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LONGITUDINAL AN.D  LATERAL  SPECTRA OF TURBULENCE 
IN THE ATMOSPHERIC  BOUNDARY  LAYER 

SUMMARY 

In many types of space  vehicle and aircraft  response  calculations, 
engineers  employ  the  Fourier  transform  to  solve  the  equations of motion which 
describe  and  predict  the  ultimate  response of space  vehicles  to the natural 
environment.  Thus,  the  input  functions  which  describe  the  turbulent  character 
of wind loads  must  be  specified  in  terms of spectra.  To develop  an  engineering 
boundary layer  model of the  longitudinal  and  horizontal lateral spectra of 
turbulence, a 150-meter  meteorological  tower was erected at Cape  Kennedy, 
Florida.  The  tower is instrumented at the  18-, 30-, 60-, 90-, 120-,  and 
150-meter  levels  with wind speed and direction  sensors which measure  the 
horizontal  components of the wind. Temperature  sensors are located at the 
18-, 30-, 60-, 120-,  and  150-meter  levels.  Fifty  one-hour  cases of turbulence 
that  occurred  during a variety of meteorological  conditions were selected  for 
analysis. 

Longitudinal  (u)  and  horizontal lateral (v)  velocity  fluctuation 
spectra were calculated  for  each  level,  resulting  in a net  total of 300 spectra 
for  each  velocity  component. It was found that [ nS (n)/u2k0, f ] - coordinates, 

o r   ra ther  Monin coordinates, fail to  produce a vertical  collapse of the  spectra, 
where  S(n) is the  longitudinal or  lateral  spectral  energy  density at frequency 
n  (Hz) , is the  surface  friction  velocity  (calculated with  mean wind and 

temperature  profile  data),  and f = nz/b, b is the  mean wind speed at height 
z. However, it appears  that Monin coordinates  will  collapse  spectra with 
various  turbulence  intensities at any particular  level  in  the  vertical. 

To produce a vertical  collapse of the spectra, it is assumed, for 
engineering purposes, that  the  spectra  in Monin coordinates are shape- 
invariant  in  the  vertical.  This  hypothesis,  which  seems  to  be  reasonable, 
permits a practical  approach  to  developing  an  engineering  spectral  model of 
turbulence.  The  longitudinal  and lateral spectra  for  the  unstable and neutral 
boundary  layers can be  represented by the form 



Cf 
f 
m. 
- 

where C and r a r e  functions of stability. In the  neutral boundary layer, 
pu and pv are proportional  to  and  z-O-~~, and  in  the  unstable  boundary 

layer they are proportional  to z-0-14 and z-O*04. The  dimensionless wave 
number f associated with the  peaks of the  logarithmic  spectra is an 

increasing  function of z. In neutral  air, 

z and z0*58,  while  in  unstable air, they are  porportional  to z O = ~ '  and 

m 

fmu and fmv are  proportional  to 

The  inverse  Fourier  transforms  (correlation  functions) of these  spectra 
are  calculated  numerically. The integral  scale L"' is proportional  to  z/f 

m y  
i o  that, in  the  neutral air, I,'' is a constant  and L:' is proportional  to Z O - ~ ~ ,  

and  in  unstable air they are  proportional  to zooi3 and 
U V 

An analysis of the  logarithmic  spectrum  in  the  inertial  subrange, at the 
18-m level,  implies  that  the  local  mechanical and  buoyant  production rates of 
turbulent  kinetic  energy are balanced by the  local  dissipation and energy  flux 
divergence,  respectively. In addition,  the  spectral  model  implies  that  the 
dimensionless  dissipation  rate ki z ~ / u 3 : ~  is proportional  to z0*055  and  zo*66 

in  the  neutral and unstable  boundary  layers,  where k, and E denote 
von K a r m a ' s  constant  and  the  dissipation rate. 

INTRODUCTION 

To determine  the  response of space  vehicles,  aircraft, tall structures, 
etc. , to  atmospheric  turbulence, the  engineer  requires  specific  information 
about  the  spectral  nature of atmospheric  turbulence.  This  results  because  the 
equations of motion of these  vehicles or  structures  are  l inear and a re  solved 
with Fourier  transform  techniques and thus  the  environmental  forcing  functions 
must be represented  in  terms of spectra.  Motivated by this  requirement, we 
have  developed a model  for  the  longitudinal  and  horizontal lateral spectra of 
turbulence  for  the Kennedy Space  Center  (KSC).  The  longitudinal  and  lateral 
components of turbulence  are  the wind fluctuations  parallel and normal  to  the 
mean wind vector  (Fig. I). 

2 
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Turbulence  Vector 

Lateral  Component 
Instantaneous 

Figure I. The  relationship  between  the  quasi-steady  and  the 
instantaneous wind vectors  and  the  longitudinal  and lateral 

components of turbulence. 

THE NASA 150-m METEOROLOGI CAL TOWER 

To  obtain  micrometeorological  data  representative of the  Cape Kennedy 
area, especially in the vicinity of the  Apollo/Saturn V launch  pads, a 150-m 
meteorological  tower was constructed on Merritt  Island at KSC. The  tower 
facility,  discussed  in  detail  in a report by Kaufman  and  Keene [I], is only 
briefly  described  here. 

Ter ra in   Fea tu res  

I 

Figure 2 shows the location of the  facility  with  respect to the  Saturn V 
space  vehicle  launch  complex 39. The  tower,  located  about  five  kilometers 
from  the  Atlantic  Ocean, is situated  in a well-exposed area free of near-by 
structures which  could interfere wi th  the air flow. 

3 
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SCALE 1" = 4000' 

Figure 2. NASA Launch  Complex 39, Kennedy  Space  Center,  Florida. 

The aerial photograph  (Fig. 3) of the  terrain  surrounding  the  tower 
(point  T) was taken at 1066 m above  mean sea  level. In the  quadrant  from 
approximately 300 deg  north  azimuth  with  respect  to  the  tower,  clockwise 
around  to 90 deg,  the  terrain is homogeneous,  being  covered  with  vegetation 

4 
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Figure 3. Aerial view of the terrain  surrounding the NASA 150-m 
meteorological  tower. 

about  0.5  to I. 5 m high.  Another  homogeneous area with  the  same  type of 
vegetation  occurs  in  the 135- to 160-deg  quadrant.  The  areas A (230-300  deg) , 
B (90-135  deg) , and C ( 160-180 deg) are  covered with trees  from about 10 to 
15 m tall. The  distance  from  the  tower  to  areas A or C is about 200 m, and the 
distance to a rea  B is about 450 m and the  vegetation  ranges  from  one-half  to 
one and one-half meters ,   as   in   the  area to  the north .of the  tower.  To  the 
south-southwest,  in  the 180- to 230-deg  quadrant 225 m from  the  tower,  there 
is a body of water  called Happy Creek. 

