In this paper we study the behavior of certain solutions of the quadratic matrix equation

\[A'K + KA - KBB'K = -\rho C'C \]

as a function of a real variable \(\rho \). Our main result is a new a priori bound on the solutions. The methods we use draw freely on the variational interpretation of the associated Riccati equation

\[\dot{K} = A'K + KA - KBB'K + \rho C'C \]

as well as the use of transform techniques and an elementary version of Parseval's formula.

1. Preliminaries

Let \(A, B, \) and \(C \) be real, constant matrices of dimensions \(n \) by \(n \), \(n \) by \(m \) and \(q \) by \(n \) respectively. By a linear system we mean a pair of equations

\[\dot{x} = Ax + Bu ; \ y = Cx \]

we also refer to the triple \([A,B,C]\) as a linear system with the understanding that \(A, B \) and \(C \) are the matrices appearing in equation (2). If the conditions

i) \(\text{rank} \ (B, AB, \ldots, A^{n-1}B) = n \)

and

ii) \(\text{rank} \ (C; CA; \ldots; CA^{n-1}) = n \)

where "\(; \)" indicates column partition and "\(; \)" a row partition are satisfied, we call \([A,B,C]\) a minimal linear system. Let \(I \) be the identity matrix. We define the spectral norm of a linear system as the minimum value of \(r > 0 \) such that the Hermetian matrix inequality

\[\text{This work was supported by NASA under Grant NGR-22-009-124, and NSF under Grant GK-2645 and the Army Research Office, Durham.} \]

\[** \text{Present address, Harvard University, Cambridge, Mass. 02138.} \]
The linear system \([A,B,C]\) will be considered together with a functional

\[\eta = \int_0^\infty u'u + py'y \, dt \]

whose minimization is to be considered. We take as known, the facts that under the hypothesis that \([A,B,C]\) is a minimal linear system there is,

1) at most one solution such that \(A-BB'K\) has its eigenvalues in \(\text{Res} < 0\)

2) \(\min_u \int_0^\infty u'u + py'y \, dt\) exists for \(p > 0\)

3) if the minimum exists, \(\min_u \int_0^\infty u'u + py'y \, dt = x'(0)K_1x(0)\)

where \(K_1\) is a solution of equation (1).

Items ii) and iii) are widely known since Kalman [1]; for a proof of i) see [2].

A few additional preliminary results will be required.

Lemma 1: Let \(u\) be given by \(u(t) = He^t g\). Let \(y\) be given by

\[\dot{x}(t) = Ax(t) + Bu(t); \quad y(t) = Cx(t); \quad x(0) = 0 \]

Assume that the eigenvalues of \(A\) and \(F\) lie in the half-plane \(\text{Re} \, s < 0\). Then

\[\int_0^\infty y'(t)y(t) \, dt \leq r^2 \int_0^\infty u'(t)u(t) \, dt \]

where \(r\) is the spectral norm of \([A,B,C]\).

Proof: Since \(x(0)\) is zero the Laplace transform of \(y\) is \(\hat{y} = RG\). Using Parseval's relation and the definition of the spectral norm we have

\[\int_0^\infty y'(t)y(t) \, dt = \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} u'(-i\omega)G'(-i\omega)G(i\omega)u(i\omega) \, d\omega \]

\[\leq \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} u(-i\omega)(r^2I)u(i\omega) \, d\omega \]

\[= r^2 \int_0^\infty u'(t)u(t) \, dt \]

Lemma 2: If \([A,B,C]\) is a linear system with a finite spectral norm then equation (1) has no real solution unless \(p > -r^2\).
Proof: We assume the contrary and look for a contradiction. Let \(K_1 \) be a real solution. Manipulation of equation (1) in the style of Yacubovich, Kalman et al. [3] gives

\[
(-Is-A')K_1 + K_1(Is-A) + K_1BB'K_1 = \rho C'C
\]

Pre- and post-multiplying by \((-Is-A')^{-1}\) and \((Is-A)^{-1}\) respectively gives

\[
K_1(Is-A)^{-1} + (-Is-A')^{-1}K_1 + (-Is-A')^{-1}K_1BB'K_1(Is-A)^{-1} = \rho(-Is-A')^{-1}C'C(Is-A)^{-1}
\]

Now if we pre and post multiply by \(B' \) and \(B \) respectively and add \(I \) to each side we obtain

\[
[I + R_1(-s)][I+R_1(s)] = I + \rho R'(-s)R(s)
\]

where \(R(s) = C(Is-A)^{-1}B \) and \(R_1(s) = B'K_1(Is-A)^{-1}B \). Since the left side is non-negative for \(s = \text{i} \omega \) the right must be also. Hence unless \(\rho \) is greater than \(-r^2\) we can have no solution.

