September 1969
iunas

Vasyl

TO THE IONOSPHERE
is M.

CONVECTION AND ITS COUPLING
Vyten

@]
=~
a4
A
fas)
fal
[43]
o
EH
jsal
Z
E
9
O
9]
—
E3]
Q
(@]
=
[
<5
@]
H
m
el
fan
m
p=3




CSR-P-69-24 September 1969

MATHEMATICAL MODELS OF MAGNETOSPHERIC
CONVECTION AND ITS COUPLING
TO THE IONOSPHERE

Vytenis M. Vasyliunas

Department of Physics and Center for Space Research
Massachusetts Institute of Technology

Cambridge, Massachusetts

Paper presented at the Summer Advanced Study Institute - Earth's
Particles and Fields 1969, Santa Barbara, California, August 1969.
To be published in Particles and Fields in the Magnetosphere,
edited by B.M. McCormac (D. Reidel Publishing Company, Dordrecht -
Holland), 1970.




INTRODUCTION

The phase "magnetospheric model" can have several different
meanings. Here I am using the term "model" in the sense described
by PARKER (1968): "We construct idealized and simplified theoret-
ical models for the purpose of demonstrating how the basic laws of
physics lead to a certain observed effect." A model in this sense
is a solution of the equations that describe the system under con-
sideration. Obtaining an exact solution of the equations governing
a system as complex as the magnetosphere is clearly impossible, and
to construct a theoretical model the equations must be (often dras-
tically) simplified to the point of tractability. The aim is to
isolate those aspects of the physical situation that are essential
to the particular phenomenon one is attempting to understand. One
thus proceeds by solving the basic equations under a variety of
simplifying assumptions and noting what assumptions are required to
reproduce the essential features of the phenomenon under study. Of
course, no model will predict in precise guantitative detail all the
features of the observations, but then our primary goal is under-
standing, not forecasting.

In this paper I discuss theoretical models (in the sense des-
cribed above) of some aspects of magnetospheric convection and its
effects on charged particle populations. Starting with the classic
work of AXFORD and HINES (1961), the concepts and consequences of

magnetospheric convection have been widely discussed in qualitative



form (see, e.g., reviews by AXFORD, 1969 and KENNEL, 1969); the
task now is to express some of these ideas in quantitative form

as appropriate solutions of the basic equations. First I will
formulate the mathematical problem of calculating a model of steady
state convection and the associated particle distribution. Then

I will discuss solutions of several parts of the problem (a solu-
tion of the complete problem has not yet been obtained) and their

relation to observed phenomena.

MAGNETOSPHERIC CONVECTION AS A MATHEMATICAL PROBLEM

in principle, magnetospheric convection could be treated with
magnetohydrodynamic equations, relating the flow velocity to the
stresses present in the plasma; this approcach has been highly suc-
essful in treating the solar wind. The flow speeds associated with
convection, however, are expected to be very small compared to pro-
pagation speeds of waves in the magnetospheric medium, and the char-
acteristic flow times should thus be very long compared to the travel
time of a signal between the ionosphere and the equatorial plane
(except possibly in the region of "open" field lines deep within
the magnetotail). Thus we expect the plasma at any point of a mag-
netic flux tube within the magnetosphere to remain continually
"adjusted" to the boundary conditions at the feet of that flux tube on
the ionosphere. With the expected close coupling between the magneto-

sphere and the ionosphere, two media with very different dynamical



properties, it proves convenient to formulate the convection problem
not in terms of the dynamical concepts of flow and stress but in terms
of electric fiéld and current (fundamentally, of course, these

two modes of treating the problem are equivalent, since in a plasma
there is a close connection between the flow and the electric field
and between the stress and the electric current).

