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ABSTRACT

A method of self-consistent fields is used to study the equilibrium
configurations of a system of self-gravitating scalar bosons or spin 3 fermi-
ons in the ground state without using the traditional perfect fluid approxima-
tion or equation of state. The gravitational interaction is described by
general relativity. The many particle system is described Ly a second
quantized free field which in the boson case satisfies the Klein-Gordon equa-
tion in general relativity Vavatb = pzdb, and in the fermion case the Dirac
equation in general relativity ya Va\Il = u¥, where p = mc/A. The coef-
ficients of the metric gap are determined by the Einstein equations w.ith
a source term given by the mean value, < & | Tuvld’ >, of the energy momen -
tum tensor operator constructed from the scalar or the spinor field. The
state vector < &| corresponds to the ground state of the system of many
particles. In both cases, for completeness, a nonrelativistic Newtonian
approximation is developed and the corrections due to special and general
relativity explicitly pointed out. Both for fermions and bosons, in the New-
tonian nonrelativistic approximation, a solution exists for any number of
particles and the solutions differ only by a scale factor. The gravi-
tational Bohr radius of a system of two particles of mass m is 'ﬁZG- m
When there are N bosons the central attraction is increased by the facter N
and the dimension is reduced by the factor N-l. These nonrelativistic con-
siderations fail when the binding energy for particles becomes comparable to

the rest energy.mc2 for N ~Nc ~ (Planck mass/m)2 "'1040 (for m ~10'258,

rit
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implying mass ~ 1015g, density ~ 1054g/cm3). In these regions we have de-

veloped a full relativistic treatment. Both in the region of validity of the

80

Newtonian treatment (density from 10" g cm-3 to 1054g cm-3 and number

of particles from 10 to 1040) as well as in the relativistic region (density ~
54 -3 : 40 .

10" "g cm 7, number of particles ~ 10" ) we obtain results completely
different from those of a tradiational fluid analysis. The energy momentum
tensor is anisotropic. A critical mass of gravitational collapse is found for
a system of N ~ (Planck ma.ss/m)2 self-gravitating bosons in the ground
state.

For N fermions the effective radius is the gravitational Bohr radius

4/3,-2

divided by N. The binding of the typical particles is GZmSN and

57

reaches a value ~ mc2 for N ~ Nc ~ (Planck rnass/m)3 ~ 10 (for m ~

rit

10 4gr, implying mass ~ 1033gr, radius ~ 106cm¢ density ~ 1015g/cm3).

For densities of this order of magnitude and greater we have given the full
relativistic treatment. It confirms, without using an equation of state, the
Oppenheimer-Volkoff treatment in extremely good approximation. It is
shown that there exists an interaction between gravitational and spinor field
but its magnitude is generally negligible.

The problem of an elementary scalar particle held together only by

its gravitational field is meaningless in this context.
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I. INTRODUCTION

The late Landau was the first1 to point out that a system in its ground
state, composed of a critical number of particles, will necessarily undergo
gravitational collapse. In the intervening years many questions have been
raised and much new has been learned about gravitational collapse. o Among
the questions that constantly recur none are asked more frequently than these:
(i) What does one really know about the equations of state of matter at supra-
nuclear density? (ii) What right does one have to use an equation of state at
all? The first question will not be treated here and for good reasons: one
knows the equations of state of ''catalyzed'" matter with sufficient accuracy
from every day density up to the density ~ 1014g/cm3 of nuclear matter, and
one has an argument from causality (speed of sound < speed of light) that no
allowable modifications of the equations of state at supranuclear densities
can change the critical mass by more than a factor of the order of two away

33

from an estimated figure M ~M__ =2 X 10 "gr. 3

©
We focus here on the second question: can one discuss stability against
gravitational collapse without mentioning an equation of state at all? Sir A.

. 43 . ' ' dae ; .
Eddington raised questions about the possibility of using an equation of
state at all and also purported to derive an equation of state quite different
in the relativistic domain from Chandrasekhar's standard equations of state
for a degenerate ideal Fermi gas. Today one takes seriously none of his

results but only his motivation. He sought some escape from the concept

of the critical mass, made so vivid by the first detailcd calculation of the

-




critical mass by Chandrasekhar. 8,1 Happily in the same period Dirac,
starting from first principles and employing the Hartree-Fock model of the
;tom, showed for the first time how to go straight from the physics of bound
orbitals to the concept of an equation of state, as had already been used in
the Fermi-Thomas atom model. 710,
A. Fermions

To justify the concept of an equation of state it was only necessary,
Dirac showed, that the effective potential should change by a small fraction
of its value over one wavelength. L This condition is normally reasonably
well satisfied in atoms containing a large number of electrons. A forticri
it is satisfied extraordinarily well in the case of a system of a very large
number of ideal fermions (no direct interaction) held together solely by
gravitational forces. Consequently there is as little reason to question the
concept of an equation of state in the extreme relativistic case as in the non-
relativistic case. We give an explicit demonstration of this point in Section
III where we extend the original Dirac arguments to the context of general
relativity and particles moving with relativistic velocity. Difficulties only
arise when one violates the condition laid down by Dirac: slowly varying
potential. It seems at first sight preposterous that in a system of 10 or 100
km radius the effective gravitational potential can vary percentagewise by
a significant amount over one particle wavelength. However, in a configura-

tion of sufficiently high central density the rate of fall of the density is also

very high (Fig. 1). Specifically, for each hundred fold increase in the cen-
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tral density the half-radius of this "central core' (Schwarzschild coordinate
where the density falls to half value) decreases by one power of ten. A These
enormous changes in the core have practically no effect on the rest of the
star; the core in this sense is almost '"isolated' from the rest of the star,
The outer radius and the total mass of the star are influenced less and less
as the central density goes to higher and higher values . (Fig. 2).

Nothing in principle prevents the central density from being so high
(~ 1054g/cm-3) that the central core is of the orlder of magnitude of a nuclear
Compton wavelength #/fmc). The effective gravitational potential changes
significantly over one wavelength. Dirac's condition is violated. The con-
cept of an equation of state no longer makes sense. The effective radius of
curvature of the geometry of the space--in the region of the core--is of the
same order of magnitude as the Compton wavelength. Under this condition
a coupling takes place between the spinor field and the gravitational field.
This coupling is generally neglected in the fluid approximation. Its physical
significance and order of magnitude are further analyzed in Section III.
Naturally it is a fantastic idealization to think of particles moving about 'freely"
at a density of 1054g/cm-3 and responding only to the curvature of space.
Even so the interaction between spinor and gravitational field has negligible
effect on the radius and total mass of the system. Therefore there is not
the slightest reason evident out of these considerations for questioning the
concept of equation of state for analyzing the behavior of an idealized system

of many fermions coupled orly by gravitational forces. It is not hard
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to see the basic reason for this result: when many fermions are present,
the Pauli exclusion principle forces the typical fermion into a state with

very high quantum numbers. Then the JWKB approximation is applicable
everywhere except in the core; outside the core Dirac's conditions apply,
the pressure is isotropic and the Fermi gas model is well justified 15 (see

Section III).

B. Bosons
The direct opposite is the case of an idealized system composed of

many bosons interacting only by way of gravitational forces. Some aspects

16,17,18,19

of this problem have been previously treated. When the system

is in its ground state each individual boson is also in the ground state (one
and the same state for all bosons). Their distribution of stress, except near
the center, is anisotropic. Therefore the concept of an equation of state is
completely inappropriate. Fig. 3 shows the stress ellipsoid at selected
distances from the center. At nonrelativistic energies (few particles, weak
gravitational binding) the anisotropy in the stress 1s of little account. A
Newtonian treatment 1s possible under these circumstances. In this regime
a simple scaling law brings out a similarity between nonrelativistic systems

with different numbers of bosons, N . We find

(central density) ~ 0, 9G3N4m10h” 61@'-37 7.08 x 10-108N4g cm-3

at which the potential) ~6.242%G N Tm"? - 7.55 x 102'N" em

distance from center
falls to half value

85

= -8.86 x 10" 8°N° ergs

2

(energy to remove all )
h

3
the particle to = ~ 0,246 sz" N
separation
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having chosen for m the meson rnass (2. 489 x 10'25g). Evidently there

exists a critical value of the order Nnfhc/G)m Zat which the binding energy
per particle becomes comparable to the rest energy. For a number of particles
of this order of magnitude the Newtonian non-relativistic treatment fails.

