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Introdaction
This final report summarizes all of the research sponsored by the
National Aeronautics and Space Administration under the Grant NGR-33 -

006-020 for the period 15 September 1968 through 15 September 1969,

The research supported by this grant encompasses the problems of receiving

analog and digital signals which have been transmitted through a noisy

channel. Frequency modulation is emphasized, with particular attention

focused on the problem of threshold extension. Throughout the study, theory

and experiment were worked hand-in-hand with approximately equal effort

expended on each,

Part I of this report discusses Threshold Extension, The distinction

between Spikes and Cycle Slii::s are first discussed, A discussion of
the f‘MFB follows, The canonical equations are presented along with some
results regarding extreme-case operation. hen soeme experimental re-
sults are presented concerning ‘'clicks" in the - FMFB, . |
 Part II considers Single Sideband FM- and why not to use it, and

| optimum preemphasis. Here it is shown that 2dB or more can be g.';:i.i.ne:ci3j
by using an optimum p.e¢zmphasis network,

Part III considers a Slow Scan Digital TV System. Here a complete
" computer controlled system is presented which transfers information from
a photographic slide into a stored digital form. Measurements and Coding
are possible, |

Part IV deals with a recursive second order gradient algorithm,

The results of this grant represent a significant step forward in

the theory of operatién of FM systemns, This grant has also sei'ved to sup-

. port the publication of a large number of papers, as well as many masters

and PhD dissﬂertationrs..-
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I. Threshold Extension
1. 1 Spikes .and Cycle Slips in the Phase Locked Loo

In 1961 Rice(!) showed that the output of an FM discriminator could
be represented near threshold by 3 terms: the modulating sigral m(t); a
smooth noise term, commonly called the FM noise having a power spectral
density proporticnal to fz; and an ir*_.pulsive noise term having an approxi-
mately ''white'' power spectral density.

In 1963 Schilling(?') proposed an identical model for the Phase Locked
Loop (PLL) and the Frequency Demodulator Using Feedback (FMFB). It
was later learned,in private correspondence with S, O. Rice that Rice's
original model was for the FMFB and the FM discriminator was merely a

special case of that system when the feedback was equal to zero,

(3)

At approximately the same time Viterbi'™’, using a procedure de-
veloped by Tikenov, obtained the phase distribution at the output of a PLL
when the input is an unmodulated carrier embedded in white Gaussian noise,

he noise, .. ..

Viterbi showed that the PLL ''slips cyé,le..s."? in the presence of.
| It is important to note that while Schilling and Viterbi both studied

the PLL, the use and hénce the design is quite different. Schilling con-

sidered a PLL demodulator to d«emodui'ate an FM signal in noise with low

distortion, This application requires a relatively '"wideband'" PLL pre-

ceded by an IF filter of corhpa.rable bandwidth, Viterbi, Lindsey, and ot-he:_l"s_

have considered using the PLL for carrier tracking. In this application we |
are interested m the VCO output not its input, The PLL employed is a
-na'x_-r.owand device preceded by an IF filter of much wider baﬁdwidth (the
input noise is white corrfé/:ared to the PLL). In the demodulator a.pplicatiop

: /
» - - /“" - - L3 3 = - . - L. N
we consider "spike {imipulsive)'' noise, while in the carrier tracking ap-

.-3-



plication ''cycle slipping ' is considered., It is the purpose of this rt.aport
to compare cycle slipping and the spikes,

To comparé cycle slipping and spikes we choose an example which
ig fictional, but has the advantage that it can be calculated by hand without
needing a digital compu-ter(.4)Figure 1 shows a lst-order PLL, having -.an
input

vy(t) = R(t) sin (0 _t+ ¢(t)) | m

 To simplify our problem we consider a phase detector having the character-

istic shown in Fig. 2. Then if the error phase y:
.t |
¢ =¢-G .Ln-vo(k)dk (2)

is less, in magnitude, than v/ 2,

t _
2 2 | L | ..
o) = 2y = 2 lse) -, [ v F*"] (3a)
and
Yty = F v oit) . . @
If, however, % svg 3; , then
2 ' 2 i t _
v =2 - Tt =2 ;;[Mt) -g, J AL a) (8ay
or
. 2G. v > . . 3
V1) - =2 v 1) = - 24) |  (5h)
and | |
Wty = S (2 =V () . I - (6)
N

\\
Sy |



o |

Phase

vi ()= Asin (wgt + ¢ (1)) Detector —evo 1)
ot Voltage
- vf.(t),=2cos-(wot+Gofv°(x)dh) { Controlied pe-
| Oscillator

Fig. 1 A Phase Locked Loop

, | _ |
— ¥ $=-Gg fvir)dr

Fig. ."“2 Phase Detector Characteristic

. —-5-
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Let us now consider that Vi(t) in Eq; 1 represents an unmoculated
carrier embedded in noise, Then R{t) is the envelope of the carrier ampli-
tude and the noise, and ¢(t) is the phase rotation of the envelope due to thé
noise, The output of an FM discriminator is J:(t). Let us now assume that
att = 0, ¢(t) changes by 2w; i. e, ,‘ that the noise causes a 2w rotatioﬁ of the
envelope R(t) about the real axis. The discriminator produces a spike under
these conditions, We will non determine the response of the PLL,

To analyze this problem simply we will assume that ¢(t) rotates 2ir
radians in a linea* manner; |

2s

T t 0 £t T
o(t) = | (7)
0 elsewhere
Casel, G > =L
2G
[¢]
2w - mw t 0 T
— (] =g <t <
TG, ) £t =
o
= 2 2C
vo(t) X ZQOT ! Got (8)
21 1. " jye T  t>T
TC '
o _
eoethoy al d-vond? pavory (000 o an g s Mieldpeh T oedr tedr aralt Ll JuE ' L
A e Urlw GuyD sl danid gals Saol R .,,.,k...( = —'rs A =iy s i
In this case v (t) is always less than um.ty Hence
“. TV T A ad :4 i e g -{)zz ,.F";‘z”: .;."..1'.’:,'{.?‘37',7' J)fl".z el Je :,":—“—;~—‘§££3;;3T;;: :
A
A= T



Thus, for a "large" gain Go" | remains less than -Tz-r- and there is no cycle

slipping, However, vo(t) " follows" q;(t) and hence a spike is produced, Note

that the area of v_(t) is approximately Zn/Go. This is illustrated in Fig, 3a,

Case 2 < 2
Case 2. Go T

In this case vo(t) reaches unity and hence Y(t) reaches % when

<< T, Eqs. (5) and (6) must then be employed to finish the calcula-

t = T1
tion for vo-(t);— Referring to Eq. (5b), and letting Vc‘-(énl) = 1, we have
2G , 2G_
2T o[t-Tl]. _ rrou.:-Tl)
vo(t) = TGO-(I e Y+ 1le ' (10)

Two pos s’ibili-fies now e.xi;t._ The first possibility 1s that, although

v (t} is decreasing from +1 to =1, v_(T) > 0 ( T su< v): In this case

(see Flg 2) one can easily show that for t > T, vo’f't) increases again to +1
andthen decreases to zero. Thus Y(ty decreases from it.s: maximum vah?z.e ,
kattaaiged at t = T (note that this value is less tha.n' ™) toIIO. The result,

shown in Fig. 3b, is a spike,

| . The second possibility is that at time t = T, VO(T) < 0, In th.is

case (see Fig, 2) vo(t) continues to decrease to -1 a;nd then increase to
‘zero. Thus, Y(t) contiﬁues touincrease to 2w, This result is showp in

Fig. 3.c':,j.. Net;.e that the " d'c)ublet". occufs when LP_(;;t) moves through 27 fadian-s;

i, e,, ‘“:th‘?,___LL slips a gycle, Note also that the :-‘:.cycle slip results for the |

s:fnane:st .\of t}:e three gains: G, < Gj, < Goy as shown 1nF1g '3.

R S R TN f-f.‘ﬂ-‘ L, P i

CRES " SRR AYSS T ST SF
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Conclusion

We have demonstrated for the simple case of an unmodulated carrier

‘the simple case of an unmodulated carrier in noise that if there is an FM

discriminator spike, then there will be a PLL spike if there is no cycle slip,

but if a cycle is slipped 1:10 PLL spike results, We have shown furthermore

that to avoid a spike the gain G, should be made as small as possible, How -

. ever, decreasing G_ decreases the PLL bandwidth and therefore increases

- distortion, Thus a compromise must be made between pike rejection and

distortion.
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1.2 The Frequency Demodulator Using Feedback

1.2.1 Canonical E uations and Limiting Conditions

Introduction

__Aliﬁhough the Frequency Demodulator with Feedback (FMFB) has
been the sﬁbject of much discussion and debate since the late 1930' s, the
fundamental equations governing its operation under arbitrary inputs, and
the solution of these equations have not been published.

In this paper we present these fundamental equationé of operation
for a first order FMFB and for a second order FMFB with a baseband
filter. It is shown that the equations may be extended, using the basic
technique employed here to describe the operations of h-iéher order loops of
any order,

The asymptotic operab‘f-&dms of the FMFB at the extreme values of its
parameters are th'e-nl derived. It is demonstrated that for a large feédi;ack
gain G, or for a wide IF bandwidth @, the operation of the FMFB approaches o

that of the FMD. For very small feedback gain G, the FMFB again reduces.

”

Fundamental _ E Juations

The FMFB to be analyzed is shown in Fig. 1. The input to the RF
filter is composed of the sum of the RF signal and additive white gaussian

noise of two-sided spectral density n /2. The output of the RF filter

" (which is the input to the FMFB) is.a phasor, e, s which may be decomposed

along orthogonal eom;p.onents of the unmodulated signal as shewn in Fig. 2.

We defi—né:;l

1l

W signal carrier frequency

6]

x(t) = in4i;1;ase éomponent&gf noise at RF filter output

signal modulation angle

v(t) = q_ﬁadra.turé ‘cam.p:.onexit of noise at RF filter output,

-10-



FM SIGNAL + WHITE NOISE _ UNFILTERED ESTIMATE

~ - ULATIO!
| | ( OF MOD____" TION FILTERED
OUTPUT
ein | - | BASEBAND f |

FM SIGNAL NARROWBAND NOISE

Fig. 1, FMFB used to Demodulate FM Signal

—

Y=y+sin¢gm

Fig. 2. Input Phasor Modulated Signal and Noise
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Hence,

e, = X(t) cos wot - Y(t) sin wot | (1) .
vhere

X(t) = x(t) + cos ¢_(t) - (@)
and

Y(t) = y(t) + sin ¢_ (t) (3)

An unmodualated signal of unity amplitude is assumed.

The block diagram of the FMFB is shown in Fig. 3. The input signal
plus noise is applied to the multiplier whose output is e.m'. The second input
to the multiplier is eVCO’the output of the Voltage Controlled Oscillator |
(VCO). The VCO is centered quiescently at (mo + w 1), while € n’ in aclcord;
ance with Eq. (1), is centered at w - The multiplier output e feeds the IF
filter in the loop which is centered at the difference f;equency, W, Thlle IF
filter output, e is applied to an ordinary FMD which is assumed to h;':ve
‘an ideal amplitude limiter and thereby acts as a differentiator of the phase
of €.
higher order FMFB,

The output of the FMD is fed to a baseband filter, in the case of the.

We consider fir st the sirnplesf case, that of a first order FMFB and
thus connect the FMD output directly to an amplifier of'‘gain G. The ou-t#ut
of this amplifier is ¢ and is directly proportional to the ffeque-ncy- of the
VCO. Since the FMD elirninates a.ll amplitude in-fé.rrhatipn, ef is of the form
A cosfuyt + '(%), where A is thei:, time ';;a-ryin-g envelope of the input to the
ideal limiter. The gé_in constants of the FMD and VCO are assumed to.be
“unity. When this is not ‘-t}_-;e case, these gains may be lumped into G.

The u:tput of the FMFB de‘n;dpla.tor tll is o.bta.ined by amplifying the

demodulated signal by a gain (G + 1) which serves to restore the gain constant,

L Et
i

-12 -



from input to output under ordinary demodulation, to unity.

