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FOREWORD

Mechanical Technology Incorporated has been under contract with

George C. Marshall Space Flight Center, NASA, to conduct a project

entitled, "Analysis, Design and Prototype Development of Squeeze

Film Bearings for AB-5 Gyro". The main objective of this Phase (VI)

is to investigate analytically the dynamic responses of squeeze-film

bearings and the start-up process of a squeeze-film thrust plate.

This report contains two parts:

I. Summary on Phase VI Work

II. Topical Report on 'Synchronous Responses of Spherical and Conical

Squeeze-Film Bearing Systems".



PART

SUMMARY ON PHASE VI WORK

The main objective of Phase VI is to investigate analytically the

dynamic responses and the start-up process of squeeze-film bearings.

In the literature, analytical investigations were performed on squeeze-

film bearings [1 to 61 by assuming that the supported mass be stationary

disregarding the oscillatory forces imposed by the squeeze action. In
reality the supported mass may respond dynamically with the squeeze

action. This was investigated analytically in [7] by a simplified

approach with the response assumed to be synchronous. The results

indicate that the load capacity may be considerably affected by the

synchronous response depending on the squeeze frequency and the mass

;t	 of the float.

a

The supported mass motion was also studied in [8]. For moderately

high squeeze number, numerical solution for the response was obtained

using small perturbation analysis. The supported mass respond was

found to be synchronous with the squeeze motion; this was also verified by

experimental observation. The dynamic response of a spherical squeeze-

film bearing with a time scale much larger than that of the squeeze motion

was investigated in.Y103 using the results of [111.

Three topical reports have been issued under this phase of the contract.

1) "Dynamic Responses of a Double Squeeze-Film Thrust Plate",
by T. Chiang, C.H.T. Pan and H. G. Elrod, Report MTI-68TR56,
1968.

2) "Synchronous Responses of Spherical and Conical Squeeze-Film
Bearing System" by T. Chiang and C.H.T. Pan, Report MTI-69TR7,
1969.

3) "On the Start-Up Process in a Gaseous Squeeze-Film Thrust
Circular Disk", by T. Chiang, C.H.T. Pan and V. Castelli,
Report MTI-69TR16, 1969.
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The first topical report, listed as Ref. [9], investigates the dynamic

responses of squeeze ,-film bearings with ver;, high squeeze number. The

geometry of a double squeeze-film circular disk has been chosen for

B simplicity. The results show that the dynamic response is mainly

synchronous and sub-harmonic responses are negligibly small in magnitude.
Mca

When the uqueeze frequency is high (Large B with B	 ), the response
nR pa

is 184
0
 out-of-phase with the squeeze action. This enhances the squeeze

action, and thus increases the load capacity and stiffness. The

converse is true for low squeeze frequency (small B). In normal

operating condition of a squeeze film bearing, the large B criterion is

easily satisfied. However, when B is very large, the magnitude of the

response becomes negligibly small that the supported crass is essentially

stationary. Three methods of solution have been used to solve the

problem, namely, linearized harmonic analysis, non-linear harmonic analysis

and the exact numerical solution. The last method gives the best results

but it is time-consuming.

The results of the linearized harmonic analysis are only qualitatively

correct. The non-linear harmonic analysis appears to be a best compromise;

it yields results in good agreement with those of the exact numerical

solution, and it is relatively easy to handle analytically.

The second topic report, entitled, "Synchronous Responses of Spherical

and Conical Squeeze-Film Bearing Systems", is included in this report.

The configurations shown in Fig. 1 and Fig. 2 are motivated by a new

transducer design for Phase V of this contract. This new transducer is

for squeeze-film bearing support of a line AB-5 gyro float. The gyro

wheel supported by its bearing is considered to be one mass, whereas the

squeeze-film journals (spherical or conical) connected by a rigid shaft

is considered as a second mass, and thus constitutes a two-mass system.

Because of the previous success, the method of non-linear harmonic

analysis was used to analyze the responses of both the float (the journal)

-2-
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and the gyro wheel. The results show that they display typical behavior

of the dynamic responses of a two degree-of-freedom system. The system

has two critical frequencies at which the dynamic responses become

unbounded. When the squeeze frequency is much higher than the critical

frequencies, both the journal and the wheel responses have negligibly

small amplitude; the load capacity and stiffness are practically not

affected by the synchronous response. In certain frequency range, the

response of the journal may resfilt in appreciably higher load capacity

and stiffness. But in the mean time, the response of the wheel becomes

excessively large. Therefore, one cannot take advantage of this high

load capacity characteristics and it is recommended that the squeeze

frequency be designed to be sufficiently higher than the critical

frequencies.

