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Paper presented at AIAA Seventh Electric Propulsion Conference, 
March 3-5, 1969, Williamsburg, Virginia. 

THEORETICAL ANALYSES OF ELECTROTHERMAL THRUSTERS 
WITH SUPERSONIC HEAT ADDITION* 

+ . 
by Harry I. Leon ++ 

and William R. Mickelsen 

Colorado State University , 

ABSTRACT 

Theoretical performance analyses are presented for an 

electrothermal· thruster using lithium propellant with a 

combination of radioisotope and electrical energy sources. This 

thruster concept allows the lithium propellant to condense in 

the nozzle and uses the latent heat of vaporization for increasing 
the exit velocity. 

Specific impulses of greater than 500 seconds are predicted 

with plenum temperatures below 2250°K and with electric power/ 

thrust ratios of less than 3 watt/mlb. 

INTRODUCTION 

The performance of.existing resistojets is limited to 

specific impulses below 300 seconds with propellants of ·interest 
such as ammonia1 • A higher specific impulse is required if 

resistojets are to be comp~titive with other propulsion systems 
for future applications. The analyses reported here show that 

resistojet specific impulse might be incr~ased greatly by means 
of supersonic heat addition. 

A fundamental limitation to the specific impulse of 

conventional resistojets is the practical limit for plenum 

temperature, which depends on the materials of construction and 

on the type of propellant. However, if more heat were added to 

the supersonic stream, it is theoretically possible to increase 

the exhaust velocity without incurring excessive materials 
temperature. 

* 
+ 
++ 

Done under NASA Grant NGR06-002-032, Electric Thruster Systems, 
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A number of means of supersonic heat addition were 

considered in the present study. Of these, the most attractive 

means appears to be the partial condensation of the vapor 

propellant in portions of the supersonic stream. For substantial 

amounts of heat addition by this means, the propellant must have 

a relatively high heat of vaporization. In addition the 

propellant molecular weight -must be low in order to obtain a 

high exhaust velocity. A brief review of propellants indicated 

that lithium has superior properties for this thruster concept. 

For example, if 50% of the lithium vapor were condensed in the 

supersonic stream, the total temperature would be increased by 

about 3000°K. With a plenum temperature of 2000°K and 50% 

condensate, the ideal specific impulse would be approximately 

550 seconds. Therefore, the present study was devoted exclusively 

to thruster designs with lithium propellant. 

THE RADIOISOTOPE/RESISTOJET DESIGN CONCEPT 

Only a fraction of the total propellant flow can be expected 

to condense, therefore an appreciable amount of heat of vaporization 

would leave the thruster in the vapor exhaust. Early studies 2 

of the condensing-flow electrothermal thruster concept showed 

that the power/thrust would be high if the heat of vaporization 

were supplied by electric heaters. If the heat of vaporization 

were supplied by a thermal heater such as a radioisotope capsule, 

then the electric power/thrust would be competitive with 

conventional resistojets. A schematic diagram of the radioisotope/ 

resistojet concept is shown in Figure 1. 

The analyses reported here have been directed toward the 

radioisotope/resistojet concept, although much of the work is 

applicable to other thruster design concepts as well. 

In addition to specifying lithium as the propellant, a 

nominal thruster mass flow rate of 0.0074 gm/sec was used throughout 

the analyses. At a specific impulse of 600 seconds, the thrust. 

would be 10 millipounds. 
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BASIC THEORY OF HEAT ADDITION TO SUPERSONIC STREAM 

The increase in velocity of a gas flowing through a nozzle 

follows the first law of thermodynamics: 

h 0 = h + v 2/2 (1) 

where h is the total enthalpy, h is the stream static enthalpy 
0 

and v is the velocity of the gas in the nozzle. With careful 

choice of nozzle geometry, heat may be added to the stream to 

increase the total enthalpy, thereby providing a velocity 

increase. Heating of the flow in the supersonic section of the 

noz·zle was found to be more desirable than in the subsonic 

section sinqe the ove+all size of the nozzle would be smaller. 

It is well known that if heat is added to a constant area 

of supersonic flow, the Mach Number will decrease toward unity. 

However, if the nozzle area is increased at a sufficient rate, 

the additional energy will cause an increase in velocity, as 

given by 3 

dv 
v = (/1][ dA r~l M2) dTo 2 dmv ] 

i;:- - (1 + 2 To - (1 + yM ) 
mv 

(2) 

Where A is the cross section area of the stream, y is the specific 

heat ratio, M is the Mach Number, T is the total temperature, 
0 

and m is. the mass flow rate of the vapor stream. From inspection v . 
of equation (2), it is evident that the stream velocity in 

supersonic flow will increase if: 

(3) 

For condensing flow, dm is negative, therefore the stream 
v 

velocity will increase if: 

dA > ( 1 + TI M2) 
A 2 

dT 
0 - (1 + 

To 
(4) 
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The theoretical improvement in exhaust-velocity using heat 

addition in the nozzle is shown on Figure 2, where T02/T 01 is 

the ratio of stagnation temperature in the nozzle to stagnation 

temperature in the plenum. It should be noted that although the 

total temperature in the nozzle can be several times greater than 

the total temperature in the plenum, the stream temperature T can 

be lower due to the increase in velocity. This is shown by the 

equation for the definition of total temperature: 

T 
0 

v2 
= T + ~ 

p 

where cp is the specific heat of the propellant. 

BASIC THEORY OF NUCLEATION 

(5) 

By proper choice of plenum temperature and pressure, 

condensate nuclei will begin to form at an appreciable rate-in 

the supersonic section of the nozzle. The plenum temperature 

and pressure must be chosen such that the conditions in the 

throat of the nozzle will be below the critical temperature and 

pressure of the propellant. The propellant vapor was assumed to 

be a perfect ideal gas with isentropic expansion to the point 

where nucleation begins, as shown in Figure 3. 

For lithium vapor, an appreciable nucleation rate was found 

to begin at a saturation pressure ratio of about four. The 

critical-droplet radius r* for homogeneous nucleation is 

given by4 

r* (6) 

where a is the surface tension, pR. is the liquid density, R is 

the gas constant, T is the vapor temperature, pv is the stream 

static pressure, and ps is the saturation pressure. 

The critical-sized droplet can be thought of as the maximum 

of Gibbs free energy of a particle as shown in Figure 4. Thus, 

if a particle is less than critical size r*, it will reevaporate; 

on the other hand, if it is greater than r*, it will. have the 

tendency to continue growing. 
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The rate of nucleation J · of critical-sized droplets in a x 
unit volume of vapor is4 : 

. 2 ~ 

/ Pv J 1 f 2 µa J 
\kT PR, \ 7TNA exp 

f _ 41Tar* 2 J . 
\ 3kT . (7) 

Where k is Boltzmann's constant, NA is Av~gadro's number and 
µ is the molecular weight. The number of nuclei SJ formed per 

unit distance travelled in the nozzle is: 

(8) 

where !::.V is the volume of an interval in the nozzle and t::.t is 

the time required for the flow to traverse the i~terval t::.t: 

!::.V = A !::.R. 

-/::.R, = v !::.t 

(9) 

(10) 

where A is the average cross-sectional area of the nozzle in the 

interval, and v is the average velocity in the interval. 

GROWTH OF CONDENSATION NUCLEI 

Once the critical-sized droplets are formed, they begin to 

grow as. a result of collisions with the vapor molecules, some 

of which. condense on the surface of the droplets. In a 

Maxwellian velocity distribution, the mass rv of vapor droplets 
striking a unit area per second is 5 : 

(11) 

Only a small fraction of the atoms will stick to the nuclei, 

therefore the mass rate of arrival rv must be multiplied by a 

sticking coefficient a to obtain the rate of mass increas.~ r a 
per unit area.: 

(12) 
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5 6 The sticking coefficient a is ' : 

- T) 
a = 

f 1 -

( 13) 

where cpn is the specific heat of the liquid, T. is droplet: 
"' . p 

temperature, T is. the average vapor temperature in the nozzle 

increment, hfg is the heat of vaporization, cr is the surface 

tension, r is the droplet radius, and Pa, is the liquid density. 

It should be noted here that the sticking coefficient a 

accounts for both the reflected incident atoms, and for atoms 

that are evaporated from the droplet. The expression for a 

given by Equation (13) is valid only for quasi-steady growth models. 

The rate me at which nucleation and growth occurs in any 
particular nozzle interval n is: 

(14) 
•, 

where IbJ is the mass condensed due to fresh nuc·leation in the 

nozzle interval n, Ibao is the mass condensed in the nozzle 

interval n onto droplets which were originally formed by 

nucleation in the first nozzle interval, and ma is the mass 

condensed in nozzle interval n onto droplets which were originally 

formed by nucleation in the nozzle intervals 2 to n-1. 