We denote the output of the VCO as:

Cveo” 2 [cos (m0+w1)t+¢(t)] (4)

The amplitude of eveo M2y be chosen arbitrarily, since the FMD possesses
an ideal limiter. The value of 2 is chosen for simplicity, The multiplier
output is:

e ={e,
m in

) { (5)

€ )
VCO

When eq. (1) and eq. (4) are substituted in eq., (5) and standard trigono-

metric identities are applied, we get:

e = X cos (wyt+ ¢t) )+ Y sin (0 t+ d(t))

(6)
+ X cos ([Zwo +w1]t+ p(t) ) = Y sin ([Zwo-i- wl]t-i- b(t) )

“The IF filter for the first order FMFB is an RLC with'a 3 dB half bandwidth =~

a and a }ow pass equivalent transfer function H(w ) given by:

Hiw) = S?I’* p | _ (7)

Since the IF filter is centered at w 1 2 su—fﬁciently large 'carrier_frequency =
._m o will irnsure the validity of the use of the low ~pass Hequivalen_t of the fi_ltex_-'..t}:\}}
- This re.fs.ults in n-eglectin.g of the last two terms of 't-h‘e,_: right hand side of - _//f}’
eq. (6) because té.;fms at (.?.o)(a + @ 1) é.re greatly atte_nuajt'ed by t‘he_ IF filter, .. )
T-:he. baseband equivalent of the lodp may t=héfefore. be‘u;ilized, .\which results |

in the IF filter input and cutput as shown in Fig. 4.

For the RLC type IF filter shown we have:

e = ae # —d-{—mef _ (8}

- With e .and ey as shpwn in g‘ig. _4, and using eq. (8) we obtain:

-13 _



a[X cos o+ Y sin¢] = (@A + A) cos -%— - -%i sin % (9)

One recognizes that the right hand side of eq. (9) is a phasor expressed in
terms of quadrature components along the angle % . The left hand side is
a phasor expressed in terms of components relative to an angle ¢. We en~
deavor to proj__ec’t the left hand side along the orthogonal components of the

angle ¢/G. To do this we first define the parameter y:

(10)
Then substituting eq. (10} into eq. (9), we obtain:

a[Ysin(y¢ —%) + Xcos (y¢ -%)] = (A+aA) (_‘-OSi 'M si_-n%

G G ;
(11)
or:
a[Y sinyd y X cos yq:]cos %.-i- a[— Ycosyd + X sin yq;] sin %
= A - .. i ~ i[}— i
(A + al) cos G - sin & (12)

| I.neq. (1:“2-)',.-.thé cbfnponent-s along each orthogonal projection must be equal.

Then:

f.b = -QA'&[Y cos vé = X sin \gd)] | | t1-3)
and ' |

A = a[Y sih v¢ + X cos yo ] - G'A ' ' | (14)

The external amplifier to the loop, of gain (G + 1) estéblishe‘é the

" relation between the FMD output ¢/ G and the demodulator output b

b=G+n & | B
If one assumes negligible delay within the loop,

L G +1
I —

Y | | | O 6)
14-



We substitute eq., (16 into eq. (13) and eq. (14) to get:

b = [ Y cos - X siny|Stlle (17)
and |
A'=Q[Ysin¢chos¢]-aA i (18)

Eq. (17) and Eq, (18) are the fundamental equations of the first order FMFB,

They are given in a canenical form which make them readily available to

computer solution., In general, one is interested in the statistics of :I.then

X and Y are composed of an arbitrary modulation and gaussian noise, A closed

form solution of eq. (17) and eq. (18) under these conditions is not available,

| However, the use of the " Most-Likely Trajectory" of the noise has provided

a determi-n-is-tié noise model for which a computer solution has been obtained,
Higher order loops may _be obtained by insertion of a 'bas.e;aand filter

in the feedback loop or by utilization of IF filters of higher degree. This

. di-st:inctiion. is not trivial, since the effect of the filtering in the two cases is . ... .

quite different. Combinations of the two kinds of higher degree loops are also

feasible but subject to stability considerations,

Wﬁen a baseband filter is inserted in the feedback path as shown in

Fig, 5, the operating equations may be derived in a manner similar to T
that of;.:_‘_the first order lob_p up to the point where e is related to'em.- We
now write:
a[Xcose + Ysing] = (A +aA) cos & - A gn A (19)
| G G G
where -%- is the output of the FMD.
Rewriting the left hand side of eq. (19) we obtain: o g :

CAA A o -
-G sin § _ | : (20)
-15-



Using trigonometric identities and equating coefficients of the orthogonal

projections we get, as in eq, (13) and eq, (14)

= g‘f‘[Ycos(%+¢)-Xsin(% +6) ] @
and
A= a[Ysin(-g- +¢)+Xcos(%+¢)]-aA (22)

The relationship between A and ¢ is obtained from the baseband filter
characteristics,
Consider a first order baseband filter, which correspond to a second

order FMFB., The zero of the filter is located at y and the pole at B. Let

- the d=c transfer function be unity., We then obtain:

.
Tves 3 (23)

In order to restore the scale factor to unity we insert an external amplifier

of gain (G + 1) as shown in Fig. 5, The following relationships are then

-established:
6 _ -
G+l ° G - (24)
and '
Do . & : ' e
G+l ~ G (25)

Using eq., (24) and eq. (25) in eq., (21), eq. (22) and e€q. (23), we

obtain |
5. Gl .
o= 1Aar,Y“‘”‘[c.ﬂ"*c;+1]‘xs““[c+1 &% ]! (26)
A = ,Ys1n[G+1+G+1]+Xcos[G+1 -G+l]§-aA (27)
and | . | | |
. b i . ' oz (28)
= B{O ~p + = g :
v ’ ?Ty 7 | -

o . _ T . . g —16—.




eg = Acos(wt+ % ) %__’
IF FILTER $——— 2 od FMD | . =

Fig, 3, First Order FMFB Block Diagram

IF FILTER

~em=Xcos ¢+ Ysing | a - ey =Aces-—%—'

- Sta =

Fig. 4. Baseband Equivalent of IF Filter

=17 -



- A A NU 82
in ~em|[ F | of Acos(w !+ d. FMD 6 N e
FILTER |
¢ 1 BASEBAND.
veo '“""‘QE] FILTER

Fig., 5, Higher Order FMFB - Block Diagram

IF FILTEil——— FMD }

vCo p—X

"OPEN" __ [Basesano|

Fig. 6. FMFB Refuces to FMD Preceded by IF Filter when G = 0

-18 -




Eq. (28) may be rewritten, using eq. (26), as:

Gt+la . G¢ in (=2 + 5.8
= B{6 -0 +-{(7\- [Ycos(m+6ﬁ)'xsm(c+1_+c+1”

.

(29)

Equations (26), (27) and (29) represent the canonical form of the fundamental
equations for the second order FMFB, wit}‘_\‘__the state variables chpsen as
0, ¢ and A. |

For the Nth order loop, equations (26) and eq. {27) remain unchanged,
It is merely required to state the relationship between the filter input and

output (i. e., -é- and %- ) corresponding to eq. (23).2-'_}.‘ With the use of
eq. (24) and eq. (25), the equivalent of eq. (29) for the Nth order loop is
then obtained. The canonical form may again be derived by proper selection

of the state variables.

When, ins‘té'ad of = baseband filter, a higher order IF filter is used,

nique employed in solving for the fundamental equations employs a proj'ect-ion

of e along ¢/G as was done for the first order FMFB,

Asymptotic Operation at VExitr_eme Values of the Parameters.

\‘i‘ - .
Since an exact solution to the fundamental equations under arbitrary
conditions is not availéble. it is instructive to determine the behavior of

the FMFB under ex-tremely large and small values of its parameters,

CASE I -~ a approaches infinity; any; G, First Order FMFB _ \‘
The bihaviof of this FMF B is equivalent to one without an IF filter.
From eq. (17) of the fundamental equations; for the first order FMF B

AV .

R

l.im. ((‘+l)a = 0= Ycos{y~-Xsiny ] o (30)
Hemee pany = X | (1)

a9



This relationship shows that operation is identizal to that of the FMD since
the output angle is identical to the input angle to the FMFB. From eq. (18)
we obtain:

A = Yisin Y+ X cos . - (32)

Using eq. (31) and eq. (32) we obtain:

) JXE+Y§ :J-Xz + Y2 |
The input amplitude A to the FMD, internal to the FMF B, is simply the in-
put amplitude to the loop. With no IF filter present, this is precisely the ¥

‘expected intuitive result.

i

!
13

2nd Order FMFR

s
<—

In the second order loop, we define the ahgle u as,

_ 8
.. B=GTI

+ =5 - (33)
{

T

i --_-S'-:l'.-n;e.e.-.-9:.:a-n-di_:d:-..--a—z:e:--—-lin-é&r-l'-y- related, the- -aéng:le ‘wis proportional to the --i-npu-i:— SR
phase angle, Eﬁd th;e second ;ci;jrd-e_r loop acts as ranﬂ FMD with additional filter=

ing in the output. It is worth noting that although eliminat%ion of the IF filter

. reduces the systern to an FMD, eliminaticn of the‘basebanfd- filter ra-thi_er than

the IF filter does not have the same effect, |

ih

- CASE I - G approaches infinity; finite a

‘From eq. (17) we obtain;

i A 3 . S ; i : . o 5

lim — —mestmes = 0 = Y cos Y~ X sin ¢ : . (32)
e (G +T0a o8 .
hence, T S

W C e

CYRR @3y

A
i

Thus, "we ag-aip«ﬂ%wé FTMD-like operation as in case 1, wﬂi:h a ‘aﬁ_progchiné a

" infinity,

oy

T e s :
B . E i S . e . .
i . " li o R
. -3 R S . i o 17 B 3o
920.._ B i S i ] ]

= il




From eq. (18) and eq, (33) we have:

A +oA = @ [Xcos ¢ + Y sin §] = a‘JXZ + Y2

Thus, the effect of the IF filter is reflected in amplitude information only,
which is lost in the limiter of the FMD,
Here, as in the case wheu @ approaches infinity, the second order

loop acts as a " filtered" FMD,

CASE IIl - G approaches zero

The cidse where G approaches zero is equivalent to an " opened"
feec%\back path, as illustrated in Fig, 6. This case is equwalent to simple
heterodyning of the input signal to the IF filter center frequency. Thus,
operatit;n is identical tc: an ordinary FMD preceded by the IF filter, Hence
the FMD may be treated as a special case of the FMF8 with G approaching

zZero,

Con clusxons SR

The fundamental equations of the FMFB, for the first and second
order case have been presented in canonical form, It was shown that the
basic teelﬁiﬁue‘employed in the derivation may bé extended to higher order
loops. ) - _ |

The as:mptotic operation of the FMFB was found to approach the
performance of the ordinary FMD for very large values of feedback gain G, |

or IF filter bandwidth a. For fe-sr'y small G, the FMFB reduces to an FMD

' preceded by an extra IF filter,

_ These r*e sults have been used to calculate IM and harmonic dxstortmn
in the FMFB and the FMD,. a.nd to determine the threshold characteristics |

. of these devices.

:';'g,.‘} .
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1. 2.2 Noise " Clicks" in the FM Demodul_ator with F_eec_:_lbac_:k

Introduction

(1)

It is well known' ' that the limiter discriminator, phase-locked loop
(PLL), frequency locked loop (FLL), (2) and frequency demodulator with feed~
back (FMFB) may be employed as FM detectors. The most rewarding techs«
nique to predict the FM noise threshold of these demodulators focuses its
attention on FM noise " clicks", For those devices which experience the
.cycle slipping phenoneyimﬁ) (e.g., PLL and FMFB) ex,perlimental studies
indicate tw; types of "Ei‘-clic-ks " of the first and second kind exist. (4) The
expected number of " cl icks" per second appearing at the output of a limiter
d:scnrnmator asd PLL excited by a carrier plus narrow band noise has

(5) (4)

been determmed by Rice'"’ and Hess "’ respectively. Rice solves the dis=-

cnmmator problem for both the unmodulated and modulated carrier cases.

