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ABSTRACT
INVESTIGATION OF ADAPTIVE _[ |
COMPUTER TECHNIQUES : ]

This report deals with a new approach to the problem of minimizing or maxi-
mizing an unknown function of many variabies, given only the abi‘.!;;\,;ty to evaluate the
function at chosen points.

The best cfel;ssical methods are reviewed, and it is noted that their strategy at
a given point in a 4earch depends very little, if at all, on the ‘previous steps. Thus,
valuable information which could lead to accelerated convergence is neglected.

An adaptive step size random search which makes use of past information is
introduced. A theory for the rate of convergence is formulated and confirmed by
simulation in a digital computer. The computer time is shown to be less than that
needed by non-adaptive methods, particularly for functions of many -variables.

The adaptive search method is shown to solve a trial problem, in which function
measurements are corrupted by noise, twice as fast as the best classical method.
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1.0 INTRODUCTION

In recent years, an increasing amount of research has been directed at the theory ;
and development of adaptive systems, that is systems that improve their performance :
through experience. Although adaptive principles have been increasingly introduced for
solving varlous specific problems, their application in the area of numerical mathema-
tics occurred only recently more frequently, mostly in the Russian literature (1, 2, 3, 4).

Particular areas of interest for the application of adaptive principles is the analy-
sis and optimization of multiparameter nonlinear systems. There are many nonadaptive
methods that have been formulated for solving these problems and the variations or mod-
ifications to these methods al/e numerous. One explanation for the existence of so many
methods and variations is sin ply that any one method is frequently not.suited to a partic-
ular problem. It is for this r¢ason one might ask if it is feasible to develop an adaptive .
method capable of solving a large variety of complicated optimization or root finding i
problems by automatic adaptation to each particular problem, -

i
¥

m!,

Fundamental questions on such an adaptive search technique are: convergefice,
speed of convergence, final accuracy, increasing complexity with increasing dimension-
ability, behavior when the systems parameters are ili~defined, or have noise of unknown
characteristics superm},posed upon them,

RS
ey

The various nonadaptive iterative approaches for solving systems of equations,
such as Newton - Raphson (5) and Fletcher Powell (6) require an initial estimate
sufficiently close to the root in question. They fail completely when the parameters are
ill-defined or "noisy". The latter conditions can only be solved - up to now - by the well

- known method of stochastic approximation(7, 8,-9; 10;-11,-12);-which has the-disadvantage -~ -§ =
of converging very slowly. A remarkable disadvantage of all techniques (a discussion
of the most important techniques can be found in 13) is that the complexity of compu-
tations increases quadratically with increasing numbers of parameters, or dimensions,

|
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In the following technical discussion, general models for adaptive computation
will be introduced. Subsequently, important basic aspects of adaptive search procedures
will be discussed. In Chapter 2.3 we will derive some upper limits for the speed of
convergence of the adaptive search procedure under the agsumption that the information
is given a priori and the functions are hyperspherical. Chapter 2.4 will be devoted to
deriving an adaptive algorithm for the theoretical cases assumed under 2.3,
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In Chapter 2.5 conditions and upper limits for the speed of convergence will be
derived under the assumption that noise is superimposed. A convergent adaptive search
algorithm based on these results apphcable to a larger class of functions will be dis-
cussed in Chapter 2.6. e

In Chap‘térs 2.7 and 2.8 proof of operation, of the derived adaptive search algorithm
will be performéd on the two problems formulated by NASA. |
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2,0 TECHNICAL DISCUSSION

2.1 PROBLEM DEFINITION

Recently, much attention has been given to the theory of optimization of systems.
However, only simple, well formulated problems have been solved analytically using
indirect methods because of the tedious computations which have to be carried out,
Furthermore, efficient optimizing techniques are today of vital use for the solution of
arbitrary systems of simultaneous algebraic and transcendental equations (5).

2.1.1 Direct Search Techni(gﬁléé

The presence of high speed digital computers has stimulated the interest in a
class of optimizing procedures which are called Direct Search Techniques. In ac-
cordance with Leon (14) a brief definition of direct search techniques is the following:

Direct search is a sequential examination of trial solutions which are ob-
tained by direct numerical functional evaluations. Each trial solution might
be compared with the "best" obtained in previous trials, and there is a
strategy for determining the parameters for the next trial solution.

Direct search procedures may be classified as deterministic or nondeterministic,
and further as adaptive and nonadaptive techniques. A search method is called de-
terministic if it does not contain any random element or random variable. Examples
of deterministic methods include the factorial method, the universal method, the

_gradient method and some modifications and combination of these principles, for
example, the powerful conjugate gradient procedure (6, 15).

Deterministic methods do not normally converge to a solution when the param-
eters are ill-defined due to erroneous measurements or noise, The only well known _
deterministic method, which converges under the presence of noise of a certain char-
acteristie, iss the method of stochastic approximation (7-12), The procedure is
essentially a gradient method in which the partial derivatives are taken experimentally
by measuring differences. The term 'stochastic' refers to the class of problems
which can be solved; the search method is deterministic,

A search method is nondeterministic if the search algorithum itself contains a
random-element. The simplest method in this category is the global random search
proposed by Brooks (16). Although, no assumption on the modality {number of extrema)
of the function need be made, the global random search has a very slow rate of con-

~ vergence. However, it has some merits as a starting procedure for the solution of -

multimodal problems. An improved nondeterministic procedure, but restricted to

unimodal problems, was introduced by Box (17) who called the improved procedure

"evolution strategy'. However, this method does not converge with probability "one'
to the optimal point.
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2.1.2 Computation Models for Direct Search Techniques

Tt is convenient to divide the class of problems to be solved by direct search
techniques into two categories. These are: (1) problems that are solvable by a closed
loop system configuration; and (2) those solvable using an open loop configuration.

a. Closed Loop System Configuration

Let Spbea physical system or a mathematical model of a process (Figtii'e
2-1), and let '

U = (U, 1, ...u )bean independent input vector,

2

Y = (yl, Yo+ eV ) be its output vector,

and

X = (xl, Xy oo o X ) be the state vector

2

of the gystem Sp. Xis the vector of siate parameters which governs the behavior of

" “system, Sp. Let be further defined a criterion, Q, of optimality or some general

index of performance relating to system, Si. In general, the criterion, Q, may be a
functional on the vector, Y. Since the behavior of S, reflected in its output (Y),
depends upon the state vector, X, the criterion, Q, is an implicit function of the state
vector, X.

+The input vector, (U), might be some external input to Sg which may be present *
or absent depending on the particular problem. ¥Furthermore, there may be some
noise superimposed with the effect that instead of observing Q (X) we observe

Z (X + XN) = Q (X) +QN..__ | (2-1)

where Xy indicates the '"'noisy" part of the 'state vector, and ..QN is the "noisy" part of
the criterion, _ ' .

The optimization problem consists of determining the vector, X, (i.e., the values
of the parameters, x; ) which represents the optimal state of system, Si. The optimal
state of Sy is the vector X = X opt’ where Xopt minimizes (maximizes) the function,
Q, so that o '

QX ) = QX forallX e o, (2-2)
where @ is the region in the state space, X, in which the function, Q (X), i.s defined.
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Throughout this paper we will assume minimization unless otherwise mentioned.

It is well known that minimization procedures may be used to solve systems of
linear‘or nonlinear equations. Given the system of equations:

£, (X) = 0
f (X) =0 | (2-3)
m : _

where X can be thought as the state of system S B in Flgure 2-1, the 1npat U, for

this case is not occurrent. The functlons, fl (X) (X) are the components yq. . .