We have developed a full relativistic treatment for the case N com-
parable to or greater than the Nc ., for bosons. A detailed analysis (see

rit

Section II) leads to the system of equations summarized in the following dia-

gram:
Metric Einstein equation with a source given
dsz _ B(r)dtz ) A(r)drz ) %by the computed stress energy tensor
- 1 = - < >
- rz(sinze d(pz + d92) RpV 2 ngR & S|Tp,vls
Klein-Gordon wave equation Meau value < S| T V|S >, for the
v
a 2 round state, of the stress ener
v,ve=pe ¢ 4%

f—————Pitersor Tp.v =
(8£/8(5"®))d @ + (8%/8(8"2))® & -g &
M M By

for the N bosons

for bosons moving freely in

the given metric, with £ =0

The solution of the equations was carried out by computer; the particulars

of the integration method are given in Appendix A. It is of great interest
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to know at what point the change from stability to instability takes place
in the family of equilibrium configurations that we have found. One of us
(R.R.) hopes to return to this question. Without waiting for this yet to be

done analyses, one can immediately draw one new conclusion: There exists

no equilibrium configuration for a system of more than N ~ (Planck rr.!ass/m)2

rit

ideal self-gravitating bosons in their ground state.

There are both great differences and at the same time great similari-
ties between a system of ideal self-gravitating bosons and a system of ideal
self-gravitating fermions. Each is characterized by its own critical mass.

On the other hand, there is an enormous contrast between bosons and fermions

with respect to the value of the critical mass (Nc ~ (Planck mass/m)3 for

rit

fermions, Nc ~ (Planck mass/m)2 for Losons) and to the dimensions of the

rit
system required to reach relativistic conditions. This difference is due
principally to the fact that all the N bosons are in the ground state, whereas
the N fermions, according to the Pauli principle, are distributed in the N
lowest energy states of the phase space.

Section II also notes that it is absolutely meaningless to consider in

the present context the '"'problem' of one elementary particle held together

only by its gravitational field.
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II. BOSONS

1. Newtonian Treatment

In Newtonian theory the gravitational potential V satisfies the Poisson

equation

AV = -47mGp (1)
where p 1s the matter density and G Newton's gravitational constant. The
Schr8dinger equation for a particle of mass m , in the presence of a gravita-
tional potential V is

MY+ 2m A %E+ mV)¥= 0 (2)
We are interested in a system of self-gravitating bosons, all in the same
quantum state. We therefore assume that the gravitational potential V
satisfies equation (1) with p = NY*Ym, where N is the number of bosons and “
¥ is the wave function of the quantum state under consideration. The wave

function is normalized to one
sk
J‘ Yyadx=-1 (3)

We shall consider only the ground state of the system (n=1, g=0) which
we may assume to be spherically symmetric. CTonsequently the resulting system

of equations in dimensionless units is

-1 a2/a0% B o)+ B+ V)e=0 (4.1)
-1 dz/d?Z (7 Q/’) = cp*cp ' (4.2)
cp*cp 2 af - (4. 3)
where
r=1am 3¢ In! % (5.1) v=21"2G2N2m %Y (5. 2)

e | 5 _2A
y=2nH2m3G N 18 Y24 (5.3 ! "E=2G2N’m 2 "%E (5. 4)




< 1) =

We have carried out a numerical integration of the system (4) by the
Runge-Kutta method. We have found the eigenvalue é by looking at the
behaviour of the wave function at infinity. As usual we have determined
the ground state by requiring that the cigenfunction have no nodes. The
results are given in Table I, Fig. 4 and Fig. 5. Knowing the solution of
the universal system of equation (4) and thanks to relation s (5) it is
possible to obtain a solution relative to an arbitrary number of bosons
simply by making appropriate scale changes. If we distinguish quantities

referring to solutions with N, and N2 particles by suffixes 1 and 2

1

respectively, we obtain the foliowing relations

2
E, = E (NZ/NI) r, = 1 (Nl/Nz)

(6)

_ 3/2 - 2
Y,= Y, (NZ/NI) V,=V, (NZ/NI)

2

These arguments could suggest that for any number of bosons in
the ground state there exists always aposition of equilibrium ! But we
must analyze if the theory we have used always makes sense.

It is possible to divide the plot of Fig. 5 into three regions: to an

increase in the particle number corresponds

in region I an increase in the total energy of the system

in region II a decrease in the total energy of the system which never-
theless remains positive.

in region III a decrease in the total energy of the system which is now

negative.
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It is very important to observe that at the end of region I the gravi-
tational energy of one particle is of the order of magnitude of the rest mass
energy of the particle. Therefore it is clear that corrections coming from
special relativity must be taken into account. Moreover, no doubt exists
that, in the regions II and III, the application of Newtonian gravitational theory
is meaningless and one would expect important modifications from the use of

general relativity. “9

2. General Relativistic Treatment
We shall consider scalar bosons described by the curved space21

Klein-Gordon equation

]
o

v, et e
(7)

"
(=]

a_* 2_%*
Va ve +tpo
where p = mc/h and Vo: and U% are respectively the operators of co-

variant and contravariant differentiation. This equation can be derived

from the Lagrangian2
5 * *
afz'ﬁZ(Zm)](g“VBpé 5@ - |.L2<I) 3) (8)

In the usual way we can derive the following conserved quantities: the sym-

metric energy-momentum tensor

1[ 9 NIFIES -3~/-|_g|-of-l

T ,=2gh™?

(9)

aLag*“’) agh”

a
ox
and the current vector




"
3 b
g ih'lc((a&f/a(auqn Ne - (ax/a(apm)@) (10)
where g = det gaﬁ'

We only wish to consider spherically symmetric distributions of
equilibrium. Therefore we may express the metric in Schwarzschild co-
ordinates (x0 = ct, x1 =r, x2 =0, x3 = @)

2 2
ds2 = B(r)c dt2 - A(r)dr2 -r (sinzedq)Z + dGZ) (11)
In this system the equation (7) becomes
- i -1, 2 2
(|g])728, [glkak@]+B 8,70 +u‘@ =0 (12)
It is possible to make a separation of variables in equation (12) by
setting
3(r,0,8,t) = R(r)Y," (6, ¢) o (13)
where Ylm(e, ¢) 1is a spherical harmonic. The function R must satisfy
the equation
2 _-1,-2 -2 2 -1 -2
" lp: Ll 1 =l =
Rln+ (2/r + 1B'/B ZA/A)Rln+A[EnzB A %c T-pT- g+ )A ]Rzn 0
(14)

23

where the prime denotes differentiation with respect to r.

The most general bound solution of the equation (7) can be expressed

in the following way
-i(E  /R)t
Bic,0, 0,8l & ¢, R ¥ e ™ 4
nfm nf{ m
nf{m
L i(E M)t (15)
£ nf

+ 2 b R Y e

nfm nf{ m
nifm

Since we are considering a neutral field & 1is real and therefore & =&

and




b =C (16)

In the formalism of second quantization ® is an operator and can

be separated into two components

-i(E_, /)t

2 5 + £ nf
@' = Ly, R Y _(6,0)e (17)
nf{m
+i(E_, /At
- - %
o = U u, R Y (69 ™ e
fmn nf{ m
nim
so that
+ .
=% +&
p;mn and “;mn are respectively the creation and annihilation operators
for a particle with angular momentum 4£, azimuthal momentum Am and
energy Enl'
These operators satisfy the commutation rules
bt - T=8,. & .8 (19.1)
Femn’ P e'm'n' = %04 “mm’ “nn ’
+ + - -
= = s &
[p'!mn, p'llmlnl] [p'lmn’ I“'l 'mlnl] 0 (19 )

From the operator & it is possible to construct the energy-
momentum tensor operator T . and the current vector operator A Lol
(TR
We consider a state |Q > for which all the N particles are in the ground

state
lQ>=|N,0,0,0, >
We compute the mean values of the components of the operators T ” and
K
g% for this state.