Hess concerns himself with the calculation of " clicks" of thé fir st kind and

_ hence solves th2 PLL problem for the unmodulatedl carrier case only. .
) Very litdgle literature exists on the computation of the expected num-

ber of " clicks" per second appeari-ng at the FMFB output:. Hese(6) has

established the equivalence between the FMFB (wi;thout a limiter in tﬁe lébp).

PLL, and FLL. Ihi;aa.i't-icular, he demonstrates that the défiﬁ»ing.equationa

of the FMFB degenerate into the equations for the FLL'a’ix_d. PLL as the _

loop IF filter bandwidth of:;_c'ia:e FMFB approaches infinity and zero resiﬁect‘ively. N
| Omne of the objectives of this report is to establish the equivalence

betwt?en the FMFB (with a iimiter in the loép);- limiter -discriminator, and

a PLL type structure, Spec:ﬁcally, it will be shown that as the internal

IF filter bandwxdth is reduced to zero the defmmg equ;;mn of the FMFB t

dege-x‘;e‘rate»s into a PLL type eqnatm;n (‘no_t the sa_rt;e" PLL that the _FMFB §

i
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without limiter degenerates to). Conversely, as the bandwidth increases

without bound the equations for the FMF B and limiter discrimiiator become

. identical,

The merit ir drawing such equivalances is apparent when we con-
sider the physical insight into the FMFB operation that is obtained; more-
over, the equivalences provide us with the expected number of " clicks"
per second appearing at the output' of an FMFB excited by a carrier (unmodu-
lated) plus narrow band noise. Although this technique provides an accurate
expression for the expected number of " clicks" only for the two special
cases of an FMFB with a very small and very large:'iF bandwidth, an ex-
perimental study made on the firet order FMFB indicates that the expression
to be derived predicfs reasonably well the actual number of " clicks" even

i

for intermediate values of IF bandwidth,

Equivalence B_e-tw;éﬁ-_z’i FMFB(w1th limiter), PLL, and Limiter Discriminator

" Ihe block diagram of a PLL is shown in Figure 1.
a(t)B . |
| Z _%in ['P('%)"Kv¢(t)]
ymultiplier LOWPASS | ;..
al(t)cosjwat + _
INPUT o AL 1 oL 4L LOOP FILTER p— WU OUTPUT
| ho(t)
Bsin [wof +Ky® (f)]
. [veo
odec, |
rad/sec
"o
F;ig. i, Block Dlagram of Pha.éef Lcckedii_.qeé B .

R AR AT VT e ot e
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The input is taken to be a carrier of frequency w  and ami* ife A

plus narrow band noise n(t), Such an input signal may be written as
a(t) cos [w of +d(t) ] .

If the output of the loop is designated ;b(t-) and the voltage controlled oscillator

rad/ sec

(VCO) constant is taken to be K _ / volt the VCO output may be

written as B sin [w Ot + Kv é(t) ]. The multiplier output is sin-;ply

a!;!B._ Sin [Ll"(t) - KV d)(t),)] + sec_:gnd harmonic terms.
Assuming the low pass loop filter rejects the second harmonic terms ap-

pearing at the multiplier output the defining equation of the PLL becomes
. { .
o) = | 2R win [we) - K, 600 1} # (0 (1)

where ho(t) is the impulse response of the low pass loop filter.
If we define t1{1e phase error by B(t) = U (t) - Kv'-cb(t) and the closed

loop bandwidth b AB

Y9y pLr = 3¢ Equation (1) takes the alternat_g ﬁorm s

Ut) = O(t) + %P— i pp Sin 8(t) § * h_(t) (2)

For the first order PLL, the tré:ﬁ-st_fpr function of the low pass loop filter is
H_(s) =2 [hg‘(t) 1=1.

Assuming the second harmonic terms are still rejected, equation (2) reduces
to

Y(t) = o(t) + -a-“-E-L @y, pLy 8in a(t) | (3)

P -
1

w i )

@) Come

Using a model for carrier plus narrow band noise, Hess' ' computes

the expected number of "clicks" per second Niappearing at the output of

a fifst order PL1., His result is

-"24—.
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N+ =vy/m eric[dz CNR (1 + 104Y ) (4)
“1, PLL

where, the input voltage carrier to noise ratio is defined by
CNR = A/V2N (5)

and N = El-nz(t)} is the total input noise power,
The radius of gyration of the input noise is defined by

[7 G ) w?d
s Opl0) @ dw

(6)

(2 6]
G dow
[ oul)

and GL('w) is the power spectrum of the low pass equivalent of the input noise,
and finally,

2
erch=1/‘\[2—vw fme'x/zdx (7)

The differential equation of the FMFB will now be derived, The
_general case will be considered first. We will then specialize to the caseof . ... .-
an FMFB wifh a versr narrow loop IF filter and demonstrate that the defining
differential equation of the loop degenerates into a PLL type equation, Some
interesting observations will also be pointed out. We then turn to the_ case
~of an FMFB with a vei-y broad loop IF filter and demonstrate that its per-
formance is identical to a limiter diccriminator,
The block diagram of an FMFB is silown in Figure 2
- For the loop driven by a carrier plus narrow band’ noige we ;'-:.gain
write the input as a(t) cos [w ot Y wit) ). If \;t;.e de s:i.g-n—a.-ti;_t,h’éf’-;utpllt by :b(t)

rad/ sec

and let the VCO constant be K,, / volt the VCO output takes the form_ -

B cos [w 1t chb(f) . The mulfiplier 6ut’pt.1t#§ii"-nply becomes R
o at)B tz B os [w ot + 0f(t) 1+ .sécop.-d"ﬁharmonic terms | C A

.‘d;fzs_



multiplier (o MITER- | [Lowmass] 4 .. -
a({t)Cos ku. 4 + IF LOOP| o LI ) ) -
o- por o] | FiLTeR FULiDISCRIMINATOR [-{LOOP F'LTERT;:—:N
INPUT hIF (1) K‘(’;"/rod/sec ho(t) ||
‘canter ' s ' |
VCo
B cos[wis + K.v‘f’(ﬂ] Wi +r
' = rnd/SQCAO“ '
Kv
Fig. 2. Block Diagram of Frequency Demodulator with Feedback
where
0, = log ~w,l
and _
8(t) = W(t) - K_é(t) " (8)

¥

Denoting the impulse response of the loop IF filter by h . (t), the

IF output e l(t) may be written as

!
L1a®)B L oy B I - . _
e (t) = { =5= cos [w,t + a(t) ] * hyn(t) - | (9)
Assuming the second harmonic terms in the vicinity of 2 w p are rejected,
Letting hL(t) be the impulse response of the low pass equivalent of
the IF filter we may eX%pand Eq-uaii:iOn (9) and rewrite in the form
ellt)- = [, cos e.(t).l# hL(t)'] cos w,t - [3 = .'in.G-(t)f* hL(t)]
Sin @ pt - (10) |
Equation (10) may be rearranged further to yield
A el(-t) = (C + c) cos m-zt - (D + d) sin wzt ' : - (11) f

_26-
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where C and D are the average (d¢) values of the coefficients of cos w5t
and sin mzt respectively and c(t) and d(t) are coefficients of cos w5t and
sin w,t less their average values respectively. If the RF filter preceding

the loop is symmetric about w o and if ¢(t) = 0, then from symmetry con-

siderations :P-(T)' = 0 and -a-(lt)'sih“ L) 'kv tNt.)] = 0; hence D=0 a..nd
d(t) = ‘ 3—(521-51 sin e.(t)‘* hy (t) ' (12)

Equation (11) now reduces to

e,(t) = J(C + e)z 3 dz- cos [uzt + tan"! d/C + c] (13)

Denoting the impulse response of the low pass loop filter by h (t) and lettmg

volt 8 /

the discriminator constant be K rod, / sec,, the differential equation

of the FMFB loop becomes

a

$(t) = K tan® (d/C+c)* hD(t)*h (t) £ T

- where hD(t) designates the differentiation operation of the discriminator.

Using Equation (8) and defining the dc féedback factor F = 1+ K K,

Ut) = 8(t) + (F - 1) tan~! (d/C + c)* hD(t) * h_{t) (15)

We now consider the special case of a narrow IF filter. As the IF
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since more and more of the ac c-ompone_r_xt is filtered out while the d¢c com=~ -

ponent remains unchanged, Hence, for this special case of a n-arr‘bw IF

O Rk T R S e s S 1 i R e T e

filter we may use the approximation
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Using Equations (16) and (12) Equation (15) may be rewritten as

b(t) = B(t) + (F - 1)’*‘-‘1‘)—2 sin B(t)( *h_(t) * hy (t) * h_(t) (17)

It is interesting to notz-here that the filtering operations provided
by the loop IF filter and the low pass loop filter are completely interchange-
able provided the IF bandwidth is rarrow enough to make the approximation

in Equation (16) a valid one.

To compute C = ;ﬂ%—s cos B(t)‘ * hL(t) we recognize that for the
limiting case of zero IF bandwidth C is just the peak value of the IF carrier,
i. e, ’ el(w 2) peak, This is simply one-~-half the product of the peak value
of the VCO carrier and the iﬁ'pu-t carrier. The peak value of the input calk-
rier is simply A, To determine the peak value of the carrier of the phase
modalated signal appearing at the VCO output we use a result of Schwartz,
Bennett, and Stein(l) (pp. 167-168) If we consider the phase modulation
of the VCO output to be gaussmn with zero mean and mean squa.re value

much le 88 than one we may write the peak value of VCO carrier as

JI; ‘exp (' Rk (00 = Bexp(-3 Z Ry o (0))

K9

where

RKv ‘b(o!)ﬁ?: E %[chb (t) ]2 << 1 ' (18)

Hence,

,C--;; z Vexp ;- E RKV¢(0)

Equation (17) now takes on the fé,rm of a PLL equation

$(t) = B(t) + (F=1) exp( K ¢(0)) 3 sin B(t)‘* h_ (t)*h (t)#h (t)

(19\
If the loop IF filter is a smgle pole RLC circuit, the transfer function

of its low pass equivalent may be t-a-k_en as

A
-2 8-
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YR
s + mIF

H; (s) =L [h; (t) ]

In the limiting case as W approaches zero,
t
hy () —w [ () at
Thus the integration and differentiation operators cancel and Equation (19)

. may be written as
W) = Bt) + (F-1) wpp exp (7 Rig_o (0 ) 2l gin e(t)f* h,(t) (20)

Clearly, Equation (20) takes on the same form as the PLL f:quation (2) if
we relate w L, PLL to (F=1) W exp!-;- RK 4)(()-)‘ . Hence, ’the equivalence
between the FMFB (wit_h limiter) and PLL ;rxas been demonstrated. |

| It is interesting to note here that the FMFB with limiter in the loop
does not reduce to the same PLL as the FMFB without limiter, Thn dif- -
ference is only slight howevir, since the term exp ( -;- RK ¢(0) ) is near one
in order for the assumption in Equation (18) to be valid. I:will be shown
below that the term RK ¢(0) is a function of the mputi garr:er to noise ratio
as well as the loop parameters., Another mterestmgﬂ;‘observatxen that can
be made at this point is that like the FMFB without I'imiter in the loop the

FMFB with limiter can have an arbitrariiy narrow loop IF filter and still

P ..
S [ . i

su-ccessfﬁfly dembdulate an FM signal,

We will now compute RK ¢(0') for the specific e/;:am-pleﬁ of the first

order FMFB, i.e., when the transfer function of the low pass loop filter

o o R BT SRR Eall e it o B o el e

Ho.(s)'z 1. From the theory of power s.pectra
.!._'i an

R, (0) = (@) di= [ S()H Mae @y
K 4! f(m 4,«» _ f@D wl (le )

'-,29"'
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where S¢(u) is the power spectral density of W(t) and IHC(jm)I is the magni-
tude of the closed loop transfer function between input of loop and VCO
output, If we express the input narrow band gaussian noise with symmetric

power spectrum about w by'(l)
n{t) = x(t) cos uot - y(t) sin wot (22)
then x(t) and y(t) are zero mean statistically independent gaussian processes,

