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Introduction

This final report summarizes all of the research sponsored by the

National Aeronautics and Space Administration under the Grant NGR -33 -

006-020 for the period 15 September 1968 through 15 September 1969.

The research supported by this grant encompasses the problems of receiving

analog and digital signals which have been transmitted through a noisy

channel. Frequency modulation is emphasized, with particular attention

focused on the problem of threshold extension. Throughout the study, theory

and experiment were worked hand-in-hand with approximately equal effort

expended on each.

Part I of this report discusses Threshold Extension. The distinction

between Spikes and Cycle Slips are first discussed. 	 A discussion of

the FMFB follows. The canonical equations are presented along with some

results regarding extreme-case operation, hen some experimental re-

sults are presented concerning "clicks" in the•FMFB.

Part H considers Single Sideband FM- and why not to use it, and

optimum preemphasis. Here it is shown that 2dB or more can be gained

by using an optimum ps eemphasis network.

Part III considers a Slow Scan Digital TV System. Here a complete

computer controlled system is presented which transfers information from

a photographic slide into a stored digital form. Measurements and Coding

are possible.

Part IV deals with a recursive second order gradient algorithm.

The results of this grant represent a significant step forward in

the theory of operation of FM systems. This grant has also served to sup-

port the publication of a large number of papers, as well as many masters

and PhD dissertations.



e

Participating in this program were:

Professors	 -	 R. Boorstyn

K. Clarke

D. Hess

J. Oberst

R. Pickholtz

H. Schachter

D. Schilling

Messrs. -	 E. Hoffman

A. Snider

F. Cassara

The final report was prepared by

Professors -	 D. L. Schilling

R. L. Pickholtz

K. K. Clarke

}

a
1	 ^

f

r



e

I. Threshold Extension

1. 1	 Spikes and Cycle Slips in the Phase Locked Loop

In 1961 Rice (1) showed that the output of an FM discriminator could

be represented near threshold by 3 terms: the modulating signal m(t); a

smooth noise term, commonly called the FM noise having a power spectral

density proportional to f2 ; and an i--.pulsive noise term having an approxi-

mately "white" power spectral densit,.

In 1963 Schilling (Z) proposed an identical model for the-Phase Locked

Loop (PLL) and the Frequency Demodulator Using Feedback (FMFB). It

was later learned,in private correspondence with S. O. Rice, that Rice' s

original model was for the FMFB and the FM discriminator was merely a

special case of that system when the feedback was equal to zero.

At approximately the same time Viterbi (3) , using a procedure de-

veloped by Tikonov, obtained the phase distribution at the output of a PLL

when the input is an unmodulated carrier embedded in white Gaussian noise.

Viterbi showed that the PLL "slips cycles" in the presence of the noise.

It is important to note that while Schilling and Viterbi both studied

the PLL, the use and hence the, design is quite different. Schilling con-

sidered a PLL demodulator to demodulate an FM signal in noise.with low

distortion. This application requires a relatively ' wideband'' PLL pre-

ceded by an IF filter of comparable bandwidth. Viterbi, Lindsey, and others

have considered using the PLL for carrier tracking. In this application we

are interested in the VCO output not its input. The PLL employed is a

narrowband device preceded by an IF filter of much wider bandwidth (the

input noise is white compared to the PLL). In the demodulator application
i

we consider "spike (i.r^apulsive)" noise, while in the carrier tracking ap-
ri

-3-
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plication "cycle slipping " is considered. It is the purpose of this report

to compare cycle slipping and the spikes.

To compare cycle slipping and spikes we choose an example which

is fictional, but has the advantage that it can be calculated by hand without

needing a digital computeA4) Figure 1 shows a 1st-order PL,L, having an

input

vi(t) = R(t) sin (W o + 4)(t ))	 (1)

To simplify our problem we consider a phase detector having the character-

istic shown in Fig. 2. Then if the error phase

t
_	 Go f vo (k) dX	 (2)

-OD

is less, in magnitude, than n/ Z.

t	 l

vo (t) = n q'(t ) = n [ (t) - Go ^- vo (a) dX J	 (3a)
aD

or

vo (t ) + 2 n 
o 

vo(t ) - n $(t )	 (3b)

and

q (t) 2 VO W (4)	 1

lf, however, 2 < tP <
3i	 then

vo (t) - 2 - n
t

r
^I+(t) = 2 -	 [^(t )	 Go 1	 vow d^, (5a'i'n	 m _..

or

vo(t) 	
2^ 

o volt) _ -(t) (5b)

and
I

( 2 VOW

_4_

77 ^. _	 ..	 ^ .	 ; .	 r
,:,	 R.
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vi M x A sin (Wot + # (t) ),Pha se 	volt)Detector

t	 Voltage
v f lt) = 2cos ( wot +Gofvo(,\)dk) 	 Controlled

Oscillator

Fig. 1 A Phase Locked Loop

vo

.t

^► = f -Go fv(a)d.

Fig. 2 Phase Detector Characteristic
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¢(t) = T

Goi
I --	 3v .(t) is a spike - its area is =2,r/Go

- - 't

	

0	 T

(a)	 v o (t) is a spike,	 ^(t) <

^¢(t)= T
G02

Wir

`%N/va(t) is a spike -its area is = 2v/Go

t

(b)	 v o (t) is a spike, i tp (t) < 7r.

27^(t) T
G03

vo(t) is a doublet-its area_0-

	

i	
T_	 ti	

0	

\'	 /^



_O tZ Tr ( 1 -e	 ) 0 < t < TTG0

vo lt)	 = 2 GOT 2 Ga (8)
_

TG (1 e	 ) e _

	
t > T

0

UG:..	 .;tl _'	 i	 6.

In this case v (t) is always less than unity. Hence
o..

< G (9)

i

s:

}

`,r ry
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Let us now consider that vi(t) in Eq. I represents an unmodulated

carrier embedded in noise. Then R (t) is the envelope of the carrier ampli-

tude and the noise, and 0 (t) is the phase rotation of the envelope due to the

noise. The output of an FM discriminator is (t). Let us now assume that

at t = 0, 0(t) changes by 27r; i.e., that the noise causes a 2n rotation of the

envelope R(t) about the real axis. The discriminator produces a spike under

these conditions. We will now determine the response of the PLL.

To analyze this problem simply we will assume that 0(t) rotates 2tr

radians in a lines' manner.

Zrr t	 0 < t < T
^(t) =	 T	 (7)

0	 elsewhere

Case 1. Go > T

Usi=ng Eq. 3b we have

2G



Two possibilities now exist.	 The first possibility is that, although

vo(t) is decreasing from +1 to -1, vo(T) > 0 ( 2 < 41 < .r ). 	 In this case

(see Fig. 2) one can easily show that for t > T, v(t) increases again to +10
and then decreases to zero. 	 Thus 4j(t) decreases from its maximum value.

attained at t = T (note that this value is less than Tr) to 0. 	 The result,

shown in Fig. 3b, is a spike.

,,The second possibility is that at time t = T, vo (T) < 0.	 In this

" case (see Fig. 2) v o(t) continues to decrease to -1 and then increase to

zero.	 Thus, tP(t) continues to=::i•ricrease to 27r. 	 This result is shown in

Fig. 3c.	 Note that the "doublet" occurs when ^(t) moves through 27r radians;

i. e., Ahe PLL Ai:p^ a cvcle.	 Note also that the cycle slip results for the
rs

smallest of the three gains: G0 3 < G02 < G 0 as shown in Fig. 3.

f

T\
x '

^`,3 	 _ 8 _

tF

0

Thus, for a "large" gain G o,	 remains less than 2 and there is no cycle

slipping. However, vo(t) "follows" t, tW and hence a spike is produced. Note

that the area of vo lt) is approximately Zn / G o. This is illustrated in Fig. 3a.

Case 2.	 G < ;._n
— —^	 o T

In this case vo lt) reaches unity and hence tP(t) reaches 2 when

t = T I «T. Eqs. (5) and (6) must then be employed to finish , the calcula-

tion for v0(t), Referring to Eq. (5b), and letting v o (t 1 ) = 1, we have
2G	 2G

	

o [t-T^ .	 o (t-T1 )
vo lt ) = T G (1 - e n	 J.

	

 1 e n	 (10)
0

TI < t < T

r-
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Conclusion

W	 h	 d	 t	 tdf	 "11 1 	 f	 d l t d,,	 r'ee ave emons ra a or a simp a case o an unnno u a e ca a r

the simple case of an unmodulated carrier in noise that if there is an FM

discriminator spike, then there will be a PLL spike if there is no cycle slip,

but if a cycle is slipped no PLL spike results. We have shown furthermore

that to avoid a spike the gain G o should be made as small as possible. How-

ever, decreasing G o decreases the PLL bandwidth and therefore increases

distortion. Thus a compromise must be made between pike rejection and

distortion.
'r
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1. 2 The Frequency Demodulator Using Feedback

L2. 1 Canonical Equations and Limiting Conditions

Introduction

Although the Frequency Demodulator with Feedback (FMFB) has

been the subject of much discussion and debate since the late 1930' s, the

fundamental equations governing its operation under arbitrary inputs, and

the solution of these equations have not been published.

In this paper we present these fundamental equations of operation

for a first order FMFB and for a second order FMFB with a baseband

filter. It is shown that the equations may be extended, using the basic

technique employed here to describe the operations of higher order loops of

any order.

The asymptotic operations of the FMFB at the extreme values of it3

parameters are then derived. It is demonstrated that for a large feedback

gain G, or for a wide', 1F bandwidth a, the operation of the FMFB approaches

that of the FMD. For very sriiall feedback gain G, the FMFB again reduces

to an FMD which is preceded by the IF filter.

Fundamental Equations

The FMFB to b^ analyzed is shown in Fig. 1. The input to the RF

filter is composed of the sure of the RF signal and additive white gaussian

noise of two -sided spectral density -1/ ?. . The output of the RF filter

(which is the input to the FMFB) is .-a phasor, ein, which may be decomposed

along orthogonal components of the unmodulated signal as shownn Fig. 2.

We define:

W o = signal carrier frequency

(^m(t) = signal modulation angle

x(t) = in-phase component of noise at RF filter output

y(t) quadrature component of noise at RF filter output.

-10-
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FM SIGNAL + WHITE NOISE	 UNFILTERED ESTIMATE
OF MODULATION

FILTERED

e I	 I	 BASEBAND	
OUTPUT

R F FILTER	 FM FB	 FILTER

FM SIGNAL NARROWBAND" NOISE

Fig. 1. FMFB used to Demodulate FM Signal

i
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Hence,

e in = X (t) cos w ot - Y (t) sin w ot	 (1)

mhere

X(t) = x(t) + cos m (t)	 (2)

and

Y(t) = y(t) + sin 0m (t)	 (3)

An unmodulated signal of unity amplitude is assumed.

The block diagram of the FMFB is shown in Fig. "3, The input signal

plus noise is applied to the multiplier whose output is e m ; The second input

to the multiplier is eVe ,,the output of the Voltage Controlled Oscillator

(VCO). The VCO is centered quiescently at (w o + w 1 ), while e in, in accord-

ance with Eq. (1), is centered at w o . The multiplier output em feeds the IF

filter in the loop which is centered at the difference frequency, w 1. TI, Re IF

filter output, e f, is applied to an ordinary FMD which is assumed to have

an ideal amplitude limiter and thereby acts as a differentiator of the phase

of ef. The output of the FMD is fed to a baseband filter, in the case of the

higher order FMFB.

We consider first the simplest case, that of a first order FMFB and

thus connect the FMD output directly to an amplifier of;-gain G. The output

of this amplifier is ^ and is directly proportional to the frequency of the

VCO. Since the FMD eliminates all amplitude information, of is of the form

A cos(wlt + G ), where A is the time varying envelope of the input to the

ideal limiter. The gain constants of the FMD and VCO are assumed to be

unity. When this is not the case, these gains may be lumped into G.