5 



Instrumentation 

The  complete  tower  facility  comprises two towers, one  18  m.  and  the 
other  150  m  high  (Fig.  4).  The  levels on both towers are instrumented  with 

BOOM HEIGHTS 
( m c l c r r l  N 

W - WIND  SPEED  AND  DIRECTION 

io":: L J" 

Figure 4. Location of instrumen- 
tation  on  the NASA 150 m  meteoro- 

logical  tower  at  Kennedy  Space 
Center,  Florida. 

Climet  (Model C1-14)  wind sensors. 
Temperature  sensors,  Climet (Model 
C1-016) aspirated  thermocouples,  are 
located at the 3- and  18-m levels on 
the  small  tower  and  at  the 30-,  60-, 
120-,  and  150-m levels on the  large 
tower.  Foxboro  (Model  F-27llAG) 
dewpoint temperature  sensors  are 
located at the 60- and  150-m levels 
on  the large  tower and at  the 3-m 
level on the  18-m  tower. Wind speed 
and direction  data  can be recorded on 
both paper  str ip  charts and  analog 
magnetic  tapes with an  Ampex 
FR-I200  fourteen-channel  magnetic 
tape recorder which uses a 14-inch 
reel. The temperature and  dewpoint 
data  are  recorded on paper  strip  charts. 
To  avoid  tower  interference of the  flow, 
the large  tower is instrumented  with 
two banks of wind sensors.  The  details 
of  how and when one switches  from 
one  bank of instrumentation  to  the  other 
is discussed by Kaufman and  Keene [ I ] .  
During a test  in  which  the wind data  are 
stored on magnetic  tape, only  one  bank 

of instrumentation is used,  thus  avoiding  interruption of the wind data  signals 
within  any  magnetic  tape  recording  period.  This  continuity of signals prevents 
data  processing  difficulties when converting  analog  tapes  to  digital  tapes. 

Surface  Rough  ness  Length (zo) 

In an earlier  report,  Fichtl I21 discussed  the  surface  roughness  length 
configuration  associated  with  the NASA meteorological  tower.  This  analysis 
was  based upon wind profile  laws  that  are  consistent with  the Monin-Obukhov 
similarity  hypothesis.  The  calculations of z were  based on wind data 

0 
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obtained at the 18- and  30-m levels and on temperature  data  obtained at the 
18- and 60-m levels. Most of the  measurements  were  obtained  during  the 
hours of 0700 and  1600 EST, and  the  gradient  Richardson  numbers at 23 m 
(geometric  mean  height  between 18 and 30 m) for the 39 cases  ranged between 
-5.82 and +O. 079. The  results of these  calculations,  shown  in  Figure 5, show 
the  effect  the  terrain  features  have upon the  surface  roughness.  Later, an 
analysis of the  energy  budget at 18 m will show that  these  roughness  lengths 
are too large. 

WIND DlRECTlOW (deg)  

Figure 5. Tentative  azimuthal  distribution of the  surface  roughness 
length a t  the NASA 150-m  meteorological  tower  site. 

COMPUTATIONS  AND  INITIAL  SCALING 

To establish a spectral  model of turbulence  for  the Kennedy Space 
Center,  approximately 50 cases of turbulence  were  analyzed.  The  procedure 
used to calculate  the  longitudinal  and  lateral  components of turbulence 

7 



consisted of (I) converting  the  digitized wind speeds  and  directions (10 data 
points per second)  into  the  associated  north-south  and  east-west  components 
and  averaging these components  over  the  duration time of each  test, (2) cal- 
culating  the mean wind speed  and  direction  with  the  averaged  components, (3) 
projecting  the  original  digitized  data  onto  the  mean wind vector  and  subtracting 
the  mean wind speed  to  yield the longitudinal  components of turbulence,  and 
(4) projecting  the original digitized  data  onto a normal-to-the-mean wind 
vector to obtain  the lateral components of turbulence.  Trends  contained  within 
the  data were removed by fitting  the  longitudinal  and lateral components of 
turbulence to second  order  polynomials  and,  in  turn,  subtracting  these 
polynomials  from  the  component  time  histories.  To  reduce  computation  time, 
the  data,  with  trend  removed,  were  block-averaged  over  half-second  intervals. 
The  longitudinal  and lateral spectra were  calculated by using th,e standard 
correlation  Fourier  transform  methods  given by Blackman  and  Tukey [3 ] .  
These spectra were corrected for the  half-second  block-averaging  operation 
with  the  procedure  given by Pasquill [41 and for the  response  properties of 
the  instrumentation. 

To  combine  the  spectra  for  each  level on the  tower, it was assumed  that 
the  similarity  theory of Monin [ 5 J for  the  vertical  velocity  spectrum  could be 
applied  to  the  longitudinal and lateral spectra, so that 

= F( f ,R i )  
u:; 0 

Y 

where  nS(n) is the  logarithmic  longitudinal or  lateral spectrum  associated 
with  frequency  n  (Hz) , and u , ; ~  is the  surface  friction  velocity,  or  rather, 

the  square  root of the  tangential  eddy  stress per unit  mass. F is tentatively 
a universal  function of the  dimensionless wave number f and the gradient 
Richardson  number  Ri.  The  dimensionless  wave  number is given by 

f=,,,, 
nz 

Because  the  tower  did  not  have  the  capability  to  measure  vertical 
velocity  fluctuations,  the  Reynolds stress, and  hence uz, , cannot  be  calculated 

I,. 

with first principles;  viz, u!- = -u fwf ,  where u1 and w1 are the  longitudinal 1. 

a 



I 

and  vertical  velocity  fluctuations  and  the  overbar  denotes a time-averaging 
operator.  However,  an  estimate of the  surface  friction  velocity  can be 
calculated  from  mean wind and  temperature  profile  data. 