If the predetection RF bandwidth is rectangular in shape, symmetric about

w 0,' and total bandwidth Bw, then

N/ Bow o] g 5B

S (w)=8 (w)-=

x Y 21 (23)
0 lwl > 2

where N = E ln.z(t)' is the. total input noise power. Y(t) may then be
written as tan-l- {y/A + x where A is the carrier amplitude and for lugh

carrier to noise ratios may bc approximated by the gaussian, zero mean,

»procaseey/ A,
Sy@) = | B A? o] g SEBe (24)
" 21 _Bw
0 'm I > 2

To compute |Hc(jw)l for the first order FMFB we use the linearized base-

band version of the FMFB shown in Figure 3,

S’l'w":_

Kp$S ps)

/e e

7’

% Fig. 3. Linearized Baseband Version of First Order FMFB
)
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Clearly,

. IF 2 2
Y
. 2 v D jw +‘°IF K KD“’I.::
[H_(jw)]™ = — R T (25)
C C W jw +wIF( +KVKD
v D Jw+wIF

using the definition F = 1 + K' K and w = 2nf, Equation (25) reduces to

D
(F~ 1) f : -
v ]2 - IF _
|H (w)|® = R— (26)
IF )

Substitution of Equations (24) and (26) into Equation (21) yields,

B 21 Bo
__ _f z _§ [&E-D fIF N, Fa2 Fip fa FfoL
Rk (0 = 2o | 25 == (FI (5 T 2d
v Bw A f + (£ F) A . Bw f +4{F £,..)
T "7 =
| (27)
which readily integrates to
: 2 2Ff :
N _  F-1 IF =1, Bw_. o e e e
K ¢ W2 F 7B 2F £, |

Simple computation will show that R., .(0) << 1 for a carrier to noise ratio .

X ¢

in the threshold region, ,,;en\,e th; or1g1na1 assumption of Equation (18) i5

valid, - | |
In summary, the differential equation for the first order FMFB loop .

"r‘

reduces to the flrst order PLL equation
P(t) =0 (®)+ (F-1) o5 exp (3 Ry 4(0)) 3t sine() (29)
where, for a loop preceded by a rectangular RF filter of total bandwidth Bw,
RK d)(0') is given by Equ-a-tion -(28)._
v

If we now allow the bandwxdth of thé’ loop IF filter to become large \
/:I IR ) \ .

compai#ed to the band of frequencaes occup:ed by

4
T



288 o fuw,t+ 4(1) - Kol

the output of the IF filter becomes simply

e-l_(t) = _a_(_tz_ﬁ cos [w st Y(t) - chb(t) ]

(assuming the second harmonic terms in the vicinity of 2 w, are still
rejected).

Hence, for the first order FMFB

dt) = K [9() - K (0) ]

or, K

b (t) = —F-I?- L(t) = (constant) ¢ () (30)

which is ideatical to the defining equation oi a limiter diecri’.minator if the
input to the 11m1ter discriminator is again taken as a(t) cos [w t+ Y(t)]
ard its output is designated by ¢(t..). Consequently, t*he equwalence between

the FMFB and limiter discriminator has been demo_;.a straied,

. Expected Number of FMFB Noise ''Clicks"

By ‘applying the techniques already dev-elope’d for.the PLL azia limiter

output of an FMFB excited by a carrier (unmodulated) pluas narrow ba.nd no:.se

can nowl be s1rnp1y ebtamed Although the result w111 be strictly va.hd for o C

2/ . S
*the two t..ases of an FMFB w1th a very small or very large IF filter band- ;

Wldth expenmental re sults on the first order FMFB indicate that this
sn'nple téchmque predmts reasonably well the ac.tual number of " chcks "

even for mterrnedlate values of IF bandw1dth

Fm' the FMFB w1th small IF bandwzdth the expected number of

|L

"chcks" per second; N ,+ is found using Hess' Lesult Equatmn (4)._ ]'Lhas

been demonstrated that the FMFB'is equlvalent te a PLL with equ va]ent

Y. . R 2 4 . T
o
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closed qu;gbandwidth (F-1) W g ©XP [ % RKV¢(O) 1.

N + X erfc [J—z CNR (1 + r 1 )
~FMFB (narrow IF) = n - (F-i)mIFexp[ ERKV¢(0)]

(31)
where CNR, y, and erfc are defined by Equations 5, 6, and 7 respectively

anc. RK m(O) is given by Equation (28) for a rectangular RF f{ilter.

For the FMFB with large IF bandwidth the expected number of " clicks"

per second approaches Rice's res’ulat(s) for the limiter discriminator which

N + erfc [¥2 CNR] - (32)

FMFB (wide IF) ©

where y, CNR, and erfc have the same meaning as above.
“ The regien of iz.alidi-ty of the expressions is determined from an ex-

perimental siudy discussed in the following section.

An expe-r-i-m._ental first order FMFB was constructed to operate with

an input carrier .ireq;u-en:cy of 455 kHz and a loop IF center frequency of 174 kHz.

A block diagram of the experimental set-up appears in Figure 4. The RF M
filter:used was a Collins _r—_nechanica.i filter rectangular m s‘hape;- symmetric
aBout 455 kHz, .and 13 kHz in bandwidth, The loop IF f._iltég;_---:é-;‘vas a single tuned
RLC eircqit. Its bandwidth was changed by varying its Q. The General _ o
R_'_aadio GR1142-A fregquency disCri’minieytor was us‘ed for the loop limiter dis- - "
j"‘Gl‘iI_’.rlinafG:I'. ‘The VCO used was an asft'able.multivibrator wﬁos_e square wave | \' ; _
o—utput operated a switching transistor which .‘sé.‘r.}ted as the mtrltipl.ie.r. The =~ :“ .

- Joop gain was a&justed by Va.ryi-ng the VCO consta-nt. “The input 455 kHz carrier’
was obtamed £ram a Wavetek Model 11 varlable frequency generator and

the mput nome was obtained from\a General Radm GR t390-B Noise Generator.

¥

i
!
1



Krohn-Hit
(Hewlen Packard) ( C,°.§m,"

fo =455 kHz

7 , BW =BikMz Lim".r | Low Pass .- (T.k"fﬂﬂ'x}‘
[ Noise | IMechanical|l Discriminator Fliter Storage
(Generator RF Filter SR Scopc
(GR) (Collins) 1 FMFB ' Low Poss )
| ] ~ Filter
Oscallamr.lﬁ — . | (Krohn-Hite)
(Wavetek) Bw=3kHz

Fig. 4. Experimental Set-Up

of the noise generator. A limiter discrimiiia-il::or and FMFB were driven
simultaneously w1th the sa;nes carrier plus narrow band noise. The purpése
~ of this is to ensure that all the clicks counted in the FMFB output are cllcks
of the first 'i'ci;.ts., The ‘outputs of the limiter dJ.scnmmatnr and FMFB wetre’
passed t‘hrough,low pass leter-s to make the " chcks"_ readily recognizable
on a storage oscilloscape. ‘
.Assu:mi-ng the output of the noise generator flat over of the rec‘t:angular

pass band of the RF filter the radius of gyration of the input noise becomes
‘ v = - 2n Bo, ' L

wh'ere Bw .i_s the total bﬁndwisth of the 1"\Ff11ter Substituting Equation (33)

(33)

éi-p;t.j‘,o E"q.ua‘ti;on-s- (31 )'and (32), the expected number of " clicks" per second

a._pﬁ:eari.ng at the output of the first order FMFB is

N4 EMFBarrow IF) T J- e 2 CNR(” T ]
-- Ft) e ex( (04
Bo oxP(3 K¢
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where R (O) is given by Equation (28)

Buw
N iFMFB(wxde ) < B erfc [J2 CNR ] (35)
2ip

Using Equation (34) plots of N + /Bw vs. 35

are presented in Figures 5,6, and 7 along with experimentally obtained data.

with CNR and F as parameters

The experimental results indicate that the FMFB essen-tiel-ly behaves as a
limiter discriminator when its internal IF bandwidth exce;;ed's two or three
times its rectangular RF bandwxdth and acts very much like 3 PLL when its IF
bandwidth is less than one or two tenths the rectangular RF ba.ndw1dth Mere
importantly Equation (34) predm.,s reasonably well the expected _fnum-beg_;l =of

FMFB " clicks" even for intermediate values of IF bandwidth.

Conclusion | | : y

It has been shown that the de-fininé eqgaation of the FMFB with {f:irniter
in the loop degenerates into the equations of a limiter-discriminator :i-nd
a PLL type structure as the loop IF filter bandwidth of the E‘MFB approaches : :
infinity and zero respectively. It was observed that when the mterna'l 1F v

" bandwidth is narrow the f11termg 0perat10ns performed by the 1oep IJE‘ filter and

i
.
By

low pass loop filter are completely 1nterchangeab1e Moreover, by'*draw#»ng '

these equivalences a simple techmque was made ava:lable to compute the a
. ]‘j .
expected number of " clicks" per second appearmg at fzhe eutput of an FMFB

excited by a carrier plus narrow band noise. Al‘uhou:g;h -_t-he -re/sultm-g ex_;-_.

pr"'ession for the expected nu:mbe-r of " clicka" is strictly valid for "'rthe. silpecia_l
case of an FMFB with a very narrow or very wide IF f11ter, expenmenta.l
_ results on the first order FMF B. indicate that the expre sslon is useful in | i

;=

predxctmg the actyal number of " chcks" for mtermedxate valuesa of IF

i

bandwidth (expecmlly for large feedback fa.cters) _ _ &

~-38-




Contihued research in this area is under way to include an extension
of similar analyses to higher tjjrder frequency demodulatorg with feedback as
well as an extensive study of modulation induced " clicks", i.e,, "clicks"
- of the second kind. Given specifications of the received signal, a design
procedure to obtain the optimum FMFB, i.e,, the FMFB Which minimizes

the total number of " clicks" of the first and second kind, i.s sought, The
maximum threshold extension reahzable with this opt1mum FMFB will then
be determined. In addition, since equivalences have been estabhshed between
many of the FM thre shold extension demodulators in existence today a general
unification of the treatment of FM threshold extension techniques will also

be sought.
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I[. Ch_aract___eris-tics of FM

11.1 Sing_ le Sideb_and FM

Review of Results -~ Old and New

In the last report we discussed the origin of SSB-FM and some of its
bandwidth pi-operties. Also v;;e have shown that a quasi SSB-FM signal of
the form a e sfn wmt cos (w c,t +p co_swmt) with a less than 8, occupies
approximately Iéfhe same bandwidth as a true SSB-FM signal does. The for-
mer is preferable to the latter since the output of a discriminator receiving
this signal will contain fewer clicks, at the saine input signal to noise ratio, -
than when an SSB-FM signal is received.

An SSB-F-M generator was constructed and threshold tests were per=
formed on a quasi SSB~FM waveform with sine wave modulation, Fig. 1
shows the experimental set up. The results were verified theoretically.
When the click rates shown in Fig, 2, 3, 4 and 5 are ‘-lc'om-pared to ‘tho_se
occurring in the FM case it is seen that threshold occurs at much higher
_input signal to noise ratios for SSB'FM than for FM.,. .One would not expect -
| that the results for gauisq‘sian moddlation would be significantly bettér especially |
gince for rms phase de’véiatioxis greater than {, SSB-FM has %;;“ﬁ‘i\\-ge;r band~-
width than FM. " - o
| The ratio of the output si-énal to noise ratio to the input s'igg*ér]. to nois’e.
ratio vs. fms'f-r-e_quency dev-i-ati_oh was calculated for the case of _ga\irl-éi-a-n

modulation wit-ii an exponential baseband power spectrum.

