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DEVIATION ANGLE PREDICTION METHODS - A REVIEW 

Max J. Hillel' 

ABS'J.'RACT 

Predicting the direction of flow leaving an annular cascade of blad~s is a 

kej' problem in axial-flow turbomachinery. l'his report is a review of methods 

which have been proposed for the prediction of deviation angles in a..'tial-

flow pumps and compressors. A large number of variables influence deviation 

angle, however methods of pre[iicting the effecta of many variables have r.ot 

beE'n published, hence this review was lil'li.ted to the effects of 

• two-dimensional geometric parameters 

• incidence angle 

• axial velocity ratio 

• secondary flow 

e· sweep and dih~~ral. 
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INTRODUCTION 

Predicting the direction of flow leaving an annular cascade of blades is 

a key problem in axial-flow turbomachinery. In the design problem; blades 

nust be selected which will produce a prescribed fluid velocity, .pressure, 

and angle distribution at the exit of the blade row for specified inlet flow 

conditions. In the performance predictio:l pr.oblem or analysis problem, blade 

geometry is pr('scribed and for given inlet flow conditions the uutlet flow 

conditions must be computed. Soiutions to both problems are often obtained 

using the blade-element method in which flow is assumed to be axisymmetric 

(i.e. no gradients in the tangential direction), stream surfac~s arp. assumed 
t¥. 

tc be conlc&_ and the flow conditions are computed at stations between bladt: 

rows. The flow is assumed steady ano local viscous effects : •. " neglected 

although cumulative -"iscous effec·t.s are included in the solution in the form 

of total pressure loss between computing stations. 

In the u~ual formulation of the blade-~lement method for the design 

pt'obh'm, the exit flow conditions and in particular the average flew angles 

are computed from an estimated distribution of total pressure loss and a 

speclEied distribution of another parameter such as ener~' addition or pressure 

ratio. Blade sections must then be selected to produce the desired average 

flow anglE'S at each radius. The blade sections chosen must reflect the fact 

that the average angle of the leaving flow is not paralleltc the outlet 

blade angle (th(' tangent to the blade section mean line at the tra'.ling 

~dge). Tne discrepancy between the average leaving flow angle and the out.l~t 

blade angle is defined as the deViation angle (Fig. 1) and must be ~stimated 

to con.pIete the blade-section specification. 

In a bh,de-elc-ment method solution of the> analysis prob It'm , estimates of 
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AVERAGE RELATIVE 
flOW ANGLE 

Figure 1 - Flow deviation angle 1n a 
cascade of blad~s. (See nomenclature 
for definition of bladE.' and flow 
angle. ) 

the deviation angle snd total pressure 

loss for a number of blade sections 

along the span, the 'equation of motion 

,in the radial direction, and the 

continuity equation «re sufficie~t 

to compute the exit flow conditions. 

Both accurate design an4 performance 

prediction thus depend on accurate 

predictior~ of devie,tion angle. 

Thi.s report is a review of methods 

which have l)e'en proposed for th~ 

predicti~n of deviation angles in 

axial-flow pumps and compressors. 

The methods are d':'scussed frem a blade-element approach, 'and only incompressible 

and low-speed compressible flow (essentially constant density flow) are 

considered. The, review is divided into secttonsdealing with parameters and 

phenomena which are recognized to influence, deviation angle. The ,van,_s 

parameters included are not con~idered to be independent and in fact some are 

probably quite interdependent. A large nu~~er of variables which influence 

dp.viation angle, given by Serovy (Ref. I), are listed'in the Appendix. Because 

of in.adequa~e I.'xperimental information or because H theoretical analysis 

is too difficult, no quantitative methods have be~n developed to predict the 

effects of many of the3~ variables on deviaticn angle. Becausl.' of this it 

was decided to' limit this review to the ef ~C'ct's of 

• two-dimensional geometric parameters 

• incid~nc~ angle 

• axial velocity ratio 

, , 

'If 
I[ 
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.. secondary flow 

(19 s,~eep and dihedral 

for which quantitative methods 'hav(~ been publish,=·d. With a few exceptions, 

only references written in English,are given. In sections such as Secondary 

Flow where a very large .lmuunt of work has b~~!! :,ublished no attempt was 

nade to include all applicable references, but instead reprr.sentative and 

significant papers were reviewed. 

CASCADE NOMENCLATIJRE 

General cascade notation used throughout this report.. is defined in this 

section. Specialized de finitions are given in the sectiO!lS w~lere they at:e 

~~d. All symbols are defined in the symbol list. 

A~ridional view of an axial fIOwr~~or is shown in Figure 2. 1f the 

,FLOW .. E----~----~--F 
G H 

AXIS OF ROTATION 

Figure 2 - Meridional plane view of .an exial-flowrotor. 

flow is assumed to beaxixjIIIIletric.. then a typical streamline EF can be 

revolved intc the meridional plane. ,The surface developed by rotating the 

streamline abuut the axis of rotation is called an axis}'IIIIletric stream 

s:~r!ace. The axisymme.tric strean, sU,rface is often 'assumed to be conical if 

-
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computation stations are between blade rows, "ut 'it usually is not conical if 

computation stations also are placed inside the blade row. If the cylindrical 

stream surface corresponding to GH in Figure 2 is developed with the blade 

intersect.ions shown, a view similar to Figure 3 results. Blade parameters and 

MEAN CAMBER LINE 

1 

Fi.gure 3 -- Two-di~nsional cascade 'view and blade nomenclature. 

their relationships to the f'~ relative velocity vecto~s are defined 

schematically in Figure 3. The blade chord, c, is defined as the line 

connecting the end points of the mean camber line •. The angle between the chord 

line and the axial direction i& the blade stagger angle, y. Blade angles, 

1(1 and te2 • are defined as the angle between the axial ul. .. -ection and the. tangent 

to the blade· mean line at the 'leading and t~'ailing edges. The relative 

2E2£uau, 
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I , 

flow angles, ~l' ~2' are blade-to-blade average values (ideally mass-averaged 

valu"s) of. the flow angles measut'<'d in a coordinate system fixed to ~lades. 

A typical blade-to-blade distribution of flow 'angle is shown in Figure 4. 

Figure 4- Blade-to-blade variation 'of 
relative flow angle. 

Deviation angle, 6, is the difference 

between the average leaving relative 
I 

flow'angle'~ !32,and the blade angle, 

KZ' as shown in Figure 3~, 

TWO-DIMENSIONAL GEOMETRIC PARAMETERS 

Ultimately, the deviation 

'angle distribution in an ,~nnular 

cascade, rotating or stationary, is 

'determined (for a given fluid, flow 

rate, and rotational s~eed) by the 

geometric shape and arrangement of the blades and the boundar ie's at the hub 

and tip_ To consider the problem in its full three-dimensional, form 'would be 

a formidable task and accordingly simplifying approximati.ons have been sought. 

The problem has been reduced to a two-dimensional problem by assuming that the 

deviation angle iS,determined by the geometric parametet:s of the blade sections 

cut by an axisymmetric stream surface, and is not, dependent on the blade 

geometry 'at other pOSitions alo",g the span. Two-dimensional cascade ,results 

and to a lesser ('xtent potential flow have been tlse~ ::0 establish th(' values 

of deviation angle for various two-dimensiou'al cascade ge".:ae.tries. The 

,plaUSibility of th(' dependence of deviation angle in two'·Jimensional flow on 
- \ . . . 

geOmetric param~·ters ·,:an be established by considering the cascades drawn 'in 

Figure S.The cascadt.·s in Figure Sa each have the same chord. solidity, and 

All!!! !!!III!I!!!!,.,Ui 

'. :.." 

',' . 
. ..! .• '-. ~ 

-
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differEnce i r
, char.nel length of tht, t\>JO cascades in Figure Sb. Although it 

is not so graphically obvious, (Fig. ')c) d('viation' an~l€' Joes iOt.:l:'e8Se \dth 

incr<.>asing camber, and according to Liebleir. (Ref. 2) the relationc:hip 

bc·twl'en devIation angle and camber is linear [or pote-ntial HOIJ. Other 

parameters such as bla,de thickl'iess distribution, camber line shape, ~urface 

i inif>h, and Lrai ling t'dge radius usually have less influence on deviatior. 

angle than camber, solidity, and blaoe setting angle. 

ConSE'quE'nt~, an carly deviation angle -prediction method, call,>d Carter's 

rulc', evcpressE's deviation angle as 

~~ere mr is a function ~[ blade setting angle an6 ~he position of maximum 

camber. Curves of m as a f~ 
c 

ion of ~l~de setting angle are. given in 

• Carter and Hughes (Re f, 3) for circular arc and parabolic arc (maximum 

(1) 

camber at 40 percent of the chord from the lead ing edge) camberline blades, 

Th!:'se cu!"v('s were deduced from both theoretical aud experimental results. For. 

accelerating cascades the exponent on solidity should be 'unity rather than 

ooe-half according to Cart0r (Ref. 4). Howell (Ref. 5) ascribed to Constant 

(Ret. 6) an early v('rsior. of Equation (1) in w.llicb m 
c 

(). 26 \~as used. 

Equation (1) applies specifically to the "nominal" ':'ncidence angle 

which Howe 11 (R~ f. 5) de fines as the incidence angle for which the turning' 

angle, ('\ - ~2)' is equal to C.B of th(' turning angle at which the loss i.s 

twic(' tht, minimum valu~; howevt't' it is frequently applipj throughout the lo~oI-

l~SS incidvnce anile rang~ (defined in the Incidence Angle Section) unde~ the 

assumption that devi.ation angle does not changt· appreciably \~ith incidence' 

ang h· in the low-loss l:ange. 

A deviation a~gle prediction method which includes more geometric 
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_ parameters was presented by Lieble,in (Ref. 2). The met}1od was based on 

corre lations of two-dimen,:;ional cascade data for NACA 65-s('ries compressor 

bla<les which wcre presented by Emery, tt a1. (Ref. 7). The correlations '~ere 

made for 0pecation at are'ference inc~ence angle defined to be midway-

between the incidence angles at which the total prC'ssure loss across the 

cascade "IU,S equal to twice the minimum-loss vallie (SPI Fig. 6). At the 

NACA 65(12) 10 I 
~, :: 60 deg. ' 

I-
Z 
loU 

, !=.! 0.06 
u.. 
u.. 
w 

8 0 .04 
en o -' 0.02 

(1"'" 1.0 
.... ---------- Ai 

Ai 

2 

_O~,2~LL~-L.---~---~---~~~~~~~L----~-LL-~L-~' 
- 6-4 - 2 0 2 .. 6 8 

INCIDENCE ANGLE, i, d.g. 