We obtain
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0 2 -1 -1_2 2 2 S - -1_,2
< > = -.-l; !
Ql'r0 Q L*m N [(B EOl/(‘ﬁ c)tpRy +A ROI] (20.1)
| 2=l -1_2 2 2 2. 2 -1_,2
> =1 - '
<Q|T1 |Q L*m ‘N [(B EOl/eﬁ c’)-p R +A ROl] (20.2)
2 3 > -1_2 s & 2
<q|t.?la>=<q|T.’|Q> =1m N [(B'EZ /@ ) - wiRE, -
2 3 a 01 01
2, -1
- ROIA ] (20. 3)
<Q|T01|Q>=0 (20. 4)
where EOI and ROI are respectively the eigenvalue and the radial part
of the eigenfunction of the ground state (n =1, £ = 0). The mean value of
the component JO of the current vector is
0 -1 -2.,2 -1
< > =
QI'|Q@>=E, N m™ ¢ Ry, B (21)
From the expressions (20.1), (20.2) and from the Einstein equations in
Schwarzschild coordinates we obtain
2 2 - 2 2 5
A/(A"P+ 1/r” (1-1/A) = e [(B 1Egl/(‘ﬁzc ) + |..L2)R01 + A 1R'oi] (22.1)
= . -1_,2
B'/(ABr)- l/r2 (1-1/A) =¢ [(B lE(Zn/(‘l'azcz) - pz) R01 + A 1R'Ol] (22.2)

where
= 411G c-4f72m-1 N

and these together with the equation (14) form a closed self-consistent
system (diagram in introduction). The other equations

2 2
GZ = kT2

and
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are consequences of Eq. (22) because of the Bianchi identities

a
V.G B =

and of the relation

The normalization condition

f«f-_g<J°>d3x=N (23)

is, explicitly
41rfE01rn1 ZRZ “TpaZ 2qr -1 (24)

The initial conditions and the boundary conditions are

ROI(O) = const (25.1)
R'm(O) =0 (25.2)
A(0) =1 (25. 3)
B(wo) =1 (25. 4)
3, 17

It is possible to show that the conditions (25) are consistent

with the system of equations (14) and (22).
We have put the system into dimensionless units obtaining the
following expressions:

BYAB%)- 1/22 (1-1/A) = & [(B'lfz(zn- 1)1'5\3 +A 1sz1] (26.1)

2 -1a 2

aalew st a-1a) =2 [(B'IE + l)R +ATR' ] (26.2)

A A A n2 -1 A
" 1 1 1 _ - .
R01+(2/r +B'/2B - A /2A)R01+A(E01B l)R01 0 (26. 3)




i AT 424

RS B~
0 01

= 1 (26. 4)

where now the prime denotes differentiation with respect to 2 , and

A
r=ry (27.1)
A
R = R/“,3/2 (27.2)
A 2
Ey = EOI/mc (27.3)
A 3 2 2., A
€= eu = LTu N/E01 (27. 4)

where L is the Planck length L = (hG/cB)%,

We have carried out a numerical integration of the system (26) for
different values of the radial function R01 at the origin. We have plotted
some results in Fig. 6, Fig. 7, and Fig. 8. Particulars of the integration
method are described in Appendix A.

The introduction of special relativity (Klein-Gordon equation) and
general relativity eliminates completely some difficulties present in the
nonrelativistic Newtonian approximation, i.e., the regions II and III of Fig. 6
have disappeared. An increase (decrease) in the number of particles always
corresponds to an increase (decrease) in the mass at infinity.

On the other hand the relativistic treatment introduces the concept
of critical mass. The mass at infinity and the number of particles expressed
as functions of the central density (see Fig. 8) reach a maximum Mcrit ~

(0. 311 x 10_9/m)g, N iy ™ (3.01 x IO—IO/mZ) corresponding to a central density

cr

97
X

~(5.26 x10 mz) cm3 where mi(g) is the boson's mass. Both
g g

pcrit

quantities reach their peak values at the same value of the central density

(or the same value of any other appropriate parameter). After this maximum
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they decrease monotomically for an arbitrary increase of the central density.
We give in Table I some numerical values. Imagine bosons of one
or another mass, and out of each kind of boson a system put together com-
posed cof very many identical particles. For each kind of boson there will
be a different critical mass. When the mass m of the particle goes to zero
the critical number of particles Ncrit goes to infinity. So does the critical
mass m ... For the case of distributions endowed with the critical mass,
the Schwarzschild radial coordinate, r, at which g11 reaches the maximum,
also goes tc infinity as m goes to zero. Simultaneously the central density
p goes to zero.
One can treat a system of many bosons at constant temperature T
as a fluid with an equation of state p = p(p) derived from quantum statistics
in flat space. Can one extend this treatment to T= 0 (ground state)? No. We
run into difficulties because the pressure is proporticnal to TS/Z and there-
fore vanishes in the limit T — 0. Proceeding to this limit we would never
obtain any of the configurations of equilibrium that we have found. It is clear
that the approximation of treating the system as a perfect fluid is completely
inadequate at T = 0 in a system of this kind. It is essential to allow, as
we have, for the fact that all the particles fall into the lowest quantum state,
a state which morecver carries its own characteristic distribution of pres-
sure, stress and density. Moreover the pressure is anisotropic and very

different from zero!

The effect of introducing general relativity is comparatively simple
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as long as the particles are treated in a statistical way (no allowance for

the details of particle-particle coupling). Then the gravitational problem

is no more difficult than the Hartree-Fock atom. In both cases the inter-
action 1s universal, in the sense that cne law covers all ranges of distances
(in contrast, i.e., to nuclear forces). The case of ideal particles coupled
gravitationally differs from the case of electric coupling in this respect, that

"interaction'' ever puts in a direct appearance. Instead, thanks ‘o the

no
geometrical interpretation of gravitation, it is possible to treat the inter-
action simply considering the Klein-Gordon equation for free particles in
a curved space where the metric is determined by the system of the bosons

itself. This treatment has the advantage of being valid even in the region

of an arbitrarily strong gravitational field.

3. Possible Generalization of the Method
In the preceding paragraph we have studied the problem of a system
of bosons in the ground state. It would be interesting to study the corres-

ponding problem for a distribution function

<0,0,...,N . ,...,0| (29)

nfm
in other words, all the bosons in the same excited state, and examine the
dependence of the critical mass upon the quantum numbers n,f,m of that
state.

We would have to compute the mean value of the energy momentum

tensor corresponding to this distribution. The radial function would satisfy
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the Eq. (14) and in the mean value of the energy momentum tensor some
quantities depending on n,{ and m would be present, e.g.,

ctls - alnr® 4 Blg%, . 5p% O AAM) g2 (30)
1 nt nf ' nl rZA nt

The computation of tlie mean value is completely analogous to the calcu-
lation (20) for the ground state. The number of zeros in the radial func-
tion is equal tc the difference n - £ - 1. This number was zero for the
self gravitating system in its ground state. For the general excited state
this difference will be large, and the radial function will have many nodes.
However, there is another case where again the m. nber of nodes is zero,
namely large n, but f also large and equal to n - 1. A simple analysis
shows that we are dealing here with waves running round in a thin "active

region' or ''spherical zone of activity."

It is interesting to see that if we
write the equations in the limit p — 0 we obtain after some simple approxi-
mations Wheeler's equation for geons--not however electromagnetic geons
(built on a field of spin 1) nor gravitational geons (spin 2 field) but geons

built on a scalar field of spin 0.

A further generalization to distributions of the form

<N N N

100’ 200’ Ol k2l)

210" """

and a corresponding examination of the critical mass would be possible.
In this case we would have a number of radial equations equal to

the number of different values of £ and in the energy momentum tensor a

sum of contributions belonging to all the different values of n,f, m for
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which anm #0, e.g.,

1
<T,>= & ¢ <T > (32
1 gron Jmn I4mn )

where the Cymn 2¥e some suitable normalization factors. The computation
of the mean values would be done using the commutation rules (19).

