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ABSTRACT

Theoretical models of the magnetron gage are developed by
treating the electronic charge cloud as a rotating fluid.
Calculations are given for the gage oscillation frequency and

an expression for the relation between the pressure and ion
current.,
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RESEARCH AND DEVELOPMENT PROGRAM ON COLD CATHODE

MAGNETRON ULTRAHIGH VACUUM GAGE
By R. M. Oman

Norton Research Corporation

SUMMARY

A theoretical model for the magnetron gauge was developed
by treating the electronic charge cloud as a rotating £fluid.
This model accounts for the experimentally observed oscillations
in the gauge and the linear relation between pressure and ion
current, Expressions for the electric field and potential with-
in the gauge structure were developed using this model. Dioco-
tron waves were used to calculate the gauge oscillation fre-
guency. These calculations are correct to within an order of
magnitude and vary with 1/B in accord with experiment. Stability
criteria for magnetron type devices, involving the size of the
charge cloud and electron density have also been developed. If
a constant number density and energy spectrum are assumed for
electrons in the discharge, a linear relationship between pres-
sure and ion current results over a wide pressure range. Cal-
culations of the sensitivity are within a factor of four of

measured values.



INTRODUCTION

Before discussing the solution to the magnetron gage
problem an outline of the general approach to problems in
field theory and in particular those problems and theoretical
techhiques which most closely conform to the magnetron is ap-
propriate. This general picture of field theory will make it
much easier to see where the magnetron problem fits in re-
lation to the several other problems (general problems) that
have been solved with field theoretical techniques. As will
be seen later on, it is most appropriate to use this kind of
an outline of problems with particles in fields because there
are actually very few problems that have been successfully
solved with field theoretical methods. Actually rather than
specific problems, there are general problems that can be
solved via field theory such as a single particle in a field,
a beam of interacting particles in a field or a collection of
particles sufficiently dense to drastically alter the initial
field moving in a field.

The Magnetron Problem

There are many side problems associated with trying to
solve the general problem of the magnetron. And many of these
problems involve calculations the results of which are needed

to decide which effects can be neglected and which need to be



considered and what approximations are allowed. However, in
this section we want to describe only the general features of
the magnetron problem.

To place some restrictions on the problem consider that
the magnetron is a smooth bore one, the charge cloud is en-

tirely electronic, and the two major features that we would

like to account for in any theoretical model are (1) the
oscillations in the gage, and (2) the linearity, that is
the linear relation between ion current and pressure. There

are several other restrictions which can be placed on this
particular magnetron problem but these are sufficient for
out general discussion at least at this point.

The general situation regards the magnetron gage is shown
in Fig. 1. The gage consists in concentric cylinders with a
potential of 6000 volt between them and an axial magnetic field
of strength 1000 gauss., The polarity of the voltage is such
that ions are collected at the inner electrode., The utility
of the device as a vacuum gage is illustrated in the accompany-
ing graph of ion current to the cathode versus pressure. Over
a wide pressure range and one in which hot filament type gages
are unreliable primarily because of X-ray limitations (from 1077
to 2 x 10710 Torr for this operating point) there is a linear
relation of current to pressure and below this point there is
an exponential relationship. On this log-log plot the linear
relation is shown as a straight line of slope unity and the non-
linear relation as a straight line of slope different from

unity. These relations are also shown in Fig. 1.
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Fig. 1

General configuration of the Magnetron Gauge
including the pressure-current relations.




Charged Particles In Electromagnetic Fields

In actual practice there are only three relatively narrow
classifications of problem that can be solved by field theo-
retical technigues. Though this is clearly a somewhat ar-
bitrary classification it is most appropriate for this dis-
cussion.

The simplest problem of particles in fields is one in
which a single charged particle behaving in a classical manner
is acted on by applied electric and magnetic fields. Next is
the problem of the beam of charged particles interacting with
electric and magnetic fields where the fields (outside the
beam) are still those found for the charge free situation, And
then there is that class of problems where the charge density
of a beam of particles is so high and the beam is so large in
extent that initial field conditions are drastically altered.
This general classification of problems is shown in Fig. 2
where the charge and field situation is described and examples

from the macroscopic and microscopic worlds are given,

Single Particle in a Field.- Now if we approach the

problem of finding the trajectory of an electron in a field
where we specify the initial conditions (position and velocity)
and the field then the regular equations of classical physics,
derived from simple Newton's laws relations uniquely determine
the position and velocity of the particle in time. If we take
the same field configuration, add another charged particle with
its set of initial conditions we can again €asily tind the
trajectories of both particles. If this process is continued

for more and more particles each time; a point 1is very guickly




CHARGE & FIELD MACROSCOPIC MICROSCOPIC

E,q, m SINGLE PARTICLE HYDROGEN
TWO PARTICLES HELIUM
CHAOS HARTREE-FOCH
BEAM ELECTRON BEAMS
E,Q,M
STATISTICAL SUPERCONDUCTORS
ME THODS
(DESTROY E) (MAGNETIC FIELD)
STREAM PLASMA
Q,M

Fig. 2

General classification of problems in field theory.



reached when the interactions of the particles begin to in-
fluence the motion., If carried to extremes the interactions
dominate in determining the motion. Except for special cases
like the Helium atom problem we are unable to solve problems
by continuous superposition of solutions to the problem of a
single particle interacting with a field.

Beam of Particles in a Field.- The next most complicated

approach for considering electrons in fields is to start with

a beam of particles and have the beam enter the field with pre-~
scribed initial conditions. Then as with the single charged
particle we can predict the history of the beam in time, After
solving this problem we look inside the beam to determine the
trajectories of the individual particles. This is the second
general category of problems that can be solved with classical
field theory. What we do in this case is break the problem up
into two separate prablems one similar to the problem of a
single particle in a field and the other taking account of the

interactions within the beam.

Stream of Particles in a Field.- The next most complicated

problem that we can handle is one in which the beam of par-
ticles is sufficiently dense and sufficiently large in extent
to drastically alter the initial applied electric field. 1In
this situation the analysis is very complicated because the
actual fields that the individual particles experience bears

little resemblance to the initial conditions.



Comparison of Techniques.- Now we have three general

categories of problems that can be solved (1) single particle
in field, (2) beam of particles in field, (3) beam of par-
ticles sufficiently large and dense to essentially destroy the
original field in a field., The discussion above of the situa-
tion of one particle in a field and then the addition of more
and more individual particles (superposition of independent
solutions) is really an illustration of the futility of at-
tempting to superpose solutions neglecting particle interactions.
This general observation is borne out by some examples from the
macroscopic and microscopic worlds. In the general area of
macroscopic problems, it is relatively easy to deal with single
charged particles, either an ion or electron, one at a time,

When we have to consider more than one electron it is necessary
to add the further condition of noninteraction; that is, in
real problems we can handle one particle in a field or two or
three or four, etc. by treating each particle separately.

But we very quickly reach the point of chaos in determining

the interactions. Actually this chaos is due to the nonavail-
ability of theoretical techniques. Again in the macroscopic
world it is relatively easy to work with beams of charged
particles such as in all of the electron beam devices by
breaking the problem up into two parts that we can handle.

We look at the beam and then inside of it separately. Aftér
the problem of dealing with the beam of charged particles we
skip to the problem where the charged particle density is suf-
ficiently high to destroy or very nearly destroy the applied
fields such as generally encountered in plasma physics. Now

in the microscopic world the realization of the futility of

charged particle physics is more evident. For instance, it is



possible to solve the hydrogen atom problem completely. The
next most complicated atom however which consists of only two
electrons in a central force field is much more difficult to
solve and special techniques such as the Hartree~Foch have

been developed to deal with many electron atoms. In the micro-
scopic world the separation of particles is sufficiently small
so that the problem of destroying the field is not regularly
encountered except for shielding (electrons shielding the

nucleus) .

The Magnetron Problem in Relation to Field Theory

Loocking at the three general categories of problems it is
evident that the magnetron problem lies somewhere between the
problem of the beam in a field and the stream being actually
closer to the stream case since we would expect a priori the
charge free field in a magnetron to be drastically altered by
the charge cloud. In analysis of stream type problems techniques
usually encountered in problems peculiar to the flow of rotating
fluids are perhaps better suited than those encountered in
particle physics. This is certainly not the only approach to
the problem and may not eventually be the most successful one.-
However, the general problem of a fluid rotating between two
concentric cylinders is sufficiently analogous to the magnetron
problem where an electron cloud is rotating between two cylinders
to justify an initial approach to the problem along these lines.,
Very roughly, the charge density in the cloud is analogous to
the density of the liguid and the size and/or compressibility of
the liguid is analogous to the constraining effect of the magnetic

field on the individual charges.