Y of the output vector, Y. J

To find the rootslof the system (2-3) the function Q (X) is formed, with

Q= Y, £, (X) (-0

or more exact, if the f]. (X)'s are c;-mplex functions,
m
j=1
where f *j‘ (X) indicates the conjugate bom_plex functions.
For simplicity, we will restrict our discussion to real functions, f. (X). The
function, Q (X), is nonnegative and achieves the minimum value zero only when the

system (2-3) is satisfied. The vector, X, Whlch minimizes (2-4) therefore, satisfies
(2-3), i.e., it is a root of the system,

The computational model for the solutions of opt1m1zat10n or root-finding
problems is represented in Figure 2~2, The output vector, £, of s stem, A’
produces changes in the state of system, SE’ for instance, at the m h trial pomt the
state vector, X(M) ig given hy

@ _ @ L m

3 | @6
_ _ . (o




‘
ncp
\
]
\
\

.

hij

U O

Sk

(State X))

e .or.

y

Q(X)

A

(Search Procedure )

PR
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where X(k) is some state vector determined in previous trials and

- (m) (m)
£ =CE T, Ey e 8 ) (2-7)

is the output vector of S A at the mth trial, _

After the evaluation of the function, Q (X ) the system, S , will produce, after
corresponding computations, the output vector §£ (m "' ) which effects subsequently
the state of Sp similar to that indicated by (2-6).

b. Open Loop System Configuration

There is a class of problems where the system input of SE is not accessible,

In other words, S A cannot perform changes of the state vector, X, of system, Sg- The
problem formulation is in general the design of a transformation system, T, in order
to transform the output, U, of system, SE, into the output, YT All information
filtering problems belong to this problem class.

The computational .model for this class of problems is shown in Figure 2-3,
Let the state of the transformation system, T, be

~=r —

Sp T Rpy o Xpgr v X

Tn ). _ _ , (2-8)

A sysiem, S A’ representing a certam search procedure changes the state vector X

T -
of system, T, by supplying a vector ST at time instant m.

- (m) | (m) {m) J
_.(ng. ’ §T2  anee ,ng ) (2-9)

g (@)

A quality criterion, @ (X), evaluated at each time instant serves as input to system,
S,. The system, S,, in Figure 2-3 performs the same search task as in the closed
loop configuration. The only difference is that instead of experimenting with system,
S it experiments with the transformation system, T. It changes the parameters

X step by step in such a way that the quahty criterion, Q (X ), approximates the

optimal value, Q (X T opt Y.

The following discussion does not specifically deal with the details of the
transformation system, T, which may be different for the various problems. Main
interest is directed to system, S A» representing the search procedure. In both the

~closed loop and the open loop configuration, S A has the task of searching for the

optlmal conditions.
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2.1.3 Considerations and Assumptions

Depending on the specific problem, different possible conditions have to be con-
sidered. Some interesting items are briefly discussed.

(2)
(b)

(c)

(d)

—
D
<

(D

(8) .

The optimum quality value, Qopt’ may be a priori known or unknown.

The states of the systems, Sp or T, to be changed by the output of system,
S, may be reversible or nonreversible.

The mathematical process governing system, SE or T, may be stationary
or nonstationary.

The system, Sy or T, may be:

(1) Undis‘urbed by noise
(2) Disturbed by noise with known characteristics

(3} Disturbed by noise with unknown characteristics

The Quality function, Q (X), may be:

(1) Unimodal - - there is aunique optimum
(2) Multimodal - there is a global optimum and some local optima or
subextrema

Thé-qua.lity function, Q (X), may be:

(1) A continuous function with existing derivatives for every Xe @

" (2) A continuous function, but derivatives don't exist for every Xe Q

(3) A discrete function
The parameter vaiueé, X;, i.e., the domain of the function, Q (X), may be:

(1) Continuous and unbounded in the real number space

(2) Continuous, but bounded to a certain region, Q

(3) Discrete

The requirements on the algorithm or iterative search procedure of system,
S A are different for the various conditions. From the point of view of application,
it would be convenient to develop an algorithm which is appropriate for each of the

~conditions stated above. All known direct search procedures, with the exception of
‘the simple global random search technique, impose a restricted number of the above

conditions on the guality function, @ (X).




One severe condition is the modality. I the problem to be solved is multi-
modal (this is, for instance, the case when the problem to be solved is the root-
finding of a system of nonlinear equations), the various known search techniques
require an initial estimate sufficiently close to the root in question. Generally,
multimodal problems must be reduced a priori to 2 number, say K, of unimodal
problems by partitioning the region, @, in K subregions in which the local optima
are located, and determining K initial vectors, X, such that each one is sufficiently
close to the corresponding local optimal point X pt.

Another severe condition is that of disturbance by noise or ill-defined param-
eters, X;. All deterministic search techniques fail if noise is superimposed on the
‘quality function, Q (X). Besides simple random search procedures, the only method
capable of solving problems with superimposed noise is stochastic approximation.
However, the noise must be unbiased; i.e., the expected value of the noise is required
to be zero.

Still another, perhaps most severe, property of practically all known search :
~ techniques is the so-called curse of dimensionality. For instance, all search tech- &
niques, which require measurements of the gradient and estimations of the location ;
of the optimum, need for quadratic functions at least (n + 1)2 function evaluations,
Q (X), besides further computations for each of the (n + 1)2 search steps, where n is
the number of dimensions. In the litérature, gradient techniques are often said to be Fod
linearly dependent on the dimension, n. This accounts only for the measurements of ;
the n partial derivatives. To locate the optimal point of a general quadratic at least
n gradient measurements are needed, besides an additional function evaluation for |
each point at which the gradient is measured. Thus, referring to the number of
| @ function evaluations it _c__an_foe stated that the computation time for all well known
search techniques increases quadratically with the number of dimensions, n.”

e vt e

- asrman

In the following we will investigate the general question: Whether adaptive
principles can be introduced in system, S A (see Figures 2-2 and 2-3) with the prop-
erty of having a faster speed of convergence than known search technigues and with
the capability of solving problems with ill-defined parameters or superimposed noise,
hopefully, with a faster speed of convergence than the method of stochastic
approximation. '

e o B

2.2 BASIC ASPECTS OF AN ADAPTIVE SEARCH PROCEDURE

oy b e

We will begin our discussion with very simple and restricted conditions on the
quality function @ (X) as follows:

(2) The optimal value, 'Q opt’ is unknown.

(b) The states of the system S_, or T te be optimized are reversible.

E
(¢} The process governing the behavior of Srv:o,nsr T is stationary.

(d) No noise is suberimposed; all parameters: are well-defined.

o
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(e) The function @ (X) is unimodal.

(f) The function Q (X) may be continuous or discrete; no derivatives are re-
quired to exist.

(g) The parameters x, are not bounded.

These conditions are assumed for a first description and investigation of the under-
lying principles; they will be considerably relaxed, and most of them eventually re-
moved as we progress with the exception of (e). Let us consider the projection of
the domain of the n-dimensional quality function Q (X) in the two-dimensional plane
of Figure 2-4, Let us denote the initial n-dimensional X vector by x(1} and assume
the search procedu'r"e‘f starts at this pointi The corresponding functional value Q at
this point is observed as Q (X( Y =Q )

A
Let us denote the distance from the initial point X (1) to the optimal point X
by a (1 opt
with ‘
n ] 4
(1 _ ( - (1)) 2 b
a B Z 1 & apt 3 \\\:_\
1= .4 1\} ~

th

or, generally, at the m"" search step

(m) (m)

where X

is the point X at the m~ search step, and a the corresponding distance

Let us define a search hypersphere of radius r centered at the initial point X( 1).
Any point on the hypersphere of radius r can be described by vectors X =

x =x® sy o - (2-1Y
with V being an n-dimensional veator of unit length

L V) | O (2-12)

Vo= (Y, VY,

v = 4 2 vi=1." o (2-13)
o |

and r > 0.