The output of the FMFB demodulator + is obtained by amplifying the

demodulated signal by a gain (G + 1) which serves to restore the gain constant,

-12 -



c

from input to output under ordinary demodulation, to unity.

We denote the output of the VCO as:

eV 
CO- 2 Ccos (w 0 + w I )t + 4)(t),	 (4)

The amplitude of eVCO may be chosen arbitrarily, since the FMI5 possesses

an ideal limiter. The value of 2 is chosen for simplicity. The multiplier

output is:

em 
_(ein) (e

VCO )	 (5)

When eq. (1) and eq. (4) are substituted in eq. (5) and standard trigono-

metric identities are applied, we get:

em = X cos (w it + ^(t) ) + Y sin (w I t + 4)(t) )
(6)

+ X cos ([2w o + w 1 ] t + ^(t)) - Y sin ([2w o + w l ] t + ^(t) )

The 1F filter for the first order FMFB is an'RLC with a 3 dB half bandwidth

a and a tow pass equivalent transfer function H(w) given by:

H(w) = S+ a	 (7)

Since the IF filter is centered at w I, a sufficiently large carrier . frequency

W  will insure the validity of the use of the low-pass equivalent of the filter..`,

'Phis results in neglecting of the last two terms of the right hand side of

eq, (6) because terms at (2w 0 + w I) are greatly attenuated by the IF filter.

The baseband equivalent of the loop may therefore be utilized, which results

in the IF filter input and output as shown in Fig. 4.

For the RLC type IF filter shown we have:
,

a em = a of d of	 (g)

With em and of as shown in Fig, 4g and using eq. (8) we obtain:

-13-
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aIX cos (^ + Y sin^] _ (aA + A) cos -L - G^ sin -L	 (9)

One recognizes that the right hand! side of eq. (9) is a phasor expressed in

terms of quadrature components along the angle -L . The left hand side is

a phasor expressed in terms of components relative to an angle 4P. We en-

deavor to project the left hand side along the orthogonal components of the

angle O/G. To do this we first define the parameter y:

y = G + 1	 (10)G

Then substituting eq. (10) into eq. ( 9), we obtain:

a(Y sin (y 1) - G ) + X cos (y 4) - G )^ _ (A +aA) cos G - .^	 sin G
(11)

or:

a[Y sin y4) y X cos y^)]cos G + a[- Y cos yo + X sin yo] sin G

=(A ±aA) cosG - ^A.. sin G	 (12)

In eq, ( 12), the components along each orthogonal projection must be equal.

Then:

Ga '[Y cos yc^ - X sin 1?$] 	 (13)A
and

A = a Y sin y^ + X cos y(P - aA	 (14)

1

The external amplifier to the loop, of gain (G + 1) establishes the

relation between the FMD output i^/G and the demodulator output

' = (G + 1)G	 (15)

If one assumes negligible delay within the loop,

°=14 -

'"
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We substitute eq. (16; into eq. (13) and eq. ( 14) to get:

^+ _ [Ycos	 Xsin	 G +l a
A

and

A = a [ Y sin t+y X cos 4j] - aA

(17)

(18)

Eq. (17) and Eq. ( 18) are the fundamental equations of the first order FMFB.

They are given in a canonical form which make them readily available to

computer solution. In general, one is interested in the stotistics of ^ when

X and Y are composed of an arbitrary modulation and gaussian noise. A closed

form solution of eq. ( 17) and eq. (18) under these conditions is not available.

However, the use of the "Most-Likely Trajectory" of the noise has provided

a deterministic noise model for which a computer solution has been obtained.
•

Higher order loops may be obtained by insertion of a baseband filter

in the feedback loop or by utilization of IF filters of higher degree. This

distinction is not trivial s ince the effect of the filtering in the two cases is

quite different. Combinations of the two kinds of higher degree loops are also

feasible but subject to stability considerations.

When a baseband filter is inserted in the feedback path as shown in

Fig. 5, the operating equations may be derived in a manner similar to

that of the first order loop up to the point where o f is related to em. We

now write:

a [X cos o + Y sine] _ (A + &A) cosG - G sin G	 (19)
:j

where G is the output of the FMD.

Rewriting the left hand side of eq. (19) we obtain:

a.[ X cos'{ ( + ^`) - 1= ] + Y sin{(o +-! )- 16   )] _ (A + aA) cosG G	 G G	 G

G sin G	 (20)
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Using trigonometric identities and equating coefficients of the orthogonal

projections we get, as in eq. (13) and eq. (14)

= GA [ Y cos ( G + ^) - X sin ( G + ^) ]	 (21)

and

A = a [ Y sin ( ^• +0)) + X cos (G + 0)] - aA	 (22)

The relationship between X and 0 is obtained from the baseband filter

characteristics.

Consider a first order baseband filter, which correspond to a second

order FMFB. The zero of the filter is located at y and the pole at B. Let

the d -c transfer function be unity. We then obtain:

B y	 Y +
	 (23)

In order to restore the scale factor to unity we insert an external amplifier

of gain (G + 1) as shown in Fig. 5. The following relationships are then

established:

e
G + 1 - G	 (24)

and

G +1 - G	 (25)
E

Using eq. (24) and eq. ( 25) in eq. ( 21 ,), eq. (22) and eq. (23), we
1

obtain

A = G AI
a IYco" 6 + ^] - Xsin[ Q- + GO	 (26)G+l G+1	 G+1 G+1 )

I

A=afYsin{ 6_ + G^ ]+Xcos[ a -- +	 ] -aA (27)
11	 G+1	 G+1	 G,+1	 G+l f	 1

and	 -

1	 _

r
-
-^,^.
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ein	 em	 of = Acos(w l t+ -- )	 GX	 IF FILTER	 FM D	 G+I
V'

0Vco

VC0	 G

Fig. 3. First Order FMFB Block Diagram

i
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e fn	 em IF	 ef =Acost+ ^^	 9=

x	
^v,i

 FILTER	
G	 FMD	 G	 G!+

V CO	 G G BASEBAND
FILTER	 G_+

G +

Fig. 5, Higher Order FMFB -Block Diagram

tzx "OPEN" SASESAND
 G M-0 X FILTER

1

Fig. 6. FMFB Re :;ices to FMD Preceded by IF Filter when G U

fi

X
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Hence,	 tan +	 YX (31)	 r

Eq. (28) may be rewritten, using eq. (26), as:

4^ = B{e -t0+GA a [Ycos(' a- +G^)-X sin ( Ge ^•+G^)11

(29)

Equations (26), (27) and (29) represent the canonical form of the fundamental

equations for the second order FMFB, with the state variables chosen as

9, q+ and A.

For the Nth order loop, equations (26) and eq. (27) remain unchanged.

It is merely required to state the relationship between the filter input and

output (i, e. , C and	 ) corresponding to eq. (23).',, With the use of

eq. (24) and eq. (25), the equivalent of eq. (29) for the Nth order loop is

then obtained. The canonical form may again be derived by proper selection

of the state variables,

'	 When, instead of a baseband filter, a higher order IF filter is used,

the new differential equation relating em to of must be specified. The tech-

nique employed in solving for the fundamental equations employs a projection

of of along O/G as was done for the first order FMFB.

Since an exact solution to the	 equations under' arbitrary

t

conditions is not available, it is instructive to determine the behavior of

the FMFB under extremely large and small values of its parameters.

CASE_I	 a approaches infinity; any G; First Order FMFB

The behavior of this FMFB is equivalent to one without an IF filter.

From eq. (17) of the fundamental equations;' for the first order FMFBi

a I'
	 (C--

Oa
' = 0 = Y cos 4j- X sin	 (30)

^19
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This relationship shows that operation is identical to that of the FMD since

the output angle is identical to the input angle to the FMFB. From eq. (18)

we obtain:

A = Y sin qj+X cos qj 	 (32)

Using eq. (31) and eq. (32) we obtain-

A= Y	 Y	 + X	 X	 = X2+Y2
X +Y	 47-7 Y

The input amplitude A to the FMD, internal to the FMFB, is simply the in-

put amplitude to the loop. With no IF filter present, this is precisely the

expected intuitive result.

2nd Order FMFR

In the second order loop, we define the angle u as,

U = e + G 4^ 	 (33)G+1 G+1

Since 9 and- are--linearly-related, the angle u is proportional to the input

phase angle, and the second order loop acts as an FMD with additional filter-

ing in the output. It is worth noting that although elimination of the IF filter

reduces the system to an FMD, elimination of the basebanidfilter rather than

the IF filter does not have the same effect.

CASE II - G approaches infinity; finite a

a From eq. (17) we obtain:

Tim.	 •: _ n, = V 'A ^ Q th - X ai:n L	 1321.
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I

From eq. (18) and eq. (33) we have:

A +aA =a [Xcos LP ,+ Y sin qjI = a 4—x,- +Y2

Thus, the effect of the IF filter is reflected in amplitude information only,

which is lost in the limiter of the FMD.

Here, as in the case wheii a approaches infinity, the second order

loop acts as a "filtered" FMD.

CASE III. - G approaches zero

The case where G approaches zero is equivalent to an "opened"

feedback path, as illustrated in Fig. 6. This case is equivalent to simple

heterodyning of the input signal to the IF filter center frequency. Thus,

operation is identical to an ordinary FMD preceded by the IF filter. Hence

the FMD may be treated as a special case of the FMFB with G approaching

zero.

i
Conclusions

The fundamental equations of the FMFB, for the first and second

order case have been presented in canonical form. It was shown that the

basic technique employed in the derivation may be extended to higher- order

loops.

The as,,anptotic operation of the FMFB was found to approach the

performance of the ordinary FMD for very large values of feedback gain G,

or IF filter bandwidth a. For very small G. the FMFB reduces to an FMD

preceded by an extra IF filter. 	 ^#

These results have been used to calculate IM and harmonic distortion 	 1

in the FMFB and the FUD,-. and to determine the threshold characteristics 1^
^	 1

of these devices.
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1. 2. 2 Noise " Clicks" in the FM Demodulator with Feedback

Introduction

It is well known (1) that the limiter discriminator, phase-locked loop

(PLL), frequency locked loop (FLL), (2) and frequency demodulator with feed-

back (FMFB) may be employed as FM detectors. The most rewarding tech-

nique to predict the FM noise threshold of these demodulators focuses its

attention on FM noise " clicks". For those devices which experience the

cycle slipping phenonercon (3) (e, g., PLL and FMFB) experimental studies

indicate two types of "'clicks" of the first and second kind exist. (4) The

expected number of " cVIcks" per second appearing at the output of a limiter

discriminator a:;: PLL excited by a carrier plus narrow band noise has

been determined by Rice (5) and Hess (4) respectively. Rice solves the dis-

criminator problem for both the unmodulated and modulated carrier cases.

Hess concerns himself with the calculation of " clicks" of the first kind and

hence solves t':e PLL problem for the unmod ulateid carrier case only.

+ Very little literature exists on the computation of the expected num-

ber of "clicks" per second appearing at the FMFB output. Hess (6) has

established the equivalence between the FMFB (without a limiter in the loop),

PLL, and FLL. In particular, he demonstrates that the defining equations

of the FMFB degenerate into the equations for the FLL and PLL as the

loop IF filter bandwidth of the FMFB approaches infinity and zero respectively.

One of the objectives of this report is to establish the, equivalence

between the FMFB (with a limiter in the loop), limiter-discriminator, and

a PLL type structure. Specifically, it will be shown that as the internal

IF filter bandwidth is reduced to zero the defining equation of the FMFB

degenerates into a PLL type equation (not the same PLL that the FMFB

-22.-
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without limiter degenerates to). Conversely, as the bandwidth increases

without bound the equations for the FMFB and limiter discriminator become

identical.

