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FOREWORD

Mechanical Technology Incorporated has been under contract with
George C. Marshall Space Flight Center, NASA, to conduct a project
entitled, "Analysis, Design and Prototype Development of Squeeze
Film Bearings for AB-5 Gyro'. The main objective of this Phase (VI)
is to investigate analytically the dynamic responses of squeeze-film

bearings and the start-up process of a squeeze-film thrust plate.
This report contains two parts:
I. Summary on Phase VI Work

II. Topical Report on "Synchronous Responses of Spherical and Conical

Squeeze-Film Bearing Systems''.
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PART I

SUMMARY ON PHASE VI WORK

The main objective of Phase VI is to investigate analytically the

dynamic responses and the start-up process of squeeze-film bearings.

In the literature, analytical investigations were performed on squeeze-
film bearings [1 to 6] by assuming that the supported mass be stationary
disregarding the oscillatory forces imposed by the squeeze action. In
reality the supported mass may respond dynamically with the squeeze
action. This was investigated analytically in (7] by a simplified
approach with the response assumed to be synchronous. The results
indicate that the load capacity may be considerably affected by the
synchronous response depending on the squeeze frequency and the mass

of the float.

The supported mass motion was also studied in [8]. For moderately

high squeeze number, numerical solution for the response was obtained
using small perturbation analysis. The supported mass respond was

found to be synchronous.with the squeeze motion; this was also verified by
experimental observation. The dynamic response of a spherical squeeze-
film bearing with a time scale much larger than that of the squeeze motion

was investigated in [10] using the results of [117.
Three topical reports have been issued under this phase of the contract.

1) '"Dynamic Responses of a Double Squeeze-Film Thrust Plate',
by T. Chiang, C.H.T. Pan and H. G. Elrod, Report MTI-68TR56,
1968.

2) '"Synchronous Responses of Spherical and Conical Squeeze-Film
Bearing System" by T. Chiang and C.H.T. Pan, Report MTI-69TR7,
1969.

3) "On the Start-Up Process in a Gaseous Squeeze-Film Thrust
Circular Disk'", by T. Chiang, C.H.T. Pan and V. Castelli,
Report MTI-69TR16, 1969. :



The first topical report, listed as Ref. [9], investigates the dynamic
responses of squeeze~film bearings with ver) high squeeze number. The
geometry of a double squeeze-film circular disk has been chosen for
simplicity. The results show that the dynamic response is mainly
synchronous and sub-harmonic responses are negligibly smgll in magnitude.

When the squeeze frequency is high (large B with B = Mcg ), the response

mR P,

is 180° out-of-phase with the squeeze action. This enhances the squeeze
action, and thus increases the load capacity and stiffness. The

converse is true for low squeeze frequency (smell B). In normal

operating condition of a squeeze film bearing, the large B criterion is
easily satisfied. However, when B is very large, the magnitude of the
response becomes negligibly small that the supported mass ia essentially
stationary. Three methods of solution have been used to solve the

problem, namely, linearized harmonic analysis, non-linear harmonic analysis
and the exact numerical solution. The last method gives the best results

but it is time-consuming.

The results of the linearized harmonic analysis are only qualitatively
correct. The non-linear harmonic analysis appears to be a best compromise;
it yields results in good agreement with those of the exact numerical

solution, and it is relatively easy to handle analytically.

The second topic report, entitled, 'Synchronous Responses of Spherical
and Conical Squeeze-Film Bearing Systems', is included in this report.
The configurations shown in Fig. 1 and Fig. 2 are motivated by a new
transducer design for Phase V of this contract. This new transducer is
for squeeze-film bearing support of a line AB-5 gyro float. The gyro
wheel supported by its bearing is considered to be one mass, whereas the
squeeze-film journals (spherical or conical) connected by a rigid shaft
is considered as a second mass, and thus constitutes a two-mass system.
Because of the previous success, the method of non-linear harmonic

analysis was used to analyze the responses of both the float (the journal)



and the gyro wheel. The results show that they display typical behavior
of the dynamic responses of a two degree-of-freedom system. The system
has two critical frequeincies at which the dynamic responses become
unbounded. When the squeeze frequency is much higher than the critical
frequencies, both the journal and the wheel responses have negligibly
small amplitude; the load capacity and stiffness are practically not
affected by the synchronous response. In certain frequency range, the
response of the journal may resnlt in appreciably higher load capacity
and stiffness. But in the mean time, the response of the wheel becomes
excessively large. Therefore, one cannot take advantage of this high
load capacity characteristics and it is recommended that the squeeze
frequency be designed to be sufficiently higher than the critical

frequencies.