2-10

(m) _ _ ., (myy2 _ :
e = \[1{31 (xioptxi.) @
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Search Hypersphere

Figure 2-4. Bagic Search Procedure Search Parameter r, V
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At the second search step let us evaluate the function Q (X) at the endpoint of the
vector X in the n-dimensional space

) =x@® , D (2-14)

We assume the optimal point to be a minimﬁm and call the search step a success if for
- agiven ¢ = 0

OO S S T T Ny

i- We denote a success by S(l) =1. ¢ may be chosen to
e=2 . 107K (3-16)
2
where k ig the number of digits in the mantissa of the floating point computation.
* Similarly, we call the search step a failure, denoted by 8§ (1) -= ¢, if ﬁ P
1) 1 1 -
ox™ + ¢ W) =o(xM) f1-¢}. (2-17) a

Depending on the outcome of the second search step - success or failure - we deter-
mine the vector X (2) after the second search step as foilows:

ol ity [T e Py
: 1 H N

'X(z) = X (1) , if S(l) = 0 (2-18)
L or .
i @ _ @ : (1) ,i’fs(n -1 (2-19)
!“ At the third search step, we evéluate the quality function Q (X} for the endpoint of the
- vector
‘i ' x=x® . ,.®@, ;@  (2-20)
T _x® . @

aI(lzd) determine the vector X(S)dependi-ng on the result of the evaluation, S(z)=0 or
s\e) =1, . - ' :

I - "‘

In general, at the mth search step we compute QQX(m) + £ (m)) and ﬂetermine S(m)
i_ depending on the outcome of the test , : i ' :
= ' o N
Q(x™ + ™M) < ™) - {1-.} | (2-21)

2-12
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The vector X (B * 1) whose endpoint represents the relative optimal location of the
search process, is then computed to

B RN

x@m*+ _ (M eg(m _y (2-22)

i

[ or i

:

}

- x(mFD _pm o, M g™ oy (2-23) g

v Out of m search steps designate the number of successes by mg and the number %

i of failures by m, where ;

| 3
- m =m +m . (2-24)

Note that the number m of search steps equals the number of function evaluations.
After each successful step a "move' to the new relative optimal point X (m +1) 4
E_ made, Clearly a fundamental question is that of the convergence of the sequence of
"moves" to the optimal point X,,. We realize, the convergence is completely
_ g’" governed by the S8equence of the search vectors

i | L

(

M =109 .... (2-25)

m) represents the length and

where r (m) V(m) represents the direction of the search 3
m ;

| - vector ¢ at the m! step with resgect to the vector X m representing the relative
| ). optimal location in the space at the m step, .
- . At this point it is important to note that the search procedure depends on the two i
parameters r (m-), v (m) only. From the point of view of function evaluations, the h
n-dimensional search problem is reduced fo a two-dimensional one, provided that for ’
- the successive computations of r (m)’ v (M) 16 further function evaluations are re- :
E quired besides those determined by the number m. Assuming at the start no infor- ]
mation is given on the type of the function Q (X), in order that the search process
converges, the system Sp (see Figures 2-2, and 2-3) must contain means to adapt £
the parameters r (m) (1) gt each'step by using the information gained during the o
previous search steps. ‘

Ideally, the adaptation procedure in S A should be an optimal algq_r_ithm; i.e.,

(2} It should assure convergence of the search,

(M It should.m‘axim‘i_'ze- the speed of convergence, resulting in 2 minimal number
‘of search steps. '

2-13




The assumption of arbitrary functions Q(X) is surely too general to find an op-
timal adaptation algorithm in an easy way, if at all. One should remember that even
for straightforward deterministic search procedures, for instance, such as the :
Fletcher-Powell method (6) the assumption that Q (X) is quadratic has to be made
to prove convergence. L
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2.3 UPPER BOUNDS OF SPEED OF CONVERGENCE FOR HYPERSPHERICAL
FUNCTIONS UNDER VARIOUS ASSUMPTIONS
Before we start with the development of adaptive algorithms, let us derive upper
bounds for various assumed ideal cases. Alfhough we will never achieve in reality
the limits obtained under the ideal a5sumpfions, the results will give some insight
into the various corresponding ideal search processes.
2.3.1 Assumpiion: Coiﬁplete Irformation on Optimal Direction of Search Vector; No
Information on Distance
We first assume the very unrealistic case that the directional infoermation V(m)
is completely given a priori. Referring to Figure 2-4 this means the optimal direc-

tion of the search vector is given by

] (1)
X - X
v (1) _  opt

.or x - <)
opt

(2-26)

Let us assume V () _ Vv

@) _
(1) 2

= Va( ) is given a priori; however, the dis- .

tance a* "’ is unknown. For this case, our search problem is reduced to a cne-

s .narameter problem For the optimal answer we refer to optimal single variable

Jm)y e

: ""‘9search proc edures, exhaustlvely treated in (18 19) The optnnal sequence B

m=1, 2,... M canbe derived apprqg,lmately from the Fibonacci sequence Fm

(see alsc 20). The sequence Fm is represented for increasing M in Table 2-1.

The number Fm is the ratio of the initial length of the uncertainty interval over the
final length (at step m) of the uncertainty interval. As the initial interval of uncertain-
ty is unknown for our assumnied ideal case, ‘a slightly increased number of steps m
can be ;Xpected for a desired ratio Fm . The sequence F__ represents ther upp;ar
bound. For example, in order to reduce the d1stance a(l) to a( M) such that

S -3
= = 2 10

i . 2-15
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- | TABLE 2-1 %
= SEQUENCE OF FIBONACCI NUMBERS ,
i m Fm | ) m Fm
; | 0 0 14 " 377
L 1 1 15 610
T 2 1 16 987 ‘
| 3 2 17 1,597 ;
’ 4 3 18 2,584
‘ 5 L B 19 4,181
6 k 8 20 6,765 |
7 3 21 10,946 ;
. §7 8 21 22 17,711
o 9 34 23 28,657
!: 10 55 24 46,368
i
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| convergenée for the practical implementation of a corresponding algorithm could be

at least M = 16 search steps are needed, or in genéi'al, approximately five steps to
reduce the distance by one order. For M = 50 the initial distance a(l) would be

reduced to a fraction

for any dimension n .

2.3.2 Agssumption: Complete Information on Distance, No Information on Direction

In order to come closer to the real case we derive the upper boundary for the
speed of convergence for the assumptions stated in Chapter 2.2, (a) to (g) and under

the following further assumptions:

(h) The function Q(X) is spherical

(i) DNeither is any information on the optimal direction of the search vector
given a priori, nor is an adaptive procedure used to determine any favorable
direction during the search,

(k) However, at each step the distance from the relative c:ptimal point to the

optimal point X is known.
The derivation of the optimal conditions for the vector length r(m) for the stated

O A e s TR e eme Sae s e e e e

assumptions has already been given in the literature (4, 21, 22). However, no proof of

i T s . gk

achieved.

Based on the theoretical results in this chapter we will derive a convergent

wlgorithm for the adaptation of r(m) in Chapter 2.4.

Because of the assumption (i) that no information on the location of the optimwem

Xopt is known we select the parameter V(m) of the search procedure at each step |

randomly with uniform density, i.e., each unit area on the surface of the search hyper-
sphere is selected with equal probability.

The investigation in this section concentrates then on the derivation of the optimal

(m)

condition for the parameter r , and the optimal speed of convergence which mini-

mizes the number of search stéps.
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Suppose at some stage the distance from the optimum is a , and the vector ¢
has length r , as indicated in Figure 2-5. Suppose the trial vector is at an angle ¢
away from the direction of the optimum. Then from the figure, the trial vector leads

to an improvement if ~a <« ¢ < a. The angle a is
@ = arc cos (=) 2-27)
- (2 a (
or L= 2 cos a
a

Az shown in (1 and 23) the uniform density for the direction of the search vector can
be expressed using the angle ¢ defined in Figure 2-5. For the probability density as

a function of the angle ¢ one finds:

sin’ " 2 ¢ '
(4= 7 (2-28)
n-2
2 Jl sin ¢de¢
0
where ¢ is considered in the interval (0, = ).
The probability that a s.earch step leads to a success, denoted by PS is
P = f P (¢)d ¢
0
* 4
n -
sin dd ¢
0 _ _ : :
PsT Tw . &2
2! smn"z_gbd ¢

The behavior of PS as a function of a (or E— respectively) and dimension n is an
interesting pointer for the derivation of an adaptive algorithm (Chapter 2.4). For this
reason it has been evaluated and represented in Figure 2-6 for various dimensions

and the interval of interest.

-2-18
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Figure 2-5. Hyperspherical Function Q(X)
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0°< « <90°
r L
or for = respectively

2> = >0
a

For % — 0 the probability P_ approaches P_ = 0.5 for every dimension n. How-

S S

ever, for

2>L =
a
independently increasing the dimensionality n reduces PS .
Referring to the search procedure described under 2.2 and from Figure 2-5 we
see that if a search step leads to success, |-¢ [< | al , then the search point is shifted

to the new position nearer the optimum. The change in the distance is

2 - 2 |
- + - if - < @
Ag o {a qa r -2arcos ¢ ,if-a<¢ (2-30)

0 , otherwise

and dividing through by "a" gives the fractional decrease in distance

a
if - a<¢ <a ,and 0 otherwise

Using (2-27) we obtain

—éa?—= 1~ Vl +4 cos a (cos a - Cos ¢ ), | '(2-32)'

if —a <¢ < a ,and 0 otherwise

The expected fractional decrement in distance per step is

E[%]""f 2 p(s)a ¢ @)
6 - .

