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ABSTRACT

A method of self-consistent fields is used to study the equilibrium

configurations of a system of self-gravitating scalar bosons or spin i fermi-

ons in the ground state without using the traditional perfect fluid approxima-

tion or equation of state. The gravitational interaction is described by

general relativity. The many particle system is described by a second

quantized free field which in the boson case satisfies the Klein-Gordon equa-

tion in general relativity 0a 
v a

-z = 4 2 0, and in the fermion case the Dirac

equation in general relativity 
Ya 

17a T = 4 4r, where µ = me /,5i. The coef-

ficients of the metric g aR are determined by the Einstein equations with

a source term given by the mean value, < -Z I T
µv 

10 >, of the energy momen -

tum tensor operator constructed from the scalar or the spinor field. The

state vector < (D I corresponds to the ground state of the system of many

particles. In both cases ; for completeness, a nonrelativistic Newtonian

approximation is developed and the corrections due to special and general

relativity explicitly pointed out. Both for fermions and bosons ; in the New-

tonian nonrelativistic approximation, a solution exists for any number of

particles and the solutions differ only by a scale factor. The gravi-

tational	 Bohr radius of a system of two particles of mass m is fi t G -Im 3.

When there are N bosons the central attraction is increased by the factor N

and the dimension is reduced by the factor N_ 
1. 

These nonrelativistic con-

siderations fail when the binding energy for particles becomes comparable to

the rest energy.mc2 for N 
Ncrit 

(Planck mass /m) 2 _ 10 40 (for m	 g10-25 '
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implying mass , 10 15 g, density -•, 10 54gf cm 3). In these regions we have de-

veloped a full relativistic treatment. Both in the region of validity of the

Newtonian treatment (density from 10 80 g cm -3 to 10 54g cm
­
 3 and number

of particles from 10 to 10 40 ) as well as in the relativistic region (density ...

10 54g cm 3 , number of particles — 10 40 ) we obtain results completely

different from those of a tradiational fluid analysis. The energy momentum

tensor is anisotropic. A critical mass of gravitational collapse is found for

a system of N — (Planck mass/m) 2 self-gravitating bosons in the ground

state.

For N fermions the effective radius is the gravitational Bohr radius

divided by N. The binding of the typical particles is G 2m 5 N 4/3 h -2 and

reaches a value — mc 2 for N —N 	 — (Planck mass/m) 3 10 57 (for m

10 -24gr, implying mass — 10 33 gr, radius ..- 10 6 cm .. density 1015g/cm3).

For densities of this order of magnitude and greater we have given the full

relativistic treatment. It confirms, without using an equation of state, the

Oppenheimer-Volkoff treatment in extremely good approximation. It is

shown that there exists an interaction between gravitational and spinor field

but its magnitude is generally negligible.

The problem of an elementar y scalar particle held together only by

its gravitational field is meaningless in this context.

i0

•
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I. INTRODUCTION

The late Landau was the first  to point out that a system in i*s ground

state, composed of a critical number of particles, will necessarily undergo

gravitational collapse. In the intervening years many questions have been

raised and much new has been learned about gravitational collapse. 2 Among

the questions that constantly recur none are asked more frequently than these:

(i) What does one really know about the equations of state of matter at supra-

nuclear density? (ii) What right does one have to use an equation of state at 	 i

all? The first question will not be treated here and for good reasons: one

knows the equations of state of ''catalyzed'' matter with sufficient accuracy

from every day density up to the density —10 
14 

g/cm 
3

of nuclear matter, and

one has an argument from causality (speed of sound < speed of light) that no

allowable modifications of the equations of state at supranuclear densities

can change the critical mass by more than a factor of the order of two away

from an estimated figure M — MO = 2 X 10 33gr. 3

We focus here on the second question: can one discuss stability against

gravitational collapse without mentioning an equation of state at all? Sir A.

Eddington 4, 5 raised questions about the possibility of using an equation of

state at all and also purported to derive an equation of state quite different

in the relativistic domain from Chandrasekhar's standard equations of state

for a degenerate ideal Fermi gas. Today one takes seriously none of his

results but only his motivation. He sought some escape from the concept

of the critical mass, made so vivid by the first detailed calculation of the
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critical mass by Chandrasekhar. 6.7 Happily in the same period Dirac, 8

starting from first principles and employing the Hartree-Fock model of the

atom, showed for the first time how to go straight from the physics of bound

orbitals to the concept of an equation of state, as had already been used in

the Fermi-Thomas atom model. 9,1
0 , 11

A. Fermions

To justify the concept of an equation of state it was only necessary,

Dirac showed, that the effective potential should change by a small fraction

of its value over one wavelength. 12 This condition is normally reasonably

well satisfied in atoms containing a large number of electrons. A fortiori

it is satisfied extraordinarily well in the case of a system of a. very large

number of ideal fermions (no direct interaction) held together solely by

gravitational forces. Consequently there is as little reason to question the

concept of an equation of state in the extreme relativistic case as in the non-

relativistic case. We give an explicit demonstration of this point in Section

III where we extend the original Dirac arguments to the context of general

relativity and particles moving with relativistic velocity. Difficulties only

arise when one violates the condition laid down by Dirac: slowly varying

potential. It seems at first sight preposterous that in a system of 10 or 100

km radius the effective gravitational potential can vary percertagewise by

a significant amount over one particle wavelength. However, in a configura-

tion of sufficiently high central density the rate of fall of the density is also

very high (Fig. 1). Specifically, for each hundred fold increase in the cen-

•



- 6 -

tral density the half-radius of th:ts "central core" (Schwarzschild coordinate

where the density falls to half value) decreases by one power of ten. 13 These

enormous changes in the core have practically no effect on the rest of the

star; the core in this sense is almost "isolated" from the rest of the star.

The outer radius and the total mass of the star are influenced less and less

as the central density goes to higher and higher values 14 (Fig. 2).

Nothing in principle prevents the central density from being so high

(... 1054g^cm 3) that the central core is of the order of magnitude of a nuclear

Compton wavelength 'A/(mc). The effective gravitational potential changes

significantly over one wavelength. Dirac's condition is violated. The con-

cept of an equation of state no longer makes sense. The effective radius of

curvature of the geometry of the space--in the region of the core--is of the

same order of magnitude as the Compton wavelength. Under this condition

a coupling takes place between the spinor field and the gravitational field.

This coupling is generally neglected in the fluid approximation. Its physical

significance and order of magnitude are further analyzed in Section III.

Naturally it is a fantastic idealization to think of particles moving about ''freely"

at a density of 10 54 g/cm -3 and responding only to the curvature of space.

Even so the interaction between spinor and gravitational field has negligible

effect on the radius and total mass of the system. Therefore there is not

the slightest reason evident out of these considerations for questioning the

concept of equation of state for analyzing the behavior of an idealized system

of many fermions coupled only by gravitational forces. It is not hard
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to see the basic reason for th.s result. when :many fermions are present,

the Pauli exclusion principle forces the typical fermion into a state .with

very high quantum numbers. Then the JWKB approximation is applicable

everywhere except in the core; outside the core Dirac's conditions apply,

the pressure is isotropic and the Fermi gas model is well justified 15 (see

Section III).

B. Bosons

The direct opposite is the case of an idealized system composed of

many bosons interacting only by way of gravitational forces. Some aspects

of this problem have been previously treated. 16,17.,18..19 When the system

is in its ground state each individual boson is also in the ground state (one

and the same state for all bosons1. Their distribution of stress, except near

the center, is anisotropic. Therefore the concept of an equation of state is

completely inappropriate. Fig. 3 shows the stress ellipsoid at selected

distances from the center. At non relativistic energies (few particles, weak

gravitational binding) the anisotropy in the stress is of little account. A

Newtonian treatment is possible under these circumstances. In this regime

a simple scaling law brings out a similarity between nonrelativistic systems

with different numbers of bosons N . We find

(central density)	 0. 9G3N4m10A 610 3- 7. 08 x 10 -108N 4g cm 3

distance from center
at which the potential 	 6. 24n G -1

N -lm
^ 3 - 7. 55 x 10 27 N^ 1 cm

falls to half value

energy to remove all
the particle to co	 0. 246 G 2 m 5 N 3 h ,2 .8. 86 x 10 ' 85 N 3 ergs
separation
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having chosen for m the meson mass (2. 489 x 10 -25g). Evidently there

exists a critical value of the order N,,thc /G)m 2 a which the binding energy

per particle becomes comparable to the rest energy. For a number of particles

of this order of magnitude the Newtonian non-relativistic treatment fails.