Figure 6 - Schematic definition of refer ce incidence angle. Data ,from 
Re ference 7. 

• reference incidence angle, deviation angle is expressed ~s 

where 6 is the reference ceviation angle for zero camber, 1//) is camber, 
o 

(2) 

and m is the slope of the d.eviation angle, function with camber. Curves are 

presented by ,Lieblein (Ref. 2) giving the slope factorm as a function of 
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inlet air angle and solidity for circular-arc-mean-line blades. Inlet air 

angle was used instead of blade stagger angle because the cascade data of 

Emery. II &. (Ref. 7) \Jere obtained at a constant inlet. air angle rather 

than a constant blade stagger angle. The zero-cilllIo€''' ~eviation angle is 

giv!.:n by Liebl'ein (Ref. 2) as 

(3) 

where (00)10 represents t:he zero-camber deviation angle for a 10-percent-thick 

NACA 65-series distribution, (Ko)Sh is a correction for blade shapes with 

thickness distributions different from the 65-series. and (K) is a cor-o t 

rection for maximum bla~e thickness other than 10 percent of the chord. 

Empi.rical curves are givt:r. [<>r (00)10 as a function of inlet air angle and 

solidity and for (K.) as a function of maximum thickness ratio, t Ie. A 
o t . mdX 

value of 1.1 for (~) sh is ":ecommended for C-series circular-a.rc blades and 

0.7 for double-circular-arc blades. Both of these values are based on 

limited data. Plot~ of deviation ang~e versus camber comparing values from 

Equacion (2)with cascade data of Emery, tl. .al. (Ref. 7) are given by Lieblein 

(Ref. 2). The li:tE'ar curves from Equation (3) approximate the data quite toleli. 

However, at high cambers where D-factors exceed 0.62, the experimental data 

tends to fall above th£" predicted values. D-factor is· us£"d as a measure of 

blade loading and was developed by Lieblein. et al. (Ref. 8). Blade sections 

o"erating at D-factors greater than 0.62 evidently have blade ,>_.face boundary 

layers thick enough at i
ref 

to cause the flow to differ significantly from 

potential flow where a linear relation between .deviation angle and ca~b~r 

angle is predicted. A quanti.tative evalo..; .. t.ion of deviation angle as a 

function or camber fo~·D-factors greater than 0.62 is currently lacking, and 

is an area where further research effort could make a significant contribution 

to axial-flow. pump and compressor techno logy. 
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Both medods dE'scribed in this section assum~d the incidence ",ngle to 

be· fixed at somt> "design" ... alul·. In tilC" following s€ etion, mC"thods -to prE'dict 

the deviation angJe at "off-desi.gn" values of incidence angle 3re rC"viewed. 

INCIDENCE MGLE 

Plant· Cascades 

The dC"viation angle of a plane cascade is a :unction-of the incidence 

angle and blade g~>om('try. A typical curvE' of deviation angle as a function 

of incidence angle for a cascac(' ~dth c: fix~d inlet flow angle is sho\o,'O in 

Figurt' 7. Th" dev.iation angle curve can be roughly dividpd into two parts, 

• r 
." 

Z .. 
0 00 - .. ... w 
~G 
~Z 
0<' 

lOW-LOSS INTERVAL 

{ )J 
I I 
I I 

~1~2~--~8~~~~O~~4~~8 

INCDENCE ANGLE, i, dee. 

F~gurl' 7 - Typical caseadC" results. 

one corresponding to thC" 50-called 

lOW-lOSS ineider.ce angle interval' 

and the other corresponding to 

incidence angles outside the 1010.'-

loss ~nterval. ~nen the incidence 

angle is in the low-loss intPrval, 

the blade surface boundary layers 

are pr ~ably quite thin so that the 

flow closely approximates potential 

flow. Therefore in the low-loss 

r .. gion, the fU.lctional relatioI.ship 

he tween deviation angle and incidence 

angle for a two-dimensi< :ascade is quite similar to the relationship [or 

potent la1 flow. Lit'b Id. .C'to 9) cone luded, based on calculations us ing the 

potential flow theory of W€'inig (R.,f. 10)., th8t do/di is positivl' for potential 

flow and that it is a function of solidity anc blade chord angle. Smith 

(R("f. 11). in a discussion of Rd:erencl:' 9, indicated that do/di is also a 

strong function of cambl'r. 



11 

Using the low~sp~~d casca~~ data for 65-(AIO} 10 blades of R~feren~~ 7, 

Lieblein developed an empirical method to estimate .ne variation of dp.viat:ion 

angle ie, the low-loss inci"'ence interval. He assumed that since op~ration 

could be considered to be in the low-loss region for onli a small incidence 

angle interval, the following linear function could b~ used to compute 

deviation angle: 

dl' c = b f + (i - i f) (d--:-) f re r~. 1 re 
(4) 

where i f is the ref~r,.,nce inc:i.d~nce a.ngle as deflned in the 1\Jo-Dimensional 
r~ 

Geometric Parameter::. section ahove·, 5 f i.B the measured d~viation angl~ at 
r~ 

i = i and (d,)/di) f is the graphically det~rtnin~d ulop~ of the deviation ref' t'(' 

angle curve at i = i f" Lieblein presented a family of curves from which re 

values of (d6/di) f ~ay be obtained for solidities ranging from 0 to 1.8 re 

and for inlet air angles. ranging from 0 to 70 degrees. These correlations 

are also presented in Reference 2. 

Because the 65-Serie~ cascade data (Ref. 7) were obtain~dwith inlet air 

angle fixed, the (d5/di) f obtained from Lieblein's curves is applicable to re 

a constant inlet air angle cascade, while, as Smith (Ref. 11) pointed out, 

in practical applications the blade stagger angle, y, is fixed ar~ the inlet 

air angle varies. Smith (Ref. 11) developed relations to obtain '(do/di) f re 

applicable to fixed-Y blade rows from Lieblein's correlations and gave a 

numerical example in which the fixed-y dcrivati.ve was larger than the 

fixed-~. derivative by a factor of three for NACA 65-(12) 10 blades with .. 
o = 1 and Si .. 60 degrees. Figure 8 shOl-'S the variation of deviation angle 

wit~ incid~nce angle from ieference 7 for the NACA 65-(12} 10 blad~s (s~e 

Ref. 12 for blad~ nomenclature) of Smith's (Ref. 11) example at a constant 

inl~t air angle, ~l • 60 degreee. Data of Reference 7 were crolsplotted to obtain 

a second curve shown in Figure 8 for the same blades With a constant stagger angle 

of l17.6 degr~·t·s which is the 8t'lgger angle of a cas.:ade of NACA 65-(12) 10 blades 



NACA 65-(12)10 
C1 1.0 

Graph 

0.05 

12 

Ref. 9 

0.10 

o 
l' = 47.6 

Graph 

0.33 

Ref. 11 
0.30 

i"'f 
~-~16~----~1~2-------~8~------~4~----~O~----~4-

INCIDENCE ANGLE, i, deg. 
Figure 8 - Comparison of deviation angle as a function ot incidence angle 
constant inlet angle and.con:;taat stagger angle. Data from Reference i. 

8 

for 

with P l = 60 dl'grees, (J = 1.0, amI i ... i f whert" i ~,~as computt"d using the cor-
re rl'~ 

rt.'lat:ions of Reference 9. Graphically determined value!! of (do/di, . f arC' comparl"d 
r ... · 

with values from Lieblein's (Ref. 9) correlation and Smith's (Rcf. 11) calculation. 

Based on the differences in this t"xamplt" it C.ppears that the fixeu-Y derivative 

should be' used in preference to iixed-~l derivatives in analysis applications wncn 

computing the change of deviation allgle for a change of incidence angle in the 10"I-loss 

incidence angle interval. Smith (Rei. 11) also pointed out that the fixed-Y 

derivative was strongly dependent or. camber and therefore the fixed-S l 

derivative should be also. 

Howell (Ref. 13) presented a single curve for (& - ~ )/e as a nom nom 

function of (i - i )/£ where the nominal conditions occur at C.B of nom . nom 

the tun.ing angle at which the loss is twice the minimum v:l.lut.'. 

Apparently no method (empirical or analytical) has been published as yPt 

to predict the functional relation between deviation angle and incidence· angle 
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outside the low-loss incidence angle int(>t'val ~'ven tor a plane two-dimensional 

caacade fl(lw. It Seems highly probablv that the blade surface boundary 

layers playa decisive role in determining the deviation angle outside th= 

10 .. ,-1055 region and there fore boundary iav~r considerations would strongly 

enter into any successful correlation or analytical mt.'thod \~hich might be 

devised. 

Annular Cascades 

No corre 1 atioi1s are avai lab Ie which express the r~ lations hip betweerl 

deviation aogl!.'· and incidence angle specifically for annular cascades. The 

alter:lative !.s to .''Pply the plane cascade lnt>thods to annular cascadps, although 

because of the complicated three-dimensional flow in the latter the deviation 

angle is sometiml's observed to decrease as inciience angh' increases 

(e.g. Ref. 14) rather than increase as in plane cascades. 

In these first two sections, methods of ·predicting d{'viation angle '(.)ere 

r£'vi{'wed "hicl! assulill,d that tilt' stream surtac,"s 3r~ surfaces of revolution and 

that. til" flow around a given blade section is not influenced by the flow around 

adjacent blade sections. In some blade rows the flow deviates sufficiently 

froD this two-dimensional model that correct:Lons accounting for the thre<:-

~iffiensionality of the flow must be applied to the two-dimensional deviation 

angles. These corrections ar~ usually obtained by conSidering the predicted 

axisymmetric exit flow field (obtained using two-dimensicn~l- 6) rath\'r than 

attempting to defino.' iurtlll'r g{'ome-tric parar:tl'tl'rs. Th" sl'ctions which 

follow revit'w a number cf attempts to incorporatl' the. effects of thr('e

dim(,llsion~l flou into dl'viation anRle prediction ml.'thods. 
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AXIAL \,[LOCITY RAl'IO 

It is w'-'U known t:hat the deviation ang1t' in a rectilim>ar or plan<' 

~a::>cade depends on the ratio of the leaving to the enteringaxi<:!.l ve locit i,~s 

(AVR). Katzoff, £!. al. (Kef. 15) among others reportl,d the phl.'nomenor in 194i. 