2-21
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which substitutes using (2-28) and (2-32) to

P e ]

[ 3
I{l-fl-!-élcosa (cos«—cos¢)} sinn"2¢d¢
I‘Aa _ 0
E la ] ~ /9
2 S Csin® 2 gd ¢ (2-34) ?
0 !

Maximizing the expected value E [-':—E] with respectto e« , or (E) respectively, will

R e L

minimize the number of search steps and lead to the optimal conditions:

Aa
a opt S opt

A

T
o ’ (_)
opt a opt

The optimal parameters g;’émputed for increasing dimension n are listed in Table 2-2.

1t is worthwhile to iﬁ‘ﬁ;estigate further the behavior of the expected value

Aa ' ) _ |
E|—--] asa function of thg ratio % . Figure 2-7 shows that the extrema cf
e

Py HM m =22 E:a,:i i‘ -

E Aa for the various dimensions are relatively broad, i.e., small deviations from
(E) have little effect on E [%] .
.opt A a
Using the optimal value E [E’] opt we can now calculate the expected mini- 1
| mal number of search steps. Starting at an initial distance a(l) from the optimum ‘
we can expect M search steps to reduce a(l) to a(M) , where M is 1
| s L)
! L
M = = (2-35)
log {1 - E[ %] . '
ol opt i
| LD
Equation (2-35) has been evaluated for n =2, ..., 14, and a ratio ) =10 ,
a

the results are shown in Table 2-3, The step number M is approximately a linear

function of the dimension n. One finds:

M = -47+34.03 n S (2-36)

T

(M) (M)

1)

8" _q107° and M = -15.66 +11.34n  for = -1

= 10

for

a




]
!
:
_ | TABLE 2-2
l OPTIMAL PARAMETERS FOR ASSUMPTION 2.3.2 i
; i
] (=) | E [-Af] " }
_ n opt * opt, | opt S opt i
g— 2 0.909 62.98 0.1656 0.3434
i 3 0.750 67.99 .~ 0.0935 0.3024
- 4 0.644 71.20 0.0645 0.2891
E- 5 0.572 73.37 0.0491 0.2834 E
. 6 0.520 74,92 0.0396 0.2794
gi 7 0.479 76.14 0.0332 0.2784
8 0.447 77.09 0.0285 0.2772 3
& 9 0418 77.95 0.0250 0.2766 '
i 10 0.397 78.55 | 0.0223 0.2751
N 11 0.3717 79.13 0.0201 0.2753
P 12 0.361 79.60 0.0183 0.2743 |
-l 13 0.345 8006 | 00168 | 02740 ; |
s 14 0,332 80,45 00155 |  0.2735 N
[ . X , , . ; : i
i, 1.225 | -1 0.6125 1._\[17@ —
] \/F T n i,
i 100 0.1225 86.5 0.00201 0.27... |/
I
|
1
N
2-23 |
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g-' TABLE 2-3 ;
+
i‘ NUMBER OF SEARCH STEPS NEEDED TO REDUCE THE
. INITIAL DISTANCE TO A FRACTION 10-3
E: n M
{ 2 31 ) i
3 62
'
B i’ 4 95 :
i 5 128
‘ a' 6 162 !
- 7 196 "
{ - 8 230 ;i
9 264 i ;
; 3‘ 10 298 | - :
" 11 332 !
| { : 12 366 i
13 400
i 14 i B B
5 14 | B A
. ..h'
T 3
[ |
. Assuming spherical quality functions of the type :
i j
. 9 \ 2 o i
l- l QUX) = Qopt + igl (xi - opf) | 1 l
._ i - i | " :
| Qopt a o | (2-37)
l where a is the distance of any point X from the optimum Xop AL find for the

expected value of the fractional decrement of the Q-value




ﬁs - M“‘!»

— -

P

|
|

l (M) -Q t g (This case was assumed in (4) ]
T OBt _ 10 ] for a simulation) J
o - ‘
_we find from the rgsg,:;l"tgm (2-36) . i
/
( My =-2.64+45.36 -n_ (2-40)
In (4) an adaptlve procedure for the vector length r is described, howevex:, . £
without proof ¢i convergence. The simulation of the assumed function correspondmg 7?'
_ to (2-40) shows that MQ = 80-n steps, i.e., about twice the number of ' $

73
A
E TQ_—QQ—— = 1=-{1-E [i‘.a..i] (2-38)
optl
Schumer and Steiglitz (4) based their derivations on the function )
2
QREX) = a

that is, for the case u = 2. They derived the approximations of the optimal para-

st S T R 5 Ko o S R T mwmnwumme&-swmdu‘ﬂﬁ“M- Lo

meters for large dimensions n. Their results have been modified for the more

general distance relation in (2-37) and are listed in Table 2-2. ¢

With (2-38) and (2-85) we obtain for the minimal step number needed to reduce
the initial difference Q-value IQ(I) - Q0pt to a value IQ(M) -Q

opt l

My = o o- M, (2-39)

e

For instance for p =2 and i

steps were needed for the real c’ase. It will be shown in Chapter 2.4 that the speed
of convergence for the real case can be brought very close to the theoretical results

A\
obtained in this section, if the adaptrre algorithm is Optnmzed

2.3.3 Assumption: Complete Information on Distance, Partly Information on ];")ii,ngction

The two previous chapters showed the effect of compléte information on thétwo
parameters r, V. The results for the two assumed cases show that mformatmn on
the direction has a much hlgher effect on the speed of convergence. However, any

adaptation of directional information can never result in a complete knowledge as

2-26




assumed under 2.3.1, For this reason we assume in this chapter that besides com-

; plete information on the distance, only some incomplete information on the direction
¢ is given.
1 3 The question arises what amount of incomplete information we should assume ?

For instance, we could change the uniform density in 2.3.2 to a shape which is maximal

R R

in the direction to the optimum ( ¢ = 0), and which falls off towards ¢ == . A

similar effect is obtained by the procedure discussed below.

Fraperpraren

Let's assume search vectors with uniform density for the angle ¢ as under 2.3.2.

“*" If a randorh trial leads to a success we might ask whether it is worthwhile to use the

B
P
!

M

~«.same direction and length r deterniinistically at the next step, denoted by "vector

; extension," -
” If a random trizal leads to a failure we ask whether it is worthwhile to use the 3
i‘ : opposite direction and same length r deterministically at the next step, called

"vector inversion.'

1

For the derivation of the opiimal conditions for vector extension we refer to

3

Figure 2-8. A successful search step centered around the initial point X(m) results

‘% in a move to xim+1) along a line at an angle ¢ from the direction of the optimum. =~ g
It is profitable to extend to X(m *+2) , rather than mﬁké aﬁew random trial at X(Irl *1)

L if |

; €-b > g [A—a] . (2-41)

. ’ - . . c a =

Using the geometry of Figure 2-8 we find the equivalent conditions for vector exten~

- sion if

- B A ST SN

A (22

i and for the angle ¢ | if U : "

8 ' “f<<¢p <<f8

0

9-27 . - . S 3 :




| Distance Scale
(M +2)
! Xopt
—— —— e — b
. — — c
}
- 3 W _ -
- Aa
3
Figure 2-8. Conditions for' Search Vector Extension
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where B is a function of «

2
g = arc cos 1 1+4:0082a _1-8cos « (2-43)

{4 cosa Ao 2 )
RN Ay

!

A A ..
E [—f—] is given by equation (2-34). Using the optimal values « opt ’ E [Ta] .
opt
derived under 2.3.2 the optimal limit angle g opt can be obtained for the correspond- .
ing dimension. Some values are listed in Table 2-4. Note, the optimal criterion for

extension cannot be satisfied for n = 2, 3, 4.

The conditions for vector inversion are derived using Figure 2-9. The random

trial centered around X(m) leads to a failure at X(m " 1). Therefore, no move to

X(m +1) will be made. It is profitable to invert the search vector to xim *2) ,

rather than make a new random trial at X(m) if
- A
e [—f] (2-44)

which leads.from tiic t;;eometry of Figure 2-9 to the eguivalent inequality for vector

inversion if T

9 ) 5-__} 9 -
Aa r Aa |
—-a—' = 2 [(E) + 1] - (1 - E [_'a ] ) -1 (2—4:5)

and for the angle ¢ , if

—7<¢<Y

_ 2 ol
1 2 Aa ’
vy = arc cos Zoos o 4 cos a +1-<1-E [—-—a—:l> ] (2-4.6)

The optimal limit angle y

where

opt can be obtained by inserting the optimal values

« ,and E [%?’-] in (2—46). Table 2-4 contains values of ¥
- opt opt : o]
.+ ., 14. The values in Table 2-4 show that o

ot for n= 2, 3,

ot = ﬁopt’ i.e., the condition for

vector inversion is satisfied more often than the condition for extension.