The merit in drawing such equivalances is apparent when we con-

sider the physical insight into the FMFB operation that is obtained= more-

over, the equivalences provide us with the expected number of "clicks"

per second appearing at the output of an FMFB excited by a carrier (unmodu-

lated) plus narrow band noise. Although this technique provides an accurate

expression for the expected number of " clicks" only for the two special

cases of an FMFB with a very small and very large -IF bandwidth, an ex-

perimental study made on the first order F-AUB indicates that the expression

to be derived predicts reasonably well the actual number;of " clicks" even

for intermediate values of IF bandwidth.

Equivalence Betw°bca FMFB (with limiter), PLL, and Limiter Discriminato r

The block diagram of a PLL is shown in Figure 1.

n(t)B
Z sin [*(fi)-Kv4(t)]

multiplier	 L.OW PASS
X-	 LOOP FILTER=	 OUTPUT

hoM

Bsinlwot +Kv#(t)

VCO
We

K rod/'sb
v	 YV01t

Fig, t. Block Diagram of Phase Locked Loop

E:

i
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The input is taken to be a carrier of frequency w o and an. r'.	 A

plus narrow band noise n(t). Such an input signal may be written as

a(t) cos [w of + ^ (t) ]

If the output of the loop is designated 0(t) and the voltage controlled oscillator

(VCO) constant is taken to be K
v 

radJ ,c /volt the VCO output may be

written as B sin 1W  +Kv 0(t) ]. The multiplier output is simply

a t B sin [^(t) - Kv e (tl ] + second harmonic terms.2

Assuming the low pass loop filter rejects the second harmonic terms ap-

pearing at the multiplier output the defining equation of the PLL becomes

Q(t) _ a)
B	 sin [^(t) - K v 4w) J	 ho(t)

	
(1)

where ho (t) is the impulse response of the low pass loop filter.

If we define the phase error by 9(t) _ 	 (t) - ''v c (t) and the closed

loop bandwidth by w L, PLL - 2B Equation (1) takes the alternate form

^+(t) = 9(t) +	 (w L, PLL sin A(t)	 ha (t)	 (2)

For the first order PLL, the transfer function of the low pass loop filter is

H0 ( s ) = X [ho(t) ] = 1 .

Assuming the second harmonic terms are still rejected, equation (2) reduces

to

(t)	 e(t) +	 (tw L, PLL sin 0(t) 	 (3)

Using a model for carrier plus narrow band noise, Hess (4) computes

the expected number of 11 clicks" per second N±appearing at the output of

a first order PLL. His result is

-24-
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r.

N + = y/rr erfc [y L CNR (1 + 1. 04y	 ) ]	 (4)
w L, PLL

where, the input voltage carrier to noise ratio is defined by

CNR = A/4 2N	 (5)

and N = E + n2 (t) I is the total input noise power.

The radius of gyration of the input noise is defined by
OD

y =	
J oa 

GL	
)

(w) w 2 dw	
(

r	
6

J M G L (w) dw
_G

and GL (w) is the power spectrum of the low pass equivalent of the input noise,

and finally,

erfc y = 1 /11 -n ,l m E x2/? dx	 (7)
y

The differential equation of the FMFB will now be derived. The

general case will be considered first. We w ill then specialize to the case of -

an FMFB with a very narrow loop IF filter and demonstrate that the defining

differential equation of the loop degenerates into a PLL type equation. Some

a	 interesting observations will also be pointed out. We then turn to the case

'`.

	

	 of an FMFB with a very broad loop IF filter and demonstrate that its per-

formance is identical to a limiter discriminator.

The block diagram of an FMFB is shown in Figure 2.

I	 For the loop driven by a carrier plus narrow band noise `"We again

write the input as a (t) cos [wo y 4j (t) ]. If we designate he output by ^(t)

d	 and let the VCO constant be I{v rad/ sec / Olt the V06 output takes the form

B cos [w I t + K v 4)(t) ]. The multiplier output simply becomes

a B cos [w2t + 9(t) ] + second harmonic terms

s'



r

t

a(t)COS6t t,,( t )j multiplier IF LOOP el(t) 	 LIMITER-
X	 FILTER	 DISCRIMINATOR

INPUT	 h IF(t)	 Kp It/rad/sec
center

(02= 1cao
.

V Co

acos[Wit+ Kv^'(t)^	 Wi
rod/sec/Volt

Ku

LOW PASS' (t)
ho (t)

Fig. 2. Block Diagram of Frequency Demodulator with Feedback

where

W 2 = iw o - wI^

and

0{t) = 4j(t ) - Kv0 (t )
	

(8)

Denoting the impulse response of the loop IF filter by h IF, (t), the

	

IF output e I (t) may be written as	 1

	

e I (t) = a2 B cos [W 2t + 0(t) f hIE,'(t)	 .(9)

Assuming the second harmonic terms in the vicinity of 2 w 2 are rejected.

Letting hL(t) be the impulse response of the low'pass equivalent of

the IF filter we may ekpand Equation (9) and rewrite in the form
L.

	

 

(tt	 f	 )
e I (t) _ [(a 2-B cos 0(t) t hL(t), qos w 2t - l a t B m 0(t)} hL (t) J

I	
!!!!
	 sin w z 	 `	 ) (10) J

Equation ( 10) may be rearranged. further to yield

e 1 (t) _ (C + c) cos w 2t - (D + d) sin w 2t	 (11)

-26-
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where C and D are the aver-3:ge (dc) values of the coefficients of cos w2t

and sin w 2 t respectively and c(t) and d(t) are coefficients of cos w 2t and

sin w 2t less their average values respectively. If the RF filter preceding

the loop is symmetric about w o and if ¢(t) = 0, then from symmetry con-

siderations	 = 0 and a(t) sin [qj(t) - Kv M ] = 0; hence D = 0 and

d(t) = 1 B sin 0(t)^* hL(t)	 (12)

Equation ( 11) now reduces to

e l (t) = (C + c) 2 d2 cos [w 2t + tan- I d/C + c]	 (13)

Denoting the impulse response of the low pass loop filter by h o (t)and letting

the discriminator constant , be KD volts/ rod. /sec. , the differential equation

of the FMFB loop becomes

(t) = K  tan -I (d/C + c)*,hD(t),* ho(t),	 _	 - ,( 14)	 _-

where hD(t) designates the differentiation operation of the discriminator.

Using Equation (8) and defining the do feedback factor F = 1 + KvKD,

the defining equation for the FMFB may be written' in general as

^(t) = A(t) + (F - 1) tan -I WC + c )* hD(t) * h0(t)	 (15)

We now consider the special case of a narrow IF filter. As the IF

bandwidth is reduced_ to zero C becomes much greater than c (t) and d(t)

since more and more of the ac component is filtered out while the do com-

ponent remains unchanged. Hence, for this special case of a narrow IF

filter we may use the approximation

tan 	 + c = d/C	 (16)

-Z7 -
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where
RK ^(0)'= E I[Kv^(t) ]2 « 1

v
Hence,

ZB `exp{- 2 RK 0(0)

(1S)

r f

e

I

Using Equations (16) and (1

(

2) Equation (15) may be rewritten as

(t) = e (t ) + (F - 1) SaM B sin 9(t)I *hD(t) * hL(t) * ho (t )	 (17)

It is interesting to note here that the filtering operations provided

by the loop IF filter and the low pass loop filter are completely interchange-

able provided the IF bandwidth is .narrow enough to make the approximation

in Equation (16) a valid one.

To compute C = a ? B cos O(t)^ * hL(t) we recognize that for the

limiting case of zero IF bandwidth C is just the peak value of the IF carrier,

i. e., e I (w 2 ) peak. This is simply one-half the product wf the peak value

of the VCO carrier and the input carrier. The peak value of the input ca'r-

rier is simply A. To determine the peak value of the carrier of the phase

modalated signal appearing at the VCO output we use a result of Schwartz,

Bennett, and Stein (l) (pp. 167-168). If we consider the phase modulation

of the VCO output to be gaussian with zero mean and mean square value

much less than one we may write the peak value of VCO carrier as

B2 exp-  (- R 
v 

O ( 0 )) = B exp (- Z R K 
v(^ 

(0) )

i

v

Equation (17) now takes on the form of a PLL equation

(t) = A(t) + (F - 1) exp(Z RK 
v 

^ ( 0)) 1 A sin 0(t) t * ,hD(t) * hL(t) ho(t)'
(1	 1

(19)
If the loop IF filter is a single pole RLC circuit, the transfer function

of its low pass equivalent may be taken as
r	

-28
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rt

i+

HL ( s ) _ X [hL(0 J	 s + 
IF
IF

In the limiting case as "IF, approaches zero,

rt
hL (t) --'^ IF ,1	 (•) dt

Thus the integration and differentiation operators cancel and Equation (19)

may be written as

^'(t ) A(t) + (F-1) "IF, exp (? RI{ 4) (0) 	 aAt sin 9(t) ^ * ho (t ) (20)
v	 (	 1

Clearly, Equation ( 20) takes on the same form as the PLL Equation (2) if

	

we relate w L, PLL to (F-1) W IF exp 2 R K ^ ( 0)	 Hence, the equivalence
v	 )

between the FMFB (with limiter) and PLL has been demonstrated.

It is interesting to note here that the FMFB with limiter in the loop

does not reduce to the same PLL as the FMFB without limiter. Tl^ dif-

ference is only slight howev-br, since the term, exp ( i R  ^(0)) is near one
v

in order for the assumption in Equation ( 18) to be valid. It will be shown

below that the term RK ^(0) is a function of the input carrier to noise ratio
v

as well as the loop parameters. Another interesting observation that can

be made at this point is that like the FMFB without limiter in the loop the

FMFB with limiter :can have an arbitrarily narrow loop IF filter and still

successfully demodulate an FM signal.

We will now compute R 	 (0) for the specific example of the first
v

order FMFB, i.e., when the transfer function of the low pass loop filter

From the theory of power spectra

	

eo	 ao	 2RK (0) = f	 S  41(w) df f S^ (w) IHc (JW) I df	 (21)
v^	 -oo	 v	 -oo

_29

0

Ho (S)
A

S



e

where S4)(w ) is the power spectral density of ^(t) and I H c (jw) I is the magni-

tude of the closed loop transfer function between input of loop and VCO

output. If we express the input narrow band gaussian noise with symmetric

power spectrum about w O by(1)

n(t) = x(t) cos w ot - y(t) sin w 0 t	 (22)

then x(t) and y(t) are zero mean statistically independent gaussian processes.

If the predetection RF bandwidth is rectangular in shape, symmetric about

W o, and total bandwidth Bw, then
N/ 8w	 Iw I ^	

2
2n Bw

Sx (w ) = S (w) =
	

(23)y	
0	 1W 

I >	 2 it Bw
2

where N = E { n2(t) E is the total input noise power. ^(t) may then be

written as tan -1	A + x where A is the carrier amplitude and for high

carrier to noise ratios may bo approximated by the gaussian, zero mean,

a•procassryf A.

Thus	 N

S^(w ) = Bw A Z'	 I w I <
	

2v Bw	 (24)

^w I >	 2w Bw
Z

To compute IH c (jw)I for the first order FMFB we use the linearized base-

band version of the FMFB shown in Figure 3.