Down to how small a number of particles does it make sense to use
the statistical treatment which we have given fcr a system of N ideal self-
gravitating bosons in their ground state? For bosons of any familiar mass

value the statistical treatment in the small N limit is Newtonian. It gives

for the binding energy of the N boson system

3.2 _5,-2

Ebind= 0.1626 N"G m # (33)
and for the 2-boson system
E.. .= 13008 GZm a2 (34)

bind
On the other hand the exact treatment of the ideal two boson system follows
from the standard theory of the hydrogen atom when we insert (a) for the
mass the reduced mass m/2 of the two boson system and (b) for the coef-
ficient e2 of 1./1'2 in the expression for the force the Newtonian value G mz;

thus,

2

E = 0,25 G2m % 2 (35)

bind
Comparing (34) and (35) we see that the statistical treatment gives a value
for the binding 80% greater than the correct value. The discrepancy will
be of the same order whenever we go to the full relativistic treatment and

we consider the case of a small number of particles of appropriately larger

mass (~ 10-5gr). The reason for the error is clear:




T

the quantity < Jo> does not represent a real density of particles but only
a density of probability. Therefore the metric is computed in corres-
pondence not to the time changing momentary distribution of matter but
to a probability distribution. Thus it would appear that the treatment
developed here, valid for a system of a large number of particles is a
poor approximation for a single particle as well as for a system of only
two or three particles (large fluctuation away from any average density,
correction for center of mass etc.). In effect a system of equations
equivalent to the system (26) and substantially equivalent to the equations
published in references 16 and 17 has been recently analyzed in connection
with the problemn of one particle or a few particles by Feinblum and
McKinley?js' &0 and by Kaup27. Moreover in our opinion there is nct the
slightest reason to believe that the considerations on 2 relativistic many-
boson system given in this paper have any relevance w atever to the quite

' g 28,2
different problem of the internal structure of a single boson. ?
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III. FERMIONS

To bring out the effects that we are looking for with maximum clarity
we restrict attention here and in the following to an idealized system of
fermions: particles which interact with each other exclusively by gravitational
forces (no electric forces, no nuclear forces) and which are treated as : table
(no beta decay, no other elementary particle transformations). A collection
of neutrons (in the first few minutes befiore beta decay can occur!) is the
closest approximation we have tcday to such a system. However, it should be
emphasized that well known effects come into play for neutrons at sufficiently
high densities, which make a neutrcn star depart from the ideal system under
consideration here in respects which are important and which are still not suf-
ficiently well understood to be neglected in a detailed analysis.

As we have pointed out in the introduction, for a system of many self
gravitating fermions a "spike’ in the density at the origin (Fig. 1) forces the
effective potential to change substantially over one wavelength. Then Dirac's

argument fails. The concept of 'equation of state' breaks down.

Why does the Fermi-Thomas atom model work so well? The answer is

well known: only near the atomic nucleus is the condition
AdigVir)/dr <1 (36)

violated. Moreover the volume of this region is very small compared to the
atomic volume for an atom containing many electrons. Different from the
atom in one vital respect is a system of many self gravitating fermions.

There is not a powerful preferred center of attraction such as the nucleus
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provides in the atom. The potential is as smooth a function of the position
as one could possibly hope to have in a system of a finite extent. No spike
here! Or so it seems until one looks more carefully.

On first inspection the potential seems to be perfectly regular for the
self gravitating system of fermions (Fig. 9). In this figure the gravitational
potential (X /x) expressed in appropriate dimensionless units, is plotted as a
function of the distance from the center, also in appropriate dimensionless
units. Both quantities are taken from the tables of Emden31 for a polytrope

of index n = 3/2; that is a function which satisfies the equation

2 2 3/2
aix faxt = - 3%/ & (37)
The function X verifies the normalization condition

X

max
[ 3% s e (38)
0

The connection between this polytrope and the system of N fermions is well
known. The usual radial coordinate r in the Newtonian system is connected

with the dimensionless coordinate x by the equation

r= N.l/3 b x (39)
where the unit of length, b, has the value
2/3_,2_ -3 _.-1
b =1/2 (3n/4) A°m - G

The value of the gravitational potential (relative to the gravitational poten-

tial on the surface of the system as standard of reference)is

q,=Gme/r (40)

where G is the Newtonian gravitational constant.
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The kinetic energy of a fermion at the point r is connected with the Fermi

4

{
momentum and the potential 9 by the equation

2 =1
lK.E.hnm‘—pFQnﬂ-nmg (41)
The mass density of particles is

( plr) = (%) m A~ p; (42)

This is the source term in the Newtonian equation for the gravitational potential
!

I
.

A?=-41er (43)

From Eqs. (39) and (40) it follows immediately that the density distribution
for an arbitrary particle number can be obtained directly from the graph of
X/x as function of x in Fig. 9.

The smoothness of the dimensionless potential plotted in Fig. 9 shows
that there is no "spike' in the potential for a system containing a reasonable
number of particles. However within increasing N the whole scale shrinks.
Automatically what was a potential without a "spike' becomes a potential which
is everywhere a "spike.'" Then the statistical treatment fails.

Long before one arrives at this critical value of N, however, the bulk
of the fermions have been promoted to relativistic energies (last entry in
Table II). The nonrelativistic treatment fails. The Newtonian nonrelativistic
regime ends when the Fermi kinetic energy, largest at the center of the

system, attains a value of the order of m C2~; thus

2
(K.E)p o .=m 9~wnc (44)




-26-

4/3 2.1 2
G NreI m b (x/x)0 mc . (45)

Frcm this equation we find

*3, 3 57 -24
N g~ m /m 7 (~107" for m = m= L. 6x10 “Tg) (46)

* -
Here m = (ﬁc/c:‘)ll2 -2 210 g is the Planck mass and (X/x) is the
Jdimensionless measure of the gravitational potential at the center.

For values of N > Nrel the Newtonian treatment has to be modified

in two ways: (a) the nonrelativistic relation E_ = pé(IZm)-lbetween the

F
Fermi energy and the Fermi momentum must be replaced by the relativistic
one, and (b) the Newtonian theory of gravity must be corrected to general
relativity, because the dimensions of the system are becoiiing comparable
to the Schwarzschild radius.
. . 32 33 .

Historically Landau ~ (1932) and Chandrasekhar ~ (1935) considered

the effect of special relativity before Oppenheimer and Volkoff34 added the

effects of general relativity. In the meantime the properties of an idealized

system of fermions have been studied in considerably more detail. 35 As the

central density goes higher and higher a localized "'spike' indeed develops in
the gravitational potential. 3k Ultimately it becomes so sharp that in the region
of the spike the concept of the equation of state therefore breaks down.

In the following section we trace out in detail the properties of the
region of the spike, the connections between the theory of many self gravita-
ting particles and the concept of the equation of state, and finally the modif-
ication which comes about in the region of the ''spike. "

We found that the modifications in the region of the ''spike' are quali-
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tatively extremely important; however, we believe that they cause no more
trouble in the theory of the neutron star than the corresponding troubles
caused for the theory of the atom and for the same reason: the volume of

the effective region is negligible compared to the volume of the entire system.
On the other hand we show explicitly that outside the region of the ''spike

the application of the equation of state is perfectly legitimate and coincides

with the treatment of many fermions with a self consistent field method.

1. Formalism of the Relativistic Treatment
We apply the formalism of Section II to the case of fermions. We
assume a familiarity with the spinor formalism in a differentiable manifold.
Nevertheless it is useful to recall a few definitions.
It simplifies the problem to adopt a system of isotropic coordinates.

Assuming a spherical symmetric and static distribution, the metric in this system

of coordinate is  qs°- B(r) <’ d t*- Afr) ((dxl) 2 +(ax2)%+(dx3)2) (47)
where
r =x +y +2z
1
X =X
xz':y (48)
3
X =Z

The Dirac matrices must satisfy the relation

Yo¥p T YV~ 2 L I (49




where I is the unit matrix.
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In the Majorana representation and with the metric (47) we obtain

for the Y, the following expressions

1 ¢ 0 O
01 0 O
A1/2
0 0-1 0
0 0 0 -1
0 0-10
0 0 0 -1 A1/2
-1 0 0 0
0-1 0 0
0 0 0 -1
0 0 1 0 A1/2
01 0 0
i1 0 0 0
0 0 0 -1
0 0 -1 0 BI/Z
0 1 0 0
1 0 0 O

We will also use the Pauli representation; we have the relation

Ypauli ~

where Q is the unitary matrix

-1

YMajorana

(50.1)

( 50. 2)

(50. 3)

(50. 4)

(51. 1y
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1 1 1 i
-i i -1 1 %
Q =1/\2 (51.2)
-i 1 1 -1
1 1 -1 -i

The Dirac equation is

a A

A B
Y gV =m¥ (52)

. A 3 . .
with we indicate a contravariant spinor of 4 components. The covar-

iant derivative V is
a

A A A B
VAR R (53)
- B '
V0¢A—80¢A+O"QA¢B 154
where
A &6 A BcC
T B /4T, 5Ys5cY B (59)

From (53), (54) and (55) we obtain

6 A A C D A

A A
Ve ¥eB “ % YgB™ Tga Y6B * %c¥eB ~ 2 B YpD = ° L56)