2~29
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- TABLE 2-4

o OPTIMAL LIMIT ANGLES FOR VECTOR EXTENSION AND
: ’ INVERSION FOR VARIOUS DIMENSIONS

Bol'at Yopt
n (degrees) (degrees)
2 0 50.72
3 0 59.47
4 0 64.52
g 5 23.92 67.72
| 6 33.21 70.03
i' 7 39.59 71.79
8 44,01 73.14
g 9 47.46 74.24
10 50.00 75.11
g 11 52.38 75.90
12 54.19 76.54
| gu 13 55.84 | 772
14 57.24 77.62
2-30
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Distance Scale

opt

¢
-\ _____..--'"
(m)
r l
v .--’//
| F—X(m +1)

Figure 2-9, Cundition for Vector Inversion
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Finally we are interested in the expected value of the fractional distance decre-
ment per step including extension and inversion. The search steps can be divided in
independent random steps and completely dependent steps for extension and inversion.

The corresponding density function for the angle ¢ can be expressed by

! sinn_qu
2j smn-2¢d¢ +fsin _2¢d¢+fsin~ ¢ d¢
0 0 0

(2-47)
The expected displacement for a random trial is obtained by, using (2-32) and (2-47) to:

44

E[ﬁ] = 5(1-V1+4008a(005a-cos¢)) p'(qb)dqb
@ rand. _

(2-48)

Referring to Figure 2-8 the expected displacement due to extension is obtained to

; | |
Aa _ l1+8cosa(2cosa -cosd¢) .
E[ﬁ"r] t" S("J1+4005a(cosa-cos¢) )p(¢)cl¢
-t dext. ¢ (2-49)

With the geometry in Figure 2-9 the expected displacement due to vector inversionis =

Y

E[%] = S(l.-VI+4cbsa(cosa—co?s;,o(g))p'(¢.)d¢

inv. 8 | (2-50)

The expected value of the clisplacement per search step is obtained to

1 ) .
g [&2] . [Aﬂ] i E I:.é_%.] . B [é__%] (2-51)
a a a a .
. rand, ext. inv,

(rand. + ext. + inv.)

Using formula (2-35) and the optimal conditions « for the com-

opt ’ p opt’ Topt

putation of E' [_é_&] , the expected minimal step number results, Table 2-5 shows
-3 _
the results for a ratio 9-((—?’-&)—) =10 = for the various assumed cases. As under 2.3.2
a .

the minimal expected step number _for' the case 2.3.3 is approximately a liﬁ:éar jjfunctioh

of the dimension n
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m

— N i el e

M = -25.9 + 20.5 n (2-52)
(M) -
for a ratio — = 10 3 ,
L@
and
M = -8.63+6.83 n (2-53)

for a ratio Ba((llu—)) = 1074
a

Although not much directional information was assumed in using vector exten-
sion and inversion the results show that the number of steps needed for a certain
distance reduction is only about half the step number needed for the case 2.3.2,
without any directional information. We conclude: directional information is very

important to consider in the search process.

Unfortunately, directional information is only effective when it is applied
together with the appropriate information on the distance. Although directional
information is relatively easy to obtain using adaptive principles it is not worthwhile
to consider them until the much harder part is solved, namely the adaptation of the

search vector length r in relation to the distance with proof of convergence.
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7
TABLE 2-5
‘1 EXPECTED MINIMAL STEP NUMBERS FOR THE IDEAL ASSUMPTIONS
;
, Expected Minimal Step Number for the Assumed Cases
| (simple (extension, :
] (Fibonacci) random) inversion) |
n 2.3.1 2.3.2 2.3.3 %
t 2 Y 31 20 “
| 3 62 39
* 95 59 )
D 128 79 §
6 162 98 §
7 196 119 ;
8 230 139 g
9 16 b 264 159 i
10 293 180 i
11 332 200
12 366 221 ﬂ
R B T T T __

14 v | 434 262 ,.
y
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2.4 DERIVATION OF A QUASIOPTIMAL ADAPTIVE SEARCH ALGORITHM FOR
UNDISTURBED HYPERSPHERICAL FUNCTIONS
Based on the results obtained for the hypothetical case under 2.3.2 we now de-
velop an adaptive algorithm for the adaption of the optimal search vector length r. We
consider the same assumptions as in 2.3.2 except that we remove condition (k) and
assume that no information on the distance to the optimal point is given other than by

the search algorithm.

Let's first assume we start our search with an initial vector length r(l) with
A1
(1)

>> 2, From Figure 2-6 we realize no success can be obtained. In order to make

successes possible r has fo be reduced in successive failure trials, i.e., the sequence

A @

be o v , where the superscript u indicates the number of successive

unsuccesses must be a decreasing sequence, Consider the sequence corresponding

to the recursive formula

ML S N Y | (2-54)

~where 0 <A<1

The sequence in (2~ 54) has the property

me® o O e
u = ®

00

Y W< w . (2-56)

The property in (2-56) indicates that the sequence converges relatively fast towards
r= 0. The speed of convergence is governed by the parameter A. Obviously the
sequence has the property to converge with a constant rate. The unrestricted use of
this sequence for the change of r after an unsuccessful search step however, bears
the danger that r(u) diminishes too fasttoward zero before a success is obtained due

fo the statistioal nature of the process.

It is well known that the fastest diverging sequer{ce is the harmonic sequence

w2 A

T u=l2,.... | - (2-57)
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It has the property

: (1) i
Nl (2-59 |

— (1) -
Z 11‘1_ = oo (2-59)
u=1

- Comparing the two sequences we find that for 0<A<0.5 the sequence in (2-54) stays

R A R et i RS AR St |

first above the harmonic sequence and falls below at a certain finite u.

The combination of the two sequences by imposing the harmonic sequence as the i

lower boundary satisfies our general requirements that at successive failures the

: u
- vector length r is reduced such that in a finite number of steps it is L((x_nl) < 2, i
é, however, r(m) approaching zero with a decreasing rate of convergence as u increases.
a 1

We defer the discussien of the parameter A for the moment and assume the

other extreme of an initial condition that the length r is much smaller than the un-

- D

[ _ known distance, i.e., ——
KR

the probablhty of success approaches PS —»O 5 however I‘1°ure 2 7 shows that; the :

ey M,

is close to zero. From Figure 2-6 we see that in this case

1N

[l
podl :

e:\pected amount of success is much smaller than the mammal obtainable for Sopt”

In order fo increase the length r, we must have an adaptation rule for successful

steps

pm Y

=y (M) 1C,C>1 (2-60)

After the general discussion of the two rules, namely to shorten the length r in -
case of unsuccess and to enlarge r in case of success we now state our objectives

more precisely. Since r is changed after each search step and we never can adapt ;

complete information on the distance we cannot achieve the optimal speed of con-
vergence obtained for the ideal hypothetical case under 2.3.2. However, as Figure

2-7 indicates, by prolﬁer choice of the parameters A in (2-54) and C in (2-60), it is

possible to achieve in the real case an average amount of displacement E A: real
close to E [é-:-] opt in Figure 2-7. Let's denotie the 'e}“"ector length after the ms"-th

success as rg and define
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— S — + > -
[ ag (a)opt S0 4 0 (2-61)

where (%)Op ¢ depends on the dimension and is given in Tabie 2-2. Let's assume that 5

o Ml o eima e ot W

- the following number of expected successive unsuccesses and the parameter A is such

that the next success can be expect_ed at

. rg. (1 - A\

(I . | ..
o ag (a)opt AZ’ Az:>0 (2-62)

B T N N

where rg .(1—A)(u) represents the value of the length r after formula (2-54) is applied
u times. From Figure 2-7 we see, since the functions E [9-3] =K ( i— . n) are for
small” Ay, 4o, approximately symmetric with respect to (g—) opt» that we would have

optimal conditions for the real case and given Al, A ,. Moreover for A -0 we

2 3 1,2
would approach the theoretical value E [—é%] opt” Obviously the fractions A P A9 '
depend on A, and thg&expectéd number of successive unsuccesses. Al 9 = 0 would

require A = 0, that is, no adaptation is possible anymore. Thus, A must be greater

than zero. What is an optimal value for A? The exact solution of this problem can

“only be obtained by very tedriroqsr and costly computations. We shall come close to the
| optimal coﬁditidns’ by assﬁmihé’A as 'a' fuﬁctiﬁh éf 7thértheéretiéél 7or.ptima1 parameters

obtained in 2.3.2. We found that the optimal probability of success approaches the

value PS opt = 0.27 for large n, where a significant deviation gccurs practically only

for n <« 5 (or even n <4, as seen in Table 2-2). That means that about every fourth

step is successful, or more exact in the average out of

steps u =
§.. i PSr.w»pt

- 1 -PSopt | | i

P

successive unsuccesses occur. The expected displacement at a successfulstep

== . LR
= .a_]opt | | f

ESoptf P

- " Sopt
is given by | [

ey

(2-63)
Sopt

In the real case we can only expect E which is dependent on the search parameters.