H—^
L(s)= t
	 KDS

 tF
HOW  I	 4(s)

e,
Kr
	

Kri_



2

(25)

i

e

Clearly,
W IF	 2

2 Kv KD jw^+ wilF—
^H ow) 	 -C

 1+ K 1{ !	 WIF
v D jw+w IF

r'

using the definition F = 1 + K v K D and w = 2,rf, Equation (25) reduces to

2	 (F-1)2fIF2Hc (jw ) l	 =	 2	 2	 (26)
f + (f IFF)

Substitution of Equations (24) and (26) into Equation (21) yields,

Bw	 Bw

r 2	 N [ (F-1)2SIF 2 l N F-1,2 FfIFr2 FfIF
R K4)( 0)_,)	 2Z	 2df=7	 F)  Bw 1	 2	 df

v	 _ Bw A Bwf + (flr. F) J	 A	 _ Bw f + -F fIF, )2

(27)

which readily integrates to

2 2F f
R K ^(0) -_ 2 ('FF 1 ) ( Big ^) tan 1 ( 2F f )	 (28)

v	 A	 IF

Simple computation will show that A K 4^(0) << 1 for a carrier to noise ratio,
V

in the threshold region, tience the, original assumption of Equation (18)

valid.

In summary, the differential equation for the first order FMFB loop

reduces to the first order PLL equation

	

^(t) =9 (t) + (F-1) w IF.,exp ( ^ R K o(0) ) a^ sin 0(t)	 (29)
v

wl`.ere, for a loop preceded by a rectangular RF filter of total bandwidth Bw,

R K ' (0) is given by Equation (28).
v

If we now allow the bandwidth of the'°loop IF filter to become large

compacted to the band of frequencies occupied by

,31
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1

a Z B cos [w 2t + ^ (t) - Kv¢{t)

the output of the IF filter becomes simply

e l (t ) = am
Z B cos [w 2t + 4j(t) Kv4)(t ) l

(assuming the second harmonic terms in the vicinity of 2 w 2 are still

rejected).

Hence, for the first order FMFB

(t ) = K  '[ LP(t) - K v ¢ (t)

or,	 K
;(t) = D Zb(t) = (constant) 1 (t)	 (30)F

which, is identical to the defining equation of a limiter discriminator if the

input to the limiter discriminator is again taken as a(t) cos [wo + qj(t)]

and its output is designated by 4^(t). Consequently, the equivalence between

the FMFB and limiter discriminator has been demonstrated.

Expected Number of FMF B No ise "Clicks"

By applying the techniques already developed forahe PLL and limiter

discriminator, the expectednumber of "clicks" per second appearing at-,the

output of an FMFB excited by a carrier (unmodula' ,ted) plus narrow band noise

can now , be simply obtained. Although the result -will be strictly valid for

the two cases of an FMFB with a very small or very large IF filter band-

width, e"fperimental results on the first order FMFB indicate that this

simple technique predicts reasonably well the actual number of " clicks",

evy en for intermediate values of IF bandwidth.

F<aIr the FMFB with small IF bandwidth ,the. ex, petted number of

»clicks" per second --Cf,,,± is found using Hess' % esult Equation ( 4), It hes...

been demonstrated that the . FMFB "is equivalent to a 'PLL with equivalent
C ,	 t,

-32-
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closed locr,bandwidth (F-1) W	 exp [ 2 R K ¢(0) ].
v

Hence,

N +	 _ -^ erfc 4-2 CNR 1 +	 1. 04 V

FMFB (narrow IF) 	 n	 (F-1)cv exp[ 1 R	 (0)],IF	 2 I{v4)
(31)

where CNR, y, and erfc are defined by Equations 5, 6, and 7 respectively

ane R Kv (b(0 ) is given by Equation (28) for a rectangular RF filter.

For the FMFB with large IF bandwidth the expected number of "clicks"

per second approaches Rice' s result (5) for the limiter discriminator which

N+	 - Y erfc [4 CNR ]FMFB (wide IF) n (32)

where y, CNR, and erfc have the same meaning as above.

The region of validity of the expressions is determined from an ex-

perimental study discussed in the following section.

Experimental Results

An experimental first order FMFB was. constructed to operate with

an input carrier frequency of 455 kHz and a loop IF center frequency of 174 kHz.

A block diagram of the experimental set-up appears in Figure 4. The RF

filter used was a Collins mechanical filter rectangular in shape ,• symmetric

about 455 kHz, and 13 kHz in bandwidth.' The loop IF filter- :ryas a single tuned'

RLC circuit. Its bandwidth was changed by varying its Q. The General
I.	 Radio GR i 142-A frequency discriminator was used for the loop limiter dis-,

criminator. The VCO used was an astable multivibrator whose_ square wave 	 ^^ a
a

output operated a switching transistor which served as the multiplier. The

loop gain was adjusted by varying the VCO constant. rThe input 455 kHz carrier 	
j

was obtained from a Wavetek Model 11 i variable frequency generator and 	
1

the input noise was obtained from a General Radio GR t390 -.BNoise Generator.	 T.

'	 -33
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(Hewlett-Fbckard) ( Kro n - Hz
Bw a 3kH_

fo 455 kHz
Bw n B kHz Limiter Low Pass

Noise Mechanical Discriminator Filter
Generator R F Fllter	 +

MR) (Collins) FMFB Low Pass
Filter

Oscillate ( Krohn-Hite )
(Wavetek) Bw n 3kHz

(Tektronlx

Storage

Fig. 4. Experimxental Set-Up

The input carrier to noise ratio A/J2N wa's varied by adjusting the output

of the noise generator. A limiter discriminator and FMFB were driven

simultaneously with the same carrier plus narrow band noise. The purpose

of this is to ensure that all the clicks counted in the FMFB output are clicks

of the first ki.ndl . The outputs of the limiter discruninator and FMFB were'

passed through low pass filters to make the " clicks'' readily recognizable T;

t	 on a storage oscilloscope.

Assuming the output of the noise generator flat over of the rectangular

pass band of the RF filter the radius of gyration of the input noise becomes
u

Y = 2ir Bw_	
(33)

v
4.	

J {^Z • 3

where Bw is the total bandwisth of the TKF filter. Substituting Equation;,(33)

	

into Equations (31) and (3Z), the expected number of " clicks" per second	 ?

appearing at the output ,of the first order FMFB is

N +	 B=- erfc	 CNR I 1 +	 0. 6

	

- FMFB(narrow IF) 	 ` •	 ? f

	

'	 (F-t) BwIF eXp(Z R K 4,(0))
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(35)

1

where R 
v
4^(0) is given by Equation (28)

N +	 - Bw erfc [^ CNR ]— FMFB(wide IF) F

Using Equation ( 34) plots of N + / Bw vs. —B	 with CNR and F as parameters

are presented in Figures 5, 6, and 7 along with experimentally obtained data.

The experimental results indicate that the FMFB essentially behaves as a

limiter discriminator when its internal IF bandwidth exceeds two or three

times its rectangular RF bandwidth and acts very much like a PLL whe y its IF

bandwidth is less than one or two tenths the rectangular RF bandwidth. More

importantly Equation ( 34) predicts reasonably well the expected number of

FMFB "clicks" even for intermediate values of IF bandwidth.

Conclusion

It has been shown that the defining ec,:iation of the FMFB with limiter

in the loop degenerates into the equations of a limiter -discriminator ;nd

a PLL type structure as the loop IF filter bandwidth of the FMFB approaches -_

infinity and zero respectively. It was observed that when the internal IF

bandwidth is narrow the filtering operations performed by the loop L SE filter and

low pass loop filter are completely interchangeable. Moreover, by drawing

these equivalences a simple technique was made available to coi-^(pute the

expected number of " clicks" per second, appearing at the output of an FMFB

excited by a carrier plus narrow band noise. Although the reisulting ex-

pression for the _expected number of " clicks" is strictly valid for the special

case of an FMFB with a very narrow or very wide IF filter, experimental i
results on the first order FMFB. indicate that the expression is ujseful in

apredicting the actual "number of " clicks" for intermediate values of IF 	 j

bandwidth (expecially for large feedback factors).

.-3 8
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Continued research in this area is under war to include an extension

of similar analyses to higher order frequency demodulators with feedback as

well as an extensive study of modulation induced " clicks", i, e., " clicks"

of the second kind. Given specifications of the received signal, a design

procedure to obtain the optimum FMFB, i. e., the FMFB which minimizes

the total number of "clicks" of the first and second kind, is sought. The

maximum threshold extension realizable with this optimum FMFB will then
be dietermined. In addition, since equivalences have been established between

-3q-
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i

r

many of the FM threshold extension demodulators in existence today a general

unification of the treatment of FM threshold extension techniques will also

be sought.
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II. Characteristics of FM

IIA Single Sideband FM

Review of Results - Old and New

In the last report we discussed the origin of SSB-FM and some of its

bandwidth properties. Also we have shown that a quasi SSB-FM signal of

the form a e-a sin `p mt cos (w ot + A cosw mt) with a less than P, occupies

approximately the same bandwidth as a true SSB -FM signal does. The for-

mer is preferable to the latter since the output of a discriminator receiving

this signal will contain fewer clicks, at the same input signal to noise ratio,

than when an SSB-FM signal is received.

An SSB -FM generator was constructed and threshold tests were per-

formed on a quasi SSB-FM waveform with sine wave modulation, Fig. 1

shows the ex ermental set u 	 The results were verified theoretieallP	 P•	 Y•

When the click rates shown in Fig. 2, 3, 4 and 5 are compared to those

occurring in the FM case it is seen that threshold occurs at much higher

input signal to noise ratios for SSB-FM than for FM.. One- would not -expect

that the results for gaussian modulation would be significantly better especially

since for runs phase deviations greater than 1, SSB -FM has aJirger band-
s width than FM.

The ratio of the output signal to noise ratio to the input sign al to noise

".	 ratio vs. rms frequency deviation was calculated for the case of gaussian

modulation with an exponential baseband power spectrum.

Expected Number of Clicks

Rice(1l has discussed com=pletely the theory behind the threshold,

phenomenon in IFM.. In particular it was shown that for the case of constant

offset carrier, N+, the expected number of positive 2w jumps in the received	 1

-signal phase during a one ; ; second interval is given by:

-4p-
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N+ = 2 1 
(r 2 + f 2) 

1/2 
[1 - erf (p + p fo r-2) 1/2

- fo e p [1 - erf (fo r -1 p 1/2 ) , I	 (1)

The expected number of negative jumps, N_ is given may:

N_ = N+ + f1 a-p
	

(2)

where f 1 is the offset frequency in hertz from the carrier frequency, lot
p is the input carrier to noise ratio and r is the rms bandwidth of the r. f.

filter.

Returning to SSB-FM we see that we are dealing with an FM wave

that has peaks and valleys in its instantaneous amplitude, 	 A(t).

VSSB-FM = a 
e-O(t)	 cos (wo + xft) )

A
	 (3)°	 A(t) = a e

Since during the time duration of a click occurance the modulation waveform 	 -'

changes only slightly one should be able to calculate N + and N by averaging"

over all values of f 1 and p = A2(t)/2ON2.	 We may airYiplify our calculations

by recalling that our carrier frequency f o, lie 	 at. the upper end of the r. f.
i

filter passband.	 Therefore even with no modulation N_ will be several orders

of magnitude larger than N + .	 Since we expect clicks only in the valleys of

A(t) where the instantaneou8 frequency is larger than f o we can neglect all
., 

terns associated with N+ .	 In fact positive clicks were so rare an event, that` 	 `--

only a few were observed even at the lowest input signal to noise, ratios.

Since we are dealing with a deterministic signal we calculate N_ fr&n (2) as;

T
is lim	 is f	 I(t)I a -p(t) dt.	 (4)

yT--.oco	 -T 11 
( 2n,	 -2a.coae

N	 -	 2a J	
1/2 f 1 + Af cos9	 a -p	 a	 dg	 (5)

0
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This integral was evaluated on a computer and the rewilts plotted along with

the experimental data in Fig. 2, 3, 4, and 5. The values for f i , W and a

where those used experimentally. In the case Fig. 3, 4, and 5 the value of

a had to be modified to account for the fact that in the region of vin > 2 volts

the exponential circuit did not give a true exponential output. This fact only

slightly affects the singe aided nature of the modulated signal spectrum but

greatly affects the click rate since it is in this region that all the clicks

occur.