We define the covariant and antisymmetric two-spinor fundamental form

“AB ~ "“BA (59
with components
., 1/ ~ _ B _
“iq = 718l “42 7913 T 924 793470 (38)
., L\ 1/4
wp3 = -il-el
for which we have
va:r “AB ~ 0

This fundamental form is used to raise and lower the spinorial
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indices
Vo = Yap tIJB (59)
2. The Dirac Equation in a given Isotropic Metric
If we write Eq. (52) using the metric (47) we obtain the following
equation
YQABBQ(A7/8 B3/8 q‘13) _ WA A7/8 B3/8 (60)
which in the Pauli representation is
AV2p-V2 g 1, Py (3,P* - ia,P> - 3,P% = 0
aAY2p-Y2 gyl ) P2y (3P + i3,P - 3,P) = 0
(61)
Al/?'('-B'l/2 Eatet +u.)P3+ (aIPZ - 13,P + 3;P) =0
AY2 5 V2 gyl et P 4 ia,P -3, P) = 0
Here we have put
Aol o253 10 = Ay olER CTX 4-7/8 5-3/8 (23

Let us introduce a polar system of coordinates; as in flat space it is possible
to separate the radial part of the function PA from the angular part. We

obtain the following complete set of solutions

/ )
P}kmn = ((k-1+ m)/(2k-1))Y 2 FLo Yﬁll
1
PZ = ((k-m)/(2k-1)) /2 Foo Yo k>0
(63.1)
Py = -i((k-m)/(2k+ 1)/ 2 G, Y, E>0
Pt - i(k+m)/ke Y2 G ¥

Ikmn




where F and

1..‘,1

2

Pl -%man

P3

4

II-kmn

= ((-ktm)/(-2k+ 1)/ 2 F

II-kmn

P =

II-kmn

P1

2

Pllkmn =

1:,3

P4

1

PIV -kmn
2
1DIV -kmn

3
Plv _kmn

4

PIV-krnn

IITkmn =

IIlkmn

IITkmn =

G are the radial functions.

- 3] -

(-k-mn+ 1)/ (-2k+ 1)/ 2 F

_i((-k+ m-1)/(-2k+ 1))/ 2

i((-k+ m)/(-2c+ 1) 2 G

((k-1+ m)/(2k-1)) /2 G,

((k-m)/(2k-1)Y % G ¥

k

kn

Y

kn

G

Y

k-1

“i((k-m+1)/(2k-1)Y2 F

i((c+ m)/(2c-1) Y2 F, ¥

kn

((-k-m+ 1)/(-2k+1)Y % G

((~k-m)/(-2k+ 1))/ 2 G, Y%

kn

“i((-k+m-1)/(-2k+ )Y 2 F

i((-k+ m)/(-2k+ 1))/ 2 F

J, * l/2and K= ¢+ L

kn

kn

m-
n Y-k-

m
k-

kn

m-1
Yok

m
-k

1
1

1

1

kn "~ -k-1

numbers corresponding respectively to the observable

m-
Y x

1
-1

k<O
E>0

k>0

E<O0

where ¢ is the spin momentum and L the orbital angular momentum.

The functions G and F must satisfy the following system of equations

(63.2)

(63. 3)

(63.4)

The angular part is described by

the spherical harmonic functions YL"(e,q;); m and k are the integer quantum
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(£, 2l g2, a2 g

d Fkn/dr + Fpo (1-k)/r

kn kn
/ y (64)
_ =] o] =)¥/2 1/2
d G, /dr + G, (l4+k)/r = (-E _#""c”" B/ %% n)AY"F
where E, , F, , and G are the eigenvalues and the eigenfunctions
kn’ ~ kn kn

corresponding to a given k. It is possible to demonstrate that the spectrum

38

of eigenvalues is discrete.

3. Einstein Equations

So far the treatment applies as well to charged particles as to neutral
ones. However, we are interested only in neutral particles (ideal system of
self-gravitating neutrons). Therefore we ask that the field function
verifies the following condition

yoo= oy (65)

Here c is the charge conjugation operator. To make this condition take its
simplest form, we now go to the Majorana representation. There the opera-

tion of charge conjugation has the form

A Ax
™ =y
Ax . A
where ¢ is the complex conjugate of ¢ . Thus we demand
A Ax
b=y (66)

It is easy to see that in the Majorana representation we have from (51)
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1 1 2 3. .4 (Eh e ) -7/8.-3/8
¢Ikmn=1/2(PI+1PI+1pI+ P )imn © A B
. -1 -1,.0
(E .2 ¢ )x
2 } 1, .2 .53, o4 " nk -7/8,-3/8
¢Ikmn-l/2(PI+1PI-1PI+ P )yran © A B
(67)
. -1 =1, 0
E .2 ¢ ")x
3 1 2. 3 . 4 HE x -7/8._-3/8
Y kmn= Y2(-i P - Pr+ Pr-iPr) e A 7"B
4 4. 2 3 .4 (Bt e )’ -7/8.-3/8
¢Ikmn=1/2(1PI+ PI-PI-IPI)kmne A B
In the same way it is possible to obtain ¥ ﬁ, 4131, Yy ?\/ For simplicity in the

following, we indicate with t the eigenfunctions with k >0 and with | the
eigenfunction with k < 0. It is now possible to write the following expressions:

(i) the symmetric energy-momentum tensor

Ta5=1/4(va¢vﬁ¢ FVLOY, Wy Vv Ty Tgu)e (68)
(ii) the current vector
I = Py %y (69)
(iii) the spin tensor
2P = T voy Py Py (70)

With § we indicate the covariant spinor that is obtained from the contra-

variant spinor by means of the lowering operator (59); e.g.,

T=wy"

In the formalism of second quantization the wave function 1 1is an operator

acting on the state vector < QI . The T(1 Ja’ and S are also

B’
operators and their mean values are computed for a state vector < QI

remembering the antisymmetric fermion commutation rules. In the rminimum

energy state of the system, the lowest N/2 cells of phase space are occupied.
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Consequently we have for the mean values of < Q| TgIQ > the following

expressions
0 _ -1/2 2 2 ,-1,-1/2
<QlT01|Q>- T B /E, [k (G + Fi A B
k>0, n (71)
0 _ -1/2 2 |, .2 ,-1_-1/2
<Q|Tjil@>= T B/E k|G + £ )A B
k<O, n
and for the mean value of the spatial trace
<Q|T 1Q>= -<Q|’I‘ r|Q>+mcz |k|(Ff‘m- AT 13'1/z
k>0 n
(72)
<Q|T e s>= - <Q|T 1 |Q > +mdL lk|(F2 - G2 A 1g-1/2
kn kn
k<0, n
For the projection of Tik on a unit-vector t1 normal to a radial unit
vector we have
i _ -1,-1/2 -1
<Q|Turtt |Q>=F, G, |k|ATB /" r )
(73)
1.0 -1 2_-1
<Q:Tu;tt|Q>=Fk kaIA /
We define, as in thc boscon c2ee, the probability density p by means of the
zero component of the vector JH
Lo 1= C[klGE +FZ )atlg V2. 10 g V2
k>0 kn k>0, kn 00
>U,n n (74)
Lo, ! = E|k[(GE + Fin)A'IB'I/Z = 3% (goo)l/2
k<0, n k<0, n
It is possible now to write the Einstein equations for the system of
N fermions
RO - 1/2 R = 81G ¢4 [< TOI>+ < TOL >]
0 0 0
(73)
i -4 i i
R, - 3/2R = 81G ¢ (<T, 1>+ <T,1>]

These equations with Eq. (64) and the normalization condition

® 0 3 0
J t/-gdx= J
J‘o J‘0

' /g dx = N/2
determine the distributioa of the N fermions in the lowest state of energy.

The boundary conditions are the same as in the boson case.
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4, Possible Approximations

In the ground state of the N-boson system all the particles are in
the same quantum state. How different the N-fermion system. The Pauli
principle forces all the particles into different quantum states. To solve
exactly the problem of 1057 fermions self gravitating it would be neces-

57 . 5T , : s
sary to compute 10" eigenvalues and 10 eigenfunctions: Therefore it is
necessary to develop some approximation method.