The third topical report deals with the start-up process of a squeeze-

film bearing. Again, a circular disk thrust bearing is chosen for

simplicity. It is assumed that separation of the supported mass from the

oscillatory bearing surface would occur because the supported mass cannot

follow the oscillation motion. We, therefore, transform the actual start-

up process into an idealized situation; the supported mass is assumed to

start with a giver velocity and a given P?evation different from the

equilibrium fil- thickness. The analytical results show that when the

gap is greater than the equilibrium film thickness, the squeeze film

force is not large enough to support the float. Consequently, the gap

would decrease. When the gap decreases to a value equal to the

equilibrium film thickness, .although the squeeze-film force balances out

with the load, the gap will continue to decrease because of the inertia

of the float. Now the squeeze-film force is building up until it reaches

a value that will compensate the float inertia; at that point, the gap

ceases to decrease. The squeeze-film force is now too large and the

float starts to move up. It will over-shoot the equilibrium position and

the process will repeat itself with decreasing amplitude. The float

would eventually settle down toward the equilibrium position.

-3-



PART II

SYNCHRONOUS RESPONSES OF SPHERICAT AND
CONICAL SQUEEZE-FILM, BEARING SYSTEMS
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1.	 INTRODUCTION

Gaseous squeeze-film bearings were analyzed in the literature by many investi-

gators [1 to 6]. Asymptotic approximations for large squeeze P umber were form-

ulated in [2]. In References 3 to 6, the performance of various squeeze -film
bearing geometry was given with the assumption that one of the squeeze surfaces

I
	 is oscillating under a prescribed mode and at a high frequency while the other

bearing surface, normally the supported mass, is held stationary. Because of

the excitation due to squeeze action, the supported mass may respond dynamically.

This was investigated in [7], [8] and [9]. Numerical solution of the supported
mass motion was obtained in [8] for moderately high squeeze number; it was found

both analytically and experimentally that the supported mass motion is synchron-

ous with the squeeze action. When the squeeze number is very high, the dynamic

response of the supported mass was investigated in [7] and [9] using the asym-

ptotic approximation for large squeeze number. In Reference [9] the response

of a double squeeze-film thrust plate was determined by using three methods of

solution, namely, linearized harmonic solution, non-linear harmonic solution,

and exact numerical solution. It was found that the response is predominantly

synchronous. Furthermore the non-linear harmonic solution yields results which

agree well with the exact numerical solution. In this report, eh.e synchronous

responses of spherical and conical squeeze -film bearing systems will be inves-
tigated. Because of its previous success, the non-linear harmonic method of

solution will be used. Only responses in the axial direction will be considered

and the bearing is assumed to be radially unloaded.

The configurations of the spherical and conical squeeze -film bearing systems

depicted in Figures 1 and 2 show that an additional spring-mass system is

attached to the float. This is motivated, in particular, by the gimbal squeeze-

film suspension of a gyro float; the mass would then be the mass of the wheel

and k the stiffness of the spin-axis bearing.



NALYSIS OF SPHERICAL BEARING SXSTE^i

The spherical bearing system shown in Fig. 1 will be used for analysis, Two

opposing spherical segments designated by A and B, are connected by a rigid

element on which the gyro wheel is mounted. Assume that the gyro wheel has

mass Mw and the spin axis bearing has stiffness k. The analyses for the con-
ical geometry can be carried out in a similar manner; they are included in

Appendix I.

In the spherical coordinate system, denote the merid ianal and ,azimuthal angles

by 9 and cp respectively. The azimuthal angle is illustrated in Fig. 1. Since

the squeeze-film bearings are assumed to be radially unloaded, there is no

A dependence. The transducers for the arrangement shown in Fig. 1 are normally

operated in a symmetrical fashion so that the normalized squeeze actions of

both squeeze surfaces "A" and "B" can be represented by b(cp)cos T, where b((P)

is a mode function. Assume that the response of the float is synchronous and

can be represented by a cos T. This approach was successful in dealing with

the double squeeze-film thrust plate [9] and will be applied again here. Note

that both spherical segments have the same response C cos T. because they are

assumed to be connected by a rigid element. Let ^A and 1B be the normalized
steady-state displacements of journals "A" and "B" from their concentric posi-

tion; both are defined to be positive upwards. The normalized film thicknesses

can now be written as

HA = 1 + % cos + [ e cos 0 - b ((p) ] cos T	 (1)

H  = 1 - 11B Coin cp + [-E cos cp - b(cp)] cos T	 (2)

Note that the quantities HA ,	 e) b(cA ) etc. have been normalized with re-

spect to the bearing clearance C.