The electric field and the charged particle distribution in
the magnetosphere can both be simultaneously calculated from a
closed self-consistent chain of equations, first introduced by FEJER
(1964) and later used by SWIFT (1967, 1968). The complete calcula-
tion is outlined in Figure 1. Since it is a closed loop, we can
break into it at any point; it is convenient to start with the elec-
tric field. Let us provisionally suppose, then, that we know the
electric field configuration in the magnetosphere:

(a) First link: with knowledge of the electric field, we cal-
culate the motion and distribution of protons and electrons in the
magnetosphere, and hence in partiéular the ;otal plasma pressure at
any point;

(b) Second link: from the plasma pressure gradients we calcu-
late the components of the electric current perpendicular to the
magnetic field.

{c) Third link: by calculating the divergence of the perpen-
dicular current and averaging over each flux tube, we obtain the
field-aligned currents flowing between the magnetosphere and the

ionosphere.



(d) Fourth link: from the requirement that these field
aligned currents be closed by perpendicular ohmic currents in the
ionosphere, we obtain the configuration of the electric field in the
ionosphere.

(e) Fifth and final link: the ionospheric electric field can
be mapped into the magnetosphere, and the requirement that it agree
with the magnetospheric electric field assumed at the outset deter-
mines the field and thus closed the system of equations.

Let us now examine in more detail the individual 1links of the
chain.

(a) Calculation of the charged particle distribution in a given
configuration of electric (and magnetic) fields is an extensively
studied and familiar process. The simplest method, if only adiabat-
ic processes are considered, is to calculate single-particle trajéc-
tories (see, e.qg., ALFVéN, 1939; TAYLOR and HONES, 1965; KAVANAGH
et al., 1968) and apply Liouville's theorem; or one may, by suitable
transformations of the Boltzmann equation, develop a transport equation
(e.g. SISCOE, 1964; VASYLIUNAS, 1969), with the capability of including
non-adiabatic scattering, acceleration, ana loss processes. As a
boundary condition, it is necessary to specify the particle population
at the boundary of the region under study, at those points of the
boundary where particles can move into the region. Usually the
region studied is the magnetosphere out to some 10-15 R, on the night

side and the electric field is such that particles move from the



magnetotail toward the earth; then it is necessary to specify the
particle population at the near-earth end of the magnetotail, and
the observed plasma sheet population is a reasonable choice.

(b) The calculation of the perpendicular current from the total
pressure can be looked at in two equivalent ways. We may write down
the momentum conservation equation for the plasma, which in the
approximation of flow speed very small compared to particle thermal
speed (valid throughout the magnetosphere beyond the plasmapause,

except possible within the neutral sheet) reduces to
1R w

where R is the total (proton plus electron) pressure tensor and the
v}

rest of the symbols have their usual meaning (Gaussian units). Solv-
ing for the perpendicular component of the current density yields,
if the pressure is isotropic,

cB x VP

v}

B2

and if the pressure is anisotropic but field-aligned

cB x [VP, + (P, - P,) VB/B]
J, = — (3)
i 2

B + 4 (P.L - Pn)

Equivalently, we may sum the currents due to all the single particle



gradient, curvature, and magnetization drift§, obtaining the same
result (see, e.g., PARKER, 1957). Note that {L depends only on the
total pressure and the magnetic field and has no explicit dependence
on the electric field or the detailed energy spectra of the particles;
given only the configuration of the magnetic field and the total
pressure, however obtained, the perpendicular current is uniquely
determined. (It is assumed here that the general configuration of the
magnetic field is known from observation or field models, and that the
detailed magnetic effects of J can be neglected.)

(c) The current density given by equation (2) or (3) in general
has a non-zero divergence. The total current density, however, must
have zero divergence, even if the convection is assumed to be highly
non-steady; it is readily shown that under magnetospheric conditions
the charge accumulation implied by the divergence of %L alone would
lead to electric field changes on a time scale of milliseconds (a not
surprising result if one recalls that allowing V - % # 0 is the same
as keeping the displacement current term in Maxwell's equations).
Hence in all magnetospheric processes other than high-frequency plasma
waves V - J = 0 and the divergence of J, must be cancelled by the di-
vergence of a magnetic field aligned current density J,. From the di-
vergence of equation (2) or (3) we thus obtain the derivative of J,

“along the magnetic field direction:

3 J") _ 20({% x VB) - VP "
3T s ) = -

for the isotropic pressure, or



d

I, ~ c(% x VB) = V(P, + Py)
5pE &) =

(5)
gB*
where & = 1 + 4n(P, - P,)/B? for the general case. As expected
from a simple picture of particle drifts, field-aligned currents are
present whenever the pressure gradient has a component along the di-
rection of the VB drift. If, for example, we have a region of en-
hanced pressure within a narrow longitude sector, a field-aligned
current flows into the ionosphere at its western edge and out of the
ionosphere at its eastern edge. The total current density flowing
in or out of the ionosphere at any point must be found by integrating
equation (4) or (5) along the field line; with thé'isotropic pressure,
which must be constant along the field line, equation (4) can be
integrated explicitly (VASYLIUNAS, 1969), yielding

Jn = -];—g-— c(VP x g‘?) . vj’%l (6)

e e

where Ee is the magnetic field at the equator, B the field magnitude
at the ionosphere ("mirror field"), the gradients are with respect
to the equatorial coordinates of the field line, the integration is
along the entire length of the field line above the ionosphere, and

J, is per unit area of the ionosphere and positive if into the ionos-

phere.

(d) Continuity of current in the ionosphere requires that



v - % = J, sin X (7)

where % is the height-integrated horizontal current density, X is the
inclination of the magnetic field, and J, is the field-aligned current
density flowing into the ionosphere. If the electric field E at the
top of the ionosphere has no horizontal variation except on a suf-

ficiently long scale (> 10 km), % can be related to E by the equation

\Y
= . + 3’.}1
I % (E + & B) (8)

where Xn is the velocity of the neutral gas in the ionosphere (com-
monly assumed to corotate with the earth) and E is the familiar
v}

height-integrated conductivity tensor (see, e.g., FEJER, 1953, 1964).

Inserting (8) into (7) provides a differential equation from which

% may be obtained if J, is known. (EE.= -cV X E must be known or set
ot

to zero.) Note that, given the conductivity and the neutral gas

motion, E is uniquely determined by J, (or vice versa) and does not

explicitly depend on any other magnetospheric variables such as

pressure gradients.

(e) The electric field at the top of the ionosphere and the
electric field within the magnetosphere are related by the generalized
Ohm's law, and thus either can be calculated from the other. For
guasi-steady convection, in which the electric field can be derived
from a potential, one needs to calculate the potential drop along

the field line from the ionosphere to the equatorial plane. A common



assumption that appears to be at least a good first approximation

is that the conductivity along the field lines is high enough so
that this potential drop can be neglected and the potential simply
mapped out from the ionosphere into the magnetosphere. Anomalous
resistivity caused by instabilities (see, e.g., KENNEL, 1970) may
produce significant potential drops which can, however, in principle
be calculated if J, is known.

This entire calculation should provide a reasonable complete
model of the processes associated with convection within the "closed"
part of the magnetosphere, in which the magnetic field lines connect
from one hemisphere to the other. The "open" field lines that extend
far out into the magnetotail must ultimately enter either the inter-
planetary medium, as in the models of DUNGEY (1961) and his followers,
or/and a magnetosphere boundary layer within which a viscous drag
(AXFORD and HINES, 1961; AXFORD, 1964) or some other tangential stress
responsible for maintaining the magnetotail (AXFORD et al., 1965;
SISCOE, 1966) occurs. On these magnetic field lines, the electric
field is determined by processes associated with the field line merg-
ing or the tangential stress, whose physics is at present largely
unknown; it is this electric field, however, that sets the entire
convection system going and thus it may appropriately be called the

driving field. Equations (7) and (8) are still applicable and, given

the driving field, serve to determine the field-aligned current den-

sity J, in the polar cap region. Alternatively, J, may be fixed by the
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field line merging or tangential stress processes, in which case it is

the driving current, setting up the convection; equations (7) and

(8) then determine the associated electric field. Finally, if the
calculation is to be restricted to the closed field line region only,
the driving field must still be partially specified as the boundary
condition on E now requirga to solve equations (7) and (8).