From (74) we can write the expressions (71) in the following form:

1
<T04‘>= E B-?'E

o]
kn "kn t
k>0
A (76)
0 e
<T N> = 2 B E_ 0yn 4
k<0, n -

In the system of equations (64) we can eliminate G obtaining a second

kn
order equation

-1

" 1 1 B 2 ‘2 ‘2 2 1 '1 '1 1 -2 _
Fn+(a /a)Fkn+Fkn[(Ekn’ﬁ ¢ B -p)A+aa kr - k(k-1)r ]=0

k
(77)
where
PRUSTE R
a = (Ekn c B “+p)A (78)
and
= = -3/2 -1 2.1
1 =431 A _ 1 1 . 2
a'o s A s B EknB (EknB +mec ) . (79)
We fix now attention cn high quantum numbers and we suppose that
— -
EknB : h'-lc : is greater than p inside the distribution. Then we can
write
e = %(A'A'I-B’B-l) . (80)

If we put ¢ = a-lF‘ we have for Eq. (77) the new following expression
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o + [(EZ BT % 3A. kik-Dr % a'a kel 4(a/a)-(3/4)(a'/a)2] = 0
' ’ (82)
We apply the JWKB method. We write

6 = £(r) RE(EIVA (82)

We obtain the following exact equation for S: 3

-s9% + (Elzmc-ZB_l-mzcz)A - k(k-1)r %A% 4
+ [Ya"/a) - 3/0)(a'/a)?10% + ara ke A2 n%1(3/4)(8"/5")2- L(sMYS1) )= €
(83)
In the case where all the quantities with hz in front are little in
comparison with the others,with the exception of k(k-l)/r2 (high quantum
numbers), E'q. (83) hecomes
 [kk-0ar7 247l a7lst? 4 mPcP = E2 BT (84)

i
The quantity A 2S' is the projection in the radial direction of the momen-

tum p of a particle with total energy Ekn’ 1,8,

where p1 is a unit radial vector of component
11.1/2 1 -1
(-8 )/ xr

22)1/2x2r-1

p = (-8
331/2 3 -1
(-g )/ X r
i
010 = -1
-1 1 i S |
The quantity EknB 2 is the energy of the particle and the quantity (k(k-1))2A2A %r

is the magnitude of the projection of the momentum in a plane normal to the
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radial direction. We see that (84) reduces with this notation to the familiar

relation between momentum and energy,

1 1
W=EB 2= c(p2+m2c2)2 (85)
We neglect in this approximation the following quantities
a'a lkr AT RA (86.1)
“ley, o ' 7\l
A [3(a"a) - (3/4)(a'/a)" R (86.2)
and as usual we neglect
[(3/4)(5"/5')2- %(s"'/s')]'n2 ; (86. 3)

The expressions (86.1) and (86.2) contain the interaction between a fermi-
on and the metric. We consider in detail the expression (86.1).

It is possible to expand the expressions (83) in quantities of the
form T/W where T is any one of the (83). For high quantum numbers
the projection of the momentum in the plane orthogonal to the radius can

be written

-

1

Py = khr A2 (87)

We put

1 1

: ATZ  0<j<1 (88)

1 -1 L _
= pch.lB2 = kicE B°r
the + are a consequence of the fact that k can have positive and nega-

tive values. From (83) we obtain

1
P2 = c-sz(l = m2c4w.2 Fj a'ca_lA-zlﬁw 1) . (89)

. -1,-3, - . . :
The ja'ca A Aw ~ represent an interaction between the spin, the angu-

lar momentum of the fermion and the gravitational field. The particle
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with parallel spin modifies its binding energy in opposite sign from the
particles with antiparallel spin.

For a'atcatawls j-1 e
the P® would be timelike. In this limit certainly different phenomena take
place and other effects must be considered (quantization of gravitational
field, interaction fermion graviton, etc.). We will now give an order
of magnitude of the interaction between the spin and the angular momentum.
We have from the relation (89) that this interaction is important when

a-la'hcA_%w ~m2c4 (90)

To evaluate this quintity we consider the Oppenheimer-Volkoff analytic

. " ; 36 . . .
solution for an infinite central density. Frorn this solution we have im-

mediately

%B'B_1 = - (k/p)l/4 e

- -1
Remembering that B'B LA p'(p+p) ~ and from the behaviour of the equa-
tion of state and of the density p(r) near the origin we found that the con-

54 -3 40
dition (90) is satisfied when the density p is greater than ~10” ‘g cm .

E. Case of a Weak Field

It is clear the in Eq. (71) the low quantum numbers give a negligible

contribution to the mean values < T01 > and < T0 > . Therefore we can

0 ot
limit our attention only to high quantum numbers and in this limit the sum-
mations can be substituted by integrals. From expressions (71), .(74),(76), and (85)

if we express ' the differential density of presence in the momentum space

we obtain for the energy density of our configuration the following expression
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0 3 2 o F 2 221
<Ty>= 4 " [ c(p™+m"c%)Zp" dp (91)
0
where Py is the Fermi momentum that is related to the density of particles

p by the following expression

-3 -2 2 1 3
p= h s vr p dp = ij (. (92)
0

To compute the mean value of the spatial trace we must evaluate the quantity

T |k| (F - I:in) present in the expressions (72). Following the approximations
kn

adopted in {4 we can write

_ i(S/#) - i(S/ 1)
Gkn = Byn © and Fkn = fkn e (93)

‘We obtain for Eq. (64) the following expression

-1 -1 1 , o -1
g hc) E, B Z+u)AZ = [ £ -8 f  -kr o f 7. (94)

We multiply Eq. {94) for the complex conjugate and, neglecting the quantity

!
fkn , we have
3 =1 -1 2 2022 -2 * 2
2 =
gkngkn((hc) EknB +p) A= (k'r +2 S )fk st (95)

Remembering the expression (84) we can write (95) as following

-1 -1 2
le,, |2((he)'E, B 24 = ((he) B B2 |g | (96)
On the other side, we know from (74) that the density of presence can be
expressed in the following way
2 2, ,-1 -1
2
[k[(lgy,|”+ [£,1 A" B (97)
We can therefore express |f lz and | [2 as a function of and we
P kn €kn Pkn
obtain 2 1 1 2 1 _%
|k||f, |“= 1 AB% p, (EB 2+mc")E™" B2
kn “ kn (98)

-

2 1 =& 2..-1._1
Ikllgkn| = 3 A B? pkn(EB 2 _mc )E  B?

Remembering Eqs. (72) we can write
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<T?l>=-<T0!>+Ep mzc‘irElB2
i 0 K kn kn
. n . (99)
0w 2 4.-1.1
<T{4>= -<Tyi>+ 1L Prp M € E B
kn
We can, as before for the - < Tg > , transform the summation in inte-

grals and express the differential density dp in the momentum space ob-

taining for the trace the following expression:

Py
< T, } oo 34 Zf (¢(p* +mPc )z E m2C4Ba)PZdP (100)

After the computation of the integrals we obtain

0 o 1 - Al =
<T,y> = c(81r2h3) : { pF(ZpF2+mzcz)(pFZ+m2c2)z -(mc)4sinh 1(me lc 1)}

(101)

Fpol 2,3 -1 2 2 2 2 2, 224 4 . -1 -1 -1
‘< I'i >= -3¢ (8w *7) [pF(gpF -m )(pF +m c )2+ (mc) sinh (me c )}

(102)

These expressions for the sourae of the Einstein equations are exactly
the same as those used by Oppenheimer and Volkoff. We have also shown

that the pressure is isotropic. We have in fact found the relation

<T.t

ik 2 i
Kbt > =3 <T;>] (103)

/

where t' is a unit vector normal to a radial unit vector. It is possible to verify
that the relation (103) follows from the approximation previously adcpted.and

from (73).
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state as previously done by Thomas and Fermi, loc. cit.

This important scaling law was first put in evidence by H. Bondi,
Proc. Roy. Soc. London A281, 39 (1964). See also B. Harrison, K.S.

Thorne, M. Wakano and J. A. Wheeler, Gravitation Theory and Gravita-

tional Collapse, University of Chicago Press, 1965, Chapter 5.
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These features of the curve of equilibrium mass as a function of
central density were first recognized by B. Harrison, Phys. Rev.

137, B1644 (1965).