Ex __ected _Number of Chcka

Rxce(“ has discuued completely the theory béhind the thre-hold~
phenomeneon in lFM In ptrticular it was ahown tht for the case of constant |
offset carrier, Nil-' the e:gpe-et_ed number of positive 2r jumps in the received

signal phase during a oneisecond interval is given by:

LI
-
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1/2 5 p 1/2

Ny =5{2 462 [t-erfiptoflcs?d )

+ or

-fo e P[1 - erf (fo o1 pl/Z)] | (1)

The expected number of negative jumps, N_is given .y:
N =N _+f e° (2)
=N

where fl is the offset frequency in hertz from the carrier frequency, fo

p is the input carrier to noise ratio and r is the rms bandwidth of the r. f.
filter,
Returning to SSB~-FM we see that we are dealing with an FM wave

that has peaks and valleys in its instantaneous amplitude, A(t).

. )

a cos (w ot’ + xf{t) )

Vssp-FM =

L -R(t) (3)

A(t) = a

Since during the time duration of a click occurance the modulation waveform
-.changes only slightly one should be able to-calculate N and'N_ by averaging
ové;- ail vaiues of fl. and p = AZ_(t)/ 2 qNZ. We may sifnplify our calculations
by recalling that our carrier frequency fo. lies at the upper end of ther. {,
filter passband. Therefore even with no modulation N_ will be several orders
of magnitude larger than N-I-.' Since we expect clicks only in the valleys of
A(t) where the instantaneous frequency is larger than fo we can neglect all

terms associated with N,. In fact positive clicks were so rare an event that : ;

only a few were observed even at the lowest input signal to noige __ratﬂaa.

- Since we are dealing with 2 deterministic signal we calculate N_ friin (2) as.

‘)-.:‘\I T . . ' .
1 R N L] - . P .
N, = lim 5= f lo(t)| e Plt) g, . (@ )
T == =T _ - [
R o n «p! e"2@ 080 o
N.s % fcj 11/2 £y + ot cosb| e @ - (5



This integral was evaluated on a computer and the results plotted along with
the experimental data in Fig. 2, 3,4, and 5, The values for ft’ Af and o
where those used experimentally. In the case Fig, 3,4, and 5 the value of
a had to be modified to account for the fact that in the region of Vin > 2 volts
the exponential circuit did not give a true exponential output., This fact only
slightly affects the sing'e sided nature of the modulated signal specfru'm but
greatly affects the click rate since it is in this region that all the clicks

occur,

Qutput. S/ N Above Threshold

Consider an SSB-FM sighal of the form:

-~

A eD(t) cos (wot' + Dit) ) | (6)

corrupted by additive gaussian noise,

n(t) = r(t) cos ‘“’o‘; +8(t)) | (7)
where n(t) is derived by passing whi-té noise with autocorrelation functicn
-!:2-9 | 6(.t.) through t-heﬁ rf f11terused1n Vt'he r-é..;eiver.

Suppressing the w  term the received signal phase ¢ is given by:

¢= D! SN0 D) -
. AeD+rc.Os (6 ~D)

For high signal to noise ratios "

| -b o :
oy = &-D= -‘-"'—K——-—rsin(-n) o
e_é . . o ;
= =z r [sin(®) cos (D) - sin’(D) cos (8)]
r sin(0) =3= co= (D) - rcog(@)e ™ sin (D)

y | x

A

Since the noise is onesided about w  and we are using the lower sideband,

~43- | -




1000

100

CLICKS /SEC

Ct

001+
9

T TTTT!

T T T

155

“T

T T T

¥

R

LR LR BR S

L

T T TTTITT

= THEORY . S
X EXPERIMENT

= HER —— : - T

// NPUT SIGNAL TO > NOISE: RATID (dBY

& ! . ‘ - e

a/ﬂ.szp 53I<'LHz |

- //F ; - . | .; i .—'f"'i

e nE e

i
1
L




o

1000

" 100

TTUrrmar

T

SPIKES / SEC _ -

FoaTeT T

R

T

T

W

T T TTTH

1

- THEORY
© % EXPERIMENT o » -

T T

L

00I

W S
Co -
)

[
s by,
M

f=2233 f =3KHz

S.i'gné,l exp[ fﬂ__c.@-s W t ] cos (oxlot.:'-il*- P sin wmt)

26 .. 28 30 - 32 3¢ . 36 .
' | INSUT SIGNAL TO NOISE RATIC (dB)

F 1& 3. " Click Rate vs, Input Si'gnai to Noise Ratiofor Quasi SSB-FM

PPV



1000

I

100 |-

-

L

B

10 1

:3 .

m o

\ .

AN =K
-4
o

| -
a

: i
o
, -
,."i \)>
o X
Q0! ! N 1 1 1 L
39 36 . 38 40 - 42 49 .46 48
| INPUT SKINAL TO NOISE RATIO. {dB)
! Fig. 4 Chck Rate vs. Input ngnal to Nrnae Ratio for Quam SSB-FM
Signal exp [ “@ CO8 W t] cos (m t + ﬂ sln wmt)
‘@=3.0 B=855 f fi__},ﬁ" KHz



iC00

LR RL

I

100

o
T T T T T T

CLICK /SEC

IRERERLL

f:‘. l

1

- THEORY | AUE
X EXPERIMENT
Qi

FTTITI

R

o0 - 1) - L. i i i
: 36 - 38 40 a2 44 45 48 . SO
INPUT SIGNAL TO NOISE RATIO (dB)

Fig. 5. Click Rate vs. Input Signal to Noise Ratio for Quasi SSB~FM
Siggii“ exp [ ~a cos w mt] cos {w o‘t + P sin w_m_t:_;)'- :

),
o

T L . - -47-

H



n(?)“= Xxcosw t -y smwot = X cos mot + x sin wot

| o
O R -D a-D' .
¢N = - [x < < cos (d) + x - r sin (D) ] (10)

R, = Efoglt+ 7 eyt)

Since the noise is assumed indef:endent of the modulation:

-D (t + 'r) -i D(t)
e cos (D(t+171) - D(t) t
(1) = R ('r) E 3 ;—2— _

R .
n (11)
- D(t+'r) - D(t) : :
- R (7) E ez : | gsin (D{t+7) -~ D(t) (
A : _
Conasider:
e = Efexp[- D(t+ 1) - D(t)+ i D(t + 7) - i D(t) ]} (12)
Thus the first tre'rmr-a'b'bve is
= R_(7) Reie)
and the second term 'ri—'ar' - )
S (13)

2

::T- ﬁ#(-r) l'_I'm(‘E )

i

However, € is just the comple'f: auw‘.orrela.tmn function of the SSB —-FM

signal, therefore:

(M = =5 R_(r) ZRDM 2 R (m)
R, (1= =5 T ;e cos T
¢.N AZ x . : D
| - 2 RD"’) -
- F Rx('r) e sm 2 RD('r) ;( 4y .
[ A 2[R (M +i R ('r)]
:;—E-Re [1;-1‘ Mm+iR _(nle D D
C ix x o i
- A N sl
- QOur next smﬁep is to find S 6. (w) the Founer xra.nuferm of R ('r)
n : : , P S 4
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Rch('r) = Re —; [R (1) + i Rx('r)] exp (2 RD(q-) + 21 RD('r) )

= Re)R "”i (15)
A

We will now show that it is sufficient to consider only Rc('r) whose
Fourier Transform we dencie as Sc(w ). Since each factor of B_CI(]-r) is an
analytic signal Sc(w) is a one sided spectrum., The real part of Rc('r) is

even and its imaginary part is odd therefore S, (w) is the even part of Sc(w ).

*N

But as Sc(w) is one sided it is twice S, (w) for positive ;£_;'rjquencies. Thu.s

¢
if we consider only positive fr__af:q.l.xe-m:i.elt;I our cal-culg;‘ziéns will be simplified,

To find S_(w) we note that the t'ermw -nhrckets of (15) transforms
to the equwalent low pass compi@x nome‘ pow‘er:f spectrum avaluated at
BT mw (Recall that we started out w1th the lower sideband the above auto~
cox".relaiti-on function corr,esponds to the upper sideband). The exponentxa; is
related by a conétant of proportionality to the autocorrelation function of an
upper sideband SSB -FM signal,

From now on we specmhze to the case where the r,f. and baseband -
filters are rectangular with unity gain, ’I‘h-en' bandwidths are wc and wg
-res-pect-wely.. The- for mer is chosen to be three times the rms bandwidth df- the.
input signal whereas the latter is chosen to pass 98% of the modulation power.

~ The modulation spectrum will be ansumed exponentml thus we may take ad-

. vantage of the prevmusly calculated analync expresswn for the SSB -FM

I
A

spectrum. _'
I R
LJD(O) ) v D )
Rfr) = / A | L (16) At
. 5 4n GZD Il(Z . "D w:} e ¥ " '
Scn tnglw) = —i 4 — . w >0 (17)
- 8SB-FMY AZ_ Z‘,J—T_ ' -
. | ) : | | :.;_' - A 2 o w o ']:LH
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2 -3
S W)=z =2[1+4ncs [ : e™ dx (18)
c - D _
AT . ; w W ..Jzolzjx
Recall: 5k

, ($2°)
Li(z) = (3 2) zjo TR+ 2) - 19
Let: |
Z = 242 02 x _ (20)
Thems ~ o g2

R 1 2 x)
Sc(w) = ——%— [1+ 4n “D f

-3
an w-w - 'F'T'"(RT}T) e  dx ] (21)

w[v:

We can confine our attention to freque:,ncxes 0<uw < w since w, <w, and

SSS_B-FM(“’ )ﬁ': 0w <0, T}lerefore |
o ko
Jo 2 § GD) " © Kk _-x t
5 C(w) AZ 1 "I ZO ( '])l [ r(fﬂ ¥ 1) j(; _ x] |
h R (22)

The term in brackets is known as the mcomplete gamma function l" (R + l u)
. 2.k
a0 21__ 3

S(m)-L[l+4 o Y D 1“(k+1 )] ‘(23)
S T U TAT e s T‘E"i? 'Y
- : T i
To find nj; we integrate El— 87 (W) bntwe:en the hmxts w =0and w = u;fi-!
I Syl b > "
A PR N w3! 2 "D n ! & 2 °p
0’¢ b= ) 3 - 4 — 3 ( +l)" P(k+l .w)dm
N 2 w A : e A L 0 k 0 .
S T @
However: ' , . | : | ' \
- " o k-.n ¢ S |
T(k+1,0).= e““’ #1 e @) e © o (25) b
1 _‘ L ﬁ._i);. g n=0- Ne. | . | *
" Therefore the mt"‘egral in (24') b.ecom;es,-:’ ' T. s o
- 5 , g . f,}? : . o ,:‘L - .
202 n ;1":'3’ “ Y2 «:r?‘)k , L
__ Wi e Y B w . (26)
-'\.‘.50“""
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Conclusmn

it is both difficult to generate .and does not perform as well as FM does,

ThuSl V 3

| 2 - 2 K ;
"Iowl +'2’?Qno 5 ZaD [w? Z y(n+3,w!) S
L 2,2 Co (REDIH 3 " L

(27)
. X -y n-l
where y in, x) = f e Y y dy
0
and is a tabulated function.
Recalling that the r,f, filter bandwidth was chosen to be three times

the SSB-FM rms bandwidth, we see through the use of Chebychev's in-

-

AL 2 2a
ks the input signal power is ,45 Az e D

equahty that this filter must pass, at least 90% of the transmitted" szgnalzpower.

Since < pSSB-FM> = T

the input signal to noige ratio

gnd as the input neise power is 3 Bosp.FM Mo
ise ! 2
* i Za o
J158%¢ - P gt
SNR_ =z ——— ‘ ' - (28) i
I Psgsp-rm o

On the other hand for the baseband spectrum chosen the modulatwn power

is 2 cgf dividing thia term by (28) gives the output s1gna1 to noise. ra.tm-

:‘;-':’-;;,f . -‘_'_--’, ‘;’ | 2 U D
° Noe,  2opn 2 (a-qu o f
) + 2 (k"‘l)' [ 3 - Y[(n+3), w!j
e br A A k 0 n=0
R | - | C(29)

The se expressions were evaluated with the aid of an IBM 360/50 digital com =~

puter. The ratio SNR /SNRI ve. an is plc!;ted in Fxg. 6.