In summary, understanding the origin of the driving electric
field (or current) and the origin of the plasma sheet is a prerequisite
for a complete model of magnetospheric convection, and such under-
standing we do not now possess., However, the properties of the plasma
sheet particles are well known from observation and, as will appear
shortly, crude but useful models of the driving field can be guessed;
given both of these, the set of equations described here allows one
to construct a model of the convection within the closed part of
the magnetosphere, including the effects of interactions between the
plasma, the electric fields, and the ionosphere; this now reéuires
nothing more than solution of a well-defined computational problem!
Even with drastic simplifications, the problem is extremely compli-
cated and‘I have not yet obtained a solution of the complete self-
consistent chain. Individual links of the chain, however, have been
studied and useful results obtained. Models of the first link, par-
ticle distribution in given electric fields, have been constructed

by TAYLOR and HONES (1965) and KAVANAGH et al. (1968) from a strictly

adiabatic viewpoint. I have studied the same problem with the
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inclusion of non-adiabatic effects; the calculation is published
elsewhere (VASYLIUNAS, 1969), and the basic physical ideas and some
results have been described by KENNEL (1969). In the following sec-
tion I consider simple models of another link: the connection be-

tween field-aligned currents and electric fields in the ionosphere.

A MODEL ELECTRIC FIELD AND CURRENT

SYSTEM IN THE IONOSPHERE

The basic assumption of the convection models first introduced
by AXFORD and HINES (1961) and DUNGEY (1961) is that magnetic field
lines from the polar caps (assumed to extend into interplanetary
space or a viscous drag boundary layer) move, at least partially,
with the solar wind. This implies an electric field over the polar
cap (the driving field) directed in a general way from dawn to dusk;
thus on the polar cap boundary the electric potential (assuming now
that any variations in the convection pattern are slow enough so
that induction fields can be neglected) is positive on the dawn side
and negative on the dusk side. To obtain a very simple model, we
appréximate the polar cap boundary be a circle of constant latitude

A = 72° and assume the potential on the boundary
®(A,9) = ¢, sin ¢ at A = 72° (9)

where ¢ is the longitude measured eastward from the midnight meridian
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and ¢, is a constant. Since we are now interested in ionospheric
effects on convection, we neglect particle pressure gradient effects
and solve equations (7) - (8) with J, = 0 to find the potential at
lower latitudes, with (9) as the boundary condition. The solutions
are obtained in a frame of reference rotating with the earth and

Xn in (8) is set to zero. For simplicity, symmetry between the

two hemispheres is assumed and day-night variations in the conductiv-
ity are neglected (some of the effects neglected here are included

in a similar calculation recently done independently by WOLF, 1969).
The conductivity model of FEJER (1953, 1964) is used, with a value

of 3.5 for the ratio of height-integrated Hall to Pedersen conductiv-
ities.

The resulting potential configuration in the ionosphere is shown
in Figure 2; it looks rather similar to the configuration inferred
from DP2 magnetic variations (OBAYASHI and NISHIDA, 1968). To obtain
a solution within the polar cap, it was assumed that J, = O‘also
over the polar cap, for lack of any better choice. The field-aligned
currents (which necessarily must be present; cf. VASYLIUNAS, 1968)
are then confined to the polar cap boundary; for the case shown in

Figure 2, the current density is
Ju (A, 9) = OL(%ZP/RZ)S()\-)\O) sin(¢-¢,) (10)

where Ay, = 72°/57.3°, o = 6.75, ¢ = 0.45°, R =1 Ry, Zp is the
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height-integrated Pedersen conductivity, and @ is the same as in
equation (9). Instead of postulating a driving field, equation (9),
one could have obtained Figure 2 by postulating instead a driving
current, equation (10); this was effectively the approach of IWASAKI
and NISHIDA (1967), who obtained models similar to the present one.
Some magnetic observations recently reported by BEHANNON (1969)
indicate that such field-aligned currents do exist near the outer
boundary of the plasma sheet (which may reasonably be taken to be the
boundary of "open" polar cap field lines). Behannon found a broad
depressed field region within the magnetotail that appears to coin-
cide with the plasma sheet; he also found that field lines in the
magnetotail diverge away from the midnight meridian (interpreted as
an expansion of the tail) and noted that this divergence is larger