The isothermal Reynolds' equation of a spherical squeeze-film bearing is (Ref. 4),



s	 Csin cp H3 PI = a aPH) (3)

where

P = -^
pa

2

Q = ML (R)	 = sq ueeze number
a

0 = squeeze frequency

T = at

Equation (3) is obviously applicable to either bearing "A" or bearing "B", and

H can be interpreted as HA or H  accordingly. For large Q , the asymptotic ap-

proximation of (3) is, from Ref. 4,

dH
Lsin ^	 (H° ^r^2) - 3 ^^2 

sin ^ d ° = 0	 (4)
^	 ^

where

m = 1im (PH)

	

2Tr	 (5)

H° = Z
n^	

H d T
S
0

The boundary conditions as derived from a Mass Content Rule in Reference 4, are



(8)

2n

SH
3 (Cp l , T) d T

^2 
(tP	

0 2 Tr H 
(C )
0 1

2r

S H3(tp2 ,T) d 
	2	 __ o

°D (cp2)	 2 Tr H0 (CD2 )

Integrate (4) with respect to cD,

dH

	

sin	 dp (H0 *W2 ) - 3^2 d^ J	 E

where E is a constant.

Assume that

2^^

F (^) = (H)
0

Substituting (8) into (7), we obtain

-8-

(6)

(7)

H 3 dF =
o	 dy	 sin cP

which can be readily integrated to yield

---F(^) = E	 + 
F(cpl)

H03 
dwi

(cp') sin
CD 

	 cD'
1

(9)

j

S`
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Equation (9) can of course be used for bearing "A" or "B". For bearing "A",

use subscript "A" for the respective quantities and rewrite Eq. (9),

P

FA (c ) = EA S	 3 
dm	

+ FA (wl)
HoAW) sin cD1

Two arbitrary constants, EA and FA (cp l ), are to be determined by boundary con-

ditions. Combining Equations (6) and (8), we have

3	 € cos (PI - b (cp l) 2
FA (^ l ) = 1+ 

2 C	 H 
oA (01 ))	 J

(11)

3 r s cos p2 - 
b (cp2 ) 12

FA (Cp2) = 1 + 2 L
	

H 0 (C )	 J2

From Eq. (10), EA can be easily obtained by setting cp = cp2,

(10)

FA ((P2) - FA(CPI)
EA =

^2 H

3 sin 

^-1 

dS C oA^
I:Pl

(12)

Similarly, for bearing "B",
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Sd^
F 	 3(cp) _ E B	 + F (cp )

cpl HOB (cp' ) sin cp'	 B 1

3 r€ cos cpl + b(cpl)
12FB (cp l ) = 1+ 2 L	 H (tp )	 JoB 1

(13)

3	 s cos cp2 + b(CP2),2
F	

L
B (cp2 ) = 1 + 2	

H (cp )oB 2

FB ((p2 ) - FB(cpl)
EB	 =

(,cP2 IR

OB
3 sin ^]	 dcp

(P1

Knowing FA (cp) and FB (cp), we can proceed to obtain

*wA = HoA	 FA(cp)

(14)

*wB - H o B V7B (tp)

The instantaneous film forces in the axial direction, F IA and F IB can be obtained
by integrating the pressure above the ambient,

T2

FIA = S	 (pA _ P a ) 2rr R2 sin cD cos cp dcp

91

(15)
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F I ,B — -	 (pB - pa) 2TT R2 sin cp cos cp dcp	 (16)

^l

The forces are defined to be positive upwards. Non-dimensionalizing with TTR2p
a

and replacing PA by e /HA and so on, we have

T2	 mA sin 20 dcp	 1

2	 S	 H + [ e cos cp - b (cp) ]cos T + 2 (cos 2cp2 - cos 2cpl)
TtR pa	 cp	 °A

1	
(17)

F IB	
^2

ooB 
sin 2cp dcp 	 1

TTR2p	
— -	 HoB + [- s cos cp - b (cp) ] cos T	

2 (cos 2cp2 - cos 2cp1)

a	
cpl	

(18)

Note that we have used the asymptotic approximation and neglected the edge

corrections for the squeeze film forces. In so doing, the damping part of

the squeeze action is automatically discarded (See Ref. 9).