Mass mJ due to fresh nucleation is: 

m = p n (! 1Tr* 3). /jV J (15) 
J "' 3 x 

where r* is given by equation (6), /jV is the volume of the nozzle 

interval n, and Jx is given by equation (7). 

Mass Ibao condensed onto droplets that originated in the first 
nozzle interval is: 

(16) 

where r a is·. given by equation (12), S Jl is given by equation ( 8) 
evaluated in the first nozzle interval, and e is the collision 

cross section: 
. 2 

e = 41T(r + r) 
m 

(17) 
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where r is the lithium atom radius, and r is the drop radius m 
accounting for the growth through nozzle intervals 2 to n-1. 

Mass m condensed onto droplets that originated in nozzle a 
intervals 2 to n-1 is: 

n-1 

Illa = r a ( Ii sJi} 0 (18) 

where e is an average cross section for droplets in the nozzle 

interval n: 

e = 41T(rrn + r) 2 (17) 

where r is an average of droplet radii for the drops originating 

in nozzle intervals 2 to n-1. By approximation, the radius r 
was determined by assuming that this class of drops had grown to 

1/2 the mass of .drops that originated in the first interval: 

1/3 r = (1/2) r (18) 

When the vapor condenses, the latent heat of vaporization 

is released to the vapor stream. This heat causes the total 

temperature to rise, as given by the equation below: 

m h _. c fg 
(19) 

mtot cp 

where m 
c is given by equation ( 14) I Ibtot is the total propellant 

-flow rate, and c is p an average specific heat for liquid and vapor: 

- (20) c = F cpR. ·+ (1 - F) cpv p 

where F is the fraction of 'total propellant flow which has been 

condensed. In equations (19) and (20), it is assumed that the 

temperature rise of the droplet is the same as the increase in 

total temperature of the vapor stream. This approximation was 

considered adequate for the purposes of this preliminary analysis, 

but future work should include a detailed heat baiance of the 

droplet growth process for determination of the actual rise in 

droplet temperature. According to a previous theoretical 
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analysis6 , 'the drop temper.ature should be close.· to .the· saturation 

temperature. for the local streain static pressure. Since stream 

static pressure is continuously decreasing through the nozzle, 

the droplet temperature may actually decrease, . and if this is 

true then the assumption used in equations (19) and (20) is 

conservative. In addition; future work should include the effect 

of momentum interchange between the droplets and the vapor stream 

on the stream total-temperature increase. 

The combination of the total temperature change, the 

condensation fraction and the geometry (area change of the nozzle) 

can be used in Equation (2) to determine the velocity in an 

increment of the nozzle. 

METHOD OF ANALYSIS 

Analysis of the condensing nozzle flow was done on a CDC-6400 

digital computer. An iterative method was used to solve th_e 

theoretical equations 

length: 

over many very small intervals of nozzle 

1. 

controls 

onset of 

A conical nozzle geometry was assumed, with switching 

to change the expansion angles at stations such as the 

appreciable nucleation. 

2. Plenum temperature and pressure were assumed. 

3. Isentropic flow was calculated along the nozzle to the 

first interval where appreciable nucleation rate occurred. 

4. The temperature T1 , the pressure p 1 , and the Mach Number 

M1 were assumed constant through the first interval during the 

first iteration. 

5. For the first interval, the condensate mass, the total

ternperature rise, and the velocity change were calculated based 

on the given nozzle area change. 

6. From the velocity change, the temperature T2 , the 

pressure p 2 , and the Mach Number M2 were determined for the end 

of the first. interval. 

7. Returning to the start of the first interval, the 

condensate mass was re-calculated using the average values 

(Tl + T2 )/2 and (pl + p 2 )/2. 
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8. The iterative process was repeated until the average 

properties of the interval, (T1 + T2 }/2 and (M1 + M2 }/2 were 

negligibly different from those of the previous iteration. 

A number of assumptions were made in the analysis: 

a. The lithium vapor was assumed to be a perfect gas, which 

is very nearly correct since lithium is monatomic. 

b. The drops were assumed to travel at the vapor stream 

velocity. Experimental measurements have shown that particles 

of less than 10-S cm diameter move at stream velocity5 , and that 
. -4 

particles as large as 10 cm diameter move at approximately 

99% of the stream velocity6 • Droplet diameters calculated in 
-6 . 

the present analysis were less than 10 cm; therefore, the 

stream-velocity assumption appears to be valid. 

c. Boundary layer thickness and friction were assumed 

negligible. Because of the nozzle dimensions, the favorable 

pressure gradient, and the accelerating flow, this assumption 

may be valid but should be verified in future work. 

d. Convective heat transfer from the stream to the nozzle 

walls was not considered. A regenerative propellant flow design 

might be used to prevent excessive nozzle wall temperature. 

Future work should include this heat transfer in the nozzle-flow 

heat balance. 

e. Radiation heat transfer from the walls to the droplets 

in the stream was not considered. With high condensate fractions, 

this might return appreciable heat to the nozzle flow. 

NOZZLE DESIGN AND PERFORMANCE ASSUMING 

NO PARTICLE GROWTH 

In the early phases of the present study, a conical nozzle 

having a constant expansion angle was considered. It was soon 

found that the condensation fraction increased as the angle 

of the nozzle was decreased. In fact, it was found than an 

extremely small nozzle half-angle of about one-half degree gave 

the highest fraction of condensate. For example, a nozzle half

angle of 1/2-degree gave approximately twice the amount of 

condensation as a nozzle having a five-degree expansion. However, 

nozzle designs with these small expansion angles required 
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extremely long nozzle lengths to convert the thermal energy of 

the lithium propellant into kinetic energy. It was also found 

that since most of the condensation occurred in a relatively small 

section of the nozzle, the nozzl.e expansion could be increased 

after the high-condensation region. This increased angle after 

the condensation region greatly shortened the nozzle without 

much loss in performance. Furthermore, it was found that the· 

nozzle could be shortened further if the angle upstream of the 

condensation was increased (to between· 1 to 3 degrees) since it 

had no effect on the condensation. A typical nozzle design with 

these features is shown on Figure 5. The stations where these 

nozzle angle changes took place was found to have a strong effect 

on the total length of the nozzle. If the larger angle upstream 

of the nozzle-condensation region was allowed to penetrate the 

condensation region, the nucleation rate would increase faster 

than with the smaller angle in the condensation region. Thus, 

the nozzle would be further shortened if the upstream angle was 

continued to where the nucleation rate approached the maximum 

value. However, if this larger angle was continued too far, the 

region of condensation in the nozzle would be reduced in extent, 

thereby reducing the condensation fraction. 

The effects of nozzle angles on th~ condensation fraction, 

the nozzle length, and the specific impulse for a particular set 

of plenum conditions is shown in Table I. In each case, the 

nozzle-angle change from e to e was done when the nucleation 
0 c 

rate reached the values shown in the table. The nozzle angle 

was changed from ec to SE when the critical radius of the nuclei 

decreased to 1 angstrom. The nozzle length was terminated when 

the static temperature approached 60°K. 

From inspection of Table I, it is evident that nozzle 

geometry has a marked effect on nozzle length. It is notable 

that the results reported here do not necessarily represent 

optimum nozzle geometries. A fully optimized nozzle geometry 

would be contoured rather than have the fixed cone angles shown 

in Table I. 

A summary of nozzle performances is shown in Table II for 

ranges of plenum temperatures and pressures. The vaporizer 
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temperature is shown for each plenum 

vaporizer is assumed to generate the 

these results do not represent fully 

pressure; that is, 

plenum pressure. 

optimized nozzle 

the 

Although 

geometries, some general trends of nozzle performance can be 

seen. Nozzle length is greatly reduced when higher plenum 

pressures (corresponding to higher vaporizer temperatures) are 

assumed. As expected, speci.fic impulse is increased by higher 

plenum temperature. 

Electric power/thrust ratios; based on the radioisotope/ 
resistojet concept shown in Figure 1, are also listed in Table II. 

In this concept electric power is used only to heat the 
propellant vapor from the vaporizer temperature to the plenum 

temperature. At a specific impulse of 500 seconds, an all
electric resistojet with an efficiency near 100% would have a 

power/thrust ratio of 11 watt/mlb; therefore, the theoretical 
performance of the radioisotope/resistojet concept is most 

attractive even with no particle growth. 

NOZZLE DESIGN AND PERFORMANCE WITH 
PARTICLE GROWTH iNCLUDED 

ExperimentsS,G,?,B done on condensation in nozzles have 

shown that the droplets grow after nucleation. The growth of 

the droplets was found to considerably increase the total 

fraction of the condensate in designs of nozzles similar to 

those shown in the non-growth case. It was found, however, that 

the geometry for the non-growth case· would not be the best design 
for the nozzle with.growth. 

