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Studies of Nuclear Light Bulb Start-Up 

SUMMARY 

Analytical  s tud ies  were conducted t o  determine the  operating conditions of a 
nuclear l i g h t  bulb engine during s ta r t -up  and the  t r an s i en t  response of the  engine 
t o  various perturbations a t  the nominal full-power operating l eve l .  The bas ic  
nucleax l i g h t  bulb engine design was ref ined,  where necessary, t o  include modifica- 
t i ons  which resu l t ed  from recent  c r i t i c a l i t y  s tudies  and t e s t  program r e s u l t s .  

The s t a r t - up  study was performed using a s impl i f ied  ana ly t i ca l  model of the  
bas ic  engine. Three l i n e a r  power ramps were used and the general engine response, 
aux i l i a ry  power requirements and thermal s t r e s s  l eve l s  were investigated.  The cal -  
culated responses i n  temperature and pressure were s i m i l a r  f o r  a l l  of the power 
ramps. It appears t h a t  there  w i l l  be no major problems with engine control  or with 
excessive thermal s t r e s s  l eve l s  during s ta r t -up .  Some type of auxi l iary  power w i l l  
be required fo r  the turbopump un i t  during s tar t -up.  

Finite-difference approximations t o  the time-dependent thermal, f l u i d  dynamics 
and neutron k ine t i cs  equations were used t o  describe the  operating charac te r i s t i c s  
of the engine. These equations were programmed on a UNIVAC 1108 d i g i t a l  computer t o  
construct a  dynamic simulation f o r  predict ing the  response of the  engine t o  se lected 
perturbations occurring a t  the  nominal full-power operating condition. A preliminary 
t rans ien t  analysis  was performed using the  model, which simulates an uncontrolled 
engine, t o  determine the  bas ic  s t a b i l i t y  charac te r i s t i c s  and t o  iden t i fy  the  param- 
e t e r s  which would provide the  most e f fec t ive  control  mechanisms. Responses t o  
perturbations i n  the uncontrolled system can be characterized by e i t he r  steady-state 
or damped o sc i l l a t i ons  with a charac te r i s t i c  frequency of about 1 cycle/sec. It was 
concluded t h a t  control  of the engine could be achieved primari ly by control  of f u e l  
in jec t ion  r a t e .  



mSULTS AND CONCLUSIONS 

1. The sequence of events during a l i nea r  s ta r t -up  power ramp i s  bas ica l ly  
independent of the  length of the  s ta r t -up  ramp. There i s  a rapid  r i s e  i n  average 
f u e l  temperature which occurs during t he  f i r s t  1 t o  3 percent of the  t o t a l  s t a r t -up  
time. Shortly a f t e r  the  fue l  temperature r i s e ,  there  i s  a s imilar  rapid  r i s e  i n  
propellant  temperature. Due t o  the  large  heat capacity of the  so l i d  moderator 
(5124 ~ t u / ( d e ~  R )  fo r  t he  BeO, 6440 ~ t u / ( d e ~  R )  f o r  the  graphi te) ,  temperatures i n  
these regions l a g  the  f u e l  and propellant  temperatures considerably. As a r e su l t ,  
the bulk. moderator materials  do not reach nominal full-power operating temperatures 
u n t i l  200 t o  300 sec a f t e r  i n i t i a t i o n  of s tar t -up,  regardless of the  length  of the  
s ta r t -up  ramp. 

2. The c r i t i c a l  mass of U-233 var ies  during s ta r t -up  from 18.6 l b  at zero 
power conditions t o  30.9 l b  a t  f u l l  power. For a s ta r t -up  ramp which i s  long r e l a -  
t i v e  t o  the  time required t o  heat  the  moderator, the c r i t i c a l  mass increases continu- 
ously u n t i l  f u l l  power i s  reached. When the  s ta r t -up  ramp i s  shor t  r e l a t i ve  t o  t he  
moderator heating time, the c r i t i c a l  mass a l so  increases continuously, but  does not  
reach the steady-state c r i t i c a l  mass u n t i l  the  moderator temperatures have reached 
the steady-state,  full-power values. For example, f o r  a 60 sec s ta r t -up ,  a c r i t i c a l  
mass of 28.2 l b  i s  required when f u l l  power i s  reached; the c r i t i c a l  mass approaches 
30.9 l b  asymptotically a f t e r  about 300 sec. 

3. Auxiliary power w i l l  be required f o r  s tar t -up.  Due t o  the rapid  pressure 
r i s e  associated with the rapid  f u e l  and propellant temperature r i s e s ,  more pumping 
power i s  needed than the  turbine i s  able t o  del iver  during the  ea r ly  stages of 
s tar t -up.  

4 .  Temperature differences and r a t e s  of temperature r i s e  i n  components through- 
out the  engine were calculated.  No serious thermal s t r e s s  problems occurred during 
the s t a r t -up  t rans ien t s  studied. 

5. Typical responses o f t h e  uncontrolled engine t o  various perturbations i n  
r eac t i v i t y ,  f ue l  in jec t ion  r a t e ,  chamber pressure, turbopump wheel speed, and f u e l  
region radius are i n  the  form of osc i l l a t ions  i n  power which are usually damped, but  
i n  some instances are  sustained a t  a constant amplitude. The frequency of the  osc i l l a -  
t i ons  i s  about 1 cycle/sec. Two fac tors  tend t o  drive t h e  osc i l l a to ry  response: (1)  
a posi t ive  r eac t i v i t y  coeff ic ient  associated with moderator temperature, and ( 2 )  the  
tendency f o r  the  f u e l  in jec t ion  r a t e  t o  exceed the steady-state r a t e  whenever chamber 
pressure drops below 500 atm, 

6, It was concluded t ha t  control  of the  engine ( i n  par t i cu la r ,  fu r ther  damping 
of osc i l l a to ry  responses) could be achieved by controll ing f u e l  in ject ion r a t e ,  



Investigations of various phases of gaseous nuclear rocket technology are being 
conducted a t  the United Ai rc ra f t  Research Laboratories under Contract NASW-847 with 
the  jo in t  AEC-NASA Space Nuclear Propulsion Office. Since 1967, the  pr incipal  e f f o r t  
has been di rected toward the vortex-stabil ized nuclear l i g h t  bulb engine. The basic  
design of t h i s  engine i s  described i n  Ref. 1, and subsequent invest igat ions  which 
were performed t o  supplement and invest igate  the basic design i n  greater  d e t a i l  are  
reported i n  Refs. 2 through 6. Generalized s tudies  of gaseous nuclear rocket engine 
design f e a s i b i l i t y  are  reported i n  Ref. 7. The typ ica l  vortex-stabil ized nuclear 
l i g h t  bulb rocket engine design which has resul ted from these s tudies  has t h e  
following cha rac t e r i s t i c s :  

1. Cavity configuration -- seven separate cav i t i es  having a t o t a l  overa l l  
volume of 170 f t 3 ,  each having a length of 6 f t .  

2.  Cavity pressure -- 500 atm. 

3.  Specific impulse -- 1870 sec. 

4. Total  propellant  flow (including seed and nozzle t ranspira t ion coolant 
flow) -- 49.3 lb/sec.  

5. Thrust -- 92,000 l b .  

6 .  Engine power -- 4600 megw, 

7. Engine weight -- 70,000 l b  . 
8. Ratio of average density i n  fuel-containment region t o  neon density a t  

edge of f u e l  -- 0.7. 

9. Equivalent axial-flow Reynolds number i n  neon vortex -- 5500. 

The majority of the  work under Contract NASW-847 up t o  1969 has been concerned 
with  the design and operating charac te r i s t i cs  of a nuclear l i g h t  bulb engine operating 
a t  f u l l  power i n  a steady s t a t e .  Preliminary invest igat ions  of s tar t -up character- 
i s t i c s  of a nuclear l i g h t  bulb engine are discussed i n  Ref. 1, but these investiga- 
t ions  were performed primarily fo r  the  purpose of determining the  requirements fo r  
a variable-area nozzle during s ta r t -up  and do not include a deta i led analysis  of 
engine conditions during the  t r ans i en t ,  Since there have been no major changes t o  
the  basic  engine design of Ref, 1 as a r e s u l t  of the  continuing studies of engine 
operating charac te r i s t i cs ,  t h i s  design was used as a. bas is  f o r  a t ransient  analysis  
of the  engine, 



The objectives of the  work described herein were (1) t o  determine the t r an s i en t  
operating conditions during reactor  starst-up with pa r t i cu la r  emphasis on flow, 

temperature, and c r i t i c a l  mass charac te r i s t i c s  during the s t a r t - up  ramp, (2) t o  
develop a  computer simulation program f o r  studying the  dynamic response of the  nuclear 
l i g h t  bulb engine t o  perturbations which occur a t  nominal full-power operating 
condit ions,  and (3) t o  perform i n i t i a l  exploratory calcula t ions  with t h i s  dynamic 
simulation program t o  invest igate  s t a b i l i t y  and t o  i den t i f y  parameters with which 
control  of the  engine might be achieved. 



The pr inciple  of operation of t he  nuclear l i g h t  bulb engine i s  discussed i n  
d e t a i l  i n  Ref. 1, and sketches i l l u s t r a t i n g  the pr inciple  of operation of the  engine 
are  shown i n  Fig. 1. Energy i s  t ransferred by thermal radia t ion from gaseous nuclear 
f u e l  suspended i n  a neon vortex t o  seeded hydrogen propellant .  The vortex and pro- 
pel lant  regions are  separated by an internally-cooled transparent wall .  A seven- 
cavi ty  configuration i s  employed, ra ther  than a s ingle  cavity,  t o  increase the  t o t a l  
surface rad ia t ing  area a t  t he  edge of the  f u e l  f o r  a given t o t a l  cavi ty  volume. 

Neon i s  in jec ted  from the  transparent  wal l  t o  drive the vortex, passes ax i a l l y  
toward the  end wal ls ,  and i s  removed through a port a t  the  center of one or both end 
walls  ( ~ i g .  lb') . The neon discharging from the  cavity,  along with any entrained 
fue l  and f i s s i on  products, i s  cooled by being mixed with low-temperature neon, thus 
causing condensation of the  nuclear f u e l  t o  l iqu id  or so l i d  form. The condensed 
f u e l  i s  cen t r i fuga l ly  separated from the  neon and pumped back t o  the  vortex region. 
The neon i s  fu r ther  cooled by r e j ec t i ng  heat t o  the primary hydrogen propellant ,  
and i s  then pumped back t o  drive the vortex. 

The seven cav i t i e s  are surrounded by a beryllium oxide moderator region which 
f i l l s  t h e i n t e r s t i t i a l r e g i o n s .  The beryllium oxide region i s  surrounded by an annular 
graphite moderator region (see  Fig. 1). These two a x i a l  moderator regions are  
separated by an internally-cooled beryllium flow divider which separates the  flow i n  
t h e  two regions. The moderator i s  supported by 24 beryllium t i e  rods which pass 
through the  moderator regions. I n  addition t o  the  ax ia l  moderator regions there are  
upper and lower moderator regions which form the ends of the cavity.  These end 
moderator regions consis t  of a beryllium oxide region, which i s  adjacent t o  the  
cavi ty  end wal ls ,  and a graphite region. The heat  deposited i n  the  moderator by 
neutron and gamma ray  heating and the  heat  t ransferred t o  the ,moderator and s t ruc ture  
by conduction, convection, and radia t ion i s  a l so  t ransferred t o  the  primary hydrogen 
propelLant before it enters  the cavi ty  region. A schematic diagram of the nuclear 
l i g h t  bulb engine flow c i r c u i t s  i s  shown i n  Fig. 2.  

The reference engine design used i n t h e  engine dynamics studies i s  bas ica l ly  
s imilar  t o  t h a t  described i n  Ref. 1, with appropriate modifications based on more 
recent calcula t ions  of moderator requirements, heat deposition r a t e s ,  and 
conduction and convection heating. Since the basic design does not d i f f e r  appreciably 
from t h a t  of Ref. 1, only the  modifications t o  the design and the  resu l t ing  nominal 
full-power operating charac te r i s t i cs  w i l l  be discussed. 



Mod-ifiea.tions t o  Rasic Engine 7Xsign 

There have been two types of modification t o  the  basic engine design: a revision 
of heat  deposition r a t e s ,  and a revis ion of the  coolant flow c i r c u i t s  which remove 
heat  from the  moderator and structure. The revis ion of heat deposition r a t e s  resul ted 
from a de ta i l ed  c r i t i c a l i t y  study ( ~ e f ,  2 )  which indicated a requirement f o r  
addi t ional  moderator mater ia l  i n  the upper (accessory region) and lower (nozzle region) 
ends of the  engine t o  minimize neutron losses .  The Ref. 2 study a l so  resu l ted  i n  
more accurate est imates of neutron and gamma ray  heating than were available f o r  t h e  
s tud ies  i n  Ref. 1. The changes i n  the  coolant flow c i r c u i t s  were made necessary by 
t he  red i s t r ibu t ion  of heat  deposited i n  the  moderator and s t ruc tu r a l  components. 

Revised Heat Deposition Rates 

The heat  deposition r a t e s  used i n  t he  engine dynamics study are  shown i n  Table 
I. The percentage of the  t o t a l  energy which i s  deposited i n  the  moderator and 
s t ructure  i s  12.15 percent. The pr incipal  cause f o r  the  reduction i n  t h i s  value 
from the  15 percent reported i n  Ref. 1 i s  the decrease i n  neutron and gamma ray  
heating predicted . in  Ref. 2. Additional changes are  due t o  a revis ion of the amount 
of heat  t ransferred t o  the  transparent  s t ruc ture ,  cavi ty  l i n e r ,  and end walls  by 
conduction ard convection, and due t o  a change i n  the  f i s s i on  product decay heating 
i n  the f u e l  cycle c i r c u i t .  

The var ia t ion  i n  f i s s i on  product decay heat  with time was estimated by assuming 
t ha t  a l l  of the  f i s s i on  products formed i n  the cavi ty  would remain i n  the  f u e l  cycle 
c i r c u i t .  Since t he  majori ty of the f i s s i on  products which contribute t o  the  decay 
heat  a re  gases a t  l o w  temperature, such as xenon or krypton, they probably cannot be 
separated from the  neon. Even i f  separation were possible,  there would s t i l l  be a 
hea t  source which would have t o  be cooled unless the  f i s s i on  products were expelled 
from the  engine. I f  a l l  of the  f i s s i on  products remain i n  the f u e l  cycle c i r c u i t ,  
t h e i r  contribution t o  t he  t o t a l  heating i n  the  c i r c u i t  w i l l  increase with operating 
time. The estimated contribution of the f i s s i on  products t o  the f u e l  cycle heat  
load was estimated from data  i n  Ref. 8 and i s  shown i n  Fig. 3. 

Revision of Coolant Flow Circui ts  

The coolant flow schematic used i n  the  f i n a l  reference design and i n  the engine 
dynamics s tudies  i s  shown i n  Fig. 2. The fue l  cycle c i r c u i t  i s  cooled d i r e c t l y  by 
the  primary hydrogen propellant .  The f u e l  cycle heat exchanger was located i n  t he  
primary hydrogen propellant  c i r c u i t  t o  provide a lower sink temperature fo r  the  neon; 
t h i s  minimizes the  amount of bypass flow required t o  lower the  mixed-mean temperature 
of the  neon-fuel mixture t o  a l eve l  which would condense the f u e l ,  The cav i ty  
l i n e r ,  t i e  rods, m d  flow divider (see F ig ,  1) are cooled i n  three pa ra l l e l  c i r c u i t s  



t o  reduce the pressure l o s s  i n  the t i e  rods m d  flow divider ,  The quanti ty of heat 
generated i n  the t i e  rods a n d  fl-ow divider i s  r e l a t i v e l y  s r n a l L ,  and t h e  e n t i r e  mass 
flow r a t e  i n  the  secondary c i r c u i t  i s  not  required t o  mairltain tile desired iemperature 
l eve l s  i n  these components. 

Nominal Full- Power Operating Character is t ics  

The engine dynamics model i s  based on a var ia t ion  from steady-state operation. 
Therefore, the  nominal fill-power operating conditions (such as heat  deposit ion 
r a t e s ,  convection and conduction heat loads,  and component specif icat ions)  a re  input 
values fo r  the model. 

The temperature, enthalpy and pressure l eve l s  i n  the  primary hydrogen propellant  
c i r c u i t ,  the  secondary hydrogen c i r c u i t  and the  f u e l  cycle c i r c u i t  are given i n  
Tables 11, 111, and I V ,  respectively.  Pressure losses  i n  the f u e l  cycle c i r c u i t  
were not calculated since deta i led design s tudies  of ce r ta in  components, such as 
the separator,  have not been made. 