We have developed a full relativistic treatment for the case N com•-

parable to or greater than the N
Grit 

for bosons. A detailed analysis (see

Section 11) leads to the system of equations summarized in the following dia-

gram

Metric
	 instein equation with a source given

ds 2 = B(r )dt 2 - A(r )dr 2 -
	 y the computed stress energy tensor

- r 2 (sin 2 8d^p
2
 + dO2)
	

Rµv - zgµvR=-k< SIT µvIs>

Klein-Gor don wave equation

V 7
a

^D = µ24)
a

for bosons moving freely in

the given metric, with I = 0

Mea-.i value < S IT
µv 

IS >, for the

ground state, of the stress energy

tensor T	 =
µv

(aot/a(a	 µ ^D + (at /a(a v iD)o -a^ - gµv^

for the N bosons

The solution of the equations was carried out by computer; the particulars

of the integration method are given in Appendix A. It is of great interest
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to know at what point the change from stability to instability takes place

in the family of equilibrium configurations that we have found. One of us

(R. R. ) hopes to return to this question. Without waiting for this yet to be

done analyses, one can immediately draw one new conclusion: There exists

no equilibrium configurat"+_+_con for a system of more than N it ,-- (Planck mass/m)2--	 G

ideal self -aravitatinLy bosons in their g round state.

There are both great differences and at the same time great similari-

ties between a system of ideal self-gravitating bosons and a system of ideal

self-gravitating fermions. Each is characterized by its own critical mass.

On the other hand, there is an enormous contrast between bosons and fermions

with respect to the value of the critical mass (NGrit (Planck mass/m) 3 for

fermions, Ncrit — (Planck m	 2ass^m) for Losons) and to the dimensions of the

system required to reach relativistic conditions. This difference is due

principally to the fact that all the N bosons are in the ground state, whereas

the N fermions, according to the Pauli principle, are distributed in the N

lowest energy states of the phase space.

Section II also notes that it is absolutely meaningless to consider in

the present context the ''problem'' of one elementary particle held together

only by its gravitational field.
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II. BOSONS

1. Newtonian Treatment

In Newtonian theory the gravitational potential V satisfies the Poisson

equation

AV = -4*,rGo	 (1)

where p is the matter density and G Newton's gravitational constant. The

Schradinger equation for a particle of mass m , in the presence of a gravita-

tional potential V is

pY + 2m h 2 (E + m V) Y = 0	 (2)

We are interested in a system of self-gravitating bosons, all hi the same

quantum state. We therefore assume that the gravitational putential V

satisfies equation (1) with o = NY ^Y'm, where N is the number of bosons and

Y' is the wave function of the quantum state under consideration. The wave

function is normalized to one

f'T T d 3 x= 1
	

(3)

We shall consider only the ground state of the system (n= 1, J,= 0) which

we may assume to be spherically symmetric. Consequently the resulting system

of equations in dimensionless units is

A-1 d 2^dr 2 (r cp) + (E + V) cp - 0	 (4.1)

r = ? h 2 m -3G -1 N -1 r

i`Y-(2n) 1; 2m3G N A
-2 ) 3 2 cp

V = z h - 2G2N2m4V

A
E = 2 G 2 N 2 m 5 h 2E

(4. 2)

(4. 3)

(5. 2)

(5. 4)

A-1 d 2^dr 2 (r V) _ - cpcp

f ^^V r 2 dr = 1

whe re

(5.1)

(5. 3)
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We have carried out a numerical integration of the system (4) by the
A

' Runge-Kutta method. We have found the eigenvalue E by looking at the

behaviour of the wave function at infinity. As usual we have determined

the ground state by requiring that the oigenfunction have no nodes. The

results are given in Table I, Fig. 4 and Fig. 5. Knowing the solution of

the universal system of equation (4) and thanks to relation s (5) it is

possible to obtain a solution relative to an arbitrary number of bosons

simply by making appropriate scale changes. If we distinguish quantities

referring to solutions with N 1 and N 2 particles by suffixes 1 and 2

respectively, we obtain the following relations

E 2 = E 1 (N2/N1)2
	

r2 = r  (Nl/N2)
(6)

T = `Y I (N 2/N I ) 3/2
	

V 2 _. V I (N21N1)2

These arguments could suggest that for any number of bosons in

the ground state there exists always aposition of equilibrium : But we

must analyze if the theory we have used always makes sense.

It is possible to divide the plot of Fig. 5 into three regions: to an

increase in the particle number corresponds

4-1 region I an increase in the total energy of the system

in region II a decrease in the total energy of the system which never-

theless remains positive.

in region II.I a decrease in the total energy of the system which is now

negative.
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It is very important to observe that at tho end of region I the gravi-

tational energy of one particle is of the order of magnitude of the rest mass

energy of the particle. Therefore it is clear that corrections coming from

special relativity must be taken into account.	 Moreover, no doubt exists

that, in the regions II and III, the application of Newtonian gravitational theory

is meaningless and one would expect important modifications from the use of

general relativity. 20

2. General Relativistic Treatment

We shall consider scalar bosons described by the curved space 21

Klein-Gordon equation

da \7a11^ + µ 2(P = 0

a	 2 )4

a

where µ = me/ ,ri and V
a 

and p a are respectively the operators of co-

variant and contravariant differentiation. This equation can be derived

from the Lagrangian22

La='h ( 2m ) ( g el a	 av0 - µ (D *0 )

In the usual way we can derive the following conserved quantities: the sym-

metric energy-momentum tensor

a	 a	 a J Igl

Tµv = 2 ( I g I> a r	 a	 µv	
4V	

1L 
ax	

a 
a 9	 ag

axaand the current vector

(7)

(8)

(y)



-13-

Jq=its-lc((ao	
µµ

tla(a a) ` ) ) ,D 	 - (a^ia(a 45)) ,D)	 (10)

where g = det g 
a

R.

We only wish to consider spherically symmetric distributions of

equilibrium. Therefore we may express the metric in Schwarzschild co-

ordinates (x 0 = ct, xl = r, x2 = 0, x 3 = (p)

ds 2 = B(r)c 2 dt 2 - A(r)dr 2 - r 2 (sin 2 Bdcp 2 + d9 2 )	 (11)

In this system the equation (7) becomes

x	 _

g ^) a a i L glka k^ ] + B 1 a 0 2 (D + 4 1) = 0	 (12)

It is possible to make a separation of variables in equation (12) by

s etting

^D	 0 ,( , t ) = R.( r )Y m ( 0 , ^0) 
e - i(EXi)t	

(13)

where Y I m (0, co) is a spherical harmonic. The function R must satisfy

the equation

R Qn + (2/r + z B /B LAS/A)R- + A [E2 B
- 1 h - 2 c - 2 -µ 2 - t(k+1)A-lr-2]R^n= 0

(14)

where the prime denotes differentiation with respect to r. 23

The most general bound solution of the equation (7) can be expressed

in the following way
-i(E	 %^i)t

di (r, ©, ^, t) _ Ek
	 n.2

cn.QmRnQYm e	 +
nim

i(E	 /'1'i)t	 (15)

+ E b	 R Y I =" e nQ
n.Q m ni m ni in

Since we are considering a neutral field (D is real and therefore (D = (D

and
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bn2m - cnim	 (16)

in the formalism of second quantization (D is an operator and can

be separated into two components
-i(E	 f'fi)t

^+ 	 E µ+	 R Y 	 (0,T) e	 n.Q	 (17)n.Q m Q mn ni m

Q ^;C	 +i(Eni 
/yn)t	 (18)

4 -.Q mnRni Y m (B ' ^) en 

so that

_	 +

µL+	
and µL	 are respectively the creation and annihilation operators

for a particle with angular momentum -1^1, azimuthal momentum Ilm and

energy Eni .