After several attempts to modify slightly the geometry of 

the non-growth design, it was found that the optimum.design ,of 

the nozzle with growth would be quite different from its non

growth counterpart. The required design changes in the nozzle 

are due to -~he following factors: 

1. The overall rate of condensation is increased, In 

order to utilize the increased heating of the stream, the nozzle 

angles in the condensation region must be increased beyond those 
of the non-growth case. 
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2. Large nozzle exit angles cannot be used, because the 

rate of growth increases greatly when the stream temperature 

is low. 

3. Nucleation and particle growth occur in different 

regions of the nozzle. The nucleation occurs as soon as the 

saturation pressure ratio is greater than 4, while growth occurs 

after nucleation. The heat· released to the stream during growth 

tends to stop the nuclea,tion. Further analyses may provide 

nozzle designs in which optimum conditions exist for both 

nucleation and growth. 

As an initial step in developing the_ geometry for the 

nozzle, the performance was studied with a constant angle 

expansion. This analysis of a constant angle expansion-

nozzle was made for a range of plenum temperatures and pressures. 

A summary of the results is shown in Table III. 

The specific impulse was found to be greater by about _ 

5 percent, while the required length of the nozzle was found to 

be considerably shorter than for the non-growth counterpart. It 

is noted that the effect of growth on improvement of performance 

was the greatest for the lower plenum temperature cases. 

The best performance was found when the half-angle of the 

nozzle was around 1 degree. The best choice of the angle was a 

function of the plenum pressure. If the plenum pressure was 

low (below 1/2 atmosphere), a slightly larger angle would increase 

the performance; while for higher plenum pressure, a slight 

decrease in angle improved the performance. 

It should be noted that the work·on the nozzle with growth 

is in the preliminary stages. Based on past experience on the 

geometry study of the non-growth case, the specific impulse can 

be expected to increase by about 5 to 10 percent above those 

presented in Table III as the effects of geometry on the design 

are better understood. Thus, it is estimated that, with a plenum 

temperature as low as 2000°K, a theoretical specific impulse 

of 550 seconds will be possible. 



13 

SUMMARY OF RESULTS 

Theoretical performance of the radioisotope/resistojet 

thruster concept with a lithium-condensing nozzle is shown in 

Figures 6 and 7 for vaporizer temperatures of 1300 and 1500°K 

respectively. Electric power/thrust ratios are shown for both 

the nucleation-only analysis, and for single-angle nozzles with 

particle growth. Although these results are preliminary, it is 

clear that particle growth provides markedly higher performance. 

Also shown in Figures 6 and 7 are the power/thrust ratios 

for ideal all-electric thrusters with 100% thruster efficiency. 

From this comparison, it appears that the lithium-condensing 

radioisotope/resistojet concept has theoretical promise of high 

performance. 

CONCLUSIONS 

The theoretical analyses reported here indicate that the 

lithium-condensing radisisotope/resistojet thruster concept 

should have performance much superior to existing electrothermal 

thruster concepts. Specific impulse values of at least 500 

seconds appear possible with ideal electric power/thrust values 

below 3 watt/mlb. 

Particle growth provides definite improvement in theoretical 

performance. Further work is being done to develop nozzle 

geometries that optimize the competing processes of nucleation 

and ensuing particle growth. It is anticipated that theoretical 

specific impulse values as high as 550 seconds will be found for 

fully optimized nozzle geometries with realizable vaporizer and· 

plenum temperatures. 
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FIG. 1 - The radioisotope/resistojet concept. 
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FIG. 2 - Theoretical exhaust velocity in supersonic flow of lithium 
with supersonic heat additiqn. Plenum total temperature, 
T01 = 2500°K; stream total temperature, T02 • 
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--------all-electric thruster -- --
with nth = 100% -----------------------

plenum 
temperature, 
TOl' OK 

nucleation only 

~500 
2250 

with particle 
gro th 
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0 ...,__,__,__,..._ __________ __,__,_... __ ._. ____ .___,__,_..._ ______ .,, 
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Specific imp~lse, I, sec 

FIG. 6 - Comparison of theoretical performance of lithium
condensing nozzle electrothermal thrusters with vaporizer 
temperature of 1300°K. 
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---all-electric thruster --- --
with· 100% efficiency . -- .-- ..-__ ..---------------

with particle growth 

plenum 
temperature, 
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FIG. 7 - Comparison of theoretical performance of lithium
condensing nozzle electrothermal thrusters with vaporizer 
temperature of 1500°K. 
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ANALYSIS OF JUPITER FLY-BY MISSION 
WITH ELECTRIC PROPULSION* 

by W. R. Mickelsen 

This analysis has been done with the characteristic-length 
method. Because of the approximate nature of the c. L. method, 
the results of the analysis must be used only as rough 
indications of trends, and for specifying values of input 
parameters for more exact trajectory and mission calculations. 

The results reported here are for the following mission
profile factors: 

* 

a. 

b. 

c. 

d. 

e. 

f. 

. g. 

h. 

i. 

boost to hyperbolic excess velocity with SLV-3X/ 
Centaur/Burner II (2336) (Boeing growth version, 
propellant weight = 2336 lbs which is TE-364-4 
being developed by NASA Goddard) (SLV-3X is available 
information on the 12-foot.diarneter currently being 
developed by General Dynamic-s/Convair). 

600-day heliocentric transfer to Jupiter 

initial spacecraft weight W of 630 lbs after boost 
to hyperbolic velocity VH o~ 33,200 ft/sec (corresponds 
to inertial velocity V of 49,200 ft/sec). 

c 

on-board RTG with baseline power of 150 watts electric 

hotel load of 50 watts electric during electric 
thrusting periods 

100 watts electric of "free" power for electric 
thruster system from baseline RTG 

additional RTG units added as needed for electric 
propulsion 

usable payload Wpay defined as: 

wpay = WF - wth - waddRTG - WC 
where·wF =final spacecraft weight at Jupiter 

Wtank = electric-propellant tank weight 

. Wth = weight of electric thruster system 

W addRTG = weight o.f additional RTG uni ts 

W = weight of power conditioning for 
c electric thruster system 

electric thruster system characteristics, from best 
available information, as shown in subsequent graphs. 

special:rep_c>rt submitted to Mr. w. c. Isley, NASA Gpddard 
Space Flight Center, June, 1968. 
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FIRST APPROXIMATION, CHARACTERISTIC-LENGTH METHOD 

(assumes constant-mass vehicle, i.e., constant F and a) 

~all-chemical 
coast ( i . e . , 
thrust) 

- -----

Field-free 
vehicle 
velocity 

v =Jtm 
Area V dt = 

0 

propulsion 
impulsive 

0 
~o~· ------------T;:;::-;-i~m~e------------------

(a) velocity-time plot for all-chemical propulsion (i.e., 
impulsive thrust) 

Field-free 
·vehicle 
velocity, 

v 

area = that area 

all-chemical propulsion coast 

m 

(b) velocity-.time plot for electric propulsion after chemical
rocket boost to VH. 
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DERIVATION OF EQUATIONS FOR CONSTANT THRUST 

HELIOCENTRIC TRANSFER, CHARACTERISTIC-LENGTH METHOD 

field-free 
velocity 

Mission profile: 

a. chemical-rocket boost to VH 

b. electric-stage constant thrust, i.e., acceleration 
· increases from a 0 at -t · ~ O to ae at te 

c. coast from te to tm' where tm is mission duration 

Basic principle of characteristic-length method is that: 

Ll + L2 + L3 = vH,C tm 

where VH C is the hyperbolic excess velocity that an all
chemical' rocket would need to accomplish the mission in 
time tm 

Calculation procedure: 

a. 

b. 

c. 

d. 

e. 

choose launch vehicle 

choose electric thrust, F, and specific impulse, I 

assume several values of VH, using the first approxi
mation as a guide 

for each value of V , find the t required for the 
mission, using the ~irst approxiffiation as a guide 

from te and I, calculate propellant weight Wpr 
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f. from W0 for launch-vehicle Va, and from propellant 
weight Wpr , calculate electric-stage final weight, 
Wo - Wpr· 

Derivation of expressions for L1 ,. L 2 , L3 

Instantaneous acceleration, a, is: 

F F 1 ao 
a = - = mt = 1 = M MO - t 1 - aot 

F/M0 - v. 
J v. 

J 

where M0 = starting mass, m = propellant mass flow rate, 

a 0 = initial acceleration of electric stage, and: 

(1) 

(2) 

The field-free velocity increase, ~VE , achieved by the electric 

stage is: 
t lte t le ao dt 

1n(1 "'ot ) e 
~v = a dt = = -v. - --E 1 - a 0t J v. 

J 0 v. 
J 

-v j [1n (1 
- aote) - ln (1)1 = ( a0 t ) -v. ln 1- v~ = J v. 