A complete different situation exists if one insists on extrapolating

the expansion of the universe all the way back to the point that the
Hubble length (particle horizon) in the Friedman-Lemaitre model is

of the order of magnitude of the Compton wavelength of the particles.
See, e.g., E.R. Harrison, Nature 215, 151 (1967); P.J.E. Peebles,
February 1968 preprint, to appear in Toronio University Press. In
this case it is not possible to describe the particles in a locally
Minkowski coordinate frame ignoring the second order variation in

the components of the metric tensor of the matter. The use of an
equation of state for the matter is meaningless and would be necessary,
as we propose, to treat the particles as a field.

R. Ruffini, unpublished Thesis, 1965-66, University of Rome.

R. Ruffini, Uber Einige Ergebnisse, etc., Hamburg Seminar,

June 1967.

S. Bonazzola and F. Pacini, Phys. Rev. 148, 1296 (1966).

S. Bonazzola, unpublished Thesis, Institut Henri Poincaré, 1967.

R. Ruffini and S. Bonnazola, Bull. Am. Phys. Soc. Series II, Vol. 13,
Number 4 (1968).

R. Ruffini, Systems of Self-Gravitating Particles in General Relativity,
Thilisi, 5th International Conference on Gravitation, 1968.

Using the Newtonian gravitational theory, many authors have examined
and have tried (o give physical meaning to the facts that a) the total
energy of a system of many self-gravitating particles could decrease
even if the number of particles increases and b) the total energy of
the system could be negative. See for example F. Pacini, Annales

d'Astrophysique 29, 193 (1966).
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In a very simple and intuitively meaningful way based on a semi-
classical approach J.M. Levy-Leblond and P. Thurnauer, Am. J. Phys,
34, 110 (1966) indicate that the non-linearity of gravitational interaction
should eliminate the existence of systems of self-gravitating particles
with negative total energy.

In the next paragraph we develop a full relativistic treatment that
explicitly shows how both effects a) and b) completely disappear.
Therefore, these effects resulted.from the use, in a highly relativistic
region of a nonrelativistic treatment; and it is clear that they are
physically meaningless.

We use a metric with signature + ---, Greek indices run from 0 to 3,
Latin smalL indices from 1 to 3, Latin capital indices are used for
spinors and run from 1 to 4. For the signs of the Einstein equation

we follow Landau-Lifschitz, The Classical Theory of Fields, Addison-

Wesley, 1962,

See for example, A. Trautman, Bull. Acad. Polon. des Sciences 4,
675 (1965), Landau-Lifschitz, loc. cit.

It is possible to demonstrate that the spectrurn of eigenvalues of bound
states is discrete; see Refs. 18 and 19.

This asymptotic behaviour can be studied even from the analytic point
of view. The system of equation (26) admits in fact a scaling law
between solutions relative to different numbers of particles in the
asymptotic regions (p(0) = »). The existence of such a scaling law was
pointed out to one of us (R.R.) by J. A. Wheeler.

Feinblum and McKinley, Phys. Rev. 168, 1445 (1968).

Independently from the objection of the applicability of our method to
the one-particle system, that we have just explained, serious difficulty

comes from the development proposed by Feinblum and McKinley in
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the neighborhood of the origin (Eqs. (18), (19), (20), and §7 in
reference 25). This development implies either a) goo(O) = o Oor

b) gn(O) = 0 or both. We know that for any physically acceptable
distribution of matter with p > 0 it must always happen gIOO/gOO >0
and this shows that the condition a) is not compatible with the
requirement of Minkowskian space time at infinity., On the other
hand, the condition b) is not compatible with the standard expression
for the space part of a metric, regular at the origin, which is
expressed in Schwarzschild coordinates; namely, that

gy = - 1/(1 + I; Tg r? dr/r). Moreover, with the expression
proposed in Ref. 25 the scalar of curvature and the invariants of
curvature are singular near the origin.

D.J. Kaup, Phys. Rev. 172, 1332 (1968).

We understand from Stakvilevicius and Terletsky by private communica-~
tion to one of us (R. R.) that they have a scmewhat different point of
view than ours on this question.

In the neighborhood of one elementary particle of 10-5g and 10“33 cm
there is an extremely strong vacuum polarization due to the gravita-
tional field of the particle. This argument has been developed by one

of us (R. Ruffini, 5th International Conference on Gravitation, Thbilisi,
September, 1968).

Strong interaction between the particles, creation of new particles,
gravitational vacuum fluctuations, velocity of sound greater than c, etc.
R. Emden, Gaskugeln, Verlag von Teubner, 1907, Berlin.

See reference 1.

See references 6 and 7.

Oppenheimer and Volkoff, Phys. Rev. 55, 455 (1939).
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See for example, B. Harrison, K.S. Thorne, M. Wakano and

J. A. Wheeler, Gravitation Theory and Gravitational Collapse,

University of Chicago Press, 1966,

See Fig. 1.

We will follow the formalism of A. Lichnérowicz, Propagateur et
Quantification en Relativité Generale, Gauthier Villars, Paris, 1966;
also A. Lichnérowicz, Champs Spinoriels et Anticornmutateurs sur
un Espace Temps Courbe, Bull, Soc. Mat., de France, 1966;

A, Lichnérowicz, Champ de Dirac, Champ du Neutrino et Transforma-
tion C. P. T. sur un Espace Temp Courbe, Ann. Inst. H. Poincaré,
Vol. I, No. 3, Paris, 1964,

A system of equation equivalent to (64) has been found for the motion
of a neutrino in a spherically symmetrical gravitational field. See

D.R. Brill and J. A. Wheeler, Rev. Mod. Phys. 29, 465 (1957).
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APPENDIX A
The system (26) appears to be a system of nonlinear differential
equations of first order in the functions A and B and of second order in R.
All three functions are present in each of the three equations. The system

A
is solved by determining the eigenvalue E_ . which permits the boundary

01
and : .itial conditions (25) and the integral condition (24) to be satisfied.
If we have a solution >f (26) that satisfies the boundary and initial

conditions (25) but with the integral(24) having a value I # 1, then this will

be equivalent to 2 new solution normalized to 1 with

Ax

A Rx = R/MI N#= N. I

B* = b B =¢ 1

]

where * indicates the new solution. Another very useful property that we
have used during the integration of the system is that oo can be defined
up to an arbitrary constant factor. In other words we can integrate the
system and find the eigenvalue independently of the boundary condition (25. 4)
and then divide 00 by an appropriate factor so that goobo) = I,

We have integrated the system in two completely different ways.
In analogy with the usual method adopted for similar problems in atomic
and molecular physics we have used an iterative method of computation.
We have expressed A' and B' as functioi < of A, Band R, R'" as a function
of R', A', B', A, B. We start from flat space A =B =1 and from a
give: initial radial distribution R(r). We compute new values for A and B.

We put these new values in the radial equation and integrate obtaining a
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new radial function. Starting from these values for A, B and R we start a
new cycle (see Fig. 10).

For any reasonable choice of the initial function R, the procedure
converges rapidly. Within five cycles we found
|G./G. ., -1] < 107

i i+l

where Gi and Gi+1 stand for the three functions A, B and R. evaluated
for the i th and (i +1)th cycles. This program was extremely accurate but
five cycles at three minutes per cycle is too long to be practical. For this
reason we have develcped a new program based on the Rurge-Kutta method
(for particulars see reference 18 using the preceding program only for com-
parison or for improving the accuracy of some results.

The method of integration is completely different from the former.
We fix some value for A, B and R at the origin and a random value for the

eigenvalue E We solve all three equations simultaneously and we extend

or
the solutions, starting from the origin, by successive intervals Ar = h.
N
If the value of E_  is correct the radial function R decreases ex-

01

ponentially reaching the value zero at infinity. If it is too small then at a
certain value of r the derivative R' changes sign; thereafter R increases,

Ay
and goes to + c0 as r goes to + oco. Moreover. if Eo is too large, then

1

at a certain value of r the radial function R will change sign, as r in-
creases further towards infinity, the function R will go to -oo. The
program starts the integraticn at the origin and extends the solution to the

A
point where either R' >0 or ﬁ <0,
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A subprogram optimizes the choice of a new eigenvalue and the
integration starts again from the origin. The computation s topped in
the asymptotic region R < 10-10. 811 ~ 80 ~ 1. Some illuminating diagrams
are sketched in Fig. 1l.