Since the squeeze-film forces are exclusively in the axial direction for a

radially unloaded bearing, we can write one axial equation of motion for the

spherical journal,

- M  C e tut cos T = FIA + FIB - W J - WW + k C ( 8 cos T - e cos T)

(19)

where

M  = mass of the journal

WJ = weight of the journal

WW = weight of the wheel

k = stiffness of the bearing for wheel

g = dimensionless amplitude of oscillation of the wheel from its

equilibrium position.

r
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1

Now that we have introduced an additional unknown g, we need one more equation

which is the equation of motion of the wheel.. Note that the motion of the wheel

was also assumed to be synchronous.

- 
-W C 

6 w2 cos T = - k C (b cos T - s cos T)	 (20)

W is the mass of the wheel.

Multiply Eq. (19) and (20) by cos T and integrate from 0 to 2TT,

1	 c92	
2 T	

(*.A sin 2cp)cos T dT

BJ E	
Tr S	

d^ 
S	 H

oA 
+ [s cos cD - b(cp)]cos T

0

1	 q2	 ^2Tr	
(^t^B sin 2cp)cos T dT

Tr	
dcp J	 HoB + [-b(cp) - e cos cp]cos T

cp l	 o

+ K • (6 - e)

-B
W

8=-K . (b - s)

where	 M C w2

B
J = TTR2

 Pa

K, 
C (u2

BW ^R2 pa

K =
kC

TrR2
Pa

(21)

(22)

(23)

Equations (21) and (22) are two non-linear equations for c and g. Iteration



where CP2

XA S

sin 2SQ cos cr)
do

H
oA

IP I

CP2

XB S

sin	 cos 
99124 do

H

CP1
oB

Y
A

(pq
sin 2m b( alI do

H
oA

y
92
H-* d

OB

(27)

i

liw "Ii^.W_

-13-
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method will be used to obtain the solution starting from a linearized solution

as a first guess.

Linearized Solution

For the case that

le cos ep - b Gp)
oA

and

le cos gp ± b (W)	 <<
Hob	 J

(24)

(25)

(26)

Then, Equations (21) and (22) can be linearized to

B 
i + XA + XB 

+ K) E - K 
6 = YA + YB

K s + (- B 
W + 

K) 6 0



Equations (25) and (26) can be written in matrix form

(-BJ +xA +XB +K)	 - K	 e	 Y A + Y B

- K	 (-BW + K)	 b	 0

Thus,

e	 (-BJ +XA+XB +K)	 - K- 
_1
	 Y 

A 
+ Y B

(28)

6	 - K	 (-BW + K)	 0

The linearized solution a and 6 can be easily obtained from (28). Also, it. is

seen that the critical frequencies of the system can be readily obtained by

setting the determinant of the matrix equal to zero.

(-Q J c02 + XA + XB + K) (-QW w2 + K) - K2 = 0

where	
__ MJ C

J	 ITR2 pa

MW C
Q=W	 rR2 pa

(29)

Thus, the two critical speeds according to the linearized analysis are
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^--- 1/2
w	

= T1 + V 2
cr	 2Q  QW

where

T 1 = QJ K+QW(ICA+XB+K)
	

(30)

T2 = T 12 4 Q J 'W K (XA + XB)

Because the squeeze-film forces were obtained by an asymptotic approximation,

there is no damping in the system. Consequently, a and 6 would become infinite

when w approaches a)cr . Note that the critical frequencies given by (30) are

independent of the squeeze mode function b(Q). This is obviously due to the

fact that we have linearized the system according to (24) which imposes the

condition that both s and b (cp) must be small.

Actually, one can include the non-linear squeeze-film action in the critical

frequency calculation by linearing with respect to s. This can be easily

achieved by starting with Eqs. (33), (34) and (35). One can write

ZA W = ZA(c)+sOfA

(31)

Z B(e) = ZB (o) + e aB

Note that ZAM, ZB(o), «A and aB are functions of b(cD); or they do include

the non-linear squeeze action. Following the same derivation one can show

that the critical frequencies are given by

T3 t T 1/2

wcr - 2QJ QW

where

T3 = Q J K + QW (-olA- aB + K)	 (32)

T4 = T32 - 4 QJ QW K (-%- aB)

P
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Non-linear Solution

Perform the T integrations in Eq. (21) and rewrite Eq. (22) .