The specif icat ions  and operating conditions i n  the flow divider ,  t i e  rods ,  and 
cavi ty  l i n e r  are  given i n  Tables V, V I ,  and V I I ,  respectively.  Since these components 
are cooled by p a r a l l e l  c i r c u i t s ,  the sum of t h e i r  flow r a t e s  i s  equal t o  42.3 lb/sec 
and t he  mixed-mean ou t l e t  temperature i s  approximately equal t o  t ha t  of t h e  cav i ty  
l i n e r .  The pressure l o s s  i n  the  flow divider and t i e  rods i s  negl igible  with respect  
t o  t h a t  i n  the cavity l i n e r ;  an a r i f i c e  or other flow r e s t r i c t i o n  must be used i n  
the t i e  rod and flow divider  flow paths t o  match the pressure loss  i n  the  th ree  
components a t  the  desi red flow r a t e s .  

The specif icat ions  and operating conditions fo r  the transparent s t ruc ture  are 
given i n  Table V I I I .  The combined heat load t o  the  transphrent s t ructure  from both 
the f u e l  and the  propellant  was calculated based on the analysis  of Ref. 6. 

The specif icat ions  and operating conditions i n  the so l id  moderator regions are  
shown i n  Table I X .  The so l id  moderator i s  divided i n to  s i x  regions f o r  the  engine 
dynamics analysis  since the  var ia t ion i n  heat deposition i n  the s i x  regions i s  
su f f i c i en t  t o  require a d i f f e r en t  coolant hole configuration i n  each region. 

The specif icat ions  and operating conditions fo r  the hydrogen-neon and hydrogen- 
hydrogen heat exchangers are shown i n  Table X. It i s  assumed tha t  a l l  heat  exchangers 
were single-pass, counterflow, shell-and-tube configurations with the primary hydrogen 
propellant  flowing i n  t he  tubes since i t s  pressure l eve l  i s  approximately 200 atm 
above the other coolant pressure. The f u e l  cycle c i r c u i t  requ-ires only one heat 
exchanger. The secondary hydrogen c i r c u i t  requires  seven uni ts  due t o  the l a rger  
quanti ty of heat t r ans fe r red ,  



EUGINE START-UP STUDY 

Preliminary analyses of engine s ta r t -up  were undertaken t o  determine (1)  t he  
forms of nuclear f u e l  des i rable  f o r  s ta r t -up  and t r ans i t i on  t o  f u l l  power, (2 )  t he  
temperature and flow condition prof i l es  during s tar t -up,  (3 )  the  c r i t i c a l  mass 
requirements during s tar t -up,  ( 4 )  the temperature d i f f e r e n t i a l s  which may cause 
thermal s t r e s s  i n  sens i t ive  components, and (5 )  the  concepts fo r  control  of a s t a r t -  
up sequence. 

Sequence of Events 

The star%-up steps a re  as follows: (1) close nozzle (it was shown i n  Ref. 1 tha t  
a variable-throat-area nozzle would be necessary t o  l i m i t  the  flow r a t e  of propellant  
during s ta r t -up) ;  (2)  f i l l  both the  hydrogen ducts and the  neon system from storage 
u n t i l  the  neon density i s  equal t o  the neon densi ty  a t  the  edge of the f u e l  cloud a t  
nominal full-power operation (0.926 lb / f t3 ,  or a pressure of 20 atm a t  600 R )  ; 
(3)  turn  on neon rec i rcu la t ion  pump; (4) i n j e c t  f ue l  u n t i l  c r i t i c a l  mass i s  reached; 
(5 )  increase power l e v e l  and adjust  flow r a t e s  and pressure t o  maintain c r i t i c a l i t y  
m d  pressure balance throughout the  system and t o  l i m i t  component temperatures t o  
des i rable  l eve l s ;  (6)  i n j e c t  propellant seeds a t  about 10 percent of f u l l  power 
( t h i s  occurs a t  an equivalent black-body radia t ing temperature of 8500 R )  ; and 
(7)  r a i s e  power t o  desired leve l .  

To make the s tudies  t rac tab le ,  it has been assumed t h a t  s t a r t -up  can be controlled 
such t h a t  power w i l l  increase on a l inear  ramp from zero power t o  f u l l  power (4,600 
megw). Three s ta r t -up  r a t e s  were considered; these were l inear  power ramps r i s i n g  t o  
4,600 megw i n  1, 5, and 10 min. It was assumed tha t  t he  f i s s i on  energy was deposited 
uniformly i n  the  f u e l  cloud. Equations were derived which describe the energy 
balance i n  a un i t  c e l l  during the s tar t -up process. A t  low powers, the  l o s s  r a t e  
of energy from the fue l  region i s  governed by conduction and convection, with 
convection being the  pr incipal  energy loss  mechanism, while a t  high powers, radia-  
t ion  becomes the dominant energy- loss  mechanism. 

Candidate nuclear Fuel Forms 

Three forms of f u e l  were considered; uranium pa r t i c l e s ,  UF6, and molten uranium. 
UF6 and pa r t i c l e s  show merit as s ta r t -up  fue l s ,  while e i t he r  pa r t i c l e s  or l i qu id  
uranium appear sui table  fo r  full-power operation, A l l  of the f u e l  forms have 
physical and chemical propert ies which must be considered over the  ranges of operating 
conditions i n  the nuclear l i g h t  bulb engine. Some of the physical propert ies were 
invest igated i n  t h i s  study; the influence of chemical propert ies should be the 
subject of f u t h e r  invest igat ions ,  



UF6 vapor pressure d a b  Were t a k e n  from Ref, 9 and, are shown ii? Fig ,  4, Tn 
u-sing UF6, one requirement should be tha t  the nuelear f u e l  feed be heated such that 
the temperature of t he  UE'6 i s  always above the  bo i l ing  point ,  It w i l l  be shown 
l a t e r  t h a t  the f u e l  region pressure r i s e s  very rapidly  during the i n t i a l  s tages of 
a s ta r t -up  ramp and, therefore ,  t o  insure t ha t  the  UF6 remains vaporized, i t  should 
be heated t o  900 R or above. Another fac tor  t o  be considered i n  the  use of UF6 i s  
i t s  d issocia t ion i n  t he  f u e l  region and the  r e su l t i ng  p a r t i a l  pressure of f luor ine  
which adds s ign i f ican t ly  t o  the t o t a l  operating pressure of the engine. Calculations 
performed a t  UARL have indicated t h a t ,  a t  f u e l  p a r t i a l  pressures of the  order of 
200 atm (full-power condi t ions) ,  UF6 w i l l  be t o t a l l y  dissocia ted a t  temperatures of 
about 13,000 R. It i s  shown l a t e r  t ha t  average f u e l  temperatures of 13,000 R a re  
reached a few seconds a f t e r  s ta r t -up  f o r  even the longest l inear  power ramp considered. 
Thus, W6 should probably be considered only as a low-power s ta r t -up  f u e l  form, i f  
a t  a l l .  

An a l t e rna t ive  method fo r  in jec t ing  and c i rcu la t ing  f u e l  would be t o  employ a 
uranium dust  or molten uranium aerosol transported by a ca r r i e r  gas. I f  the  c a r r i e r  
gas were neon (the gas employed f o r  buffer  and bypass flow) an aerosol or dust-to- 
carr ier-gas  mass flow r a t i o  greater  than two would r e s u l t  i n  the  introduction of 
fewer non-fuel atoms per atom of nuclear f ue l  than when UF6 i s  employed. Fuel-mass- 
to-carrier-gas flow r a t i o s  of s i x  or greater  would be most des i rable ,  and the  
f e a s i b i l i t y  of achieving these flow r a t e  r a t i o s  with nuclear fue l s  should be 
invest igated fu r ther .  The melting point f o r  uranium i s  about 2500 R;  therefore ,  the  
temperatures i n  the thru-flow por ts  ex i t ing  from each un i t  c e l l  must remain above t h i s  
temperature i f  molten uranium i s  t o  be the  f u e l  form. However, molten uranium i s  
more apt t o  p la te  on the  reci rcula t ion system duct wal ls  than would a cooler,  
condensed uranium. It i s  f e l t  t h a t  the buffer  gas bypass flow which serves t o  cool 
t he  spent f u e l  and vortex buffer gas as it enters  the thru-flow port  should be 
regulated t o  rapidly  cool the uranium t o  temperatures wel l  below i t s  melting point .  

There are  l i t t l e  data  available on the  vapor pressure of uranium a t  elevated 
f u e l  p a r t i a l  pressures and temperatures, However, extrapolations of expressions 
f o r  uranium vapor pressure near one atrn from Ref. 10 indicate  t ha t  the  bo i l ing  point  
of uranium might be about 12,000 R f o r  f u e l  p a r t i a l  pressures of 200 atm ( the  
average f u e l  p a r t i a l  pressure i n  the nuclear l i g h t  bulb engine i s  estimated t o  be 
175 t o  200 atm i n  Ref. 2 ) .  This means t h a t ,  i n  quenching the spent nuclear f u e l  upon 
en t ry  i n t o  the  thru-flow por ts ,  there i s  a temperature range from about 12,000 R t o  
2500 R during which t h e  uranium i s  condensed i n  a l i qu id  form. To prevent the  l i qu id  
uranium from p la t ing  on the thru-flow duct walls  during t h i s  period, cold neon bypass 
flow must be introduced continuously t o  maintain a s teep  temperature gradient and t o  
e s sen t i a l l y  blow the  f u e l  droplets  and/or c rys ta l s  away from the wal ls ,  



Start-Up S i m ~ ~ l a t i o n  Model 

Ttie model used f o r  siimnlation of the  s t a r t -up  c h a r a c t e r i s t i c s  of the nuclear  
l i g h t  bulb engine d i f f e r s  from t h a t  of the  engine dynamics model s ince  wide var ia-  
t i o n s  i n  teinperatures and flow r a t e s  occur during s tar t -up.  Furthermore, l e s s  
d e t a i l e d  information on component operat ing conditions i s  required f o r  t h e  prelimi- 
nary inves t iga t ion  of s t a r t - u p  c h a r a c t e r i s t i c s .  The analys is  i s  divided i n t o  th ree  
s t eps ;  (1) ca lcu la t ion  of t h e  va r ia t ion  of average f u e l  temperature with time; 
( 2 )  ca lcu la t ion  of t h e  operat ing conditions i n  the  f u e l  cycle c i r c u i t  and secondary 
hydrogen coolant c i r c u i t  a s  a function of time; and (3)  ca lcu la t ion  of t h e  operat ing 
conditions i n  the primary hydrogen propellant  c i r c u i t  as  a  funct ion of time. 

The va r ia t ion  with time of f u e l  temperhture during s t a r t - u p  i s  the  most important 
f a c t o r  i n  t h e ' a n a l y s i s ,  s ince the heat  t r a n s f e r  mechanism changes during s t a r t - u p  a s  
the  f u e l  temperature changes. During the  e a r l y  phase of s t a r t - u p ,  when the  average 
f u e l  temperature i s  l o w  (<10 ,000  R ) ,  t h e  heat  i s  removed from t h e  f u e l  by conduction 
and convection t o  the  neon buffer  flow and t h e  secondary hydrogen coolant.  As the  
average f u e l  temperature increases ,  the  f i e 1  rad ia t ing  temperature increases  ( f u e l  
r ad ia t ing  temperature i s  assumed t o  be one-third of the  average f u e l  temperature) and 
the  amount of heat  t r ans fe r red  by rad ia t ion  increases .  When the  average f u e l  
temperature reaches 15,000 R (fuel. r ad ia t ing  temperature = 5000 R )  , t h e  rad ia t ion  
hea t  t r a n s f e r  becomes dominant and the  percentage of t h e  t o t a l  hea t  t r a n s f e r r e d  by 
rad ia t ion  approaches t h a t  during full-power operation. 

The assumptions used i n  the  s t a r t -up  s tudies  are : (1) the e n t i r e  engine i s  
i n i t i a l l y  a t  600 R ;  ( 2 )  a l l  of t h e  heat  removed i n  the  f u e l  cycle c i r c u i t  and the  
secondary hydrogen c i r c u i t  i s  t r ans fe r red  t o  the  primary hydrogen propellant  
c i r c u i t ;  (3 )  only the  heat storage capacity of the neon and f u e l  i n  the cav i ty  and 
the  heat  s torage capacity of the  s o l i d  moderator are  considered i n  ca lcu la t ing  
temperature l e v e l s ;  and ( 4 )  the  residence times i n  the  various components are  small 
r e l a t i v e  t o  the  length  of the  s t a r t - u p  ramp, and may be neglected. The sequence of 
events dwing s t a r t - u p  are l i s t e d  i n  Table X I .  

Calculation of Fue l Temperature During Start-Up 

The va r ia t ion  of f u e l  temperature during s t a r t -up  i s  based on a heat balance 
i n  the  cavi ty  region,  It i s  assumed t h a t  the f u e l  in jec t ion  r a t e  would be control led  
t o  produce a l i n e a r  power ramp. The heat  generated i n  the cav i ty  i s  equal t o  the  
t o t a l  power l e s s  the  neutron and gamma r a y  heating (0.89 x t o t a l  power). The heat  
generated i n  the cavi ty  must be balanced by the  sum of s i x  heat  s torage and heat  
l o s s  terms: ( I )  the heat  s tored i n  the f u e l ;  ( 2 )  the heat  s tored i n  the neon; 
( 3 )  the cond~lction and convection hea,t l o s s  from the f u e l ;  ( 4 )  t h e  conduction and 
conveet,bon heat l o s s  from the neon; ( 5 )  the conduction and convection heat  l o s s  t o  
the t ransparent  s t r u e ~ u r e ;  and (6) the  rad ia t ion  heat  l o s s .  The r e s u l t i n g  d i f fe ren-  
t i a l  eqrlrt i cu -i" s of t h e  Term : 



where : 

T = average f u e l  temperature, deg R 
F 

t = t o t a l  elapsed time since i n i t i a t i o n  of s tar t -up,  sec 

In  t h i s  equation, the  f i r s t  term i n  the  expression fo r  d ~ ~ / d t  i s  re la ted  t o  the heat  
generation, the  second term i s  r e l a t ed  t o  the  conduction and convection heat  losses ,  
and t he  t h i rd ' t e rm  i s  r e l a t ed  t o  the  radia t ion heat  l o s s .  The value of t he  constant 
A var ies  with the slope of t he  power ramp. The constant B i s  on the  order of 10-l- 
and the constant C i s  on t h e  order of 10"l3. For a par t i cu la r  power ramp, the t h i r d  
term may be neglected i f  TF i s  small ( < 2000 R )  . I n i t i a l  values of TF and d ~ ~ / d t  may 
be found by d i r ec t  in tegra t ion  of Eq.  (1) with the t h i r d  term eliminated. After 
determining To and d~~/dtdurin~theinitialstart-up phase, the complete equation may 
be solved over the e n t i r e  s ta r t -up  period by forward difference methods. 

The var ia t ion of average f u e l  temperature during s ta r t -up  i s  shown i n  Fig. 5 
f o r  three  selected s ta r t -up  times. The f u e l  temperature r i s e s  rapidly  during the 
f i r s t  2 t o  5 percent of the  s ta r t -up  time. During t h i s  period the radia t ion heat 
t r ans f e r  i s  small. When the radia t ion heat  t rans fe r  becomes dominant, the r a t e  of 
increase  i n  f u e l  temperature becomes proportional t o  the  four th  root  of time (or the  
four th  root  of the  power l eve l ,  s ince power l eve l  i s  d i r e c t l y  proportional t o  time) 
and the  engine behaves i n  a manner similar  t o  t h a t  of a ramp perturbation at f u l l  
power. 

The var ia t ion of the  f u e l  temperature with time i s  approximated by two equations 
of the  form 

where m i s  approximately 1.0 during the i n i t i a l  phases of s ta r t -up  and 0.25 during the  
l a t e r  phases. These expressions f o r  f u e l  temperature a re  used t o  calcula te  the 
heating and temperature l eve l s  i n  the  f u l l  cycle c i r c u i t  and i n  the  secondary 
hydrogen c i r c u i t .  



The heat deposited i n  the f i e 1  cycle i s  due t o  conduction and convection heating 
of t he  f i e 1  and neon i n  t he  cavi ty  and f i s s i on  product decay heating. It i s  assumed 
tha t  a l l  of the heat  i n  the  f u e l  cycle would be deposited i n  the  primary hydrogen 
propellant  i n  the hydrogen-neon heat  exchanger ( the  product of the flow r a t e  and 
spec i f ic  heat i n  the  primary hydrogen propellant i s  always l a rge r  than t h a t  of the 
f u e l  cycle c i r c u i t ) .  