J 

= v. 1~(1 _\ t ) (3) 
J O e 

v. 
J 

The length increment L1 is: 

t t t 

L1 =le dt;: a dt =le dt [-vj ln(l - a~:)] 
t 

= -vj[e dt ln(l _ a 0t ) 
(4) 

v. 
J 

Let y 1 -
aote 

then dy 
ao 

dt and when t te = ' = = ' v. v. 
J J 

Ye = 1 -
aote 

and when t v. = 0 , Yo = 1. 
J 
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Using the preceding change of variable, eq •. ( 4)' becomes: 

Ye . 2 Ye . 

I (- ~) ln 

v. J dylny Ll = -v. y dy = _J_ 
J 

Yo 
ao 

Yo 
2 Ye v. 

= _J_ y (ln y - 1) 
ao 

Yo 
2 

[~ - aote) [1n (1 - aote) ~ - (1) [1n ~J 
v. 

·- _J_ (1) -
ao v. v. 

J J 
2 

[{1 - aote) ~n (1 a~:eJJ ao~e 
0 + iJ v. 

= _J_ - 1 + --
· .. ao v. v. 

J J 

' aote) = 
(5) 

But from eq. (3), ln {1 -AVE/v., so eq. (5) becomes: v. ,· J 
J 

2 

[{1 - a~:eJ (-AVE)+ a0te J Ll = l 
ao v. v. 

J . J 
2 [a0te AVE a~:e) 3 v. (1 = _J_ --- -- (6) 

ao v. v. 
J J 

The length increments L2 and L3 are simply: 

(7) 

(8) 
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The following graphs represent the results 
1of calculations done with a simple program run 
on the CDC 6400 at Colorado State University. 
This information is presented in two forms: 

a. electric-stage thrusts of .001, .002, 
• 0 0 4 I • 0 0 6 I • 0 0 8 I • 010 I • 0 14 I and • 0 2 0 
lb, each for a range of specific impulse 
values. 

b. electric-stage specific impulse values 
of 400, 600, 800, 1000, and 2000 sec, 
each for a range of thrust levels~ 
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The following three graphs are the best available 
information on electric thruster systems. Each of the 
three graphs is accompanied with a page of reference 
information. 

Following the three graphs is 'information regarding 
the electrostatic liquid-spray "colloid" thruster,. and 
the lithium isotope/resistojet thruster concepts. 
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Reference information· for propellant tankage 

all tanks spherical configuration 

lithium 

density,· .53; m~p., 4S2°K; b.p., 1590°K. Tank assumed to 
be .010-inch stainless steel (note that titanium would be 
lighter). A 48-inch diameter tank would hold more than 
1000 lb of lithium, and the .010-inch tank walls would be 
stressed to. 60,000 psi by a 50 psi feed pressure. 

mercury 

density, 13.6; m.p., 234°K; b.p., 630°K. Tankage fraction 
assumed to be 3% in upper range, as reported in: 1965. 
Jupiter Flyby Mission Using. a Solar Electric Spacecraft, JPL 
ASD 760-18, March 1, 1968. In lower range, mercury curve is 
extrapolated from cesium curve by using the density ratio. 

ces.ium 

density, 1.88; m.p., 302°K; b.p., 963°K. Tankage fraction 
in lower range from Worlock, R. M.: private communication, 
Electro-Optical Systems, Inc., May 19, 1967.. This information 
is based on actual tank weights for 5- to 40-lb cesium 
propellant loadings, and on theoretical design calculations 
in the intermediate range. 

glycerol 

density, 1.26; m.p., 292°K; b.p., 563°K. Whole curve 
extrapolated from cesium curve by using the density ratio. 

ammonia 

density, .817; m.p., 19S°K; b.p., 240°K. Whole curve 
extrapolated from cesium curve by using the density ratio. 
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Reference information for power-conditioning 
and controls for electrostatic thrusters· 

This information published in: 

1. Mickelsen, w. R.: Advanced Concepts in Electric 
Propulsion. AIAA Paper No. 67-426. July, 1967. 

2. Mickelsen, W. R .. : Auxiliary and Primary Electric 
Propulsion, Present and Future. Jour. Spacecraft and 
Rockets. November, 1967. 

weight of power conditioning and controls. The weight at 30 
watts is for the EOS contact microthruster system given in 
Warlock, R. M., Ramirez, P., Jr., Ernstene, M. P., and Beasly, 
W. E., Jr.: A Contact Ion Microthruster System. AIAA Paper 
No. 67-80, January, 1967. The weights above 1000 watts are 
given in Solar Powered Electric Propulsion Program, Program 
Summary Report, JPL Contract No. 951144, Hughes Aircraft 
Company SSD 6037R, December, 1966. The· rest of the curve is 
an interpolation. 

efficiency of power conditioning. The efficiency at 30 watts 
is for the EOS microthruster·system referred to above. The 
efficiencies above 1000 watts are from the Hughes report 
referred 1to above. The rest of the curve is an interpolation. 
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Mercury-bombardment thruster 
I = 2000 sec 
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Reference information for mercury 
bombardment thruster 

a. Richley, E. A., and Kerslake, W. R.: Bombardment Thruster 
Inveptigations at the Lewis Research Center. AIAA Paper 

I 

No. 68-542. January, 1968. 

b. 1975 Jupiter Flyby Mission Using a Solar Electric Spacecraft. 
JPL ASD 760-18. March 1, 1968. 

5-cm thruster (ref. a). Thruster system weight assumed to be 

wth = 4 lb. At I = 1700 sec, P = 54 watts, nth= .2, F = 2 x 

.2 x 54/16,670 = .001295 newt = .000298, lb, and P. = 10. 8 watt. 
J 

At I = 2000 sec, assuming beam current is the same as at 

I = 1700 sec, F = .000298 x 2000/1700 = .000351 lb. At 

I = 2000 sec, nth = .3. 

15-cm thruster (ref. a). Thruster system weight Wth = 3 kq = 

6.6 lb. At I = 2400 sec, P = 600 watts, nth = .53, 

F = 2 x .53 x 600/23,500 = .0271 newt= .0061 lb. At I= 2000 

sec, assuming beam current is the same as at I = 2400 sec, 

F = .0061 x 2000/2400 =· .00508 lb. At I = 2000 sec, nth= .4. 

30-cm thruster (refs. a and b). Thruster system weight 

Wth = 11 lb. At I = 2750 sec, nth = .60, F = .022 lb. At 

I = 200 sec, assuming beam current is the same as at I = 2750 

sec, F = .022 x 2000/2750 = 0.16 lb. At I = 2000 sec, nth = .57. 

summary 

power to 
thruster, P. 

I, sec F, lb nth watts wth' lb 
~-

2000 .000351 . 3 51 4 

2000 .00508 • 4 552 6.6 

2000 .016 .57 1220 11. 
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Reference information for electrostatic glycerol 
liquid-spray "colloid" thruster 

power to thruster, P is: 

P = (FgI)/(2nth) 

at I = 1000 sec, F in lbs: 

P = 21,800 F/nth , watts 

for nth =;70%: 

P = 31,200 F, watts 

Other power requirements, such as propellant feed and 
neutralizer, are assumed negligible. Thruster weight is 
assumed the same as the Hg-bombardment thruster. 

/ 
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Reference information for 
lithium isotope/resistojet thrusters 

This thruster concept has been briefly reported in: 

Mickelsen, W. R., and Isley, W. C.: Auxiliary Electric 
Propulsion--Status and Prospects. Paper presented 
at AFOSR Fifth Symposium on Advanced Propulsion 
Concepts, Chicago, Illinois. April 8-10, 1968. 

More detailed analyses of this concept are described in reports 
on NASA Grant NGR06-002-032. The analyses are for real gas 
one-dimensional flow,. so the performance will be less than 
reported. However, conservative assumptions have been made 
in the analysis, such as no acceleration of condensate, which 
will tend to compensate for the one~dimensional-flow assumption. 

Thruster weight has been assumed to be 6 lbs, which is 
probably optimistic. 

It is· assumed that radioisotope heating will supply the 
heat of fusion, and- the heat of vaporization of lithium. At a 
radioisotope heater temperature of 1200°K, lithium has a vapor 
pressure of about 10 torr, which is probably too l~w •. A 
radioisotope heater temp.erature of 15000K would provide a 
vapor pressure of about 0.5 atmosphere, which is probably 
adequate. · 

The very high heat of vaporization of lithium provides an 
apparently practical method of heat addition by condensation 
in the supersonic flow. This supersonic heat addition would 
allow the high specific impulse values quoted below. 

A plenum temperature of 2500°K after electric heating is 
assumed to be attainable in the light of resist6jet develop
ments by Marquardt. 

thruster with I = 400 sec s 

Expand to area ratio of 100 and a very low static 
temperature, i.e., non-equilibrium expansion along an isentrope 
to supersaturated conditions with no condensation. 