1t appears that S52<FM:will not find broad practical apphcatzon since

B
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lI. 2, Optimum Preemphasis in FM

The purpose of this report is to show the advanfa.ge in using an opti-~
mum preemphasis network instead of the RC ‘fil"i:e.; usually empioyed, or a
whitening filter.

If a signal m(t) frequency fnodulatee an FM carrief. the cutput SNR

of the demodulated signal, when measured above threshold is,

S 2,. S,

.ﬁg_ = 25 ( mzit[ ") _n_; (1)
o v fM“ M

S_ .
where -&-2- is the outpat SNR
)
S;  is the received input signal pojver

n is the power spectral density of the input noise (one exded)

fM is the bandwidth of the modula-mn, m(t)

and

m®(t) is the power contained in the modulating signal. This value is - -

also equal to the mean square deviation.

If a pree-mpha;ie‘inetwork is employed teﬂfilter the signal before
modulation, and adeemphae:s network rilaced after the FM demodulator,
then the eutput SNR is increased. Smce the deemphaeie network is, in _
prmcinle. the inrerse of the preemphasm netwerk (see Fig, 1), the filtered

output signal is independent of the preemphasis employed, Thus, the im-

provement.achieved by "preemphasie is due to the filtering by the deemphasis

network of the demodulated "FM noise",

The power _spectral density of the demodula’.ute;_'é noise is

2 - |
| 2 A | |
Gy = 2t 1 HEE )

where B is the IF bandwidth employed. If pr-eginpha siy is not etnpieyEd the -
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cutput noise power, N_ is

o
f .3
M 2 nt
- ¢ - 4nm M
N_ - f-f G_(f) af = 3 5 (3)
M
If, however, a preemphasis network having a transfer function Hp(f), is
employed, the deemphasis network has a transfer function Hi(f) , and
P
the output noise power is now,
[ P Ty L.
N = G (f) df = df
P T, ()] i 0 IH ()12 @

Before comparing N op with N we note that there is a constraint on

the-seléc.t.i'on of Hp(f). Thfa csnstramt is that the same bandwidth B be

//

required in both ca ses. ‘Since the bandwidth B is proportional to the rms.

frequency df-ﬂauon g.f;"the FM signal we have
o ,;_'f{'. .
'EM Ry fm

fo- L f Yo G |H (f)| | (5)

' Wheze G_ (1) is the power spectral density of the modulating signal. It shosld

be noted that if Eq. 5 is not satlsfled the frequency dev1at1on of the FM

carrier would differ in each case. In this case we could adjust B to be d1f-

.‘;-.,7 T

ferent in each case. This in turn results in different noise powers bemg
received at the demodulator input. Thus, the’ constramt prowded by Eq. 5

insq_:_.;es that the input noise power-N nB = constant o j i
 The optlmum preemphasis network is found by mmu'nxzmg N op d

(Eq. 4) subJe-e-t to the constraint of Eq. 5. The mm;mmatmn is aecomplis-h.éd

by combining Eqs. 4 and 5 to form a new “Vintegr"gl, I

. f _ :
M 2 2 i et o
i 45 1 B Jf 12
A= [0 ] AR Y+ X(HAD] - 1)G_()f af
. .55. y

R L s



where X is a Lagrange multiplier. Minimizing I results in minimizing
Eq. 4 subject to the constraint of Eq. 5. From the calculus of variations

we know that I is a minimum when

2 2
9 4N b _ =
2 -
where y = IHp(f)] (7)
Lolving Eq. 7 yields £
M
[ G_(f) at
P G_ (0 M
. fo fJGm(f) df
and 2 3 [ e ax?
4r " n fM fO m
! J G_(x) ax
0
where the dummy variable x = -f—f- .
M

The improvement obtained depends solely on the power spectral
density Gm(f). To determine this improvement and to tompare our results
with the improvement obtained using several sub-optimum preemphasis

networks we choose several sxamples.

1. The RC High-Pass Filter

In this case

i ]2 = K, [+ (=) ] (10)
RC I B f1 :
where K1 is found frlorn Eq. 5 to be
{) G_(x) dx
K, = . (i1)
i fl < 2
[1 + -;‘—) Gm(x) dx

0 o
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¥q. 4 now becomes
2

oo L2
4”2”’51\34 f0[1 +(xo)]c3m(x) dx T
N = N (- 35 (12)
Orc 5 1 0 x 2
[ G (x)ax 1+ ()
0 m xo

The im' rovement obtained when using the optimum filter is therefore

1 PA
[ fcx Em(x) dx ]

Nop _
NO i 1 1 2 (13)
X m
0 o] 0 X .4
LX)
xO

2. The Whitening Preemphasis Network

In this case

| Hy, (£)]°% = G (14)

m

where K2 is found from Eq. 5 to be

1
K, = fo G_(x) dx (15)
Eq. 4 now becomes 1 >
2 .3 [ x“G_ivax
47" n fIVI 0 m
Now * 7T, i (16)
J o) ax

0
The improvement obtained now when using the optimum preemphasis

network is

N [fo x\JGm(x) dx ]

.ﬁ.Q.E’. = T (17)
oW [ %% 6 (x) ax
0 m
NOP N
It is interesting to prove that the ratios N and N are indeed less
' ORC TOW
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than or equal to unity. To prove N P < { we employ the Schwarz
o)
Inequality: RC
rl dex 1 x 2 1 2
! 5 P+ () 1o (0 dax > [ xdG_(x) dx] (18a)
X m — m
0 X 0 o 0
L4 (=)
X
(8]
The equal sign holds only when
2
G_(f) =C — (18b)
i+ (}T} ]
N
To prove that —2 < | we let x‘JGm(x) = V(x). Then
Now
1 1 5
[ v - [ Vix)ax)® ax > o0 (19a)
0 0
Expanding we have:
1 2 1 2 1 2
[ vixyax -2[) vx) ax1®+ [ [ v(x)dx]® > o (19b)
0 0 0
or
fl 22 G_(xdx > [ [ %NG_(x) i (20a)

The equal =ign applies when

1 ' '
Vix) = [ V(x)dx (20b)
O
or
Vix) = xJGm(x)_= constant (20c)
Hence,
2
Gm(f) = C1 . f (21)

Thus, it is seen that the RC high pass {filter ie optimum when the
power spectral density of the modulation is given by Eq. 18b, and the

whitening network iy optimum when Gm(f) is given by Eq. 21, For any
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other G (f) the optimal network results in an cutput noise reduction and

hence an output SNR increase.

Examples

1

1

. G_(f) >

1+(§1—)

This is an often used representation of the modulation, One assumes
that m(t) is a sample function of a white Gaussian process which has been

filtered by an RC low pass filter havinz a 3dB frequency { In this case

1

it is easily shown that

1 2 £, 2 f 2
N N [f Xd};x/x) ] [1 ‘_(f ; 2—1-]
CFP _ oP 0 _ M A
Vo, ¢ Now fl %% dx [1 ot b
: 2 ST, %t T
01+ (x/x ) M M
© (22)
£ N N
for example, if —— = 0,25 —<E = 9P _ 5 92, A 0,36 4B improve-
i N N
M Op ow

ment in output SNR results.

2. G ()= 247 t°7t
Imn

The functional form of Gm(f) was chosen to represent the spectrum of

oo
speech. The constant 2Jdr was chosen so that f Gm(f) df is the same
“Co
in examples 1 and 2, The results obtained are

[F f1 M flxzfl 2
— erf ( ~ exp (- z)] (23)
Nop e 2 £y
Yope I f1 Vel R e 5, i i
(t - 7—tan = 7 TT erf { T) - (Z+—-§-)exp _(---2-—
M 1 e 1 2 £ £
£y Nop
I 7 =0.25 = 0.53. Hence a 2. 8 dB improvement results,
M ORC ‘
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Using the whitening filter yields

2 2
f f f
v M M
Nop q_[ 2 Iy JZ 1 2 ]
X = = (24)
2
ow 3dw £ £ £ £
g7 Tt §f (7 5 ) exp 2
M 2f
| {
£ Nop
if =~ = 0,25, = 0. 59, Hence a 2,2 dB improvement results,
f N
ow
Conclusions

In conclusion we reiterate our thesis that the optimnum preemphasis
network will, in general, result in substantial SNR improvement as com-
pared to the simple and more often used networks, Sirice, in many communica-

tion problems 2 -~ 3 dB is of considerable importance it‘-iseems worthwhile to

determine the benefits derived by using an optimum preé_mphasis network.

Ny
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i1l. A Slow ScanDigital TV System

This section outlines a complete computer controlled system that
transfers information from a phntographic slide into a stored digital form,
that allows detailed bit by bit tneasurements of this data, that allows both
linear and non-linear manipulations and/ o~ ? transform;tions" of thig data,
and that allows the reconversion of either the original or of any "transformed”
. version of the original data back into a. p:hotographic form.

The system utiiizes an assembly language programmed Digital Equip-
ment Company, PDP8 computer with a magnetic tape storage unit in conjunc-
tion with a laboratory constructed flying ‘épot scanner and a modified version

of a Tektronix 541A oscilloscope.

System Input

The system input is provided by scanning the desired slide with a
laboratory constructed flying spot scanner and converting this analog signal
into a digital form. After intermediate storage in the core storage unit of
the PDPS8 this digital information is transferred to magnetic rtape for per-
manent storage.

To some extent the system design has beeﬁ tailored to suit the. com=~
puter's idiosyncrasies, For example, the PDP8 core storage and magnetic
tape storage units handle information ia the form of * pages" of 128, 12 hit
words. A total of 4096 words or 32 page:s of cor.e storage is available,
Since the program that is causing the " recording, " "manipulating, " or
" playing cut" of the data must also be in the core storage and it may be
convenient to have several other auxiliary programs also available in the
core storage one normally wishes to design so that not more than half of the

available core memory is used for data storage..

a




While more than 6 bits [64 levels] are rarely discernible in an out=-
puted video signal the system is simplified by utilizing one word per video
sample. An existing narrow band TV system in the laboratory has shown
that a 100 x 100 matrix of points is sufficient to reproduce a picture with
adequate detail for our purposes, Hence while a 128 x 128 matrix would be
just as compatible with the computer memory organization we employ 100
samples/ line and 100 lines/frame. With a photographic output no benefit is
derived from frame interleaving andg it is not employed.

Figure 1 illustrates a block diagram of the recording system,

Since the total number of programs relatéd to the digital video system
now totals more than 25 it is convenient to store these programs on magnetic
tape in both their machine language and in their binary forms. Both forms
are desirable since machine language is the only form that is understandable
to the human cperator and the only form in which constants may be inserted
or routines modified, while the binary form is the form upon which the ma-
chine actually operates. If the binary form is not stored permanently then
before every run one must go through a routine of having the machine trans-
late the machine language program into the binary form all over.again.

S. ce the scanning routine is knoﬁvn (it may be horizontal or vertical
- or may proceed in either direction) no addressing of individual points is
required.

While it is perfectly possible to operate upon the data before storage,
we have chosen not to do this but to store directly in an unperturbed fashion.
This allows one to have the " origihé.i" picture available for playback and com-
parison with any modified version. [Such compariszon may be either in an
output video forrh or may be done on a bit-by-bit ba sis within the machine

itself, ]
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With computer control there is no need to scan by the line at all
since one could just as well scan spirally or in N x N squares [N < 100]
or otherwise. So far we have found it convenient to do the initial scanning
in a linear fashion even though subsequent operations may deal with Nx N
square of points. [A real time system that chose to handle data in N x N
squares would of course want a N x N scan to reduce its bufier storage

problems,. ]

System Output

To return the data to video form one must first switch tapes back to
the program tape aril transfer the binary form of PLAY, and LIN into the
core storage, After standardization the flying spot scanner is replaced by
an oscilloscope camera. [A experim2:ta) determination of the " optimum?"

f stop for a given film speed is necessary “=: any given system, ] and the
PLAY program has its internal data seeking address changed so that it reads
the appropriate video data. The camera shutfer is now opened and the PLAY
program is started t¢ print out the video data.