The f u e l  flow r a t e  i s  determined by the desired power ramp, and t he  desi red neon 
flow r a t e  i s  determined by the  neon density required a t  the  edge of the  fue l .  A t  
600 R the  i n i t i a l  cavi ty  pressure necessary t o  maintain an edge-of-fuel neon densi ty  
of 0.924 l b / f t 3  i s  20 atm. As the  cavity temperature increases the pressure must 
a l so  increase ' t o  maintain the  constant density. The required neon flow r a t e  i n  the  
cavity i s  calculated from the  expressions l a t e r  developed l a t e r  f o r  engine dynamics 
s tudies  ( ~ q .  (10))  and the  quanti ty of neon bypass flow i s  calculated on t he  bas i s  
of a 2650 R mixed-mean ou t l e t  temperature. The t o t a l  neon flow r a t e  required during 
s ta r t -up  i s  shown i n  Fig.  6 fo r  the  three s tar t -up ramps investigated.  The neon flow 
r a t e s  were assumed t o  reach t h e i r  steady-state operating value a t  t he  end of the 
s ta r t -up  power ramp. Since the f i s s i on  product decay heat  i s  a function of time, as  
shown i n  Fig.  3, it w i l l  not  reach the value used i n  the  steady-state calcula t ions  
u n t i l  a f t e r  the  termination of the s ta r t -up  ramp. The ou t le t  temperatures i n  the  
f u e l  cycle c i r c u i t  w i l l ,  therefore,  gradually increase t o  the  steady-state value of 
2650 R during full-power opearation. I f  it i s  des i rable  t o  smooth out the  varia-  
t i on  of flow r a t e  with time, the neon flow r a t e  may exceed the  values shown i n  
Fig. 6, but they may not be l e s s  than those shown without increasing f u e l  l o s s  r a t e s  
and affect ing the s t a b i l i t y  of the  vortex. The t o t a l  flow of neon buffer gas 
required i s  24.5 lb/sec,  and any addit ional  flow by-passes the cavity.  

Secondary Hydrogen Ci rcu i t  Conditions 

The heat  deposition i n  the  secondary c i r c u i t  i s  calculated using the equations 
developed i n  t he  dynamic analysis  fo r  the conduction, convection, and rad ia t ion  
heat loads t o  the transparent  s t ructure  and cavi ty  l i n e r .  The neutron and gamma 
ray heating i n  the  secondary c i r c u i t  i s  r e l a t i ve ly  small during the i n i t i a l  phases 
of s ta r t -up  and was neglected. It was determined t ha t  an i n i t i a l  hydrogen flow r a t e  
of 4.23 lb/sec with a Linear increase with time during s ta r t -up  would be s u f f i c i e n t  
t o  eliminate the pos s ib i l i t y  of exceeding the  temperature l im i t s  i n  the  transparent  
s t ruc ture ,  

It i s  assumed that  a l l  of the  heat deposited i n  the secondary hydrogen c i r c u i t  
would be t ransferred t o  the primary hydrogen propellant i n  the hydrogen-hydrogen 
heat exchanger, 



The model of t he  primary hydrogen propellant  circu-it consisted of the  primary 
pump, two heat exchangers, the  turbine ,  a Be0 moderator region, a graphite moderator 
region, and the cavi ty  region, The temperature r i s e  i n  the heat exchangers i s  
calculated from the  heat  re jected from the  f'uel cycle and secondary hydrogen c i r c u i t s ,  
and the  temperature changes i n  the primary pump and turbine are calculated from the  
turbopump equations. The large  mass of moderator mater ia l  has a considerable heat  
capacity which must be considered i n  these regions. The e f f e c t  of t h i s  heat  capacity 
i s  t o  cause a l ag  i n  the  moderator temperature r e l a t i ve  t o  the  f u e l  temperature r i s e .  
During a large  portion of the  s ta r t -up  t rans ien t  (about 60 percent) ,  the  primary 
hydrogen propellant  i s  heating the moderator material  r a ther  than removing heat .  
The average temperature i n  the  Be0 and graphite regions are shown i n  Figs.  7 and 8, 
respec t ive ly . '  Although the propellant  i n l e t  temperature does not r i s e  as rap id ly  
as  the  f'uel temperature due t o  the  heat  capacity of the moderator, the propellant  
o u t l e t  temperature follows the f u e l  temperature more colsely  due t o  the  rad ia t ion  
heating i n  the  cavity.  The var ia t ion of propellant ou t l e t  temperature with time 
f o r  the  three s ta r t -up  ramps i s  shown i n  Fig. 9. 

As previously discussed, the pressure i n  the cavi ty  must increase with the  
temperature i n  order t o  maintain the  required edge-of-fuel density. The cav i ty  pres- 
sure during s ta r t -up  i s  shown i n  Fig. 10. I n  order t o  avoid pressure d i f f e r e n t i a l s  
i n  the  transparent  s t ruc ture ,  the propellant  pressure (and, therefore ,  the  pressure 
throughout the  engine) must follow cavi ty  pressure. This i s  accomplished by varying 
the  nozzle throat  area during s tar t -up.  

Once the  flow r a t e ,  temperature, and pressure l eve l s  i n  the  propellant  c i r c u i t  
have been determined, the var ia t ion i n  nozzle th roa t  axea which i s  consistent  with 
these conditions may be calculated. The nozzle th roa t  flow parameter can be deter-  
mined from Ref. 11 and the known values of flow, temperature, and pressure can be 
used t o  f i nd  the  th roa t  area.  The required nozzle th roa t  area fo r  t h e  three  s t a r t -  
up ramps i s  shown i n  Fig. 11. The reason f o r  the decrease i n  nozzle flow area  i n  
the i n i t i a l  phases of s ta r t -up  i s  the  l a g  i n  propellant  temperature r e l a t i ve  t o  pro- 
pel lant  pressure. I f  the  pressure increases a t  a  r e l a t i ve ly  constant propellant  
temperature, the  nozzle area must be reduced t o  maintain a l i nea r  increase i n  flow 
r a t e .  

C r i t i c a l  mass requirements using U-233 nuclear f u e l  were calculated fo r  the  
60 sec and 600 sec s ta r t -up  ramps using a one-dimensional spherical  model of the 
fu l l - sca le  engine configuration, The c r i t i c a , l i t y  calculations were performed using 
the cross section energy group s t ructures  and nuclear codes employed i n  the  analysis  
of Ref. 2.  



The results of the c r i t i c a l  mass ca,leulations a-re shown Ln Fig. 12, For cases 
in which the length of the start-up ramp is short (60 sec start-up) relative to the 
moderator beating time (200 Lo 300 sec ) ,  the  c r i t i c a l  mass r i s e s  t o  a value of 
28.2 1.b when f u l l  power i s  reached and then approaches t he  asymptotic full-power 
c r i t i c a l  mass of 30.9 l b  a t  t '2 300 sec,  This l ag  i n  reaching steady-state c r i t i c a l  
mass i s  a t t r i bu t ed  t o  the  l a g  i n  bulk moderator temperatures reaching t h e i r  asymptotic 
values , 

C r i t i c a l  mass requirements during a longer s ta r t -up  ramp (600 sec)  increase 
throughout t he  s ta r t -up  period and reach a maximum value when full-power conditions 
a r e  reached. I n  t h i s  case, moderator temperatures reach t h e i r  asymptotic values a t  
approximately the same time t h a t  f u l l  power i s  reached because the  s t a r t -up  time i s  
long r e l a t i v e  t o  the moderator heating time. Thus, there  i s  no lag  i n  reaching the  
asymptotic, full-power c r i t i c a l  mass. 

Fuel weight flow requirements during s ta r t -up  were calculated using t h e  r e s u l t s  
of the c r i t i c a l i t y  calcula t ions  i n  the  neutron k ine t ics  equations assuming t h a t :  
(1) power l e v e l  was d i r e c t l y  proportional t o  the neutron l eve l ;  (2)  the  average f u e l  
residence time of 20 sec ( i . e . ,  X F  = 0.05 sec-1) was constant throughout s ta r t -up ;  
and (3)  contributions t o  neutron levels  by delayed neutron precursors during s t a r t -  
up could be neglected. Under these assumptions, the neutron l eve l  equation can be 
wri t ten  a t  any point during the s ta r t -up  ramp as  

Eq.  ( 3 )  was solved f o r  sk, and the  amount of excess f u e l  loading required t o  provide 
the excess r e a c t i v i t y  was obtained from the  values of ( G ~ / ~ ) / @ M / M )  from the  
c r i t i c a l i t y  calcula t ions .  The f u e l  weight flow prof i l es  required t o  maintain the  
assumed l i nea r  power ramps fo r  s tar t -up are shown i n  Fig. 13. The excess f u e l  weight 
flows t o  susta in  the assumed s tar t -up power ramps were l e s s  than 1 percent of the  
t o t a l  weight flows shown i n  Fig ,  13. 



Results of Sta r t -Up  Studies 

The response of the  engine t o  t he  three  l i nea r  power ramps i s  bas ica l ly  s imilar  
as shown i n  Figs,  5 through 10. There i s  a rapid  increase i n  fue l  temperature during 
the  ea r ly  phase of s ta r t -up  when the  heat  t r ans f e r  by radia t ion i s  small. This rap id  
temperature r i s e  must be accompanied by a rapid  pressure r i s e  t o  maintain a high neon 
buffer  gas density so  t h a t  the  vortex flow w i l l  remain s tab le .  The turbopump un i t  
must be capable of providing suf f ic ien t  head r i s e  t o  follow the  required pressure 
var ia t ion shown i n  Fig. 10. 

The major di f ference i n  the  response t o  t he  various s ta r t -up  ramps i s  i n  the 
average temperature of the  so l id  moderator regions. The heat capacity of the  so l i d  
moderator caused a considerable l ag  i n  the  moderator temperature r e l a t i ve  t o  the  
f u e l  and propellant  temperature. The amount of energy required t o  bring t h e  so l i d  
moderator regions from an i n i t i a l  temperature of 600 R t o  t h e i r  nominal, fhll-power 
operating temperature i s  on the order of 3 x 107 Btu. The heat generation r a t e  i n  
the  so l i d  moderator a t  full-power operating conditions i s  on the  order of 2 x 105 ~ t u / s e c ,  
so t h a t  the  average heat  generation during a l inear  power ramp i s  of the  order of 
105 ~ t u / s e c .  Based on the average heat  deposition r a t e  during a l inear  power ramp, 
the so l id  moderator regions would require approxirilately 300 sec t o  reach nominal, 
full-power operating condit ions,  It may be seen from Figs. 7 and 8 t h a t ,  f o r  a 
60-sec s ta r t -up  ramp, the  Be0 and graphite regions reach t h e i r  nominal full-power 
value 200 t o  300 sec a f t e r  s tar t -up,  and a s imilar  length of time would be required 
fo r  any ramp of l e s s  than 300 sec. 

The t o t a l  quanti ty of hydrogen expended during s ta r t -up  var ies  d i r e c t l y  with the  
length of the s ta r t -up  ramp. For a 60-sec s ta r t -up  time, a t o t a l  of 1400 l b  of 
hydrogen i s  expended during start-up.  This quanti ty of hydrogen i s  equal t o  the  
amount of hydrogen expended during 33 sec of full-power operation, and i s  negl igible  
when compared t o  the  hydrogen consumed i n  a 20-min operating period. For a 600-sec 
s ta r t -up  time, 14,000 l b  of hydrogen would be expended; t h i s  i s  equivalent t o  
5.5 min a t  f u l l  power and would necess i ta te  a 27 percent increase i n  the  amount of 
hydrogen required f o r  20 min of engine operation a t  f u l l  power. From t h i s  standpoint ,  
t he  shor ter  s ta r t -up  times are  preferable.  

A comparison of the  turbopump charac te r i s t i cs  with the  pressure and flow require-  
ments during s ta r t -up  indicated t ha t  there i s  insuf f ic ien t  power available during 
the i n i t i a l  phases of s ta r t -up  t o  provide f o r  the pumping requirements and t o  over- 
come the i n e r t i a  of the turbopump u n i t ,  Approximately 405,000 Btu are required t o  
bring the turbopump un i t  up t o  the design wheel speed of' 22,000 rpm and, considering 



the prc-ssLres required ( ~ i g ,  la), the twbopv.mp uni.t imst be up to 60 pe rcen to f  
design wheel speed wi thin  the f i r s t  3 percent of the  s ta r t -up  time, Since the  
engine power l e v e l  a t  t h i s  time i s  i n su f f i c i en t  t o  provide the  pumping power, an 
a l t e rna t ive  method of providing the required flow r a t e s  and pressure l eve l s  i s  
required.  

A method considered f o r  providing pumping power i s  a chemically powered turbine  
un i t  which would produce su f f i c i en t  energy t o  br ing the turbopump up t o  i t s  nominal 
wheel speed p r io r  t o  the in jec t ion  of f u e l  i n  the engine. Such a system could use 
a port ion of the s to red  hydrogen and cryogenically s tored or l i qu id  oxidizer.  The 
s ize  of t he  turbine would be dependent upon the  time allowed t o  bring the  turbopump 
un i t  up t o  nominal speed. Once the  turbine  i s  ro t a t i ng  a t  nominal wheel speed, i t s  
i n e r t i a  would be s u f f i c i e n t  t o  provide power f o r  the  s teep  pressure r i s e  and t o  
sus ta in  the  desired flow r a t e  until the  energy re leased i n  the  engine was su f f i c i en t  
t o  provide the  necessary pumping power. 

Temperature Differences i n  Specific Components 

The temperature responses of t he  various engine components were applied t o  t he  
physical  cha r ac t e r i s t i c s  of the  engine design t o  determine i f  thermal s t r e s s  problems 
would be encountered during s tar t -up.  The p r inc ipa l  regions which were studied were 
the so l i d  moderator, the cav i ty  l i n e r ,  and the  transparent  s t ruc tu re .  

The so l i d  regions do not  experience any rapid  temperature var ia t ions  due t o  t h e i r  
high heat  s torage capacity. The so l id  moderator and the  s t r u c t u r a l  components i n  
these regions, such as the  t i e  rods and flow dividers ,  would not  be subjected t o  any 
rapid  temperature va r ia t ions  o r  large temperature d i f f e r e n t i a l s .  

The cav i ty  l i n e r  i s  heated by convection from the  propel lant .  A rapid increase  
i n  t h i s  heat  load occurs during the e a r l y  phases of s tar t -up.  In the present  design 
of t he  cavi ty  l i n e r ,  the  tubes which comprise the  l i n e r  are  U-shaped so t h a t  the  
coolant en te r s  and e x i t s  the l i n e r  a t  the  upper end of the  engine ( the  accessory end) .  
The lower end of the  tubes i s  not  f ixed so  t h a t  d i f f e r e n t i a l  growth of the l i n e r  
r e l a t i v e  t o t h e  moderator i s  permitted, and no s tesses  would be experienced due 
the di f ference i n  mod-erator and cav i ty  l i n e r  temperature. There w i l l  be some 
thermal s t r e s s  i n  the  tubes due t o  the f a c t  t h a t  the  i n l e t  l eg  of the  tube w i l l  be 
a t  a lower temperature than the ou t l e t  l eg .  The thermal s t r e s s  r e su l t i ng  from t h i s  
s i tua t ion  w ; l l  be t he  g rea tes t  a t  the  full-power operating condition. 

The heat load t o  the transparent  s t ruc tu re  primari ly consis ts  of a rad ia t ion  
heat  load from the cav i ty  s ide  and a convective heat load from the  propellant  s ide .  
A t  the nominal full-power operating conditions, the Stanton number i n  the propellant  
region must be reduced t o  minimize the heat  load from the  propel laa t ,  The pro- 



pellamat tcmqrcssature is proportional to the fuel radLating tempratwe, md the lag 
in propelbmt ternperatwe relative t o  fuel radiating temperatwe i s  small i n  a11 
cases (1 t o  2 s e c ) ,  The radiant  heat load t o  the  transparent  wall  i s  proportional  
t o  t he  four th  power of the rad ia t ing  temperature; the  convection heat  load from the  
propel lant  i s  proportional t o  the  product of the four th  power of the  rad ia t ing  
temperature and the Stanton number. The Stanton number may be expressed as  

For a constant Prandtl  number and constant geometry, the  Stanton number can be 
expressed a s  : 

where 

p = viscosi ty ,  l b / f t  sec 

W = flow r a t e ,  lb /sec  

0.2 KD = constant dependent upon geometry, f t  

The minimum value of the  Stanton number w i l l  occur a t  full-power conditions and the 
maximum value w i l l  occur a t  the  beginning of the s tar t -up.  The maximum value cal -  
culated i s  1.34tirnesthe minimum value. The maximum Stanton number occurs during 
the  ea r ly  phases of s ta r t -up  when the  heat  f luxes are  l o w  and the  thermal s t r e s se s  
i n  t he  transparent  s t ruc ture  should be small throughout the  s tar t -up regardless of 
the duration of t he  ramp. 