Because of this efit·ct, discrepancit's exist between devjation angle da· 

measured under two-dimensional ccnditions in cascades with side and end wall 

suction and data measured in similar cascades with solid w- ~ls. The leaving 

ax.ial velocity in a solid wall cascade is usually hight'r because of thegt'neral 

increase of boundary lay~r thickness and particularly because of regions of 

separat;on in the corner \~here the blade suction surface intersects the sid.~ 

wall. These regions of separation reduce the eff::-<:tiv€ flow area \~hich raises 

the general level of axial velocity leaving tht' blad~ row. Elimination of 

tht'se regions of ~eparation and establishment of a constant axial velocity 

thr.)ugh the cascade can be accomplished by continuous boundary-layer removal 

through porous walls as described in Erwin and Emery (R€:. 16) •. A constant 

axial velocity is a consequence 0: continuity for th~ two-dime~siona1 flow of 

an incompressible fluid. 

The changes in flow through a cascaae as axial velocity ratio changes 

may be described by considering the accompanying ~hange in pressure distribution. 

If the losses are assumed constant for a smail change in AVR then the static 

pressure rise across a blade in a cascade decreases (increases) as AVR 

tncreases (decreases) assuming incompressible flow. The resulting changl' in 

pressure diStribution is illUstrated in Figure 9. In general th", airfoil 

circulation may also be expected to change as AVR varies. The magnitude of 

the chang(' in circulation has a direct {'ffect on tht' chall£,(' in d",viation 

angl,'. Evaluating circulation USing the path EFGH of Figure 10, assuming. 
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Figure 9 - Effect of axial velocity rati 
v:& "'.scadE' blade pressure distribution 
(~_>l.. 17). 

51 = 52' yields the result 

r = s (Vc 1 - Ve ,,). (5) 
t1 , .. ,4.0 

From the v~locity diagrams in Figure 10 

i: i5 appar~nt that the deviation angl~ 

will d-ecrease as AVR increasE's if 

circulation- increases (1. e. Vf-l,2 

decrease_s) or unless the circulation 

decreases enough so that V~,2 increases 

by more than d units. Similarly if 

circulation decreases (or increas~s 

f r Vz ,l 
Vz,2~~rl 1 ~ 
! 

----~~----------------------

Figure 10 - Effect of axial v~locity 
ratio on plane cascade velocity 
diagr8ms. 

le~s than a critical amount) deviation angle-will increase as AVR decreasE's. 

In fact available experimental results (Refs. 1.5 - 18) indicate that deviation 

anglE' dOE'tI decrease with -increasing AVR and increases '''ith decreasing AVR, 

I , 



a1~hough the data of Refl.'rence 16 indi.cate that ,circulation d~:::r(:'as€'s sli~htly 

as AVR increases. 

Pollard and Gostelow (Ref. 17) and l~ntgomery (Ref. 18) have presented 

el..-perimental results which indicate deviation angle is a linear fun..::tion of 

axial velocity ratio over a lirni.ted int<:>I'val. Pollard and Gcstelow's '(Ref. 17) 

Jata wer(' obtained in a p"rous wall tunnel by varying the amount of wall 

suction to control axial vdoci ~y ratio. A cascade with lOC4JOC50 blade 

se..-:tions (see Ref. :) for blade nomenclature) was test('d at soUdities of 1.0 

ar:d 1.14.' S tam~er angle was 3& degr;:es and the nominal inlet air angle '01<'5 

52 degrees 50 minutes. Deviation angles measured for the interval 

0.93 ~ AVR s 1.1 can be approximated by the equation 

l, =, a AW-I - 10 (AVR - 1) (6) 

vhereb AVR""1 is the deViation angle for AVR = L For a solidity of 1, 

6\VR=1 "" 9.S degrees. 

Montgomery (Reo is. 18 and 19)' obtained his data in a solid wall lunne 1 

using ~ 9-blade, cascade with an aspect ratio of 4.1. The blcdes had a 

NACA 65-410 profile., (equivalent circular arc caml:--<>r '" 10 d, grees), 

~.b7S-inch chord, lO-inch span, and a solidity of 1. Th~ inlet flow angle 
, . 

vas varil."d (rom 4a to 62 degrees. Turning angle data at various axial velocity 

rat io:;> w"'r~ obtained h,Y :>perating tht> lunn\." 1 in three c,)nfiglJrations. The 

itr5t I:onti);tlration consi.sted of l'xhausting to 3tmospill,>rt: . n a convention 

mann('-r. TIlt.> second configuration featured A I.-inch uiamt'teor cylind'er placed 

at midspan with its centerline 6 inches downstream 0 ~ th..- trailing edge of the 

J 
t 

I 
) 

1 
J 
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cascade. Th~ third configuration consisted of the cascade with an' 8-inch. 

channel shaped, scn'~'n placl·d 4 inches do\mstream of the cascade trailing 

edge. Th~ obstructions downstream rC'duc('d the outl~t axial v('l.:>city (hencl' 

A\'R) by varyin~ amounts ovpr the midspan portion of the cascade. with the 

maximln.1 t'~'uuction at midspan. A furtht.-r variation of AVR was obtaLnt·d by 

\,arying the inlet air angle (hence incidence angle). 

Two seri~s of tests are reported by Montgomery (Ref. 18), the first 

b~ing measurements at midspan for various inlE't air anglt's with no obstruction :md 

wi::" till' sc~en obstruction downstream. The second series of tests wet'E:' mad(' 

at an inlet ait' angle near stall with the circular cylinder and thl' scrpen 

obstaCLes downstream. Mt'.:lsurements of flo\~ angles and v('locities wt.'re 

obtained at several. spanwise pOSitions from midspan to one t'nd of the blade. 

The diiference between measured and two-dimensional (Ref. 7) deviation angles 

. was plotted versus axial velocity ratio in Ref~rence 18 for all data in both 

series of tests and .can bl' r-.?8sonably approximated by 

1.> A\'R=l - 12 (AVR '" 1). 

Extre!lle caution should be exer.cised in the interpretation or use 0 f 

Montgomery's (Ref. 18) results however, because of the three-din:ensional 

flows which existed in his cascade flow field. 

(7 ) 

Part of the results of the much mor~ extensive investigation of Heilmann 

(RL·(. 20) is .·eported by Heilmann,£!. al. (R('f. 21) and is reproduced as 

F'igun' 11. TIll' chang(· of turning angle (the negativl' of the ,:hange in d('viation 

angl...) is shown as a function of inlet angle for a NACA Tl-(l8A
6

1
4b

)08 cascade 

(see R(' f. 22 for blade nomenc laturd • The ang Ie of at tack was he Id cons tant 

by r.t-staggering thl' cascade for each w.lue of "1' The. band represents the 

range of values of the slope of the turning angle versus axial velocity 
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!(W-+-fitl~+-_..J~foI' 

. density ratio., :" curve and there fore 

.indicates :that a nonliriear variation of 

. de~iation' angle. <1lndaxial velocity 

. density~ati() was obtained. This 

'curve a1s~: indlcat,es 'thatcor~ecti~ns 

using Equations (6) and' (7)llave ' 

. " questionable valid'ity ·because of the 

linii ted data on which they. clt-P based. 

Semi-Emp{rical Methods' 

, Sc:,olz (R(>f •. 23) considered a 

simplified, flo"," model in\~hich the 

Figure 11 - Derivative of ,fluid turning,blade turningaction"wasconcentrated at 
angle with -:"I.'spect to .axial v£ilocitj " 
de-ositY'ra, io for. ,various ,air inlet"· .... ~ l>l~rieb located insid'e the,blad~: ,': " 
aogles (Ret. 21)'-

anglt' at plane b, 13 .,. was assumed to 
,cor" , 

.... 

bEe the angle which would be: m~a'sured ' 

at: the out It' t, with no flow ,cont.ractlon 

further chang~ in'f.lowangle."which. 
. .. 

oel-urs b.:-twet'n plane b and theell.it 

plane. 2, due t~ contraction of the" 

flow wascalculatt'd Ly applying tht' 

b(>twl>(On plan\.' b 'and plant· 2 (Flg.l2)~ 

INLET fLOW SURVEY', .,. , 
OUTLETFL()W SURVEY 

DISPLACEMENT 
.- : 

THICKNESS OF . 
aOUNDARY LAYER 

."~' . 
Th\., (cllowin~ n·lationship was .obtained, Figure 12 ~ Flm.;' in a pianC' , solid 

wall cascade after Refe-ren,cl> 23. 

. ,-""7.j 

t' ';" 

"' .. 



tan ., ) .,cor 

19 

(8) 

". c,,,rc Q. and (,_, ;:tre thl' mass rate> of flO\~ at planl's b ilnd .: pc'}' unit 01 Idc1th 
D 

CO:1sta:1t k(b) o k(b) < I (9) 

Enhn .:l.no Em<?ry (Ref. Io) pre'sC'ntc'd thre'(- mE'thods of co·rr~'cti.ng 

;:,z'mpu~"s til" LorrC'ctl'e: turning from an ('xit vc'locity diagram \,'hich ha,; axial 

,~-" locity <,qual to tlll' l'ntr"wcl' axial vt'locity and tang('ntial velocity <,'qual 

t::'0 ttc nwasun·d valu'.· (Fig. 13a). ThE' inlet velocity dial:;ram i,s assumed 

(::-'lch.:l.:l\~ed. In thl' s('cond mt·thod the inle;: diagram if; unchanged, but the outlet 

,~iai vl'locity is corrl'ct~d tn the mean of the inlet and outlet valu('s 

(?~~. i3hj. Outlet tall~t'ntia1 velocity i:3 ass;.:rr.ed constant. Th .. third me'thod 

~just:; both illh·t and outlet axial velocitiC's. The inlet a>;ial velocity is 

tZ;;l"lC ~() CH' lc'ss t"an tIlL' mo.'an axial ve'locity by one'-half the' axial velocity 

incn-asl' due to the' block-lg(' ('ifpct of the wake. The corrected outlet a),;18l 

",,r lodt,\' is gn'atcr thar. tlw mf,' I.n axial vl-lociLY by onl--half the wake i!1crempnt 

(~i~. IJc). All three mpthods 8~sume tdngcntial velocities, and hence 

c..:rCl,ialion, r£'main u.!1(.:han!~pd. All tht':;e corrections were' applied to solid 

w.3- 11 .:a;;c ad .. , da ta r- n'sen ted in Rt, ference 16. Tlw data \-I('re ob tailwd for 

:;"'4CA b'>-(U)lO (e'quivall-nt circular arc cambe'r = 30.L dL'~r(>t'$) profiles at 

LnJ~t air angl(' of 60 d~grces, solidity of A, and aspect ratio of 4. Data 

-~.,-re als,o obtained in a porous wall caacade for an aspe,ct ratio of 1 and 2. 