Lemma 3: The quadratic equation

\[
A'K + KA - KBB'K = 0 \tag{5}
\]

has an invertible solution if and only if there exists an invertible solution of the linear equation

\[
L(Q) = QA' + AQ = BB' \tag{6}
\]

If the solution of the linear equation is unique and invertible then it is the only invertible solution of the quadratic equation.

Proof: If the quadratic equation has an invertible solution \(K_1 \) then pre and post multiplication of \(A'K_1 + K_1A - K_1BB'K_1 \) by \(K_1^{-1} \) gives \(K_1^{-1}A^{-1}K_1 = BB' \).

On the other hand, if \(Q \) is an invertible solution of the linear equation then its inverse satisfies the quadratic equation. Uniqueness follows by the same reasoning.

2. The Case where \(A \) has its Eigenvalues in \(\text{Re} \ s < 0 \)

Using these results it is possible to investigate the solutions of the quadratic matrix equation

\[
KA + A'K - KBB'K = \rho C'C
\]

and to relate them to the solution of the linear equation
Our notation will be as follows. By $K_+(p)$ we mean the (unique) solution of equation (1) having the property that the eigenvalues of $A-BB'K$ lie in the half-plane $Re s < 0$. Likewise, we let $K_-(p)$ be the solution of equation (1) having the property that all the eigenvalues of $A-BB'K$ lie in the half plane $Re s > 0$.

Lemma 4: Let $[A,B,C]$ be a minimal linear system with finite spectral norm r. Assume there exists solutions K_+ and K_- described above. Then $K_+(p) - K_-(p)$ is positive definite for $p > -r^2$ and

$$K_+(p) - K_-(p) = \left[\int_0^\infty e^{BB'e} \left[A-BB'K_+(p) \right]^t \left[A-BB'K_+(p) \right]^t dt \right]^{-1}$$

or alternatively

$$K_+(p) - K_-(p) = \left[\int_0^\infty e^{BB'e} \left[A-BB'K_-(p) \right]^t \left[A-BB'K_-(p) \right]^t dt \right]^{-1}$$

Proof: Direct manipulation shows that $K_+(p) - K_-(p)$ satisfies

$$[K_+(p) - K_-(p)][A-BB'K_+(p)] + [A-BB'K_-(p)]'[K_+(p) - K_-(p)] = -[K_+(p) - K_-(p)]BB'[K_+(p) - K_-(p)]$$

From Lemma 3 we see that if there exists an invertible solution $[K_+(p) - K_-(p)]$ it must satisfy equation (6) and conversely. However, it is easily seen that the given expressions for $K_+(p) - K_-(p)$ are well defined and invertible as long as $A-BB'K(p)$ has its eigenvalues in $Re s < 0$ using standard results from controllability theory [2].

The following theorem gives a bound on the solution of equation (1) in terms of the solution of $KA + A'K = -C'C$ and the spectral norm r.

Theorem 1: Let $[A,B,C]$ be a minimal linear system with spectral norm r. Assume that the eigenvalues of A lie in the half-plane $Re s < 0$. Then for $p > -r^2$ there exists a solution of $KA + A'K - KBBK = -\rho C'C$ which has the property that $A-BB'K_+(p)$ has its eigenvalues in $Re s < 0$ and

$$K_1\rho > K_+(p) > K_1\rho / (1+r^2\rho)$$

where K_1 is the solution of $AK_1 + K_1A = -C'C$. Moreover, there are no other solutions of $KA + A'K - KBB'K = -\rho C'C$ which have the property that $A-BBK$ has its eigenvalues in $Re s < 0$.
Proof: First of all observe that the upper bound on \(K_+(\rho) \) is obvious from the variational interpretation of \(K_+(\rho) \) since by letting \(u \) be zero we obtain

\[
\int_0^\infty u^2 + \rho y^2 \, dt = \rho x'(0)K_+x(0)
\]