Alternatively, expand to 1500°K static te~perature at area 
ratio of about 4, condensate 15% of the lithium, then no 
fur.ther expansion. 

With nth = 50%, P/F = B watt/mlb 

thruster with Is = 600 sec 

Expand to an area ratio of 8, condense 40% of the lithium, 
then expand to an area ratio of 10 •. The condensate has a 
velocity of 2300 m/sec, and the vapor has a much higher 
velocity, to give a weighted-average exhaust velocity of 
6000 m/sec. 

With qth = 50%, P/F = 26 watt/mlb 
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thruster with rs· = 800 sec 

Expand.and condensate to an area ratio of 8, then free 
expansion to an area ratio of 3 4, and expand and co_ndense to 
a final area ratio of 45. This might be accomplished by control 
of condensation rate, but probably will require a combination 
of heat addition by condensation and electric power addition 
to the supersonic flow. · 

With nth = 50%, P/F = 34.8 watt/rnlb 

thruster with I = 1000 sec s 

Sarne as for 800 sec, but final area ratio of 120, and 
more electric power addition to supersonic stream. 
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The following graphs and charts are summaries of the 

information presented in the previous portions of this 

report. 
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600-day Jupiter fly-by mission (with c. L. method) 
launch vehicle, SLV-3X/Centaur/Burner II (2336) 

hotel load during heliocentric transfer, 50 watts 
THRUSTER SYSTEM, lithium isotope/resistojet, I = 400 sec 
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PERFORMANCE MAPPING OF 20-CM HOLLOW-CATHODE 
MERCURY ION THRUSTER 
by Dennis Fitzgerald 

and 
Richard Vahrenkamp 

INTRODUCTION 

This report summarizes work done the past year at the 
I 

Space Propulsion Research Facility, Colorado State University. 

A discussion of the immediate goals of the present research 

effort is included, as well as proposal topics for future 

study. Preparations for experiments on a 20-centimeter 
mercury electron-bombardment thruster and present status of 

the facility are described. A detailed explanatio?l of the 
procedure for starting and running the thruster with comments 

on typical experimental problems which may be encountered is 
included. Tables of experimental data and result~ are given 

in the final section. 
In May of 1968, the final arrangements were made to 

borrow a current design, flight-type, electron-bombardment 

thruster from the Jet Propulsion Laboratory in Pasadena, Cali-

fornia. The thruster is a 20-centimeter model utilizing a 

thin (0.076 centimeter) screen grid, and equipped with a hollow 

cathode as an electron source. 

The primary research objective is to map the performance 

of the.thruster over a range in mass utilization from SO to 

100. per cent. This will hopefully produce a set of curves 
which may be used as control parameters in an automatic control 

system. These parameters are necessary in order to control 

the value of mass utilization during a mission. This type of 

control must be used because of the present lack of an accurate 

mass flow meter. An example of a performance curve using arc 

current as a parameter is shown in Figure 1. 

Studies have been made at the Jet Propulsion Laboratory1 

on an identical 20-centimeter thruster equipped with an oxide 
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cathode. These studies indicate that the arc current may be 

used as a control parameter at low thruster efficiencies (low 

magnet current). The use of the arc current is undesirable, 

however, at high efficiencies because the parametric curves 

become double-valued (identical beam current at two different 

values of mass flow). This problem makes it impossible to 

specify the exact operating point (mass utilization). 

It is likely that similar characteristics are present 

when the thruster is equipped with a hollow cathode; therefore, 

it may be necessary to seek another c.ontrol parameter to 

alleviate this problem. Other candidates include the arc 

voltage, and possibly the current to a Langmuir probe held at 

a fixed potential. 

In addition to mapping the performance, there are several 

research topics which are tentatively planned. The thruster 

presently under study at c.s.u. is designed to give optimum 

performance (~100 eV/ion) when equipped with an oxide cathode. 

The results contained in this report support previous findings 1 

which indicate that the thruster performance is worse (~200 eV/ 

ion) when equipped with a hollow cathode as an electron source. 

An attempt will be made to improve the performance by changing 

the baffle configuration, and possibly by applying a potential 

to the1baffle, pole piece, or both. In addition, the pole-piece 

geometry itself may be changed. An attempt will be made to 

relate the purely empirical changes in thruster performance. 

with theory by means of probe measurements of the plasma 

parameters. 

APPARATUS 

This section contains a brief description of the equipment 

presently used at the vacuum facility for thruster operation. 

The 4 x 15 tank, using mechanical pumps and an oil 

diffusion pump, is capable of vacuums to 10-6 torr. The main 

chamber is equipped with a stainless steel liquid nitrogen 

liner for use as a cold trap. Located on both ends of the tank 
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are air-operated valves separating the main chamber·from the 
bell jars. These valves may be operated while the tank is 

.under full vacuum for easy access to the thruster at any time. 
The bell jar presently being used-is 16 inches in.diameter 

and two feet in length. The mounting flange is hinged such 
that the thruster may be positioned as close to the bell jar 

valve as possible. The flange was machined such that single 
as well as multiple feed-throughs could be used at various 

positions. The thruster itself is mounted on four one-inch 

rods about 16 inches from the flange, thus making an easy 

access to all connections to the thruster. 

The thruster and mounts are completely enclosed in a 20-

gauge stainless steel grounq screen. The end of the ground 

screen is positioned 3/8 in. from the accel grid. A plexi-

glass container was installed on the outside of the mounting 

flange to isolate all electrical connections to the thruster. 

The connections were positioned for easy and rapid disconnection. 

Also mounted.on the plexiglass container were two pipettes for 
mercury-flow calibration. The thruster mounting and flange 

set-up are shown in Figures 2 and 3. 
Other work performed was the installation of a liquid 

nitrogen feed line to the vacuum facility. The nitrogen line 

itself is 1/2 in. stainless steel tubing suspended in the 

middle of a 1-1/2 in. copper vacuum line. Sections of the 
feed line that could not be insulated by vacuum were insulated 

by· 1-1/4 in. Armaflex pipe insulation. A mirror was placed 

within the main chamber to observe thruster operation. The 

power supplies and control units were built by Electro 

Optical Systems, and donated to c.s.u. by NASA-Lewis. 

Modifications had to be made to these controls and 

supplies since they were designed for a cesium thruster. Such 
I 

modifications include changing transformers, increasing arc 

supply voltage while lowering the current capacity, and adding 

a keeper and baffle supply. Various automatic control systems 

were bypassed and additional capacitors were added to the 

high voltage supply to reduce ripple. 
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Originally, thermocouple meters were used to monitor the 

temperature of the vaporizers. These meters, however, proved 

to be very inaccurate, and were replaced with a potentiometer 

strip-chart recorder. 

EXPERI.M.ENTAL PROCEDURE 

This section contains a detailed explanation of the 

start-up and running procedures followed in the operation of 

the 20-centimeter electron-bombardment thruster shown in 

Figure 3. Additional information and observations have been 

included in order to acquaint the reader with some of the 

characteristics peculiar to this type of thruster. An attempt 

has been made to give plausible explanations of the causes 

and cures of certain common problems that may be encountered 

by the experimenter. 

The vacuum chamber is pumped down to approximately 10 -5 

torr by means of a 36-in. eve diffusion pump and a liquid 

nitrogen baffle. The vacuum chamber liner is then filled with 

liquid nitrogen, which normally brings the vacuum down to 

about 10-6 torr. The entire pump-down operation usually takes 

about one hour, depending on the initial tank vacuum. 

The thruster start-up procedure may begin when the vacuum 

has reached about 10- 4 torr. This is possible because of the 

relatively long time (~25 minutes) necessary for the vaporizers 

to reach their operating temperatures. It is customary to 

apply extra power to the vaporizers during start-up in order 

to save time. The power is then reduced to a level necessary 

to maintain the proper mass flow. Typical values of 

operating power levels are 10 watts and 8 watts for the main 

vaporizer and hollow cathode vaporizer, respectively. The 

main vaporizer is generally the slower of the two to reach 

operating temperature, and is less responsive to power level 

changes during operation. This slow response is likely due 

to the large conduction path from the main vaporizer to the 

thruster body. 
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The flow is monitored by means of two 1-milliliter 

pipettes mounted on the side of the plexiglass flange cover 

shown in Figure 1. Access holes in the plexiglass allow the 

pipettes to be refilled with mercury during operation~ Caution: 

the high voltage must always be shut off during refilling 

operations because the mercury column for the hollow cathode 

is at 2 KV. A small wire is placed in the pipette during 

filling in order to break up the capillary action of the mercury 

on the pipette wall. 

While the vaporizers are coming up to temperature, the 

hollow cathode heater and the isolator heater are turned on. 

These heaters require about 45 watts and 5 watts respectively. 