General Configuration of the Fluid Flow Model

The particular situation which we set up is one where we
have concentric cylinders. And assume that we have as we
progress in the radial direction one liquid (a thin one), then
another liquid which corresponds to the charge cloud and
finally another liguid like the first one. This situation is
a "liquid sandwich" in which a very dense liquid is between
two very thin ligquids. In this problem because of the magnetic
field the more dense liquid will rotate with respect to the
thin one. Actually we let the thin liguid have zero density.
Problems of this general nature have been dealt with in the
area of fluid flow and moving one fluid with respect to another
results in a sine wave type disturbance at the fluid interface.
In the cylindrical geometry cloud this disturbance, which is
propagated around both the inner and outer edges of the charge
cloud, corresponds to the diocotron wave or in the words
peculiar to fluid flow the slipping stream instability. The
general equation giving the frequency for this oscillation is
usually very complicated and depends on the size of the chamber,
the relative size of the charge cloud, the density in the cloud,
and in this case the potential applied between the cylinders
and the magnetic field. This general description of the mag-
netron problem, which is a close analogy to problems regularly
encountered with fluids, warrants serious consideration. One
of the drawbacks is that solutions are so complicated the aid
of machine computers is essential, The first problem then in
trying to match this fluid flow approach to the magnetron is to
solve the problem, put in as many dimensions as possible and do
a parameter study between applied potential, magnetic field,
charge density and oscillation frequency to see if reasonable

values for these parameters correspond to those experimentally

10



observed in the gage. Parts of this exercise, presented in
the next section, follow from the general description of dioco-

tron waves by Levy (ref. 1).

DIOCOTRON INSTABILITIES IN THE MAGNETRON

Consider the geometry of Fig. 3. The wave equation re-

lating the electric field to the charge density is

-n e
d o

a? (rE) = (1)

A i hd

where n_ the electron density (per unit length in the axial
direction) is a function of r . In these calculations the
sign is included in the equation so e is the specific electron

charge. The charge per unit length residing on the central

electrode is defined by Gauss' law. (This is for a line of
charge.)
_ o
E(a) = _ZTT_E-':O_a (2)

The value of ¢ is a measure of the potential between the
cylinders and the total charge contained.

Now consider a single electron in this crossed field con-
dition. If the equations are worked through (see Landau and

Lifshitz (ref. 2) or Wouter Schuuman (ref. 3) the classical crossed

11






field mobility theofy obtain.,. The result is that the electrons
move in the aximuthal direction with a velocity v, = ~E/B

In a situation where there are collisions there is the pos-
sibility of migration in the direction of E . (If there were
no collisions every electron leaving the central electrode
would return.) This of course also assumes no perturbation

to the applied electric field by the charge cloud. Thus we

are able to write two general equations for the electrons
E_ = -vB E, = uB , (3)

where u is the radial velocity, v the aximuthal wvelocity
and likewise for the electric field as indicated by the sub-
scripts. This assumption of a continuity in the velocity im-
plies the existence of potentials and in cylindrical co-

ordinates we have

- _ - _ 1 d
E, = - =57 Eg =~ %350 ° (4)

If the circulating current is constant in numbers of
electrons this corresponds to a constant electric and magnetic

field so that the countinuity equation

Zopz = - g_a (5)

13



for a rotating fluid is valid and if the fluid is incompressible
p 1is a constant so V*v = 0 . 1In cylindrical co-ordinates (no

z-component) then we have

g—r(ru)'f‘%———:O (6)

K

as the conservation equation for an incompressible fluid.
The equation for conservation of the electrons, the con-
servation or transport equation for fluids is,

nV'v + vV = - =— (7)
but for an incompressible fluid V-v = 0 so
an _

which is a simple statement that the density of any small
volume of the flow is conserved as we follow it along or if
we follow the density of a point in the flow the density of

its environment is always constant. The v°V_  term is

on 1l on 9)

14



or
8 an r dn _ 1 3¢ dn 3¢ Bn] (10)

The conservation equation then becomes

on ., 1 (98¢ an 3¢ on) _
5t " Br [5r 38 " s ar) - 0 ¢ (11)

Now we assume a potential and a density that contain a constant

part plus a time and space (angular) varying part

q)o(r) + q)(r)ei(le—wt)

©
I

) (12)
n = no(r) + n(r) el(ze—wt)

We can now substitute these assumed zero-order type profiles
into the conservation equation. The essential partial deriva-

tives are

%cg - g6 (r) I (18-wE)
g_g = i%n(r) ei(ze-wt)

15



M | yin(r) @E(48-0t)

9¢ ,
3¢ _ o i(26-wt) de¢ (r)
dr  or +€ dr

an (r) .
on _ o on(r) Ai(26-wt)
r or * 5T EB

and on substituting into Egq. (ll) we obtain

i (20— o¢ _(r) . _
- iwn(r)el(ze wt) + % [ gr ign(r)e_l(ze wt)jl
(13)
: an_(r)
1 - i(26-wt) o
- 5% [mb(r)e —W—]
or
3¢ (r) an (r)
n(x) ["” + BT —oe :l = L 4(x) o (14)
E 1 3(1) (r)
And substituting vV, =-3= %5 = we obtain
v dn (r)
n(x) [‘” - —r'g] - - Al I (15)

16



The Poisson's equation is V°E = % and taking the diver-

gence for cylindrical co-ordinates gives
2
[r d¢] + 1d%¢ _ _ ne (16)

Now the ¢ and n which we put into this Poisson's equation
are ¢(r) and n(r) , Eq. (12), so d2¢/r?de? is -{2%2/r?)¢ which
is the form for any periodic potential. Putting the results of

Eq. (15) into a Poisson's equation we have

dr

/

N dn
P 2 (2] - &Eq)} _ _ere I (17)
r2

Now we come to the gquestion of the zero order profile for n .

As a first approximation we take the profile defined in Egq. 18,

n, = 0 (air<b:c<rid)
(18)
n_ = N (b<r<c)
This choice makes dn,/dr = 0 in three separate regions both
where the beam is and where it is not. Inside these three re-

gions the working eqguation then reduces to

17



2
a [rg%] SR (19)

Rk

There are two reasons for this choice. First looking over
the work of Nedderman (ref. 4), Dow (ref. 5) and Reverdin (ref.
6) who have attempted to measure the electron density in
magnetrons we see that this choice is not incompatible with
measured electron profiles. Second this choice allows the
working equation, Eg, (19), in a form so that the problem can
be worked through. Other choices may turn out to be both easier
to work with and closer to the actual situation but for a first
attempt this choice is appropriate. This choice of profile
(Egq. (18)) implies that the perturbed density n(r) in Eg. (15)
is zero inside the cloud so that the perturbation or wave we are
interested in is at the edge of the charge cloud.

Now we can match solutions at the charge cloud boundary.
Assume the potential to be continuous. To match the solutions
we integrate Eg. (17) from r=b-§ to r=b+§ and look at the

results as -0

r=b+§ r=b+§
' v dn
- olfl d [ d¢| _ &2 _ _ ek ) 04
{w r ]EF r[rdr] ;;¢}dr - B | radr d (20)
r=b-4§ r=b-4¢

18



oo

v
The term [w - —EE] is essentially a constant so with r=b can be
J
dn
taken out of the integration. The term 3?2 can be considered

a delta function and ¢ does not contribute to the integral so

(21)

The equation for matching the potentials at r=b now looks like

b+§
v (b) 2
_ Y 14 d¢) _ 22 _ _ el ¢(b)
[‘” b [;—f [r'_r} rz“’}dr- eB b (22)
b-§

The only contribution to the integral is from the first term and

to first order this is just the slope of ¢ at the boundary so

ae _d¢ _ _eN_ 2¢(b)
[Er‘. a?‘b_}“ €5 b (23)

The quantity Ne/eoB has the dimensions of a freguency and is

equal to woz/wC where wy, is the plasma frequency and w, 1is

the cyclotron frequency so that this equation can be written as

19



[m ) zvo(b)] a6

2
_ d¢ __ % 29(p)
—3 | | ‘b_] = - = (24)

Now we proceed to write down expressions for the field and
the potential in each of the three regions. The field and
potential are written down first in region l. Then the field
is written down for region 2 and the potential is written
down with the constant of integration evaluated at r=b by com~
parison with the potential expression developed in region 1.
The same procedure is applied at the outer cloud boundary (r=c)
to find the potential in region 3. This procedure is shown in
detail in Appendix A and the results are reproduced below.

In region 1:

E = ms
o Eweor
(25)
= - 9 r
% Zﬁeolna
In region 2:
E = Q Neb |r b
o 2TEe T €5 b r
(26)
o = - —g——ln Z o+ Neb? Ei -1 - 2ln &
o 2mE a Zeo b2 b

20



in region 3:

= Q Ne (c2-b?)
Es = 27ex® ~ 2% T
o o] (27)
= -—Q——— E. N__e_. 2_Kh2 2 r _ 2 r
%o = Zme ™ T Y 76 [(c b?) + 2¢? In = - 2b2 1n ¢

At this point the potential at the outer conductor can be

written down,

_ _ 9 d Ne 2_1.2 2 d_ 2 d
¢, (d) = ﬁe_olng+z-€:[(c b2) + 2c In z - 2b% 1n | (28)

or rewriting Q in terms of N and the potential at the outer con-

ductor

(29)

©
|

21e ¢ (4)
= _TNe _ [‘cz—bz) + 2¢? 1n % - 2b2 1n %] - 20

2 1n & in
a

Qo

In finding general solutions to the Poisson's equation (Egq. (19))
in each of the three regions it is convenient to start in region

2 where we assume a general solution of the form

¢ = Br~ + yr (2>1) (30)

21



To make the solutions in regions 1 and 3 fit we must match them

up at the boundaries, thus

b, = {Bb22 + Y)[rz2 - azl][b22 - azlJ rt (31)

and

o3 = (Bc2? + y)(a2% - r2%)(a?t - )7 lr-t + ¢ (a)a*

(r2% - c22)(a2% - c22)~lp-2 (32)

In addition to matching at r=c, ¢3 must equal ¢ (d) at r=d and
likewise ¢; must vanish at r=a. These equations alsc must
satisfy Eq. (12) which they do. According to Egq. (23) the con-

dition for matching at the boundary b 1is

d¢p _ d¢) - _ eN 2¢(b)
dr ‘b dr ‘b eoB b

(33)

) Zvo(b)
w b

Expressions for ¢ and appropriate derivatives are given below

the details of which are in Appendix B.