Sreal

For instance, with the .ver-y unfavorable initial condition r(_l) close to zero the ex-
a

S real for the first success is very small. For strong proof of con-

pected valve E




b “

!

vergence we will not take inte account the amount of success at each successful step.
The loss resulting from this assumption should be compensated at least in one un-
successful step, that is the quasi-optimal conditions are restored after one step.

Referring to the formulas {2-£1)-and (2-62) the value (E)opt is shifted towards

(‘I:)opt + & (£>0) by neglecting E¢ .. If we assign the value

a reas

LN -

A= ESopt (2-64)

the unsymmetry e can be reduced by at most one step. Using the relations for large

[T —

n in Table 2-2 we find the relation

1 0.406 ” :
--6:2—7—-.(1— 1-= ) (2-65)

For small n the relation (2-63) using the values in Table 2-2 can be used for a more

exact computation.

The parameter A is a function of the dimension n and has a characteristic pro-

portional to E [ﬁi] =E [53 (n). It remains to derive the factor C such
a ] opt a ] opt

that the assumed conditions in (2-61) and 2-62) with the correction

(§)opt - (E)opt + ¢ are obtained. We require that the real expected value of the ratio
(E)real for all possible sequences of successive unsuccesses is identical to the initial
value a—S- where the sequences of unsuccesses started, that is i
S
., r - . =
E [1] ¢ 8 (2-66) f
a | real a ,‘ i
S .
i ) R iy o . -
According to the previous discussion we may select as appropriate value for . o
T ) ;
S (r) 1 - :
—=() e — —— | (2-67)
g a/opt : 1. 1 Popt
2" P opt
(1-4) P

The considered adaptation rules are in case of failure or unsuccess:
r=r((l-A)or equivalént r =rg. (1-4) % with the boﬁndary-condition '

1":1‘
S o
re=— R (2-68)
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where r is the initial condition after the s-th unsuccess, and u the numher of successive

unsuccesses
In case of success: |
r=r-C - (2-69)
The expected value E [-1:] is obtained to:
_ a | real
; s 5 i < 1
E [-é-] real =C " T { S (1-A) W+ 2 = W, (2-70)
2 s li=1 B R
with the condition for K:
T
. K S
- > )
Iy (L-A) 2 K+l o .é}

but (2-71) ; /

r i

K+ 1 g :

{1 - < — i
rg (1 - 4) K + 2

Wi is the probability for the occurrance of a success after i - 1 unsuccesses. As the 7
random trials are assumed to be independent it is

Y17 Ps

Wp"Pgp 9y Witha m1-P

= - . . -,... 3 h
Wi Py ql q2 v e qi__1 | gZ .72) |
| where qO =1, and qi-——l =1 -~ PSi—l 3
Furthf*" itis:
3 Ofsinn'z ¢dg - . : ;
i {

Py, = —— - — : (2-73)
o . — 2 w0 : s
2 f sin” " “¢de -
0 ' . S B

- - ‘1 T N .‘ | i " ‘
i A {’5 '_ (}a_")i} | I (2-74)
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with

T . |
(E). =5 (1-apt (2-75)
a/i a
S
Substituting (2~67) in (2-75) we obtain
1-P

. opt
r T T2 Po:t .
)i = @ops = | (2-76)
Combining (2-~66) and (2~70) we find for the parameter C
C= ! = ,
E(l Ay W+ Z % LA (2-77)
i=1 i=K+l :

The adaptive search process converges with certainty fo the final solution since C is

| determined such that (2-66) is satisfied. The adaptation parameters A, C are, clparly,

1
only gquasi-~optimal., The exact op%imization process would be fo optimize E [A%J real
&
subject to the variation of A and r;- in equation (2-67) and repetitive computation of
8
the corresponding C from (2~77) which assures convergence,

Note: For the computation of C ihe infinite series ean be approximated by termin-
ating the computing process when most of the possible gequences of
‘successive unpuceesses are included, precisely when =
P T LG

Zw+e~1e>0 | (2-78)
i=1 )

. o - ‘-3
wh"ere e can be predetermined, for insfance ¢ =10 ~,

~ The computation.of the parameter C = C (n, A) correspondmg to the parameter
Ain (2»64) has keen delayed until needed, s1nce the computation of C is-costly, To pI’OVe
the operation a simplified version of (2-77) has been assumed forn = 10 where PSi in
(2~73) was approximated as a 1inear funetion of (~) in (2-74) As a result = 1,28 was

ai
obtained,

Since exhaustive simulations were made in an earlier investigation for assumed

‘yalues A =0, I, C = 1.8, no further simulations were pefformed with the comguted

value C =1,28 for A = 0, 081 For A =0,1, C = 1.3 in the average M = 338 gearch steps

were needed for afl)) = 10 . The .Lheoretmal limit u_nd,er 2,3.2 shows Mmin = 298,

g

g B e g e 4
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With the quasi-optimal value C baged on equation (2~77) better results will be obtained,

since the assumed values for A, C (A = 0.1, C = 1,3) are less optimal, The reason for
r .
this is, that a_S is shified towards a higher ratio which satinfies the convergence
g ,
condition because the expected value E [r] sim > E [E] in (2-66). However,
Aa’

0y [hf—l-] im is smaller than the quasi—opumal value due to the unsymmetric shift.

With proper computation of C in (2-77) one can expect results for the average
number of search steps which are less than 10% higher than the theoretical values in
Table 2-3, This is {rue for dimengions n =4, For n =2, 3 the step number deviates
more from the theoretical values due to the fact recognizable in Figure 2-7 that the
ghape of the characteristic for E [A—z] ,n=2,8is moye sensitive to the unsymmetric

ghift by an amount ¢ to
T
o+ @
2.4,1 Adaptive Search Algorithm Including Directional Informalfion

The previougly derived search algorithm does not require or agsume any
directional information, In Chapter 2.3 we obncluded, however, that directional in~

formation is yery effective in accelerating the speed of convergence, Given a certain

algorithm for the adaptation of directional information one can-derive, similar to the

cases in Chapter 2.3, the theoretical limits, and can furthermore derive the corre-
sponding quasl—opumal adaptive search algorithm using the princuples applied for the
non-directional search algorithm in the previous section, Clearly, since the random
trials hecome dependent, becauge the information of the outcome of previous trials is
used to control the probability density of the angle ¢ , the computations will become
much more complex, Again, derivations car::ouly he performed for a specific clags of
funections, say hyperspherical functiong. No such dé:rivﬂﬁtions‘h.ax?e heen performed

cluring this worl,

~ However, directional information has beefs med in simulatmns for which Lhe
adapi.ive gearch algorithm derived abqu has been applied. The adaptalion of the

direction was hased on the adapsation of Lhe mean value vector gimilar fo the method

* described hy Matyas_in 2] . Horvever, hesides the normal digtribution, applied in

T P N




[2] . some other distributions like the triangle distribution and similar ones, have

heen used.