At this point, the keeper starting power supply (refer to 

Figure 5) is turned on. The hollow cathode tip is generally 

hot enough to emit electrons; therefore, a few milliamperes 

of electron current will flow to the keeper. The keeper 

start supply is generally on the order of 200 volts, and must 

be capable of delivering at least 30 milliamperes. A series 

resistor is placed in the keeper start circuit in order to 

reduce the keeper voltage as the discharge conunences. When 

the keeper voltage is less than 50 volts, the regular keeper 

power supply takes over, and the starting sup.ply may be shut 

off. The keeper supply is usually turned up to about 50 volts 

beforehand in order to make the transition to the high current 

arc more rapid. 

A discharge will usually commence in the keeper region 

when the mass flow through the hollow cathode has reached about 

one gram per hour. When this occurs, the keeper voltage will 

usually drop to about 10 volts, independent of the discharge 

current. At this point, the keeper current can be reduced to 

about one ampere and the cathode heater may be turned off. It 

is desirable to shut the cathode heater off during runs because 

a considerable amount of thermal power conducts to the hollow 

cathode vaporizer, making it impossible to control the mass 

flow by means of a vaporizer (mass flow versus temperature) 

calibration curve. 
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If the keeper discharge do.es not commence when the 

flowrate is adequate, increase the hollow cathode heater 

supply siowly, and note· the keeper voltage. The keeper 

voltage should drop as more power is supplied to the cathode 

heater due to increased electron emission. Very often, a 

small amount of additional cathode heater power will initiate 
--- .... - -

the keeper discharge. Caution: the cathode heater should 

not be operated for any sustained period at excessive power 

levels (greater than 70 watts for this system). 

If the keeper discharge fails to ignite at maximum 

cathode power and maximum operational cathode flow (~2 grams 

per hour), it is generally an indication that the hollow 

cathode oxide coating is insufficient. The hollow cathode 

must be removed and the inside must be replenished with a 

barium carbonate coating. A solution is prepared by mixing 

a small amount of barium carbonate powder with amyl acetate 

(banana oil) . A few drops of the solution in the hollow 

cathode tube is usually sufficient to provide a uniform 

coating. It is a good idea to put a piece of wire in the 

orifice of the cathode to prevent clogging. After the 

coating is dry, the wire is removed and the tube is inspected 

for clearance. Replace the hollow cathode in position on the 

thruster, and pump down the system again. This procedure can 

be accomplished in about one hour, including pump-down, 

because the system is mounted in a bell jar which is isolated 

from the main vacuum chamber by a 16-in. gate valve. The bell 

jar section is "roughed" down to about 10-3 torr by means of 

a pipeline to the high pressure side of the diffusion pump, 

then the gate valve is opened. 

When the vacuum is at least 10-3 torr, and the vaporizers 

are off, turn the cathode heater on and let it sit for about 

one hour. The high temperature activates the barium carbonate 

and ·converts it to parium oxide (a low work-function material). 

After the activation period, the preceding directions for 

initiating the keeper discharge should be followed. 

It is advisable to replenish the oxide coating beforehand 
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whenever the thruster has been exposed to atmosphere, or when 

the thruster start-up has become progressively more difficult 

(usually after several runs) . 

When the keeper discharge is going and the main vaporizer 

flow is adequate (greater than 2 grams per hour), it is 

possible to start the main discharge. Turn the arc voltage 

up to about 50 volts and turn the magnet current to about one 

ampere. The main discharge will start, normally, but occasionally 

the keeper current must be increased to help it ignite. The 

arc voltage should drop to a value between 25 and 40 volts, . 

depending on the mass flow. The low voltage arc is indicative 

of high mass flow. 

The final part of the start-up procedure is the ion beam 

extraction by application of high voltage. It is generally 

undesirable (and often impossible) to turn the high voltage 

up from zero when the main discharge is going. The accel 

electrode draws excessive impingement current because of the 

poor ion optics at lower than design voltages (less than 500 

volts). The most expedient method is the following: set the 

high voltage variacs at the proper operating voltages (±2 I<V) 

sometime before the main discharge begins. Shut off the high 

voltage and start the main discharge going. Set the main 

discharge at some low but stable operating point (usually 

between 2 and 5 amperes) • The magnet should be set at about 

0.5 amperes. The beam should commence as soon as the high 

voltage is applied. The low discharge current and magnet 

current are necessary in order to keep the plasma density 

low. The plasma tends to bulge out of the thruster at high 

plasma densities, thereby making it difficult to turn on the 

high voltage without overloading the accel power supply. 

If the thruster electrodes are contaminated due to long 

exposure to the atmosphere, or to a buildup of mercury, there 

may be difficulty in achieving the operational high voltage 

iqunediately, due to excessive impingement. In this case, the 

thruster should be run at lower values of high voltage until 

the thruster has decontaminated itself. The electrodes are 
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decontaminated by ion impingement (bombardment); therefore, 

the clean-up time can be minimized by keeping the impingement 

at a maximum. The impingement should be down in the typical 

operating range (5 to 20 milliamperes) before any tests are 

run. 

When the thruster is operating smoothly (stable beam and 

discharge}., there are several things that can be done to 

optimize the beam current at a given mass flow. The keeper 

current may be reduced to improve the beam, but it should be 

kept at a level that will maintain the keeper discharge in 

spite of any changes in the arc performance. The optimizing 

effect of reducing the current seems to approach a point of 

diminishing returns below about 0.5 amperes, but this 

relationship has not been firmly established. If the keeper 

current is too low, however, there is a possibility that the 

keeper discharge will go out when the arc goes out; therefore, 

some optimization of the beam must be traded for more reliable 

keeper performance. All the experimental data in this report 

were carried out at 0.5 amperes keeper current. 

When the mass flow through the hollow cathode is low 

(less than 0.8 grams per hour), the keeper and arc discharges 

appear to be strongly coupled. In other words, rapid changes 

in the main discharge current (oscillations, pulsing, etc.) 

appear to have considerable influence on the keeper current. 

It is known from previous experience that reducing the 

percentage of the total mass flow through the hollow cathode 

must be weighed against the desirability of maintaining a 

stable keeper discharge. 

The most significant changes in the ion beam are 

controlled by the arc current and the magnet current. These 

are essentially the two parameters that are varied in the 

data included in this report. Their influence on the operation 

of the thruster is shown quite well in the data and the 

corresponding results. 
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EXPERIMENTAL DATA AND RESULTS 

The following data were taken primarily to gain 
familiarity with the thruster operation and general charac-

teristics. Although care was taken to calibrate the meters 
beforehand, there were certain discrepancies noticed in the 

arc voltage and current meters after the experiments were 

run. In addition, the beam and accel currents were measured 

on relatively small meters; therefore, the last significant 
digits were interpolated. Although the data may be in slight 

error, it should nevertheless provide information on the 

general trend of certain parameters. These facts should help 

the experimenter design an enlightened experimental approach 
in future studies. 

The data are tabulated in nearly graphical form with the 

arc current and magnet current as coordinates. The blank 

areas are indicative of highly unstable or totally inoperative 

regions. The thruster was not operated above 1.0 ampere beam 
- ---·----

current; therefore, a small region on the table has no 

recorded data •. These high beam current regions-are indicated 
by cross-hatched spaces, and should not be considered as 

unstable operating points. 
The results indicate that the thruster operates at very 

high efficiency when the magnet current is large. Unfortunately, 
it is difficult to maintain this operating level_due to 

difficulty in re-cycling the high voltage after arcing; therefore, 

same of this data was also excluded. 

These experiments suggest that several things be done 

to improve the speed and accuracy of data-taking. Certain 

critical parameters will be measured in the future by means 

of digital voltmeters in order to reduce the possibility of 
error. Periodic calibration checks will be made during the 

course of an experiment as an additional precaution. A system 
of rapid data accumulation is near completion at this time. 