These operators satisfy the commutation rules

Imn' I m n' ^ - b I V smm' bnn'
	 (19.1)

Lµ
Qmn, µ VM

, n i ^ 	
(µQmn' 

µp ^ m ^ n ^^ - 0	 (19.2)

From the operator 11^ it is possible to construct the energy-

momentum tensor operator T µv and the current vector operator Jµ.

We consider a state IQ > for which all the N particles are in the ground

state

I Q > = I N, 0, 0, 0, >

We compute the mean values of the components of the operators Tµv and

Jµ for this state.

We obtain



-15-

< QIT O O IQ > = -zh
2 m

-1N [(B 1E 01 /(/a 2 c 2 ) + µ 2 )R 01
 + A-1R12	

(20.1)

< Q  Tll IQ >	 2h2m 1N [(B-
(B 1E2 /(52c2)	 µ2)R 01 

+ A-1R01,	
(20.2)

< Q  T 2 I Q > = < QI T 3 IQ > _ 
;A2nz 

1 
V 

[(B-lE2 /(^
L c 2 ) -µ 2 )R 2 -

2	 3	 ^	 01	 01

- R. A -1 J	 (20.3)

< Q I T O 
IQ > =  0	 (20.4)

where E 01 and R 01 are respectively the eigenvalue and the radial part

of the eigenfunction of the ground state (n = 1, 1 = 0). The mean value of

the component J O of the current vector is

< Q I JO IQ > _ E01 	 m -1 c-2 
R01 

B-1	 (21)

From the expressions (20. 1), (20.2) and from the Einstein equations in

Schwarzschild coordinates we obtain

-1	 -1	 2
AY(A 

2 
r) + 1/r 2 (1 - 1/A) = e [(B E 

201/(?1 
2 

c 2 ) + µ
2 2

)R 01 + A Rt 2	 (22.1)

B'/(ABr)- 1/r 2 (1 - 1/A) = e [(B 1E21/(h2c2) - µ 2 )	 R0 1 + A -1 R' 21	 (22.2)

where

e = 4TrG c -4 h 2m -1 N

and these together with the equation (14) form a closed self-consistent

system (diagram in introduction). The other equations

22
G 2 = kT2

and

G33 = kT33
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are consequences of Eq. (22) because of the Bianchi identities

DGa^=O

and of the relation

Tµ = 0
v;µ

The normalization condition

is, explicitly

f	 < 1 0 > d 3x = N	 (23)

f	
_	 _ i i

4n E 01 m-lc ^O1B 2 A `r 2 dr = 1	 (24)

The initial conditions and the boundary conditions are

R 01 (0) = const	 (25.1)

	

R0 1 (0) = 0	 (25.2)

	

A(0) = 1	 (25. 3)

	

B(oo) = I	 (25. 4)

It is possible to show 
16 , 17 

that the conditions (25) are consistent

with the system of equations (14) and (22).

We have put the system into dimensionless units obtaining the

following expressions:

B/(A Br) - 1/r 2 (1 - 1/A) = e I(B-1E 01 1)R01 + A
- IR01]	

(26.1)

A'/(A 2 r)+ 1/r 2 (1 - 1/A) = e [(B
-1 E0 1

+ 1)R 0 1 + A 1^R'Oil	 (26. 2)

Rp l + (2/r + B'/2B - A'/2A)R0 1 + A(E 01 B-1- 1)ROl = 0	 (26. 3)

,Y
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ro R0 1 B - 2 Az ;. dr = 1	
(26. 4)

,J 0

where now the prime denotes differentiation with respect to r , and

A = r 4	(27. 1)

R = Rµ,3 2	 (27. 2)

E 01 - E 01/mc 2	(27. 3)

A	 32 2	 ^
e = eµ _ L µ N/E 01	 (27.4)

Y

where L is the Planck length L = (PiG/C^

We have carried out a numerical integration of the system (26) for

different values of the radial function R 01 at the origin. We have plotted

some results in Fig. 6, Fig. 7, and Fig. 8. Particulars of the integration

method are described in Appendix A.

The introduction of special relativity (Klein-Gordon equation) and

general relativity eliminates completely some difficulties present in the

nonrelativistic Newtonian approximation, i. e. , the regions I1 and II.I of Fig. 6

have disappeared. An increase (decrease) in the number of particles always

corresponds to an increase (decrease) in the mass at infinity.

On the other hand the relativistic treatment introduces the concept

of critical mass. The mass at infinity and the number of particles expressed

as functions of the central density (see Fig. 8) reach a maximum M crit

(0. 311 x 10 -9/m)g, N c rit ^ (3. 01 x 10 -10/M 2 ) corresponding to a central density

pcrit — (5. 26 x 10 97 x m 2 )g/cm 3 where m(g) is the boson's mass. Both

qu<<ntities reach their peak values at the same value of the central density

(or the same value of any other appropriate parameter). After this maximum
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24they decrease monotomically fo r an arbitrary increase of the central density.

We give in Table I some numerical values. Imagine bosons of one

or another mass, and out of each kind of boson a system put together com-

posed of very many identical particles. For each kind of boson there will

be a different critical mass. When the mass m of the particle goes to zero

the critical number of particles N Grit goes to infinity. So does the critical

mass mcrit' For the case of distributions endowed with the critical mass,

the Sc:hwarzschiid radial coordinate, r, at which g 11 reaches the maximum,

also goes to infinity as m goes to zero. Simultaneously the central density

p goes to zero.

One can treat a system of many bosons at constant temperature T

as a fluid with an equation of state p = p(p) derived from quantum statistics

in flat space. Can one extend this treatment to T= 0 (ground state)? No'. We

run into difficulties because the pressure is proportional to T 5/2 and there-

fore vanishes in the limit T — 0. Proceeding to this limit we would never

obtair. any of the configurations of equilibrium that we have found. It is clear

that the approximation of treating the system as a perfect fluid is completely

inadequate at T = 0 in a system of this kind. It is essential to allow, as

we have, for the fact that all the particles fall into the lowest quantum state,

a state which moreover carries its own characteristic distribution of pres-

sure, stress and density. Moreover the pressure is anisotropic and very

ctifferen` from zero'

The effect of introducing general relativity is comparatively simple
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as long as the particles are treated in a statistical way (no allowance for

the details of particle-particle coupling). Then the gravitational problem

is no more difficult than the Hartree-Fock atom. In both cases the inter-

action is universal, in the sense that one law covers all ranges of distances

On contrast, i. e. , to nuclear forces). The ease of ideal particles coupled

gravitationally differs from the case of electric coupling in this respect, that

no "interaction'' ever puts in a direct appearance. Instead, thanks 1-o the

geometrical interpretation of gravitation, it is possible to treat the irter-

action simply considering the Klein-Gordon equation for free particles in

a curved space where the metric is determined by the system of the bosons

itself. This treatment has the advantage of being valid even in the region

of an arbitrarily strong gravitational field.

3. Possible Generalization of the Method

In the preceding paragraph we have studied the problem of a system

of bosons in the ground state. It would be interesting to study the corres-

ponding problem for a distribution function

0, 0,	 ` Nnim' ... , 0
	

(29)

in other words, all the bosons in the same excited state, and examine the

dependence of the critical mass upon the quantum numbers n, 1, m of that

state.