22



¢, (b) = Bb%* + yb~?
dé, -
I ’ = 2(Bb*™! - yb771)
b
d¢1 _ (BbZQ, + Y) JLb_l_l(bz’L + azg)

dr |y (b2% - a2%)

Substituting now in Eg. (33) we have

o -

Zvo(b)

‘—B_——][éb—l_l(sbzz Dy BePRey) ey azl)} =

(b2% - a2%)

- eN -21 2%

Lv_ (b)) 28
[o] (Bbzg _ Y) _ (Bb + Y) (b2Q + a?_Q) - - eN (Bb22+Y)
b (b2% - a2%) e.B

v _ (b)) (B+yb=2%)

_ o vp=28Y - (BYYD TP 204520y = - SN (giyb—28
: ’[(s BTy - T (et g (s+yb720)

v, (b)] [&B—Y_b’”)(b”-—az’_"ﬂ)"_(6+Yb’22)(b22+a22)<l _

eN -
S (B+yb~2*
b (b2% - a2?) 1 EOB<B v )

(Bb?ffsazl-y+ya22)—(6b22+8a22+y+ya22)
(b22 - aZQ)

23



v _(b)
{‘” - ——b—] [2(82% + )| = Sy (payn2h) (p20-a2%)
: (o]
E_ (b) 0
Now Vo(b)=——B_-=—7ﬁFB
so
€ B 20
5 W+ ——1(2) (Ba”’ + 'Y) = (3 + -Yb-Z,Q,)(bZQ, - azg)
eN 2ﬁeob2B
€ Bw 0%
2|25 * (Ba2¥+y) = (B+yb~2%)(p24-a2%) (34)

27Neb?

Now we have to perform the same operation at the boundary r=c.
And the equation we must satisfy is

d¢2 d¢3 eN

¢ (c)
dr lc EF_‘C eoBz c (35)

[w ) lvo(c)
c

which is the same condition specified by the previous equation
but for the boundary at r=c. Taking values for the derivatives,

etc, from Appendix C, Eg. (35) becomes

24



- 2d3%c?% (4
N v (c) Lot-1 | (BHYe 29) (c2h4a?l) - ct¢ (d) .
o (dzg_czz) (dZ,Q_cZE)

T —
g1 (g-yc~2%)| = - §§§20“1c1(8+yc 29
(o]

v () ) [ -2% 28,3928 2a%¢ (4) i
oo Vo (B+yc™2%)(c?™+d%%) o + (B-yc22)| =
C (dzg _ c22) dZZ_c22

- eN -28
E:g(B+YC )

lvo(c)

[m - —————~][(B+yc"22)(c2£+d22)

|

2 ’ 28 _~24%
o 2a*¢_(a) + (d?*-c??)

(8-ye72") |

- ENB(B+YC—22)(d2£_c22)
o

Zvo (e) eN 59
W - —a— [2(sd22+y—d2¢o(d))] E_C:E-(ewc-w)(d ~c2%)

now adding vo(c)

(dez"‘Y-dgd)o(d)) - - iNB (B+Yc-22)(d21_c22)
(¢}

2| w+

l[Q—Neﬂ(cz—bz)j

c 2Te CB
o]
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or

(EOB 2 Q—Neﬁ(cz—bz)- 29 2 24 )
2loNe *t e 2Nec (Bd +y-d '¢o(d)] = - (B+yc=2%) (q2t-c2?)

\

'Eon QL c?-b?
2| =g - 2 {Bd”ﬂ(-d%o(d)} = -(B+yc™2%)(a?t-c2¥)

| © 2mNec? c?

]

£ Buw 2 >
2f—o 4 Q% g1 - B [6d22+y-d2¢ (d)] = - (B+yc™2%)

L ol 27Nec? [ c? °

(d22_c22) (36)

The particular term
a new variable

This variable ¢
can proceed to rewrite Egs.

form,

2[; + ——9&-—-] (Ba2? + y) = (B+yb™2%)(b2%-a2%)

2mNeb?

and

son/eN
¢t = e,Bw/eN proportional to the frequency.

is dimensionless,

in both Egs. (34 and (36) suggest

With this new variable we

(34) and (36) in a more convenient

(37)
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2
z[c + —9&—} - 2[1 - 9—] [sd”w—d%o(d)] = - (B+yc~2%)
(dZZ_CZZ) (38)

If we neglect the —d2¢°(d) term which is equivalent to setting
$,(d) = 0, these two equations can be rewritten in terms of the
arbitrary constants B8 and vy . Then the expression for con-
sistency of the solutions is obtained by setting the determinant
of the characteristic equation equal to zero. This should give
a dispersion relation in the frequency. This excercise is done

in Appendix D. The result is shown below.

_4;2(d29:_a22.)

2 2
+2z|2(a2%-a?2?) [l - E—] -9 [1 + E;} + (b2%c2% - z2%32%)

C C

(c2% - p2%)p=28p724

+[.22Q [l - b2 ——9“—](d22—a22)

wNeb? c? mNec?

2 (c2%-a22) (a2%-c2%)c=2%

mNeb?
oy - B2 _ 9 (A22-b22) (b2%-324%)p=2%
c? mNec
+(c22-b21)(dZZ—CZQ)(b22—a22)b'22c'2%} =0 (39)
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The stability criteria for the oscillations in ¢ is the
reality of the roots of Eg. (39). This condition could be
written down but for our purposes actual calculations on the

computer can be used to give the situation for instability.

SOLVING THE DIOCOTRON EQUATIONS

The quadratic in ¢ (Eg. (39)) can be solved by specifying
a particular geometry a, d and taking a size factor K which
determines the relative size of the electron cloud (b = a + KL,
¢ = d-KL where L = d-a) and values of N and Q@ . Thus in
functional form we can write ¢ = f (N, Q, K) for a specific
geometry. We arbitrarily set & = 1 for this and subsequent
calculations.

An expression for ¢ 1is not obtainable in closed form.
However none 1is absolutely necessary since solutions over any
desired range can be found by machine computation, Indeed writ-
ing down these functional relationships does not imply that such
a simple relationship exists but only that by specifying the
parameters we can compute the ¢ .

We can proceed to simplify the relationship for ¢ by
using Eg. (28) a relation between the applied voltage and Q,N,
Thus we can relate Q to N through the applied voltage.
Functionally Q = £ (V,, N, K) so that we can write another
functional relationship ¢ = £ (N, K, Vo). The actual observed
oscillatory frequencies are w = eN/e B ¢ . 1In constructing a

computer program then we must put in the proper initial wvalues
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of a, 4, Vo, B then vary N and K to get the observed
frequency. Before computing the ¢¢'s and the w's we must
first compute Q for specified N's and V,'s from Eq. (28).
We have to have the values of Q before we can solve the
guadiatic in gz.

Before making even the first attempt to solve the
quadratic for ¢ we will work out some criteria for specifying

the ranges of values of the parameters N, K .

STABILITY CRITERION

There is a stability criterion connected with the reality
of the roots for ¢ . Only those values of the parameters N,
K, V, that lead to real solutions to the quadratic in ¢ are
allowed. This is an extremely basic stability criterion and in
this case one that is relatively easy to apply. The well known
inequality for reality of the roots of gquadratics of the general
form PX%2 + QX + R = 0 1is that the discriminant be greater than
zero where the discriminant is Q2 - 4PR. With this inequality
we can proceed by machine compulation to calculate ¢ for
various values of N, K, Vo to put some bounds on these
variables. The functional relationship for ¢ = £ (N, K, V,) is
the basis for the stability calculation,

The computer program sets the initial conditions of
geometry and applied voltage then sets K and cycles through
N by factors of 10 over the range 10!2 to 102% and prints out
the value of N where the solutions become complex (imaginary
roots). Along the way Q is calculated in terms of N, V,. 1In
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a separate program the unstable regions were investigated beyond
the point in N for complex roots with the result that a region
close to K = 0.50 was found to be stable. This is however of
little consequence.

The computer program, the results of the program and
graphs showing the stable region are shown in the accompanying
tables and figures (Table I, II; Fig. 4). The program was also
done over for values of V, = 2000, 10,000 volt, the results of
which are also in tabular and figure form, (Table III, IV;

Fig. 5, 6,).