The third topical report deals with the start-up process of a squeeze-
film bearing. Again, a circular disk thrust bearing is chosen for
simplicity. It is assumed that separation of the supported mass from the
oscillatory bearing surface would occur because the supported mass cannot
follow the oscillation motion. We, therefore, transform the actual start-
up process into an idealized situation; the supported mass is assumed to
start with a giver velocity and a given r~levation different from the
equilibrium fii+ thickness. The analytical results show that when the
gap is greater than the equilibrium film thickness, the squeeze film
force is not large enough to support the float. Consequently, the gap
would decrease. When the gap decreases to a value equal to the
equilibrium film thickness, although the squeeze-film force balances out
with the load, the gap will continue to decrease because of the inertia
of the float. Now the squeeze-film force is building up until it reaches
a value that will compensate the float inertia; at that point, the gap
ceases to decrease. The squeeze-film force is now too large and the
float starts to move up. It will over-shoot the équilibrium position and
the process will repeat itself witﬁ“decreasing amplitude. The float

would eventually settle down toward the equilibrium position.



PART II

SYNCHRONOUS RESPONSES OF SPHERICAL AND
CONICAL SQUEEZE-FILM BRARING SYSTEMS
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1. _ INTRODUCTION

Gaseous squeeze-film bearings were analyzed in the literature by many investi-
gators [1 to 6], Asymptotic approximations for large squeeze number were form-
ulated in [27. In References 3 to 6, the performance of various squeeze-film
bearing geometry was given with the assumption that one of the squeeze surfaces
is oscillating under a prescribed mode and at a high frequency while the other
bearing surface, normally the supported mass, is held stationary. Because of
the excitation due to squeeze action, the supported mass may respond dynamically.
This was investigated in [7], [8] and [9]. Numerical solution of the supported
mass motion was obtained in [8] for moderately high squeeze number; it was found
both analytically and experimentally that the supported mass motion is synchron-
ous with the squeeze artion., When the squeeze number is very high, the dynamic
response of the supported mass was investigated in [7] and [9] using the asym-
ptotic approximation for large squeeze number. In Reference [9] the response

of a double squeeze-film thrust plate was determined by using three methods of
solution, namely, linearized harmonic solution, non-linear harmonic solution,
and exact numerical solution. It was found that the response is predominantly
synchronous. Furthermore the non-linear harmonic solution yields reswvlts whicl
agree well with the exact numerical solutior. In this report, the synchronous
responses of spherical and conical squeeze-film bearing systems will be inves-
tigated. Because of its previous success, the non-linear harmonic method of
solution will be used. Only responses in the axial direction will be considered

and the bearing is assumed to be radially unloaded.

The configurations of the spherical and conical squeeze-film bearing systems
depicted in Figures 1 and 2 show that an additional spring-mass system is
attached to the float. This is motivated, in particular, by the gimbal squeeze-
film suspension of a gyro float; the mass would then be the mass of the wheel

and k the stiffness of the spin-axis bearing.



2. ANALYSIS OF SPHERICAL BEARING SYSTEM

The spherical bearing system shown in Fig. 1 will be used for analysis. 'Iwo
opposing spherical segments desiguated by A and B, are connected by a rigid
element on which the gyro wheel is mounted., Assume that the gyro wheel has
mass Mw and the spin axis bearing has stiffness k. The analyses for the con-
ical geometry can be carried out in a similar manner; they are included in

Appendix I,

In the spherical coordinate system, denote the meridianal and azimuthal angles
by 8 and ¢ respectively. The azimuthal angle is illustrated in Fig. 1. Since
the squeeze-film bearings are assumed to be radially unloaded, there is no

© dependence. The transducers for the arrangement shown in Fig. 1 are normally
operated in a symmetrical fashion so that the normalized squeeze actions of
both squeez2 surfaces '"A" and "B can be represented by b(gp)cos T, where b(ep)
is a mode function. Assume that the response of the float is synchronous and
can be represented by ¢ cos v. This approach was successful in dealing with
the double squeeze-film thrust plate [9] and will be applied again here. Note
that both spherical segments have the same response ¢ cos T, because they are
assumed to be connected by a rigid element. Let nA and ﬂB be the normalized
steady-state displacements of journals "A" and "B" from their concentric posi-
tion; both are defined to be positive upwards. The normalized film thicknesses

can now be written as

-
]

, =1+ M, cos ¢+ [ecos - blp)] cos 7 (1)
Hp =1 - M;cos o+ [~e cos ¢ - b(ep)] cos T (2)

Note that the quantities H,, ﬂA’ €, b(p) etc. have been normalized with re-

spect to the bearing clearance C.