( -Bi + K) s - ZA (C) - z  tE> - K 6 = 0	 (33)

- K s + (-PW + K) 6 = 0	 (34)

where	 'P2	 *,OA sin 2cp
1 -	

HoA	
dcDZA(s) -' 2 S	 s cos cp - b (w)	 Ho - E cos	 - b( )

C9 A 	G	 ^	 c^ ^
1

(3S)

^	 sin 2	 H	 I

2	 *c*B	 c	 oB	 dcp1 _
ZB(s) _ -2 S	 _e cos ^p - b(cp)	 g2 _ [ e cos ^ + b( )]

cal	 oB	 cP

Let e i and 8  be the i-th iterated solution. To obtain the next improved
solution E i+l and ai+l' let us denote the corrections by Le i and 44 i , or

si+l = si +i	
(36)

si+1 — s i + asi

Since s i+l and 
6i+1 

must satisfy (33) and (34) we have

(37)(s	 ) - Z (e . ) - K f,	 = 0(-B J + 
K) Ei+1	

Z 
A	 i+1	 B	 i+'l	 ;^+1

-K ei+l + (--W + K) si+1 = 0
(38)



Using Taylor's series expansion and taking only the first-ml r terins, we have

zA ( e i+l ) = Z (s i + &C i )	 ZA ( ei) + z' (ei) "Ci
(39)

zBW)	 Z ( Ei ) + zo (e i ) Le

Substitute (36) and (39) into (37) and (38) and solve for 4 *,-i and agi

4C	 -Bd + K-z^(i>- zB'(e)	 - K 	 U 

&6 i 	- K	 - Bw + K	 vi

where

ui	 (B J - K) e  z  i) + z  (s i ) + K 8i

vi = ( BW - K) bi + K

(40)

(41)

The iterative process indicated above can be repeated until both L1e i and L8 

are smaller than a specified value. The converged values of a and 6 are the

solutions of (33) and (34).



(43)+ 2 [cos 2cp2 - cos 2cpl]

3, LOAD CAPACITIES AND STIFFNESSES

Integrating the instantaneous squeeze-film forces given by (17) and (18) over

one squeeze cycle, we have the time-average forces,

2Tr
_ 1

FzA	
2n	

FIA dT

0
(42)

2n

F zB	 2rr S	 FIB dT
0

or
id zA	 'P2	 *mA 

sin 2cp dcp

S
F M - 2 =

rR pa
	

`pl	
HoA	

[ E cos ^ - b (cp) ]

18-

_	 . Fzh 	 *wB sin 2cp dcp

n
FzB = R

2	 = -

 S(P2

	 x -	 +=((p)^j
p 	 1

[E cos 
^

2 [cos 2cp2 - cos 2cpl] (44)

The dimensionless load capacity is therefore

i

k
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0i 
	

FzA + FzB	 S
92 	 *,.Asin 2cp dcp

= =
oAP1	

- [ecos 9 - b(cD)]

'P2	 *aoB sin 2cP dcp_S
cD 1 ^oB - 

[e cos cp +=(^p)]
(45)

Thus, from (43), (44) and (45) it is clear how the squeeze-film forces are

affected by the synchronous response of the float. In fact, it is a conveni-

ent concept to combine the (driving) squeeze motion and the synchronous re-

sponse into an effective squeeze motion, The effective squeeze motion for

bearing surface "A" is a cos cp - b(cp), and for bearing surface "B", a cos cP
+ b(cO . Previous analysis neglecting the synchronous response [4] is obviously

a special case of the present analysis with e = 0.

The bearing stiffness can be obtained numerically by taking the difference

between the forces at ^A - 14A and 
JA 

+ ^,% for the bearing surface "A". Let

,PA = 0.01, then

F zA "A - 
0.01) - F zA "A 

+ 0.01)
k =

zA	 0.02	 (46)

Similarly,

k	
_ 

FzB (' 
B - 0.01) - F zB "B + 0.01)

zB	 0.02	
(4 7)

The dimensionless bearing stiffness is the sum of 
kzA 

and 
kzB.

kz = kzA + kzB	 (48)

a nd	 k C

--z—	 (49)kz	
nR2P

a
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Both F  and k  are dependent on the synchronous response. We will use subscript

110" for those with e = 0, subscript "L" for F z and kz with a given by the linear-

ized solution, and subscript "N" for F  and k  with s given by the non-linear

solution.
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4.	 RESULTS

An example of the spherical bearing system with the following input data will be

considered.

R = 2.67 in.

C = 0.001 in.

CP1 = 36.50

02 = /u -

k = 0.5 x 106 lb/in.

MJ = 2.0	 lb.

MW = 0.2	 lb.

JA = 0.2

1B = 0.2

Assume that the transducer can provide a uniform axial excursion throughout the

whole frequency spectrum*. Thus,	 b((p) = c  cos 0 and assume c 1 = 0.4.