Scaled-down samples of pertinent data corning from appropriately 
designed voltage dividers and shunt resistors are fed to the 
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contacts of a stepping relay and recorded in sequence on an 

FM tape recorder. After many runs are recorded, the data will 

be converted to computer punch cards by means of an analog to 

digital converter. Thi~ data is in turn processed by the 

digital computer, which is programmed to perform some rather 

simple calculations and print out a record of the data and 

corresponding results. 
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------ ------ §.~. ! _Q_ 7 4 ~. ~..!__p __ 8 5 • 0 8 7 • 0 9_0~-~ ~~~ -~-=~k-·-~--·~ 

--~~tf h~~J~~ ~ Q_ ! ~ ~ L~~-_I~ ~: 0 ~-~~_Q__U~:,_I :~_ --
~~~-.1.~: crl~~~ 0 H=-~~J! ;;_J~;: 0 l~t_o_~j~_~J ! :~_~1 ~ ~ ~ 0_ 



run 
number 

3 

DATE: 
TIME: 
H.V.·= 
KEEPER 

5/6/69 
1400 
±2 K.V. 

3.23 

.~.c. = 
~ain = 

= 0.5 amp @ 10 v ~totai= 

1.6 g/hr· 

5.9 g/hr 

7.5 g/h:r: 

Iar:magl-=FlT-1-1.2 1.4 1.6 l.8 2.0 
o~-lnt(% ,---E I . 

__ i. 0. r·-----,-·- · c--,_i----l· 
1. 5 . 

2.2 

2 0 -----i--- 1 ;:-;-- ---- -=-------1---
- 3 o I --;-;;-~ ~---- · -------
~· ___ 

1
_______ _ I__ _ __I _ I 

3 5 28.3 30.1 32.0 . 

4 0 28.1 32.7 35.6 36.4 

4.5 31.4 36.l 40.0 41.81 
-5. 0 -··_· ---1~~~~,~~~;r~. 4 -4;~r--1 -------·-1----------.. 
-- 5 . 5---1----1~;~~-r:~~~- ~-~ . 0 4 9 • 8 ~ 9 • ~------------ ---- -------- · 

-:-~:.?.--i--1~'.'..:_9_ .'.'.".~. I=-~~~} . 2 ---~L-. -- I -
. 7 • 0 4 5 • 0 5 2 • 6 5 9 • 5 16 1 • 2 6 2 • 2 6 4 • 0 6 7 • 9 . 

_?~-- ·--· ~-6..:_:_ ~~-~--1 ___ 6 ~~- 6 3 • 8 I:~~_:_~~ ~:_:~.l_~-~-~J ____ L __ _ 
~~-'----'-:?..:_~1~~-~t6 5 . ~.1~ 8 • ~J~-t~ 2 • 0 7 5 • 0 7 5 • 817 5 • 5 

-~·~-~- _______ ~-:-~~J~_:__°_r7 0 _:_~-'-7 3. 5 _ 1~~-l 7 8. 0 7 9. 417 9 • 4 

___ ::_~ __ J ______ I _~-~~--~-'~-~~-5-.17 2 • ~t~-~_J~~,-~~~-~- 0 '-~~--~-~.~-~~ =~ -·----
-_ io~J."t ~{~~:_'_l~-:~J:~-~J~~-:_'.J~-:~[~~~1~~-~---- -----·- .· 



DATE: run 
number TIME: 

H. v.· = 
4 KEEPER 

5/7/69 
1300 
±2 K~V. 
= 0.5 amp 

3.24 . 

@ 10 v 

.~.c. = 1.5 g/hr 

~ain = 
M = total 

5.8 g/hr 

7.3 g/h:c: 

~13 o.6 o.s l i.2 -1-.4-T-1-.-6-r-1-.-a--r-2-.-o-r--2-.-2~ 

0 • 5 II+I- I ] I 
1.0. r_. ___ .,-·-r-·--t-:--i---1--:---
1· 5 I . I . .· ----·- 1-1---1---=-t----+--I 

"2· 0 . 190 
• 12 

. 2. 5 2 5 0 ·--,;;---.-i---i-----··------.-----] 
__ 3_~_0 __ 

1 
__ 1._ . -- a;; a~~ 1_--·-. _:~~~~:~~~~~-!·----~---- .1 . I 320 350 370 I 

3.5 . 15 16 16 . 

~~-c·--l---- 3 ~~ -~~~J4 ~~-4 ~f · ------~i-------

~4 .• 5 ____ ---~4!~ -,4~t-r,!~-~ii-ll,;~E1-----J ··----

5. 0 . l 6-· l 7 l 8 l 7 . l 7 E . 
---. ---:-

1
----

1
4 7 o 

1
·50-0-

1
5 4 o 5 7 o 

1
-G00--

1 
6 2 o I ·· --- ---

5. 5 16 17 18 17 17 17 

--.-~-r--1~~-~;.;-1,·· ... i--rn-~E· r-----. --~=-~-1·-·1-s ! 5- 5 !-t-,6 ! ~ JG ! ~ --, 6 ~ ~ 1-,; ~-'-I '; ~ --- .· · 
"6.5 . 16. 1~[17 17 16 15 15 .. 

--~,---,57-0--6~ 660. 17Ci0-73a-· 110. 800 - --· 
7.0 16 17 17 16 . 15 15 14 . 

. 600 650 700 740 780 I 810 840 1850 I I 
. 7.5 16 16 17 16 15 14 13 13 

-~-;--··1-·----,~-- 6 8 ~--,13 0.--,18 o . ~;~1·-;;~~, 81 o . 88·-o-,-;;;------· 
16 16 16 . 15 14 13 12 12 12 

8. s f--.. tG 5 o --l~-;;--1·-;:;;-·18 1-o . . -8 5 o ·-1-; 8 o~-- 9 o o 9 o o 1~70-~-
1 G 15 15 15 .14 13 12 12 12 l_~ 

9 • 0 -- · 6 7 o·-·175 o_(80_o_j84~-,880l9o-o 9 3 o 9 3 o ,~9....,5~0---i.-~----
16 15 I 15 1_14 13 12 12 11 12 ~ 

---~-~~-,-----,;·o-·~-,-11-0 -,84o • ....:.181 o. .,9ooj 9_3_o_l 9 5 o ,-950..:...(970-~··" 
• l 6 l 5 l 4 l 3 l 3 l 2 l l 1 l i i I ___ ~ 

-~;0 ~· 1+r-J:ff J';;J:~ -·t:-~-P~TT~: l;~t]'f:]';: JSJ 



: 

DATE: 5/7/69 
run TIME: 1300 

number H.v.· = ±2 K.V. 
4 KEEPER = 0.5 amp @ 10 v 

~.c. = 1.s g/hr 
~ ... = 5.8 g/hr -"Main 

. 1'1total= 7 • 3 g/hr. . s 0ITT1 1. 2 1. 4 p·-----~_-.8 T---2.-0 r--2-.2l 

:.: varc I F--1 
1. 5 --1 
2. 0 . I . ---;;-:-;-- . ·- ·I 1-/--1 

~~!--~-·-~-'-----·l~---1------.E 21.4 

~--3-~ o- . · I 2 l. 6 2 2 • o f . . t 

3. 5. 1--r-- 2 l • 0 12 l • 8 . 2 2. 2 1 . - . ·- . . · 

-· s·~o--··· -F-;~1;-;~j22-:-;-~;.11-;~-~;e, __ J __ -·----------~· 
C-~---ci~~j~ • 5 ~ 2 • 4 22 • {2 3 :~b~J-, -t--== 

· 6 • 0 . I I 2 2. 612 2 ~ 6 1; 2 • 6 2 2. 712 3. 4 G 4. i_ f 2 4. 8 L I 
-:-~:;-1=-11 2 2.7 ,~~. 7 ~ 2.7 J 2 2] 23.::_F 4 • ~l=~L_· - ~-= 

1 • 0 I 2 2 • 8 2 2 • 8 2 • 1 12 2 • 9 .2 3 • 7 I 2 4 • 4 2 5 • 2 . --
. 1 _5 . . 22.8 23.0 22.8 23.0 23.8124.6 25.4125.81 I 

--~~~----· ~-: ... ~t~~--fi3. ~-'2~1~~~1~~-~ 26. 71~~~.~ 7. 0 ~ 
--~-~~ I !2 2. 812 3. l r 3. 3 12 3. 612 4. 812 5. 612 7. l 12 7. 3 b 7. 5 ~ __ ---T·---·- _____________________ . ____________ r ___ , ___ ~ 
~-°-~-- V arc --~ ~~.1=-::,:_l~:J_=~~~1:_~_0J:_7__-_~ l2 7. •J_~~-LSJ 

.. 



run 
number 

4 

DATE: 
TIME: 
H.V. = 
KEEPER 

5/7/69 
1300 
±2 K.V. 

3.26 

= 0.5 amp @ 10 v 

1\i. c. = 1. 5 g/hr 
~ . = 5.8 g/hr ·'"Main 

~total= 7 · 3 g/h~ 

~~~~~ 11. 2 1. 4 1. 6 .-1--.-8--..-2-. -o-~-2-.-2-1 

o. 5 -, ev {o--,--- . 
1. O f.".m % ---i--·--t-c-+---
~;--,--- ----. ·-- - --- --~---

---,--i--- ---25-3 - ·----· -

::: ::: , I ___ ·I____ --J-
25. 7 



run 
number 

4 

DATE: 
TIME: 
H. v.· = 
KEEPER 

5/7/69 
1300 
±2 K.V. 

