, psia t
p static pressure, psia
Q mass rate of flow, fc?/sec
r radius, ft.
j RC streamline radius of curvature, ft.
f Re blade chord Reynolds number
é ) blade spacing, in. (Fig. 3)
?z t blade thickness, in.
: | u induced velocity normal to streamline, ft/sec ‘
v fluid velocity, ft/sec Z
w induced velocity in the spanwise direction, ft/sec % é
% coordinate direction
z coordinate direction
a slope of streamline in meridional plane, arctan (Vr/Vz), deg.
B flow angle, angle between flow and axial diréction, deg.
T blade circulation (Eq. 6)
v blade stagger angle, angle bétween,chord”iihé,and axial direction,
deg (Fig. 3) T
5 ' deviation angle, deg. (Fig. 3)
60 reference deviation angle for zero camber, deg.
(60)10 reference zero camber deviation angle fpr NASA 65~series blade section
with tmax/c = 0.10, deg. 3
61 boundary layer thickness, in. %
GAVRFI.OdeViatiO“ angle for plane, two-dimensional cascade flow (AVR = 1), deg. |
€ flow turning anglé a; - B;, deg. ; 3
C flow angle projacted’onto the stream surface normal to the blade
leading edge, deg.
n angle between the normal to the Bernoulli surface and principal normal
to streamline, deg. (Fig. 17)
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max
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coordinate in targential direction

blade angle, angle between tangent to blade mean camber line and axial
direction, deg. {(Fig. 3)

sweep angle, deg. (Fig. 28)

projection of A into wmeridional plane, deg. (Fig. 30)
dihedral angle, deg. (Fig. 28)

streamwise component of vorticity, sec

component of vorticity normal to streamline, scc
fluid density, lbmlft3

anglce between blade axis and radial directioa projecte! into v - 8
plane, deg. (¥Fig. 30)

angle of attack

blade solidity, c/s

velocity potential

blade camber angle, Kl - Kz, deg. (Fig. 3)

stream function

axial velocity density ratio ‘ '
. Paid " P2

total pressure loss coefficient, —t7——=

By py
Subscripts
plane b (Fig. 12)

leakage secondary flow
corrected

blade cliement

ipduced by sccondary flow
ideal

summation index

mean

max imum

minimum

component ¢f secondary flow normal to streamline and tangent to the
axigsymmetric stream surface, (Fig. 25)

i D05 T B e
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at nominal incidence angle

radial direction

reference (Fig. 6)
secondary flow
primary flow
actual flow
x~coordinate direction : %
y-coordinate direction
axial direction
tangentiai direction
cascade inlet

cascade outlet
two~dimensional

vector mean of inlet and outlet valug

Superscripts

relative to moving blade 3
circumferential average
vector quantity

average over streamtube
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APPENDIX — CASCADE CONFIGURATION VARIABLES AND FLOW PARAMETERS

* :
Starred items in these tables are significant only wher -ascade flow is
not two-dimensional (uniform entrance conditions, exit/entrance density-axial

velocity ratio = 1,0),

145 1 — CASCADE CONFIGURATION VARIABLES

BLADE SECTION GEOMETRY

Camber Line Form
Chordwise location of maximum camber
Value of maximum camber (or camber angle)

Basic Proiile Form
Chordwise distribution of profile thickness
maximum thickness
chord length
; Leading-edge radius
- Trailing-edge radius or thickness

ratio value

Manufacturing Tolerances
Profile errors
individual coordinate
surface contour waviness
Surface finish

: BLADE CHORD ANGLE ® STAGGER ANGLE :
SOLIDITY
- MISCELLANEOUS CASCADE GEOMETRY

Blade Leading-Edge Sweep

Blade Aspect Ratio ' > I

Spanwise Blade Sectior® Variation
Blade twists s Annular cascade

Dinedral

Tip Clearance

Row Spacing in Direction Perpendicular

tc Leading-Edge Plane

4 Relative Orientation of Rows in Direction
: Tangential to Leading-~Edge Plane

Tandem cascades
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FLOW CONTROL SYSTEMS

Variable-Geometry Blading
Flaps
Slots

Boundary-lLayer Control
Suction
Blowing

TABLE 2 — CASCADE FLOW PARAVETERS — INDEPENDENT VARIABLES

THERMODYNAMIC PROPERTY CHARACTERISTICS OF WORKING FLUID

Entrance Total Pressure and Temperature
Fluid Specific Heat Ratio

ENTRANCE FLOW CHARACTERISTICS

Entrance Mach Number
Cascade Reynolds Number
Spanwise Distribution of Entrance Velocity {Shear Flow)
Time Variation in Entrance Velocity and Flow Angle
Magnitude of variation
Frequency of variation
Form of variation (time profile)

ENTRANCE TURBULENCE CHARACTERISTICS
Intensity
Scale
Isotropy

INCIDENCE ANGLE

CASCADE DENSITY x AXIAL VELOCITY RATIO*
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