Since the directional information increases the probability of success, i.e., all
curves in Figure 2-6 are shifted toward:: higher values, the convergence of the adap-
tive search algorithm (based on non~directional information) is assured, However,
the process stahilizes in a region forez which i8 off the optimal conditions, Still, the
results obtained fdr the step number were helow the theoretical limits ohtained in
2,8.2, but higher than the minimal step number obtained in 2,3.3, It can bhe concluded
that an opfimal adaptation algorithm hased on the adaptation of the search vector
lengfh and searcli vector direction will result in a speed of convergence which is at

least as good or even hetter than the values obtained in 2.3,3,

The reason why the derivation of an adaptation algorithm has heen delayed is
the fact that the imposed assumptions on the derivations are still too restriciive and

as we have now gained insight into the behavior of the adaptation process, we can

_Btudy the more complex problem of allowing disturbances in the evaluation of the

quality function,

2~42




2.5 CONDITIONS AND LIMIT OF SPEED OF CONVERGENCE FOR HIGHLY
DISTURBED HYPERSPHERICAL FUNCTIONS
Up to now we assumed that the compgunents of the state vector, X, can be exactly
assigned and that the corresponding functioﬁ value, Q (X), can be exactly computed. In
the following we shall investigate the case that the functional values, Q, are replaced
by disturbed measurements., Again, in order to get an answer to this problem we

congider hyperspherical functions.

Wea impose the same assumptions as under 2.3.2 except we assume thai all
function evaluations are disturhed by Bernoulli noige; i.e., instead of observing

Q (X(m)) we ohserve

z 3™y = ™)y . g™ . 5y (2-80)
where f (m) are independent random variables -
ﬁ(m) = % ii ( W-i—(:h. probahbility Pﬁ = ] 82% (2~81)

and 8 N =0 is the amount of disturbance, We apply the same basic search and

evaluation procedure as described under 2.2; however, in the test function in (2-21) Q

has to be replaced by Z; L.e., a4 mi:;s.h agarch step we test

7™ g <g 1L gy (2-82)
where E |

2 ™ g ) =gt g0 g T L sy
and 7 x™)y g™y, ﬂ(m) © by (2-84)
The two random variables, g (m + 1) , B (m)’ are independent at each search siep;

X(m)), is also

- i.e., in case of successive unsuccesses the relative optimal value, Z (
affected randomly at each gearch step., This is the worst type of noige which ean he

congidered,

943




We assume that the amount, 8§y, of the noise is very much greater than the

difference,

Q(l) - Qoptl , where @ () is tlie undisturbed inij}lal value. Since sach

random variable in (2~83) and (2-84) can assume the binary values, +, -, there are

four possible combinations (Table 2~6) each occurring with equal probability,

TABLE 2-6

POSSIBLE COMBINATIONS FOR THE VALUES OF THE
RANDOM VARIABLES IN (2~83) AND (2-84)

8 (m}) I (m -+ 1) Praobability of Ocourrence

(a) + + 0.25
(b) - - 0125
(¢) - + 0,26
((‘1) + — 0!25
We discuss the four cases ‘l’urtl}pr:

@ z x™) = @™y ws

R A N SR A N R o (z-8B)

Since hoth values, Z, are disfurbed by the same sign and amount, the noise has no
effect. The situation is identical to the cage in 2.3,2.
0 2z x™) - Q™) - gy

7 (X(@ + g(m)) - Q ‘(X(m) . é(m)) - by ;*(;3-.3(3) E

Here the same applies as discussed under (1), ubove.‘ -Tha noise hus no effect,

(o) % ™) = ™) <y

7 (X(m) + g(rn)) (a (X(m) 3 g(nl)) -+ SN (2"87)

As we hase our discussion on minimization and 8N = 1Q (}{(m)) - Qopt :?.-»Bis)

D4
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no success is possible, The noise disturbs the ohservation completely, However,

no move away from the optimum can ocour,

@ z ™) - Q™ w8
L LR L I (2-89)
For this case the probability of success is
Ps(d) = PSD(CU " PSN(d) =1 (2-90)

where PSD is the part which corresponds fo real successes and PSN the part which

lends to '"moisy' successes cpusing moves away from the optimum.
The question to be anawoered in the following is;

(r) Under what conditions can the search process converge?
(b) What is the theoretical limit for the speed of convergence?

(m)’ hut no direciional

Note that we assume completo informution on the digtance, a
information at all, Using the nomenclature us under 2,3.2 and the relations darived

from Figure 2-6 we find the following,

~ The probability that a search atep Jeads to o veil Auceoss resuliing in @ movo

towarda the optimum is obtained {o

‘ L4 :
ve '
f in """ ¢ tl ¢
- U
Byy 078 e (2-81)
2 f sint T T gde

where the cades, (@), (b) and (), contribute the sume {raotion, 0,25,

Far the prebubility of "noisy" auccesses we find from () and rolation (2-90)

f b ey
¥ ain ¢l e
L T T T _
s i KA |
9 J‘ sin ad g £3m2)
u i .
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The behavior of PSD and PSN as a function of % has been evaluated for the inter-

esting interval and various dimensions., Figure 2-10 shows the functional behavior

for two different dimensions, n = 6 and n = 10, For -T% =0 the probability, PSD'

= 0,375, and the "noigy" part, PSN’ goes towards PSN =

- 8D’ 1s
= { for o 2 for every

approaches the value, pSD
0,125 for every dimension, For an increasing ratio, 3 , the probability, P

monotonically decreasing and reaches the value PSD

dimengion. However, independently increasing n reducea PSD; i.e,, with increasing
r ]

| dimensionality the function, PSD = PSD (E-) decrenses faster,

Contrary to this the "noisy" part, P Iinoreases with inereasing -E and

SN'

approaches the value, P 0.25, for every dimensjon, Because of the assumption

SN
) o |
8N>> Q (XV) Qopt the probability PSN is
= 5 Tow ,.]-':. = {18 )
PSN 0,25 fox " = 2 {2-93)

us long as the above assumption for § N holds.

3]

For o certain ratio, %f , and dimension, n , the {wo probabilities, PSD )14

i hecome equal, Below that value, —3— » P 18 superior and above that \falu(a

Pan’ 8D
P N is grenter thun FSD' Clearly, only the overall probability of success, P is

Ql}ﬂ'@-}?‘}&bl@r&s- . L . L.

1o
r;‘q’ .

~ = 4 o d :-}1 .
5 Po = Pgy + Poy b

The hehavior of PS can he sean in Figure 2-10,  Of apecific intevest is the expoected
value for the {ructionnd distunen daerament per step, E [%—q‘-] » The noise causes
the relative optimum to move away from the trua uptimtim under certain conditions,

If the "neisy" moves are overwhelming the expected value E[ uu] will he neg;m;iva

andl the search process does noi canverge,

Corresponding to the theory umler 243,28 we formulufe E[ Py ]iﬂ

’ij ,féilﬂ¢)d¢4u£5 ﬁ--(wd¢'_ ¢ %%JT
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where -éa—a and p (¢) are defined under 2.2.2. The first integral in (2-95) relates to
the cases in (2~85), and (2-86). The second integral results from case (2-89). Of
particular interest is the behavior of E [—‘Z—a] as a function of the ratio % . Figure
2-11 shows the dependency for the two dimensions,n = 6 and n =10, 1t is seen that
after a maximal value for a relatively small (g)opt the expected fractional decre-
ment is continuously decreasing, pas: 2s the value, 0, and decreases steadily with
increasing IE . The search process can only converge for E [-ééi] >0, As in

2.3.2, optimal conditions exist for the speed of convergence. The optimal conditions

for soms dimensions, h, are listed in Table 2=7,

TABLE 2-7

| - OPTIMAL PARAMETERS AND MINIMAL NUMBER OF
| SEARCH STEPS FOR HIGHLY DISTURBED |
HYPERSPHERICA L FUNCTIONS

r ® opt E [-&&-] - Mopt
| o o deg) -7 ot Tsopt @!M/a < 107
2 0.560 78,2 40,0478 0,4538 141
; 4 “0.280 ‘ | g1y ' 00158~ 0453 450 o , : i
6 0.213 83.9 0.0080 0.4551 174 o,
| | 8 0.174 85.0 0.0062 0.4556 1108 -
1 10 0.153 85,6 ©0.0048 0.4561 1433