For an applied voltage of 6000 volt values of X of 0.220,
0.210, 0.200, 0.190, 0.180 show complex roots at N = 10!6,
Further examination of this area shows that only a small region
as shown in the appropriate diagram is unstable. The discovery
of an unstable region smaliler than the spacing between data
points is fortuitous and serves as a reminder that there may be

other unstable regions of a size smaller than the interval be-

tween data points.
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1.813

1.02
1418
1.11

1.20
1430
1.31

1.32
1.41

1.560
1.51

1.52
1.53
1.54
1.55
1.56
1.57
1.58
1.59
1.66
1.61

1.71

1.72
1.99

2.10
2611
2.12
2.13
2e14
2e15
2.21
2.22
2.31
2.32
2.33
234
2.35
2441
2042
2443
244
2445

TABLE I

STABILITY CRITERION FOR THE MAGNETRON
PAGE
PRINT" ","STABILITY CRITERION FOR THE MAGNETRON"
TYPE #s#s#
TYPE '""DISPERSION EQUN --P*X t2+Q*X+R=0--"
PRINT" *s"A~-IN CYL"," *,"B=-IN CLOUD"," o
PRINT'C-0OUT CLOUD™"," ">"D-0OUT CYL"
TYPE #

TYPE "K-F(B)~-SIZE FACTOR FOR CLOUD-K=@,CLOUD FILLS CHAMBER"
PRINT"NUMBER DENSITY OF ELECTRONS (Mt33 - N"

TYPE #

PRINT"MAGNETIC FIELD (GAUSS)'", BO FOR BO=1/60
TYPE #

PRINT "APPLIED VOLTAGE (VOLT>'", V0O FOR V0=6200
TYPE #

PRINT"ELECTRON CHARGE (COULOMB)", EL FOR FL=1.6%181t-19
TYPE #

FRINT"PERMITIVITY (FARAD/M)", EO FOR EO=8.8x1%t-12
TYPE #,#

TYPE A FOR A=((B.115/2)%2.54)*(1/100)

TYPE D FOR D=((14183/2)%2.54)%(1/1606)

L=D-A

TYPE #,#

DO PART 2

K=0.500

B=A+K*L

C=D-Kx*L,

PRINT "K=*

PRINT K IN FORM 1

PRINT ' '

N=1@G+r12

TO STEP 3.20 IF N>10t24

O5=C(SPI*N*EL) /(2*xLN(D/A)Y)
Q6=((C12-Bt2)+2%(C12)*LN(D/C) -2*%(B t2) *LN(D/R))
Q7=(2%$PI*E0*V0) /CLN(D/A)Y)

04=05%Q6~-07

E=C(R4) /(SPI*N*EL)

P=-4%(Dt2-A1t2)

QI=P/sC(~-4
RI=CE/Bt2)*%(1-(Bt2/Ct2)-(E/Ct2))*(D12-At2)
Q2=(1-(B12/C12))-(E/Bt2)%(1+(Bt2/Ct2))
R2=(-E/Bt2)*(Ct2~-A12)%(D12-C12)%Ct-2
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TABLE I (CONT.)

2.46 Q3=(B12%C12-At2%Dt2)*%(C12-B12)*%(B1-2)%(C*t-2)
2447 R3==(1-(B12/Ct2)~-(E/C12))%(Dt2-B12)*x(Bt2-A12) %3 1-2
248 R4=(Ct2-Bt2)%(D1t2-C12)*(B1t2-A12)*x(Bt-2)%(Ct-2)
2.51 Q=2%(Q1*%Q2+03)

2.52 R=R1+R2+R3+R4

2+53 DIS=0t2-4%P*R

2.68 TO STEP 2.71 IF DIS<@

2.61 TO STEP 3.10 IF DIS>®

2.71 PRINT"COMPLEX" N

2.72 TYPE #

2.81 TO STEP 3.20

3.18 SET N=10x*N
3.11 TO STEP 2.22
3.20 SET K=K-0.010
3.21 TYPE #

3.22 STOP IF K<@
3.23 TO STEP 2.11
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TABLE II

STABILITY CRITERION FOR THE MAGNETRON

DISFPERSION EOUN =--P*X1t2+Q*%X+R=(@-~

A-IN CYL B-IN CLOUD C-0UT CLOUD D-0UT CYL
K=-F(B)~-SIZE FACTOR FOR CLOUD-K=@,CLQUD FILLS CHAMBER
NUMBER DENSITY OF ELECTRONS (Mt3) - N

MAGNETIC FIELD (GAUSS) BO= 10006

APPLIED VOLTAGE (VOLT) Vo= 6000

ELECTRON CHARGE (COULOMB) EL= 1.6%¥10t -19

PERMITIVITY (FARAD/M) EOQ= 8.8%101t -12
A= 1.4605%10t =3
D= «B14986

K= 500 COMPLEX N= 1x1@t12

K= 490 COMPLEX N= 11018

K= +480 COMPLEX N= 110118

K= 470 COMPLEX N= 1%191+18

K= «460 COMPLEX N= 1%10118

K= +459 COMPLEX N= 118117

K= «440 COMPLEX N= 1*x10t17

K= .430 COMPLEX N= 1%180+17

K= «420 COMPLEX N= 1%10+17

K= <410 COMPLEX N= 1%10t17

K= .400 COMPLEX N= 1*x10+17

K= .399 COMPLEX N= 1x10+17

K= .380 COMPLEX N= 1%10+17

K= 370 COMPLEX N= 11817
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«360
«350
«340
«330
«320
«310
«309
«290
«280
«270
260
«250
«240
«230
220
210
200
«1906
« 180
«170
«160
«150
140
«130
«120
110

«100
«090

COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX

COMPLEX

COMPLEX
COMPLEX
COMPLEX
COMPLEX

COMPLEX

TABLE II (CONT.)

34

1%18¢17

1%16t17

11017

11017

1x10t17

110117

1*x18t17

118117

1*160+17

1%10t17

1%10¢t16

1x%x10116

1*x101t16

1%10t16

1%x10¢16



K= .080
K= 870
K= 068
K= 08508
K= 040
K= B30
K= .020
K= .010
K= .000
260T

TABLE II (CONT.)

P6/727/768 11:41:03 B0.62 HRS
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TABLE III

STABILITY CRITERION FOR THE MAGNETRON

DISPERSION EQUN =-P*X1t2+Q*%X+R=0-~

A-IN CYL B-IN CLOUD C-0UT CLOUD D-0OUT CYL
K~F(B)-SIZE FACTOR FOR CLOUD-K=8B,CLOUD FILLS CHAMBER
NUMBER DENSITY OF ELECTRONS (Mt3) - N

MAGNETIC FIELD (GAUSS) BO= 1060

APPLIED VOLTAGE (VOLT) Vo= 2000

ELECTRON CHARGE (COULOMB) EL= 1l.6*%10t -19

PERMITIVITY (FARAD/M) EO= 8.8%106Gtr -12
A= 1.4605%181 -3
D= 14986

K= +500 COMPLEX N= 1x%10t15

K= 498 COMPLEX N= 1%121+18

K= +480 COMPLEX N= 1x18+17

K= +478 COMPLEX N= 1%108+17

K= 460 COMPLEX N= 1%x10+17

K= +450 COMPLEX N= 1%x10¢17

K= 440 COMPLEX N= 1%180t17

K= +430 COMPLEX N= 1%10t17

K= <420 COMPLEX N= 1*x10117

K= +410 COMPLEX N= 11017

K= <480 COMPLEX N= 110117

K= .390 COMPLEX N= 1%10117

K= .380 COMPLEX N= 1%10t17

K= 370 COMPLEX N= 1x10t16
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«360
«350
340
«330
«320
«310
« 300
«290
«280
«270
«260
«250

.24@
230
2209
219
200
+190
«180
«179
<160
«150
140
«130
120
«110
« 100
«090
080
<878
«060

TABLE III (CONT,)

COMPLEX N=
COMPLEX N=
COMPLEX N=
COMPLEX N=
COMPLEX N=
COMPLEX N=
COMPLEX N=
COMPLEX N=
COMPLEX N=
COMPLEX N
COMPLEX N=
COMPLEX N

38

1¥10116
1¥10t16
1%19t16
1x10*t16
1*19t16
1x1g1t16
11916
11016
1%1B816
1*10t16
1*¥18¢16

1%x191t16



K=
K=
K=
K=
K=
K=

D50
040
«030
020
010
000

TABLE III (CONT.)

P90T B6/26/68 13:29:47 D2.89 HRS
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Stability diagram for the magnetron vV, = 2000v.
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TABLE IV

STABILITY CRITERION FOR THE MAGNETRON

DISPERSION EQUN --P*X12+Q0%X+R=0~~

" A-IN CYL B-IN CLOUD C-0UT CLOUD D-0OUT CYL
K-F(B)-SIZE FACTOR FOR CLOUD-K=@,CLOUD FILLS CHAMRER
NUMBER DENSITY OF ELECTRONS (M1t3) -~ N

MAGNETIC FIELD (GAUSS) BO= 1000

APPLIED VOLTAGE (VOLT) Vo= 1%10t4

ELECTRON CHARGE (COULOMB) EL= 1.6%¥10t =19

PERMITIVITY (FARAD/M) EO0= 8 .83%10t -12
A= 1.4605%x18t -3
D= «014986

K= .500 COMPLEX N= 110112

K= <490 COMPLEX N= 1%¥190t19

K= .480 COMPLEX N= 110118

K= +470 COMPLEX N= 1%10118

K= +460 COMPLEX N= 110118

K= .450 COMPLEX N= 110118

K= 440 COMPLEX N= 1*x19+18

K= .430 COMPLEX N= 1%10+¢18

K= 420 COMPLEX N= 1%10t17

K= 410 COMPLEX N= 1x13+17

K= 400 COMPLEX N= 1x1@117

K= +390 COMPLEX N= 1%10t17

K= .380 COMPLEX N= 1%16+17

K= 370 COMPLEX N= 1*x190t17
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«360

«350

« 340

«330

«320

«310

« 300

290

280

270

260

«250
240
.23@
.22@
210
200
1906
=180
«170
L] 1 6@
L] l Sg
L 1 4@
« 130
«120
-110
100
090
080
.@70
.06@
<050

COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX

COMPLEX

TABLE IV (CONT.)
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11017
11017
11017
11017
1x190t17
11017
11017
110117
1*16t17
11017

1*10t17



==

TABLE IV (CONT.)