inside the depressed field region than outside. The latter observa-

tion implies that the current flowing on the boundary of the depressed
field region has a field-aligned component, and working through the
geometry one finds that this field-aligned current flows toward the
earth in the dawn side of the tail and away from the earth in the
dusk side, exactly in the directions required by Figure 2 and equa-
tion (10).

The potential of Figure 2 was calculated assuming that the
height-integrated conductivities are independent of latitude. Figure
3 shows the effect on the potential if the conductivity is enhanced

at latitudes just below the polar cap, corresponding to the auroral
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zone. (Models with enhanced conductivity rings have been considered
by IWASAKI and NISHIDA, 1967, WOLF, 1969, and, in a somewhat differ-
ent context, by GOTTLIEB and FEJER, 1967, and SWIFT, 1968;) Speci-
fically, both the height-integrated Hall and Pedersen conductivities
were assumed to be increased by a factor of 10 between A = 67° and

A = 72°, maintaining the same ratio. The potential over the polar
cap is unaffected (since equation (9) is still assumed to hold), while
the potential pattern at latitudes below the enhanced conductivity
ring is rotated eastward by ~37°; the amount of this rotation (for
which a simple physical explanation can be given) is primarily gov-
erned by the Hall to Pedersen conductivity ratio within the enhanced
ring. The field-aligned current density is given by equation (10)
with a = 72.85, by = 37.2°, and Zp the low latitude (not enhanced)
value.

If the potential distribution of Figure 3 is mapped out to the
equatorial plane, the transformation from a corotating to an inertial
frame (i.e. the addition of the corotation electric field) will pro-
duce a region of closed flow lines near the earth which, following
NISHIDA (1966) and BRICE (1967), is to be identified with the plasma-
sphere. The maximum radial extent of this region will here occur
at a local time ~37° east of the dusk meridian, in qualitative agree-
ment with the observed "bulge" of the plasmasphere (CARPENTER, 1966).
(In the absence of an enhanced conductivity ring the maximum would

occur on the dusk meridian itself; cf. Figure 2.)
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It is of interest to consider the ionospheric currents driven
by the potential of Figure 3, and their magnetic effects. With the
assumptions made, all current components are sinusoidal functions of
longitude, with latitude-dependent amplitudes and phases. The am-
plitudes of the height-integrated east-west and north-south current
density components and the phase of the east-west component are
shown in Figure 4. The presence of the enhanced conductivity ring
has produced two electrojets that bear a rather strong resemblance
to the observed auroral electrojets. The uniform current over the
polar cap is directed slightly east of the solar direction, as ex-
pected from the Hall current (along the equipotentials, away from the
sun) and the Pedersen current (dawn to dusk); this is in disagreement
with the "equivalent" current inferred from polar cap magnetic dis-
turbances (e.g. SILSBEE and VESTINE, 1942; FAIRFIELD, 1963) which
generally points well to the west of the sun.

However, it is meaningless to ask about the magnetic effects

of a current system that is not closed, and hence the ionospheric

current { shown in Figure 4 cannot in any way be compared with "equiv-
alent" currents constructed from observed magnetic variations. The
current density % can, nevertheléss, be uniquely decomposed into a

SF that is confined within the ionosphere and

a current that serves merely to close the field-aligned currents:

"source-free" current %

we write

I =

I=Ig. +Vt (11)
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where by assumption V - = 0; the function T can be calculated