According  to  Lumley  and  Panofsky 161 , the  mean wind profile in 
approximately  the first 30 m of the  atmosphere is given by 

where k, is von Karman's  constant  with  numerical  value  approximately 
equal  to 0.4, and !& is a universal  function of z/Lt. L1 is a stability  length 
given by 

where  and 8 a r e  the  Kelvin  and  potential  temperatures  associated  with 
the  mean  flow.  The  quantity z/L1 is related to  the  gradient  Richardson 
number 

g d8 
e dz 
f d i i \ '  

" - 
Ri = 

\x/ 
through  the  relationships 

Z Ri 
" 

L' (I - 18 Ri)'i4 
- (Ri < -0.01) Y 

Z - 
L' = Ri (-0.01 5 Ri 5 0.01) Y 

9 



and 

Z Ri 
L' I - 7 R i  
" - .  (0. I 2 Ri > 0.01) 

Equation  (6) is a form of the KEYPS [ 61 equation. The function Q ( z/L1) 
associated with  equations  (7)  and  (8) are given by 

.(+)= - 4 . 5 -  L' Z (-0.01 5 Ri 5 0.01) 

and 

*(:)= - 7 -  L' Z (0 .1  2 Ri > 0.01) 

Lumley  and  Panofsky [ 61 have  graphically  indicated  the  function \k (z/L')  for 
Ri < -0.01 and the function 

I. 0674 - 0.678 In (2) 
Q (")= L' 0.044 (2) (Ri < -0.01) 

(11) 

faithfully  reproduces  their  curve. 

The  calculation of  was based upon the wind data  measured  at  the 

18- and 30-m levels  and  the  temperature  data  measured at the 18- and 60-m 
levels.  Temperatures at the 30-m level  were  estimated by logarithmically 
interpolating  between  the 18- and 60-m levels. An estimate of the  gradient 
Richardson  number,  equation (5), at the 23-m level  (geometric  mean  height 
between the 18- and 30-m levels) was determined by assuming  that  the  mean 
wind speed  and  temperature are logarithmically  distributed  between  these 
levels.  The  gradient  Richardson  number  estimated  in  this  manner is given 
by 

10 



where F ( z )  is the  mean  temperature at height z,  zi, and  z2,  denotes 18 
and 30 my  z = d G  . 

g 

To  calculate u, , o, Z ~ L '  was evaluated  for  each  case by means of one 

of the  three  equations, (6) through (8) , corresponding  to  the  appropriate 
Richardson  number  class. L' was then  assumed  to  be  invariant  with  height, 
and .\k( 18/L')  was  estimated  with  equations (9) through ( I I) . Equation ( 3) 
was then  evaluated at the  18-m  level  and  solved  to  yield u.,- . The values of 

z used for  this  calculation  are given  in  Figure 5. 
1. 0 

0 

THE INERTIAL SUBRANGE AND  REVISED VALUES OF THE 
SURFACE  ROUGHNESS  LENGTHS 

In the inertial  subrange,  the  longitudinal  spectrum is given by 

where CY is Kolmogorov's  constant with a  numerical  value  equal to 0.146 
according  to  Record  and  Cramer [ 71. The  quantity @E is the  dimensionless 

dissipation  rate of turbulent  kinetic  energy  per  unit  mass  given by 

where E is the rate of dissipation of turbulent  energy. Below 30 my  where 
the Monin and Obukhov similarity  hypothesis  for  the wind profile is expected 
to be valid, is a function of Ri only. 

E 



Inferences  concerning  the  dependence of @ on Ri  can  be  made  with 
E 

the  aid of the  eddy  energy  equation. For homogeneous terrain, this  equation 
is given by 

dE ” - d6 H g d ( F  -) 
dt u2; 

- 
+ ” - “ E ”  - + wfE - dz P ‘pP T 

9 

- 
where - is the  eddy  heat f lux  Ofwf, p is the  mean  density,  E  the 

turbulent  kinetic  energy  per unit mass,  p* and wf denote the turbulent 
fluctuations of pressure and vertical  velocity, and u.,- is the  local  friction 

velocity (u.,* = u::: 0 in  the Monin layer).  Following  Busch  and  Panofsky [ 81, 

we write  equation (15) in  dimensionless  form, so that 

cPp 

1. 

1- 

The terms in this expression  are in one-to-one  correspondence  with  those of 
equation (15); however,  the pressure  term  has been  neglected. L is the 
Monin-Obukhov stability  length  where 

Near  the  ground a majority of meteorological  conditions  are  characterized, 
at least  approximately, by horizontal  homogeneity,  steady  mean wind with 
no  change of wind direction with height,  and  steady  heating  from below. In 
most  cases, it is reasonable to  make  these  assumptions with regard  to  the 
KSC tower site. Thus,  to a reasonable  degree of approximation, we have 
dE/dt = 0, and  equation (16) implies  that  in  the Monin layer 

12 



Various  authors  have  hypothesized  schemes  to  balance  the  left-hand  side of 
equation (18). Lumley  and  Panofsky [61 suggest  that the local  mechanical 
energy  production is balanced by the  local  viscous  dissipation, so that 

and  thus,  the  buoyant  energy  production is balanced by the  energy flux 
divergence  term,  making 

@D - " - Z 

L 

Busch  and  Panofsky [ 81 suggest  the  flux  divergence  term is negligible  and  the 
local  viscous  dissipation is balanced by both  the local  mechanical  and  buoyant 
energy  productions, so that 

Z 
@ E  = G - 7  

We shall  call  equations (19) and (21) hypotheses I and 11. 

According  to  Lumley  and  Panofsky, 

in  the  unstable Monin layer.  This  form of the  dimensionless  shear is con- 
sistent with  equation (6). Upon combining  equations (13), (19) , and (22 ) ,  
the  spectrum  in  the  Kolmogorov  subrange  for  hypothesis I takes  the  form 

13 



Combination of equations ( 6 )  , (13), (17) , (21) , and  (22)  yields 

for hypothesis II, where K and are the eddy viscosity  and  heat  con- 

duction  coefficients  given by / 

m 

dz 

and 

H - Kh - - de (26) 
cpp dz 

Figure 6 illustrates [nSu(n)/uz:o] I and ["Su(n)/u2:o ] as functions 
I1 

-Ri for  f = I. 0 and %/K = I. 3. A s  -Ri  approaches  infinity,. 

[nSu (n)/u2: 0] converges  to  zero,  and ["Su(n)/u2:0] diverges. A s  -Ri 
m 

T rr 11 

approaches zer:, [nsu(n)/$:o ] asymptotically  approaches  [nSu(n)/u2:o ] . 
T rr 11 

The  difference  between [Su 1, a n i  [SUI is small  (within  the  noise  level of 

the  data)  for  Ri > -1.0,  and  thus it is difficult  to reject one  hypothesis  in 
favor of the  other  for  sufficiently  small -Ri. 