K= 040
K= 030
K= .028
K= 019
K= 309

N60T 6727768 11:01:19 @BB.71 HRS
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ROUGH FREQUENCY CALCULATIONS IN
THE MAGNETRON WITH THE FUNCTIONAL RELATIONSHIP
OF ¢ = £ (N, K, V)

It is possible, taking the operating voltage for the
standard Redhead gage V_ = 6000 volts, to construct a table
of the actual oscillation frequencies w = eN/e, B ¢ for
values of N and K over the allowed range in K and a
realistic range in N to determine if these conditions are
at least roughly consistent with experiment. Such a calculation
was performed and the computer program is shown in Table V and
the results in Table VI. From the relation between frequency,
anode voltage, and magnetic field of £ = 11.2 V/B (MHZ) taken
from the paper by Redhead (ref. 7) we, for this operating point,
should obtain a frequency of 27.2 MHZ., In comparison with the
table, however, this figure should be multiplied by 271 since
the calculations are ip angular frequency, so we should want a
angular frequency of 4.22 x 108 HZ to agree with Redhead. Look-
ing at the table we see that this frequency is within the stable
region in K and a reasonable value for N . In fact this
rough calculation gives a very small value for K indicating
that the charge cloud nearly fills the chamber. A relation
between N and K for this observed frequency could be worked
out, but this exercise will be left until better limitations

can be put on N .
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1.013
1.02
1.18
1.11
1.20
1.30
1.31
1.32
1.41
1.42
1.43

TABLE V

ROUGH FREQUENCY CALCULATIONS FOR THE MAGNETRON
PAGE
PRINT" ",'"FREQUENCY CALCULATIONS FOR THE MAGNETRON"
TYPE #,#
TYPE "DISPERSION EQUN =--PxX t2+Q*%X+R=0--"
PRI NT'I ",U'A_IN CYLI"IU ll,IlB_I N CLOUD",II
PRINT”C-0UT CLOUD',' ","D-0UT CYL"™
TYPE #

TYPE "“K-F(B)-SIZE FACTOR FOR CLOUD-K=8,CLCUD FILLS CHAMBER"
TYPE "@<=K=>0.267» STABILITY AND CLOUD SIZE"
TYPE #

1.431 PRINT"PHYSICAL DIMENSIONS (M) A-B-C-D"
1.432 TYPE #

1.44
1.45
1.59
1 .51
1.52
1.53
1.54
1.55
1.56
1.57
1.60
1.61
1.62
1.63
1.71
1.72
1.81
1.82
1.83
1.84
1.99

2.10
2.11
2.12
2.14
2.15
2.21
2.22
2.31

PRINTNUMBER DENSITY OF ELECTRONS (Mt3) - N"

TYPE #
PRINT"MAGNETIC FIELD (GAUSS)'", BO FOR B0=1000
TYPE #
PRINT"APPLIED VOLTAGE (VOLT>'",V0 FOR V0=6009
TYPE #

PRINT"ELECTRON CHARGE (COULOMB)",EL FOR EL=1.6%10t-19
TYPE #

PRINT"PERMITTIVITY (FARAD/M)", EO FOR EO0=8.8%10t-12
TYPE #,#

PRINT A FOR A=({(D.115/2)%2.54)%(1/100)

TYPE #

PRINT D FOR D=((1.180/2)%2.54)%(1/100)

TYPE #

L=D-A

FAGE

PRINT" ","TABLE OF NUMBER DENSITY AND FREQUENCIES"
TYPE #,#

PRINT" TAUN",T WL, "y WLE21"
TYPE #,#

DO PART 2

K=0 .450

B=A+K*L

C=D-Kx*L

PRINT K

TYPE #

N=10112

TO STEP 3.20 IF N>10t24
QS=(SPI%N*EL) /(2%.NCD/A))
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2.32
2.33
2..34
2.35
2.41
2 .42
2«43
244
2445
2.46
2.47
2 48
2.51
2 .52
2 .53
2.6@
2.61
2.79
2.71
2.72
2.73
274
2.75
2.76
2 .99

3.10
3.11
3.20
3.21
3.22
3.23

FORM

TABLE V (CONT.)

Q6=C((Ct2-Bt2)+2%(C12)%LN(D/C) -2%(Bt2)*xLN(D/B))
Q7=(2%SPI*EO0*V0) /CLNCD/AY)
Q4=Q5*%Q6-07
E=(Q4) 7($PI *N*EL)

==4%(D12-A12)
Q1=P/(~-4)
RI=(E/B1t2)%(1~(Bt2/Ct2)-(E/Ct2))%(D1t2~-A12)
Q2=(1-(Bt2/C*t2))~-(E/B12)%(1+(Bt2/C12))
R2=(-E/B12)*(Ct2-At2)%(D12~C1t2)%C1t~2
Q3=(B1t2*C12-A12%D12)*%(C1t2-B1t2)*(Bt-2)%(Ct-2)
R3=-(1-(Bt2/C12)=~(E/Ct2))*%(D12=-B12)%(B12-A12)%B1-2
R4=(Ct2~B1t2)%(Dt2-Ct2)*%x(B12-At2)%(Bt~2)%(C 1~2)
Q=2%(Q1%Q2+Q3)
R=R1+R2+R3+R 4

DIS=01t2-4%P%xR

TO STEP 3.10 IF DIS<®

TO STEP 2.79 1F DIS>0
XLI1=(=-0+((=-1)1t1)%SOERTC(DIS))/(2%P) FOR I=1,2
WLE11=CC(ELXN) Z/(EO0%BO)Y)Y*X[1]

WL21=((EL%*N) /CEOXxB0O) ) *X[2]
PRINT N IN FORM 1
PRINT WL1] IN FORM 1
PRINT WE2] IN FORM 1
TYPE #
DO PART 3

SET N=100*N
TO STEP 2.22
SET K=K-0B.050
TYPE #

LOGOUT IF K<&
TO STEP 2,411

1
#ettrtt
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TABLE VI
FREQUENCY CALCULATIONS FOR THE MAGNETRON

DISPERSION EQUN --P*X12+Q%X+R=0--

A-IN CYL B-IN CLOUD C-0UT CLOUD
K=F(B)-SIZE FACTOR FOR CLOUD-K=@,CLOUD FILLS CHAMBER
B<=K=>0.267, STABILITY AND CLOUD SIZE

PHYSICAL DIMENSIONS (M) A-B=-C-D
NUMBER DENSITY OF ELECTRONS (Mt3) - N

MAGNETIC FIELD (GAUSS) BO= 10689
APPLIED VOLTAGE (VOLT) V0= 6009
ELECTRON CHARGE (COULOMB) EL= 1.6%10t =19
PERMITTIVITY (FARAD/M) EO= B.8%10r -12
A= 1.4695%x10¢ =3
D= 014986

TABLE OF NUMBER DENSITY AND FREQUENCIES

N WLl3d WLzl

K= +4506

1.0+12 465+04 3.3+34

1.0+14 4.6+0 4 3.24+34

1.0+16 Te2+04 2e4+04
K= 400

1.0+12 Se5+04 2.8+04

1.0+14 5.5+04 2.8+04

1.0+16 8e4+04 2.6+34
K= 0350

180+12 6eT7+04 2e54+04

1.0+14 6.7T+04 2e4+04

1.0+16 B.8+04 3.14+004
K= OS@Q

1.0+12 B e5+04 22404

1.0+14 8.5+04 2.2+04

1.8+16 B oS5+ 4 3+8+04
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e ST

« 250
1.80+12
1.0+14
1.0+16
1.0+18
1.0+20
1.0+22
1.8+24

<200
l‘0+12
1.0+14
1.0+18
1.84+20
1.0+22
1.0+24

.15@
1.0+12
1.0+14
1.0+16
1.0+18
1.80+20
1.0+22
1.0+424

« 100
1.0+12
1.0+14
1.9+16
1.0+18
1.94+20
1.04+22
1.0+24

+850

1.0+12
1.0+14
1.8+16
1.0+18
1.0+28
1 0+22
1.0+24

1.1+05
1.1+05
Te3+34
1.7+06
1.6+98
1.6+10
1.6+12

1 .5+85
1.5+85
3.1+06
3.1+08
3.1+10
3.1+12

2.1405
2.1+05
Se7+34
4.2+06
4.24+08
4,2+10
42412

3.3+05
3.2+05
6.6+04
S.2+86
S.2+08
S.2+108
S5e2+12

S «6+35
5 .6+05
Te4+04
6.2+06
6.2+08
6.2+10
6.2+12

TABLE VI (CONT.)

1.9+084
1.9404
4.54+04
-.3+07
-.3+09
~—«3+11
~«3+13

17+04
1.7+04
-.9+ﬂ7
'09+g9
‘-9+1l
~«9+13

1.5+04
1.6+084
1.3+04
~2+08
‘02+l®
-e2+12
-.2+14

1.4+04
1.4+ 4
-~ 7+B5
-o4+@8
-.4+l@
--4+12
-o4+14

1.34+04
1.3404
-.2+06
-.8+g8
-08+lg
-.8+12
-e8+14

49



TABLE VI (CONT.)