Encidc'nu: angle was varied by restagge'ring the cascade over the' interval 

$ 



(a) Outlet Clxial velocity COfftCted to 
inlet o)(ial veloc ity. 

(c) Outlet and inlet velocities cC1fJ'ectea 
to mean wlu. e 

Figure 13 - Axial velocity ratio 
correctiolls of Reference 16. 

Pot<.·ntial Flow Methods 

20 

fbj Outlet axial velocity co."r<aCted.fo 
mean axial velocity. 

from 39 to 50 degrees. The deviation 

angles measured in the solid wall 

cascade \~ere 2 to 4 degrees less than 

those from the porous wall cascade 'in 

which the flew was t\~o-dimens ional. 
e 

The second and third methods reduced 

the discrepancy by about one~half 

(under correct:.on). The first method 

tended overcorrect, but.the resulting 

corrected deviation angles were 

wi thin 1 degrep 0 f the two dimensional 

values. 

Thl' (·ff(·cts of changing axial velocity through a plane cascade have heen 

. calculated using the method of Singularities by Pollard and Horlock (Ref. 24), 

by Mani and Acosta (Ref. 25), and by Shaalan and Rorlock (Ref. 26,. 
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Kubota (Ref. 27) has made a similar calculation llsing conformal transformations. 

Pollard and Horlock (Ref. 24) extended the ml"trlod of singularities as 

presented in Reference 28 for computing cascade performance. The method of 

singui.arities as applied by Pollard and Horlock (Rei. 24) basically cons i5t5 

of Sllperinl!,osing a uniform flow and the flow from a 'distribution oi sou:'ces, 

sinks, and vortices on the chord lines of an infinite cascade. The "ourct> 

and vortex strength distributions are. selected so that each blade surface of 

the cascade coincides with a stre3lll1ine, the 'Ielo ity no'rmal to the mean camoel: 

Lines is zet'o. and the vorticity is zero at the t, ailing edges (Kntta-Joukowski 

condition). S inct' lh;> net out flow 0: the sources and s inks is required to be 

zex'c, no change in axi.al velocity through the cas ;:ade occurs. 

However, in the extended method of Pollard and Horlock (Ref. 24), Llfinitl'"ly 

lCilg s~rip s(.urces an'd sinks, extending in the tangential direction', were 'ldded 

to the flew field beLween the leading and trailing edge planes of the cascade 

(Fig. 14). The .combined flow was again required to have a streamline identical 

w~th each blade of the cascade and to 

satisfy the Kutta-Joukowski condition 

at the trailing edge. The number of 

AXIAL 0 IREel ION "--\. 

I 

strip singularities per unit length 

in the axial dirC'ction was constant 

as was the strength per unit length 

----~~--------~~-------~~--------'., in the tangential direction. This 

STRIP SINGULARITIES 

Figure 14 - Distribution of strip 
singularities. 

uniform distribution of source 

, strength produced a linear variation 

of axial velocity through the cascade. 

Hal f the flow from the s tdp sources 

flows upstream and half downstream 



22 

leaving the axial ve10city unchanged at the mid-chord position, but adding to 

the flow field at each point E, Figure 14, an axial compcnent of velocity 

proportional to the sourc~ flow between the point E and the Mid-chord po~ition. 

Since the source strength ,~as uniform in the axial dir,>ction a linear variation 

of velocity I.'lthin the cascade resulted. By computing thc' total ci~'culat:ion on 

a blade 'with and \~ithout the strip sources the change ill deviation angle for 

various Exial velocity ratios was computed. 

R.?sults \~ere given for a cascade of lOC430C50 pr::>file blade's "'ith a 

stagger angle o( 36 degrees. Solidity 'vas 1 and the incidence a:1g1e \.las 

1.8 degrees. The calculated results are sho\m in Figure 15. Tn€:- change in 

• r 
"'C 

.. 
~ 
Z 
< 

12 

z ff 
Q 
~ 
~ .~----~z-----~~~--~~--~ 00.8 O. 1.0 .1 .2 

. AXIAL VELOCITY RATIO, V -'V 1 z,"E . z, 

Figure 15 - Calculated var~ation of 
deviation angle with AVR for a cascade 
of lOC430C50 profiles at 36 degree 
stagger (Ref. 24). 

deviation angle for the axial veloc-

i ties shown can be approximated vii thin 

0.1 d~gree by the linear equation 

6 = 5AVR=l.O - 7.67 (A\'R - 1.0). (10) 

Note that Equation (iO) differs 

from Equation (6) which was ootaint"u 

experimentally by Pollard and G0stelow 

(Ref. 17) although the deviaLion 

angle calculated at AVR ~ 1 by 

Pollard and horlock is very close to 

the experimental values. Whether 

the difference between Equa~ions (6) 

and (lO) is due to an error in the analySis, in the experimertal data, or tn 

both is not apparent. 

In a later paper Shaalan and Horlock (Ref. 26) present a different 

approach which also employs the method of singularities. In this approach 
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the continuity equation was reduced by an approximation into a Poisson partial 

differential equation for the velocity potential 

,2 ,2 
2.....Q + £2. .. f(x, y) 
. 2 2, 

(11 ) 

ox cy 

This equation was solved by an iterative proc~ss. First, the incompressible, 
? ~ .. , ') 

two-dimensional solution was obtained (i.~. o-~/ox- + c-~/oy- = 0) and then 

f (x, y) Has evaluated from this 'lpproximation. Plane sources were then located 

in the blade passage with strength equal to fex, y~. Velocities induced at 

the blade surface by tneSt plant> sources were computed and canceled by a line 

of sources and siuks at the ;>rofilt'. From this cot:lbination of velocity 

'" potentials a nl'W evaiuation of f(x, y) is obtained and used .. 0 distribute 

more plane sourc('s, etc. until convergence is reached. The circuJ.ation and 

exit flow angle can be computed from the final singularity distributio~ and 

the basic ·uniiorm flow. The mean axial vC'locity varies linearly through the 

-:ascadc. It was also assumed in tlte solution that axial velocity vari<>d 

linearly from the suction surface of one blade to thE' pressure surfact' of the 

!1t'xt blade. 

'" Pressure di:.tributions and tllrni:tg angles \vere computed for the s;;une 

lOC430C50.cascade mentioned above. The deviation angle calculated for 

AVR = 1 was 8 degrees and for AVR = 1.10. b = 7.5 degr(·es. Thus both the 

magnitude and the change in de~iation angle calculated with this method seem 

to be less than those measut:ed by I-ollard and Gostelow (R",f. 17) [or the same 

cascade. A possible (~planation of this discrepancy may lie in ·thp. fact that 

the r.:>sults of Shaalan and Horlock (Ref. 26) were :>btaincd fnm only one 

iteration of the solution method. 

Kubota (Ref. 27) has presente~ a method of predicting the effect of axial 

velocity changes on cascade turning in which sources (or sinks) were unifo~ly 
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distributed in the blade passages to produce a linear variatio:l of axial 

vclo(~ty through the blade row. He considered three elementdry tlows: 

1) The cascade flo'~ with no chanbe in axial velocity; 2) Flo" frum the sourCl' 

(or sink) distribution '''hich provided thl' desired ax:'al velocity change, but 

c:id not satisfy the boundary condition of zero nonnal velocity at the blade' 

surface (applic·d at a corresponding point along the chord as 1 thin airfoil 

d.l-'ory); and 3) Flow from additional sourl:,'S, sinks, .lOd vortil:l'S distribut,'a 

on th(· chord line to satisfy tho b)\lndary condition and till' Kutta-Joukowski 

• condition at the trailing edge. 

To determine the third elementary flow, the blade ,,,as mapped onto a 

unit circle. A relation was thus obtai.1ed to 'compute the 'difference ip. 

circuiation between the first elemem:ar) flow and the superposition of the 

three elementary flows. This difference in circulation then represents the 

circulation change due to the change -in axial velocity. Kubota r ... esented 

curves which allow this change in circulation to be computed for "=:::cad",s of 

zero;.thickness flat platt·s and for NACA 6S-::.eries coltlpressor cascades. He 

then divided the corresponding change in circumferential velocity equally 

between the inlet and outlet flow to obtain the deviation angle for axiaL 

v~locity ratios other than one. 

Maci and A:osta (Ref. 25) considered flow through an infinite plane 

cascade in which the dLst~nce between stream surfaces is a sl~ly varyi~r 

fun~tion of ~~ial distance. They averaged the continuity eq~ation across 

th ... stream tube '0 obtain a Poisson equation for the average velocity potential 

" idh/dz) ~ 
h ax ~l2.) 

where h is the str~~tube height. The method of solution was modeled on that 

of Mellor (Ref. 29) and consisted of distributing sources and vortices or. the 
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blade chord lir'e which, 'vhen superimposed on a uniform flow, result in a flow 

approxiruatC'ly tangl:'ntial to the blade surface. The singularitie:;; used wert' 

n'quired to satisfy the Poisson Equation (12) rather than the I..aplac( equation. 

Stream surfacl' or channe 1 shapes wer.e res tricted to those with cons tant hl'ii!ht 

both upstrl'am and d('lwnstr(>am of a :;;egment with exponentially decro:asing hei ght. 

TIll:' cascade was located arbitrarily with respect to the converging section. 