The print out is accomplished by varying the uiblankiag time of the
constant intehsity beam while it is shifted successively through the 104 data
points. This duration modulation scheme removes the effect of phospho=
nonlinearities. The P16.ph_osphor has a decay time to 10% of its initial bri~ht-
ness in 100 nsec, Thus from the_ phosphor viewpoint if the maximum -duration
at any one point is 1 psec or more then the apparent intensity will be propor-
tional to duration.

'I‘he actual system.h‘_as 128 ".Zuration increments" of 4.5 psec each
thus it is capable of p-resenting‘a 128 level gray scale. In pr#ctice we nor-~
mally divide the total range into only 64 or 32 levels. Since " white" pro-

duces an exposure of 576 usec/ sample and " black" produces no exposure
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the "normal" picture takes about 3 seconds to print out.

Actually a linear variation of duration with intensity does not lead to
a line ar picture since while the phosphor nonlinearity has l.een removed the
film nonlinearity remains. The LIN program has a table look-up capability
that translates any "linear" sample level into a new level along a desired
nonlinear scale that may be used both {or film gamma correction and if de-

sired to perform an "expansion' function.

Picture Manipulation and Measurement Programs

Among the programs that have been developed are:

(a) ©Overall picture level probability density programs.

(b) Programs for the probability densities fur the averages of ad-
jacent squares of 2 x 2, 3 x 3, and 4 x 4 samples,

(c) Programs to reduce the average transmission time by a number
of simple manipulations.

(1) Skip transmission of alternate points,
(A) Use am.plitude of first point of the pair.

(B) Use amplitude of average of the two points of a

linear pair.
{2) Extend to three points or more in row.
(3) Extend to squares of 2 x 2, 3 x 3, and 4 x 4 points,

| (4) Modify (3) by transmitting the average for say a 3 x 3
rratrix as well as a two bit signal for each sample that
indisates the sign of the depatrure as well as whether the
‘departure from the average is less than one unit or morec

than one unit,
(d) Progra.rns that contain‘ s.amél_es_ o.f .random_ noisg ?"nd that allow
randomization of the quantization noise component of the siored digital signal.
{e) Prqgrams‘that contain nine, sixteen. and thirty-two level Iiﬁear
gray scales for test énd adjus-émer_lt pui'posés. |
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(f) Programs that allow the real time transmission and subsequent
reception and storage of twelve lines at a time of video data, One program
allows transmission and reception in analog form while another transmit
the signal in binary form. In either case the transmission and reception are
- under the control of an external clocck. These programs allow the transmission
.f the stored or compressed data through a real or simulated channel so that
the effect of the channel may be studied. The twelve lines at a time Jimitation
is imposed by the limited core storage available in the computer, Obviously
further transmission is possible after an interval that allows for the transfer
of the received data back to the tape and the transfer of another {2 lines from

the tape into the core storage.

Results

Figure 2 is a icture after complete transmission through the system.
in the original photf: 1.ph from the oscilloscope face it is possible to distinguish
individual picture elements. For reproduction purposes these pictures have
been enlarged by a factor of three times. [The output picture size in our
system is limited by the deflection capabilities of the particular oscilloscope
emploved.] For monitoring anc¢ visual read-outs other oscilloscopes with
much larger available areas have been employved. Since single picture ele-
ments may be monitored, one is able to note the effects of digital errors upon
each particular portion of the picture.

Figure 3 and 4 .show flow charts for the RECORD and PLAY programs

respectively.
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Fig. 2. Sample Photograph after RECORDING and PLAYING Operations
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IV. A New, Recursive, Second Order Gradient Algorithm

Nomenclature

1) A vector is represented by: x
2) Random quantities are represented by a tilde (™)
e.g., n

3) Components of a vector are represented by superscript in

parenthesis, For example, the kti’-1 component of X is:

()

4) The stage of iteration will be indicated by a subscript:
X, ‘is the vector x evaluated at the it—}-1 stage,
xgk) is the kt-}}—- component of x at the it-l-}- stage.
5) The transpose of a matrix T is T .
6) The deterministic part of a quantity is represented by a Latin

character; the random part by a Greek character, e, g.,

—~

g =gt ¢
7) Powers of a quantity are indicated in the standard manner, e.g.,
the if':—ly-1 power of the matrix T is Ti.
8) The symbol p(T) denotes the Spectral Radius of the matrix T,

The symbol R;(k) denotes the sampled auto-correlation function of S{t) at

time t = kT,

9) The norm of a matrix A is denoted by | {A||. The norm of a

vector x, by |ixf{]|.
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Introduction

The equalization of data signals which have been transmitted through
a dispersive channel has recently received new attention by virtue of the
fact that a transversal (tapped delay line) structure lends itself readily to
adaptive and iterative adjustments., In the presence of both dispersion and
additive noise, an appropriate measure of the quality of equalization is the
sum of the mean squared distortion due to intersymbol interference and the
mean squared noise, This measure can be shown to be closely related to
either the signal-to-noise ratio at the decision point or the average proba-
bility of digit error.

For a given set of transmitted signals and channel conditions, the mean
squared distortion plus noise can be shown to be a positive definite quadratic
function of the tap gains x P Xor Xzpeo X The basic transversal equalizer
structure is shown in Fig\ e 1, The input is periodically sampled after filter-
ing and the samples are applied to the input of the transversal filter. For
data equalization, the taps are ideally adjusted so that the output, y(k), has
a maximum at y{o) [time being referenced to this point] while y(k) k # 0 is as

small as possible, The departure from this condition is measured by the

sum of the mean squared distortion plus the mean squared noise, 5%+ 02.
In Appendix I, we show that the mean squared error
— 2 —
e* = D% 4o+ (@)° (1)

can be expressed as a quadratic of the tap gains x as follows:

e = s xGx-atx+v?
2 = V=72 27 Vyp

(2)

('é.) is the mean of the error; aiter equalization ('é') has a small, but non-

zero value.
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where
G = covariance matrix of sampled received signal
a = a vector whose components are proportional to the sample
values of an isolated noiseless received pulse

Vr = peak level of reference signal.

The minimization of (2) can be accomglished by various iterative

(1]

algorithms, If noiseless observations are available, the Fletcher-Powell

(2]

and Fletcher-Reeves conjugate -gradient methods guaraniee convergence
in exactly N stages of iteration where N is the dimension 6f the vector x.
This performance is accomplished when truncation errors are negligibly
small, or, equivalently, when signal-to-noise ratios are high.

On the other hand, when noise is appreciable, the adjustment algorithm
commonly used is based on a gradient method or some variation of stochzstic
a.pproximation[B ]

The performance of conjugate-gradient methods in the presence of
noise is not known, The aralysis of this behavior in noise is difficult even
if small noise is assumed because of the complicated way in which the direc-
tion of search at stage k depends on all (k - 1) diréctions. Furthermc;re,
for moderate noise levels noise-noise cross products must be considered
making the analysis still more difficult.

Gradient methods including stochastic approximation algorithms work
well in the presence of noise in an asymptotic sense, The conditions for
convergence can be stated., However, they tend to converge slowly.

Higher order gradient methods, which is the subject of this paper,
makes use of stored values of gradients obtained in previous stages of itera-
tion. The objective of using these higher order gradients ai‘e (1) to smooth
the noisy observations and (2) to permit a more rapid convergence to take

lace.
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Higher ~-Order Gradient Methods:

With X the tap gain vector at stage (i}; e the gradient vector
measured at stage (k), with @y @... some positive constants selected to

guarantee convergence the iteration is as follows:

Xp1 T E %Ry T B "% Ejpeer "oy Ky
The iteration starts at X selected arbitrarily. The initial gradient is EO
Heuristically, the advantage of the multi-stage gradient method is that it
has some of the ridge seeking properties of the conjugate gradient methods.
while being simpler to implement and analyzed. In addition, some smoothing
of the random components of the gradients is expected to take place insuring
good performance in presence of noise,

Figure 2 illustrates in a simple fashion why the higher order gradient
algorithm is expected to have ridge seeking ability (i. e., fast convergence
capability), Assume that the convex surface has a ridge. The gradients
tend to follow the geodesic starting from point (1) if the first-order gradient
method is used. For the second-order gradient method the direction of search
at (2) is approximately along the resultant vector of the gradient, at points
(2) and (1), This direction heads faster towards the ridge, |

Figure 3 is a two dimentional projection of the contours of Figure 1.
Two paths are sketched indicating the expected behaviour of a first-order
gradiént and a second-order gradient algorithm, The simple graciient algorith:l
converges " exponentially" to the minimum. The second-order gradient
(5. 0. G. ) exhibits " damped oscillatory'" behavior. Consequently, it should
be able to converge faster than the simple gradient method. Computer
simyulation indeed reveals that the S5, O, G. method can produce significant

speed improvements, First a noiseless system is considered (i.e., the
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gradients are assumed noiseless). Conditions on « and  are given for
stability. Proofs that the parameters x converge to the true minimum
without bias are given. Then the gradient vectors £; and Zi.pat the it-l-l
stage and at the (i-l)t:b siage are assumed corrupted by noise from a station-
ary random process., The noise samples are assumed independent, A bound
on the asymptotic value of the mean-sguare error in x is given, The con-
vergence of the first~order gradient algorithm is also studied for compari~
son, The speed of convergence of the two algorithme is investigated, put-
ting in evidence the superiority of the S, O. G, in the presence of appreciable

spread in the range of the eigenvalues of the' system matrix G.

Converg_ence of the S. O. G. Alg&rithm with Noiseless Gradients

The iteration, which is designed to minimize the guadratic function

(2) is given hy:
Xip1 T ¥ T e&; "PRyy (3)
when &; is the gradient of the function at the iﬂ-1 iteration ans is given by
g = Gx-a . (4)

Operating both sides of (3) by G and identifying the gradient terms,

we obtain the recurrence relation
Bi41 = [I-eGlg, -BGg, (5)

Now, since G is a symmetric positive definite matrix, it can be diagonal -
ized by a norm-preserving transformation, P, which upon applying to both

sides of (5) yields
W.. . = [I-aeA-]- \j\_fi - pA\jJ_ri__l
where
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and

G = P_IAP defines A .

The system (6) is completely decoupled in its components and the zeroes

cf the characteristic polynomials of the system
2 1
¥(z) = z -[I-QP\sz+f3hk

determine the stability and dynamic behavior, )\k are the eigenvalues
(assumed distinct for the moment) of the matrix G, For stability, the zeroes
of F(z) must lie within the unit circle |z| < 1, An equivalent condition, the
Schur-Cohn Criterion[4] states that the necessary and sufficient conditions
for stability are: a) F(1)>0, b) F(-1})>0, ¢)|p M <1 It will turn

out that for our purposes it is necessary for o, 2, > 0; then for stability

we require

B < —%—- . all k (7)
K

o 2

(@ - By < ‘T;-, all k (8)

The recurrence equation for the tap-weights after diagonalizing G

by a the similarity transformation, iss

Z"‘"‘i‘*’l = [I - aA] "Z"'i - ﬁAgi_z t+ (a+ re)l?_

where

The components of Z are decoupled, Using the State-Space re-
presentation one can express the recurrence equation fot the kth com-

ponents of z as the following first-order vector equations
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i1 =T )yt @+ B DO g (9)
where

, (k)
i+ 2;-1(k)

s

(The superscripts identify the \(’t’é:mponents; f the vector, with

i+2 '

j= A2 )
]
(1 -ar)?-pry i S BAL (1 -ady)
T = f==--==--- B ,
! (1 =aX) E - BAy |
1 E l-a?\k) j
D(h,) = BRI BRI l,AND
0 .: 1

Stability of the recurrence Equation (5) for the gradients guarantees
the stability of Equation (9) for the tap-weights., Furthermore, Equation (9)

is stable if the maximum eigenvalue of T is less than 1, i.e,,
¥ . '
o (T) = max |eigenvalue of T()\k)l < 1 (10)

 o(T) is the spectral radius of T,

Rate of C_onvergence

Iterating Equation (9), we get the solution:

. | j-1 | |
Yip1= TPy + (@t p)pt kLO TDe, o
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Let the error vector Ej'*' ] be defined as;

Eit1 ° Ymin ~ ¥Lj+1

where Y hin is the vector that yields the minimum mean-square error,

It can easily be shown that the square of the norm of E is bounded at

each stage as follows:

1, 117 < 020 ) 18112 12)

where & is a constant vector:

é = Lmin Ty;l

p(T) = spectral radius of T.