The isothermal Reynolds' equation of a spherical squeeze-film bearing is (Ref. 4),



1l _ 2 [ 3 .3.2:} = 2
sin o 30 sin ¢ H” P ol T 3 (PH) (3)
where

P = £

Pa

2
c = %&Q (%) = squeeze number
a

Q0 = squeeze frequency
T = (X

Equation (3) is obviously applicable to either bearing "A'" or bearing "B", and
H can be interpreted as HA or HB accordingly. For large g, the asymptotic ap-
proximation of (3) is, from Ref. 4,

dH

< S KR y 2y . 2 . —o7 _
do | sin o 1o (Ho ¢w ) 3 ¥, sin o a9 ] =0 (4)
where
. -
¢m=11m (PH)
g0
21 (5)
H=—1-S H d
o 21 4 -
o

The boundary conditions as derived from a Mass Content Rule in Reference 4, are



21
3
H™ (py,>T) dr

2 (o]
V. (9,) =
S H (p,,7) dT
2 0
v, (o) =
© 2 2m Ho(wz) j
Integrate (4) with respect to ¢,
dH
, d 2
sin ¢ [ Ea»(uo sz) -3 v 359 ] = E (7)
where E is a constant.
Assume that
oy o e
Flo) = (& (8)
o

Substituting (8) into (7), we obtain

3 dF E
H _— = -
o d¢ sin ¢

which can be readily integrated to yield

: Pw dep'!
F(p) = E 3 3 + Flop;) (9)
o, Ho (p')sin o'




Equation (9) can of course be used for bearing "A" or "B". For bearing "A",

use subscript A" for the respective quantities and rewrite Eq. (9),

oA(cp') sin ¢’

Two arbitrary constants, EA and FA(ml), are to be determined by boundary con-

ditions. Combining Equations (6) and (8), we have

P (0.} ! 3 € cos @, - b(cpl) 2
- re d [ S
ATl 2 HoA(“’l)
(11)
F,(p,) 1+3recoscp2-b((pz)2
¢ = 2 D,

AP 2 H (o))

From Eq. (10), EA can be easily obtained by setting ¢ = @y 5
F,(p,) - F,(p;)
E, = < L (12)

S [H sin mJ d¢

Similarly, for bearing "B,



dep'

y + F (w )
HgB(@') sin @' Bl

[s cos @, + b(qpl):l2
HoB(wl)

2

——

[e cos 9, + b(cp?-)..I
HoB(QZ) J

84
Fplp) = Eg S
- 3
Fplop) = 1+ 3
Folp,) = 1+ 2
: ] 2
. _ Fp(p,)
B )

Knowing FA(¢) and FB(w), we can proceed to obtain

= H

Vool oa\/ Falo)

me oB

The instantaneous film forces in the axial direction, F

= H ‘\/ FB(cp)

by integrating the pressure above the ambient,

FIA = S (pA - pa) 2m R2 sin ¢ COS ¢ d¢

(13)

(14)

(15)

can be obtained



IR T e VOB P LR AR et e T o et T

®2

2 .
FIB = - S (pB - pa) 2nm R” sin ¢ cos ¢ do (16)

0

The forces are defined to be positive upwards. Non-dimensionalizing with nkzpa

and replacing P, by q;mA/HA and so on, we have

A
FIA . A7) LY sin 2¢p do _ . 1 (cos Ze. - 2.)
2 - g H, + [e cos ¢ - b(p)]cos 7 2 \CO8 <@, T €05 29
mR™p 0A 1

a 01 (7)

Fo_ (7 Yo S0 2090 1 os 26, - cos 26.)