IKviation angle resul ts wl'1'e presented for a circular .'1re cascade :laving 

C
ro 

= 1.00 (camuer == 25 d('gr,'('s), ::;tagger angle = 45 degt"C'i's. an axial velOCity 

ratio of 1.13 ani' 1.0, and soli.dities ranging from C.5 to 1.15. At an angle 

of attack of 15 d<"grees (incidence angle 2.5 degr<>E's) the computed de,-iation 

cU'lgle for AVR = 1.13 was· larger than th? deviation angh' at AVR' "" 1.13 for 

all soliditi('s and \.Jas, for example, about 1. 3 degrees larger at a soJ.idit·, of 

1.00. This result dot'S not seem to be consistant \oiL:!. measurements from 

similar cascades nuch as that of Reference 17. At zero an~l~ of attack 

(i:1cidence angle = - L:. 5 degrees), the deviation angles ~or AVR = 1. l3 

were smaller than those for AVR = 1.0 for all solidities except the solidity 

of 1.25, wl1E.~c; they wer~' approximately the sam('. The results at·(, not presen,:('d 

in a r('adily usable form, however a comput('r program is ii\"ailable (Re f. 30)_ 

Annular Cascade~ 

Axial velocity changes across annular c:iscades result from annulus 

boundary layer growth and corner stall effects as in plc"~le cascades. However 

additional and perhaps dominant causes for annular cascades are noncylindrical 

hub ar.d casing contours, radially varying energy transfer and pressure losses, 

and curvature which becaus" of radial equilibrium and continuity requirements 

usually rt·sult in a change of axial velocity from inl.et to c.utlet along a 

stre'lIll surface. 
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WhE:n t,w-dimensional cascade data ar(' applied in the' d('sign or anaLysis 

of annular cascade's it must b" ccrrect(,G to re'fl('C't th,' effect of th.:> .111l1ular 

cascade axial velocity ratio. If it is assumed thac the change in dcvLation 

angle from th.:> twc-dim(·nsional value dept·nds only on the valu;;' of the axial 

velocity ratio and not on the manner in Hhich it arises, then the' plane 

cascadl' co"-rL'ctions from the previous section may be' applied. 

For ex~plr-. Schulze, ~ al. (Ref. 31) used a two-dimensional method to 

corn.'ct data from a compressor rot'Jr for comparison \o1ith two-dimensj.onal 

cascade data. In th" rotor test axial velocity ratio was varied by attp.:nlng 

fairings to the x:otor hub thereby changing the annulus area. Mt'asured rotor 

tur~ing angles for three blade sections wer" given for exit to ~ntrance annulus 

ar;:>a ratios .. ;" LIS, 1.0,0.85 and 0.70. These rotor turnin~ angles wet'e 

corrected· b.:lck to "two-dimensional" values using two methods. In the first 

ffil>thod (see Fi;~. l3a), circulation was assumed conStant and the equivalen:: 

<:xit axiai velocity was taken to be equal to the i.nlet axial velocity. This 

method substantially overcorrected the rotor data as compared \dth tw:1-

dimensional cascade data. The second method (see .Fig. l3b), also assume:l 

constant circulation, but adjusted both the entrance and exit axial velocities 

to a mean value. This method was more satisfactory, but also tended to over

correct. 

The mean axial velocity method was also used to t:orrect two-dimensiotaal 

cascade data for comparison with the measured rotor data taken near design 

angle' of attack. The comparisons for ~/Al of 0.85 wert:' quite good, however 

they were less favorabh, for ~/~ of 1.15, 1.0, and 0.70. The limitations of. 

the method were acknowledged (Ref. 31) and recommended avplication was limited 

to axial ve locity changes of 15 pe&:'cent ?r less. Ess'E:-ntially the same method 

is given by Jansen and Moffatt (Ref. 32). 
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SECONDARY FLOW 

St:'conc1ary flow i.n turbomachines has bE'efl de fined in severa 1 "Jays. 

Hl'rzig, f.!. a!. (Rf'i. 33) dE'fine secondary flows as "any motion of boundary

layer fluLd having componen ts 0 f motion normal to thE' through- flow d i.rl·ct ions ... 

Louis (Ref. 34) and Rohlik, II a1. (Ref. 35) give similar definitions terming 

sE'conclary flow thl' deviation in boundary-layer flow from the free stream 01." 

main strew\", flow dirE'ction. Smith (Ref. 36) dl'fines secondary flow as th(· 

differ-enc ... between tllp actual flow amI the "primary flow,·' where tht> "primary 

flow" is that flow obtained from successiv~' appl ication of the axisymmetric 

and blade-lo-blade methods assuminr thE' flow to be frictionless. Smi.th's 

definition includes as seccndary flow a~:: nonbc;.;!"'n:n-y-laYE'r flow •• hich is 

normal to the axisymmetric stream s.lriaces of cevolution in addition to all 

boundary-layer flow. Because thE:- "primary flow" is w('11 defint'd it is pos

sible to express .the secondary flow quantitatively. Using Sn:ith's definition. 

I.akshminarayana and Horlock (Ref. 37) have listed the ·following secondary 

£lows: 

1. CaSCade secondary fl~ 

2.. Mains tream sE-condary flow 

3. Tip ~learance leakage flow 

4. Scraping vortices 

S. Radial flows of the blade surface boundary layers. 

A complete review of the large amount of literature treating various 

aspe~ts of s~condary flow was considered impractical, therefore only selected, 

rl·presentative work \vhich is applicable to the prediction 0 f deviation aflgles 

in turoomachinery will be revi£-wt'd in this section. No discussiC'r. will 

be given concerning items 4 and 5 of the above list because o( an apparent 

lack of quantitative methods of deviation angle prediction. 

.. 



28 

Cascad~ S~condary Flow 

Cascade secondary [low occurs wh~n a flow with annuLus t~all boundary 

laYf;·rs is turned in .3 b lade row. I t is simp 1)' the cross - flow component "f 

t\.(' sk('w~d annlllus boundary tayers which form in the blade passage together 

with the resulting circl!latory flow set up in the surrounding fluid. 

Within the blade passage a blade-to-blade static pres~ure gradient exists 

in the free str~am flow outside the boundat~ layer. This static pressure 

gradient, caused by the curvature of the stt"eamlines in the blade-to-blade 

plane, is principally determined at any point by the local radius 0 f curvature 

ot the screamline, ltc' and by the magnitude of v~locity. The relationship i.s 

approximately given by 

(13) 

If the boundary layer is thin, the freestream static pressure gradient may be 

assumed to be impre·ssed upon the boundary layer which because of its lower 

velocity must then have streamlines with a smaller radius of curvature (see 

Eq. (13). giving rise to a crossflow component as illustrated in Figure 16. 

{a) Annulus boundary layer velocity 
components. 

Figut'o? 16 - Cascade secor.dary flow. 

(b) Circulatory representation of cascade 
secondary flow. 
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The cross-tl01;l r,'~ults in an overturning of the boundary layer fluid ,decreast'd 

deviation anglp) as compared to the free stream fluid. Undcrturning is usualiy 

observed near the edge of the boundary layer (e.g. Ref. 34) sugg<>sting cllat a 

small cross-flOt~ C'ompon('nt exists in th~ opposite direction and extends a 

sho!·t distance into the fret- stream as indicated in Figu,::,e 16a. The resd.ting 

s .... condary flow pattern is sometimes represented as shown in Figure lbb. 

In a real blade r(;~J it is necessary to be able t(\ p::~di-;t the undel'- or 

over.-turning as compared to the turning which is predictt:'d from :-uo-dime::l.sional f1, 

cascade results. Because exact solutions to turbulent, three dimensional 

boundary laYl'r probl<:'ms are not attainahl" at lJresent, theoretical attempts 

to predict cascade secondary flow turning have be ... n based en approximations 

to the :-<;,<\1 flo\~. Usually thE' flo~' is assumed to bi.- inviscid ar.d incon.pressible, 

but not irrotational, t~at is vorticity ~omponents due to previous viscous 

action are allowed. Th~ entering flow in Figure 16 for example has a vorticity 

component normal to the streamwi.,e direction in the boundary layer. At the 

outlet, as a result of thE' turning imposed on the main stream, a vorticity 

component in the streamwise direction also appears in the regions where 

over- or under-turning occurred. If the streamwise vorticity component is 

known, then for inviscid, incompressible flow the corresponding secondary 

. (or cross-flow) velocitfes may ~ found from which the over- and under-turning 

may be determined. Hawthorne (Ref. 38) derived an expression for the change 

in the streaT'lise vorticity component for inviscid, incomp~essible flow jn 

a curved channel, Figure 17. His equation is 
. e

2 
(;/V)2 - (;/V)l = - 2 ~ . 'V: ; sin ""1 de 

1 

• 
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Figure 17.- Inviscid,rotational flow 
through a curved duct. 

where 

p stagnation pressure' 

streamwise yorticity 

s = angle of turning of the fluid 

. 1"1 = angle betw~en the ·normal· to 

the Bernoulli surface.s and 

the principal normal to the 

streamline 

V fluid velocity 

P fluid density. 

A Bernoulli surface. is cOID1?osed of 

intersecting vortex lines and stream-

linessnd is a surface of constant 

stagnation pressure in a steady,: 

inv"iscid flow. Starting with'. 

Equation (14) and assuming the inlet streamwisevorticity component to be 

zero and. that the stagnation p.ressure varies only in the spanwise direct.J..on,. 

Lakshrninarayana and Horlock (Ref. 39) have presented a solution for the 

c35cade secondary velocities at the outlet of a station&ry cascade which·is 

valid .for small turning angles. Their solution includes the effect of 

Bernoulli surface rotation· and viscous diffusion of the velocity profile . from 

the inlet station to the trailing ·edge of the cascade. Accounting for the 

latter effect tailors the solution for an idealized experiF~ntal situacion 

where an annulus boundary layer pro fi Ie is simulated·· at the midspan 0 f the 

cascade by a wake created artificially upstream of thn cascade (Fig. 19). 

Applicability of this part of the analysis to annulus wall boundary layer 

regions depends on the silllilarity of visco~\s diffusion at .the edges of wakes 

'. 
( 

. ~ 
~ ~:~ 
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y; :: __ 5 5 
(15) u w 

s 01' s :'X 

and 

s 
(16) 

( 17) 

FREE-STREAM VELOCITYI' V/V 
RathE-r lengtny .;>xpressions (n'ot 

'E--:gllre 16 - Central wake IJr.ofile. 
reprodllced her",) are giv!'o.in 

R",f€-r.:ncE- 39 for ano for tne. change in angle from the free·stn·am angle 
s 

""5 a iunction of 0; /;jy. Numerical m.:-thods using a digital Cor.:pt.:tEr would 
s 

usual.ly be n(·cessary to obtain a quantitative" \ution. Theoretically 

calculated turning angles are compared in Reference 39 with the experimental 

rf'sults of Lakshmine.rayana and Horlock (Ref. 40) ,Soderberg (Ref. 41) ana 

Loui~ (Re· L )4). Tht' thrc-e sets of experimental results \~ere obtaineci from 

cascades with c(>t1tral wakes, Figure 18, simulating an inlet boundary layer 

i?ro:ill:. DetaileG iniol.-mationon the three cascades is given below. 

w:utwlurayan.' • Sod.rb<! .. , '. 1.ou1o ' 
( ... f. 40) c •• ad. ( ... t. 41) ..... ,"". (juf. )4) c...e..s •. 