K= 000
1.0+12 1.24+96 1.1+34
1.0+14 1.2+06 1.2+04
l-g+l6 803"‘@4 '07""06
1.60+18 T.2+36 -e2+09
1.0+20 7.2+38 -e2+11
1.0+22 T.2+10 -e2+13
1.0424 7 .2+12 -e2+15

P20T 0B6/28/68 14:26:42 ©1.23 HRS
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LIMITATIONS ON THE VALUE OF N

Looking at Eg. (28) we see that the applied potential is
a measure of the charge residing on the inner electrode and

the charge contained between the cylinders.

_ . 9 d Ne 2_12 2 Q - 2 d
¢O (@) = Tﬁ in Y + Z-E_o— [(C b ) + 2c ln o 2b 1n Bj} (28)

The first term on the right hand side is positive since Q is
a negative guantity. The second term is also positive since

e 1is the specific charge and the expression in brackets is
always positive. Thus as N increases |Q| decreases. However
Q0 cannot go positive otherwise the field at the cathode would
change sign and repel the incoming ions effectively turning off
the primary supply of electrons for the discharge. Thus we see
that N must be equal to or less than that number that would
make the charge on the inner electrode go to zero. Substitut-
ing VvV, for ¢,(d) we can write an equation for the maximum
N.

N S 20 1 (40)
[(cZ—bZ) + 2¢21nS - 2b21n%]

For this geometry the expression in brackets varies from 2.7 x
10-5 for K = 0.45 to 2.2 x 10™% for K = 0. The maximum value

of N can be calculated from Eq, (40) for various values of
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VO
are tabulated in Table Vii and graphed for several voltages

and K . Calculations of Nmax for various values of K

in Fig. 7.

Physically this limitation on N corresponds to putting
just enough electrons into the discharge to reduce the field
at the cathode to zero. Further addition of electrons would
correspond to driving the field (at the cathode) positive
which would draw electrons from the discharge. Thus this

boundary is a self limiting one.

TABLE VII

CALCULATIONS OF Nj,yx AND THE EXPRESSION IN THE
DENOMINATOR OF EQ. (40)

D = [(cz-bz) + 20¢21ng - 2b21ng]

FOR VARIOUS K VALUES AND V, = 6000 volt. N
VALUES FOR OTHER APPLIED VOLTAGES ARE A
SIMPLE MULTIPLE OF THIS VALUE

max

K D Nyax
0.45 2.7 x 107> 4.9 x 1016 1/m3
0.40 5.3 2.5
0.35 7.9 1.7
0.30 1.0 x 107" 1.3
0.25 1.3 1.0
0.20 1.5 8.8 x 1015
0.15 1.7 7.8
0.10 1.9 7.0
0.05 2.0 6.6
0 2.2 6.0
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POTENTIAL AND ELECTRIC FIELD PROFILES IN THE
GAGE FOR THE EXTREME CASES: CHARGE
FREE AND MAXIMUM CHARGE

Charge Free Case

The charge free field and potential are determined from
Egs. (25).

- Q
E, = z7e ¢
(o]
(25)
_ 9 r
¢o 2Te lna

The condition that ¢, = 0 atr = a and ¢, =V, at r = d re-
quires that - Q/27me, = Vo/ln

written as

so these expressions are now

v ol

Vv
E , = - —
cf rln—
a
Vv
- _° 15%
¢cf - 1 d lna
n—
a

where the subscripts c¢f indicate charge free. Putting in
the values of V, = 6000 volt and d and a for the gage
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we can compute the charge free potential and field in the
gauge. This calculation is shown Table VIII.

Maximum Charge Case

The condition for maximum charge was derived from Eg. (28)
relating the applied potential to the charge on the cathode and
the number of electrons in the cloud. The curves of Fig. 7 re-
late the number density of electrons to K value to reduce the
field at the cathode to zero. Since the maximum charge must be
for the cloud filling the entire chamber we take X = 0.001 and

a value of N = 6.0 x 101%, The calculations of the potential

and the field for this situation are obtained from Egs., (26).
_ Q Neb |r b
E - — .
o 2TE ¥ € b r
[e) (o]
(26)
_Q r Neb?([r2 _ _ r
¢° = —_—2TI'€ in 3 + Z__E -—2 1 21n B
o o |b
where for these values of K and N, Q = b, This calculation

is shown in Table IX.
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TABLE VIII

CALCULATION OF POTENTIAL AND FIELD FOR THE CHARGE FREE CASE

A= 1+4685*10t -3
D= «814986
Vo= 6080

RADIUS POTENTIAL F1ELD

2.81-03 1.69+23 ~9+16+05
4.17-03 2.70+83 ~6419+05
5+52-83 3.43463 ~4.67+05
68703 399+03 =3+75+05
8.22-83 4.45+03 =3.13+85
9.58-83 4.85+83 ~2.69+05
1.809-02 5.19+083 ~2.36+05

1.23-92 5.494+03 -2.10+05

1.36~-02 S5.76+03 -1.89+85

1.50-92 6.00+D3 -1.72+05
TABLE IX

CALCULATION OF POTENTIAL AND FIELD FOR THE MAXIMUM CHARGE CASE

A= 1.4605%10tr -3
D= «014986
Vo= 6008

RADIUS POTENTIAL FIELD

2.81-03 8 .26+01 -2.30+05
40!7‘63 3001*02 -4.11+35
5.52-93 635+032 ~5.78+85

6.87-83 1.08+83 «T739+05
B.22-83 1.63+93 -8.97+05
9.58-83 2.29+03 ~1.85+06
1.09-02 3096+03 -1021*06
1.23-02 3.93+93 -1.36+86
1.36-02 4.904+03 ~1.52+06
1.50-082 S.98+03 -1.67+06

56



COMPARISON OF THE CHARGE FREE AND
MAXIMUM CHARGE CONDITIONS

In the following two figures we show the maximum charge
and charge free profiles for the field (Fig. 8) and the
potential (Fig. 9).

BUILDUP AND MAINTAINANCE OF THE DISCHARGE

In one of the previous sections we put an upper limit on
the total number of electrons that could be maintained in the
discharge. In this section we consider how the electron cloud
builds up and then sustains itself.

When the discharge starts to build up the ions that strike
the cathode have a relatively high energy (several KeV as seen
in Fig. 9) and at this energy the yield (number of electrons
liberated per ion striking the cathode) is approximately 3
based on the measurements of A% ions on Nichrome V (ref. 8).
Argon ions are typical and the commerical gages as well as the
original ones by Redhead are constructed of Nichrome V. How~
ever as the discharge builds up the electron cloud everywhere
lowers the potential so that the average ion energy and like-~
wise the yield decreases.

The number of electrons pumped into the cloud depends on
the number of ions striking the cathode, the energy of these
ions, the yield of the cathode material and the relative number
of electrons liberated from the cathode that enter the cloud,
We can look at the effect of each of these parameters in turn
on the buildup and maintance of the discharge,.
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Fig. 8

Graphs of electric field as a function of radius
for the charge free and maximum charge conditions

in the magnetron.
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Fig. 9

Graphs of potential as a function of radius for
the charge free and maximum charge conditions in
the magnetron.
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The number of ions striking the cathode will decrease with
pressure and experimentally we know this is a linear decrease.
As the energy of the ions decreases the yield decreases though
looking at the curve of Fig. 9 and the yield curves (ref. 8)
the number of electrons liberated per ion cannot decrease much
less than unity. Assuming no effects due to gas adsarption the
yield must reamin constant. The relative number of electrons
that escape thé cathode depends also on the pressure.

At this point without making any calculations we can make
a very educated guess as to the mechanism that makes the gage
linear over a wide range. If we assume that the charge cloud
is feed by the mechanism described then the limitation must bhe
via the cloud itself and in particular the limitation on N
described in a previous section. This predicts a constant
number of electrons in the discharge and a constant potential
and field profile which implies a constant sensitivity of the
gage. This implies that in the linear range the supply of
electrons back into the discharge is greater than the loss rate
due to collisions.

At the point where the gage becomes non-linear the rate
at which electrons are feed into the discharge must just balance
some loss mechanism. Since the non-linearity begins at a con-
stant current and not constant pressure it is safe to assume
that the loss mechanism is independent of pressure.

Physically the situation is the following. The charge
cloud in the gage is constant in numbers of electrons and as
the pressure decreases the number of electrons necessary to
maintain this discharge decreases. Though this primary mechanism

for supplying electrons to the discharge is more than sufficient
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to keep the number of electrons in the cloud at its maximum
over a wide pressure range at sufficiently low pressures the
ion current which controls the number of electrons going into
the discharge goes so low that the small "unknown for the

present” loss rate begins to sap electrons from the discharge.

CALCULATION OF THE SENSITIVITY OF THE GAGE

First Rough Estimate Of The Sensitivity

Using some of the results of the previous sections it is
possible to make an estimate of the sensitivity of the gauge
when it is operating in the linear region; corresponding to
the maximum stored charge, For this first estimate we take an
average electron energy and calculation the ion current as a
function of pressure for a beam of electrons of this energy and
density, as taken from Fig. 7, passing through a gas where we
know the ionization cross section and the pressure density re-

lation.