With the above input data, the responses a and b, as solved from (33) and (34),

are plotted against to in Figures 3 and 4. It is seen that a and b become in-

finite at both of the two critical frequencies, wcr = 32640 rad/sec. and 7150

rad/sec.

The values of 6 and of a can be positive or negative depending on the squeeze

frequency. Actually, the sign of 6 is of no importance; it is the magnitude

of 6 that should be kept sufficiently small. On the other hand, a is prefer-

ably positive. Because,with 'A = ^B = 0.2, and HoB < HoA , an increase of

* In reality, once the geometry of the transducer and the bearing structure are
chosen, only a discrete number of frequencies corresponding to the natural
modes of the system can be excited.

1
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squeeze action in bearing "B" due to s will be predominating. In order to

achieve this, s should be positive as can be seen from Eq. (45). A plot of

(Fz)N/(Fdo and (k z ) N/(kd o against co is shown in Fig. 5. The effects of

synchronous response on the load carrying capacity and stiffness are clearly

depicted. (F z ) N/(F z ) o is greater than unity whenever s is positive. Although

it seems desirable to operate the bearing at, say, CO = 10,000 rad/sec. to take

advantage of the positive a which results in 	 larger load capacity, an exam-

ination of 8 from Fig. 4 indicates that 6 = U.06 which corresponds to a wheel

vibration amplitude of 60 microinches (for C = 0.001 in.) If the actual ap-

plication cannot tolerate such vibration amplitude, then it is desirable to

design the squeeze frequency to be at least two or three times of the higher

critical frequency. There, the float response a would be negligibly small so

that (F z ) N/(Fd o is practically unity and g = .006 (wheel amplitude = 0.6

microinch for C = 0.001 in.) at w = 70,000 rad/sec. The dimensionless wheel

amplitude 6 can be made even smaller by increasing !u.

In Fig. 6 the critical frequency of the system is plotted against k for the

given bearing geometry (cPl = 36.5°, cp 2 = 700 , R = 2.67, 1A = ^B = 0.2) and
M i = 2 lb., - W

= 0.2 lb., b(cP) =el cos cpand e1 =0.4.

Another set of data is generated by setting MJ = 6.5 1b. and -W = 0^5 lb. (and

keeping the same cPl , cQ2 and R) which represents an actual squeeze-film bearing

design for NASA The results shown in Figures 7 to 10 are qualitatively

the same as those of the previous bearing shown in Figures 3 to 6.

The analysis of the two-mass conical bearing system is included in Appendix I.

A computer program has also been written. The numerical results for the con-

ical bearing system are quite similar to the spherical bearing system and are

therefore, not included in this report.

So far, we have considered spherical bearing system with uniform axial squeeze

motion. But, if the transducer of a squeeze-film bearing is operated at high

frequencies, it often produces non-uniform squeeze motion which represents

higher modes of vibration of the transducer structure. Recall that b(Cp) is the
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normal component of the dimensionless squeeze amplitude. In Fig. 11, the b(CD)

of a transducer designed for NASA	 , is depicted. This b((0) is the normal

mode of the structure at 25.2 khz. Using the b(cp) of Fig. 11 as an input and

setting M  = 6 lb., MW = 0.5 1b. and the same bearing geometry we can use the

computer program to calculate the responses a and g. Since it is known that

the critical frequencies of the bearing system should be low compared to the

squeeze frequency (25.2 khz), we plot the critical frequencies against k in

Fig. 12. It is seen that for k = 0.5 x 10 6 lb/in., the two critical frequen-

cies are 20,000 rad/sec. and 4500 rad/sec. Since the squeeze frequency is

25.2 khz (or 158,000 rad/sec.), it can. be concluded that for the particular

squeeze-film system under consideration, the amplitudes of the synchronous

responses, a and 8, are negligibly small.
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5. SUMMRY AND CONCLUSIONS

Synchronous responses of spherical and conical squeeze -film bearing systems were

analyzed theoretically based on the method of a harmonic analysis developed in

Ref. 9. The two-mass model was motivated by the special application of the gimbal

suspension of a gyro. The responses of both the float (the journal)and the gyro

wheel were considered.

Based on the results obtained, the following conclusions can be drawn:

1. The responses of the journal and the wheel show typical behavior of

the dynamic response of a two degree-of-freedom system. Two critical

frequencies can be calculated from the analysis.