Since there  appears t o  be no large temperature d i f f e r e n t i a l s  generated during 
the  shor tes t  s t a r t -up  time investigated and since aux i l i a ry  power i s  required f o r  
a l l  s t a r t -up  ramps, addi t ional  investigations of s ta r t -up  ramps of 6 t o  10 sec 
duration should be made. 



ENGINE DDJLOfICS STUDY 

A mathematical model of the nuclear l i g h t  bulb engine was developed f o r  the 
purpose of inves t iga t ing  the s t a b i l i t y  of the engine, determining the con t ro l  
requirements a t  fill-power operating conditions, and predic t ing the t r an s i en t  
response of the reactor  t o  se lected perturbations.  The model i s  a UNIVAC 1108 
digital-computer simulation of the thermal, f l u i d  dynamics and neutron k ine t i c s  
equations. Due t o  t he  complexity of the  system, the  thermal and f l u i d  dynamics 
model and the neutron k ine t i c s  model were developed separate ly  by t r e a t i n g  the  
f ac to r s  which would be feedbacks from one system t o  the other as input parameters. 
In  t h i s  manner, the response of each of the  systems t o  spec i f i c  perturbations could 
be invest igated without encountering the coupling e f f ec t s  of multiple feedbacks. 
After each system of equations had been checked i n  t h i s  manner, the systems were 
combined. The complete model i s  based on the  bas ic  engine design described i n  Ref. 1 
wi th  some modifications which resu l t ed  from revis ions  i n  moderator configuration,  
heat  deposit ion r a t e s  and changes i n  the  moderator cooling sequence. 

The d e t a i l s  of the  engine dynamics model a r e  divided i n t o  discussions of the 
thermal and fluiddynamics model and the  neutron k ine t i c s  model. The r e s u l t s  of t he  
i n i t i a l  engine dynamics s tudies  are  then presented, and preliminary concepts f o r  
engine control  are  discussed. 

Thermal and Fluid Dynamics Model 

The thermal and f l u i d  dynamics model i s  used t o  ca lcula te  the t r an s i en t  response 
of reactortemperature and pressure l eve l s  t o  var ia t ions  i n  reactor  power. The power 
var ia t ions  are  ca lcula ted from the neutron k ine t i cs  model; the predicted temperature 
and pressure l eve l s  a re  then used t o  generate the  various r e a c t i v i t y  feedback 
coef f i c ien t s  i n  the  neutron k ine t i c s  model. The thermal and f l u i d  dynamics model i s  
a f i n i t e  difference approximation of t he  t r an s i en t  heat  t r an s f e r  and f l u i d  flow 
equations which r e s u l t  from an analysis  of the engine configuration previously 
discussed (see sect ion e n t i t l e d  NUCLEAR LIGHT BULB ENGINE DESIGN). The model consis ts  
of th ree  major pa r t s  : (1) the temperature equations ; ( 2 )  the  fuel-containment 
parameters; and (3)  the flow and pressure equations. 

Temperature 3quations 

The calcula t ion of temperature l eve l s  throughout the  engine was divided i n t o  
th ree  par t s  corresponding t o  the three coolant c i r c u i t s  i n  the engine (see Fig ,  2 ) .  
These three  c i r c u i t s  are  interconnected by the  heat exchangers, The i n i t i a l  inves- 
t iga t ions  of temperature response t o  power var ia t ions  were conducted f o r  ea,ch c i r c u i t  
separately by assuming t ha t  a l l  of the heat  generated i n  the f u e l  cycle c i r c u i t  avld 
the secondavy hydrogen c i r c u i t  would be t ransferred through the heat exchangers, 



Tbe basic teebiq?ze employed t o  investigate the time response of coolant 
tempera,tures i s  a f tn i t e -d i f fe rence  approximation of the percent change i n  heat 
r e j e c t ed  t o  the  coolant with time. As an example, i f  a LO percent posi t ive  step 
change i n  power l e v e l  i s  assumed t o  occur i n  a pa r t i cu la r  component a t  time t = to, 
the  f i n a l  converged value of  the  coolant temperature r i s e  i n  t h a t  component should 
be 110 percent of the  nominal full-power temperature r i s e  i n  t h a t  component. This 
f i n a l  value w i l l  not  be a t t a ined  u n t i l  the  f l u i d  which entered the  component a t  
t = to reaches the o u t l e t  of the  component. There i s ,  therefore ,  a coolant 
residence time associated with each component which i s  determined by the coolant 
mass flow r a t e  and the  geometry of the coolant passages. The var ia t ion  of the  
coolant  temperature r i s e  wi th  time i n  a pa r t i cu la r  component may be approximated by 
t h e  equation 

where 

AT = temperature d i f ference a t  any time t ,  deg R 

( A T ) ,  = steady-state temperature difference (t = o), deg R 

A t = time increment, sec 

T~ = residence time i n  component, sec 

g P/P, = percentage change i n  power (current  value of power perturbation divided 
by steady-state power) 

Equation (6)'  y ie lds  an estimate of the current  value of temperature r i s e  by taking 
t he  summation of the percentage changes i n  power l e v e l  which have occurred during 
the preceding T ~ / A  t time increments. The number of terms i n  t h e  summation i s  equal 
t o  the  number of time increments i n  the component residence time. 

Equation (6) may be fu r the r  generalized by subs t i tu t ing  



where 

Tout = o u t l e t  temperature from component, deg R 

Tin = i n l e t  temperature t o  component, deg R 

&, = steady s t a t e  hea t  generation r a t e  i n  component, ~ t u / s e c  

W = coolant  mass flow r a t e ,  lb/sec 

Cp = s p e c i f i c  hea t  of coolant ,  ~ t u / l b - d e g  R 

Equation (6 )  becomes : 

Tour ' TIN + W C ~  

Since the  components i n  any c i r c u i t  a re  cooled i n  s e r i e s ,  Eq. (9)  may be appl ied  
t o  each component i n  sequence and the  o u t l e t  temperature of one component i s  
subs t i tu ted  f o r  t h e  i n l e t  temperature of the  next  component i n  the  following time 
s t ep .  

Referr ing t o  t h e  example previously mentioned, i f  a  10 percent pos i t ive  s t e p  
change i n  power i s  assumed, the  value of GP/PO i n  Eq. (9) would be constant ,  0.10. 
If it i s  f u r t h e r  assumed t h a t  TR i n  t h e  p a r t i c u l a r  component being inves t iga ted  i s  
equal  t o  4 At, then,  A t/% w i l l  be equal t o  0.25, and t h e  summation would be taken 
over four time increments. The value of the  summation would be 0.025 a f t e r  the  
f i r s t  time s t e p  s ince  the re  i s  no power v a r i a t i o n  before to and t h e  three preceeding 
values of 6 ~ / %  would be zero,  After  four time s t eps  the  value of the  summation 
would reach 0.10 and, s ince  the number of terms i n  the  summation remains cons tan t ,  
it would remain a t  0-10 a s  long as the  power per turbat ion  i s  present ,  



- . ~ ~ K L S  technique was employed f o r  the predic-Lion of temperatures throughout the 
engine with a,pproyri_ate l;errris f o r  G P / P ~  depending upon the  heat  capacity of the 
cornponent and whether o r  not the heat deposition i s  d i r e c t l y  proportional t o  power 
changes. The actual  values used i n  the  summations f o r  each component are  noted i n  
the discussions of t he  various coolant c i r c u i t s  below. The summation-type expression 
of Eq, (9)  may be used fo r  any desired power var ia t ion and, i n  the combined program, 
a current  value of 6 P / P ~  i s  calculated fo r  each time s tep  from the  neutron k ine t ics  
port ion of t he  program. 

It should be noted t h a t  there  must be an i n t eg ra l  number of terms i n  each 
summation so t h a t  the  value used fo r  the term t ~ / A  t i s  the  c loses t  i n t e g r a l  number; 
the  value of at/tR used i n  the  summation w i l l  be the  reciprocal  of t h i s  in teger .  
Actually, TR i s  not necessar i ly  an i n t e g r a l  number of time increments and it can 
vary with the mass flow r a t e  i n  the  component. The var ia t ions  which may be caused 
by these f ac to r s  were investigated and it was determined t ha t  i f  the time increments 
are  small r e l a t i v e  t o  t h e  coolant residence times, no appreciable e r ro r  i s  introduced 
by making rR an i n t e g r a l  number of time increments. It was a l so  determined t h a t  the  
change i n  coolant residence time with coolant flow r a t e  could be neglected f o r  small 
changes i n  flow r a t e .  The e f f ec t  of a small change i n  residence time on the value 
of the summation i s  negl igible  r e l a t i v e  t o  the change i n  the term Q,/WC i n  Eq. (9)  P 
caused by a change i n  flow r a t e .  Therefore, it was assumed t h a t  the  coolant 
residence times a t  the  nominal full-power operating conditions would be considered 
as constant during the t rans ien t  analysis  f o r  small changes i n  flow r a t e  (10 percent 
or l e s s )  and t h a t  a constant time increment would be used i n  any par t i cu la r  analysis  
t o  eliminate the  requirement fo r  recalcula t ing the  value of rR/ A t  during t he  
analysis  . 

Subsequent analysis  of the turbopump equations indicated t h a t  the  momentum of 
the  turbopump was large  and would tend t o  maintain constant coolant flow r a t e s  
regardless of the type of perturbation introduced. 

Fuel Cycle Circui t  - - - - - - - - -  

The f u e l  cycle c i r c u i t  includes the  f u e l  in jec t ion  c i r c u i t  and the neon buffer 
gas c i r c u i t .  The t o t a l  mass flow of fue l  i n  the c i r c u i t  i s  a r e l a t i v e l y  small pa r t  
of the  t o t a l  neon and f u e l  flow (approximately 8 percent) and i t s  contribution t o  
the  temperature conditions i n  the c i r c u i t  was approximated by an equivalent neon flow 
r a t e  which was added t o  the actual  neon flow between the cavity i n l e t  and the  f u e l  
separator.  The neon flow i s  divided in to  two par t s ,  the neon buffer  flow which 
passes through the  cavi ty  and drives the vortex,  and the  bypass neon flow which i s  
mixed with the  neon buffer  flow as it leaves the cavi ty .  The general charac te r i s t i cs  
of the  neon flow and the  f u e l  region are discussed i n  Ref. 1. The assumptions used 
i n  determining the required neon buffer flow r a t e s  are (1) an ax i a l  veloci ty  of t he  



neon buffer  fl-ow a,t t h e  edge of the fue l  of 1.95 f t / s ec  i n  the  v i c in i t y  of the end 
wal ls ,  ( 2 )  a  constant dynamic pressure across the  neon buffer  l ayer ,  (3)  a l inear  
tempera.ture gradient between the  neon buffer flaw i n l e t  and the edge of the  fue l ,  
and (4)  t he  neon buffer  flow follows the perfect  gas law. Based on these assumptions 
and a constant f u e l  radius ,  the  required neon buffer  flow may be determined by 
in tegra t ing  the  product of neon density and veloci ty  over the  thickness of the  buffer  
l ayer .  The resu l t ing  expression f o r  neon buffer  flow r a t e  i s  

where 

W B  = neon buffer  flow per cavity,  lb/sec 

PC = cavi ty  pressure, atm 

TN = i n l e t  temperature of neon buffer flow, deg R 

T* = f u e l  rad ia t ing  temperature, deg R 

The t o t a l  heat  t ransferred t o  t h e  neon buffer  flow by conduction and convection i s  

where 

QB = t o t a l  heat t ransferred f o r  cavity,  Btu/sec 

Cp = specif ic  heat  of neon, ~ t u / l b - d e g  R 

The conduction and convection heating, the  heat due t o  f i s s i on  product decay and the  
heat contained i n  the  entrained fue l  determine the temperature of the  neon-fuel 
mixture leaving the cavity.  I n  order t o  condense the f u e l  so t ha t  it can be separated 
from the  neon, the temperature of the mixture must be reduced t o  approximately 
2650 R. This i s  accompLished by the addition of more neon which has bypassed the 
cavity.  The quanti ty of by-pass neon flow required i s  based ona  bypass neon temperature 
of 200 R and a mixed-mean temperature of 2650 R i n  the  combined bypass and buffer flow. 



It is assumed %hat all changes i n  heat deposition in the cavity occur 
instantaneously and no appreciable heat storage capacity e x i s t s  i n  t h i s  c i r c u i t ,  
The only time lags used i n  the  f u e l  cycle c i r c u i t  a r e  the  time delays which e x i s t  as 
a r e s u l t  of the  piping between the  cav i t i es  and the hydrogen-neon heat exchangers. 
After re jec t ing  heat t o  the  primary hydrogen propellant ,  the  neon passes through a 
pump and then i s  returned t o  the  cavi ty  region. 

Secondary Hydrogen Coolant Circui t  - - - - - - - - - - - - - - - - -  

The secondary coolant c i r c u i t  analyzed i n  the  dynamic model i s  simplif ied from 
t h a t  shown i n  Fig. 2 by considering the  pressure vessel ,  nozzles, and end wal ls  as  
a s ingle  component and combining the  cavi ty  l i n e r ,  flow divider ,  and t i e  rods i n t o  
a s ingle  component. 

The majority of t he  heat deposited i n  the secondary c i r c u i t  (about 85 percent)  
i s  from conduction, convection, and radia t ion t o  the  cavi ty  l i n e r  and transparent  
s t ructure .  These heat  loads are ,  therefore ,  functions of f u e l  radia t ing temperature 
or propellant  temperature ra ther  than a d i r e c t  function of operating power l eve l .  
The only component i n  the  secondary c i r c u i t  which has a heat  deposition r a t e  and a 
coolant temperature r i s e  which i s  d i r e c t l y  proportional  t o  power l eve l  i s  t he  
pressure vessel .  Consequently, the  t rans ien t  temperature equation of the form of 
Eq.  (9)  was applied t o  the pressure vessel ,  and a modified form of Eq.  (9) was 
applied t o  the cavi ty  l i n e r  and transparent s t ruc ture .  The modified equation i s  

where 

- ' = percentage change in .  heat  deposited (current  value of var ia t ion i n  heat 
'0 deposition divided by the  steady s t a t e  heat  deposit ion) 

&, = steady s t a t e  heat deposition, ~ t u / s e c  

Expressions fo r  the  heat  deposited i n  the transparent  s t ructure  and the cavi ty  l i n e r  
were based on the  analysis  of Ref. 6. The radia t ion heat  load t o  the transparent  
s t ructure  i s  a function of f u e l  rad ia t ing  temperature and the  absorption coef f ic ien t  
of the transparent  s t ruc ture .  I f  the f u e l  rad ia t ing  temperature i s  between 10,000 R 
and 15,000 R, the  heat deposition i n  the transparent  s t ruc ture  i s  proportional t o  
the fourth power of the  f u e l  rad ia t ing  temperature ( Q  = Kl T X ~ ) .  I f  the f u e l  



rad ia t ing  temperature i s  between 15:000 R and 20,000 R, the  heat  deposition i s  
proportional  to the ninth  power of. t he  fuel. radia t ing temperawe (Q = K* ~*9), In 
order t o  consider t h i s  e f f e c t ,  two equations fo r  the  t o t a l  heating i n  the transparent  
s t ruc ture  were used: 

where i n  each equation the f i r s t  term represents heat  conducted from the  fue l ,  the  
second term represents heat convected from the  propellant ,  t he  t h i r d  term represents 
radia t ion from the fbe l ,  and the  four th  term represents the  i n t e rna l  heat  generation. 

A s imilar  expression f o r  the  heat  deposited i n  the cavi ty  l i n e r  i s  

where the f i r s t  term i s  the  convection heating and t he  second term i s  the  i n t e r n a l  
heat  generation. Current values of Q based on values of T* and P are  used t o  
calcula te  the percentage var ia t ion i n  heat  d e p o s i t e d , 6 ~ / ~ $ .  These values of ~ Q / Q  are 

0 
used i n  the  t r ans i en t  equation ( E ~ .  (12))  t o  introduce the  l a g  due t o  coolant 
residence time. Additional time lags  between the heat  exchangers and t he  cav i ty  
region were included i n  the  calcula t ion of the c i r c u i t  response. 