Output SIN Above Threshold

Consider an SSB-FM signal of the form:

A e D(t) cos (wo' + D(t) )
	

(6)

corrupted by additive gaussian noise.

n(t) = r(t) cos (wo + 9(t))
	

(7)

-where n(t) is derived by passing white noise with autocorrelation function
n_
oZ b(t) through the r, f, filter used in the receiver.

Suppressing the w 0 term the received signal phase is given by-

D+ tan- I	 r sin (9 - D)	 (8)

A e D + r cos (9 -D)

For high signal to noise ratios

-5

ON 	 - D = eA r sin (9 - D)
-

-DeA r [sin(9) cos (D) - sin (D) cos (9)]

sin 	
eAD	

(	 - r, c-	 s^ (A! ) a -D sin (D)r sin (9)	 )ceir D
y	

x

Since the noise is onesided about w o and we are using the lower sideband,

.43-
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n(t) = x cos w 0t - y sin w o = x cos w o + x sin w 0t

e -DD
'N 

= - [x	 A . cos (d) + x	
A 

sin (D) ]

R4) = E 1 4)N(t + T) ^N (t ) 1
N

Since the noise is assumed independent of the modulation;

e -D(t + T) D(t) cos (D(t+T) - D(t)
R^N(T) - R x(T) E A2	 )))

..	 (11)

- R x(T) E S -	 sin (D(t+T) D(ti)
( A

Consider:

E =E exp[=D(t+T)-D(t)'+iD(t+T)-iD(t)]F 	 (12)

Thus the first term above is

2 R
x (T) Re

A	
!(E)

and the second term is

R2 Rx(T) Im(IE	 (13)

However, c is just the comple:,c aatC6orrelation function of the SSB-FM
x

signal, therefore:

.1	
'2 RD(T)

R (T) =	 2 RX (T) ,z	 cos 2 R
D (T)

^N	 A

ZR (T)
DA2 RX(T) ei	 sin 2 R D (T)	 (14)

1	 _	 •2[RD(T) + i R n(T) ]	 ?	
a

z	 A2 Re [F{x(T) + i R x(T) J e	 11

Our next swep is to find S (w) the Fourier Transform, of R^ .(T).
N	 'N

-48-
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R 0 (T) =Re-: 12 
I [ 

R x(T) + i R X(T) exp ( 2 R D (T) + li R D(T) )
N	 A

= I Re(R c (T)	 (15)

We will now show that it is sufficient to consider only R c (T) whose

Fourier Transform we dencee as Sc ( w ). Since each factor of R c (r) is an

analytic signal S c (w) is a one sided spectrum. The real part of R c (T) is

even and its imaginary part is odd therefore 
S41 

(w ) is the even part of S c (w ).
N

But as Sc (w) is one sided it is twice S^ (w) for positive frequencies, Thus
N

if we consider only positive frequencies our calculations will be simplified.

To find S c (w) we note that the term .i trr. ckets cf, (15) transforms

to the equivalent low pass compf ik noise p6Wer ` spectrum t-,valuated at

A) _ - W. (Recall that we started out with the lower sideband the above auto-

correlation function corresponds to the upper sideband). The exponential is

related by a constant of proportionality to the autocorrelation function of an

upper sideband SSB-FM signal.

From now on we specialize to the cave where the r. f, and baseband

filters are rectangular with unity gain. Their bandwidths are w c and W 

respectively. The for finer is chosen to be three times the rms bandwidth of the

input signal whereas the latter is chosen to pass 98 % of the modulation power.

The modulation spectrum will be assumed exponential thus we may take ad-

vantage of the previously calculated analytic expression for the SSB-FM

'	 spectrum.
li	 ..	

2
SD(w) = it !+D a

RD(T)	 D/ 1 + T2	(16)

bw	 4n D 1 1 (2 $aDw)e 

	

SSSB-FM(w') 
_ ^..^_ +	 w G	 (17)

A	 AZ 42 v? w
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Thus:
S 

(w) - no [	 21 + 4 rr 	
fw	

e
I1 (2 2oDx	 -x dxc*	 _̂

c	 A2	 D w-wc 2y p" x

(18)

2k
( 4 z )
	 (19)!F(.k+2)

Recall:

I l ( Z ) = (Z 
z) cam= 0

Let:

Z = 2 2 -D
	 (20)

Thens 	 00 2	 k

Sc (w) ' -
,n 2	

[1+47r nA	 f
w ( 2 ?D

a-
x

dx
(21),.

A	 w-wiCk
+E)

We can confine our attention to frequencies 0 < w < w c since w f < w c and

SSSB-FM(w) ;= Ow < 0 •	Therefore..
2

S c (w) = nZ {i + 4rr rr 2D ^	 =(+
.r;' [

)
_..^	 f w x 	 a-x dx]t

A	 1	 k_ 0 (ld + 1)	 0 1
(22)

The term in brackets is known as the incomplete gamma function T (R + 1, w ).
o0	 2-, ZD)as00	

2
Sc (w) =	 [1 +Av n_	 r (k + 1p	 )] (2^)2	 D	 ^_ + ).,

A	 k-0
l;r

To find 7,^, 	 we integrate -L (w) between the limits w = 0 and w = w e
^N	

2rr	 >3N	
2 ;.

7	 w	 2 r+	 'r)
0a	 3	 +_ °

 2
lr [	 d	

2 P(k+1	 dw, w)_
2 J	 (	 w

0	 `k	 0N	 2 rr A	 A =

;.; (24)
However:	 O .,

n
r(k+1w) = e	 '	 `Y-y-	 1 ,^ e` w

k	 n
=^
n•

=	 (2.5)
n+.1	 .i• n=0.a A

Therefore the integral in (24') becom,^s,'
^r

2 (y2	 p	 r10	 w p	 (2	 2 )
D' °	 _	 2

f	 [ w	 - ^^
k	 n+2
S ^-^ ] dw (26)2	 (k+1);A	 k=0 0 n 0	 r

"71
//



e

Thus:
2	 nowt	 2 ' Drl o	2QD	 w	 k Y (n+3, mp)

+	 -----[ 3 -

	

ON	 6 rr A 2	A2	 k 0 (lctl);	 3	 n=0	 r(
(27)

where Y (n, x) = f 
x 

e -y yn-1 dy
0

and is a tabulated function.

Recalling that the r. f. filter bandwidth was chosen to be three times

the SSB-FM rms bandwidth, we see through the use of Chebychev' s in-

equality that this filter must pasi at least 90 70 of the transmitted signalpower.
Al 21D	 2 2aD

	

Sine: < PSSB-FM> - —2 a	 the input signal power is .45 A e

and as the input noise power is 3 BSSB-FM 9^0 the input signal to noise ratio

is:	 2
20

. 15A2e D

	

SNR	
SSB-FM o	

(28)	
j.

	

I	 Fj	 n
ii

On the other hand for the baseband spectrum chosen the modulation power,

is 2 aD' dividing this term by (28) gives the output signal . to noise ratio:

2 n
	SNR0	

nwQ	 2 o 2	co (2 R D ) wq	 ko

6n A2 + A2 .L (k+Z).. 3: nI0 Y [(n#3), c,r f j

	

1)	 (29)

These expressions were evaluated with the aid of an IBM 360/ 50 digital com-

puter. The ratio S NR SNRI vs. rD is plct'ted in Fig. 6.
it

Conclusioi3

It appears that SSB -FM:.will not find broad practical application since

it is both difficult to generate =and does .not perform as well as FM (foes.

k,
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U. Z. Optimum Preemphasis in FM

The purpose of this report is to show the advantage in using an opti-

mum preemphasis network instead of the RC fiber usually employed, or a

whitening filter.

If a signal m(t) frequency modulates an FM carrier, the output SNR

of the demodulated signal, when measured above threshold is,

N - -.1.2 ( mt	 S,t

	

	 (1)') r^f0	 4 it	 f M	 M

S

where N is the output SNR
0

S	 is the received input signal po-k,eri
T7	 is the power spectral density f the input noise (one-sided)

fM is the bandwidth of. the modul;: ion, m(t)

and

m2(t) is the power contained in the modulating, signal. This value is
also equal to the mean square deviations.

If a preemphasis network is employed to filter the signal before

modulation, and a^ ?eemphasis network :r{laced after"the FM demodulator,

then the output SNR is increased. Since the deemphasis network is, in

principle, the intrerse of the preemphasis network ( see Fig, 1), the filtered,

output signal is independent of the preemphasis employed. Thus, the im-

provement achieved by preemphasis is due to the filtering by the deemphasis

network of the demodulated " FM noise".

The power spectral density of the demodulated noise is
Z

	

Gn(f) = 25 	 fZ	 If I <_ B	
(Z)

	

i	 o,

where B,is the IF bandwidth employed. If preemphasis is not employed the
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output noise power, N o is

f 

	

	 2 n t4n MN = f	 G (f) df =
O	 -f

M n
	 3	 Si

If, however, a preemphasis network having a transfer function Hp(f), is

employed, the deemphasis network has a transfer function HIM , and

the output noise power is now,

N of = ,) f M Gn(f )- df = 45	 f o M f L Z df
ftvt	 I Hp(f ) I	 '	 p(f ) I

(3)

Before comparing Nop with No we note that there is a constraint on

the selectionof Hp(f). Th!a constraint is that the same bandwidth .B be

required in, both cases. ,, 'Since the bandwidth B is proportional to the rms

frequency deviation cu- the FM signal we have
f	 f
M	 Mf	 G^ (f) df = f G (f) I 	 (f)I^ df	 (5)
o m	 o m	 p

wh-,:re Gm(f) is the power spectral density of the modulating signal. It should

be noted that if Eq. 5 is not satisfied, the frequency deviation of the FM

carrier would differ in each case. In this case we could adjust B to be dif-

ferent in each case. This in turn results in different noise 'powers being

received at the demodulator input. Thus, the .constraint provided by Eq. 5

insures that the input noise power Ni = i7B = constant.

k	 The optimum preemphasis network is found by minimizing N op .'

(Eq. 4)" subject to the constraint of Eq. 5. The minimization is accomplished

by combining Eqs. 4 and 5 to form a new integral, I:

I = f fM 4 S n (	 f^ Z )+ <(IFI (f)I Z - 1) Gm(f) df

P
0	 i	 I H (f) I	 p-	 (6)
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where X is a Lagrange multiplier. Minimizing I results in minimizing

Eq. 4 subject_ to the constraint of Eq. 5. From the calculus of variations

we know that I is a minimum when

2	 Z

8y	 S ^' ( fy ) + \ (y - 1 ) Gm(f) df = 0
i

where y L= IHp (f) I Z	 (7)

solving Eq. 7 yields	 f
M

IHpml , =	 f	 0 G m (f) df	 (8)
G ln (f)	 fM

fGm(f)J
1and	

4n 
2 

f	
( `0 x Gm(x) dx 12

S 

77

op
J Gm (x) dx
0

where the dummy variable x = f
fM

The improvement obtained depends solely on the power spectral

density Gm (f). To determine this improvement and to -ompare our results

with the improvement obtained using several sub-optimum preemphasis

networks we choose several examples.