2. The response of the journal may result in appreciably higher load

capacity and stiffness in certain squeeze frequency range. However,

one cannot take advantage of this high load capacity because at those

frequencies the response of the wheel becomes excessive.

uen-3. When the squeeze frequency is much higher than the critical freqt

	

	 _.

cies, both the journal and the wheel responses have negligibly small

amplitudes; the load capacity and stiffness are practically not af-

fected by the synchronous responses.

4. Since the wheel excitation is generally not desirable, the squeeze

frequency should be designed to be sufficiently higher than the

critical frequencies.
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APPENDIX I - Analysis for Conical Bearing System

In a conical coordinate system, r is measured from the apex of a cone as shown

in Fig. 2. For the case of a radially unloaded bearing we do not have to con-

sider the cyclic coordinate. The analysis we shall formulate here is very

similar to the spherical bearing as can be anticipated. The normalized film

thicknesses for the conical bearings are

HA = 1 + lA sin r + [e sin r - b(C)] cos T 	 (I.1)

H 
	 = 1 - I  sin r + [-e sin r - b(C)] cos T	 (I.2)

where r is the half cone angle, a is the journal dynamic response b(C) is the

squeeze mode function and C = r/R. For uniform axial squeezing with amplitude

e l , b(C) = e 1 sin r.

The asymptotic approximations of PH for the conical bearings can be easily ob-

tained. The derivation is quite similar to the spherical bearing and is omitted

here. The results can be written down as follows.

*coA_ (1+%sin r)	 I'A( )
	

(I.3)

*coB 
= (1 - ^B sin r)	 FB(^)

	
(I.4)

where
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H oA

A
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and

E
3	 C, F B(C d

FB,(C2

C2
An

H,
o,,B

B (C2 )
3	 r	 r+ b (,C2) I

2

2

3	 re 
sib

+
+ 2



-27-

The axial instantaneous film forces are

I

= 2 sin 
	

C2

SrtR 
2 

pa
C,

IB

2	
g_ -2 sin r	

2

StiR p -a
1

We can write the equations of

d*
^-	 co

G	
- sin  j' (^ 2- C12)

H 
0 + [e sin j' b(C)]	 s T	 2

*mB 
d C	

+ sin  r (^ 2-2)
HOB + [- e sin r - b(C)] COS T	 2	 C l

motion of the journal and of the wheel,.

- MJC a W2 COS T = FIA + FIB - kC (e - 6) COS T - W 	 WW
	 (I.7)

- MwC 6 W2 COS T -' kC (e - 6) COS T
	

(I.8)

Multiply (1.7) and (I.8) ty cos T and integrate from 0 to 2 n,

	

2 sing r C2	2rr	 (*aaho COS T dT
BJ e —	

n	
d	

HoA + Cc sin r - b(03 COS T
Cl	 O

	

_ 2 sing r C2	 C2^	 (*.BC) Cos T dT

S	
d^	

H + [-e sin r b(C)] COS T - 
K (e - 6)

oB
C l 	 O

(1.9)

- BW e = K (e - 6)
	

(I.10)
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where	
M C cut

J	

.J

 386 penR2

BW
MW c cut

_

386 p nR2
a

K = k=

paTTR2

Linearized Solution

E sin r - b	 e sin r+bIf	 H	 «1 and -  R	 «1
oA	 oB

then from (I,9) and (I.10), we have

r	 2	 ^2 ( *00,4 C) [-e sin I' + b(C)]
II - B

J ^ = 2 sin r S

H 
2	 d(

C 1 	oA

2	 C2 (^r^B^) [	 sin r + b(C)]
2 sin r 

S	
2	 d- K (, - 6)

Cl	 HoB

- B 
M 

6 = K(s - 8)

or

B  c+XAe+XB £ +KE K6 = YA+YB

BW 6+K8-Ke = 0

i
r

(i.11)

(1.12)

t

f-
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where

X	 sink	 (^	
Cl

2_	 2)
	A	 HoA	 2 

X	
sin 	 (^ 2_ C 2)

	B	 HoB	 2	 1

y	 2 sin r7	
2 C b (C) d 

	A	 H
oA

y — _ _°A- y
	B	 HoB A

In matrix form we can write

(-BJ +XA + XB +K)	 - K	 E	 y A + y B

	

K	 -BW+K	 g	 0

Thus,

E	 (-B J + XA + XB + K)	 - K _ l
	

y  + y 

S	 - K	 (-BW+K)	 0

The critical frequencies can be obtained in a manner similar to (32),

.	 T3+^T4
CU

	

r	 2Q  QW

(1.13)

(I.14)

(1.15)
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where

T3 = Q JK + QW (- OA - ^B + K)

T4 = T32 - 4 Q J QW K (- SA - OB)