Since the  components i n  the secondary c i r c u i t  have a r e l a t i ve ly  small mass, it 
was assumed tha t  there  would be no heat  storage capacity e f f ec t s  i n  t h i s  c i r c u i t .  

Primary mdrogen Propellant Circui t  - - - - - - - - - - - - - - - - - -  

A l l  of t h e  components of the primary hydrogen propellant  c i r c u i t ,  as  shown i n  
Fig. 2, were included i n  the  dynamic model. The so l i d  moderator component was 
divided i n t o  s i x  regions: (1) upper-end graphite,  (2)  upper-end BeO, (3) ax i a l  BeO, 
(4 )  Lower-end BeO, ( 5 )  lower-end graphite,  and (6) ax i a l  graphite.  



The heat, d e p o s t k d  din the fuel cycle and secondary hydrogen c i r c u i t s  i s  
t raasferred t o  the primary hydrogen propellant  i n  the  two he& exchangers, The beat 
t rans fe r red  i n  the heat  exchanger may be expressed i n  the  form 

where 

&trans = heat t ransferred i n  the  heat  exchanger, ~ t u / s e c  

KH = constant dependent upon heat  exchanger c o n f i ~ a t i o n  ( i . e ,  number of 
tubes  and tube diameter), f t o e 2  

CH = constant dependent upon f l u i d  propert ies (Prandtl  number, thermal 
conductivity, v i scos i ty  and flow r a t e ) ,  ~ t u / s e c - ( f t ) O * ~ - d e ~  R 

TT = average temperature difference between f l u id s ,  deg R 

Since the  heat t ransferred,  determined from the  above equation, i s  added t o  one f l u i d  
and extracted from the other,  the  ou t l e t  temperature i n  the  primary hydrogen pro- 
pe l lan t  c i r c u i t  ( ~ 1 0 2 5 ,  f o r  example, see Fig. 2 )  may be calculated from the  i n l e t  
temperature of the primary hydrogen propellant  ( ~ 1 0 2 0 )  and the  i n l e t  temperature of 
the  secondary hydrogen c i r c u i t  ( ~ 2 0 4 0 ) .  The procedure used i n  the  program was t o  
ca lcu la te  the  i n l e t  temperatures from the f u e l  cycle c i r c u i t  ( ~ 3 0 3 0 )  and the  
secondary hydrogen c i r c u i t  ( ~ 2 0 4 0 )  a t  the end of tlie f i r s t  time s t e p  and t o  use these  
values t o  calcula te  t he  primary hydrogen propellant temperatures ( ~ 1 0 1 5  and T1025, 
respect ively)  during the  subsequent time step.  A s imilar  procedure was used t o  
p red ic t  the  heat exchanger ou t l e t  temperatures i n  the f u e l  cycle and secondary 
hydrogen c i r c u i t  so  t h a t  var ia t ions  i n  heat exchanger performance would be included 
i n  the  t rans ien t  responses. 

The so l id  moderator regions of the  primary hydrogen propellant  c i r c u i t  contain 
a large  mass of mater ia l ,  and t h e  e f f ec t s  of heat storage capacity must be included 
i n  the t rans ien t  equations. The average temperature i n  the  moderator material  may 
be calculated by combining the  average coolant temperature, the coolant-to-wall 
temperature difference,  and the i n t e rna l  temperature di f ference.  The coolant-to- 
wal l  temperature di f ference i s  calculated by the analysis  of Ref. 12 and the i n t e rna l  
temperature difference f o r  an i n t e rna l l y  cooled so l id  i s  calculated from Ref. 13. 



The simulation of components with a,ppreciahle heat s t  orage capa,ci. t y  avld internad.! 
heat generation requires  a modified form of E q ,  (9)  i n  which the change i n  i n t e r n a l  
temperature i s  considered. Assuming t h a t  the  physical propert ies of the moderator 
are  constant over t h e  range of temperatures experienced i n  any t rans ien t ,  the e f f ec t  
of the  heat storage capacity can be accounted f o r  by the addition of a term which i s  
proportional t o  the  percentage change i n  the  average temperature of t he  component. 
The revised equation used i s  of the  form 

where 

6 Tm = change i n  average moderator temperature, deg R 

(Trn) j  = average moderator temperature from previous time increment, deg R 

Thus, i f  8 P/PO i s  pos i t ive ,  8 Tm/(Tm)j  w i l l  a l so  be posi t ive ,  and the  e f f ec t  of the  
power change on coolant temperature r i s e  w i l l  be reduced by the  quanti ty of energy 
necessary t o  r a i s e  t he  average moderator temperature. I f  a new equilibrium tempera- 
ture  i s  reached, as  i n  a sustained s tep  change i n  power, F ~ T ~ / ( T ~ ) ~  w i l l  eventually 
become equal t o  zero. The coolant temperature r i s e  w i l l  reach the  same value as  
would be calculated from Eq.  (9), but t he  t o t a l  time lag  w i l l  be longer. The e f f e c t  
of moderator mass and spec i f ic  .heat i n  each region are included i n  the equations used 
t o  calcula te  6 T,/(T,) j. 

Fue 1 Containment Par m e t e r s  

Containment of a heavy gas (such as  nuclear f u e l )  i n  a l ight-gas vortex flow 
f i e l d  depends upon many parameters including the  buffer-gas in jec t ion  geometry and 
tangent ia l  veloci ty ,  the  posit ion of heavy-gas in jec tors ,  the  dynamic pressure of 
the buffer  and heavy gases a t  in ject ion,  the  heavy-gas-to-buffer gas weight flow r a t i o ,  
and the  buffer-gas bypass flow. However, f o r  a fixed-geometry vortex chamber with 
constant-area gas in jec tors  and a fixed buffer-gas bypass flow f rac t ion ,  the 
p r inc ipa l  fac to rs  e f fec t ing  heavy gas containment are the buffer  gas densi ty  a t  the  
edge of t he  f u e l  cloud and the  r a t i o  of fuel-to-buffer-gas weight flow. 

I n  t he  nucleav l i g h t  bulb engine, the  buffer  gas density i s  ef fected by the  
edge-of-fuel temperature (approximately 80 percent of the equivalent black-body 
radia t ing temperature) and the chamber pressure Ln accordance with the  i dea l  gas 



law, Experimental r e su l t s  from isothermal two-component gas vortex t e s t s  have 
indicated t h a t  heavy-gas containment i s  re la ted  t o  the  r a t i o  of simulated f u e l  
weight flow t o  buffer  gas weight flow according t o  

The empirical re la t ionship  expressed by Eq. (17) was obtained by f a i r i n g  curves 
through the  experimental da ta  reported i n  Refs. 4, 14,  15, and 16. More recent  
invest igat ions  indicate  t h a t  the  weight-flow-ratio exponent may be a s  low a s  0.9 
( ~ e f .  4 ) .  However, f o r  the  small perturbations used i n  t h i s  study, the  e f f e c t  of 
t h i s  var ia t ion  i n  the  exponent i s  r e l a t i v e l y  ins ign i f ican t .  On the basis  of buffer  
gas densi ty  and weight flow containment parameters, the  steady s t a t e  stored mass of 
nuclear f u e l  can be expressed by 

where KM i s  a constant of proportionali ty.  An expression fo r  WB i s  shown i n  Eq. (10).  
Expressions f o r  chamber pressure, pc, equivalent black-body rad ia t ing  temperature, 
T*, and f u e l  weight flow r a t e ,  WF, a re  discussed l a t e r .  The methods by which heavy- 
gas containment parameters are introduced i n to  the  expression f o r  var ia t ions  of 
stored nuclear f u e l  with time are a l so  discussed i n  a l a t e r  section.  

Flow Rates and Pressure Losses 

The pumping power required i n  the  engine i s  provided by a turbopump u n i t  
consis t ing of a s ingle  turbine located i n  the primary hydrogen propellant  c i r c u i t  
and separate pump un i t s  f o r  the  primary hydrogen propellant ,  the  secondary hydrogen 
c i r c u i t ,  the neon c i r c u i t ,  and the  fue l  in jec t ion  c i r c u i t .  Detailed s tudies  of a 
turbopump spec i f i c a l l y  designed f o r  the nuclear l i g h t  bulb engine have not been made. 
It was assumed i n  the dynamics model t h a t  the  charac te r i s t i cs  of the turbopump would 
be similar  t o  the  turbopump un i t s  which were designed f o r  the  open-cycle engine 
described i n  Ref. 17 using a s ingle  uni t  r a ther  than four un i t s .  The najor design 
variables used i n  the  dynamic model were a moment of i n e r t i a  f o r  the  turbopump d i sc  
of 130 f t - lb-see2 and a nominal full-power wheel speed of 22,000 rpm, It was 
a,ssumed i n  the  dynamics model t ha t  the  flow r a t e s  i n  the  turbopump would be d i r ec t l y  



proport ional  t o  wheel speed, and t h a t  the pressure r i s e  i n  the  pumps wou1d be 
proport ional  t o  the  square of' the wheel speed. The variat-ions i n  turbopwnp wheel 
speed with the  turbine and pwnp requirements a re ,  from Ref, 18, 

where 

I = moment of i n e r t i a  of turbopump d i s c ,  f t - l b - s ec  2 

v = wheel speed, radians/sec 

Qy = turbine output power f t - lb / sec  

X ( Q ~ ) ~ =  summation of pump power requirements, f t - lb /sec  

A t  nominal full-power operating conditions 

and there i s  no change i n  wheel speed. The majority of the  pumping power require-  
ment i s  i n  the primary hydrogen propellant pump; the  summation of a l l  pumping power 
requirements was estimated t o  be 1.1 times the  primary hydrogen propellant  pump 
requirement. 

The var ia t ion i n  wheel speed with time was determined from Eq. (19) using 
current values of turbine power and pumping power from the appropriate c i r c u i t  
temperature equations. New values of flow r a t e  and pressure r i s e  were then calculated 
from the  re la t ionships  



where 

= steady-state wheel speed, rpm 

6vl = input perturbation t o  wheel speed (where applicable),  rpm 

6v2 = feedback perturbation t o  wheel speed (from Eq. (19)),  rpm 

Since the  wheel speed i s  high, the  momentum of the turbopump tends t o  damp out 
var ia t ions  i n  flow or pump pressure r i s e .  

The pressure l eve l s  i n  the  primary hydrogen propellant  c i r c u i t  and the secondary 
hydrogen c i r c u i t  are given i n  Tables I1 and 111, respectively.  The pressure losses  
i n  a l l  of the  components are  a combination of f r i c t i o n a l  losses  and expansion and 
contraction losses .  Assuming tha t  a l l  passages are  smooth, the  pressure losses  may 
be expressed as 

where 

p = component pressure l o s s  

W = coolant flow r a t e  i n  component 

K1 & K2 = constants based on flow passage geometry and coolant propert ies 

The t o t a l  pressure losses  due t o  f r i c t i o n ,  expansion and contraction losses  a re  
10 atm i n  the  primary hydrogen propellant c i r c u i t  and 12 atm i n  the secondary 
hydrogen c i r c u i t .  



Neutron Kinetics Model 

T%e principal  unusual fac to r  i n  the k ine t ic  behavior of a nuclear l i g h t  bulb 
engine i s  t h a t  the nuclear f u e l  i s  in jec ted  continuously i n t o  the  active core volume. 
Experimental r e s u l t s  f o r  constant-temperature gas vortex t e s t s  indicate  t h a t  t he  
average residence time of nuclear f u e l  i n  a fu l l - sca le  nuclear l i g h t  bulb engine 
would probably be on the order of 20 sec.  I f  t h i s  i s  the  case, then delayed neutron 
precursors which emit delayed neutrons a t  time periods greater  than 20 sec a f t e r  t he  
f i s s i on  event would contribute e s sen t i a l l y  no neutrons t o  the  act ive  volume of the  
reactor core. This problem i s  qui te  s imilar  t o  t ha t  f o r  c i rcula t ing-fuel  reac tors ;  
the important difference i s  t h a t  compressible gases are  employed i n  a nuclear l i g h t  
bulb engine, whereas i n  the c i rcula t ing-fuel  reactors ,  the  f u e l  solution i s  an 
incompressible l iqu id .  Due t o  compressibility, it i s  possible t o  have f luc tua t ions  
i n  t o t a l  f u e l  loadings which r e s u l t  from f l u i d  dynamic f luctuat ions  i n  the heavy-gas 
residence time. Thus, both the  f rac t ion  of delayed neutrons which are l o s t  from the  
act ive  core and t he  t o t a l  mass of nuclear f u e l  within the  act ive  core w i l l  vary with 
time. These a re  primary considerations i n  the overa l l  control  of the  engine. 

Neutron Kinetics Eauations 

The expression describing the dependence of nuclear l i g h t  bulb power l e v e l  on 
the product of neutron l eve l ,  f i s s i on  cross section,  and mass of nuclear f u e l  i s  
given by 

where MF i s  the  nuclear f u e l  mass, of i s  t he  average f i s s i on  cross section,  and n i s  
the  neutron leve l .  The average f i s s i o n  cross section var ies  with average moderator 
temperature a s  

The var ia t ion of of with moderator temperatures was taken from Ref. ( 2 ) .  The 
equations describing the space-independent k ine t ics  of the neutron l eve l  a r e :  



Neutron l e v e l  i n  Eq. (26) i s  affected by a time varying r e a c t i v i t y  coef f ic ien t ,3k  , 
and by the  concentrations of delayed neutron precursors, Ci. The time behavior of 
t h e  s i x  groups of delayed neutron precursors i s  described by Eq. ( 2 7 ) ,  i n  which it 
i s  assumed t h a t  the delayed neutron precursors have the same residence time as the 
nuclear f ue l .  Thus, va r ia t ions  i n  the  nuclear f u e l  residence time, 1/ A F, r e s u l t  i n  
var ia t ions  i n  t he  f rac t ion  of delayed neutrons emitted i n  the  act ive  core of the  
nuclear l i g h t  bulb engine. Discussions of the  feedbacks which contribute t o  the 
var ia t ions  of 8 k and A F are  presented below. The delayed neutron f rac t ions ,  k? i , and 
precursor decay constants, X i ,  a re  from Ref. 19 and are shown i n  Table X I I .  

Nuclear Fuel Loading Equations 

The var ia t ion of nuclear f u e l  mass stored i n  the act ive  core of the nuclear 
l i g h t  bulb engine i s  described by 

where WF i s  the  f u e l  i n j ec t i on  r a t e  and AF i s  the  f u e l  decay constant ( the  inverse 
of the  average f u e l  residence time). 

I n  a preceeding discussion of f ue l  containment parameters, it  was shown tha t  
t h e  amount of nuclear f u e l  re ta ined i n  t he  vortex flow f i e l d  was a function of the 
r a t i o  of average f u e l  densi ty  t o  buffer  gas density a t  the  edge of the  f u e l  cloud, 
and the  fuel.-to-buffer gas weight flow r a t i o .  Since the  average f u e l  residence 
time i s  20 sec,  any change i n  a containment parameter (under conditions of constant 
f u e l  i n j ec t i on )  w i l l  i n i t i a t e  a change i n  stored f u e l  which w i l l  approach a new 
equilibrium l eve l  approximately 20 sec a f t e r  the change. Therefore, changes i n  
containment parameters were introduced i n to  the mass equations through the f u e l  decay 
constant, XF, where 



Since f g l  o varies as P,/TI, the  equation descr ib ing hF i s :  

where K X  i s  a constant of proportionali ty.  

The surface rad ia t ing  temperature i s  established from the i d e n t i t y  t h a t  

where a i s  the  Stefan-Boltzmann constant and the P coeff ic ient  of 0.87 represents the  
f rac t ion  of t o t a l  power which i s  radia ted from the f u e l  cloud surfaces. The chamber 
operating pressure, pc, i s  obtained from the  assumption t h a t  pressure within t he  
system i s  regulated t o  follow the  propellant  pressure. Since propellant  flow i s  
choked, it follows t h a t  

where Kp i s  a constant. Thus, 

The expressions t o  obtain Wp and Tp have been discussed previously. 