ﬂRZ S HoB + [-¢ cos o - b(¢)]cos T 2 \€O8 %2 cos 20y
Pa o (18)

Note that we have used the asymptotic approximation and neglected the edge
corrections for the squeeze film forces. 1In so doing, the damping part of

the squeeze action is automatically discarded (See Ref. 9).

Since the squeeze-film forces are exclusively in the axial direction for a
radially unloaded bearing, we can write one axial equation of motion for the

spherical journal,

2 — - -
- MJ Cew cost = FIA + FIB WJ Ww + kC (8§ cos T~ ¢ cos T)
(19)
where
MJ = mass of the journal
WJ = weight of the journal
ww = weight of the wheel
k = stiffness of the bearing for wheel
§ = dimensionless amplitude of oscillation of the wheel from its

equilibrium position.



Now that we have introduced an additional unknown §, we need one more equation
which is the equation of motion of the wheel, Note that the motion of the wheel
was also assumed to be synchronous.

- Mw C 5 aF cos T=-kC (§cos T~ ¢ cos 1) (20)

Mw is the mass of the wheel.

Multiply Eq. (19) and (20) by cos 7 and integrate from O to 21,

. _ 1 ®2 ; 2m (WmA sin 2¢)cos T dT
J € n S P S H, + (e cos ¢ = b(p)]cos 7
] ©
1 92 r2n (y g sin 2¢p)cos T dr
- = d :
S ® ) H .+ [-b(p) - e cos glcos 7
901 o
+ K- (6- ¢) (21)
-B,6=-K. (5~ €) (22)
where MJ C a? 1
By = )
T Pa
Mw C aﬂ
By = 22)
™" p
a
.
™" P, _

Equations (21) and (22) are two non-linear equations for ¢ and §. Iteration



method will be used to obtain the solution starting from a linearized solution

as a first guess.

Linearized Solution

For the case that

cos - b(e

and (24)

cos ¢ + b
oB

<«< 1

Then, Equations (21) and (22) can be linearized to

(-BJ+XA+XB+K)e-K5=YA+YB (25)
-Ke+ (- B, +K) =0 (26)
where Py . .
- sin 2¢ cOs « d
XA 'S H P
0 oA
1
P
‘ - sin 2¢ cOs ¢ d
oB
%1 (27)
Qp;
y = S 2 sin 2¢ b () 4
A H ®
9, OA
YB = dcp




Equations (25) and (26) can be written in matrix form

(-BJ+XA+XB+K) - K € YA+YB
- K (-B, + K) 8 0
Thus,
-1
e (-BJ+XA+XB+K) - K YA-I-YB
- (28)
5 - K (-BW+K) 0

The linearized solution ¢ and § can be easily obtained from (28). Also, it is
seen that the critical frequencies of the system can be readily obtained by

setting the determinant of the matrix equal to zero.

ﬂ
2 2 2 _
(-QJm +xA+xB+K)(-wa +K)-K =0
where MJ C
Q, = (29)
J R2
™ P,
Mw C
Q =
W 2
™R P,

Thus, the two critical speeds according to the linearized analysis are



1/2
i} T, 4/ T,
cr 2QJ Qw
where
T, = QJK+QW(XA+XB+K) (30)
_ 2
T2 = T1 - 4 QJ Qw K(xA + XB) ]

Because the squeeze-film forces were obtained by an asymptotic approximation,
there is no damping in the system. Consequently, ¢ and § would become infinite
when w approaches W, Note that the critical frequencies given by (30) are
independent of the squeeze mode function b(ep). This is obviously due to the
fact that we have linearized the system according to (24) which imposes the
condition that both ¢ and b(g) must be small.

Actually, one can include the non-linear squeeze-film action in the critical
frequency calculation by linearing with respect to ¢. This can be easily

achieved by starting with Eqs. (33), (34) and (35). One can write

ZA(e) = ZA(O) tea,
(31)

'ZB(e) = ZB(O) + e o

Note that ZA(°)’ ZB(O), o,

the non-linear squeeze action. Following the same derivation one can show

and ap are functions of b(y); or they do include

that the critical frequencies are given by

1/2
T, Ty T,

w =
er 2Q; 4
where
= —— (32)
T, QJK+Qw(dA aB+K)

2

-3
~
fl



Non-linear Solution

Perform the r integrations in Eq. (21) and rewrite Eq. (22).