1. The RC High-Pass Filter

In this case

2
IHRC(f)I2 = K 1 [1 + ( ff )	 (10)

I	 1
where K 1 is found from Eq. 5 to be1

f Gm(x) dx
K	 0	 ( )

.	 1 =	 1	 2	 i 1
F	 f [1 + x ) Gm(x) dx

0	 0
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fi .,
and xo	 fM

Eq. 4 now becomes

4r2n f 3 	 f 1 [t + (X 2
) ] Gm (x) dx	 1	 2

N =	 M	 0 0 (	 x	 dx	 (12)
OR

 Sl	 f 1 Gm (x) dx 0 t + ( x )2
0 0

The im rovement obtained when using the optimum filter is therefore

dx ]2N f	 Gm (x)[	 C ;c N
OP

N =	 1 (13)

ORC [t+(	 x	 ) 2 ]G (x) dx f 1 x2dx
0	 xo m 0	 1 +( x )2

x
0

2, The Whitenin g Preemphasis Network

In this case

2	 K2
H	 (f )	 _ '	 (14)W	 Gm(f)

where K2 is found from Eq. 5 to be

1
K2 = f Gm (x) dx	 (t 5)

	

Eq. 4 now becomes	 J
4Tr2n f 3 f x2 Gm l dx

	

__	 b2	 0
NOW	

_ Si	 1	 (16)

f G rn (x) dx
0

The improvement obtained now when using the optimum preemphasis

network is
_	 1	 2

NOP	
if x Gm(x) dx]

(t7)
NOWf	 m

lx2 
G(x) ax0

NIt is interesting to prove that the ratios OP and NOP are indeed less

NORC	 NOW
-57-
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OPthan or equal to unity. To prove <	 1N
G

we employ the Schwarz

Inequality: RC

(1 x 2 dx f 1	 [1 + ( x ) 2 ] Gm (-c) dx > [ f lx 4Z
	 (x) dx]

2	 (18a)e
J 0 2 0 0 0x )+(

x0

The equal sign holds only when
2

fGm ( f )	 = C z- 2 (18b)
1 + ( f )

1
]

To prove that NOP < 1 we let, x'VGm(x) = V(x). Then
Now

	

f 
1	 1
(V(x) - f V(x) dx)' dx > 0

	

0	 0

Expanding we have:

f 1 V 2 (x) dr. - 2 [J l V(x) dx^ 2 + [ f 1 V(x) dx] 2 > 0

	

0	 0	 0
or

f0 xL Gm(x) dx > [ f xyGm (x) L..c ]2

The equal sign applies when

V(x) - f 1 V(x) dx
0

or

V(x) = x Gm (x) = con otaut

Hence,

Gm(f) = C 1 , f2

(19a)

(19b)

(20a)

(20b)

(20c)

(21)

Thus, it is seen that the RC high pass filter is optimum when the

power spectral density of the modulation is given by Eq. 1 8b, and the

whitening network is optenum when Gm(f) is given by Eq. 21. For any
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oLhe-r G (f) the optimal network results in an output noise reduction andM *

hence an output SNR increase.

Example s

i + ( ff )
i

This is an often used representation of the modulation. One assumes

that m(t) is a sample function of a white Gaussian process which has been

filtered by an RC low pass filter having a 3dB frequency f 1 .	 In this case

it is easily shown that

l	 x dx
[

2	 f	 2
^1 + {	 )

f 1 	2

NOP N 0 	 1 + (x xo)2l1
f
1vI _

f J
M_

NORC
_

NOW (` 1	 x2 dx_
r
li	 -	 f 1	 cot -1 f 1

L1 J O 1 + (x/ x) 2 `	 fM fM
° (22)

for example, if f 1 = 0. 25, N C P = NOW = 0. 92. A 0. 36 dB improve-
M	

ORC	
OW

ment in output SIR results.

	

2 G (f) = 2 J	
2

t` a-tm

The functional form of G m(f) was chosen to represent the spectrum of
fao

speech. The constant 2^ was chosen so that J	 Gm(f) df is the same-
-

00

in examples 1 and Z. The results obtained are

	

f	 f	 f2	 2

N	 f 1 erf ( 2-1 M ) - exp (- 2M2)	 (23)
OP _	 M	 1	 1

NORC L1 - f 1 tan
-1 

fM [ 5 f1 erf ( M) - ( 5 + Z )exp (- 2 )

	

M	 1	 M	 1	 2f1	 f1

If f1 = 0. 25 N oW = 0.53. Hence a 2.8 dB improvement results.
M 0 R
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1

Using the whitening filter yields

r	 f	 f	 f2
	 2

N	 [,J 2 f erf (M	 - exp (- M ),
O P_ _	 M	 jzf1	 2 f 

NOW	 3'F f 1	fM3 fM	f 2
[ 8f	 erf f -(4+ Z)exp(
 -

 2 )^

	

M	 i	 2.f1	 f1

if	 0.25,=	 0.25, NOP —0.59.  Hence a 2.2 dB improvement results.
f M	 NOW

Conclus 4 ons

In conclusion we reiterate our thesis that the optimum preemphasis

network will, in general, result in substantial SNR improvement as com-

pared to the simple and more often used networks. Since, in many communica-

tion problems 2 - 3 dB is of considerable importance it l'Iseems worthwhile to

determine the benefits derived by using an optimum preemphasis network.

(24)
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M. A Slow Scan Digital TV System

Th.s st:;:tion outlines a complete computer controlled system that

transfers information from a photographic slide into a stored digital form,

that allow;:; detai l ed bit by bit measurements of this data, that allows both

linear and non-linear manipulations and/o-. " transformations" of this data,

and that allows the reconversion of either the original or of any "transformed"

version of the original data back into a.photographic form.

The system utilizes an assembly language programmed Digital Equip-

ment Company, PDP8 computer with a magnetic tape storage unit in conjunc-

tion with a laboratory constructed flying-spot scanner and a modified version

of a Tektronix 541A oscilloscope.

System Input

The system input is provided by scanning the desired slide with a

laboratory constructed flying spot scanner and converting this analog signal

into a digital form. After intermediate storage in the core storage unit of

the PDP8 this digital information is transferred to magnetic :ape for per-

manent storage.

To some extent the system design has been tailored to suit the com-

puter' s idiosyncrasies. For example, the PDP8 core storage and magnetic

tape storage units handle information is the form of "pages" of 128, 12 bit

words. A total of 4096 words or 32 pages of core storage is available.

Since the program that is causing the " recording, " "manipulating, " or
it playing out" of the data must also be in the core storage and it may be

convenient to have several other auxiliary programs also available in the

core storage one normally wishes to design so that not more than half of the

available core memory is used for data storage.
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While more than 6 bits [64 levels] are rarely discernible in an ou,t-

puted video signal the system is simplified by utilizing one word per video

sample.	 An existing narrow band TV system in the laboratory has shown

that a 100 x 100 matrix of points is sufficient to reproduce a picture with

adequate detail for our purposes. Hence while a 128 x 128 matrix would be

just as compatible with the computer memory organization we employ 100

samples/ line and 100 lines/ frame. With a photographic output no benefit is

derived from frame interleaving anti it is not employed.

Figure i illustrates a block diagram of the recording system.

Since the total number of programs related to the digital video system

now totals more than 25 it is convenient to store these programs on magnetic

tape in both their machine language and in their binary forms. Both forms

are desirable since machine language is the only form that is understandable

to the human c,perator and the only form in which constants may be inserted

or routines modified, while the binary form is the form upon which the ma-

chine actually operates. If the binary form is not stored permanently then

before every run one must go through a routine of having the machine trans-

late the machine language program into the binary form all over again,

S-. .ce the scanning routine is known (it may be horizontal or vertical
MI

or may proceed in either direction) no addressing of individual points is

required.

While it is perfectly possible to operate upon the data before storage,

we have chosen not to do this but to store directly in an unperturbed fashion.

This allows one to have the "original" picture available for playback and com-

parison with any modified version. [Such comparison may be either in an

output video form or may be done on a bit-by-bit basis within the machine

itself. ]
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With computer control there is no need to scan by the line at all

since one could just as well scan spirally or in N x N squares [N < 100]

or otherwise. So far we have found it convenient to do the initial scanning

in a linear fashion even though subsequent operations may deal with N x N

square of points. [A real time system that chose to handle data in N x N

squares would of course want a N x N scan to reduce its buffer storage

problems. ]

System Output

To return the data to video form one must first switch tapes back to

the program tape arct transfer the binary form of PLAY, and LIN into the

core storage. After standardization the flying spot scanner is replaced by

an oscilloscope camera. [A experim.: t ..'. determination of the "optimum"

f stop for a given film speed is nece q ,xar	.''._ any given system, ] and the

PLAY program has its internal data seeking address changed so that it reads

the appropriate video data. The camera shutter is now opened and the PLAY

program is started to print out the video data.

The print out is accomplished by varying the ui.tblarki ig time of the

constant intensity beam while it is shifted successively through the 104 data

points. This duration modulation scheme removes the effect of phosphor

nonlinearities. The Pt  phosphor has a decay time to 10% of its initial bri`ht-

ness in 100 nsec. Thus from the phosphor viewpoint if the maximum duration

at any one point is 1 µ sec or more then the apparent intensity will be propor-

tional to duration.

The actual system has 128 " A-aration increments" of 4. 5 µsec each

thus it is capable of presenting a 128 level gray scale. In practice we nor-

mally divide the total range into only 64 or 32 levels. Since "white" pro-

duces an exposure of 576 µsec/ sample and "black" produces no exposure
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the "normal" picture takes about 3 seconds to print out.

Actually a linear variation of duration with intensity does not lead to

a linear picture since while the phosphor nonlinearity has 1•een removed the

film nonlinearity remains. The LIN program has a table look-up capability

that translates anv "linear" sample level into a new level along a desired

nonlinear scale that may be used both for film gamma correction and if de-

sired to perform an " expansion" function.

Picture Manipulation and Measurement Programs

Among the programs that have been developed are:

(a) Overall picture level probability density programs.

(b) Programs for the probability densities for the averages of ad-

jacent squares of 2 x 2, 3 x 3, and 4 x 4 samples.

(c) Programs to reduce the average transmission time by a number

of simple manipulations.

(1) Skip transmission of alternate points,

(A) Use amplitude of first point of the pair.

(B) Use amplitude of average of the two points of a

linear pair.

(2) Extend to three points or more in row.

(3) Extend to squares of 2 x 2, 3 x 3, and 4 x 4 points.

(4) Modify (3) by transmitting the average for say a 3 x 3

matrix as well as a two bit signal for each sample that

indicates the sign of the depatrure as well as whether the

departure from the average is less than one unit or more

than one unit.

(d) Programs that contain samples of random noise and that allow

randomization of the quantization noise component of the 6^ored digital ,signal.

(e) Programs that contain nine, sixteen; and thirty-two level linear

gray scales for test and adjustment purposes. 	 }

-b5_

1
s



i

c.

`i

t

(f) Programs that allow the real time transmission and subsequent

reception and storage of twelve lines at a time of video data. One program

allows transmission and reception in analog form while another transmit

the signal in binary form. In either case the transmission and reception are

under the control of an external clock. These programs allow the transmission

.,f the stored or compressed data through a real or simulated channel so that

the effect of the channel may be studied. The twelve lines at a time ;.imitation

is imposed by the limited core storage available in the computer. Obviously

further transmission is possible after an interval that allows for the transfer

of the received data back to the tape and the transfer of another 12 lines from

the tape into the core storage.

Results

Figure 2 is a. -:;rture after complete transmission through the system.

In the original phot:; i:.ph from the oscilloscope face it is possible to distinguish

indi-idual picture elements. For reproduction. purposes these pictures have

been enlarged by a factor of three times. [The output picture size in our

system is limited by the deflection capabilities of the particular oscilloscope

employed. ] For monitoring and visual read-outs other oscilloscopes with

much larger available areas have been employed. Since single picture ele-

ments may oe monitored, one is able to note the effects of digital errors upon

each particular portion of the picture.

Figure 3 and 4 show flow charts for the RECORD and PLAY programs

respectively.
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Fig. 2. Sample Photograph after RECORDING and PLAYING Operations
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IV. A New, Recursive, Second Order Gradient Algorithm

Nomenclature

1) A vector is represented by: x

2) Random quantities are represented by a tilde (")

e, g. , n

3) Components of a vector are represented by superscript in

parenthesis. For example, the kth component of x is:
x(k)

4) The stage of iteration will be indicated by a subscript:

x i is the vector x evaluated at the ith stage.

xik) is the kth component of x at the ith stage.