The r a t i o  of fuel-to-buffer gas weight flows must a lso  be evaluated f o r  Eq.  (30).  
The buffer gas weight flow i s  described by Eq.  (10). It i s  ant ic ipated t h a t  f u e l  
in jec t ion  a t  full-power operating conditions w i l l  be accomplished by i n j e c t i ~ g  nuclear 
f u e l  i n  par t i cu la te  form with a ca r r i e r  gas, The heavy-gas in jec t ion  ve loc i t i es  
required i n  isothermal, two-component gas vortex t e s t s  were of the order of 100 f t / s ec  



(~ef, 1-4)- I f  this i n j e c t i o n  v e l o c i t y  i s  used fo r  t h e  f u l l  scale engine and if it i s  
assumed tha"cthe fuel-- to-carrier  gas weight rLow r a t i o  i_s 5-to-1, t hen  VF = 100 ft/sec 
and P = 285 l b / f t 3  i n  t he  expression 

Ap i n  Eq.  (34) i s  equal t o  approximately 20 atm. It follows from Eq. (34) t h a t  
f u e l  weight flow, WF, i s  given by 

I f ,  a s  before, it i s  assumed t h a t  chamber pressure i s  governed by the  hydrogen 
propellant  pressure under conditions of choked flow through the  t h ru s t  nozzles, then 

where pc i s  given by Eq. (33) above. KF i s  a ca l ib ra t ion  fac tor  t h a t  can be 
a r b i t r a r i l y  perturbed t o  a l t e r  the  f u e l  in jec t ion  r a t e  which i s  then e i t he r  retaxded 
or enhanced by the resu l t ing  var ia t ions  i n  P i n  the  manner described by Eq. (36). 

C 

React ivi ty  Feedbacks 

The r eac t i v i t y  c o e f f i c i e n t , s k ,  i n  Eq. (26) i s  made up of three  terms. 

&represents  the  amount of excess r eac t i v i t y  required t o  compensate f o r  t he  loss  of 
delayed neutrons as  a r e s u l t  of removal of delayed neutron precursors from the act ive  
core volume. The expression f o r  6k0 i s  derived i n  Appendix A and i s  given by 



8kl is a. dime varying pe rb rba t i on  term used as an input driving function for the 
neutron level equations (physically,  l i ke  a movement of a control. rod i n  a conven- 
t i ona l  r eac to r ) .  

S k 2  i s  a combination of r eac t i v i t y  feedbacks associated with changes i n  nuclear 
f u e l  loading, average moderator temperature, propellant  densi ty ,  moderator coolant 
densi ty ,  and f u e l  region radius.  The l i nea r  coeff ic ients  r e l a t i ng  changes i n  these  
parameters t o  r e a c t i v i t y  were taken from Table IV of Ref. 2. The expression 
combining a l l  the  contributing fac tors  i n  6k2  i s  given as 

AT, * p H  
+0.045( - )+  0 .0544(- )  8k, = 0 3 8 4 ( - q - )  
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The calculation of changes i n  hydrogen dens i t i es  were done on the  basis  of i dea l  gas 
laws using the average hydrogen temperatures i n  t he  propellant  and moderator regions. 
The moderator region temperatures were based on the  average of the  coolant i n l e t  and 
ou t le t  temperatures f o r  each region and nuclear f u e l  masses were calculated using 
Eq.  (28). The f u e l  region radius  was varied only by input perturbations. 

Engine Dynamics Simulation Program 

The equations describing the  dynamic behavior of the  nuclear l i g h t  bulb engine 
were programmed fo r  t he  UNIVAC 1108 d i g i t a l  computer. I n  the  process of developing 
the simulation program, models of each subsystem (i .e., neutron k ine t ics ,  primary 
coolant c i r c u i t ,  secondary coolant c i r c u i t ,  and f u e l  cycle system) were programmed 
and debugged separate ly ,  Coupling and feedbacks between systems were t r ea t ed  as  
input parameters, and i n  t h i s  manner, responses of individual  systems t o  spec i f ic  
parameter var ia t ions  were checked analy-tically before a l l  of the subsystem programs 
were combined i n to  the  f i n a l  engine simulation. 

The pr incipal  assumptions which were employed i n  the  engine simulation have 
been described i n  t h e  preceding sections and are summarized i n  Table XIII. The 
simulation program flow diagram i s  shown i n  Fig. 14. Basically, the program i s  
designed t o  process input,  ca lcula te  steady-state conditions, ca lcula te  coef f ic ien t s ,  
and then calcula te  neutron l eve l ,  power l eve l ,  temperatures, flow conditions, md 
feedback parameters ( i n  t h a t  order)  fo r  each time s tep.  



Resu.1.t~ o f  Engine Dynamics Studies 

The responses of the  uncontrolled engine t o  various perturbations i n  r e a c t i v i t y ,  
f u e l  in jec t ion  r a t e ,  f i e 1  cloud radius ,  chamber pressure, and turbopump wheel speed 
were calculated.  Typically, the responses were i n  the form of osc i l l a t ions  i n  power 
which were usual ly  damped, but  i n  some instances were sustained a t  some constant 
asymptotic amplitude. The na tura l  frequency of the  osc i l l a t ions  was about 1 cps, 
thus allowing reasonably long control  system response times t o  fu r ther  dampen the  
o sc i l l a t o ry  responses. Two fac tors  tend t o  drive the  osc i l l a to ry  responses : (1) a 
posi t ive  r e a c t i v i t y  coef f ic ien t  associated with moderator temperature, and ( 2 )  t he  
tendency t o  i n j e c t  f u e l  a t  a r a t e  above the steady-state l eve l  whenever chamber 
pressure goes below 500 atm (see Eq. (36) f o r  expression describing f u e l  i n j ec t i on  
r a t e ) .  

Responses t o  a s t e p  change i n  imposed r eac t i v i t y  causing the  reactor  t o  go 
prompt c r i t i c a l  are shown i n  d e t a i l  f o r  several  parameters throughout the  engine i n  
Figs.  15a and b .  A damped osc i l l a t o ry  response i s  charac te r i s t i c  of a l l  the  
parameters shown. The asymptotic values re tu rn  very nearly t o  t h e i r  o r i g ina l  steady- 
s t a t e  values with the  exception of t he  nuclear f u e l  mass, which i s  reduced t o  
29.867 lb .  This reduction i n  nuclear f u e l  mass causes a reduction i n  A M / M ~  = 

- 0.00443 which, when multiplied by the nuclear f u e l  r e ac t i v i t y  coef f ic ien t  of 0.384, 
r e su l t s  i n  a contribution t o  8k20f - O.OOl7Ol, nearly t he  t o t a l  required compensation 
fo r  the input  perturbation of 8kl = + 0.001707. 

Responses of parameters throughout the  engine t o  a posi t ive  s t ep  change i n  the  
f u e l  in jec t ion  flow r a t e  cal ibra t ion fac tor  by 10 percent are shown i n  Figs.  16a 
and b. Once again, the damped osc i l l a t o ry  response i s  charac te r i s t i c  of a l l  the  
parameters, bu t  the  damping i s  considerably slower than i n  the  response shown 
previously t o  the  s tep  r eac t i v i t y  inse r t ion .  It can be seen t h a t  power, rad ia t ing  
temperature, and transparent-wall temperature respond by approaching higher values 
than i n  the  steady s t a t e .  These higher values r e s u l t  i n  higher chamber pressure 
((Pc)asy=503.4)which serves t o  r e t a rd  the  f u e l  in jec t ion  r a t e  i n  accordance with 
~ q .  (36), returning it nearly t o  i t s  o r ig ina l  value of WF, = 1.5 lb/sec. 

A sustained 10 percent s tep  increase i n  the  f u e l  in jec t ion  flow r a t e  ca l ib ra t ion  
f ac to r  i s  a r e l a t i v e l y  severe sustained perturbation.  More probable f u e l  in jec t ion  
disturbances might be the  sudden in jec t ion  of agglomerated f u e l  ( so l i d  uranium 
metal) over a period of milliseconds, or an in ten t iona l  ramp increase or decrease i n  
fue l  flow r a t e  t o  a d i f f e r en t  steady-state l eve l .  Power l eve l  responses t o  the 
sudden in jec t ion  of so l i d  uranium metal f o r  5 and 50 msec are  shown i n  Fig, l7a  and 
b, respect ively ,  while power l eve l  responses t o  ramp changes i n  t he  f u e l  in jec t ion  
flow r a t e  ca l ib ra t ion  fac tors  t o  d i f f e r en t  steady-state l eve l s  are shown i n  Fig, 18a 
and b. It can be seen i n  Fig,  18 tha t  power l eve l  changes can be achieved r e l a t i v e l y  
smoothly by varying f u e l  in jec t ion ,  



Sustained. oscillatory response appears t o  r e s u l t  when chamber pressure i s  
perturbed such t ha t  o sc i l l a t i ons  occur about 500 atm, resu l t ing  i n  osc i l l a t ions  i n  
fue l  in jec t ion  r a t e  about the  steady-state value which dr ive  the power response. 
Thus, a decrease i n  chamber pressure ( fo r  example, a pressure change caused by a s t ep  
increase i n  nozzle- th roa t  a rea )  r e s u l t s  i n  greater  f u e l  in jec t ion ,  causing a 
compensating increase i n  power u n t i l  chamber pressure r i s e s  t o  r e t a rd  f u e l  flow r a t e  
drive the power l e v e l  down again. Similarly, a decrease i n  turbopump wheel speed 
causes a decrease i n  pressure and drives sustained o sc i l l a t i ons .  These sustained 
osc i l l a t ions  are not damped because t he  assumed i n e r t i a  of the turbopump prevents 
the  wheel-speed feedback term, 8v2,  from rapidly  compensating f o r  the  imposed wheel- 
speed change. Conversely, when chamber pressure i s  increased, f u e l  in jec t ion  i s  
retarded and the system decreases i n  power u n t i l  a compensating pressure drop c a l l s  
f o r  more f u e l  in jec t ion .  I n  these cases, however, the  reac tor ,  i n  seeking i t s  
o r i g ina l  equilibrium pressure l eve l s ,  continues t o  f e e l  the  o r ig ina l  pressure change 
and the  f u e l  in jec t ion  r a t e  i s  permanently retarded,  causing a damping of the 
osc i l l a t ions .  Ty-pical responses t o  chamber pressure and turbopump wheel speed 
perturbations are shown i n  Figs.  19 and 20. 

An increase i n  f u e l  radius decreases surface rad ia t ing  temperature f o r  a given 
power l e v e l  due t o  an increase i n  rad ia t ing  surface area.  The buffer-gas flow a l s o  
decreases due t o  a decrease i n  flow area.  The decrease i n  T* a l so  increases buffer  
gas densi ty  a t  the  edge of the  f u e l .  These e f f ec t s  both tend t o  increase the  s tored 
f u e l  according t o  Eq. (18), giving r i s e  t o  sustained o sc i l l a t o ry  response t o  an 
increase i n  f u e l  radius.  A decrease i n  fue l  radius has an exact ly  opposite e f f e c t  
and r e s u l t s  i n  damped osc i l l a t ions  i n  power approaching a l e v e l  below t h a t  of the  
steady s t a t e .  m i c a 1  calculated response t o  s t ep  and ramp changes i n  f u e l  region 
radius  are shown i n  Figs.  21 and 22. 

It should be emphasized here t h a t  the  responses calculated thus f a r  are  those 
of an uncontrolled engine model. Furthermore, no model of a f l u i d  dynamic res to r ing  
force on f u e l  radius has been derived, nor has any l im i t e r  or variable in jec t ion  
supply pressure been imposed on f u e l  in jec t ion  r a t e  ( the  current  simulation employs 
a constant f u e l  in jec t ion  supply pressure of 520 atm). Final ly ,  there i s  a l so  no 
turbine control  system i n  the  simulation. A l l  of these fac tors ,  when incorporated 
i n  an engine dynamics model, w i l l  tend t o  fu r ther  dampen the  power l eve l  responses 
t o  perturbations.  

Gain and phase diagrams fo r  responses of the  engine t o  small sinusoidal  
o sc i l l a t i ons  i n  r e a c t i v i t y  and f u e l  in jec t ion  r a t e  over a range of frequencies from 0 . 2 ~  
t o  2007 radians/sec are shown i n  Figs. 23 and 24, respect ively .  The pr inc ipa l  
f e a t ~ w e s  of the responses a re  t ha t  gain f a l l s  off a t  a r a t e  of 20 db/d-ecade and 
40 db/decade with increasing frequency for  r eac t i v i t y  and f u e l  flow r a t e  o sc i l l a t i ons ,  
respect ively ,  and t h a t  i n  no case does the phase angle equal -180 degrees. 



PceLirmi.nary Cor~eepts for Engine ConCrol 

The results of engine sim~~lation calculations thus far indicate that fuel 
i n j ec t i on  control  can achieve fu r ther  damping of power l eve l  responses of t h e  
uncontrolled engine. I n  pa r t i cu l a r ,  a l im i t e r  on f u e l  in jec t ion  r a t e  w i l l  . l i m i t  the  
l eve l  of excess f u e l  in jec t ion  caused by pressure reduction i n  the f u e l  chamber. In 
addi t ion t o  a. l im i t e r ,  it may a l so  be desi rable  t o  control  the in jec t ion  supply pressure 
(assumed t o  be a constant 520 atm i n  t h i s  study) and thereby provide a means of 
following or  responding t o  system pressure changes more rapidly .  There i s  more than 
enough power t o  operate a l l  of the engine pumps (approximately 87 percent of the 
avai lable  power i s  used t o  dr ive  the  turbopumps a t  steady-state f u l l  power operation) 
a t  f u l l  power so  t h a t  a wide range of control  on various flow r a t e s  i s  avai lable .  



RECOIflmNDATT ONS FOR FUTIEGE RESEARCH 

Additional refinements of both the engine s ta r t -up  and dynamics model are 
necessary i n  order t o  determine the  response of the engine t o  various types of 
controls and t o  permit the  analysis  of design tolerance e f f ec t s .  The i n i t i a l  r e s u l t s  
of the  engine dynamics have a l so  indicated t ha t  addi t ional  analysis  i s  required t o  
improve the  model i n  some spec i f ic  areas.  I n  par t i cu la r ,  a model describing the  
behavior of f'uel cloud radius and the  forces tending t o  maintain it a t  some equi l ib-  
rium locat ion should be devised. However, a balance must be s t ruck between model 
refinement and evaluation of constants associated with the  systems, such as  reac t iv -  
i t y  coef f ic ien t s .  Therefore, it i s  a l so  recommended t h a t  the r eac t i v i t y  coef f ic ien t s  
be recalculated fo r  small var ia t ions  about t he  steady-state full-power operation 
point  with temperatures and dens i t i es  of materials based on the r e s u l t s  of the 
current  simulation calcula t ions .  

Results of both the engine dynamics studies and the s ta r t -up  s tudies  have shown 
a need fo r  deta i led turbopump specif icat ions .  The magnitude of the  turbopump i n e r t i a  
and t he  design wheel speed a f f ec t  both dynamic response of the  engine and the auxil-  
i a r y  power requirements during s ta r t -up .  The invest igat ion of the  turbopump charac- 
t e r i s t i c s  should a l so  consider whether direct-coupled pumps fo r  a l l  the  flow c i r c u i t s  
are des i rable .  This problem could be approached from the  standpoint of the  e f f ec t s  
of a spec i f i c  turbopump design on the engine k ine t ics  or by an analysis  of the engine 
k ine t ics  t o  determine the  most desirable charac te r i s t i cs  of a turbopump un i t .  