From (11) we have p(T) < 1. The ratio of the norm of E_ at two consecutive

stages is approximately:
HE I/ HE 1 semy [1&1] o (13)

Equation (13) yields the asymptotic rate of convergence. It shows that p(T)
must be made as small as possible for fast convergence.

If the roots of T are complex, then:
p(T) = |BN| | (14)

Therefore it becomes easy to set p(T) by controlling only (B). The additional

requirement which guarantees complex roots is: -
2 D
4[3)\1( > (1 -ak) ' (15)

It is seen immediately that we must have 8> 0, P Kk is bounded as

follows (combining 314 and 15):

-dd=




2

(- an)
1

- < BN < (16)

Equations 7, 8, 16 must be satisfied to guarantee good performance of the

5.0.G.

Selection of {a) and () for Stability

Case of known G

[5]

When G is known it is easy to estimate hmax ; we have

o
A <1 <max < n Z, |G, .|
max -— - 1 - j:-! 1:_]

Coefficients (a) and (B) are selected to satisfy equations (7) and (8)
for )\max . They are automatically satisfied by all the other eigenvalues.
This technique for selecting (a) and (B) can be used in computer simulation,

There is no need to calculate the eigenvélues.

Case of unknown G

For an adaptive system, G is generally unknown, In this case it is
necessary to estimate )\max by an initial search procedure. The search
procedure is as follows: Start with an X, Then a search is made along the

steepest descent direction, i.e.:

x = x_ ~kg,

k>0

k is increased until a minimum of e’ is obtained. At that point we have:

t
£, &
= —= (17)
g'(:'t Gg-o
1 1
o < k<o
max min
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k
~ 1 0N — . <

We than set a2k, > For systems where )\max/ )\m1n 2, the
values of a and 3 so obtained will satisfy the stability requirements !7‘ and
(8).

For systems with large X\ / \__. ratio, there is a possibility that

max’ min

unstability might occur. In that case, one would start again at a new starting
point, tihe procedure being repeated until proper values are found,

The search technique just indicated is exactlr similar to the first
L2]

also use the first few stages of the F-R algorithm in the search for (&) and

stage of the Fletcher-Reeves algorithm. This suggests that eas esuld

(B). The search is stopped when a stable combination is found.

S.0,.G, with Noisy Gradients

In practical application of the S, O. G. algorithm to equalizers, the
gradients are obtained by a correlation operation between the error signals

and the appropriate delayed input. Under these circumstances,
Ei T Bt

where gi is the noisy measurement of the gradient -9 corrupted by a noise
o~ o ~ 2 2 .

vector, —&Ji waich is assumed to have zero mean E]|| Ll!i[ | = <%, and in-

dependent of each i, It is further assumed that Ii is independent of the tap

gains x, Then substituting these noisy gradients into the algorithm (3)

yields, after collecting terms,

X4 = (I-aG)x, -BGx; ;+(atBla-akE, - (18)
where ‘ _
€, = i+ £ T ) 19)
whence
~ 2 ~ 2 B2
Ele; | = EY, | [1+( =) ] (20)



Equation (18) may be decoupled, by applying the diagnolization transformation,
P as above. Writing the result as a first order equation, we obtain an equa-=
tion similar to (9) driven by a random sequence. [terating this equation,
one obtains an equation similar to (10).
1
k k

- ” J: ad
I(k) = ) y, +(at p)b(k) ), T"DGC_+a E T Df, (21)

where f is a random sequence linearly related to € Now since p(T) < 1,

k'

k j-1 -1
Y, T =[1-1T"7[1 - T]
k=0
The non-random component EJ of I . obtained by subtracting the mean, is
Is k
= -a Z TD{, (22)
k=0

we will show in Appendix (II) that the near squared value of _6—_2 is bounded as

follows when the eigenvalue of T are distinct

2
E|]8]1° [H(E) ]—P—Q-Q’-
l-p (T)

, o #F0 (23)

The matrix T is a 2 x 2 matrix and its eigenvalues are distinct except for

the rare situation when the discriminant (1 - a kk)z -4 ?\k = 0, all )‘k The

S. 0. G. gradient, in fact exhibits its best performance when the eigenvalues

of T are complex. Consequently Equation (23) is valid for all practical
situations and the only condition required to maintain the right hand side

finite for any N is that p(T) < 1. But this condition, as was shown, is equiva-
ient to the Shur-Cohn criterion fer dynamic convergence. Hence, dynamic

convergence insures stochastic boundedness.
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Computer Simulation

The performance of the S, O. G. is investigated by simulation on a

digital computer for a system where S(t) is a raised~-cosine pulse defined

as
S(t):-l-l-(1+cos.2n-§—-)~£‘-<t<—¥‘-
2 L, 2 2
S(t)y =0 [t > —%—

The pulse has peak level (h) and width L., The raised-cosine pulse is very
convenient for simulation because of its finite width, This pulse is also
used in practical data comm'unications[ 6].

The results for the simulation for noiseless observations are shown
on Figures 4 through 7 for an 11~tap equalizer, It has been shown by C011[7]
that an 11-tap equalizer yields a performance close to optimum, when the
isolated pulse S{t) is a raised~cosine,

For all curves the rate of convergence is plotted with respect to the
coefficient (a). The coefficient (f) is treated as a parameter., In the F.O.G.
algorithm B is equal to zero,

The rate of convergence is the number of iterations, required to
equalize within a given accuracy of the final SNR. The starting point is the
same in all cases, namely, the center-tap weight is set equal to unity, all

other tap-weights are set to zero.

The intersymbol interference distortion is classified as small

x A A
(== < 2), moderate (722X < 5), and large ( B3E > ),
min min min

This classification is from the point of view of the eql_lalizability of the

channel, When the ratio is as large as 20, it turns out that the

A
min
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spectral radius of the T matrix corresponding to the smallest eigenvalue
Kmin is very close to unity. This is caused by the fact that (a) and (B) can=-
not be made too large for stability reasons, In fact, in practice we have
uxmax < 2, Bkmax < p. In the expression for b(T) a small value of
a A vyields a p(T) close to unity. Consequently when the ratio is greater
than 20 the channel is practically unequalizable.

Figure 8 shows that equalized and the equalized SNR versus %
The data rate is —,%—- . The simulation is performed for various values of
—E— . The intersymbol interference increases when %— decreases, Ta{ﬂo ~1

is a tabulation of the eigenvalues of G for various -%;— . The ratio of —2a&
. T _ min
is greater than 20 for T equal to or less than 0.3. Figure 8 shows that
the SNR starts dropping rapidly above 0, 3.

The final SNR accuracy for the moderate and large distortion cases
is 0.5 db (10%)., For the small distortion case is is 0, 1%.

The important points of the simulation are:

1, The §.0. G. is quaite insensitive to variations in (a).

2. The behaviour of the S, O.G. at moderate and large distortion
is different from its behaviour at low distortion,

At low distortion, there is an optimum (B) just as predicted by the
analysis. At moderate and large distortion large (B) tend to give better
performance. This could be explained bv the fact that the S, O, G. tends
to locate a ridge and ride along it towards the minimum. In these situations
the asymptotic formula for the rate of convergence is not quite applicable,
Improvements i1 rates of convergence vary from 1. 25 to about 2/1 for the

large distortion, and from 1.5 to 3/1 for the moderate distortion case.

Performance with Noisy Observations

The rates of convergence with noisy observations was also investigated
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for the low distortion cast {T/L = 0.4). The noise component in the
gradient corresponds to and initial SNR in the largest component of about
40 db. In ithe S.0.G. aand B were set equal to 0.01l, Inthe F.0O.G. a
was set equal to 0.02, This was done in order to have the situation where
the effective corrective action would be about the same strength in the
absence of noise. The criterion for convergence was that the SNR should
be within 0. 2 db (5%) for the final value for more than 90% of the time.
The results “abulated in Table 2 show that the S. O.G. is 5 times faster

than the F. O, G.
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Appendix I

Referring to Figure 1, at the input to the equalizer we have:

vty = > 6 S(t -nT)+ 1 (t)

n

3]

where ﬁ‘n = + 1 represents the independent sequence of binary symbols ],
or 0 constituting the data bit-stream.
n(t) is the noise procedd into the TDIL.

The error at sampling instants is

e = 8‘0 VR - y{o} = 60 VR - z x(J) :r(j)
]

where VR is the peak reference voltage.

The mean-square error is, assuming that the data symbols are un-

correlated and that the noise and data gprocesses are uncorrelated:

e2 =E{g2’} :VIZ_{ + -lz—ztG?_c_ -_'d;t_}E

The matrix T is the correlation matrix of input signal and noise:

ls
=4

Gli,j) = 2 ), Ry

) -j -m) Rg (<k -n) + 2 R_(~j -k)

sampled autocorrelation function of isolated pulse S(t).

Rg ()

RT) (k) sampled autocorrelation function of the noise process.

(k)

The components a of the vector a is:

Ko Vg S(-K)

The mean-square error e’ canbe expressed as follows by a simple

manipulation of the expression shown previously:

e = (€)2+ D2+No

_84_



where;

- _ - ! (J) sl s

e = mean of the error = VR 'J'J X RS (-3}
D2 = mean-square distortion (intersymbol interference)
p2 = T T K6 Rg (-j -n) R (-k -n)

: S
h# 0 j k

N0 = OQOutput noise power

N = ? T‘ x(j) x(k) R* (i - k)

o} 34 —E 1

Signal-to-Noise Ratio:

The output signal-to-noise ratio is defined as

Gy ) (v =)
SNR = = > -
D% + No e - (e)

-2 . . . . .
When e” is minimum, we have, assuming G is nonsingular,

x = QG a
-2 _ .2 1 _t..-1
®min VR 2 2 G a
e«?.
- 1 t min
e =V a x = -1
R ZVR - VR
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Bound on E | [5' IZ

Appendix II

The random component §t}. of xj is

faster than

Now,

where E {

then

where

and

Now

where

j-1

§ = -a ¥V T8 pf (IL. 1)

~j — Eg

D g{ & ‘Ek’ then E | |§_1r [2 is bounded if E] ITk_gk[ ’2 decrease
] |

().

~ 2 2 i~ , k-~ :

E||d, = o E) (T'a.NT II. 2)

16,11 i’_1(( p T gy ) (

-tq-

_ - 2
g = 6 ENE, |

~12 2 \! ~t ~ 2 ~ 2
E[BII° = a :_(,E By B gy} < of p(BY El g, ] (1L 3)

b x

B, = (T T (IL. 4)
p(Bk = miax (li), !i an eigenvalue of Bk
2 t -~ 2

Ellull® <p (D'Dy Ef|L; |] | (11 5)

1 a 2
_ . a” + 2 |a] .‘} 2
= 1a (a2+ 1) and has eigenvalues 5 + > 2 + 4
ad (1- al,)

hence for the range |a| < 1, (the conditions for dynamic stability)

next,

1] < p(DtD) < E.zi.{—é_.

-~ - 2. 2 2
BlI£, 1% =261 g 112 [1+(&)] = &&[1+(&) ] ae
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Then

2 - B2 t
Elle, |l <""“"“"“'—[1+(a) ]p(DD)Ep(Bk) (IL 7)

It rem'ains to express p(Bk) in terms of T, But it is apparent that the eigen-
values of Bk are simply the squares of those of T, Hence p(Bk) = pZ(T) and

substituting into (II. 7) we get:

2 2 2 t
2 o 8 9 (D D)
Ejl ]I = ——----ZQN" [1+( o) ] . Dz(DT) (1L, 8)
=P

which is equation (23),
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a B No, of Iterations
S. 0. G, 0.01 0,01 22
F. O, G, 0,02 0.0 110

Table 2 Convergence with Noisy Observations,
T/L =

-89 -
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