(-By+K) e -2 (e) ~Z; (e)-KbE=0 (33)
-Ke+ (-B, +K) 6=0 (34)
where ®y Vo sin 20 g HQA -
Zple) = 2 S c0r o 5@ | AT e o2 |
" ¢ ® © H , - [e cos ¢ - blo)]
31
(35)
2 ¢ . sin 2o H
ZB(e) = -2 S -¢ czg - b(ep) L- 2 = . doo
¢ 9 Hop - (e cos ¢ + b(y)]

Let € and 51 be the i-th iterated solution. To obtain the next improved

solution €14l and 5r+1, let us denote the corrections by Cwi and é@i, or
41 = €5+ bey
(36)
8i41 = 65 + 88 |
Since €4l and 841 must satisfy (33) and (34) we have
(-By+K) ey -2y (egyy) - 7y (ejp) " K&y =0 (37)
-K €41 + (-Bw + K) 51+1 =0 (38)



Using Taylor's series expansion and taking only the first-order terms, we have

- , = '
Zplegny) = Zyley + Ley) = 2,(e) + 2, (e)) Ly
(39)
= '
ZpCe ) 2g(e;) + 2p (ey) e,
Substitute (36) and (39) into (37) and (38) and solve for Aei and Aﬁi ,
-1
- - ! - [ -
Aei-l BJ + K ZA (ei) ZB (ei) K ui
= (40)
Abi - K -B, + K vy
where
u, = (By - K) e; + 2, (ei) + 2, (ei) +K 8,
(41)
v, = (Bw - K) 6i + K €

The iterative process indicated above can be repeated until both A@i and A@i
are smaller than a specified value. The converged values of ¢ and § are the
solutions of (33) and (34).



3. LOAD CAPACITIES AND STIFFNESSES

Integrating the instantaneous squeeze-film forces given by (17) and (18) over

one squeeze cycle, we have the time-average forces,

2n
F . S F_ drT
zA 2m IA
)
(42)
2m
F.oo= = ( F_d
zB 21 S IB |
0
or - FzA sin 2¢ dep
FzA - 2
mwR°p, 2 / 2 - [e cos ¢ - b(w)]
1l
5 [cos 2¢, - cos 2w1] (43)
- F_.. ¥ sin 2(pd(p
FzB - ——;L —_—
mRp, ’\/ - [e cos ¢ + b(p)]
1 .
- E-[cos 2¢2 - ¢cos 2¢l] (44)

The dimensionless load capacity is therefore

~18-



- ¥ sin 2¢p dop
F = F ,+F
# 2h =B ‘\/; - [e cos ¢ - b(y)]

A7) VB sin 2¢ do

- * 45)
o -\/:oB - (e cos g + b(q:,)]E

Thus, from (43), (44) and (45) it is clear how the squeeze-film forces are
affected by the synchronous response of the float. In fact, it is a conveni-
ent concept to combine the (driving) squeeze motion and the synchronous re-
sponse into an effective squeeze motion, The effective squeeze motion for
bearing surface "A" is ¢ cos ¢ - b(p), and for bearing surface "B", ¢ cos ¢

+ b(p). Previous analysis neglecting the synchronous response [4] is obviously

a special case of the present analysis with e¢ = 0.

The bearing stiffness can be obtained numerically by taking the difference

between the forces at My - AmA and M, + AmA for the bearing surface "A". Let

AmA = 0.01, then
E' _ FzA (ﬂA - 0.01) - FzA (ﬂA + 0.01) 6)
zA 0.02
Similarly,
F - 0101 - F .
= i F o (“1_3 ) 2B (T]JB + 0.01) “n
zB 0.02
The dimensionless bearing stiffness is the sum of EzA and E;B'
kz = sz + sz (48)
and _ sz
k, = > (49)
mRp

-19-
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Both E; and"l-«-z are dependent on the synchronous response. We will use subscript

"0" for those with ¢ = 0, subscript "L for E; and E; with ¢ given by the linear-

ized solution, and subscript "N" for Fz andEz with ¢ given by the non-linear
solution,



4. RESULTS

An example of the spherical bearing system with the following input data will be

considered,

R = 2.67 in.

C = 0.001 in.
©, = 36.5°

- ©
0y 70

k = 0.5x 106 1b/in.

MJ = 2.0 1lb.

MW = 0.2 1b.