We would have to compute the mean value of the energy momentum

tensor corresponding to this distribution. The radial function would satisfy
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the Eq. (14) and in the mean value of the energy momentumi tensor some

quantities depending on n, Q and m would be present, e. g. ,

1	 -1	 2	 -1 2	 2	 .Q .Q( +1)	 2
< T 1 > = A Rnf + (B Enf - 	1Rnf - - 2	 Rnf	 (30)

r A

The computation of the mean value is completely analogous to the calcu-

lation (20) for the ground state. The number of zeros in the radial func-

tion is equal tc the difference n - f - 1. Thi: number was zero for the

self gravitating system in its ground state. For the general excited state

this difference will be large, and the radial function will have many nodes.

Hcwever, there is another case where again the ni. nber of nodes is zero,

namely large n, but f also large and equal to n - 1. A simple analysis

shows that we are dealing here with waves running round in a thin "active

region'' or ''spherical zone of activity. " It is interesting to see that if we

write the equations in the limit µ -i 0 we obtain after some simple approxi-

mations Wheeler's equation for geons--not however electromagnetic geons

(built on a field of spin 1) nor gravitational geons (spin 2 field) but geons

built cn a scalar field of spin 0.

A further generalization to distributions of the form

< N 100' N200, N
21 01 ... , 01	 (31)

and a corresponding examination of the critical mass would be possible.

In this case we would have a number of radial equations equal to

the number of different values of f and in the energy momentum tensor a

sum of contributions belonging to all the different values of n, F, m for
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which N
0.	

^ 0, C. g. ,
nm

<Ti >	
p,mn 

cpmn < T limn >
	

(32)

where the c ,Qmn 
are some suitable normalization factors. The computation

of the mean values would be done using the commutation rules (19).

Down to how small a number of particles does it make sense to use

the statistical treatment which we have given fc r a system of N ideal self-

gravitating bosons in their ground state? For bosons of any familiar mass

value the statistical treatment in the small N limit is Newtonian. It gives

for the binding energy of the N boson system

E bind = 0. 1626 N3G2m5A 2
	

(33)

and for the 2-boson system

E bind - 1. 3008 G2m5h-2
	

(34)

On the other hand tae exact treatment of the ideal two boson system followsfollows

from the standard theory of the hydrogen atom when we insert (a) for the

mass the reduced mass m/2 of the two boson system and (b) for the coef-

ficient e 2 of 1;/r 2 in the expression for the force the Newtonian value G m2;

thus,

Ebind	
0. 25 G 

2 
m 

5 
A 

2	 (35)

Comparing (34) and (35) we see that the statistical treatment gives a value

for the binding 80%o greater than the correct value. The discrepancy will

be of the same order whenever we go to the full relativistic treatment and

we consider the case of a small number of particles of appropriately larger

-S
mass (— 10 - gr). The reason for the error is clear:



the quantity < J 0 > does not represent a real density of particles but only

a density of probability. Therefore the metric is computed in corres-

pondence not to the time changing momentary distribution of matter but

to a probability distribution. Thus it would appear that the treatment

developed here valid for a system of a large number of particles iF a

poor approximation for a single particle as well as for a system of only

two or three particles (large fluctuation away from any average density,

correction for center of mass etc.).	 In effect a system of equations

equivalent to the system (26) and substantially equivalent to the equations

published in references 16 and 17 has been recently analyzed in connection

with the problein of one particle or a few particles by Feinblum and

McKinley , 26 and by Kaup 27 . Moreover in our opinion there is nct the

slightest reason to believe that the considerations on 3 relativistic many-

boson system given in this paper have any relevance w atever to the quite

different problem of the internal structure of a single boson. 28, 29
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III. FERMI.ONS

To bring out the effects that we are looking for with maximum clarity

we restrict attention here and in the following to an idealized system of

fermions- particles which interact with each other exclusively by gravitational

forces (no electric forces. no nuclear forces) and which are treated as : table

(no beta decay, no other elementary particle transformations). A collection

of neutrons (in the first few minutes before beta decay can occur!) is the

closest approximation we have today to such a System. However, it should be

emphasized that well known effects corne into play for neutrons at sufficiently

high densities, which make a neutron star depart from the ideal system under

consideration here in respects which are important and which are still not suf-

ficiently well understood to be neglected in a detailed analysis. 30

As we have pointed out in the introduction, for a system of many self

gravitating fermions a "spike" in the density at the origin !Fig. 1) forces the

effective potential to change substantially over one wavelength. Then. Dirac' s

argument fails. The concept of "equation of state" breaks down.

Why does the Fermi-Thomas a t om model work so well ? The answer is

well known- only near the atomic nucleus is the condition

N d ; g V;r)/dr < 1	 (36)

violated. Morc ver the volume of this region is very small compared to the

atomic volume for an atom contair_:ng many electrons. Differen t from the

atom in one vital respect is a system of many self gravitating fermions.

There is not a powerful preferred center of attraction such as the nucleus
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prov;des in the atom. The potential is a:3 smooth a function o:" the position

as one could possibly hope to have in a system of a finite extent. :vo spike

here' Or so it seems until one looks more carefully.

On first inspection the potential seems to be perfectly regular for the

self gravitating system of fermions (Fig. 9). In this figure the gravitational

potential (X, /x) expressed in appropriate dimensionless units, is plotted as a

function of the distance from the center, also in appropriate dimensionless

units. Both quantities are taken from the tables of Emden 
31 for a polytrope

of index n 3/2; that is a function which satisfies the equation

2 X. /dx = - X 
3/Zd	 /'Fx

The function X verifies the normalization condition
xmaxf	 xl/2 X3/2 dx = 1	 (38)

0

The connection between this polytrope and the system of N fermions is well

known. The usual radial coordinate r in the Newtonian system is connected

with the dimensionless coordinate x by the equation

r = N -1/3 b x	 (39)

where the unit of length, b, has the value

b = 1/2 (3n/4)2/3 f, 2m -3 G-1

The value of the gravitational potential (relative to the gravitational poten-

tias on the surface of the system as standard of reference)is

=GNm X/ r	(40)

where G is the Newtonian gravitational constant.

(37)
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i

The kinetic energy of a fermion at the point r is connected with the Fermi
i

momentum and the potential 	 by the equation

t K. E. )	 = pF2 (2m) 1 m 
Cmax	 (41)

The mass density of particles is

t

P`r)(8^) zn	 3 p 3	(42)

This is the so4rce term in the Newtonian equation for the gravitational potential
1

A	 z- - 4-rr G P	 (43)

From Eqs. (39) and (40) it follows immediately that the density distribution

for an arbitrary particle number can be obtained directly from the graph of

X/x as function of x in Fig. 9.

The smoothness of the dimensionless potential plotted in Fig. 9 shows

that there is no "spike" in the potential for a system containing a reasonable

number of particles. However within increasing N the whole scale shrinks.

Automatically what was a potential without a "spike" becomes a potential which

is everywhere a "spike. " Then the statistical treatment fails.

Long before one arrives at this critical value of N, however, the bulk

of the fermions have been promoted to relativistic energies (last entry in

Table II). The nonrelativistic treatment fails. The Newtonian nonrelativistic

regime ends when the Fermi kinetic energy, largest at the center of the

system, attains a value of the order of m c 2 ; thus

(K. E.) Fermi = m (y — m c 2	(44)o
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G N4/1 m2 1(X/x)0 m c2	 (45)

Frc-n this equation we find

Nxel — m*3 /m3 (_ 10 57 for m = M N= 1. 6 x 10 -24g) (46)

Here m* _ (-f c/G) 1/2 = 2. 2 x 10 -5 g is the Planck mass and (X/x) 0 is the

"imensionless measure of the gravitational potential at the center.

For values of N > Nrel the Newtonian treatment has to be modified

in two ways: ;a) the nonrelativistic relation E. = p 2 (2m)-lbetween the

Fermi energy and the Fermi momentum must be replaced by the relativistic

one, and (b) the Newtonian theory of gravity must be corrected to general

relativity , because the dimensions of the system are bec-. iing comparable

to the Schwarzschild radius.