II 

A t  the  18-m  level,  longitudinal spectra were  used  to test hypotheses 
I and II, and  the cut-off value of f was  approximately 2.0 in most of the  cases. 
Actually,  the  Kolmogorov  subrange  occurs at much greater dimensionless 
wave numbers;  however,  the -5/3 power  law  behavior  extends down to  values 
of f on the  order of unity for  the  longitudinal  spectrum,  while  this is not  true 

14 
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a 

Note: The  variations of 1 for  hypotheses 
f =  1.0 

I and I1 a r e  indicated.  The  dashed  curve  corresponds 

z = 0 . 2 3  m for  a type I energy  budget. 
00 

Figure 6 .  The  dimensionless  logarithmic  longitudinal  spectrum at 
f = I. 0 and z = 18  m as a function of -Ri. 

for  the  lateral  spectrum. In addition,  the Monin and Obukhov similarity 
hypothesis  for  the wind profile upon which  the  calculation of u . ~  is based is, 

at most,  valid below 30 meters.  Accordingly,  the  18-m  longitudinal  spectra 
are the  only ones  that  could  be  used  to test the  validity of hypotheses I and I1 
without  introducing  assumptions  about how the  eddy stress and heat  flux  vary 
with height. 

-:- 0 

15 



In Figure 6 we have  plotted  the  experimental  values of nS (n)/u2- 
U -,- 0 

for  the  longitudinal  spectrum  for f = I. 0 as a function of -Ri. The experi- 
mental  results scatter about  the  dashed  line,  but  they  appear  to  favor  hypothesis 
I more than  hypothesis II, especially  for  Ri 5 - 3.0. If we accept hypothesis 
I, then we must  conclude  that  the  scaling  velocities,  u#co are too large and 

thus  the  roughness  lengths are too large. If we reject  hypothesis I, then we 
must  accept a more  complicated  energy  balance  system. We shall invoke 
Ockham’s razor,  accept  hypothesis I, and correct  the  surface  roughness 
lengths. 

We denote  the  surface  roughness  lengths  in  Figure 5 with  z  and  the 
00 ’ 

correct  ones  resulting  from  the  analysis of the longitudinal  spectrum will be 
denoted  with z The  corresponding  friction  velocities wil l  be denoted by 

0’ 

u$oo and u;: 07 respectively.  The  longitudinal  spectrum  in  the  inertial 

subrange,  scaled  in  terms of u.,~ is given by 
-I- 00 , 

The  data  points  in Figure 6 correspond  to nS (n)/u2- not  nSU(n)/u2- -8. 0 . 
A t  neutral  stability  (Ri = 0) , we have * ( O )  = 0, and  equation (27) reduces 
to 

U 1- 00 , 

7 

for  f = I. 0. Denoting  the  right-hand  side of equation (28) by x-’ and solving 
for z we find 

0’ 

I - x  x 
z = z  z 
0 00 
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Upon extrapolating  the  data  in  Figure 6 to  Ri = 0 at f = I, we find 
nSU(n)/u::OO = 0.24, so that x = I. 059. The new values of z for this 

value of x and z = 18 m are shown in Figure 7. Substitution of equation (29) 
into  equation  (27)  yields 

0 

1 0  

1.0 

0.8 

0 . 6  

0 . 4  

0.2 

0 

(meters 1 
A 

1 1 I 

- - 

- - 

- - 

I - 
1 r I 

> I 
r * I I I 
0 90 180 270 360 

W I N D   D I R E C T I O N  ( d e g  1 

Figure 7. Revised  azimuthal  distribution of the  surface  roughness 
length  based upon energy budget considerations at z = 18 m. 

The  dashed  curve  in  Figure 6 represents nS (n)/u::oo as a function of Ri 

according  to  equation (30) for x = I. 059 and z = 0.18 m (z = 0 . 2 3  m),  

and it seems  to f i t  the data  reasonably well. The  function  nSU(n)/ut:oo 

for the  range of variation of z illustrated  in  Figure 7 departs  from  the  dashed 

U 

0 00 

f =  1.0 
0 
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curve by only a few  tenths of one percent.  This  means a spectral model of the 
longitudinal  and lateral components of turbulence can be  developed  in te rms  of 
 and the  final  results can be corrected by applying a multiplicative  factor 

which is a function of the  Richardson  number  and a typical roughness  length 
for  the site. 

EXTRAPOLATION TO NEUTRAL WIND  CONDITIONS  (Ri  = 0) 

The  meteorological  conditions of particular  engineering  interest are 
those  associated with  mean wind speeds at the  18-m  level which are greater 
than  approximately 10 m s e d .  During  these  flow  conditions,  the  boundary 
layer is well  mixed so that  vertical  gradients of the  mean  flow  entropy  and  thus 
potential  temperature are small and  the wind shears are large.  Thus,  the 
Richardson  number  vanishes or at least  becomes  very  small.  Accordingly, 
the  neutral  longitudinal  and lateral spectra are of particular  interest  in  the 
design  and  operation of space vehicles.  The  neutral  spectra  were  determined 
by extrapolating  the data to  Ri = 0 by the  procedure  developed by Berman [ 91. 
Scaled  spectra nS(n)/u2,- were plotted  against  Ri  for  various  values of f ,  

and  smooth  curves were drawn by eye. Of course,  the  data  points  scattered  about 
this  line.  The  values of  nS  (n)/u:: oo at Ri = 0 were then  read off and 

corrected by multiplying  the  results by x2 to  yield  the  neutral  spectra 
nS (n)/u2:o fo r  the  various  levels on the  tower.  The  results of this  graphical 

process are shown  in  Figures 8  and 9, where  the  positions of the  maxima 
shift  toward  higher  values of f as the  height  increases.  This  means  that 
Monin coordinates nS (n) /u2: o,  f] fail to  collapse  the  spectra  in  the  vertical 

s o  that F ( f ,  Ri) is not a universal  function,  and  thus  an  added  height 
dependence  should  be  included  in  the  analysis.  Busch and Panofsky [ 8 J have 
obtained similar  results  from  analyses of tower  data  from Round Hill. The 
failure of the Monin coordinates  to  collapse  the  spectra  in  the  vertical  can be 
attributed  to  vertical  variations  in both the  Reynolds stress and  the  length 
scale  used to scale the wave number  n/u(z). 

-1. 00 

[ 

Above the Monin layer  (z < 30 m)  in  the  Ekman  layer  (z > 30 m) , the 
tangential  Reynolds stress decreases with  height. In addition,  the  variances 
of the  longitudinal  and lateral components of turbulence are decreasing  functions 
of z.  Thus, if u.,- is the  correct  scaling  velocity,  scaling  the spectra with 

1- 
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Figure 8. Dimensionless  logarithmic  longitudinal  spectra  for 
neutral wind conditions. 

the  surface  value of the  friction  velocity will  cause  the  scaled  spectra at the 
upper  levels  to fall below the  18-m  spectra. 