ﬂA = 0.2
Assume that the transducer can provide a uniform axial excursion throughout the
whole frequency spectrum*. Thus, b(yp) = €, cos ¢ and assume ¢, = 0.4.

With the above input data, the responses e¢ and §, as solved from (33) and (34),
are plotted against w in Figures 3 and 4. It is seen that ¢ and § become in-
finite at both of the two critical frequencies, o, = 32640 rad/sec. and 7150

rad/sec.

The values of § and of ¢ can be positive or negative depending on the squeeze
frequency. Actually, the sign of § is of no importance; it is the magnitude

of § that should be kept sufficiently small. On the other hand, ¢ is prefer-

ably positive. Because,with ﬂA =T = 0.2, and HoB <H_ ,, an increase of

* 1In reality, once the geometry of the transducer and the bearing structure are
chosen, only a discrete number of frequencies corresponding to the natural
modes of the system can be excited.

-21-
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squeeze action in bearing 'B" due to e¢ will be predominating. In order to
achieve this, e¢ should be positive as can be seen from Eq. (45). A plot of
(.I::Z)N/(Fz)o and (EZ)N/(EZ)O against ® is shown in Fig. 5. The effects of
synchronous response on the load carrying capacity and stiffness are clearly
depicted. (EZ)N/(EZ)O is greater than unity whenever ¢ is positive. Although
it seems desirable to operate the bearing at, say, ®w = 10,000 rad/sec. to take
advantage of the positive ¢ which results in 2 larger load capacity, an exam-
ination of § from Fig. 4 indicates that § = 0.06 which corresponds to a wheel
vibration amplitude of 60 microinches (for C = 0.001 in.) If the actual ap-
plication cannot tolerate such vibration amplitude, then it is desirable to
design the squeeze frequency to be at least two or three times of the higher
critical frequency. There, the float response ¢ would be negligibly small so
that (E;)N/(E;)o is practically unity and § = .006 (wheel amplitude = 0.6
microinch for C = 0.001 in.) at w = 70,000 rad/sec. The dimensionless wheel

amplitude § can be made even smaller by increasing w.

In Fig. 6 the critical frequency of the system is plotted against k for the
given bearing geometry (p; = 36.5°, 0, = 70°, R = 2.67, M, = Mg = 0.2) and
MJ = 2 1b., Mw = 0.2 1b., b((p) = € Ccos @ and € = 0.4.

Another set of data is generated by setting M.J = 6.5 lb. and Mw = 0.5 1b. (and
keeping the same ®12Py and R) which represents an actual squeeze-film bearing
design for NASA [ ]. The results shown in Figures 7 to 10 are qualitatively

the same as those of the previous bearing shown in Figures 3 to 6.

The analysis of the two-mass conical bearing system is included in Appendix I.
A computer program has also been written. The numerical results for the con-
ical bearing system are quite similar to the spherical bearing system and are

therefore, not included in this report. .

So far, we have considered spherical bearing system with uniform axial squeeze
motion. But, if the transducer of a squeeze-film bearing is operated at high
frequencies, it often produces non-uniform squeeze motion which represents

higher modes of vibration of the transducer structure. Recall that b(¢) is the



normal component of the dimensionless squeeze amplitude. 1In Fig. 11, the b(yp)
of a transducer designed for NASA , is depicted. This b(¢) is the normal
mode of the structure at 25.2 khz. Using the b(¢p) of Fig. 11 as an input and
setting MJ =6 1lb., Mw = 0.5 1b. and the same bearing geometry we can use the
computer program to calculate the responses ¢ and §. Since it is known that
the critical frequencies of the bearing svstem should be low compared to the
squeeze frequency (25.2 khz), we plot the critical frequencies against k in
Fig. 12. It is seen that for k = 0.5 x 10° l1b/in., the two critical frequen-
cies are 20,000 rad/sec. and 4500 rad/sec. Since the squeeze frequency is
25.2 khz (or 158,000 rad/sec.), it can be concluded that for the particular
squeeze-film system under consideration, the amplitudes of the synchronous

responses, ¢ and §, are negligibly small.
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5.  SUMMARY AND CONCLUSIONS

-24-

Synchronous responses of spherical and conical squeeze-film bearing systems were

analyzed theoretically based on the method of a harmonic analysis developed
Ref. 9. The two-mass model was motivated by the special application of the
suspension of a gyro. The responses of both the float (the journal)and the

wheel were considered.