We know that for the minimal linear system (2) we have

\[
\min_u \int_0^\infty u'(t)u(t) + \rho y'(t)y(t) \, dt = x'(0)K_+(\rho)x(0)
\]

provided \(A-BB'K_+(\rho) \) has its eigenvalues in \(\text{Re } s < 0 \). If \(u_o \) and \(y_o \) denote the optimal control and the optimal response then

\[
y_o = Ce^{[A-BB'K_+(\rho)]}x(0) ; \quad u_o = [A-BB'K_+(\rho)]^{-1}x(0)
\]

Moreover, \(y_o \) can be expressed using transforms as the sum of an initial condition term and the effect of \(u_o \), i.e.

\[
y_o = C(I-A)^{-1}x(0) + R(s)u_o(s) = y_1(s) + y_2(s)
\]

In terms of this notation

\[
x'(0)K_+(\rho)x(0) = \int_0^\infty \rho[y_1'(t) + y_2'(t)][y_1(t) + y_2(t)] + u'(t)u(t) \, dt
\]

Using the preceding lemma we have

\[
r^2 \int_0^\infty u'(t)u(t) \, dt \geq \int_0^\infty y_1'(t)y_1(t) \, dt
\]

Also, from the known relationship between \(KA + A'K = -C'C \) and quadratic integrals we have

\[
x'(0)K_1x(0) = \int_0^\infty y'_1(t)y_1(t) \, dt
\]

Denote this last quantity by \(\mu^2 \) and let \(\nu^2 \) be defined by

\[
\nu^2 = \int_0^\infty y_2'(t)y_2(t) \, dt
\]

Combining these results we have

\[
x'(0)K_+(\rho)x(0) \geq \rho \mu^2 - 2 \rho |\rho| \int_0^\infty y_1'(t)y_2(t) \, dt + (\rho + r^{-2})\nu^2
\]

Now use the Schwartz inequality
\[| \int_0^1 y'_1(t)y_2(t)dt | \geq \sqrt{\int_0^1 y'_1(t)y_1(t)dt} \sqrt{\int_0^1 y'_2(t)y_2(t)dt} \]

to obtain

\[x'(0)K_+(\rho)x(0) \geq \rho \mu^2 - 2|\rho|\nu + (\rho + r^2)\nu^2 \]

Considering this as a function of \(\nu \), it has a minimum at \(\nu = \frac{|\rho|}{(\rho + r^2)} \) and the minimum value is \(\rho \mu^2 (1 + r^2) \). Therefore it is clear that for \(\rho > -r^2 \) the inequalities

\[x'(0)K_1x(0) \geq x'(0)K_+(\rho)x(0) \geq x'(0)K_1x(0)\rho/(1 + r^2) \]

hold. The matrix inequality follows immediately.

To study existence we observe that a solution exists for \(\rho > 0 \) and by differentiation

\[\left[\frac{d}{d\rho} K_+(\rho) \right] [A-BB'K_+(\rho)] + [A-BB'K_+(\rho)]' \left[\frac{d}{d\rho} K_+(\rho) \right] = -C'C \]

or

\[\frac{d}{d\rho} K_+(\rho) = \int_0^\infty [A-BB'K_+(\rho)]t \ C'C \ e^{-C'Ct} dt \]

This differential equation can be integrated in the direction of decreasing \(\rho \) until \(A-BB'K_+(\rho) \) has an eigenvalue with a zero real part. In view of inequality (8), a solution \(K_+(\rho) \) will therefore exist for \(\rho > -r^2 \). To show that it also exists for \(\rho > r^2 \). Note that \(K_+(\rho) \) is monotone decreasing for \(\rho \) decreasing. By lemma 4 \(K_+(\rho) \) is bounded from below for \(\rho > -r^2 \) hence

\[\lim_{\rho \to -r^2} K_+(\rho) = \overline{K} \]

exists and by continuity \(\overline{K} \) satisfies equation (1) with \(\rho = r^2 \).

Notice that the spectral norm of \([-A, B, C]\) is the same as that of \([A, B, C]\) and hence that there also exists a solution of

\[(-A')K + K(-A) - KBB'K = -\rho C'C \]

which puts the eigenvalues of \(-A-BB'K\) in \(\text{Re } s < 0 \). The negative of this solution is \(K_-(\rho) \).
3. The Case where the Spectral Norm is Finite

We now extend the results of the previous section to a wider class of systems. The main result, Theorem 2, includes Theorem 1 as a special case but the proof makes a full case of Theorem 1.