I'r<"U. 4 .. erlptwn lOC43OCSO IU.CA 6449 10C43OC5<:' 

c-b~r. (h'S. 30 28 30 

.lad. elwrd, 1n. 6 ~.5 

""lW!'ct ratio 4.'3 l.56 l.O 

,.,Udlty 1.00 1.01 1.00 

'1"" ••• tu ... mel., 4.,. 36 ~ 30 ;. 

I.t>clGut~ "".l.. 6.,. 15 4 

11"". chord "'yoo14. _r 2 • 105 
1.' • 10

5 2.5. 105 

~ _________ """ __ =~=_"",,,."',""._ ..... = ....... _ .... _=."'.=-c,....... ...... ..,.""o<lIl!!RIlS:.!I!I':!'!'!'I!'!'I: 
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The theoretical results compared very closely w'ith experimental values 

wi tn only a few except io'ns and even the.>e dis ::repancl.es were 1 degree or less. 

"~~e qu~stion remains however regarding accuracy of t5e procedur~ near a wall 

which is the real configuration of interest. For example, Louis (Ref. 34) 

alse. gives turning angle d3.ta for a cascade identi.cal to Lakshminarayana IS 

except that a thin wall was installed between- the blades at midspan dividing 

the inlet wake flow, a configuration IVhich more nearly approximates annulus 

lVall flow. Very much larger overturning was measured for this configuration 

which had a region of separated flow nea.r the corner: formed by the suctioc 

surface of, the blade and the wall, indicating that the an",lysis would not 

give correct predictions when corner stall is present. An evaluation of the 

fl,ethodusing data near a wall in, the 'absence of corner stall apparently has 

not been made. 

Mainstream Secondary Flow 

1\ key assumption necessary to obtain an axisymmetric solution is t:lat the 

sr,!'eam ,surtacL's are surfaces of revolution or axis},mmetric: strealt surfaces as 

shololnin Figure' 19; 

Any flow perpendicular to the axisymmetric stream, surface is de fined ab 

secondary flow. It is very unlikely tnat stream surfaces in "any real annular 

cas~ade are surfaces of revolution. Vavra (Ref. 42) has discussed at some 

length the re.quirements for the exitltence of axisymmetric stream su!'facesin 

both stationary and ,rotating cascades for steady" isentropic (irrotational 

• for stators) flow and has con(:luded it is unlikely that blades can be ,desi;'n~d 

to produce axisymmetric stream surfaces even for this idealized flow. Real 

stream surfact's are warped as illustrated in Figure 19 with the directi.:;n and 

magnitude of the warping dependent on the blade geometry. 
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Figure 19 - Axisymmetric and warped stream surfaces. 

Some insight i,to the reasons the stream surfaces are warped may be 

gained by considering a simple example: irrotational, l.nconiprt'ss ib le flow 

through a stationary, free-vortex blad~ row ~ith cylindrical annulus walls. 

One blade passage is rep~esented in Figtlre 19. The f,(o·,.:-rnl.ng equations for 

the flow in cylindrical coordinates are the irrotationaliry condition, 

and the cOlltinuit:.· equation, 

1 .J(rV) 1 aV. 0'1 
::. _~ + _ ..-:. + _z_ = o. 
r ... r r;J'j oz 

E.3ch t~L'TlI of Equation (18) is equal to zero .giving, 

" -to Z 

( 19~ 

( 20) 

(18) 
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(21 ) 

(22) 

up5tre<:m of the cascade all derivativ('s with n'sp('ct to ., art:.' zero because of 

the symmetry of th(' am·,. Thus by Equation '20) two flow configurations are 

pc"sibl(', E'ither rV is a constant or V, is zero. In a cylindrical annulus 

derivatives with respecl to 7. will also Il.:lnish in the flov u?stream of th(' 

cascade and thus by Equati.:m(21). 

;:V 
---!::- = 0 
· ... r 

( 2J) 

indicating the :::tream surfaces are cylindrical as would be exp!:cted. Because 

the cascade is composed of frl.'c-vortex blading the circumferential averag(' 

value of rV. is assumed to be constant downstream of the cascade although 

circumf::-rt:.'ntial gradient:s of velocity exist. In a real, viscous £10\" mixing 

would occur so that axisymmetric flow would be approached at some distance· 

downstream from the cascade. If the pfficiency of the mixing was constant and 

not a [unction of radius, t\1(>n after the mixing r";:, would be cons tant 

throu~hout the [low and cylindrical stream ~urfaces would exist. Perhaps 

lKcause of this it is oftl'n assumed that axisymmetric stream surfaces exist 

in the blade passages of free-vortex cascades. For t~is to be true, it would 

be n~ces&ary that 

(24) 

inside the blade passage. From Equation (21) this is true only if 

(25) 
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Vavra (Ref. 42) shm. that it is not possible to design a stationary 

cascade with an infinite number <,-.-f blades which will satisfy Equation (25) 

and concludes lilat it if" also unlikely that a cascade with a ii.nite number of 

blades could satisfy it. It is, however, difficult to speculate on the 

directions of secondary flow in a free-vortex cascade. For a free·-vortex 

cascade with irrotational flow it is assumed that 

constant 

and the circulatioq of a blade element 

constant (28 ) 

because the product rV~ is constant both upstream and downstream of t:he blades. 

Thus circulation is constant along the span of the free-vo~tex cascade. 

The circulation will increase along the span of a stationary cascade if 

for example, 

constant (29 ) 

and 

constant < O. ( 30) 

Su=h a cascade is represented in Figure 20. Along a line of constant radius EF 

the' change' in Vr is determined by Equation (22). If rVe is on the average a 

stron~ly increasing function of r then it seems reasonable that at most or all 

points of EF 

'-v 
~> o. 

0':) 
(31 ) 
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Fi~~rc 20 -Main stream.secondary· flow. 

Thus t:he radial velocity is, larger on the ptessure surface than on the sucti.on 

surface. Three possible re lationsi1ips between the radial VI.? locit)' on the 

pressure and suction surface are illustrated at the trailing edges ,of the 

blades in Figure .D. Regar4less of the absolute level of magnitude of Vr , 

the stream gutfaee will at least qualitatively resemble the surface shown in 

Figure 20, and velocities normal to the stream surf~ces of the axisymmetric 

solution will exist and are d~fined as main~stream secondary flow used by 

a spanwise gradient of circulation. This discontinuity in radial ,·p.locity 

is often reprC'sentl'd by a shee:: nf vortices extending downsLream ·front the 

trailing ("dgl's of the blades. This floto; field t~ndfi to cause flnderturnin<s 

t~~rd the tip of the blade and oVerturning toward the hu~. This trend can 
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also be inferred from Equation (22) as noted by Lieblein and Ackley (Ref. 43) 

since at tlll.' ca.s :ng <l:1d at the hub becaus<: of th~' boundary 

and hence 

v - 0 
r 

or 
o. 

Thus I V;_. 'I! and ;;2 must decrE'ase from the specific or design value at _ the tip ,-
and increase at the hub as indicated qualitcttively i£'. Figure 21. It is the iH:e-

r. r---. -.--------. 
I 

OVERTURN IN G 

N 

>~I -I 
HU~B~--~------------' 

RADIUS 

Figure 21 - Effect of mainstream, -

diction of the over-turning and under-

turning or. the change in dt'viat ion 

angle which is of interest in this 

sectIon. 

Lieblein a~d Ackley (Ref. 43) 

have presented a method to compute 

the change in deviation angle due to 

the combined effects of cascade 

secondary flow and mainstream ~"!condary 

• ~ondary flow in a cascade with span- flow for inlet guide vanes. They cle
wise ircreasing circulation.-

riv('o an approximate theoretical 

('xpression for th~· sL'condary velocities in the trailing l·dge plane containing 

a. u:n!l cant Hhich \4::15 E>valuat<·d l'xpl'rimenta1ly. The main flot> was assumed to be 

irrolat:'onal and the blades were replaced by lifting lines or vortex bundles of 

str"n~th ('q\l~l to the blade circulation at each radius. For blades with radially 

Vi: rying ci rculation, vortex lines from the lifting line H"re assumed to trail 

co\·mstream o[ tilt, trailing edge forming a vortex sheet (Fig. 22). Howev.:r, for 

SOIllC" unl'xplaim·d reason ~zs r.ecessary to superimpose the induced velocities 

from a vortey_ system of magnitude equal to the trailing v0rtey. sheet, but 
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Figur<: "" - Trailing vortex sheet. 

to satis fy the boundary cond ition at the 

annulus walls. An additional vortex was 

• locatEd il. the boundary layer region 

near each annulus wall to approximate 

the e f fe::ts 0 f cascade secondary flow 

(Fig. 23). The se::ondary flow ve locity 

having opposite sign and trom associateJ 

vortex images located outs id(· t iH' a:1nu It.,, 

on the blade elC'ment axisymmetric matn 

flow to obta.in an a ... pro··imation to 

the actual r~dial variations of 

deviation angle. 'fhe vortex images 

shown in .Figure 23 were required 

Figure 23 - Trailing vortex sheet and 
associated image vortices. 

'J iraduced normal to the streamline by all vortices from all blades 1n tl)e 
n 

cascade was calculated only on a radial line at the blade trailing edge rather 

than being averaged across the blade spacing at each radii. An experimental 

. co:. rection factor was applied to the resulting secondary flo~' induced turning 

angle (Fig. 24) 

Figure 24 - rl",duce<1 turning angle 
correction. 

Turning angles predicted USing 

this theory were compared with 

exp .. rimental results for five compressor 
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guide vanes and one turbine nozzl.,. A satisfactory comparison resulted when 

a correction factor, C, of O.4:~ was used. 