5) The transpose of a matrix T is T t .
6) The deterministic part of a quantity is represented by a Latin

character; the random part by a Greek character, e, g. ,

7) Powers of a quantity are indicated in the standard manner, e, g.,

the ith power of the matrix T is T1.

8) The symbol p(T) denotes the Spectral Radius of the matrix T.y
The symbol RS(k) denotes the sampled auto-correlation function of S(t) at

time t = kT.

9) The norm of a matrix A is denoted by I J A I I• The norm of a

vector x. by I I a-1 .
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Introduction

The equalization of data signals which have been transmitted through

a dispersive channel has recently received new attention by virtue of the

fact that a transversal (tapped delay line) structure lends itself readily to

adaptive and iterative adjustments. In the presence of both dispersion and

additive noise, an appropriate measure of the quality of equalization is the

sum of the mean squared distortion due to intersymbol interference and the

mean squared noise. This measure can be shown to be closely related to

either the signal -to-noise ratio at the decision point or the average proba-

bility of digit error.

For a given set of transmitted signals and channel conditions, the mean

squared distortion plus noise can be shown to be a positive definite quadratic

function of the tap gains x 1, x2 , x3 , ... xn . The basic transversal equalizer

structure is shown in Figi a 1. The input is periodically sampled after filter-

ing and the samples are applied to the input of the transversal filter. For

data equalization, the taps are ideally adjusted so that the output, y(k), has

a maximum at y(o) [time being referenced to this point] while i(k) k ^ 0 is as

small as possible. The departure from this condition is measured by the

sum of the mean squared distortion plus the mean squared noise, D 2 + 02.

In Appendix I, we show that the mean squared error

e 2 = 15 2 + o ?- + (e)2 	(1)

can be expressed as a quadratic of the tap gains x as follows:

e 2 = 2 xt	Gx - at x + Vr	 (2)

(e) is the mean of the error, after equalization (e) has a small, but non-

zero value.

t
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where

G = covariance matrix of sampled received signal

a = a vector whose components are proportional to the sample

values of an isolated noiseless received pulse

V  = peak level of reference signal.

The minimization of (2) can be accomplished by various iterative

algorithms, if noiseless observations are available, the Fletcher -Powell[ 11

and Fletcher-Reeves [2 ] conjugate-gradient methods guarantee convergence

in exactly N stages of iteration where N is the dimension of the vector x.

This performance is accomplished when truncation errors are negligibly

small, or, equivalently, when signal-to-noise ratios are high.

On the other hand, when noise is appreciable, the adjustment algorithm

commonly used is based on a gradient method or some variation of stochastic

approximation[3 ^.

The performance of conjugate-gradient methods in the presence of

noise is not known. The analysis of this behavior in noise is difficult even

if small noise is assumed because of the complicated way in which the direc-

tion of search at stage k depends on all (k - 1) directions. Furthermore,

for moderate noise levels noise-noise cross products must be considered

making the analysis still more difficult.

Gradient methods including stochastic approximation algorithms work

well in the presence of noise in an asymptotic sense. The conditions for

convergence can be stated. However, they tend to converge slowly.

Higher order gradient methods, which is the subject of this paper,

makes use of stored values of gradients obtained in previous stages of itera-

tion. The objective of using these higher order gradients are (1) to smooth

the noisy observations and (2) to permit a more rapid convergence to take

place.
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Higher-Order Gradient Methods,

With x., the tap gain vector at stage (i); gk, the gradient vector

measured at stage (k), with a 0 , a l ... some positive constants selected to

guarantee convergence the iteration is as follows:

xi+ 1 - x i - a0 I i - a l gl i-1 ai YL i-2 	 'M 16i -M

The iteration starts at n selected arbitrarily. The initial gradient is go

Heuristically, the advantage of the multi-stage gradient method is that it

has some of the ridge seeking properties of the conjugate gradient methods.

while being simpler to implement and analyzed. In addition, some smooching

of the random components of the gradients is expected to take place insuring

good performance in presence of noise.

Figure 2 illustrates in a simple fashion why the higher order gradient

algorithm is expected to have ridge seeking ability (i. e. , fast convergence

capability). Assume that the convex: surface has a ridge. The gradients

tend to follow the geodesic starting from point (1) if the first-order gradient

method is used. For the second-order gradient method the direction of search

at (2) is approximately along the resultant vector of the gradient, at'points

(2) and (1). This direction heads faster towards the ridge.

Figure 3 is a two dimentional projection of the contours of Figure 1.

Two paths are sketched indicating the expected behaviour of a first-order

gradient and a second-order gradient algorithm. The simple gradient algorithi

converges " exponentially" to the minimum. The second-order gradient

(S. O. G. ) exhibits 11 damped oscillatory" behavior. Consequently, it should

be able.- to converge faster than the simple gradient method. Computer

simulation indeed reveals that the S. O. G. method can produce significant

speed improvements.	 First a noiseless system is considered. (i, e. ,	 the
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gradients are assumed noiseless). Conditions on a and R are given for

stability. Proofs that the parameters x converge to the true minimum

without bias are given. Then the gradient vectors g i and 1i-1 at the ith

stage and at the (i-1) th stage are assumed corrupted by noise from a station-

ary random process. The noise samples are assumed independent. A bound

on the asymptotic value of the mean-square error in x is given. The con-

vergence of the first-order gradient algorithm is also studied for compari-

son. The speed of convergence of the two algorithms is investigated, put-

ting in evidence the superiority of the S. O. G. in the presence of appreciable

spread in the range of the eigenvalues of the system matrix G.

Convergence of the S. O. G. Algorithm with Noiseless Gradients

The iteration, which is designed to minimize the quadratic function

(2) is given by:

x i+l = X  - aai - pai -1
	 (3)

when I i is the gradient of tho function at the i th iteration ans is given by

F, = Gx-a	 (4)

Operating both sides of (3) by G and identifying the gradient terms,

we obtain the recurrence relation

y, i+ = [I - aG] g i - (3Gji-1	 (5)

Now, since G is a symmetric positive definite matrix, it can be diagonal-

ized by a norm-preserving transformation, P, which upon applying to both

sides of (5) yields

[I - aA] Wi - (3A Wi-1

where	 Wi = P
-74-
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and

G = P -1 AP defines A.

The system (6) is completely decoupled in its components and the zeroes

cf the characteristic polynomials of the system

F(z) = z 2 - [1 - a Kk ] z + (3 Xk

determine the stability and dynamic behavior. X  
are the eigenvalues

(assumed distinct for the moment) of the matrix G. For stability, the zeroes

of F(z) must lie within the unit circle I z I < 1. An equivalent condition, the

Schur-Cohn Criterion [41 states that the necessary and sufficient conditions

for stability are: a) F(1) > 0, b) F(-1) > 0, c)Ip Xki < 1.	 It will turn

out that for our purposes it is necessary for a, P, > 0; then for stability

we require

R < I , all k	 (7)
k

(a	 <	
2 	 all k	 (8)
k

The recurrence equation for the tap-weights after diagonalizing G

by a the similarity transformation, is:

[I - aA] Z i - PAZ, _2  + (a + ,) b

where

Z = Px

G = P -1 AP	 b	 Pa

The components of Z are decoupled. Using the State-Space re-

presentation one can express the recurrence equation fot the k th com-

ponents of z as the following first-order vector equation:
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c =
-v C

r

Yj+l - T (A k) y j + (a + (3) D(X k) -cv
	 (9)

t

where

zi(k)
Y j+ 1	

z,-1(k)

(The superscripts identify the Amponents of the vector, with

j = i+2 )
2

i
(1 - a ^k )2 	 k	 - p ^k (1 - a ^k)

T ( X k) 	 - - - - - - - - - i — - - - - - - - -
e

(I
 k) - PX

1	 1 - ax k)

D ( X k) _	 - - - - ; - - - - - -	 AND

0	 10

Stability of the recurrence Equation (5) for the gradients guarantees

the stability of Equation (9) for the tap-weights. Furthermore, Equation (9)

is stable if the maximum eigenvalue of T is less than 1, i. e.,

p (T) n max Ieigenvalue of T(X k)l < 1

p (T) is the spectral radius of T.

Rate of Convergence

Iterating Equation (9), we get the solution:

Yj+1 = Tl Yi + (a + (3) b (k)	 Tk D cc
k= 0
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Let the error vector Ej+ l be defined as:

Ej+ I	 Ymin	 Yj+ 1

where Ymin is the vector that yields the minimum moan -square error.

It can easily be shown that the square of the norm of E is bounded at

each stage as follows:

!I Ej+1112 < p2(j-1) ( T ) 11811 2 	 (12)

where 6 is a constant vector:

G =y	 -T
 - TY1

p(T) = spectral radius of T.

From (11) we have p(T) < 1. The ratio of the norm of E at two consecutive

stages is approximately:

I IEj+11 I/ I IEj I I a p ( T) I I I 11	 (13)

Equation (13) yields the asymptotic rate of convergence. It shows that p(T)

must be made as small as possible for fast convergence.

If the roots of T are complex, then:

p ( T ) = IaXk l 	 (14)

Therefore it becomes easy to set p(T) by controlling only 	 The additional

requirement which guarantees complex roots is:

4 (3 kk > (1 - a Xk)2	(15)

It is seen immediately that we must have P > 0. (3 k is boundetl as

follows (combining 14 and 15);
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(1 _ a Xk)2
< R plc < 14

Equations 7, 8, 16 must be satisfied to guarantee good performance of the

S. O. G.

Selection of (a) and (D) for Stabilit

Case of known G

When G is known it is easy to estimate Xmax ' we have [5]
n

Amax < 1 < max < n	 Gi j

Coefficients (a) and ((3) are selected to satisfy equations (7) and (8)

for max . They are automatically satisfied by all the other eigenvalues.

This technique for selecting (a) and ((3) can be used in computer simulation.

There is no need to calculate the eigenvalues.

Case of unknown G

For an adaptive system, G is generally unknown. In this case it is

necessary to estimate Xmax by an initial search procedure. The search

procedure is as follows: Start with an x10 Then a search is made along the

steepest descent direction, i. e.

x = x  - kjo

k > 0

k is increased until a minimum of e 2 is obtained. At that point we have:
t

k = g° 10	 (1 7)
Io G to

al - < k < ^l

max	 min
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e i = (_(' i + a 
^i -I )

E l e i 2 = E ^i l 2 [l +(	 )2,
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whence

where

aG)xi - (3Gxi-1+(a+(3)a -aei(I-

el

We than set	 a t- k, P = 2 For systems where	 X max / Xmin < 2, the

values of a and 3 so obtained will satisfy the stability requirements ;' ` and

(8)•

For systems with large X max min^ A	 ratio, there is a possibility that

unstability might occur. In that case, one would start again at a now starting

point, the procedure being repeated until proper values are fouri\J,

The search technique just indicated is exactly- similar to tht , fifa

stage of the Fletcher-Reeves L21 algorithm. This suggests that Sn?s tijul€I

also use the first few stages of the F-R algorithm in the search C pT- (a) and

((3). The search is stopped when a stable combination is found.

S. O. G. with Noisy Gradients

In practical application of the S. O. G. algorithm to equalizers, the

gradients are obtained by a correlation operation between the error signals

and the appropriate delayed input. Under these circumstances,

Ri _ 26i + ji

where pi is the noisy measurement of the gradient .&i corrupted by a noise
2	 2vector, _'i w^iich is assumed to have zero mea.-A E 4ji 	 _	 , and in-

dependent of each i.	 It is further assumed that	 isi independent of the tap

gains x. Then substituting these noisy gradients into the algorithm (3)

yields, after collecting terms,



P

J
li

t

Equation (18) may be decoupled, by applying the diagnolization transformation,

P as above. Writing the result as a first order equation, we obtain an equa-

tion similar to (9) driven by a random sequence. Iterating this equation,

one obtains an equation similar to (10).