WA (e) - WA (o)

^A _
	

e

WB (e) - WB(o)

OB =	 e

WA and W  are defined in expressions preced

(1.16)

ing Eq. (1.19)

Non-linear Solution

Carrying out the T integration, we have

C2	 h

	

B e -- 2II 2 sing r r°'A^	
r1 -	 °AJ	 n	 e sin r- b(S) L	 H	

-	 -
oA	

Cc sin r	 b(C)l

i

i

C2h

2 sing r
	 *=BC	

1 -	 °$
TT	

16 S 	 - e sin r - b(C) [	 -	 ^^	 l

HoB 
Cc sin r + b(O

1	 5

- K (e - S)
	

(1,17)

I'



-31.-

Denote

W	 =	 2	
{2	

*wAC	 _	 hoA	 1A (e)	 4 sin r S	 e sin r - b(C) C l 	-	 ^C
^l	

HoA	
[e sin r - b(C)]

>	 W	 = -4 sing	

C2	
*=BC	

1 _	 hoBB ()	 I' S	 _e sin r - b(C) C	 -C
Cl	

HoB	 [e 
sin r + b(C)]

Then Eqs. (1.17) and (1.18) become

(- B
J
 + K) e - WA (e) - WB (e) - K 8 = 0	 (I.19)

(- BW + K) 8 - K e = 0	 (1.20)

The iteration scheme used to solve Eqs. (33) and (34) can be utilized here to

obtain the non-linear solutions a and 8 from (1.19) and (1.20).

Now, the time averaged squeeze-film forces are, by integrating the instantaneous

squeeze forces over one squeeze cycle,

F	 = 
FzA 

= 2 sin
('C2
	

*wAC d 
	

_	 2	 2_ 
^1 

2
zA	 2	 I' S	 2	

(^2
sin r	 )nR Pa	 HoA - [ e sin r - b(C)]

1

(1.21)

F zB	 2	 C2	 *^BC d 
FzB =	 2	 -2 sin rc	 2 -	 +sing I' (C22 - X12)

nR Pa	 HoB [e sin ^r+ b(^)]
1

(1.22)



-32-

The dimensionless load capacity is therefore

7  — FzA + FzB	 (1.23)

The dimensionless stiffness can be easily calculated by using Eqs. (46) to (49).

All the numerical computations have been programmed on a computer.

A numerical example is considered here with the following input data.

R	 = 2.55 in.

C	 = 0.011 in.

C1 = 0.85

C2 = 1.57

k	 = 0.5 x 106 lb/in.

M  = 2	 lb.

14W
 =

0.2	 lb.

r	 = 39.5°

JA = 0.2

IB = 0.2

b(C) = e l sin r

E 1 = 0.4

The above geometry was chosen to resemble the spherical bearing geometry. The

numerical results are very similar to those of the spherical bearing system as

can be anticipated; they are not included in this report.
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NOME NCU TURE

B	 dimensionless mass parameter, defined in Eq. (23)

b(CP)	 squeeze mode function

C	 bearing clearance

EA ,EB	defined in Eqs. (12) and (13)

FGO	 defined in Eq. (g)

F  axial squeeze-film load capacity

F dimensionless F
z z

H bearing film thickness normalized with respect to C

Ho time-average of H

k stiffness of wheel bearings

k  axial squeeze-film stiffness

k dimensionless k
z z

K defined in Eq.	 (23)

M mass

p pressure

Pa
ambient pressure

P P/Pa

R radius of sphere or cone base

t time

6	 amplitude of wheel response

amplitude of journal response

IOB	
journal displacements from respective concentric position,
defined to be positive upwards
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NQNENCLATURE (Continued

µ	 viscosity

Q	 squeeze number

T	 dimensionless time, Ot

r	 (P	 azimuthal angle in spherical coordinate

PH

CZ	 squeeze frequency

Subscripts

A,B	 bearttg (o

J	 journal

L	 pertaining

N	 pertaining

o	 setting E

W	 whee 1

00	 asymptotic

r journal) A and B

to linearized harmonic solution

to non-linear harmonic solution

= 0

approximation for Q 00



E COS r

b (0) COS r

8+8COST

SQUEEZE SURFACES
DRIVEN BY

TRANSDUCER

b l0l COS r

E COS T

Fig. 1	 Spherical Squeeze-Film Bearing System

` KTI-6992



b,s, cos T

n(s)COS T

SQUEEZE
DRIVE

TRANS

rOR r

vvv •

Fig. 2 Conical Squeeze-Film Bearing System

MTI-6982
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