I n  addit ion,  various means of control l ing fue l  in jec t ion  and turbopump output 
should be devised and analyzed t o  determine the bes t  modes of control  fo r  the  engine. 
Additional research i s  required t o  determine the f e a s i b i l i t y  and design of a f u e l  
handling system. The par t i cu la r  face t s  of a f u e l  handling system requiring fu r ther  
investigation are a determination of the achievable fuel-to-carrier-gas weight flow 
r a t i o s ,  the  behavior of nuclear f u e l  i n  a vortex flow f i e l d  during the t r ans i t i ons  
through t h e  sol id- to- l iquid  and liquid-to-vapor phase changes, and the f e a s i b i l i t y  of 
condensing the hot spent f u e l  with cold bypass flow while simultaneously preventing 
the f u e l  from p la t ing  on the  thru-flow duct walls .  
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LIST OF XYMBOIS 

A, B, C, D Constant c o e f f i c i e n t s  ( s e e  t e x t )  

C 'P S p e c i f i c  heat ,  Btu/lb-(deg R )  

C H Heat exchanger c o e f f i c i e n t  ( s ee  t e x t ,  Eq. ( 1 5 ) )  

C i Concentrat ion of delayed neutron precursors ,  precursors/cm3 

I Moment of  i n e r t i a  of  turbopump, f t - l b - see2  

Kg ' P r o p o r t i o n a l i t y  cons tan t ,  g  = 1, 2, D, H, M, P, A, ( s ee  t e x t )  

K~ Fue l  i n j e c t i o n  flow r a t e  c a l i b r a t i o n  f a c t o r ,  lb / sec  

k E f f e c t i v e  m u l t i p l i c a t i o n  f a c t o r  

B* Prompt neutron l i f e t i m e ,  s e c  

M Mass, l b  

Mc C r i t i c a l  mass, l b  

M~ Nuclear f u e l  loading,  gms o r  l b s  

Slope of approximate temperature equations ( s e e  t e x t )  

Neutron dens i t y ,  neutrons /em3 

Engine power l e v e l ,  mw 

T o t a l  chamber pressure ,  atm 

P r a n d t l  number 

Heat depos i t i on  r a t e ,  Btu/sec 

QB Heat depos i t i on  r a t e  i n  b u f f e r  gas ,  Btu/sec 

QP Pump pover requirement,  ~ t u / s  ec 

QT Turbine power output ,  Btu/sec 



LIST OF SD4BOLS (Continued) 

Heat deposii,iovi ra te  i n  l i n e r  tubes,  ~ t u / s e c  

Heat depos i t i on  r a t e  i n  t r a n s p a r e n t  s t r u c t u r e ,  Btu/sec 

Reynolds number 

Fue l  reg ion  r ad ius ,  f t  

S tan ton  number 

Fue l  r eg ion  su r f ace  a rea ,  f t 2  

Temperature, deg R 

Fue l  temperature,  deg R 

Average moderator temperature,  deg R 

I n l e t  temperature of neon b u f f e r  gas, deg R 

P r o p e l l a n t  e x i t  temperature,  deg R 

Transparent  w a l l  temperature,  deg R 

Equivalent  b lack  body r a d i a t i n g  temperature,  deg R 

To ta l  e l apsed  time s i n c e  i n i t i a t i o n  of pe r tu rba t ion ,  s e e  

S t a r t i n g  time of pe r tu rba t ion ,  s e c  

Fue l  i n j e c t i o n  v e l o c i t y ,  f t / s e c  

Coolant mass flow r a t e ,  lb / sec  

Buffer  gas flow r a t e ,  lb / sec  

Fuel  i n j e c t i o n  r a t e ,  lb / sec  

P rope l l an t  mass flow r a t e ,  lb / sec  

Change i n  f u e l  mass, gm o r  l b s  

P re s su re  d i f f e r e n t i a l ,  atm 

Cliange i n  f u e l  reg ion  r ad ius ,  cm o r  i n .  



LIST OF S ~ B O U  ( ~ u n t i n u e d )  

Temperature d i f f e r ence ,  deg R 

Average f l u i d  temperature d i f f e r ence  i n  hea t  exchangers, deg R 

Change i n  average moderator temperature,  deg R 

Time increment, s e c  

Change i n  hydrogen p r o p e l l a n t  dens i ty ,  l b / f  t 3  

T o t a l  of delayed neutron f r a c t i o n s  

Delayed neutron f r a c t i o n  

R e a c t i v i t y  r equ i r ed  t o  compensate f o r  l o s s  of delayed neut rons  

Imposed r e a c t i v i t y  change 

Feedback r e a c t i v i t y  change 

Power pe r tu rba t ion ,  mw 

Heat genera t ion  r a t e  pe r tu rba t ion ,  ~ t u / s  ec  

P e r t u r b a t i o n  i n  average moderator temperature,  deg R 

Pe r tu rba t ion  i n  f u e l  mass f low r a t e ,  lb / sec  

Input  pe r tu rba t ion  of t u r b i n e  wheel speed, rpm 

Feedback p e r t u r b a t i o n  of t u r b i n e  wheel speed, rpm 

- 1 
F u e l  decay constant ,  s e c  ( r e c i p r o c a l  of f u e l  res idence  t ime)  

Precursor  decay cons tan ts ,  s e c  -1 

F l u i d  v i s c o s i t y ,  l b / f t - s e c  

Turbopump wheel speed, q m  

Fuel  and c a r r i e r  gas mixture dens i ty ,  l b / f t  3 



CTf 

T~ 

Ti 

Subsc r ip t s  

0 

LIST OF SYMBOLS ( ~ o n t i n u e d )  

Buffer  gas e n s i t y ,  l b / f t 3  

Average f u e l  dens i ty ,  l b / f t 3  

Hydrogen p r o p e l l a n t  dens i ty ,  l b / f t 3  

Buffer  gas d e n s i t y  at edge of f u e l  region,  l b / f t 3  

S t e f  an-Boltzmann cons tan t ,  0.48 x 10-'*~tu/sec-f t2- ( e  R ) ~ '  

Thermal neutron f i s s i o n  c ross  s ec t ion ,  barns 

Coolant res idence  time i n  region, s e c  

Mean l i f e t i m e  of ith delayed neutron group, s e c  

Denotes r e f e rence  condit ion 

Denotes a spnp to t i c  va lue  



DERIVATION OF STEADY-STATE REACTIVITY Rl3QVLRED TO COMPENSATE 
FOR LOSS OF DELAYED NEUTRONS 

As a r e s u l t  of a f i n i t e  f u e l  and delayed neutron precursor residence time i n  
the nuclear l i g h t  bulb engine, an excess amount of r eac t i v i t y  i s  required t o  
compensate fo r  the  l o s s  of delayed neutrons emitted outside the act ive  reac tor  core. 
C r i t i c a l i t y  i s  defined as  the s t a t e  i n  which the neutron l eve l  and delayed neutron 
precursor concentrations remain constant with time. 

The equations of s t a t e  fo r  one prompt neutron group and s i x  delayed neutron 
groups can then be given by: 

and 

d C i  p i n  - =  
d t 7 - ( X i  + X ~ ) c i  

where 

n = neutron population, function of time, n/cm 3 

8 k = r eac t i v i t y ,  dimensionless 

Ci = delayed neutron precursor concentration, function of time, precursor/cm 3 

h F  = f u e l  decay constant, function of time, sec-I  

l* = prompt neutron l i fe t ime ,  sec 

P i = ith delayed neutron group f rac t ion ,  dimensionless 

Xi = decay constant f o r  the ith delayed neutron precursor, see-' 

p = t o t a l  delayed neutron f rac t ion ,  dimensionless 



and 

- 
Ln the stead-y s t a t e  E q s .  (A-l) and (A-2)  become 

Rearranging and solving f o r  ( c ~ ) , ,  Eq.  (A-4) becomes 

Subst i tu t ing Eq. (A-5 ) i n t o  Eq.  (A-3), we obtain 

Since 

we can solve f o r  6 ko 



Now i f  t h e  s s d o ~ ~ a r t P  5 s  defined as the  miount of excess r e a c t i v i t y  needed "c become 
c r i t i c a l  on prompt neutrons alone, then, fo-. a prompt er- i t fcal  reactor with an 
i n f i n i t e  f u e l  md p r e c u s o r  residence time, successive neutron generations are 
r e l a t ed  by 

Prompt N's Delayed N's Added Reactivity 

It can be seen t ha t  i f  6 k l  = p , the  reactor i s  c r i t i c a l  on prompt neutrons alone. 

However,' f o r  a prompt-cri t ical  reactor  with a f i n i t e  f u e l  and precursor residence 
time, successive neutron generations are given by: 

Prompt N's Delayed N's Added Reactivity 

Thus, the reactor  i s  c r i t i c a l  on prompt neutrons alone i f  

I +Sko-P+8kI = I  

The 'kolla$' of r e a c t i v i t y  i s  therefore ,  from Eq. (A-10) 

For the  nuc lear l igh t  bulb reactor ,  with U-233 f u e l  and a f u e l  decay constant of 
X F  = 0.05 sec- l ,  $1.00 = 0.001707. 



STEADY- STATE MODERATOR A m  STRUCT"URF HEAT DE POSIT1 ON RATES 

Fuel - U-233 

Re g i  on 

I Nozzles I Neutron and Gamma 1 O . O O O ~ X ~ O ~  

Pressure Vessel 

Flow Divider ' 

Tie Rods 

Cavity End Walls 

Cavity Liner 

Transparent Structure 

Fuel Recycle System 

Mechanism of Heating 

Neutron and Gamma I 0 .log3 x lo5* 

Moderator End Plugs 

Beryllium Oxide 

'I 

He a t  Deposition Rate 
~ t u / s e c  %* 

Neutron and Gamma and Conduction 

Neutron and Gamma and Conduction 

Thermal Radiation and Conduction 

Thermal Radiation and Conduction 

Thermal Radiation and Conduction 

Removal of Heat from Fuel 

Neutron and Gamma 

Neutron and Gamma 

I I Graphite I Neutron and Gamma ! 
i 

0.4607 x lo5 1 
Direct  Hydrogen Heating 

1 Percent of Total Power 1 12.15 percent 
; 

I 

Neutron and Gamma I 0 . 5 5 6 4 ~ 1 0 ~  I 

Tot a1 

I 

* Total heating i n  pressure vessel  i s  0.165 x 105. It i s  assumed tha t  only 2/3 of 
the  t o t a l  w i l l  be removed by the closed secondary hydrogen coolant c i r c u i t  and 
the  remaining 113 will be removed by the t ranspira t ion cooling c i r c u i t .  

r 

5.32 x lo5 



TABLE 11 

STEADY-STATE TEMPERATURE, ENTHALEY, A I D  PRESSURE LEVELS Ifa 
PRIMARY HYDROGEN PROELLANT CIRCUIT OF NLJCEFAR LIGHT BULB ENGINE 

Hydrogen Propellant Flow = 42.3 lb/sec 
Note: Sta t ion Numbers Refer t o  Locations Shown i n  Fig. 2 

Fuel Cycle Heat Exchanger I n l e t  

Secondary Heat Exchanger I n l e t  

Secondary He a t  Exchanger Outlet 

Turbine o u t l e t  

Upper End Plug Outlet 

Axial Beryllium Oxide Outlet 

Lower End Plug Outlet 

Graphite Outlet 

Propellant,  Including Direct  

* Lumped i n  so l i d  moderator region i n  Fig. 2 



STEADY-STATE TEMPERATW, ENTHALPY, AND PRESSURE LEVELS I N  CLOSED 
SECONDARY HYDROGEN CIRCUIT OF NUCLEAR LIGHT BULB ENGINE 

Hydrogen Coolant Ci rcu i t  Flow = 42.3 lb/sec 
Note: Sta t ion Numbers Refer t o  Locations Shown i n  Fig. 2 

Pressure 
A t m  

5 10 

508 

507 5 

507 5 

502.4 

502.4 

500 

498 

Sta t ion 
"- - --- - 

2010 

2016 

2017 

2020 

2026 

2030 

2040 

2000 

Temperature 
Deg R 

741 

843 

843 

858 

1439 

1454 

2195 

739 

--- -. - - - - -- 

Location 
--- 

Pressure Vessel Liner I n l e t  

Nozzle I n l e t  

Lower End Wall Liner I n l e t  

Tie Rod Flow Divider and 
Cavity Liner I n l e t  

Upper End Wall Liner I n l e t  

Transparent Wall I n l e t  

Transparent Wall Outlet 

Heat Exchanger Outlet 

Enthalpy 
~ t u / l b  

2250 

2508 

2510 

2582 

4673 

4745 

7414 

2250 
- -- 



STEADY-STATE TEMPERATURE AND ENTHAL'PY LEVELS IN FUEL CYCLE: 
C I R C U I T  OF NUCIEAR LIGHT BULB ENGINE 

Total  Neon Flow Per Cavity = 21.1 lb/sec 
Total  Fuel Flow Per Cavity = 0.15 lb/sec 

Locat ion 

3000 H-Ne Heat Exchanger Outlet statiOi 
3010 I Pump Outlet* 

3020 I Cavity Outlet 

3030 1 H-Ne Heat Exchanger I n l e t  

Temperature 
Deg R 

Enthalpy 
~ t u / l b  

* The required neon flow r a t e  i n t o  each cavi ty  i s  3.51 lb/sec; the remaining 
17.59 lb/sec of neon bypasses the cavi ty  and i s  mixed with the  flow whichexits  
from the  cavity i n  order t o  condense the f u e l  before the neon-fuel mixture 
enters  the  separator,  



SOLID MODEMTOR FLOW D I V I D E R  
FOR NUCLEAR LIGHT BULB ENGINE 

Beryllium Wall Th i che  s s , i n .  

Clearance Between Walls, i n .  

Pyrolytic Graphite Insula t ion Thickness , i n .  

Beryllium Oxide Side 

Graphite Side 

Total Flow i n  Divider Region, lb/sec 

Total Flow Area, i n .  
2 

Total Heat Deposition Rate, ~ t u / s e c  

Coolant I n l e t  Temperature, deg R 

Coolant Outlet Temperature, deg R 

Film Temperature Difference, deg R 

Temperature Difference i n  Beryllium Wall, deg R 

Maximum Beryllium Temperature, deg R 

Reynolds Number 



SPECIFICATIONS FOR BERYLLI-UM TIE RODS 
FOR NIICUAR LIGH'T BULB ENGINE 

Ins ide  Diameter, i n .  

Outside Diameter, i n .  

Pyrolytic Graphite Insula t ion Thickness 

Overall Diameter, i n .  

Number of Rods 

Total  Flaw Per Rod, lb/sec 

Total  Heat Deposition Per Rod, ~ t u / s e c  

Coolant I n l e t  Temperature, deg R 

Coolant Outlet Temperature, deg R 

Film Temperature Difference Ins ide  Rods, deg R 

Temperature Difference i n  Beryllium Wall, deg R 

Reynolds Number i n  Rod 



TASrn V I I  

CAVITY LLI\JE;R COI~E'IGuRliTiON ANIj STEADY-STATE OERATING 
CONDITIONS FOR NUCEAR LIGHT BULB ENGINE 

Inside Radius of Liner a t  Propellant I n l e t ,  f t  
Inside Radius of Liner a t  Propellant Outlet,  f t  
Average Radius of Liner, f t  
Length of Liner Tubes , f t 
Average Liner Tube Inside Diameter, i n .  
Average Liner Tube Outside Diameter, i n .  

Number of Tubes Per Cavity 302 
Thickness of Reflective Coating on Outside Walls, i n .  0.002 
Total  Secondary Hydrogen Coolant Flow Per Cavity, lb/sec 5 .36 
Total Heat Deposition i n  Liner Per Cavity, ~ t u / s e c  10 , 944 
Coolant I n l e t  Temperature, deg R 858 
Coolant Outlet Temperature, deg R 1439 

Film Temperature Difference Inside Tubes, deg R 46 
Temperature Difference i n  Beryllium Wall, deg R 7 
Maximum Tube Surface Temperature Adjacent t o  Propellant, deg R 1492 
Dynamic Pressure i n  Tubes, atm 0.228 
Total Pressure Loss i n  Liner Tubes, atm 5 *05 
Reynolds Number i n  Tubes 1.93 x lo5 



TABLF: VIII 

TRANSPARENT STRUCTURlE R E G I O N  COiWIGURATION AND STEADY-STATE 
OPERATING CONDITIONS FOR NUCLEAR LIGHT BULB EBGPNE 

Inside Radius of Transparent Structure,  f t  
Length of Transparent Structure ,  f t  
Tube Inside Diameter, i n .  
Tube Wall Thickness, i n .  
Tube Outside Diameter, i n .  

Number of Tubes i n  Each 120-Degree Segment of Each Cavity 1200 
Total Hydrogen Secondary Coolant Fluw Per Cavity, lb/sec 6.04 
Total  Heat Deposition i n  Transparent Structure Per Cavity, 

~ t u / s e c  16,130 
Coolant I n l e t  Temperature, deg R 1454 
Coolant Outlet Temperature, deg R 2195 
Film Temperature Difference Inside Tubes, deg R 105 

Temperature Difference i n  Wall, deg R 
Maximum Tube Surface Temperature, deg R 
Dynamic Pressure i n  Tubes, atrn 
Total Pressure Loss i n  Tubes, atrn 
Reynolds Number i n  Tubes 

Feeder and Collector Pipe Average Inside Diameter, i n .  1.2 
Average Dynamic Pressure i n  Feeder and Collector Pipes, atm 0.16 
Pressure Loss i n  Feeder Pipe, atm 0.270 
Pressure Loss i n  Collector Pipe, atm 0.420 
Average Reynolds Number i n  Feeder and Collector Pipes 7.2 x 10 5 

Total Pressure Loss i n  Transparent Structure,  atm 2 035 
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HEAT EXCHAIVmR SPECIFICATTOTJS 
FOR NUCIXAR LIGm BULB ENGINE: 

Number of Heat Exchangers 

Hydrogen Flow Rate Per Unit, lb/sec 

Heat Transferred Per Unit, ~ t u / s e c  

Tube Ins ide  Diameter, i n .  