1- 1 	 j=1	 _

Y(k) = T1 Y1 + (a+ P)b (k) 71 Tk DC + a V T k Df	 (21)
j+1	 k= 0	 °	 k= 0	 k

where f  is a random sequence linearly related to Ek, Now since p(T) < 1,

1

J T 	 = [ I - Tl -1
] [ I - T] -1

k= 0

The non-random component 0. of Y<, obtained by subtracting the mean, is
7

a E T  D f k	 (22)
k=0

we will show in Appendix (II) that the near squared value of 62 is bounded as

follows when the eigenvalue of T are distinct

2 2	 2	 t

E ^^e^^ 2 < 
2aN	 [1+(^) ]	 DD	 a :/--0	 (23)

1 - p (T)

The matrix T is a 2 x 2 matrix and its eigenvalues are distinct except for

the rare situation when the discriminant (1 - a ak ) 2 - 4p Ak = 0, all Xk. The

S. O. G. gradient, in fact exhibits its best performance when the eigenvalues

of T are complex. Consequently Equation (23) is valid for all practical

situations and the only condition required to maintain the right hand side

finite for any N is that p(T) < 1. But this condition, as was shown, is equiva-

lent to the Shur-Cohn criterion for dynamic convergence. Hence, dynamic

convergence insures stochastic boundedness.
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Commuter Simulation

The performance of the S. O. G. is investigated by simulation on a

digital computer for a. system where S(t) is a raised-cosine pulse defined

as

S(t) = 2 (1 + cos 2 T 
t

) - 2 < t < z

The pulse has peak level (h) and width L. The raised-cosine pulse is very

convenient for simulation because of its finite width. This pulse is also

used '_n practical data communications

The results for the simulation for noiseless observations are shown

on Figures 4 through 7 for an 11-tap equalizer. It has been shown by Collr7j

that an 11-tap equalizer yields a performance close to optimum, when the

isolated pulse S(t) is a raised-cosine.

For all curves the rate of convergence is plotted with respect to the

coefficient (a).	 The coefficient (p) is treated as a parameter.	 In the F. O. G.

algorithm (3 is equal to zero.

The rate of convergence is the number of iterations, required to

equalize within a given accuracy of the final SNR. The starting point is the

same in all cases, namely, the center-tap weight ij set equal to unity, all

other tap-weights are set to zero.

The intersymbol interference distortion is classified as small

	

( max< 2) , moderate ( ^max z 5 ) , and large ( Amax	 10).
min	 min	 min

This classification is from the point of view, of the equalizability of the

clia.nnel. When the ratio Xmax is as large as 20, it turns out that the
min
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spectral radius of the T matrix corresponding to the smallest eigenvalue

Amin is very close to unity. This is caused by the fact that (a) and (p) can-

not be made too large for stability reasons. In fact, in practice we have

aXmax < 2, Pmax < p. In the expression for p(T) a small value of

• X yields a p(T) close to unity. Consequently when the ratio is greater

than 20 the channel is practically unequalizable.

Figure 8 shows that equalized and the equalized SNR versus TL'
The data rate is 1	 The simulation is performed for various values of

L. The intersymbol interference in- 	 when L decreases. Table-1

is a tabulation of the eigenvalues of G for various T	 The ratio of Amax

min
is greater than 20 for L equal to or less than 0. 3. Figure 8 shows that

the SNR starts dropping rapidly above 0. 3.

The final SNR accuracy for the moderate and large distortion cases

is 0. 5 db (10%). For the small distortion case is is 0.1%.

The important points of the simulation are:

1. The S. O. G. is quite insensitive to variations in (a).

2. The behaviour of the S. O. G. at moderate and large distortion

is different from its behaviour at low distortion.

At low distortion, there is an optimum ((i) just as predicted by the

analysis. At moderate and large distortion large (p) tend to give better1
performance. This could be explained by the fact that the S. O. G. tends

to locate a ridge and ride along it towards the minimum. In these situations

the asymptotic formula for the rate of convergence is not quite applicable.

Improvements is rates of convergence vary from 1. 25 to about 2J1 for the

large distortion, and from 1. 5 to 3/1 1 for the moderate distortion case.

Performance with Noisy Observations

The rates of convergence with noisy observations was also investigated
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for the low distortion cast (T/ L = 0. 4). The noise component in the

gradient corresponds to and initial SNR in the largest component of about

40 db. In the S. O. G. a and P were set equal to 0. 01. In the F. O. G. a

was set equal to 0. 02. This was done in order to have the situation where

the effective corrective action would be about the same strength in the

absence of noise. The criterion for convergence was that the SNR should

be within 0. 2 db (5%) for the final value for more than 90% of the time.

The results `abulated in Table 2 show that the S. O. G. is 5 times faster

than the F. O. G.



Appendix I

Referring to Figure 1, at the input to the equalizer we have-

V(t)	 )J O Il S(t - nT) + t7 (t)
n

where 0 = + 1 represents the independent sequence of binary svmbols 1,
n

or 0 constituting the data bit-stream.

rl(t) is the noise procedd into the TDL.

The error at sampling instants is

e = O o VR - Y( o ) = O o VR -	 x(J) v(j)

j

where V  is the peak reference voltage.

The mean-square error is, assuming that the data symbols are un-

correlated and that the noise and data usocesses are urcorrelated:

e 2 = E { e 2 = VI + 2 xt 	G x - at x

The matrix T is the correlation matrix of input signal and noise:

J:
G(i, j) = Z	 RS (-j -n) RS (-k -n) + 2 Rn (-j -k)

n

RS (k) = sampled autocorrelation function of isolated pulse S(t).

Rn (k) = sampled autocorrelation function of the noise process.

The components a (k) o: the vector a is:

a (k) = 2 V  S(-k)

The mean-square error e 2 can be expressed as follows by a simple

manipulation of the expression shown previously:

2 = (e )2	 2+ De 	 + No
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where:

e = mean of the error = VR - V x(D RS (-j)
j

D 2 = mean-square distortion (intersymbol interference)

D2	 = J	 x(i) x(k)
RS (-j -n) RS (-k -n)

h	 0	 j	 k

N	 = Output noise power
0

N o = )	 X(j) x(k) Rp (j - k)

j	 k

Signal-to-Noise Ratio:

The output signal-to-noise ratio is defined as'

(90 Y(o) )2	
(VR _e)2

SNR =	 -
D2 + No	

e2 _ (e)2

When e 2 is minimum, we have, assuming G is nonsingular,

X = G -1 a

e2	
= V2
	 1 at C; -1 amin	 R 2 —	 —

Z

e= V	
1	 at x= a min _ 1

	

R 2 V 	 V 

The SNR corresponding to the minimum is:

V2
SNR =	 R - 1

e
2
min
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Appendix II
	 Bound on E I I e I 12

t

i
L
I

The random component 8 j of Y. is
j-1

O j = -a	 Tk D f k	 (II. 1)
k= 0

Let D k, then E I O i 1 2 is bounded if E I I T^ k I 1 2 decrease

faster than ( 1 ).k

Now, E I A j I 2 = a2 E	 (T 1 ^ i )(
Tk Yt k )	 (11. 2)

where E { Ei µk^ = Sik El I ,Lk 112

then	
t

El Le I I 2 = a2 k E{ Bk Bk Le k( < a2 p(Bk) El IL1kI 12	 (u .3)

where
t

B  = (Tk) T 	 (II.4)

and

p(Bk = max ( L i ), l i an eigenvalue of Bk

Now

E I ILI I 2< p (DtD) E I If i I 
I2	

(II. 5)

1	 a	 2
DtD	 a (a2 + 1)	 and has eigenvalues a Z 2 + -L a 2 + 4

where	 a	 (1 - a Xk)

hence for the range I a I < 1, (the conditions for dynamic stability)

1 < p(DtD) < 3 + 4
2

next,

EIIf;II2=2E II i II
2[1+(Q)2] = 2

N2 [1+(P) 2 ] (u. 6)
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(II. 7)
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Then
2 2

El 1_2 i 11 
2 < 2a	 `N	 1 +( ^)2 J p (DtD) k P (B k )

It remains to express p(Bk)in terms of T. But it is apparent that the eigen-

values of B  are simply the squares of those of T. Hence p(B k) = p 2 (T) and

substituting into (II. 7) we get:

2

	

EIL•	
2	 2

II2 = 2a ? [1+(^) ] 	D t D
	i 	 N	 a	 1 - p2(T)

which is equation (23).

(II. 8)



to IM
O

M
NM
O

W

z
W M(U I
H 	 O°

r	 .

N m d' rn %O r- w a% O '-1.y r1.r .r
(l

H

I I

H

_gg_

w

N MIN NNNNNNNN0 0 0 0 0 0 0 O O O O

WWWWWWWWWWW
Nro ONNm OCR 0

Ll 
N

h .D ch .p , f' M ^ ^-+ .-y U NC`c0o r— m ON Om. m
m DCO N r- ^V OV M^ C' CO O .D O M lfl rl5 N MV'a0 H NNOM^'^O ^•-^
^p m In M ^ V' N N ^y ^"^ ^'^
0 0 0 0 0 0 0 0 0 0 0
.-i N M d" th ^D r` X C` O .r

NNN NNNNNN^+•-+0 0 0 0 0 0 0 0 0 0 0

WWWWWWWWWWW
^D O`CN ON^D
CA N D`N d1 ^-+I^M m^DO
M rn .D m ID rn D` N vti
O ^Dv a`m.D NQ`N N r0p rfl .D m H N r- Q` m N
^D C rn m mm dl r- U11*4
N ID  M V m N ^	 C`
66666666C;66

'-1 N m oqH m .D r— 00 C` O

N NNNNNNN^I .-I .r00000000000
WWWWWWWWWWW
dI NCOOOC^OONONO N
In O, M N m N C` N r+ Q,M
O OH r- m.D[Y M U)`1 r-
N1D OOm r- ID NNO'd1
w O.Dx"N H Q`Nvmr N  Q`^omM eM NN C,CS w ND to d' m N Q1 In M

006 C; C;6 000

r-1 N m ^M rn .D [^ (b C^ O H.^ H

a

0
N

n1

a0
0
O.,r
F
rtl

M
Ow
m
v

N

q

M

W

a^

a
N
H

mMM NNNN^o-I C'O0 0 0 0 0 0 0 0 0 0 0

WWWWWW .=WWWW
m r• N 	 Nxv CuN v mv

N	 N NN 0 10m (1-0m	 1
D N .-+ .-i .O M l^ O 00 ^ -+

0 m Or- OOmJa- U-)vM
O tf)N NOM to O r- a`er
C, N .D N N r— rn m . to

N 00 " N v .-+ 14^ rn
OOG^ 00000000

N N N N N N N N N N N
0 0 0 0 0 0 0 0 0 0 0

WWWWWWWWWWW
I	 O	 O	 0%C`" 

M 
%o" 

N 
w 0wN

rn ^M^Def I 	COO•'I OOm
^ OHO d1 r-1M Or7M ti00^N

r-1 C, r- N d' O C, [`- 'cr N
O r-N a, t- r-1" m 0 t wN

rnmwOONt-0%"N"
%rvm"mmNNNNN
0 0 6 0 0 0 6 C 6 O O

r



-89-

t

a p No, of Iterations

S. O. G.

F. O. G.

0. 01

0.02

0. 01

0. 0

22

110

Table 2 Convergence with Noisy Observations.

T/ L = 0. 4, Initial SNR = 40 db.
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