From the asymptotic form of 8 we have computed, in the usual

way, the value of the mass at infinity, and from the maximum of gu, we

have determined the '"effective radius'' of the distribution,

r
"effective radius'' = ,L(Inaxgll) \/g—ll dr

The computation carried out with this second program (Runge-Kutta) is in
perfect agreement with the computation of the first program (iterative

methed).
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TABLE CAPTIONS
The dimensionless quantities ¢, i\/ and T relative to the
equilibrium configuration of many self-gravitating bosons in
their ground state (n =1, £ = 0) are given. These data refer
to a Newtonian approximation valid for a number of particles
N << (Planck mass /m)2 where m is the mass of the boson
under consideration. The solution relative to a fixed number

of bosons N is obtained from the dimensionless quantities ¢,

V and T by appropriate scale factor (see relations (5)).

In A are given some numerical results relative to the New-
tonian nonrelativistic treatment of a system of many self-
gravitating bosons in the ground state (n =1, £ = 0). The mass
of the bosons has been chosen to be m = 2. 689 10-25 g. The
value of the radial coordinate for which the potential has one-
half of its value at the origin has been defined to be the radius
of the distribution. The total mass of the system has been com-
puted neglecting the binding energy. From these numerical
values, clearly appears the presence of a scaling law in the
nonrelativistic treatment. It is also clear that the density at
which such a quantum-gravitational bounded state takes place
is strongly dependent from the number of particles under con-
sideration.

In B numerical results for the extreme relativistic region are
given. ROl(O) is the value of the radial part of the wave func-
‘ion at the origin. The mass at infinity has been computed
from the asymptotic behavior of g1 and 00 at infinity and

1

the value is given in units fhc G _m- ). The eigenvalue E

01

has been determined by requiring that the rcdial function ROl
2

goes to zerc at infinity and is measured in units of mc  where

m is the boson mass. The value of the radial coordinate r
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corresponding to the maximum of g has been defined to

be the radius of the distribution (units Hm‘lc-l). The mini-

mum of 800 is attained at the origin and its value is fixed

in agreement with the requirement (0) =1. The number

€00 ; i 3
of particles determined by the integral [ <J > (-g)2d’x =N
' 1

is measured in units L-Zm.2 where L = c/G)?2.

Some properties of an ideal system of self-gravitating fermions

in the Newtonian region are reported. The mass of the ideal

-24
neutral fermions considered is m = 1.6 x 10 gr. Here the

radius is the distance at which the Fermi kinetic energy falls
Z

to half value; (K. E. /mc )‘__0

cle at the center in units mc .

is the kinetic energy of the parti-

Po is the central density; M

is the total mass (neglecting the negative mass of gravitational

binding) and r is the gravitational radius of the system

schw 54
endowed with this mass. From the last line (10™ = particles) it
is evident how the effects of special and general relativity are

manifested simultaneously.
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TABLE I
2 v " 2 v "
0.00692 0.15793 0.08329 | 11.44081 0.08411 0.02122
1.04637 0.15667 0.08214 | 12.48026 0.07809 0.01714
2.08581 0.15305 0.07883 | 13.51971 0.07270 0.01374
3.12526 0.14741 0.07371 | 14.55915 0.06788 0.01095
4.16470 0.14022 0.06724 | 15.59859 0.06359 0.00867
5.20415 0.13203 0.05997 | 16.63803 0.05975 0.00683
6.24359 0.12335 0.05240 | 17.67747 0.05632 0.00536
7.28304 0.11460 0.04497 | 18.71693 0.05324 0.00419
8.32248 0.10614 0.03798 | 19.06340 0.05228 0.00386
9.36193 0.09816 0.03164 | 20.10285 0.04960 0.00300
10.40137 0.09808 0.02605 | 21.14230 0.04717 0.00233
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FIGURE CAPTIONS

Fig. 1. Density 1s plotted as a function of the radial coordinate for a system
of self-gravitating fermions for selected values of the central density. Near
the origin there exists a very simple scaling law (Bondi scaling law). A
solution for a value of the central density szc, where K2 is a constant, is
obtained from the solution of central density P taking the value of p at the
point r and multiplying then by K2 and r by 1/K. Enormous changes ir the

core have practically no effect on the rest of the distribution.

s
Fig. 2. The radius R and the total mass (expressed in km, M = MG/CZ)

of a neutron star are plotted as a function of the central density in the range

16

100 g cm-3 <p < 1022g cm~3. As the central density goes to higher and

cent

*
higher values the radius R and the mass M are influenced less and less and

approach asymptotic values R_ = 6.4 km and M_= 0. 617 MO.

Fig. 3. The stress ellipsoid for a degenerate gas of self-gravitating bosons
is plotted at selected distances from the center. From this figure it is evident

how the anisotropy increases from the center (the stress is the same in alil

directions Ti = Tg = T;) to the outside (T}/Tg = Ti/Tg = 1. 75). The plot

refers to a distribution with R ) = 1.0 (see Section II). The radial coordinate

01(®

; . . -1 . ; 2 -
is measured in units #(mc) ~, the stress tensor in units # (2m) 1N.

A
Fig. 4. The dimensionless quantities ¢ and V relative to the equilibrium

configurations of many self-gravitating bosons in their ground state (n=1, 2=0)
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in the non-relativistic domain are given as a function of the dimensionless

- A - . :
coordinate r . The exact numerical values are given in Table [.

Fig. 5. The total energy Etot as evaluated by numerical computation in
the Newtonian approximation is plotted against the number of particles N. We
can understand the qualitative behavior of this diagram by considering the
_ 2 3.2 5 ,-2 .
formula E, . = N mc™ - 0.1626 N G" m~ # ~ . The maximum of the total

energy corresponds to a particle number given approximately by (Planck mass/m)z.

We indicate by m the mass of the elementary boson.

Fig. 6. The radial function R is plotted as a function of r (dimensionless)

01

for selected values of ROI(O) at the origin.

Fig. 7. The coefficients g1 and 00 of the metric are. plotted as functions

of r (dimensionless) for selected values of the radial function R at the origin.

01
To an increase of the central density (p_ ~ R2 (0)) corresponds an increase in
y (pe 01 P

the maximum of g1 and a decrease in the minimum of 00

* o
Fig. 8. The mass at infinity multiplied by (m x m 2) and the total number of
. o as *.2 , ¥ -5
particles multiplied by (m /m )"~ (m = Planck mass ~10 ~ g and m = mass of

25g) as obtained from the general relativistic

the single boson = 2. 689 10~
treatment are plotted as a function of the central density. We have adopted a
particular scale to focalize our attention on the extreme relativistic region
(N ~ (Planck mass/m)z) where the contributions of general and special

relativity are more important. For a direct comparison are also shown the

corresponding quantity obtained in a Newtonian approximation. For a number
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of particles N < (Planck mass/m)2 the general relativistic treatment approaches
asymptotically the Newtonian approximation. From this figure it is clear that

in the full relativistic treatment to an increase (decrease) in the particle number
corresponds always an increase (decrease) of the mass at infinity., This result
eliminates one of the strongest difficulties of the Newtonian approximation, where,
for sufficiently high density, an increase in the particle number corresponds to

a decrease in the total energy of the system (in the Newtonian approximation this
last auantity, divided by c2 , takes place of the mass at infinity of general
relativity). The mass at infinity stays always positive and, at least in the
accuracy of our numerical computations, seems to approach an asymptotic
positive value, when the central density goes to infinity. The total number of
particles in the general relativistic treatment reaches a maximum value Ncrit
otherwise non-existent in the Newtonian approximation; in this way the concept
of a critical mass is introduced and the presence of the gravitational collapse,
also in the bosons' case, seems unavoidable. We notice that in the asymptotic
region, increasing the central density, the curve of the mass at infinity crosses

the curve of the total number of particles, suggesting the existence of gravitationall

unbound states.

Fig. 9. The Newtonian gravitational potential of a system of self-gravitating
fermions in degenerate state is plotted as a function of the radius in appropriate
dimensionless units (% = GNm b-l(x/x), r= N-l/3 b x, G is the Newtonian

gravitational constant, b = 1/2 (31r/4)2/3 hzm'3G-1, m the mass of the fermion).
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Fig. 10, Scheme ¢’ (he iterative program.relative to the numerical solution
of the relativistic equations of many sel!-;ravitating bosons in their ground state,
The index I indicates the cycle number, the index K is determined by the number

of iterations necessary to obtain a given accuracy.

A
Fij. 1. Radial functions ROI relative to the ground state distribution of N

self-gravitating boson are plotted as a function of 2 (dimensionless) for

A
The eigenvalue is E_. = 0.8862.

A
ciffeient values of E 01

01°
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