By scaling  the wave number  with z, w e  have  assumed  that  the  integral 
scales of the  longitudinal  and  lateral  components of turbulence are proportional 
to z. One might  suspect  from the  behavior of eddy  coefficients [IO] that, if 
the  local  integral scales have  vertical  variations,  they  should  increase at a 
rate slower  than z. In addition, we have  no  knowledge  that  the  integral  scales 
of the  longitudinal  and lateral spectra  should  have  the  same  vertical  variation. 
However,  the  analysis  showed  that Monin coordinates will  collapse  spectra 
with various  turbulence  intensities at any  particular  level in the  vertical. 

To produce a vertical  collapse of the  data, it was  assumed, for 
engineering  purposes,  that  the  spectra  in Monin coordinates are shape-invariant 
in the vertical.  This  hypothesis seems to  be  reasonable  and permits a 
practical  approach  to  developing an engineering spectral model of turbulence. 

19 



Figure 9. Dimensionless  logarithmic  lateral  spectra  for  neutral 
wind conditions. 

The Longitudinal  Spectrum 

The  vertical  variation of the  dimensionless wave number f associ- mu 
ated  with  the  peak of the  logarithmic  spectrum  scaled  in Monin coordinates is 
given  in  Figure 10. A least-squares  analysis of the  data  in  this figure yielded 
the  result 

where z is in  meters. A plot of nSU(n)/u2* versus f/fmu will  shift  the 

spectra  at  the  various  levels,  so  that all the  peaks of the  logarithmic  longi- 
tudinal spectra are located at f / f  = I. Values of f from  other  tower 

sites are indicated in Figure IO. 

-:. 0 

mu  mu 
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Figure 10. Vertical  distributions of the  dimensionless  frequencies 

f,U 
and f,, associated with  the  peaks of the  logarithmic 

longitudinal  and lateral  spectra for  neutral  stability  conditions. 

The  average  ratio p.. of the  shifted  spectrum at level z and the  IS-m . u  - 

spectrum, [ Su ( f / fmuy z) /Su  ( f / fmy  IS)] , is shown in  Figure 11. A least- 

squares  analysis of these  data  yielded  the result 

2 1  



2 

1 

B 

0.1. 

0 NEUTRAL LONGITUDINAL 

0 NEUTRAL LATERAL 

10 

Figure 11. 

100 

z ( m e t e r s )  
Vertical  distributions of the  collapsing  factors 

p for  neutral  stability  conditions. 
V 

p, = (2-) -OA3 Y 

where z is in  meters. A plot of nSu(n)/p u!,- versus f/fmu wi l l  collapse 

the  longitudinal  spectra.  The  collapsed  longitudinal  data  are  plotted as a 
function of 0.03 f/fmu in  Figure 12. 

u -1- 0 

The  function 

+ 
c -  J 

frnu 
(33) 

22 



1.0 

n Sulnl 

flu u:o 

OR 

n S v ( n )  

f lv  u:, 

0.1 

0.01 ! I I , I  
I 

0.001 
I 1 I I I I I 1 1 1 L J I I  L-k 

I 
0.01 0 .  I 1.0 10.0 

0.03f/fm, OR 0.1 f / f m v  

Figure 12. Dimensionless  logarithmic  longitudinal  and  lateral  spectra 
as functions of 0 . 0 3  f/f and 0.1 f/f  for  neutral  stability 

conditions. 
mu  mv 

w a s  selected  to  represent  the  longitudinal  spectrum,  where C and r are 
U  U 

positive  constants,  determined by a least-squares  analysis. For sufficiently 
small  values of f, nS (n)/p u!,- asymptotically  behaves  like f/f This 

behavior is correct   for  a one-dimensional  spectrum.  At  large  values of f, 
nSU (n)/puu2:: asymptotically  behaves  like ( f/f mu) -2/3, consistent with 

the  concept of the inertial  subrange. The maximum  value of equation (33) 
occurs at f = f Various  authors  have  suggested  formulae  like  equation 

(33) to represent  the  longitudinal  spectrum.  However,  most of the  represen- 
tations  have only  one adjustable  parameter  available,  while  equation (33) has 
two: Cu  and r In  this  light  equation (33) seems to be  superior. C 

U' U 

controls  the  magnitude of the  peak, r controls  the  peakedness, and f 
determines  the  position of the  peak of nS (n)/uz* . Upon setting r = 5/3, 

we obtain  the form of the  longitudinal  spectrum  suggested by Panofsky 161 to 

U u -r 0 mu' 

mu' 

U mu 

U -0- 0 U 
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represent  the  strong wind spectra of Davenport [ 111. Von Karman's  longitudi- 
nal  spectrum  [12].  can  be  obtained by setting r = 2. A least-squares  analysis 

U 

of the  longitudinal  data  in  Figure  12  revealed that C = 6.198 and r = 0.845. 
U  U 

The  Lateral  Spectrum 

The lateral spectra S can  be  collapsed  with a procedure  like  the one 
V 

used  for  the  longitudinal  spectra.  However,  to  determine an analytical 
expression  for  the lateral spectrum,  special  attention  must be  paid  to  the 
inertial  subrange  to  guarantee  that S /S = 314 [ 131. This  requirement  can 

be  derived  from  the  mass  continuity  equation  for  incompressible  flow  subject 
to  the  condition  that  the  eddies are isotropic  in  the  inertial  subrange.  The 
experimental  values of f and pv are given  in Figures 10 and 11. These 

data show that fmv and pv can be  represented as power laws as for  the 

longitudinal  spectra.  The  function 

u v  

mv 

f c -  
fmv 

was used  to  represent  the  scaled  spectra,  where C and r are positive 

constants.  This  function  behaves  like  the  one  chosen  for  the  longitudinal 
spectrum. 

V  V 

For  sufficiently  large  values of f ,  the  asymptotic  behavior of the 
ratio between  equations (33) and (34) is given by 

S 

S 
U 

V 

(34) 

(35) 
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In the inertial subrange w e  must  have S /S = 3/4, so that upon substituting 

this  ratio  into  equation (35) , we obtain a relationship  that can be  used as a 
constraint  in  the  determination of values of C and r and  functions  to 

represent p and fmv. The  values C = 3.954  and r = 0.781,  and  the 

functions 

u v  

V V 

V V V 

0.58 

fmY = 0.1 (*) 
and 

along  with  the 1ongitudina.l parameters, wil l  satisfy  the  conditions of equation 
(35)  and  simultaneously  give a good fit  to the data (z is in meters) .  The 
collapsed  lateral  spectra and  the  functions  given by equations (33)and (34) 
are shown in  Figure 12. 