Historically Landau 32 (1932) and Chandrasekhar 33 (1935) considered

the effect of special relativity before Oppenheimer and Volkoff 34 added the

effects of general relativity. In the meantime the properties of an idealized

system of fermions have been studied in considerably more detail. 35 As the

central density goes higher and higher a localized "spike" indeed develops in

the gravitational potential. 36 Ultimatr:y it becomes so sharp that in the region

of the spike the concept of the equation of state therefore breaks down.

In the following section we trace out in detail the properties of the

region of the spike, the connections between the theory of many self gravita-

ting particles and the concept of the equation of state, and finally the modif-

ication which comes about in the region of the "spike. "

We found that the modifications in the region of the "spike" are quali-
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tatively extremely important; however, we believe that thay cause no more

trouble in the theory of the neutron star than the corresponding troubles

caused for the theory of the atom and for the same reason: the volume of

the effective region is negligible compared to the volume of the entire system.

On the other hand we show explicitly that outside the region of the "spike"

the application of the equation of state is perfectly legitimate and coincides

with the treatment of many fermions with a self consistent field method.

1. Formalism of the Relativistic Treatment

We apply the formalism of Section II to the case of fermions. We

assume a familiarity with the spinor formalism in a differentiable manifold.

Nevertheless it is useful to recall a few definitions. 37

It simplifies the problem to adopt a system of isotropic coordinates.

Assuming a spherical symmetric and static distribution, the metric in this system

of coordinate is d2-.:  B(r) c 2 d t2 - A!. r)((dxl ) 2 +(dx 2 ) 2 -r(dx 3 )2 	(47)

where

2	 2	 2	 2
r = x + y + z

1
x -,.x

	

x2:_y	 (48)

3
x -Z

The Dirac matrices must satisfy the relation

Yal'p + Ypya = 2 g ap 1	 (41
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where	 I	 is the unit matrix.

In the Majorana representatior and with the metric (47) we obtain

for the Y	 the following expressions
a

1 0 0 0

:.:
0 1 0 0

A1 12Yl
0 0 -1 0

0 0 0 -1

(50.1)

Y2

Y 3 =

0 0 -1 0

0 0 0 -1

-1 0 0 0

0 -1 0 0

0 0 0 -1

0 0 1 0

0 1 0 0

i 0 0 0

Al/2	
( 50.2)

A1/2	 (50.3)

B1/2	
(50.4)YO

0 0 0 -1

0 0 -1 0

0 1 0 0

1 0 0 0

(51. 1)

We will also use the Pauli representation; we have the relation

-1
)(Pauli	 C YMajorana Q

where Q is the unitary matrix
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Q 1 /^2

1 1 i i

1 1 -i -i

w

The Dirac equation is

Ya A B Da 4, 	 w A	 (52)

with 41 A
we indicate a contravariant spinor of 4 components. The covar-

iant derivative Q isa

17ct	 aaLA+ va B 41	 (53)

1a 41 y as LA + Q a A ^B	
(54)

where
(3 CRa B =- 1/4 a Q Y 5 C Y B	 (5 5)

From (53) , (54) and (55) we obtain

VC, 'Y
	 A	 5 A	 A C - ^D A _ 0	

( 56)

	

(3B v Oa Y (3B rPa Y&B ac Y PB	 a B YPD 

We define the covariant and antisymmetric two-spinor fundamental form

wAB - -w
BA	 ( 57)

with components

_

w14 = -i( -g) 
1/4	

w42 _ w13 - w24 -- w
34 0	 (58)

w23 - -i( -g)1/4

for which we have

170wAB = 

This fundamental form is used to raise and lower the spinorial
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indices

B
A wAB ^

2. The Dirac Equation in a given Isotropic Metric

If we write Eq. (52) using the metric (47) we obtain the following

equation

YaABaa(A7/8 B3/8 ^ B ) = µ LP A A7/8 B3/8	 (60)

wh-, ch in the Pauli representation is

Al/2 (B -1/2 E h-1c-1 +µ) P1 + (a 1 P4 - ia 2 P 3 - a 3 P4 ) = 0

Al/2 (B 1/2 E A -l c 1 + 4) P2 + (6 1 P3 + i6 2P - a 3P) _ 0
(61)

A112(-B-1/2 E h-1c-1 4- 11 )P'+  (6 1 P2
 - ia 2P + a 3P) = 0

Al/2(-B 
112 E h-lc-1 + u.) P4+ (a l P1 + ia 2 P - a 3P) = 0

Here eve have put

LP
A (x1 , x 2 , x 3 , x0 ) - PA (xi ) e iEh -l c -1x0 A -7/8 B-3/8	 (62)

Let us introduce a polar system of coordinates; as in flat space it is possible

to separate the radial part of the function PA from the angular part. We

obtain the following complete set of solutions

Plkmn -: ((k-l+m)/(2k-1))1' 2 F kn Vm-1

P2((k-m)I(2k-1))1/2 F kn Y k 1	 k > 0Ikmn
(63.1)

P3= -i((k-m)/(2k+ 1))1/2 Gkn Y k 1	 E > 0Ikmn

P4.: i((k+m)/(2k+1))l/2 Gkn Y Ikmn

(59)
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PII-krrin - ((-k.-in+ 1)/(-2k+ 1))1/2 Fkn Yr 
k 

1

PII- kmn = ( ( - k+m)/( -2k+ 1))1/2 F kn Y k

PII-kmn = - i(( - k+m - 1)/(- 2k+1))1/2 Gkn Y k 1	
k< 0
E>0

P I-kmn :-i((-k+m}^(-2k+1))1/2 Gkn Y -k -1

(63.2)

PIIIkmn - ((k-l+m)/(2k-1))1/2 Gkn Yk 11

PIIIkmn - ((k-m)/(2k-1))1 2 G	 Ykn k-1 k > 0	 (63. 3)

P IIkmn = -i((k-m+ 1)/(2k-1)) 1/2 Fkn Y k -1	 E < 0

PIIIkmn = 1((k+m)/(2k-1))1/2 Fkn Yk -1

PIV-kmn = ((-k-m+ 1)/(-2k+ 1)) 1/2 Gkn Yk -1

PIV-kmn ((-k-m)/(-2k+1))1/2 Gkn Y k
(63.4)

IV-kmn	 -1( (- k+m-1)/(-2k+1))1/2 F kn Y k 11

PIV-kmn	 i((-k+m)/(-2k+1))1/2 F kn Y -k--1

where F and G are the radial functions. The angular part is described by

the spherical harmonic functions Yk (8, cp); m and k are the integer quantum

numbers corresponding respectively to the observable

j + 1/2 and K= Q • L

where a is the spin momentum and L the orbital angular momentum.

The functions G and F must satisfy the following system of equations
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d F kn/dr + F kn (1-k)/r = ( Ekn h
-1 c -1 B -1/2 + µ)A1/2 Gkn

(64)
d Gkn/dr + G kn (1+k)/r = (-Eknh-lc-1 B-1/2+ µ)A1/2 Fkn

where Ekn' Fkn' and Gkn are the eigenvalues and the eigenfunctions

corresponding to a given k. It is possible to demonstrate that the spectrum

of eigenvalues is discrete. 38

3. Einstein Equations

So far the treatment applies as well to charged particles as to neutral

ones. However, we are interested only in neutral particles (ideal system of

self-gravitating neutrons). Therefore we ask that the field function

verifies the following condition

kPA = c^A	
(65)

Here c is the charge conjugation operator. To make this condition take its

simplest form, we now go to the Majorana representation. There the opera-

tion of charge conjugation has the form

c 4 A =^A*

where 
41	

is the complex conjugate of A	 Thus we demand

i^ A = 4A*	 (66)

It is easy to see that in the Majorana representation we have from (51)
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-1 -1 0

1	 1	 2	 3	 4	 1(Enkh c )x - 7/8 - 3/8
I kmn 1/2(PI + i PI + i PI + PI )kmn e	 A	 B