Based on the results obtained, the following conclusions can be drawn:

1. The responses of the journal and the wheel show typical behavior of
the dynamic response of a two degree-of-freedom system. Two critic

frequencies can be calculated from the analysis.

2. The response of the journal may result in appreciably higher load
capacity and stiffness in certain squeeze frequency range. However
one cannot take advantage of this high load capacity because at tho

frequencies the response of the wheel becomes excessive.

in
gimbal
gyro

al

’

se

3. When the squeeze frequency is much higher than the critical frequen-

cies, both the journal and the wheel responses have negligibly smal
amplitudes; the load capacity and stiffness are practically not af-

fected by the synchronous responses.

4. Since the wheel excitation is generally not desirable, the squeeze
frequency should be designed to be sufficiently higher than the

critical frequencies.

1



APPENDIX I - Analysis for Conical Bearing System

In a conical coordinate system, r is measured from the apex of a cone as shown
in Fig. 2. For the case of a radially unloaded bearing we do not have to con-
sider the cyclic coordinate. The analysis we shall formulate here is very
similar to the spherical bearing as can be anticipated. The normalized film

thicknesses for the conical bearings are

H.A = 1 4+ ﬂA sin "'+ (e sin " - b(g)] cos 7 (I.1)

HB = 1 - nB sin ' + [-¢ sin " - b(¢)] cos 7 (1.2)

where " is the half cone angle, ¢ is the journal dynamic response b({) is the
squeeze mode function and { = r/R. For uniform axial squeezing with amplitude

€5 b(g) = €, sin I.

The asymptotic approximations of PH for the conical bearings can be easily ob-

tained. The derivation is quite similar to the spherical bearing and is omitted

here. The results can be written down as follows.

a= (L+1, sin D)\ [F,(Q) | (1.3)

Vg = (- Ty sin D\/F(Q (1.4)

where

-25-



and

Focy)

FA(QI)

Fp(C,)

EB(gl>

n

L

L]

4

14+ < [
2 B,

, 2
€ sin " - b '
1+ [e ok €y

H@A

N Jw

1 + 'ﬂAsinF

+ Fp(gy)

e sin T+ b(g,),

-

[
4
Mo

=
4+
ol

J

(1.5)

(1.6)



The axial instantaneous film forces are

F €2 ¥ou €€
IA 2 _ ol _4_ . 2 2. 2
2 = 2sin T S H .+ [esin [ - b(p)] cos 7 ~ 51 T (6= ¢
mR™p oA
a Cl
Fop 5 C2 Vg € 94C 2 2 2
2 =-2sin T S H_+ (-¢ sin [ - b(g}j cos T tsin T (GZ 3! )
mRp oB
a Cl
We can write the equations of motion of the journal and of the wheel.
2 3 - - - -
- MJC e W cos T = FIA + FIB kC (e - 8) cos T WJ Ww (1.7)
- MwC 8 w? cos T = KkC (e - 8) cos 7 (1.8)

Multiply (I.7)

and (1.8) ty cos T and integrate from O to 2m,

_ o
2 s;n2 L S 2 dc g

K (e - 6)

2m (y_,€) cos 1 d7

HoA + f;-;in I' - b(g)] cos 7

(y_gC) cos 7 dr

(-‘ T "= - -
dc \} HOB + ['e sin [ - b(C)] cos T K (e 6)
o)

(1.9)

(1.10)
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2
MJC w

386 panR

where

2

2

MwC w

386 panRZ

kC
2
p,mR

Linearized Solution

HoA oB

then from (I.9) and (I.10), we have

( €2 (y,0 [-¢ sin T + b(g)
) BJ : = 2 sinz r S Yﬁﬁg, [ € sin C ] dc
HZ
;1 oA
J 2 Ca (Wng) [ e sin I+ b(p)]
- 2 sin” T S — 2 d¢ - K (e - 8)
gl HoB
- By, = K (¢ - 8)
\.
or
- BJ e+ er + XBe + Ke - K§ = YA + YB

- Bw 8§+K§-Ke =0

(1.11)