1..27 

= 0.5 amp @ 10 v 

0.6 0.8 1 ,--·1 I 

.!\i.e. = 1.5 g/hr 
~ . = 5.8 g/hr ·'"Main 

. Mtotal = 7 • 3 g/h:r: 

i.2 i. 4 F-.. -~--. ·a__.;_2_._o_;,.._2_._2_, 

,--, 
t-- E 

I 
~--r---i---r---'-~--I-, l 

1 5 • 5 

--------

I 
2 1 • 0 

2 5. 5 127.'+ 

2 7 :_2_ ~0-~~ 3 2_:_°__1 

132.6 31+.5 r37 •. 5 1 

·1~;~~9 .1 -~-, 



run 
number 

5 

DATE: 
TIME: 
H. v.· = 
KEEPER 

5/7/69 
1500 
±2 K.V. 
= 0.5 amp 

.3.28 

@ 10 .v 

~OF 0.6 0.8 

0. 5 11+IJ=-1---, 

.~.C. = 1.5 g/h~·· 

~ain = 4.9 g/hr 

itttotal- 6.4 g/h~ 

1.4 1.6 1.8 2.0 2. 2 

1.0. [=-c--1--r-1 
:·: 1,~=1, l.: ~00 ~:-2~0 -:2-00-1--1-1 ~.;...I-l--:----1 
. 9 J~l 0 1 0 1 0 

~~-----, 2 ~ ~ - -;~ ~ 2 ~ ~ - ;-~-~--,::---. l . ~ 

3, 0 . 12 ~ ~ 'Td': ~ , : ~ I . ----, 
3 -~p-20-· 360 380 390 f~ - r- . 

---4-. 0 [ . .13 6 o I 4 o o 4 3 o ~ 4 o f 7 o C I 
. 12 13 12 I 12 12 

~:-;--~-r---r~~ ~-J· :·~~ ~ ~ ~ "f ~ ~ -f~-- s ~ ~ 1 -,---,' --

- 5. 0-~.·cr4~~-14~r-1s~~-s~~ r~~ s~~ ' ----- -·---~~ 
-----

1 
·
1
46Q-

1
·s-3-o ·ls 6 o s 8 o t o o ---

1
6_ , , rs.-,- L

1 
__ J1------

5·5 12 12 12 11 11 10 -~ . 
6. o. ,---1~-cr~--,s 7 o 16 o o 6 1 o ~-o-~, 6 9 o - ,-

1 2 1 2 1 1 1 o I 1 o L_J._Q__:._ 1 o 
~~---r-rs-20- 6oo_ 63_o_650__ 7 o 7o0-- 7 2 o --=--.- ----

1 sso 630 660. 1670 roo 1720 740 . 
7.0 12 11 10 9 ·10 9 10 

11 . 10 10 8 9 9 9 9 9. 

r--- 61o·,--,7i_o_j74tlr4 o--r-5-0-,790- 8 1 0 18 2 0 1-as·-33_0..;._,:._.."'----
9. 0 11 lo I 9 s 9 9 9 9 1__9 L__~ 

~_ ~~-5-r----,5·f~·-11~r-176~ --rs~ -rs~ 181fl83~ r84~ -,84r-~ 

~o · 0 ~- I+:f ff j: ~Ll11 ~ -t~ [• ;_J:_ ;~ I-; 4 ~]• ~ J8 5 ~ -~~ 



3.29 

n~~er ~~~~ ·i,~~69 .:a.c~ : ~·: g~:r· 
H • v. · = ± 2 K. ·v. '""'Main • g r 

5 . KEEPER= 0.5 amp @ 10 .v ~totai= 6.4 g/h~ 

0.2 0.4 T:I 1.2 1.4 ~1-.-6-.. _1 ___ 9--r--2-.o-·~2-.2 

0.5 -· varc 1--1- . I ___ L ___ 
1 
___ ~·l-1--!-l--

1. o. L _~ --
:-~-r-~~-~----~---11----1-----·---·!----1 

----·-·1----1----·~---1----1 

-2~-;·-----1~~ 2~ 22.0-~2.2 ---------- ___ ] 

3~0 . 122.0 22.0 22.3 22.5 _ . I 
__ 3_._5. . --~F-;:-; 2 2 • 2 2 2 • 6 2 2 • 7 1~~ - . __ · ·-'-~--

. 4. 5 --· __ J_2 2. 5]~.:_~,2 ~ 2 3. I t_3_: 6 24. 2 --------'---· ·---· 

5 • 0 . 12 2 • 612 2 • 7 . 2 3 • 0 3 • 2 [ 3 .• 7 2 4 • 4 [ J . 
·-;-5- I ·1-;~~-r;;~I~;:;- 2 3 • 4 f ;:~---, 2 4 • 6 -;-~~1-. _T __ _ 

-~;:;·-r---1 2 2-:; ~-~;-3-:-;J2 3 • ;-i; 4. 2 t,-2 5. -~ 1 2 5 .. 5 . . . ---------,---i----· ---~l--: ____ [____ - - ---· 
1.0 22.s 23.1 23.4 ,24.o _4.4 25.3 26.0 . . 

4.7 25.7 

8. 0 I I 2 2 . • I 2 3 • I l2 3 • 8 ~ •• 5 ~~-~~ 2 6 • 9 ~I 
-;~-f------;-.~;1~-;-:-2-F • · • F ~-~;~El~ 
-~~=~~··l2•., F··~F-r~i~~· 2•.11~-j~·· 
--~. 5 J f 2 3 • o I 2 3 • 5 l2 4. 4 rs. 6 ~ 6 • 7 I 2 8. 1 I 2 9 • o 13 o • o I~ . 6 

_:o. o_J a~E:·. l2 s :~}• :J•. 1 } 1~:_-~;~2F~~-·]-;-~~I•1. •_ =:~. 



3.30 

DATE: 5/7/69 .~.c. = 1. 5 g/hr· run TIME: 1500 number ±2 1\iain = 4.9 g/hr H.V. = K.V. 
5 KEEPER = 0.5 amp @ 10 .v it1totai= 6.4 g/h:r: 

I 
I. 



.· 
·---~- ---l~ 

run ATE: 5/7/69 .!\i.e. = 1.5 g/hr 
number IME: 1500 

5 .v. = ±2 K.V. · ~ain 
EEPER·= 0.5 amp @ 10 v A 

= 4.9 g/hr 

- 6. 4 g/hr 

1.0 1.2 
.,...1._ ...... 4--11 . ;--1-__ a__.._2 ___ 0 __ 2 • 2 

. -··-··-··- --····· 1···-·-·-1--··-- --···--··-·- ----··- _____ I. _____ --- --..,-------·-
1. 5 l -----·-- ......... l-·--r--·-· ·-- ·---··----- ---·--- ---- -- .. 

-·--:~~ -- ---~~-:~;~~~t~~~~~~:-1---.1_ _____ -.-.- --i----1-

·--;·~~-···· ------F~-~-~ ·· · ~·;~--~- ·--~-~ ~-~r;·;·:~r:-l -. -),--------- ----

:~-~~::~=r=-t~~:::l:~~::.~~~~-~:-:iE::~1-5-~ -.~--=---- --~---_ ~------------~-
-·---~~r-~:-;.-;·-~-;~;t;;~---;::-;· ~;:;b-~ ----_-------------: 
-~-T---t-;. ~-- ~ ;~-~-r~~-:J~~-~J;~-:;'-~-: ~ r~~-:-; ___ J~_ ---
------i----r -- --------1----r-·---l-----'------------· --·-------1 

......... §.! .. Q._ ···1·~··--··-·1'_::_1 P :_' ·-1-· ~.:~f-~~_:_o l-"-~-:-'\-"-"-~~b_::L_ ---------
6. s 51_.4 60.3 I 63.o, 66~0:6a~2 1 11~4 13.6 . 

---;~-~-- ---~~:-;·- ~~~-,-r-;~i~~J;~'~.:-7 5.-;-- - -·-
-~-~:-,----- ~: :: ~:~-!-l~~:-:1~~:-:1;~-~-'~:: ;~~;t;~~'-----· 

---~ -:-;--,----F:; · 1;~~-:~:.-~ I~~:-~ l-;~-.-J~-:1-.-;-:-;- -~~~;-';,-~---... 
-~~~- -r"-~~~; ~ ~ . ~ · i;;-;-1--;;~-~F~-:-; !~l;~~;-j";~:~--;;-;~~; ~ ~- --- ---
--------·- _.!, _______ J ______ 1 .• - ·-··'. - ....... L. -··---- L ........ J ... -·-· L ... _. __ t ___ [.: ______ -----·-



Figure 1 Typical Performance 
Map, Ion Thruster* 

* From Mickelsen, W.R., and Jahn, 
R.G.: Status of Electric Propulsion. 
AIAA Paper No. 69-497. June, 1969. 
Figure 8, p. 21. 



Figure 2 Bell Jar Assembly 



Figure 3 Thruster Setup 



Figure 4 Power Supplies 



Figure 5 
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