UNSTABLE SPECTRA 

To  develop an engineering  model  for  unstable  conditions,  the  unstable 
spectra were averaged  and then corrected by multiplication  with 

Z 

Z 
In- - s ( R i )  

0 1 
I 

x In - - @ (Ri) -1 Z 
Z 
0 

J 

2 

for z = 18 m, z = 0.18 my and Ri = -0.3.  The  longitudinal  and lateral 

spectra  for  the  mean  unstable  conditions are shown in  Figures 13 and  14. The 
unstable  spectra  were  collapsed by using  the  procedures  for  the  neutral bound- 
ary  layer,  and  the  functions  given by equations  (33)  and  (34)  appear  to  be 

0 

25 



- - - nS,(n) - 
G o  - 

0.1 -= 18m --- 
- 30m -.- 
- 60m ----- 

90m ---- 
120 m 
150 m ----- 

- - - - 
- - - - - 
- - 
- - 

0.0 1 1 1 I 1 1  I l l l  I 1 I I 1  1 1 1 1  
I 

I I 1 I 1 1 1 1  
I I 

0.01 0.1 1 .o 10.0 
f 

Figure 13. Dimensionless  logarithmic  longitudinal spectra for 
unstable wind conditions. 

Figure 14. Dimensionless  logarithmic lateral spectra for  unstable 
wind conditions. 
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equally  valid for tbe unstable case. The  functions f,,, 

depicted  in Figures 15 and 16, and the  functions nS ( n ) / p  ~2~~ and 

nSv (n)/pvu;< are given  in Figure 17. Table I summarizes  the  spectral 

properties of turbulence for unstable  and  neutral  conditions. 

fnlv, Pll, p, are 

U U 

NASA 150 METER TOWER: 

0 - UNSTABLE  LATERAL 
ROUND HILL: 

0 - TOWER A ,  LONG 
A - TOWER B,  LONG 

HANFORD - X ,  LONG 

0.001 I I 
I I 

1 40 100 1,000 
z ( m e t e r s )  

Figure 15. Vertical distributions of the  dimensionless  frequencies 

fmu and fmv associated with  the  peaks of the  logarithmic 

longitudinal  and lateral spectra  for  unstable wind conditions. 

THE LONGITUDINAL  AND  LATERAL  CORRELATION  FUNCTIONS 

The  normalized  correlation  function R(x) a t  space lag x is related 
to  the  spectrum  through  the  Fourier  integral 
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Figure 16. Vertical  distributions of the  collapsing  factors p 
and p, for unstable wind conditions. U 

Figure 17. Dimensionless  logarithmic  longitudinal  and  lateral 
spectra as functions of 0.04 f/f and 0.033 f/f for mu  mv 

unstable wind conditions. 
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TABLE I. SUMMARY OF THE SPECTRAL  PROPERTIES OF 
TURBULENCE FOR NEUTRAL AND  UNSTABLE  CONDITIONS 

C 
U 

cV 

r 
U 

r 
V 

'mu 

fmv 

pll 

Neutral 

6.198 

3. 954 

0.845 

0.781 

0.03 (z/18) 

0. I ( ~ / 1 8 ) O . ~ ~  

(z/ 18) -0*63 

( ~ / 1 8 ) - ' * ~ ~  

co 

dR(X)  = u s ( G K )  COS (2TKX) dK 
0 

Unstable 

2.905 

4.599 

I. 235 

I. 144 

0.04 (Z/I~)~~~' 

0.033 ( ~ / 1 8 ) ~ * ' ~  

(z/  18) -'*I4 

( Z / I ~ ) - ~ * ~  

where US(&) is the  spectrum at wave number K (cycles  m-l)  and u is the 
standard  deviation of the  turbulence.  The  wave  number is related  to  the 
frequency  through  Taylor's  hypothesis ( K  = n/u).  Substitution of equation 
(33) o r  (34)  into  equation (38) yields 
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where 

The  quantity 5 is the  dimensionless  space lag a t  height z, and  the  integral 
in  equation  (39) is a function of ( only. Integration of equation  (39)  for 
neutral  and  unstable  conditions with Simpson's rule yielded  the  results 
illustrated  in  Figures  18 and  19. 

L O N G I T U D I N A L  

L A T E R A L  "" 

""_ ---"""" 
0 I I I 1 

0 0.2 0 . 4  0.6  0.0 I .o 
tu OR t" 

Figure 18.  Scaled  correlation  functions  for  the  longitudinal  and 
lateral components of turbulence as functions of the 

dimensionless  space lag ( for  neutral wind conditions. 

The  dimensionless  standard  deviation a/pi/2u ::: 0 can  be  obtained  from 

equation  (39) by setting 5 = 0 and  then  taking  the  positive  square  root of the 
resulting  expression, s o  that 
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Figure 19. Scaled  correlation  fbnctions  for  the  longitudinal  and  lateral 
components of turbulence as functions of the  dimensionless  space 

lag ,$ fo r  unstable wind conditions. 

The right  side of equation (41) is a  pure  number,  values fo r  which can  be found 
in  Table 2. 

The  function 
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TABLE 2. PROPERTIES OF THE  CORRELATION  FUNCTIONS 
FOR NEUTRAL AND  UNSTABLE  CONDITIONS 

f /z  v  mv 

Neutral 

2.227 

I. 677 

0.282 

0.332 

Unstable 

I. 897 

2.302 

0.188 

0,199 

was selected  to  represent  the results of the  numerical  integrations  for  the 
neutral  case.  The  parameter 6 is determined by least-square  methods. For 
sufficiently  small  values of 5 , this  function  behaves  like 

Now the  theory of isotropic  homogeneous  turbulence  predicts  that,  in  the 
inertial  subrange , 

and  equation  (43)  predicts  that 

as 5-0. The  quantity  within  the  brackets  on  the  right  side of equation 
(45) is equal  to  4/3,  according  to  equation  (35) , and (T /u  f I. The 

apparent  inconsistency  between  equations  (44)  and  (45) results because 
u v  
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equation  (44) is based upon the  entire flow being  isotropic,  while  equation  (45) 
is based on spectra  associated  with  turbulent  flows which are only  locally 
isotropic  in wave number space for sufficiently large wave numbers.  Thus, 
upon producing  the  Fourier  integral,  equation (39) , we obtained  contributions 
to R(5) from both  the  isotropic  and  anisotropic  portions of the  turbulent flow. 
The  quantities 

6 = 4.758 
U 

6 = 3.399 
V 

and  the  function  in  equation  (42)  reproduce  the results of the  numerical 
integrations of equation (39) , for  the  neutral  case,  to within a few percent, 