-1 -1 0

2	 = 1/2(P I + i P 2 - i P 3 + P4)	
ei(Enkh c )x A-7/8B-3/8

I kmn	 I	 I	 I	 I kmn	 (67)
-1 -1 0

3	 = 1/2(-i P 1 - P 2 + P 3 - i P4 )	 el(Enk^ c )x A-7/8B-3/8
I kmn	 I	 I	 I	 I kmn

-1 -1 0

4	 = 1/2(i P 4 + P 2 - P 3 - i P4 )	 el(Ekn	
c )x A-7/8B-3/8

I kmn	 I	 I	 I	 I kmn

In the same way it is possible to obtain ^ 1I	 II
III ' AIV' For simplicityI 	.	 ^	

. plicit in the

following, we Indicate with T the eigenfunctions with k > 0 and with 1 the

eigenfunction with k < 0. It is now possible to write the following expressions:

(i) the symmetric energy-momentum tensor

T a p = 1/4 ( 0 a -Y 	 + a 
p 

y a	 - gy p 0 a - rya v p 4, ) Ac	 (b8)

(ii) the current -vector

Ja 	 y a k	 (69)

(iii) the spin tensor

Spay - LP y p (y a y p -y p y a	 (70;

With	 we indicate the covariant spinor that is obtained from the contra-

variant spinor ^ by means of the lowering operator (59); e. g.

m

In the fori-nalism of second quantization the wave function yl is an operator

acting on the state vector < Q  . The T ap , J a ,	 and S	 are also

operators and their niean values are computed for a state vector < Q

remembering the antisymmetric fermion commutation rules. In the minimum

energy state of the system, the lowest N/2 cells of phase space are occupied.
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Consequently we have for the mean values of < Q I T O IQ > the following

expressions

< Q j T O t I Q> = E B-1/2Ekn
k>0, n

< QI T 0 1 IQ > = E B-1/2E1;n
k<0, n

I k I (Gkn + F2 )A-1B-1/2
kn

I k I (G kn + '^kn) A-1B-1/2

(71)

and for the mean value of the spatial trace

• Q1 Ti TI Q > = - < Q1 T O t IQ > + mc2E I k I (Fkn G 2 )A-1B-1/2

k>0, nkn

• Q I T1 1I Q > = - < Q I Tol  I Q > +mc2E I k I (Fkn - G )A-1B-1/2k<0, n

For the projection of T ik on a unit-vector t  normal to a radial unit

vector we have

	

< Q  T i	t 	 > Fkn GknIkIA-1B-1/2r-1	
(73)

	

c 
Q ' Ti	 t 	 10 >  

Fkn G kn I k I 
A-1B-1/2r-1

We defin.•, as in the bccon ca--. the probability density p ? v means of the

zero component of the vector Jµ

	

k>0 nkn t	 E IkI(Gkn + F 2 )`a
'-1B-1/2 = J 0 1 (g00)1/2

k>0, n	 (74)

E p kn 1- E I k I (Gkn + F 2 
)A-1B- 1/2 = J 0 1 (g00)1/2

k<0, n	 k<0, n

It is possible now to write the Einstein equations for the system of

N fermions

R 0 - 1/2 R = 8nG c -4 [< T 0 1 > + < T01 >]	
(75)

Ri - 3/2 R = 8-rrG c -4 [< Ti T>+  < Ti 1 >]

These equations with Eq. (64) and the normalization condition

J

Co

 
J O t/-g d 3x = f 0 J 0 1 f-g d30	 x N/2

0	 0

determine the distributio.1 of the N fermions in the lowest state of energy.

The boundary conditions are the same as in the boson case.

(72)
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4. Pos sable Approximations

In the ground state of the N-boson system all the particles are in

the same quantum state. How different the N-fermion system. The Pauli

principle forces all the particles into different quantum states. To solve

exactly the problem of 10 57 fermions self gravitating it would be neces-

sary to compute 10 57 eigenvalues and 10 57 eigenfunctions .̀ Therefore it is

necessary to develop some approximation methcd.

From (74) we can write the expressions (71) in the following form:

i
	• T O 	B 2F 

kn p kn 1

	

0	 k>0, n 

1
• T 0 4 > _	 B

_ 

2E	 ')kn 1

	

0	 k<0, n	 kn

In the system of equations (64) we can eliminate G kn obtaining a second

order equation

F, kn + (a, /a)Fkn + F,kn [(Ek 
	 2B-1 µ2 ) A 

+ ace I kr I - k(k-1)r 2 ] = 0

(77)

where
i	 1a _ (Ek 1 l c - 1 B a +µ)A2	 (78)

i

a,a
-1 _ A,A-1 _ z B^EknB- 3/2 . (EknB 2 +mc 2 ) 1	 (79)

We fix now attention on high quantum numbers and we suppose that

EknB 'h ^c -I is greater than µ inside the distribution. Then we can

write

a,a-1 _ z(A'A- 1 - B'B - I) 	 (80)

If wr-! put 0 = a - I F we have for Eq. (77) the new following expression

(76)

and
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+ [(EknB 1 hcj L-µ )A_ k(k-1)r -2+ a' a lkr -l+ Z(a"^a)-(3/4)(a'/ a ) 2 ] $ = 0
(8-)

We apply the JWKB method. We write

^ - f ( r ) eiS(r)/h	 (82)

We obtain the following exact equation for S: 39

_(S,)2 + (Ekn c -2 B -1 -m 2 c 2 )A - k(k-1)r-
2 h 2

 +

+ [ 1(a "/a) - (3/4)(a'/a) 2 ] A 2 + a'a -lkr -1 A 2+h 2 [(3/4)(S"/S') 2_ ?(5 11 /S,)I=C

(83)

In the case where all the quantities with h2 in front are little in

comparison with the others ,with the exception of k(k-1)/r 2 (high quantum

numbers), Eq. (83) )----comes

c [k(k-1)h r - 2A - 1+ A - 1S' + M c 2 ] = E knB -1	 (84)

The quantity A a S' is the projection in the radial direction of the momen-

turn p of a particle with total energy Ekn , i. e. ,

1	 i
A 2 S' = p pi

where p 1 is a unit radial vector of component

(-g11)1/2xlr-1

i
( -g 22 )	 x r1/2 2 -1

p -= 

(_g33)1/2x311-1

1

1

1	 1	 1

The quantity E kn B 2 is the energy of the particle and the quantity (k(k-1)) z hA =r

is the magnitude of the projection of the momentum in a plane normal to the
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radial direction. We see that (84) reduces with this notation to the familiar

relation between momentum and energy,

W = EB z = c(p 2 +m 2 c 2 )'	 (85)

We neglect in this approximation the following quantities

a,a-ikr-lA-1*2	 (86.1)

A-I[Z(a"/a) - (3/4)(a'/a)21-i^2 	 (86.2)

and as usual we neglect

[(3/4)(S^^/S^)2_ i(5^^^/S')]i2 	 (86.3)

The expressions (86.1) and (86. 2) contain the interaction between a fermi-

on and the metric. We consider in detail the expression (86.1).

It is possible to expand the expressions (83) in quantities of the

form T/W where T is any one of the (83). For high quantum numbers

the projection of the momentum in the plane orthogonal to the radius can

be written
i

P O
 = k-i r-IA a	 (R7)

We put

+ j = p 0 cE -I B Z = k°i'icE-1BZr-lA a	 0 < j < 1	 (88)

the + are a consequence of the fact that k can have positive and nega-

tive values. From (83) we obtain

_	 _

P 2 = c 2 w 2 (1 - m2c4w 2 T j a'ca -IA 2'iw -I )	 (89)

The j a'ca IA Z-fiw I represent an interaction between the spin, the angu-

lar momentum of the fermion and the gravitational field. The particle
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with parallel spin modifies its binding energy in opposite sign from the

particles with antiparallel spin.

1
For a' a -1 cA 2 hw -1 > j - 1 MC w - 2

the P a would be timelike. In this limit certainly different phenomena take

place and other effects must be considered (quantization of gravitational

field, interaction fermion graviton, etc. ). We will now give an order

of magnitude of the interaction between the spin and the angular momentum.