Smith (Ref. 36) has presented a mOJ:e ger.eral analysis considering 

frictionll;'ss. compressib le £10\4 wi th dis tributed vorticity (but no e.lt!'opy 

gradients) for both rotating and stationary cascades. His analysis a11m.;s 

secondary velocities to be calculated tor both cascadt> and mainstream secondar~' 

flows using the conventional axisymmetric solution a,; the basic Low. In an 

axisYlTt'Iletric solution the 'flow through the cascade is assumed to T.'('mai:\ cn 

surfclces of revoluti.on. but as mentioned previously in real flo\~, dul.' to 

what are defined as secondary Velocities, the stream surfact>s may be w<1rped 

leading to a discontinuity of velocity at the blade trailing 'edge which 

creates a "ortel{ shept extending downs::ream from the blade. A major assumption 

of Smith's (Ref. 36) analysis is that the distortion of these stream surfaces 

is not large. A relation for the secondary streamwise vorticity, in the flow 

at the trailing edge plane was derived with the aid of the vortex laws of 

fluid mechanics for a channel consisting of the axisymmetric stagnation 

streamlines and the two blade surfaces. The expressi0n obtained is 

:: a 
"'s 

(35) 

where'. a is the d.istancebetwp.en the exi': streamlines (Fig. ~S)', VI is the inlet 

relative velocity, :1.1 is the component of' inlet vorticity normal to .V
l

, IVA' 
I . 

is the blade circulation in the actual flow (primary and secondary), Va;, is the 

vector mean of ~he inlet and exit relative velocities, rv is the blade 

circulation ir, the primary flow, and hl and 112 are inlet and exi t streamtube 

heights. Blade circulation is always considered positive and the secondary' 

vorticity is considered positive when it induces secondary velocities on the 

su~tion surface which are in the pOSitive h-direction. From Equatjon (35); 
s 
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STAGNATION STREAMLINE 
SURFACE . 

Figure 25 - Exit plane in which secondary flow is assumed to occur. 

can be determined for all points in the exit flow. 

It is assuln(:d that the secondary velocities corresponding to '"5 can be 

expressed as 

oV oV 
~ = _...:L _ -2S. 

s . ox " y 

(36) 

where the x-y plane is normal to the stagnation streamline surfaces. That is, 

it was assuml'd that the s.:condar.y flow takes place in a plane bounded by the 

annulus walls and the exit axisymmetric stagnation streamline surfaces 

(Fig. 25). A secondarY flow stream function was lefined such that 

;?- :\ cf 1'1 

's 's --+-= 
,2 ~ 2 ox uy 

( 31) 
;:> • s 
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This equation was so 1 ve'd subject to tIll:' boundary cond i tions 0 f '. '" cons tant on 
.~ 

the boundary of a rE'ctaltgle which .::.pproximat(·d the surfac<> EFGH silo"':,, in 

Figure 25. The dE'tail.s of the solution of this equation are not given in 

Refere:1c(' 36 but they are given ir. Ref('n?nc~' 4':' together wi.th the resulting 

equations necessary to find the average secondary tangential velocity. The 

equations ar(' presented in graphh:al form 'in R('iert'nc~' 36 and 44 for <"speet 

ratios ')f Ih .::md (l.v/-:-, however for other aspect ratios th" equations must 

be evaluated to obtain a value of the average secondary tangential velocity. 

The secondary velocity would th<!.'n be superimposed on the axisymmetric sclution 

to obtain thl' change in deviation angle (Fig. 25). 

Tip Clea~ancc Leakage Flow 

Leakage flow through the clearance gap bet"'een the (·nd 0 i a blade and an 

annulus wall (Fig. 26) tends to decrease the difference in pressure between 

Figure 26 - Leakagl' flow. 



42 

the suctior: ",d pressure surfaces of the blade sections--:1ear the gap. The 

"0 

flo ... around the sections near the tip is turned through a" smaller angle on 

::Iw aver...;.ge (Le. the deviation angle is larger) than it would be i.f no 

leakage" flo\.: (;l'"Ltoted. The actual flow field near the clearance gap is 

complicated by the interaction .)f the leakage flow and the three-dimensional 

anGulus -wall boundary layt:'l" flow which was described in the section on cascade> 

secondary flow. 

Lakshiminarayana and Horlock (Ref. ~O) have developed an approximate 

theoretical method to obtain tlw change in deviation angl(· caust'd by "the 

leakage flow in a stationary c33cade. They assumed the flow to be stt:'ady," 

inviscid, and incompressible. The flow" model assumed that the leakage ilo\~ 

caused the actua 1 blade" element cii."culation ':0" dt>crease only partially from 

the two-dimensional circulation. The ~ecrease in circulation was assumed to 

be (1 - K)f 2D (Hhere K is the fraction of lift retained at the tip) and was 

treated as trailing vorticity distributed between the blaues from the \~al1 to 

the edg€' of the boundary layer as indicated in Figure 27. 

The strength of "the vorticity was assumed to be constant frOm blade-to-

blade, but to vary sinusoidally i.l the spanwise d hoection' increasing from 

zero at tl:·' wall to a maximu!!' at °
1
/2 from the wall" and then decreasing to 

zero at the edge of the boundary layer • 

. ~ _ (s) sin 1TX 
~c c max 6

1 
( 38) 

A stream function \~as dt'fined for the leakage secondary flow which satisfied 

? = v-; o < x < °1 
(39) 

c l: 

'ill, 0 x> <" (40) ~ "1 c 
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STAGNATION STREAMLINE SURFACE 

and .'c = 0 on the b'oundary EFGHE .in Fig:~re 2i. The change in the average 

cutlet ang1", (also the c:lange in deviation ".1gle) ·wa~ sh0~m to l)e 

.. -here 

·sinh 
jTTo

l ) 

(41) . 

)J 
(s - 4 (;c)max Iii cos °2 t on • O-r1 't. • cosh~~ 

c,j ·2 
.f,. 

sinh (-.l::..:.£_) 
S cos ;::2 -1 

jTT [ 1 + (j 
·s cos .:li s cos S2 

1'K'oretical predictions. of the change in the average outlet angle using an 

t"xperimental valuE' of K were compared w.ith experipental d,ata from a rectilinear 

cascade of lOC430C50 profile blades having a 36 degree blade setting angle. 

Th~ tip clearance gap wa~ sinrulated by a· gap at midspan and .a wake was 

generated upstream to simulate. the annulus wall boundary layer. 7he·cascade 

(~2) . 
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secondary flow angle changes were computed using the theory of Louis (Ref. 45) 

and were ~uperimpo5ed directly on the changes-due to leakage flow. Quantitati' l 

agrL'ernent bet ... 'een theory and experimer.tal data was closest near the bl?Je tip 

~ith the discrepancy increasing to about 2 degrees near the ed~e of l~e wake. 

SWEEP AND DIHEDRAL 

T!1e term sweep i.. applied to turbomachinery blades \~hen the flow direction 

is nct perpendir;ular to the spanwise d{rection and the 51"E'ep ar,io Ie, A, lS Jefine" 

in Figure 28. A turbomachine blade has a nonzero dihE'dral angle, 'v, when~ver 

\ AXISYMMETRIC· 
. STREAM SURFACE 

Figure 28 - Blad~ with sweep and dihedral. 

the inte~ection of an axisymmetric stream surface ~~J the blade surface is 

• 
not perpendicular (see Fig. 28). Smith and Yeb (Ref. 46) have given a 

numerlc~l example which shows that applying t~o-dimensional c,scade deviation 

angles 10 the geom(>try of vie~; A-A,- Figure 29 gives too large a deviation 
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S

SWEPT B 

-.	 STREAM SURFACE, 

S

/ / 

n

 
^SECTION A-A 

SECTION B-B 

Figure 29 - Two views of blade scctions of a swept blade. 

angle for a cascade with an infinite span in inviscid, steady flow. They 

show that the correct deviation angle is obtained by viewing the flow along 

S 
S



a lin~ parallel to the blade axis, applying two-dimensional cascade data to 

th~ Lorresponding cascade (view B-B, Fig. 29), and projecting the flow angl~s 

in · .. :ie\~ B-B back into the· cascade of ·view A-A, Figure 19. The saIne ITiL'thod is 

d('ve~oped relationships which can be used to acc~unt ic: the effect 0i swc~p 

and dihedral angle on deviation angle in the design problem. TIll' basic 

L~[[('cts arl' incorporated by projecting the flow angies tram the ;iXll>ymllh tric 

d,-'si~n solution onto surfaces which are normal to the blade axis. The ilow 

Jngl.: in the normal stream surface is given by 

tan -, - cos t:!: tan T , ~cos ~ tan u. + si;~ tan " = t 
j 

L .' . 
(cos .... - sin .... tan ::t) ~l + CDS "- tan T 

.1 = arctan (Vr/V
z
)' 6 = arctan (Va/V~), and where .... , 'T, 

and ~ arc.- defined in Figures 29 and 30. Equations are also 

, I 
I 

BLADE AXES 

/\ D 

ME/tIOln~ZAL SECTION 

Fi!;urt- 30 - Annular cascade of blades with sWt'(.'P ·aml dihC'ural. 

(.:. 3) 
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given for the dete.~i"ation of the s .... 'eep and dihedral engles. Blade sections 

corresponding to viel" B-B of Figure 29 c,~n then be ot-tain=d using two

dimc>nsional cascade data and the flO\~ angj,es C from Equation (43). T!w 'lng1,-, -

obtained fr0ID Equation (43) is appropriate on 1 y for D. blade \-lith an infinite 

s.pa~. thus a correction for the effect 01 the a,mulus fond walls is l."f'quired. 

Smith and Yeh (Re':. 46) developed an approximate correction in the f.')rm of 

a downwash Ot' induced tangential ve iocity \·Hlich attains e. maxilhum value ai: 

• the ,annulus walls and decays to zero at some distance f:'om the ;~all. For 

the special case of ~lliptical loading (circular-arc camber line) alcng the 

chord a polyr.omial equation was presented rot' the downwash velocity at the Ivall 

and additional equations permit computation 0 f the spam.lise locations wher. 

the clownwash velocity has decayed to 0.5 and 0.1 of the maximum magnitude. 

Smith and Yeh (Lef. 46) recommend obtaining an axisymmetric solution at 

several stations wit~in the blade row as well as upstream and downstream. 

Equation (43) can then be used to obtaip the flow angle C at several points 

along t .. e chord. It is not clear. however. '., '.AN cascade data can be applied 

within the blade row to obtain blade angle as a function of chord unless some 

chot'dwise distribution of deviatic'l Rngle i~ assumed. If the chordwise 

distribution of deviation angle is kr.own then it can be readily corrected 

for endwall effects uSing Smith and Yeh's (Ref. 46) results and the desitn 

blade angles projected into the surface normal to the blade axis can be computed 

froT., , and 6. Blade profiles on cylindrical Jurfaces or other surfaces 

must be obtained by application of descriptive geometry. 