Tube Wall Thickness, i n .  

Tube Spacing, i n .  

Number of Tubes Per Unit 

Length of Tubes, i n .  

Cross Sectional  Area of Tube Bundle, 
Per Unit i n .  2 

Pressure Loss, atm 

Tube Wall Material 

Wall Material  Density, lb / f t5  

Tube Weight Per Unit, l b  

Number of Units 

Total  Heat Exchanger Weight 
(1.1 x t o t a l  tube weight), l b  

H-H Heat 
Exchanger 

H-Ne Heat 
Exchanger 

Sta inless  S t ee l  

500 



TABLE XI 

SEQUENCE OF EVEBE3 DURING START-UP 

1. Bring turbopump up t o  design speed (22,000 rpm) us ing  e x t e r n a l  power source .  

2. S t a r t  hydrogen and neon f low t o  e s t a b l i s h  t h e  fol lowing i n i t i a l  cond i t i ons :  

Hydrogen p r o p e l l a n t  flow r a t e ,  4. .23 lb / sec  
Secondary coolant  flow r a t e ,  4 .23 lb / sec  
Neon b u f f e r  gas flow r a t e ,  2 1  lb / sec  
I n t e r n a l  p re s su re  l e v e l  i n  r e a c t o r ,  20 a t m  

3 .  S t a r t  f u e l  i n j e c t i o n  and inc rease  l i n e a r l y  w i t h  t ime t o  design flow r a t e  
of 1 . 5 5  l b / sec .  

4. Hydrogen p r o p e l l a n t  flow and secondary c i r c u i t  flow a r e  increased  
l i n e a r l y  w i t h  t ime from t h e  i n i t i a l  va lue  t o  t h e  design flow r a t e  
(42 .3  l b / s e c ) .  

5 .  Neon f low r a t e  i n  t h e  f u e l  cyc le  i s  increased  according t o  t h e  schedule 
shown i n  F i g .  6. The t o t a l  flow through t h e  c a v i t y  remains cons tan t  
a f t e r  reaching a  va lue  of 24.51 lb / sec  and a l l  a d d i t i o n a l  neon flow 
bypasses t h e  c a v i t y .  

6. Nozzle t h r o a t  a r e a  i s  v a r i e d  according t o  t h e  schedule shown i n  F i g .  11. 



TABU X I 1  

DELAleED NEUTRON YIELDS FOR U-233 

T o t a l  Delayed Neutron F rac t ion ,  P = 0.0025 

Mean 
Life ,  Ti 

s ec 

Decay 
Constant,  X 

sec -1  

Yie ld  
Frac t ion ,  ,f3 



ASSUMPTIONS EPlPLOYED I N  ENGINE DYETMICS SIMULATION 

1. Reac t iv i ty  feedback coef f i c i e n t s  and ope ra t ing  c h a r a c t e r i s  t i c s  a t  nominal f u l l  
power were taken  from Refs .  1 and 2, and have t h e  fol lowing va lues :  

ope ra t ing  Power = 4,600 megw 
Chamber P re s su re  = 500 atm 
Fue 1 Radia t ing  Temperature = 15,000 deg R 
P r o p e l l a n t  E x i t  Temperature = 12,000 deg R 
Average Fue l  Residence Time - - 20 s e c  

C r i t i c a l  Mass - - 30 ~b 

Prompt Neutron Lifetime = 0.000516 s e c  
F u e l  Radius = 0 .681 f t  
Average Thermal F i s s i o n  Cross Sec t ion  = 193 barns 

Steady-State  Fue l  I n j e c t i o n  Rate = 1 . 5  lb / sec  
R e a c t i v i t y  Feedback Coef f i c i en t s  : 

Fuel ,  (ak /k) / (  Q M ~ / M ~ )  = 10.384 
Moderator Temperature, (Sk/k) / ( A T ~ / T  ) = -10.045 
P r o p e l l a n t  Density,  ( S B / ~ ) / ( A  P / PHorprop = to.0544 
Moderator Coolant Density,  (Sk~k)/(Ap$pHo)mod = 10.0115 
Fuel  Region Radius, (Slr/k)/(A%/%) = -0.0413 

2 .  Heat s t o r a g e  capac i ty  i s  n e g l i g i b l e  i n  a l l  components except  t h e  s o l i d  moderator 
r eg ion .  The assumed values of mcp i n  t h e  s o l i d  moderator reg ions  were 5124 ~ t u / d e ~  R 
f o r  t h e  Be0 and 6440 E3tu/deg R f o r  t h e  g r a p h i t e .  

3. Choked flow condit ions e x i s t  i n  t h e  e x j t  nozzle t h r o a t  and i n  t h e  t u r b i n e  nozz le s .  

4. The turbopunp c h a r a c t e r i s t i c s  used i n  t h e  program a r e :  

S t eady- s t a t e  wheel speed = 22,000 rpm 
2 

Moment of i n e r t i a  of turbopump u n i t  = 130 f L  lb-sec  

5 .  The t o t a l  flow r a t e  i n  a l l  c i r c u i t s  w i l l  vary  d i r e c t l y  w i th  t u r b i n e  wheel speed 
and t h e  pump head r i s e  w i l l  vary wi th  t h e  square of t h e  wheel speed.  

6 F i s s i o n  product hea t ing  i n  t h e  f u e l  cyc le  c i r c u i t  v a r i e s  w i t h  time according 
t o  t h e  express ion  L$p = l 8 9 0 Z  where t i s  t h e  t o t a l  e lapsed  time of  
ope ra t ion ,  



TABLE X I T I  (cont inued)  

7. Constant phys i ca l  p r o p e r t i e s  of t h e  coolants  a r e  used i n  each reg ion .  

8. Chamber pressure  v a r i e s  a s  t h e  product of p r o p e l l a n t  weight flow and t h e  square 
r o o t  of p rope l l an t  temperature,  pc a wp 4 , a r e s u l t  of choked flow condi- 
t i o n s  i n  t h e  e x i t  nozz le .  

9 .  Constant t r a n s p o r t  l a g s  assumed f o r  a l l  reg ions  and p ip ing  systems on t h e  
b a s i s  o f  r e f e rence  coolant  flow v e l o c i t i e s .  

1 0 .  Fue l  i n j e c t i o n  r a t e  assumed t o  vary  a s  t h e  square r o o t  of t he  i n j e c t i o n  system 
p res su re  'drop, WF U ,/-- where p r e g u l a t e d  t o  be 520 atm. 

I c I 



FIG, 1 

SKETCHES ILLUSTRATING PRINCIPLE OF OQEWATlON OF NUCLEAR LIGHT BULB ENGINE 

01 OVERALL CONFIGURATION 
MODERATOR FLOW DIVIDER 

U P P E R  END N O Z Z L E S  n SECTION A-A 
-MODERATOR 7 A 

REGION I 
H E A T  E )  

. . 
PLUMBING, SEPARATORS, ETC.  

U N I T  C A V I T Y  1 

b) CONFlGUWAIlON OF UNIT CAVITY SECTION B-B 
SEEDED C A V I T Y  L I N E R  WIT 

R E F L E C T I N G  WAb 
MODERATOR P R O P E L L A N T  

F U E L  INJECTOR 
TRANSPARENT 

'................ 

NEON I N J  E C T l O N  P O R T  

G A S E O U S  N U C L E A R  F Y  E L  



TURBINE 

CONTROL 

VALVE 

H-H HEAT 
EXCHANGER 

PRIMARY 
HYDROGEN 

PROPELLANT 
CIRCUIT 

FIG. 2 

NUCLEAR LhGHP BULB FbObY BlAGRAM 
STATIONS DENOYFB BY  FOUR-DIGIT NUMBERS 

T U R B I N E  

MODERATOR 

6 

SECONDARY HYDROGEN CIRCUIT 

SECONDARY 

HYDROGEN PUMP 

H-Ne H E A T  

EXCHANGER 

FUEL CYCL 
HYDROGEN 



VARIATION OF FISSION PRODUCT DECAY HEATING WITH TOTAL OPERATING TlME 

D E C A Y  H E A T  D A T A  O B T A I N E D  FROM R E F .  3 

4 8 12 

TlME AT FULL POWER, MIN 



FIG, 4 

VAPOR PRESSURE OF UF, 

D A T A  T A K E N  F R O M  REF.  9 

700 800 

TEMPERATURE, T - BEG R 



FIG, 5 
m 



FIG. 6 

e.,; 



AVERAGE Be0 TEMPERATURE DURING START-UP POWER RAMPS 

T O T A L  B e 0  MASS = 12,200 L B  

ASSUMED V A L U E  O F  MCp = 5124 BTU/DEG R 

TIME, t - SEC 



FIG. 8 

AVERAGE GRAPHITE TEMPERATURE DURING START--UP PO#ER RAMPS 

T O T A L  GRAPHITE  MASS = 26,800 L B  

ASSUMED V A L U E  O F  MC, = 6440 BTU/DEG R 

5 102 2 

TIME, r - SEC 



FIG. 9 

PROPELLANT TEMPERATURE DURING START-UP POWER RAMPS 

300 SEC START-U 

5 10' 2 5 102 2 

TIME, r - SEC 





FIG. 11 



VCIWIAflION OF U-233 CRITICAL MASS DURING START-UP POWER RAMPS 

TIME, t - SEC 

FIG. 1% 



FIG, 43 

VARlAPtON OF FUEL IkdJECnBgdN RATE DURING START-UP PONER RAbtPS 

WEIGHT FLOW BASED ON EXCESS NUCLEAR FUEL REQUIRED TO SUSTAIN LINEAR POWER RAMPS 

I oO 2 10' 2 5 2 5 

TIME, t - SEC 



H -9 10395-4 FIG. 14 

NUCLEAR LlGFiT GULB S!M&"aBATlBN PROGRAM FLOW DIAGRAM 

I C A L C U L A T E  STEADY S T A T E  I I R E A C T I V I T Y  8 ~ ~ .  STEADY I I S T A T E  PRECURSOR CONC. C(0)  I 

C A L C U L A T E  

PERTURBATION,  8 ( t )  

I C A L C U L A T E  CHAMBER I 
I PRESSURE, TURBOPUMP I 

WHEEL SPEED, SECONDARY 

AND P RlMARY C O O L A N T  

T*; F U E L  FLOW RATE, WF (t); 

I CONTAINED F U E L  MASS, M(+); I 
I PRECURSOR CONCENTRATIONS, C(+) I 

C A L C U L A T E  E X I T  TEMPERATURE,  T(t), 

I N  PRIMARY C IRCUIT  FOR PUMP, H-Ne 

H E A T  EXCHANGER, TURBINE, B U L K  

MODERATOR , P R O P E L L A N T  I 
I 8K( t ) ;  NEUTRON LEVEL., I I 

C A L C U L A T E  B U F F E R G A S  

FLOW RATE, WB(t) 

C A L C U L A T E  E X I T  TEMPERATURE,  T(t), 

I N  SECONDARY CIRCUIT $ 9 8  H-H H E A P  
IN  F U E L  C Y C L E  CIRCUIT FOR PUMP, 

EXCHANGER, P U M P ,  (PRESSURE VESSEL, F U E L  CAVITY ,  SEPARATOR, M-Me 

E N D  WALLS), ( C A V I T Y  L INER,  T IE  RODS, 

FLOW DIVIDERS). TRANSPARENT W A L L S  , 



H-910 375-4 FIG. 15A 

RESPONSE OF NIJCLEAR LIGHT BU$_B ENGlNE TO POSIWVE STEP CHANGE EN 
II~I~POS ED REACTIVITY 

TIME A F T E R  REACTIVITY CHANGE, t - SEC 
(CONTINU ED) 



FIG, 158 

RESPONSE OF b i U 6 ~  Ft:ti L I G H  1 k u ~ ~  kti~-JNb- $(j$/ 1 [ v ~  
STEP CMANGL "J i!vfPOSED REACPIV%TV 

(CONTINUED)  

CONSTANT F U E L  RADIUS 

5 10 P 5 20 

TDME AFEER REAC"$VI"$ CHANGE, t - SEC 
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H-990375-4 FIG, 16B 

RESPONSE OF NUCLEAR LlGHl BULB ENGINE TO POSITIVE SEEP CHANGE IN 
FUEL INJECTION FLOW BATE CALIBRA"%IQN FACTOR 

(CONTINU ED) 

CONSTANT FUEL RADIUS 

TlME AFTER FUEL INJECTION RATE CHANGE, t - SEC 



FIG, 17 

POWER LEVEL RESPONSE OF NUCLEAR LIGHT BULB ENGIME TO 
TERMINATING STEP CHANGE IN FUEL INJECTION FLOW RATE 

CALIBRATION FACTOR 

CONSTANT FUEL RADIUS 

W F  =KF( ( 5 2 0  - P C ) / 2 0  ) 'I2 

a) KF = 4.3 WF = 6.45 LB/SEC 
0 

(SOLID U-233 INJECTION); t = 0.0 TO 0.005 SEC 

KF = WFo = 1.5 LB/SEC FOR t > 0.005 

b ) '  KF=4.3WF =6A5  LB/SEC 
0 

(SOLID U-233 INJ ECTION); t = 0.0 TO 0.05 SEC 

K ,= W F o  = 1.5 LB/SEC 'FOR t > 0.05 

5 10 

TlME AFTER START OF PERTURBATION, t - SEC 



POWER LEVEL RESPONSE OF NUCLEAR LlGHT BULB ENGINE 
TO EERMIMATING RAMP CHANGE IN FUEL lMJECTlON FLOW RAPE 

CALIBRATION FACTOR 

CONSTANT FUEL RADIUS 

W F  = K F (  (520 - p c  )/20 1% 

H-9 18375-4 FIG. 18 

a) K F  = 1.1 W /SEC FOR t = 0 T O  1.0 SEC; 
Fo 

K F =  1.1 WF FOR t> l .O  
0 

b) KF = 0.9 W, /SEC FOR t = 0 TO 1.0 SEC; 
0 

K~ = 0.9 W F o  FOR t >1.0 

TlME AFTER SWART OF BEWTURBATIBM, t - SEC 



FIG. 19 

POWER LEVEL RESPONSE OF MUCLEAR LBGHWULB ENGINE 
TO STEP CHANGES IN CHAMBER PRESSURE 

CONSTANT FUEL RADIUS 

SEE EQ (33)  IN T E X T  FOR DESCRIPTION O F  Wp, W p d  Tp ,  T p o  

TIME AFTER START OF PERTURBATION, t -- SEC 



FIG, 28 

POWER LEVEL RESPONSE OF NUCLEAR LIGHT BULB ENGINE 
TO TERMINATING RAMP CHANGES IN TURBO-PUbJP WHEEL SPEED 

CONSTANT F U E L  RADIUS 

v = V O +  s v ,  + + v 2  

Vo = 22000 RPM 

6 v l  = IMPOSED W H E E L  SPEED CHANGE 

SEE EQ ( 2 1 )  I N  T E X T  F O R  D E S C R I P T I O N  O F  8 1, 2 

a) 6v, = 0 . 0 2 ~ ~  /SEC FOR t = 0.0 TO 1.0 SEC; 

6 v l  = 0.02 v0 FOR t > 1 B 

5 10 

TIME AFTER START OF PERTURBATION, + - SEC 

b) 6 ~ ,  = -0.02~~ /SEC FOR r = 0.0 TO 1.0 SEC; 

671, = -0.02 v0 FOR + > 1 .0 

5 
v 

90 

TIME AFTER START OF PEWWRRBTION, t - SEC 



POWER LEVEL RESPONSE OF NUCLEAR LIGHT BULB ENGINE 
TO STEP CHANGES IN FUEL CLOUD RADIUS 

TIME AFTER START OF PERTURBATION, t - SEC 



FIG. 22 

POWER LEVEL RESPONSE OF NUCLEAR LIGHT BULB ENGINE 
TO TERMINATING RAMP CHANGES ifd FUEL CLOUD RADIUS 

TIME AFTER START OF PERTURBATION, t - SEC 

b) 6RF = -0.05 R /SEC FOR t = 0 TO 1.0 SEC; 
0 

6RF = -0.05 RF FOR t > 1.0 
0 

TIME AFTER START OF PERTURBATION, t - SEC 





H - 8  10375-4 FIG. 24 
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