We need the following lemma to reduce the general case to Theorem 1.

Lemma 5: If \(K_0 = K' \) is any solution of
\[
K_0 A + A'K_0 - K_0 BB'K_0 = 0
\]
And if \(K(\rho) \) is any solution of
\[
A'K(\rho) + K(\rho)A - K(\rho)BB'K(\rho) = -\rho CC'
\]
then
\[
[K(\rho) - K_0][A - BB'K_0] + [A - BB'K_0]'[K(\rho) - K_0]
+ [K(\rho) - K_0]BB'[K(\rho) + K_0] = -\rho CC'
\]

Proof: The proof is just a matter of expanding and using the definitions. The details are omitted.

As we have seen, equation (5) can have at most one invertible solution but it can have numerous non-invertible ones. In particular 0 is always a solution as are \(K_+(0) \) and \(K_-(0) \). However, the particular solution \(K_+(0) \) satisfies
\[
K_+(0)[A - BB'K_+(0)] + [A - BB'K_+(0)]'K_+(0) = -K_+(0)BB_+(0)
\]
Since \(A - BB'K_+(0) \) has its eigenvalues in \(\text{Re } s < 0 \) for \(\rho > 0 \) it will follow that its eigenvalues lie in \(\text{Re } s < 0 \) for \(\rho = 0 \) unless the spectral norm of
\[[A - BB'K_+(0), B, C] \]
is infinite. This makes the following lemma of interest.

Lemma 6: If \(K_0 = K' \) is a solution of
\[
K_0 A + A'K_0 - K_0 BB'K_0 = 0
\]
such that \(A - BB'K_0 \) has its eigenvalues in the half-plane \(\text{Re } s < 0 \) then the spectral norms of \([A, B, C] \) and \([A - BB'K_0, B, C] \) are the same.

Proof: From lemma 5 see that if \(K_0 \) satisfies the hypothesis then
\[
K(A - BB'K_0) + (A - BB'K_0)'K - KBB'K = -\rho CC'
\]
has a solution if and only if there exists a solution of
Combining Lemma 4 and Theorem 1 we see that this equation has a solution if and only if \(\rho > r^2 \) where \(r \) is the spectral norm of \([A, B, C]\). Since the same is true for equation (11) the spectral norm of \([A-BB'K_0, B, C]\) must also be \(r^2 \).

Putting these lemmas together with Theorem 1 gives the following generalization of Theorem 1.

Theorem 2: Let \([A, B, C]\) be a minimal linear system with spectral norm \(r \).

Then for \(\rho > r^2 \) there exists a solution of equation (1) and

\[
K_1 \rho > K_+(\rho) - K_+(0) > K_1 \rho/(1+r^2 \rho)
\]

where \(K_1 \) is the solution of \([A-BB'K_+(0)]K_1+K_1[A-BB'K_+(0)] = -CC\). Moreover, there are no other solutions of \(KA + A'K - KBB'K = -\rho C'C \) which have the property that \(A-BB'K \) has its eigenvalues in \(\text{Re } s < 0 \).

4. Additional Comments

The results given here give the following (still incomplete) picture of the solutions of equation (1) under the hypothesis that \(A \) has no eigenvalue with zero real part.

i) There exist real solutions if and only if \(\rho > r^2 \)

ii) For \(\rho > r^2 \) there is exactly one solution such that \(A-BB'K \) has its eigenvalues in \(\text{Re } s < 0 \) and exactly one solution such that \(A-BB'K \) its eigenvalues in \(\text{Re } s > 0 \)

iii) \(K_+(\rho) - K_-(\rho) > 0 \)

Figure 1 suggests the main qualitative features and illustrates the bounds. Of course similar bounds hold for \(K_-(\rho) \).

We note that our results provide a new proof of certain important theorems on the absence of conjugate points [5]. Moreover, our proof does not use any results on spectral factorization of rational matrices.

Additional refinements of these ideas can be found in Canales' thesis [4].
Figure 1: A suggestive picture of the general behavior of $K_+(\rho)$ and $K_-(\rho)$.

If K is one dimensional then $K_+(\rho)$ and $K_-(\rho)$ join at $\rho = -r^2$.

5. References