No similar treatment of the effects of sweep and dihedral has b~en 

formulated for the off-design or a.·~l.ysis problem although the desi~n method 

or Smit~ and Yeh (Ref. 46) could be adapted to the analysis problem. 

Expertmental investigations of the efrect of sweep anble have been 



co:rdllctec! by Beatty, tl &. (Ref. 47), Murai, £.£. a1. (Rf:'f. 48), and Stark (R,:-, -)) 

using plane cascades and by .Jdwin (Ref. 50) using a rotor. HCY.~t.'\'er no 

elll?iric:ll metho~s for predicting the effect of s\~€:ep on deviation angle have 

be~n proposed on the basis 0f these limited results. 

SUMMARY 

Methods of predict~ng dev~ation angles 00 a blade element basis in 

axial-flow pumps and compressors were reviewed. The effEct of t\,'o-Jim.:onsior.:ll 

g~etric parameters on deViation angle may be accountf:'d for with the methods 

of Carter and Hughes (Ref. 3) and Lieblein (Ref. 2). Smith (Rd. 11) a:,o 

Lieblein (Ref. 9). have presented corrections to obtain deviation ang1.es 

O\'er a range of incidence angles. Corrections for axial ,elocity ratio in 

rectilinear cascades ma~' be based on the velocity diagram methods of Erwin 

and Emery (R:f. 16) o~ the potential flow analyses of Shaalan and Hor~ock 

(Bef. 26) and Kubota (Ref. 27). 

Smith {Ref. 36) presents the most general approach to correct deviation 

angle for the effects of cascade and mainstream seconda!"'" flow. Lakshiminarayana 

an-i Hor!ock (Ref. 40) have developed a correction for th > change in deviation 

angle due to tip clearance leakage flow in a plane cascade. A method of 

correcting deviation Gngle for thp. effects of blade s~~~p and dihedral in 

the design pr~blem is given by Smith and Yeh (Ref. 46). 



RECOMMENDI>TIONS FOR FUTURE RESEARCH 

An C'xtension of the two-dimensional cascad~' tests reported in RefE'renc,: -

to higher ca,nbl'rs \·!ould providC' a significant contribution to <1xia1-r10\,' 

pump technology. As indicated in thoi' Two-Dimensional Gcoml'tri.c ParamE"tE'rs 

Section, at high values of camber l~he"Ce the D-tactor is ~reatC'r than 0.62, 

.levi ation angle appears to becoIll'" a nonlinear function of cambC'r. This 

nonlinear tendenc'! :.hould be clarifL'd experimentally. 

The effect of noncc~stant axial velocity through a cascade is of 

..:onsiderable ir.terest sinct' in genera] the axial velocity ratio in a real 

Clachiae is not equal to on('. A systematic study i~·. " plane cascade in which 

axial velocity ratio could be varied over a wide range could produce fundamental 

results in this area. A thorough comparison of the experimental results with 

potential flow solutions l~ould contribute toward thl' establishment of ·the 

applicability and accuracy of the potential flow solutions. The Vcll.:. .. ::ity 

of applying two-dimensional axial velocity ratio corrections to annular 

• 
cascades also dt"serves study to determine hO\~ important the chordwise distri-

bution of local axial velocity ratio is in determining the deviation angle 

for a given value of the overall a~\al velocity ratio. 
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SYHijOL5 

A 
. 2 

annulus area, ft 

a distance betw(en exit stagnation streamlines, in. (Fig. 25) 

A\'i. axial velocity ratio, \' Iv 
z,2 z,l' 

b plane located between leading and trailing edge of cascade (Fig. 1.2)' 

c 

c 

c 
p 

empirical correction factor 

chord, in. (Fig. 3) 

isolated airfoil lift coefficient at t.iesign ang .. "o·f attack 

coefficient of pressure; 
t 

D 
V2 . r 2V" 2' r 1Ve•l 

diffusion factor, D = 1- -:t ±.." t (+ rotor, - stator) 

d 

f 

.g 

h 

i 

j 

K 

VI (rl + r 2)cr VI' 

tangential velocity increase, ft/sec (Fig. 10) .. 

l~ function, -;- (Ox) (Eq. 11) 

2 
force-mass conversion factor,. 32.174 Ibm: ft/lb

f 
sec 

streamtube height, in. 

incidence angle, deg.· (Fig. 3) 

index of summat~on 

fr~tion of lift retained at tip' 

k c(\ost:ant (Eq •. 9) 

(~) s h b lallle shape correction fac tor 

(~)t blade thickness correction. factor 

t blade span, in. 

If Mach number 

18 slope factor (Eq'. 3) 

III :slope factor in Carter's rule. 
e 

n number of blades' 

.' 

.s. :ixsa I J III ~;!III •. f1 1_10 
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P total pressure, pSia 

p static pressure, pSia 

Q mass rate of flow, ft~/sec 

r radius, ft. 

R streamline radius of curvature, ft. 
c 

Re blade chord Reynolds number 

8 blade spacing, in. (Fig. 3) 

t blade thickness. in. 

u induced velocity normal to streamline, ftlsec 

V fluid ve loci ty, it.! sec 

w 

z 

a. 

y 

induced velocity in the spanwise direction, ft/sec 

coordinate direction 

coordinate direction 

slope of streamline in meridional plane, arctan (V IV), deg. r z 

flow angle, angle between flow and axial direction, deg. 

blade circulation (Eq. 6) 

blade stagger angle, angle between chord line and axial direction, 
deg (Fig. 3) 

deviation angle, deg. (Fig. 3) 

reference deviation angle for zero camber, deg. 

(00)10 reference zero camber deviation angle for NASA 65-series blade section 
with t Ic - 0.10, deg. max 

01 boundary layer thi~kness, in. 

° AVR_l.Odeviatioli angle for plane, two-dimens ional cascade flow (AVR • 1), deg. 
I I 

flow turning an~le ~l - ~2' deg. 

C flow angle proj~cted onto the stream surface normal to the blade 
leading edge, d~g. 

~ angle between the normal to the Bernoulli surface and principal normal 
to streamline, deg. (Fig. 17) 
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coord in lit I.' in targl.'llt ial direc t :Lon 

blade angle, angle bet'ween tangent to bll1de mE"lln camner line and axial 
direction, deg. (Fig. 3) 

sweep angle, deg. (Fig. 28) 

projection of A into meridional plane, dl'g. (Fig. 30) 

dihedral anglt·, deg. (Fig. 28) 

-1 
streamwise component of vorticity, sec 

component of vorticity nonnal to st~eamline, sec 

fluid density, lb Ift 3 
m 

anl',~l' bl.'twl'en bladt> axis and radial dirl'cti.on project'" 1 nto r - a 
plane, dl.'g. (Fig. 30) 

angle of attack 

blade soLidity, cis 

Vl'locity potential 

blade camber angle, Kl - K2 , deg. (Fig. 3) 

stream function 

axial velocity dl'nsity ratio 

P2 a id ~ P2 
total pressure loss coefficient, 

Subscripts 

plane b (FiM. 12) 

leakage secondary flow 

correctt'd 

blade l!lellK'nt 

induced by sl'cC)ndary flow 

summation indl!x 

maximum 

minimum 

component ~f secondary flow normal to streamline and tangent to the 
axis~tric stream surface, (Fig. 25) 
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nom at [lominal incidence angle 

r radial direction 

ref reference (Fig. 6) 

s secondary flow 

v priClary flow 

VA actual flow 

x x·coordinate direction 

y y-coordinat~ direction 

z axial d!.rection 

• e tangential direction 

1 cascade inlet 

2 cascade outlet 

2D two-dimensional 

... vector mean of inlet and outlet value 

Superscripts 

relative to moving blade 

circumferential average 

vector quantity 

• avera&e over streamtube 
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APPENDIX - CASCADE CONFIGURATtON VARIABLES AND FLOW PARAMETERS 

* Starred items in th~8~ tables are significant only when ~ascade flow is 

not two-dimens ional (uniform entrance conditions. exit/entrance density-axial 

velocity ratio· 1.0). 

1 fl;;:':: 1 -. CAS CADE CONFIGURATION VARIABlES 

BLADE: SECTION GEnMETRY 

C,1mber Line Form 
rnlordwise location of maximum camber 
Value of maximum camber (or cambe>r angl~) 

Basic Proltle Form 
Chordwise distribution of profile thickness 

maximum thickness 
==~--~~~~~ ratio value chord length 

Leading-edge radiub 
Trailing-edge radius or thickness 

Manufacturing Tolerances 
Profil~ errors 

individual coor.dinate 
surface contour waviness 

Surface finish 

BLADE CHORD ANGLE. STAGGER ANGLE 

SOLIDITY 

MISCELLANEOUS CASCADE GEOMETRY 

IIlade Leading-Edge *Sweep 
Blade Aspect Ratio '* 
Spanwise Blade 8tctiotfl Variation f Annular cascade 

Blade twist , 
Di~'edral '* 
Tip Clearance 

Row Spacing in Direction Perpendicular 
tr Leading-Edge Plane 
R~lative Orientation of Rows in Direction 
Tangential to Leading-Edge Plane I Tandem cascades 



FLOW CONTROL SYSTEMS 

Variable*Geometry Blading 
Flaps 
Slots 

Boundary-Layer Control 
Suction 
Blowing 
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TABLE 2 - CASCADE FLOW PAllAl'lETERS - INDEPENDENT VARIABLES 

THERMODYNAMIC PROPERTY CHARACTERISTICS OF WORKING FLUID 

Entrance Total Pressure and Temperature 
Fluid Specific Heat Ratio 

ENTRANCE FLOW CHARACTERISTICS 

Entrance Mach Number 
Cascade Reynolds Number * 
Spanwise Distribution of Entrance Velocity (Shear Flow) 
Time Variation in Entrance Velocity and Flow Angle 

Magnitude of variation 
Frequency of ~ariatlon 
Form of variation (time profile) 

ENTRANCE TURBULENCE CHARACTERISTICS 

Intensity 
SCule 
Isotropy 

INCIDENCE ANGLE 

* CASCADE DER; ITY X AXIAL VELOCITY RATIO 