In  the  unstable  case,  the  function  given by equation (42) does  not 
reproduce  the  results of the  numerical  integrations at large  values of 5 for all 
values of 6. To remedy  this, an exponential  factor was introduced  into  the 
expression and  the  function 

was selected  to  represent  the results of numerical  integrations for the  unstable 
case.  The  quantities h and y are  determined by least-square  methods.  It 
appears  that y = 0 . 9  can be  used for both the  longitudinal  and lateral spectra 
and 

= 2 . 2 2  

= 2.02 % 

The  function  given by equation  (46)  yields a good fit near 5 = 0; however,  it 
departs  from the results of the  numerical  integrations by approximately 10 
percent  at 5 = I. Near the  origin,  equation  (46)  behaves  like  equation  (43) , 
consistent with hypothesis of the inertial  subrange. 
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Let us  now turn our attention  to  the  longitudinal and lateral integral 
scales of turbulence  which are defined by the  expression 

00 

L* = R(x)dx 
0 

(47) 

The  integral scale, defined  in  terms of the  dimensionless space lag, is given 
by 

This  integral is a pure  number,  and upon substituting  the  expressions  given 
by equations  (42)  and (46) for R ( 0  and  employing  Simpson's  integration 
rule, we obtain  the  results  in  Table 2. 

Various  investigators  [4]  have  represented  the  correlation  functions 
of atmospheric  turbulence with  the expression 

-x/ R(x) = e 

The  logarithmic  spectrum  associated with this  expression is given by 

This  function  has a maximum  value a t  

34 
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This vallre of the  dimensionless  integral scale is significantly less (approxi- 
mately 45 percent) than  the  ones  in  Table 2 for the neutral case. However, for 
the  unstable case, the  integral  scales  given by equation (51) depart  from  the 
ones in Table 2 by only  approximately 20 percent. 

In  the  neutral case, and f, are proportional  to z and z0*58, fmu 
so that L:' is a constant  and L". is proportional  to z0*42. The  former is 

consistent with  the results of Davenport's [Ill analysis of high wind speed 
spectra. In unstable air, fmu and fmv are proportional  to z0*87 and z0-72, 

and  thus L: and L: are proportional  to and zo*28. 

U V 

THE D I S S I P A T I O N  RATE  OFTURBULENCE 

It is possible  to  estimate  the  dissipation  rate of turbulence by 
examining  the  asymptote of the  dimensionless  logarithmic  spectrum  for large 
f values.  According  to  equation (33) , the  longitudinal  spectrum,  for  suffi- 
ciently  large  values of f ,  is asymptotically  given by 

Upon equating  the  right  sides of equations (13) and (521, we obtain 

According  to  the  information  given  in  Table I and  equation (53)  , 4 in 
neutral air is given by € 

% =(a) 0 055 
Y (54) 
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while  in  unstable air, it is given by 

@ = 0.63 
E 

(55) - 

One should  keep  in  mind  that  equation (55) was  derived  from a spectral  model, 
which is an  average of the  unstable  data, so that  equation (55) is probably 
valid for conditions  associated  with  values of Ri on  the order of -0 .3 .  

At z/L = 0 we have @( 0) = 1, so that,  according to either  hypothesis 
I o r  11 [equations (1 9) or (21) 1 , we must  have @ ( 0 )  = I. However,  equation 

(54) predicts  that @ ( 0 )  < 1 below z = 18 m for  the  neutral  case  and at 

z = 0 we have @ (0) = 0. Actually,  the  layer of air in  the  domain 0 < z 5 18 m 

is in  the Monin layer, and w e  should  have @ = I throughout  this  layer  during 

neutral wind conditions. If we accept a 10 percent  error  in @ as a measure 

of the  validity of the  spectral  representations  given by equations  (33)  and  (34) , 
then it follows  from  equation (54) that  the  model can be  extrapolated down to 
the  3-m  level  in  the  neutral  case. 

E 

E 

E 

E 

E 

To understand  the  behavior of @ in  the  unstable  case, we write the 
E 

eddy energy  equation  for  the  steady-state  boundary  layer  in  the  form 

Let  us  assume  that  the  heat f lux  is height-invariant, so  that  L is a constant. 
A t  the  surface of the earth,  z/L  vanishes, ( U ~ ~ : / U ~ ~ : ~ ) ’ @ ( O )  = I, and 

@ (0) = 0 according  to both hypotheses I and 11; thus, @ , ( O )  = 1. A s  we 

proceed away from the earth  into  the  unstable Monin layer, is balanced 

by z/L, and @ is balanced by @ according  to  hypothesis I (in the Monin 

layer u.,. = u:::~),  Because @ is a decreasing  function of -z/L, it follows 

that @ is a decreasing  function of z below 18 m.  However,  based upon an 

D 

@D 

E 

1. 

E 
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analysis of a  sample of Cape Kennedy data,  Panofsky  suggests  that $I is 

unimportant  in  unstable air at 30 m  and  above. This  conclusion  may  not  be 
strictly  true  for  the  entire  layer above 30 m,  but it is reasonable  to  suppose 
that CpD becomes  negligibly  small or  vanishes  somewhere  above 30 m. In 

addition,  for  sufficiently  large z ,  the  dimensionless  shear Cp is small  
compared  to -z/L and (u :: /u ::c 0 ) < I, so that,  according  to  equation ( 5 6 ) ,  

D 

@ E  
can  be  estimated as -z/L.  Thus,  at  sufficiently  large  heights, $I is an 

increasing  function of z. Therefore, must  experience a minimum in the 

lower  levels.  Equation (55) implies  that Cp is an  increasing  function of z 

in  the  unstable  boundary  layer  [Ri  (18  m) - -0.31 ; therefore,  the  minimum 
in @ must  occur  at  the 18-m level if we accept  hypothesis I and  equation (55). 

The  minimum in @ actually  occurs  somewhere between  the 18- and 30-m 

levels if the  implications of hypothesis I are   correct .  If this  minimum in + 
exists,   i t  w a s  not  detected  because of the  wide  spacing  between  the  instrumen- 
tation  levels on the  tower. 

E 

+ E  

E 

E 

E 

E 

The level above 30 m at which Cp vanishes  in  the  unstable  model  can 
D 

be estimated with equation (56). Following  Panofsky [ 141 , we assume  that 
( U : ~ : / U ~ ~ ~ ) ~ @  is small  compared  to  -z/L; we se t  @ = 0 in equation (56) and 

then  combine  the  resulting  relationship  with  equation (55) to  obtain 
D 

where 2"' is the level  at which $I vanishes.  The  18-m  level  Richardson 

number  for  the  mean  unstable  model is on the order of -0.3.  Therefore, 
according  to  equation (6) , 18/L' = -0.19. Now, L = K Lt/Kh and 

K /K N I. 3, so that  L = -73  m. Substituting  this  value of L into 

equation (57) yields z': = 283 m. Above this  level, @ and G D  are   small  

and q5 = -z/L. This  should  be  compared with equation (55), which predicts 

that Cp increases as zo*66. 