(I.12)



where 3
sin_ T 2 2
H, (- ¢

3
2
R T R

oB
(1.13)
2 inz C2
A R LRCEL
oA
€1
H
OA
Y = e Y
B HoB A ]
In matrix form we can write
(-BJ + XA + xB + K) - K € YA + YB
- K -B, + K 6 0
Thus,
, N -1
e (-By + ¥, + X, +K) K Y, + ¥y
) - K (-Bw + K) 0 (1.14)
The critical frequencies can be obtained in a manner similar to (32),
T +-'V T
T | (1.15)

cr 20, Q,



where
T3 = QR+ Q¢ -gp+R)
T, = T,°-40Q QK (g, -8y
IRACERRD
BA- P
RACEIND
BB- c
-
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(1.16)

W, and WB are defined in expressions preceding Eq. (I.19)

Non-linear Solution

Carrying out the t integration, we have

_ 2qm o L L\
- BJ e = - 2 sin” T 3 e sin [ - b(g) Ll
€1
€2

o:::BC

h

oA
&
'\/HOA - [e sin T - b(c)]i]d

RPN e ;
p. 2 sin” T § -¢ sin " - b(p) [1 - [e sin T + b(g)] ]d
1

K (e - 8)

K (¢ - 6)

-Bwb

(I.17)

(1.18)



-3]-

Denote
C2 VoaC h
2 ol 0A 9
W,(¢) = 4 sin” D - - i = ¢
A §1 ¢ sin T - b(g) [ -\/HEA -[esinT - b(g)]i iy
€2 Vol
B
We(e) = -4 sin” T S e sIn I B0 [1 -
€1

Then Eqs. (I.17) and (I.18) become

(- By + K) ¢ - W, (e) - wB (¢) ~-Ksg= 0 (1.19)

(-B,+K) 8 -Ke=0 (1.20)

The iteration scheme used to solve Eqs. (33) and (34) can be utilized here to

obtain the non-linear solutions ¢ and § from (I.19) and (I.20).

Now, the time averaged squeeze-film forces are, by integrating the instantaneous

squeeze forces over one squeeze cycle,

- F ¥ _,Cd
F, = ——%é— = 2 31n r g 28 C - 51n r (gz -4 )
™R p, ‘\/ - (e sinT - b(g)]
(1.21)

- [e sin T + b()]

FzB = -—2— = -2 Sln T S \/ﬂmﬁ.’- sin 1-.(€22_ gl)

(1.22)
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The dimensionless load capacity is therefore

+ F (1.23)

F = FzA zB

4

The dimensionless stiffness can be easily calculated by using Eqs. (46) to (49).

All the numerical computations have been programmed on a computer.
A numerical example is considered here with the following input data.

R = 2.55 in.

C = 0.0l1 in.
g, = 0.8
g, = 1.57
k = 0.5x 10° 1b/in.
M, = 2 lb.
M, = 0.2 1b.
r = 39.5°
M, = 0.2
Mg = 0.2

b(g) = e, sin T
e = 0.4

The above geometry was chosen to resemble the spherical bearing geometry. The

~numerical results are very similar to those of the spherical bearing system as

can be anticipated; they are not included in this report.
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NOMENCLATURE

B dimensionless mass parameter, defined in Eq. (23)
b (¢p) squeeze mode function

c bearing clearance

EA’EB defined in Eqs. (12) and (13)

F (o) defined in Eq. (8)

Fz axial squeeze-film load capacity

Ez dimensionless Fz

H bearing film thickness normalized with respect to C
Ho time-average of H

k stiffness of wheel bearings

kz axial squeeze-film stiffness

Ez dimensionless kz

K defined in Eq. (23)

M mass

) pressure

pa ambient pressure

P p/p,

R radius of sphere or cone base

t time

§ amplitude of wheel response

€ amplitude of journal response

ﬂA,ﬂB journsal displacements from respective concentric position,

defined to be positive upwards
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NOMENCLATURE (Continued)

viscosity

squeeze number

dimensionless time, (Ot

azimuthal angle in spherical coordinate
PH

squeeze frequency

Subscripts

A,B

J

beari::g (or journal) A and B

journal

pertaining to linearized harmonic solution
pertaining to non-linear harmonic solution
setting ¢ = 0

wheel

asymptotic approximation for g = o«
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Fig. 1  Spherical Squeeze-Film Bearing System

* MTI-6992



T

e COSt

A

b(£) COS

3 <\
SQUEEZE SURFACES \\

DRIVEN BY

TRANSDUCER

~

b(£) COS T

e COSt

Fig. 2 Conical Squeeze-Film Bearing System
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