Average Energy of the Electrons.- We make a very rough

estimate of the average electron energy by looking at the
electron ballistics. Electrons liberated from the central
electrode start out with approximately zero energy and execute
cycloidal motion according to the following parametric equations

which are written in Cartesian coordinates (ref. 2, 3)
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. B
X = a—-:-B-(l COSUJct)
(4
(41)
- - _E_ . E
y = 5.B 51nwct + B t
where w, = |e|B/m is the cyclotron freguency. The dimensions

involved are sufficiently small to justify a switch to the more
convenient Cartesian coordiantes. The x-direction corresponds
to the direction of the electric field and the y-direction, the
azimuthal direction. The energy of the electron in its cy-
cloidal path is determined by the radial potential profile and
the radial position of the electron, Now this initial electron
begets others by ionizing collisions and so on across the dis-
charge with the subsequent electrons also executing this cy-
cloidal motion. The cycloid height or maximum excursion in

the direction of the field is

D = = 0= (42)

Now if we look at the radial field profile, Fig. 8 and
Table IX, we see that halfway across the discharge the field is
9,0 x 10° volt/m. In the preceding calculations the end caps
have not been taken into account. The field must go to zero
(or nearly so) at the end caps as well as the cathode so as a
first approximation we assume that the field goes linearly, in
the axial direction, from a value of zero at the end caps to

the value given in Fig. 8 and Table XI for any particular radius.
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Halfway across the discharge (in the radial direction) then the
field goes from zero at one end cap to 9.0 x 10° volt/m midway
between the end caps and back to zero at the other end cap. '
Thus the average field that an electron will encounter is

4.5 x 10° volt/m.

We have not taken into account the changes in N due to
the influence of the end caps however the electric field is more
important since it enters the calculation of the sensitivity as
the square while N enters linearly. For a field of 4.5 x 10°
volt/m which is what the electrons encounter on average the ex~-
cursion is 5.0 x 10™% m. This value is sufficiently small com-
pared with the dimensions of the device to justify use of Egs.
(41) at least for this gross approximation.

With the assumption of a uniform density of electrons ex-
ecuting these cycloidal motions the average electron energy must
be the average energy of an electron executing this motion mid-
way across the discharge., Note that the field increases roughly
linearly across the dischaxrge both in the radial (Fig. 8) and
axial directions.

With a cycloidal height of 5.0 x 10~% m and a field of
4,5 x 10° volt/m the electron in its cycloid goes from zero to
225 eV in energy. As a first estimate then we simply take one

half this value or 112 eV as the average electron energy.

Model for the Calculation of Sensitivity.~- Now that we

have a first estimate of the electron energy we can set up a
simple model to calculate the jionization rate in the gauge.
Consider a unit volume of a gas whose number density is simply
related to the pressure by
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= 3,2 x 106 p (43)

<=

where P 1is measured in Torr and N/V has the units of molecules/
cm®, This relation is valid at room temperature. Note that this
calculation is carried out in cgs units because interaction cross
sections important to the calculation are given in cm?. We also
can ascribe certain properties to the electron gas namely a
density of 6.0 x 102 1/cm3 and velocity of 6.3 x 108 cm/sec.
(corresponding to an energy of 112 eV). The number of electrons
passing through a unit volume per second is just the density in
the stream times the velocity which turns out to be 3.8 x 10168
1/cm?~sec. This is the number that pass through unit area in 1
sec. We take this number as the number of electrons that can

cause an ionizing collision.

Calculation of the Sensitivity.- The number of ions or

particle current produced per unit volume 1is
_ N
N. = T X A X N (44)

where A is the interaction cross section and N is the number
of electrons that can cause an ionization. The ionization cross

section for electrons of 112 eV on nitrogen is 2.5 x 107!6 cm?

(ref..9) so Eg. (44) gives
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L x 3.2 x 10!6 p -1 _

cm?-sec om3

2.5 x 10" '%cm? x 3.8 x 1018

A
if

3.0 x 10!°% P 1/cm3-sec.

=z
i

The sensitivity of the gage is just this expression taking into
account the volume of the discharge (Vg) and the charge per

particle or

=N % lel x vV, (45)

where we take for the volume of the discharge the volume en-
closed by the anode ring, Vg = 10 cm3. Carrying out the

calculations we have for the sensitivity.

Ei ~ 3.0 x 1019 -1 1.6 x 10719 ¢ x 10 cm3
cm3-—sec

Ei = 48 Amp

P Torr

This calculated value is a factor of 5 times the value of 9 ;grf

measured by Redhead, (ref. 10). In the next section we will
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explore some more suitable estimates for electron energy that
will give a better estimate of the sensitivity.

More Refined Calculations Of The Sensitivity

The calculation of the sensitivity of the gage is in-
accurate primarily because the average electron enerqgy coincides
with the peak of ionization. We can make a better estimate by
paying closer attention to the electron ballistics particularly
how much time the electron spends in a particular energy range
and its cross section over that range. The first of Egs. (41)
describes the path of the electron in the direction of the field
as a function of time. Multiplying this expression by the field
gives an expression for the electron energy as a function of

time. Thus we can write

E2

E = gx = EZE (1 - cosw_t) (46)

The time for the electron to reach its maximum excursion is
tO

one

= 1/w, = 1.8 x 10710 sec. Using this relation or the simpler

E =112 (1 - cosw.t) ev
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we have an expression for the electron energy as a function of

time,

This curve is sufficiently close to linear to justify

our taking a time factor for the electron in a particular energy

range equal to the fraction
the electron spends 0.10 of
Now if we compare this

tion curve we see that some

of the energy range. Thus we say
its time between 0 and 22.5 eV.
curve to the ionization cross sec-

matching of cross sections, average

energy, and time spent in that energy range is most appropriate.
We can approximate by breaking up the ionization curve into two
sections. Since the cross section falls off rapidly for low
energies this region is neglected. The total particle current
is the number density relation x electron flux x time factor x

average corss section.

In the range from 20 to 45 eV:

32 eV

average velocity = 3.3 x 108 cm/sec.

electron flux = 2.0 x 10!8 1/cm?-sec.

0.11

average cross section = 1.1 x 10716 cp2

3.2 x 1016 P 1/cm3 x 2.0 x 1018

average energy =

time factor =

particle current = 5
cm‘-sec.

0.}1 x 1.1 x 10~16 cm?

It

particle current = 7.8 x 1017 -iy

C -secC.
45 to 225 eV:
135 ev
average velocity = 6.8 x 108 cm/sec.
4.1 x 10!'8 1/cm?~sec.

In the range from

average energy =

electron flux =
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time factor = 0.80
average cross section = 2.5 x 10~16 cm?
particle current = 3.2 x 10!® P 1/cm3 x 4.1 x 1018

2 x 0.80 x 2.5 x 10716 cm?
cm~™=-secC.

particle current = 2.5 x 101°% 1/cm3-sec.

Now looking at these particle currents we see that the particle
current is due primarily to the second region. The total ion
current from the discharge is this particle current x charge x

volume of the discharge,

1

cm3-sec.

I, = 2.6 x 10!° x 1.6 x 107!% ¢ x 10 cm3 P

+

The sensitivity of the gage is then I, /P = 42 amp/Torr which
compares a little more favorably with the value of 9 amp/torr

measured by Redhead (ref, 10),

CONCLUSIONS

The principal effort of this program was the development
of a theoretical model for the magnetron gage that would pro-
vide for the observed oscillations as well as the linear re-
lationship between pressure and ion current. The physical
mechanism of slipping stream instability was shown to be an

approximate model of the oscillations, wherein the oscillation
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frequency and variation of fregquency with 1/B are consistent
with experimental evidence. These calculations, in turn,
yielded expressions for the electric field, potential and
dependance of the electron cloud density on the applied
voltage. The linear pressure-current relation which holds
experimentally over a wide pressure range, follows from the
model when a simple limiting mechanism is employed to hold the
field at the cathode at zero. Calculations of the sensitivity
of the gage based on the assumption of maximum charge stored
in the gage are sufficiently close to experimental values,
considering the approximations involved, to indicate that the
theory is basically correct. It now appears evident that the
mechanism leading to the non-linearity or loss in sensitivity
at low pressures is an electron loss mechanism and that this
mechanism is closely connected with the character of the dis-
charge.
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APPENDIX A

In Region 1

¢O = A lnr + B
E = d(bo:é
o dr r
= = Q =é . = Q
at r=a E, = Qﬂaeo a 2me
at r=a ¢o =0Alna=-B.B=-A1lna
b, = A(ln r - 1ln a)
_ 9 r
¢o 2Te in a
8]
- Q
Ey = ome x
o]
In Region 2
E = 0 Nem [r?-b?
o 2T T 2TE r
o [o}
r2-b? _ x?b-b3 _br _bZ _ ,fr _b
r rb b~ b T
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— Q _ _Ne r b
E, = 35T 2TE ﬂb[B EJ
[e) [o]
- - Q _ Nemb |r _ b
% = f[ZﬂE r 2me [5 E}J dx
[o] o)
b = - 0 1nr + Nemb r2 _ Newb? inr
o 2TE 2m1e_ 2b 2TE
(o) [e) (o]
_ 1.0 Nenb? Netb _,
¢o - [ZNE + 2ﬂ€0 }l r+ Zﬂeo vt + G
- _ 0 b
at r=b ¢ = 21E_ a
o]
_ b _ _ 0 Nenb?2 Nemnb?
The- P F T [2ﬂ€o + 2TE }ln b+ IFE;— + G
Cy = - Q 1n b + 9 iIn b + Nerb ln b - Nerb?
1 2TE a 2mE 2T€E dme
(s} (o] [o] (o]
. _ 0 NeTb _ Nernb?
Ci = - gre Ina+ 722 Inb - 52
[o] [e) o)
_ _1.9 Nenb?2 Nem o} Nenb?
¢o - [Zﬂe t oone }ln ¥+ Ine 2Te in a + 27€E
(e} (o] o] (o] (o]
_ Nerb?
Eneo
__ 9 r Nemb?|r? _ _ r
oy = 2Tme In 3+ 7Ie t;; l-21ng

71

nb




In Region 3

Q _ Nem(c?-b?)