.II 

D 

m 

h m  

E 

E 
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The  proposed  energy budget scheme  for  the  unstable  boundary  layer is 
summarized  in  Figure 20. In the  lowest  layer,  the Monin layer,  the  energy 
budget is given by hypothesis I [equation  (19) 1. Above this layer,  there is a 
transition  region,  between  approximately  the 18- and 30-m levels, in which the 
energy budget transforms  from a type I to a type 111 budget. A type I11 budget 
is one in which  the  mechanical  and  buoyant  energy  production  terms  and  the 
energy  flux  divergence  term all contribute  to @ to  varying  degrees.  From 

the  base of the  transition  layer  to a level on the  order of 300 m, @ and @,, 

tend  toward zero as z  increases.  Finally, above  this  level w e  have a region 
in which the  buoyant  energy  production is balanced by the  dissipation.  For 
this  scheme  to  work, the various  functions  in  the  energy  equation  must be 
functions of z/L and z scaled with a length scale other than L. The  additional 
length scale should be a function of the  external  synoptic-  and  meso-scale 
conditions which force the turbulent flow in the  boundary layer. 

E 

VERT1 CAL VARIATION OF STRESS IN NEUTRAL AIR 

An estimate of 
obtained  with  equation 

the vertical  variation of the stress in  neutral air can  be 
(54) and  an inviscid  estimate of E given by 

where  L is a representative  dimension of the  momentum  carrying  eddies. 
B 

In the Monin layer, 

LB = ki z (59) 

Above the Monin layer,  increases  slower  than kiz  and  should  approach 

a constant as z  becomes  large. In an  analysis of the vertical  distribution 
of wind in  the  neutral  baroclinic  boundary  layer,  Blackadar [ 101 points  out 
that 

LB 
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z ( m e t e r s )  

-300- t 
z 
L 

+ E  = - -  

T R A N S I T I O N   L A Y E R   I N  W H I C H  
E N E R G Y   B U D G E T   S H I F T S   F R O M  
T Y P E  I TO T Y P E  lZI I 

0 

Figure 20. Hypothesized  scheme of the  budget of turbulent  energy 
in  the  unstable  boundary  layer  for  Ri(18 m) P( -0.3. 

it- 
0.00027U 

describes  the few observed  distributions of L rather well ,  where U is the 

surface  geostrophic wind and f is the  Coriolis  parameter. Upon combining 

equations  (54) , (58)  and (60) we find  that,  in  the  neutral  boundary layer, 

B 

C 

/ 
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This  function  vanishes at z = 0 and  has a maximum  value at 

Z U - = 2.203 X - m 
18 f 

C 

where U and f c  have  units of m sec-' and  sec-I,  respectively.  At 30 deg 

north, f = 0.728 * sec-I; therefore,  in  the  neutral  boundary  layer, 

z / I 8  = 0.03U. A t  z = 0 we should  have (u.,*/u.,* ) 2  = I. However,  the 

function  given by equation  (61)  vanishes at z = 0 and increases with z when 
z < z Thus,  this function is valid only when z > z The  data which were 

used  to  construct  the  neutral  spectral  model were generally  associated with 
conditions  in which U < 15 m sec-I, making z < 8 m. Equation  (61)  pre- 

dicts  reasonable  estimates of the  local stress for  the  netrual  boundary  layer 
above 18 m.  The  corresponding  estimate  for  the  unstable case with Blackadar's 
length scale fails to  give  reasonable  vertical  variations of the s t ress .  

C 

m .,- 1. 0 

m' m' 

m 

CONCLUDING  COMMENTS 

An engineering  model of the  longitudinal  and  lateral  spectra of turbu- 
lence  has  been developed.  The  analytical  expressions  used  to  represent  the 
spectra are asymptotically  consistent  with a sufficiently  large  wave  number 
with  the well-known properties of isotropic  turbulence  in  the  inertial  subrange. 
Based on an  analysis of the  longitudinal  spectrum  in  the  inertial  subrange  at 
the 18-m level,  it  seems  that in  the Monin layer  the  mechanical  and buoyant 
production rates of turbulent  kinetic  energy are balanced by the  viscous 
dissipation  and f lux  divergence  terms,  respectively.  However,  since the 
friction  velocity was not  measured  directly, it is not  possible  to  be  sure  that 
the  correct  hypothesis of the  energy  budget  has  really  been  selected.  The 
friction  velocities are derived  for  these cases from  mean wind speed and 
temperature  profiles by the use of assumptions whose  validity  can only  be 
established if the friction  velocity is known. Accordingly,  the  proposed  energy 
budget  should be considered  tentative. 

The  Fourier  transform  mates,  or  rather  the  correlation  functions, 
associated with the  spectral  representations were obtained by numerical 
integration,  and  formulae were selected  to  represent  the  results of these 
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integrations. It is concluded from an  analysis of the  correlation  functions 
that uu and u behave  like z-0*3i5 and z-0=175 in  neutral air, while in 

unstable air they are proportional  to z-Ooo7 and z-Omo2 . In  neutral air the 
longitudinal  integral  scale of turbulence is height-invariant,  while  the  lateral 
integral scale behaves  like Z - O . ~ ~ .  In unstable air, L':' and L"' are propor- 

tional  to z-O*I3 and Z - O * ~ ~ ,  respectively. 

V 

U V 

The  vertical  variation of the  viscous  dissipation was deduced from the 
spectral  model. In the  neutral  boundary  layer @ is proportional to z0*055, 

so that E is proportional  to z - O - ' ~ ~ .  In the  unstable  boundary  layer, is 

proportional  to zO-66, so that E is proportional  to 2-0.34. 

E 

@ €  

A s  one proceeds  upward  out of the Monin layer,  the  energy  balance 
seems  to  become  more  complex,  because  the  selective  energy  balance  that 
occurs  in  the Monin layer fails in  the  Ekman  layer  and  thus  the  mechanical 
and  buoyant  production terms  together  balance  the  viscous  dissipation  and  flux 
divergence  terms. At  sufficiently  great  heights, on the order of 300 m,  it  
seems  that we again  have a selective  energy  balance;  however, we  now have 
a situation in  which the  mechanical  production  and  flux  divergence  terms are 
small  and the  buoyant  production is balanced by the  viscous  dissipation. 

George C. Marshall  Space  Flight  Center 
National  Aeronautics  and  Space  Administration 

Marshall  Space  Flight  Center,  Alabama 35812, July  21,  1969 
933-50-02-00-62 
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