We have from the relation (89) that this interaction is important when

i
a -la1hcA 2 w ^ m 2 c 4

To evaluate this qu...ntity we consider the Oppenheimer-Volkoff analytic

solution for an infinite central density. 36 From this solution we have im-

mediately

2 B,B-1 = - (k/0)1/4 mch-1

-1Remembering that B I B = - P , (P+ p) and from the behaviour of the equa-

tion. of state and of the density p(r) near the origin we found that the con-

dition (90) is satisfied when the density p is greater than ---10 549 cm-3 40

5. Case of a Weak Field

It is clear '.he in Eq. (71) the low quan tum numbers give a negligible

contribution to the mean values < T O 1 > and < T0l  > . Therefore we can

limit our attention only to high quantum numbers and in this limit the sum-

mations can be substituted by integrals. From expressions (71), (74), (76),, and (85)

if we express ; the differential density of presence in the momentum space

we obtain. for the energy density of our configuration the following expression

(90)
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pF	
1

< TO > -7h 3 n-2 
J 
r c(p2	 2+mc 2 ) 2 p 2 dp	 (91)

0

where pF, is the Fernii momentum that is related to the density of particles

p by the following expression

pF
a = t^-3 n-2 J p 2 dp _ 13 pF ^-31T-2	

(92)0

To compute the mean value of the spatial trace we must evaluate the quantity

E I k I (IF kn Gkn) present in the expressions (72). Following the approximations
kn

adopted in §4 we can write

i(S/fi)	 _	 i(S/fi)
Gkn gkn e	 and Fkn f kn e

We obtain for Eq. (64) the following expression

gkn((hc)
-lEknB 2+ µ) A2	 [ f kn - iS'h-1 flan - kr-1 fkn	 (94)

We multiply Eq. (94) for the complex conjugate and, neglecting the quantity

fkn we have

1

gkngkn ((f^c)-1 EknB 
2 +µ)2A _ (k2r-2+ h-2S12)f

kn fkn 2	 (95)

Remembering the expression (84) we can write (95) as following

I g kn 12(('c)-lEknB 2 + 4l) _ ((hc)-lEknB 2 -4l) I fkn 1 2	 (96)

On the other side, we know from (74) that the density of presence can be

expressed in the following way

pkn = IkI(Igknl2 + IfknI 	 A 	 B -?	 (97)

We can therefore express I f kn 1 2 and I g kn 12 as a function of p kn and we

obtain

	

	 1	 1	 2	 _ 1	 1
IkI Ifkn

l2 
- a A B 2 p kn(EB 2 +mc )F BZ

(98)

I k I Ig kn l 2
 = Z A B Z pkn (EB 2 - mc2)E-1 B2

Remembering Eqs. (72) we can write

(93)
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1
< T1 i > _ - < T^ t > + E p kn mLc4 EknB2

kn

< T 1 1 > _ - < TD 1 > + E p kn m,c4 "EknBa
kn

	We can, as before for the	 < TO >	 transform the summation in inte-

grals and express the differential density dp in the momentum space ob-

taining for the trace the following expression:

pF 	 1	 1

< T1 >=.h-3zr T 
(^( P 2+1n 2 c 2 ) 2 - E -1m cB 2 )p 2 dp	 (100)1	 0

After the computation of the integrals we obtain

O 2 3 ) -1 { PF pF 2 	 2 
2 )(pF 2	 2 2)2 -(	 )4	

-1(PF -1 -1 ) }
<T > = c(8n A(2	 +m c	 +m c	 me sink	 m c

(101)

i	 2 3 1	 2	 2	 2 2	 2	 2 2 1 4	 -1	 -1 -1< T i >)_ -3c (8n h ) {PF ( 3 PF -m c )(pF + m c ) 2 + (mc) sin h (p F m c ) }

(102)

These expressions for the sourge of the Einstein equations are exactly

the same as those used by Oppenheimer and Volkoff. We have also shown

that the pressure is isotropic. We have in fact found the relation

< T ikt l tk >	 = 3 < Ti >	 (103)

where t1 is a unit vector normal to a radial unit vector. It is possible to verify

that the relation, (103) follows from the apprcximaticn previously adcpted.and

(99)

from (73).
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APPENDIX A

The system (26) appears to be a system of nonlinear differential

equations of first order in the functions A and B and of second or,ier in R.

Ali three functions are present in each of the three equations. The system

n
is solved by determining the eigenvalue 

E01 
which permits the boundary

and : .itial conditions (25) and the integral condition (24) to be satisfied.

If we have a solution A (26) that satisfies the boundary and initial

conditions (25) but with the integral(24) having a value I / 1, then this will

be equivalent to a new solution normalized to 1 with

A* = A	 R^ = R/^	 N* = N. I

B* = B	 I* = E I

where * indicates the new solution. Another very useful property '.hat we

have used during the integration of the system is that g 0o can be defined

up to an arbitrary constant factor. In other words we can integrate the

system and find the eigenvalue independently of the boundary condition (25. 4)

and their divide g 00 by an appropriate factor so that g p0 (po) = 1.

We have integrated the system in two completely different ways.

In analogy with the usual method adopted for similar problems in atomic

and molecular physics we have used an iterative method of computation.

We have expressed A' and B' as function : .)f A, B and R, R" as a function

of R' , A' , ` B' , A, B. We start from flat space A = B = 1 and from a

give initial radial distribution R(r). We compute new values for A and B.

We put these new values in the radial equation and integrate obtaining a
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new radial function. Starting from these values for A; B and R we start a

new cycle (see Fig. 101j.

For any reasonable choice of the initial function R. thi: procedure

converges rapidly. Within five cycles we found

IGi/Gi,I-li < 10-6

where Gi and Gi+l stand for the three functions A, B and R. evaluated

for the i th and (i +1)th cycles. This program was extremely accurate but

five cycles at three minutes per cycle is too long to be practical. For this

reason we have developed a new program based on the. Rur.ge - Kutta method

(for particulars see reference 18 using the preceding program only for com-

parison or for improving the accuracy of some results.

The method of integration is completely different from the former.

We fix some value for A; B and R at the origin and a random value for the

eigenvalue E01 . We solve all three equations simultaneously and we extend

the solutions, starting from the origin by successive intervals Ar - h

If the value of E01 is correct the radial function R decreases ex-

ponentiall.y reaching the value zero at infinity. If it is too small then at a

certain value of r the derivative R' chang-c s sign, thereafter R increases

n
and goes to + oo as r goes to ; oo. Moreover if E 01 is too large, then

at a cer t ain value of r the radial function R will change sign as r in-

creases further towards infinity the function R will go to -co. The

program starts the integration at the origin and extenc!s the solution to the

A	 n
point where either R' > 0 or R < O.
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•

	

	 A subprogram optimizes the choice of a new eigenvalue and the

integration starts again from the origin. The computation :s topped in

the asymptotic region R < 10-10, 9 11 —900 — 1. Some illuminating diagrams

are sketched in Fig. 11.

From the asymptotic form of g 11 , we have computed, ire the usual

wav, the value of the mass at infinity, and from the. maximum of g ll , we

have determined the "effective radius" of the distribution,

( maxQ )"effective radius"	 ,J	 11 g 1 dr
O

The computation carried out with this second program (Runge-Kutta) is in

perfect agreement with the computation of the first program (iterative

method).
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TABLE CAPTIONS

TABLE l: The dimensionless quantities cp, V and r relative to the

equilibrium configuration of many self-gravitating bosons in

their ground state (n = 1, f - 0) are given. These data refer

to a Newtonian approximation valid for a number of particles

N << (Planck mass /m) 2 where m is the mass of the boson

under consideration. The solution relative to a fixed number

of bosons N is obtained from the dimensionless quantities cp,

V and r by appropriate scale factor (see relations (5)).