Eo ~ Zne T 2me T
[0} o]
E = o-Nemn (c2-b?)
o 2TE T
o]
o = _IEQ-NGW(CZ—bZ)] dr _ _ Q—New(cZ—bZ)fdr
o 21€E r 2TE r
o} o
2_12)-
o = Nem(c?~b?)-0 In r + B
o 2TE
[o]
- __ 9 ¢ , Neb? |c2 _ . _ c
at r=c ¢ = 755: 1n 3 + EE;_ s 1 2 1n 5
0 ¢ _ Neb? [e¢2 . _ c| _ Nem(c?-b2)-Q
7?5; 1 3 + Ie = 1 2 1n gl = ZWEO ln ¢ + B
_ Neb? |c? cl _ 0 ¢ _ Nemn(c?-b?)-0
B—Z-———-E [:—;—1‘211’1 a':} ——“2TT€ ln-é-— STE 1n C
o b o o
21,2 2 2 '
o = Nele?-b2) 4\ 9 qp oy o4 Neb? fe? o, 500
o 2¢ 2T1E de 2 d
(] [¢] (o] b
212
< e n g - Nerleted)

+
o
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b

-8 _1n Xs N%- [gz—bz—sz 1n % + 2(c?-b?) In r

¢o = 27E a q
(o]
- 2(c?-b?2)1n cJ
aside

~2b? 1n c¢+2b? 1n b+2c? 1ln r-2b2 1ln r-2c? 1n c+2b2 1ln ¢ =

-2b2 1n g- + 2¢2 1n &
=
b = o2 in £ 4+ Xe [(cz-bz) + 2c2 1n % - 2b?2 1n EJ
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APPENDIX B

$p2 = Brt + yr~t

¢o(b) = gb* + yb~?

do¢s

T = BRr®~l - yor-2-1

do,

| = BabETL - yabTETL = g (BT - ybmi-l)
b

23,
op = {BRZX + ¥) on | n20y,-2
(bZQ - aZSL)

d
°1 - (8b2* + v) -2 (r2% - a22)p=271 4 p=(2g)r22-1
dr (b2% - a2%)

ad .
®1_ (8b2 * y) gr-l[}rl - (2% - azz)]
dr (b2% - a2?)

aside

[?rl - rt + r‘lazg]

11
I:r2 + r'lazgj
Tt

r-z[rzz + a”J

14



B

dr (b2% ~ a2%)
dd, - (Bb22 + Y)
dr |y (b2% - a2?)

Lr—4-1 (rZJL + a2£)

Lb=2=1(b2% 4+ a2%)
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APPENDIX C

The potentials of interest are

¢s Br¥ + yr—%

and

(Bc22+y)(d22_r22) 1 ¢o(d)d£(r2£_c2£) -

¢3
- -
(d22 22) d22 2%

First ¢(c) which can be evaluated from either expression

¢(c) = (Bt + yc™t)

The derivative of ¢35 1is

d ate (a
¢3 = (BCZ£+Y9 (_ZdZQr-Q-l_er-l) + ¢°( ) (lr2'1+lc22r'2'1)
dr (32%-c28) (42%-c22)
at a 284028
dos - 9, (a) (r2h+c?t) _ (Bc2+y) (£22442%)
dr (a2%-c2?) (d28-¢2%)

Evaluating this derivative at r=c we have

d 2d%c2%y (4
di3 = go—4-1 c ¢°( ) - (Bc2t+y) (a2%+c2?)

c (d22_c22) (d22_c22)
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The derivative of ¢, 1is

déz 2 ~-24
g = BeAT - yarThTl = xtTl(g-yrT2Y)

and at r=c

do,

_ = £2=1 =28
IF Lc*7 1 (B-yc™2%)

Now we can also evaluate vo(c)

Q-New (c?-b?)
2ﬂeocB

Vo(c) = -

i




APPENDIX D

We start with Egs. (37) and (38).

(37) 2|z + —8% | (Ba2t+y) = (B+yb~2%) (b2%-a2t)
2mNeb?
2
(38) 2lg + =% | - g1 - BC (Bd2&+y-d%¢ _(d)) = —-(B+yc™2%)
2mNec? c?

(dZQ_CZR)
Working first with Egqg. (37) this can be written

2(z + —2%2 _[a20-p224222 |42
2mNeb?

o+ =2 _|1+a20p-20|y = 0
27mNeb?

or

8



B

Equation (38) becomes

2
ol + —Q% _|-p|1 - BO|(a22+q2tcotiprinfc + —2% | gf1 - BD
27Nec? c? 2nNec? c?
ate (d)
+cT28g2%-1 by = °

2

2| + —9% _|_pj1 - B

2mNec? c?

These two equations written in the form of the characteristic

determinant if ¢0(d) is taken as zero are,

( Iy + (C v

OBy

Writing this ali out we have

2
2l + —Q%  |a20 p224g28| 2] + —8% | _ol1 - BO|4c-22g20-1] -
2TNeb? 2mNec? c?
B [ 2
2l + —9% | 14a2%pm2e | l2] + R _|-g]1-B
2mNeb? 2mNec? c?

9



oxr

282
2ca2t + QRat” g
i TNeb 2
2¢ + 22 _ 1452
TNeb?2

22+a22 [%C + Q4L - l(cz_bZ) + c-22d22_i} -
mNec? c?

TNec? c?

Qb‘2{} 2Cd2l + 9&2&& - 2424 LEE:EEL + d22_c2€}=0

Now we can multiply this out.

2% 24 212
4C2a22 + 2za“”Qf - 2ta Q(C b ) + 2Ca22c-22d22 - 2Ca22
TNec? c?
. ZCQQ,aZQ N QL }2 a2t _ sza“(c?-bz) N QLa2tc—22324 _ 0ra2®
mNeb 2 e b2c? mNeb?2c? mNeb?2 mNeb?
_2b22c - Q'sz2 + bZQQ(cz—bz) - bZQC—ZQdZQ + b24
TNeg? c?
+ 2a21c + QQaZQ aZQQ(CZ—bZ) + aZQC—ZQdZQ - a22
TNec? c?
2% 28 (~2_W2
mNec? c?
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_ 2za?qp _ [Q,Q, ]2 d2% . 022d2%(c2-p2) _ Qed2% . ofc?
mNeb?2 Ne)]  p2g2 mNeb2c? m™eb?2  mNeb?

2ra2% + dezk _ ldzi(cz_bZ)

mNec? c?

+ dZQ’-CZ‘Q’

- 2328p=22 g2& - Qed2ta2ip=-22 - degazzb—ZR(cz-b?) _

mNec? c?

a22b*22d22

+ a?lb“ZQ‘CZQ = 0

Combining terms we have

4€2(d22—32£)

2804 2% 2.2 . 2%
+ 2g|27Q° & £{c?7b?) 4 a2icmzigre o g2 QL
TNec? c? mNeb?

22 _ Qed*-  2dZ%(c?-b?)

- biti+a? a+ i 4 Cki
2

nNeg ? c

_diRor g2 - 42ep-22g2t
nNeb?
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da2%(c?-p?) _ azz(cz_uz))
b2c? b2c? J

Q2
TNe

——— - —

b2 b2 CZ c2 b2 b2 c2 c2

[QQ J[aZQC—ZQdZQ a2t b2% a2t az4 N c2 + le a22b-22d22]

bZZ(CZ_bZ) _ aZZ(CZ_bZ) _ dZQ(CZ_bZ) + dzlang_ZQ(Cz-bz)

c? c2 c? c2

2

b28c=22328 4 p2R4z528c—22328 - a2¥4d2l-cg24
a2ip-22g2% 4 aZZb—ZZCZZ} = 0

4§2(d2£_a22)

2
2z (2 (azt-a2t) [1 - 9—] —

N b-zzc—zz{(bzzczz_azzdzz)(czz_bzz)}
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2 2
+ _%_2,_[1“2_

TNeb?2

19
mNeb?2

_ Q
L TNe

c?

b2% _ azl

9
nNec?

d2t

](dZQ_aZQ)

(~a2%c~2232%43228 4420 c2%)

o2

+ (c2%-p2%)(d24-c24)(p28-a2%)p= 2224

c?

c?

+
c?

. aZlb—ZleR . (CZ_bZ) -p28 a2l
c? c?

c?

a2t | dzzazzb-zz']
c? c?

=0

Continuing the combination we have

- 4€2(d22_a22)

+ 2z|8(d2%-a2t) {

b2

1-_2_]_

C

Q 1+ 22t 4 (b2%c28-52%g2%)
TNeb? c?
(c2£_b22)b-22c—22
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%29 ;B2 __0
TNeb 2 c? mNec?

£Q (c2%-a2%) (g2%=-c22) =28

TNeb?
Y F - S (d2%-b22) (b2*%~a2%)p~24
c? mNec
+ (c2%-b2%)(d2%=c2%) (b22-a22)p~28c=22| = 0
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