ASF

by inserting equation (11) into (7)

vt = J, sin ¥ (12)
and %SF can then be obtained from (11). (In the absence of horizon-
tal conductivity gradients, %SF is just the Hall current.) The ground

level magnetic disturbance can then be considered as the sum of two
contributions: (a) the magnetic field of the closed, purely iono-

spheric, current system % (b) the magnetic field of the closed

SF’
current system consisting of the ionospheric currents Vi, the field
aligned currents and their associated magnetospheric currents, taken
all together. (A third contribution, from closed currents flowing
entirely within the magnetosphere, e.g. the symmetric part of the ring

current, adds only a field essentially uniform over the earth.) 1If

it is assumed that the ground-level magnetic field from current sys-

tem (b) can be neglected, as suggested for instance by BOSTROM (1964)
(and proved in the approximation of a plane ionosphere and straight
field lines by FUKUSHIMA, 1968), then the current iSF is identical

with the conventional "equivalent" current.

Figure 5 shows the source-free part % F of the ionospheric cur-

s
rent driven by‘the potential of Figure 3. As can be seen, it bears
a striking resemblance to the equivalent current of SILSBEE and

VESTINE (1942), and in particular predicts the observed westward tilt
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over the polar cap (the tilt is a consequence of the enhanced con-
ductivity ring, as can also be demonstrated by a simple qualitative
argument). It should be clearly understood that in this model the
equipotentials over the polar cap are still directed along the
solar direction and the actual ionospheric current flows to the east
of the sun, but a magnetometer on the polar cap observes a disturbance
that, if attributed solely to an overhead sheet current, would imply
a current direction tilted to the west; only the source-free part of
the actual overhead current contributes to the magnetic field, the
rest being assumed cancelled by effects of field-aligned and magneto-
spheric currents. These predictions of the model have been confirmed
by the results of a polar cap barium cloud release reported at this
conference by WESCOTT (1970), who observed that the plasma motion
was approximately in the antisolar direction while the simultaneous-
ly observed ground-level magnetic disturbance corresponded to an over-
head current directed ~55° west of the sun.

In summary, a very simple model of magnetospheric convection
has been constructed, postulatiné a primary flow away from the sun
over the polar cap and considering only the effects of the ionosphere.
With the inclusion of an enhanced conductivity region at the auroral
zones, this model predicts the observed location of the plasmasphere
bulge and, with the assumption that "equivalent" currents constructed
from magnetic disturbances primarily reflect the source-free component

of the ionospheric current, it reproduces the main features of the



-18-

DS current system, including in particular the westward tilt over

the polar cap that had long been a problem for convection theories.
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FIGURE CAPTIONS

Figure 1. Outline of the self-consistent calculation of magneto-
spheric convection. The principal quantities being cal-
culated are shown enclosed in boxes. Each line joining
two boxes is labeled with the physical principle or equa-
tion that provides the link between the two quantities;
the arrow points to that one of the two which can be cal-
culated from the other. Quantities written in italics
are boundary conditions that must be specified. ("Kinetic
equation" is used as a general term to include whatever
method for computing the particle distribution is deemed
to be appropriate, e.g. Liouville's theorem, Boltzmann -

Vlasov equation and its transformations, etc.)

Figure 2. Calculated equipotential contours in the ionosphere,
labeled by wvalues in units of @o (see text). Only the
region above 50° latitude is shown (the calculation, how-
ever was carried down to the equator and all magnetic
field dip angle effects included). The outer circle is

A = 50°; the inner, X = 72°.

Figure 3. Same as Figure 2 but including effects of enhanced conduc-
tivity between X = 65° and 72°. The three circles are

A = 50°, 67°, and 72°, respectively.



Figure 4.

Figure 5.
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Actual height-integrated ionospheric current driven by
the potential of Figure 3. Top: amplitude of the east-
west (EW) and north-south (NS) components of the current
density, in units of ¢, ZP/R (see text; Zp is the low
latitude value). Above A = 72° the EW and NS components
have the same amplitude and differ in phase by 90°.
Bottom: phase of the EW component; the dashed line indi-
cates where the current changes from eastward to westward,
and the arrows indicate the current direction. Solid

circles (or portions thereof) are at A = 50°, 67°, and 72°.

Source-free part of the height-integrated ionospheric
current driven by the potential of Figure 3. Same des-

cription as for Figure 4.
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