TABLE II: In A are given some numerical results relative to the New-

tonian nonrelativistic treatment of a system of many self-

gravitating bosons in the ground state (n = 1, f = 0). The mass

of the bosons has been chosen to be m = 2. 689 10 25 g. The

value of the radial coordinate for which the potential has one-

half of its value at the origin has been defined to be the radius

of the distribution. The total mass of the system has been com-

puted neglecting the binding energy. From these numerical

values, clearly appears the presence of a sealing law in the

nonrelativistic treatment. It is also clear that the density at

which such a quantum gravitational bounded state takes place

is strongly dependent from the number of particles under con-

sideration.

In B numerical results for the extreme relativistic region are

given. R 01 (0) is the value of the radial part of the wave func-

tion at the origin. The mass at infinity has been computed

from the asymptotic behavior of 1g111 and g00 at infinity and

the value is given in units (lic G m ). The eigenvalue E01

has been determined by requiring that the radial function R 0

goes to z.erc at infinity and is measured in units of mc 2 where

m is the boson mass. The value of the radial coordinate r
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corresponding to the maximum of g 11 has been defined to

be the radius of the distribution (units hm -Ic I ). The mini-

mum of g 00 is attained at fhe origin and its value is fixed

in agreement with the requirement g 00 ( o0 ) = 1. The number
1

of particles determined by the integral r < J O > (-g) 2 d 3x = N
-2 -2	

1

is measured in units L m	 where L = (,ric%G)2.

TABLE III: Some properties of an ideal system of self-gravitating fermions

in the Newtonian region are reported. The mass of the ideal

neutral fermions considered is m = 1. 6 x 10 
24

,,r. Here the

radius is the distance at which the Fermi kinetic energy falls

to half value; (K. E. /mc^) r_0 is the kinetic energy of the parti-

cle at the center in units mc2. 
p0 

is the central density: M

is the total mass (neglecting the negative mass of gravitational

binding) and r	 is the gravitational radius of the system
schw	

54
endowed with this mass. From the last line (10	 particles) it

is evident how the effects of special and general relativity are

manifested simultaneously.
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TABLE

r V r V cp

0.00692 0.15793 0.08329 11.44081 0.08411 0.02122

1.04637 0.15667 0.08214 12.48026 0.07809 0.01714

2. 08581 0. 15305 0. 07883 13. 51971 0. 07270 0.01374

3.12526 0.14741 0.07371 14.55915 0.06788 0.01095

4.16470 0.14022 0.06724 15.59859 0.06359 0.00867

5. 2041 5 0. 13203 0. 05997 16. 63803 0. 05975 0. 00683

6.24359 0.12335 0.05240 17.67747 0.05632 0.00536

7.28304 0.11460 0.04497 18.71693 0.05324 0.00419

8.32248 0.10611 0.03798 19.06340 0.05228 0.00386

9.36193 0.09816 0.03164 20.10285 0.04960 0.00300

10.40137 0.09808 0.02605 21.14230 0.04717 0.00233
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FIGURE CAPTIONS

Fie. 1.	 Density is plotted as a function of the radial coordinate for a system

of self-gravitating fermions for selected values of the central density. Near

the origin there exists a very simple scaling law (Bondi scaling law). A

solution for a value of the central density K 2 p c , where K 2 is a constant, is

obtained from the solution of central density p c taking the value of p at the

point r and multiplying then by K 2 and r by 1/K. Enormous changes ir the

core have practically no effect on the rest of the distribution.

Fig. 2. The radius R and the total mass (expressed in km, M * == MGlc2)

of a neutron star are plotted as a function of the central density in the range

10 16 g cm- 3 5 0cent 
5 10 22g cm 3 . As the central density goes to higher and

higher values the radius R and the mass M are influenced less and less and

approach asymptotic values R - 6. 4 km and M = 0. 617 MO.

Fig. 3.	 The stress ellipsoid for a degenerate gas of self-gravitating bosons

is plotted at selected distances from the center. From this figure it is evident

how the anisotropy increases from the center (the stress is the same in all

directions T1 = T2 =: T3) to the outside (Ti^T2 = Ti^T3 = 1. 75). the plot

refers to a distribution with R 01 (0) = 1. 0 (see Section II). The radial coordinate

is measured in units h(mc) 1 , the stress tensor in units h (2m) 1N.

A
Fig. 4.	 The dimensionless quantities cp and V relative to the equilibrium

configurations of many self- gravitating bosons in their ground state (n= 1, ^- 0)



-56-

in the non-relativistic domain are ¢iven as a function of the dimensionless 	 _ ! -

coordinate r . The exact numerical values are given in Table .1.

Fig. 5. The total energy Etot as evaluated by numerical computation in

the Newtonian approxima*ion is plotted against the number of particles N. We

can understand the qualitative behavior of this diagram by considering the

formula E tot - N mc 2 - 0. 1626 N 3 G 2 m 5 !^_
2
 The maximum of the total

energy corresponds to a particle number given approximately by (Planck mass/m)2.

We indicate by m the mass of the elementary boson.

Fig. 6.	 The radial function R 01 is plotted as a function of r (dimensionless)

for selected values of R 01 (0) at the origin.

Fig. 7.	 The coefficients g ll and g 00 of the metric are. plotted as functions

of r (dimensionless) for selected values of the radial function R 01 at the origin.

To an increase of the central density (p c R 2 l (0)) corresponds an increase in

the maximum of g ll and a decrease in the minimum of g00'

Fig. 8. The mass at infinity multiplied by (m x m 2 ) and the total number of

2	 -k	 - 5particles multiplied by (:m /m.) (m = Planck mass --- 10 	 g and m = mass of

the single boson = 2. 689 10 -25 g) as obtained from the general relativistic

treatment are plotted as a function of the central density. We have adopted a

particular scale to focalize our attention on the extreme relativistic region

(N — (Planck mass/m) 2 ) where the contributions of general and special

relativity are more important. For a direct comparison are also shown the

corresponding quantity obtained in a Newtonian approximation. For a number
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of particles N < (Planck mass/m) 2 the general relativistic treatment approaches

asymptotically the Newtonian approximation. From this figure it is clear that

in the full relativistic treatment to an increase (decrease) in the particle number

corresponds always an increase (decrease) of the mass at infinity. This result

eliminates one of the strongest difficulties of the Newtonian approximation., where,

for sufficiently high density, an increase in the particle number corresponds to

a decrease in the total energy of the system (in the Newtonian approximation this

last nuantity, divided by c 2	takes place of the mass at infinity of general

relativity). The mass at infinity stays always positive and, at least in the

accuracy of our numerical computations, seems to approach an asymptotic

positive value, when the central density goes to infinity. The total number of

particies in the general relativistic treatment reaches a maximum value Ncrit

otherwise non-existent in the Newtonian approximation; in this way tL- concept

of a critical mass is introduced and the presence of the gravitational collapse,

also in the bosons' case, seems unavoidable. We notice that in the asymptotic

region, increasing the central density, the curve of the mass at infinity crosses

the curve of the total number of particles, suggesting the existence of gravitationally

unbound states.

Fig. 9.	 The Newtonian gravitational potential of a system of self-gravitating

fermions in degenerate state is plotted as a function of the radius in app:-priate

dimensionless units (C = G N m b -1 ()(/x), r= N-1/3 b x, G is the Newtonian

2/3gravitational constant, b = 1/2 (31r/4) 	 h m 3 G -1 , m the mass of the fermion).
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Fig. 10. Scheme c	 he iterative pi cgram relative to the numerical solution

of the relativistic equations of many sei`-;;ravitating bosons in their ground state.

The index I indicates the cycle number, the index K iL determined by the number

e F iterations necessary to obtain a given accuracy.

A
F ;. 11.	 Radial functions R 01 relative to the ground state distribution of N

self-gravitating boson are plotted as a function of r (dimensionless) for

A	 A
c:iffeient values of E 01 . The eigenvalue is E 01 = 0. 8862.

A
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