Besides the optimil parameters ihe theoretical minimal step number, M, is

r listéﬁﬁ_: M can be computed with formula {2-35), "As for the resulis under 2.3.2 and

shown in Table 2-8 M was caleulated for the ratio -a—%l = 10"3. The relationship :
a 1 ff':'!
- M =M (u) again is linear like under 2,3,2; however, the minimal step number is Ve

about 4.8 times greater than for the undisturbed case, R
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' 2.6 ADAPTIVE SEARCH ALGORITHMS FOR A I.ARGER CLASS OF DISTURBED
QUALITY FUNCTIONS

2.6.1 Adapﬁve Algorithms for Disturbed Hyperspherical Functions

The results of the previous chapter show that certain similarities exist for the
disturbed hyperspherical functions with tlie results obtained in 2.3.2 for the undis-
1 turbed case. Because the probability of success, PS’ (see Figure 2-10) is also for

the "noisy" case a decr=asing function with respect to - in the interesting interval
. faag . . . .
for which E [—E-,—] is positive around the maximum, we can use the theory in 2.4 to

establish an adaptive algorithm for highly disturbed hyperspherical functions.
The condition is again that, for a given parameter, A, the parameter, C, has

to be d¢ coriined so that the search process stabilizes alound (2) after
- rS Opt
the beginning transient period. Obviously, the formulas for A’a._’ and C in
S

Chapter 2.4, which were applied for the disturbed case, satisfy the require-

ment for convergence if we use the corresponding parameters,

- Aa x
T | E [a ] opt '’ Sopt ( )opt’ Sopt and Ps_i R

| ] Theformula for P in (2-73) changes however to -

P.. = 0.5 —_— +0.25 (2-96)

- where (2-96) is obtained by combining (2-91), (2-92), and (2-94).

At this pcint, we could derive an adaptwe algorithm based on the adaptation of

L =
=
i

.7 the search vector length and search vector direction, The general steps of such a

derivatismwere outlmed in the last part of ‘Chapter 2.4, However, no convergence ‘

could be assured i the algorithm were applied to problems other than the hype,b . ) ‘

- spherical type, . One caun even show the divergence for certain problems. The reaSOQ :

is because the algorithm ﬁoul& have Pbeen approximately optimized fdr hypersphericél ;

qont.ours usil_lg the functional relatxonshlps Py =Pg ( n) and E é_ﬁ] -E [Aaa | {; .
N 2-50
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2.6.2 Adaptive Search Algorithm for Disturbed Quality Functions

The objective is the derivation of an adaptive sedarch algorithm applicable for
disturbed arbitrary quality functions. In the following we will loose the restriction
of the function type and shall derive 2 convergent a&raptive search algorithm for a

larger class of quality functions.

We refer to the derivations under 2.5 and Figure 2-11 and impose the following

conditions. Assume a class of ill-defined or disturbed functions, F. BEvery member
of F has the general property that there exists an expected value for the fractional
decrement E [»éa—a] =0 in the interval, 0 << z < h, b>0, where r is the length
of the searer.t vector length of a search procedure. For :— =b E [Aaa ] might be
zero or negative. Clearly, the class of functions, F, is now completely depenc_l_ent on
the search procedure. A simpler algorithm will restrict F to a smaller numb’er. It
should be noted that we do not impose any speciﬁc conditions on the noise. For
mst&nce we allow biased noise elso. as long/ as the required oond1t;ion on E [—-—“-]
is eatisfied Furthermore, dirvectional intfermation may increase the number of

J
elements m ‘the allowed class, F. ,/

- Tor simplicity we will first derive the algorithm without directional informa-

tion because the latter can be added later without modifications.

A

Aeskome the search prooese stij{irts at an ihitial condition such that E [Aaa ]
is negative (see Figure 2- 11) i.e., the noiee causes moves away from the trL;e -
opumum. In order to reduce the ratio — to the region where E [——*—] becomes
positive, we must have an algorithm wlnch 1} performs the reduction of r in a finite
nuinber of steps an 2) prevents r from going to zero with a rate higher than the
rate the distance, a, approaches zero, The contradiction in this requirement can be
removed by splitting off the algor1thm into two adaptation rules, namely & rule for

successful steps and a rule for the case of failures.

We der ved in Chepter 2.4 equation (2-68) for hypersphenoal funetions the rule

in case of failure:

r=x(l-4)

2-52
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or equivaient =g (1= A)u (2-97) ;
i | with the boundary Pt S
i S
A : |
W\: r= u+1

This rule satisfies a part of our requirements. The harmonic sequence

i

a, Prevents r from pgoing to zero too fast, if we are in the interval
0= 3 <<b and we are in a oycle of successive failures.

-~

M

b. Reduces r in cuse of failures in a finite number of stepsy if we are in the

i* interval £ =b < w //

' What remains to be found is the rule for successes which satisfies also the two i,
i' requirements stated. As the probability of success PS can be greater than zero for *
) -E =b the sitnple rule in (2=69) r =r + C ig not satisfactory, if Pg is unknown 1
and arbitrary 0=s PS =< 1, which we will-assume. o

We may further consider the two cgses that the shape of the function

13 + 4

]

A R X! ,
E [—f—‘-] = B [ -%— (E, n) is known or unknown. If the shape is known we can

calevlate the real value, E["—E] al the following rule .

-5 - - | -
| L) el Mg
i. r=r (1~-B) if success, (mS is the number of (2~-98)
g_ﬁgcessful steps) ' . _ L
{' where 0 < B < E_ | (2-99)
| - s real . ‘_ _
’{L - would then satisfy the requirements, since

a. it reduces r w"ith a;’-”rate not faster than the distance, a, is reduced, and

b. reduces r fast enough so that the region 0<< -—<b can be reached in a
finite number of: .steps. |

| As it is seen from (2—99) the values E [—AE-‘E] P have not to be known

of convergence is obtained for B = E . For B > B real the ‘
O : g real _ 8 _ _ . -

P o

2252 | o BN

g - ht.é‘xggtly since any B in the stated boundaries is' satisfactory, Optimai speed




e e :
P E
it

. gearch proceks stops before the optimum is reuched, since v approaches szero with

u faster rate than a.

e ,.L’

In case that no information on E [%5] and Py g avallable, the fagtest sequence

/ X
= 1 sutiefying the requirements is the harmonic sequence resulting in the rule
d :

) ri |
| I o= ——— if success and no informationon B (2~100) 5 S
1 © mg s real o ;|

‘ g The requirements are satisfied becuuse

8 _
. The harmonic sequence satisfies the cane By o5 5> 0 ,since ’
i o 1(1) \1‘\\
2 m
i mg = 1 78
| ~
’ ' We can further refine the rule for the case of success inh (2-100) based on the dis- ;
i‘ cussion in 2.4 and equation (2-57). Using (2~100) as boundary rule, any sequence i )
S allowed which has the property of staying-above the sequence in (2-100) and ¢on- J
[ s R rf’
{ verging; e, X e, << w  where e, are the elements of the sequence... We L
found that the significant property of the sequences stated in (2-54) and (2-98) is the : L
g : constant rate of convergence, A combination with the harmonic sequence us it is }
done in (2-97) for the case of failure results in a seguence which normally behdves
? B better than the harmonic sequence in the interval after the éfarting point, %
| - For the case that nothit.lké‘is known about E“3 real we may state with con-"
s venience the _céiﬁbined rule for successes similar |

to (2-97):

o :
R i

[

) . m i i
1 rg = oK qaaly S (2-101) :
| ! with the boundary L !
' eV - l’
| g. " mg + 1 - ! \x\\k
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' v where A' muy be selected independently of A in (2-97). Useful values for A'
i (as with A, if not determined by‘,‘('ﬁﬁecl)) are in the interval 0<A <0,b, For
* instance, for A = 0.1 the initinl value of the first sequence in (2-101) is reduced to
5 1/10 in ubout mg = 20 steps und still sutisfies for this m the boundury condition
; #1) -

re> ETHE

SR

Mo summarize! if no information on E is a priori given, the

g real
simplést rules for the aduptution of the search vector length, r, are the boundary

Sunenc‘es in (2~97) and (2-101), denoted as ASR -1 (Aduptive Search Rule No, 1)

ASR ~1:
T _ _
r o= iy if failure (2-102)
| e
r, = - if Buccess
i S Ins‘kl

where u 18 the number of successive failures uand mS the number of successes.

A refined set of rules under the same assumption that no a priori information

is piven is

Ba!

ASR-2: - | i
B

r =Ty (L-A) (2-103) i

\if failure

ST

m
ry = D goaly S

}if succes”s

53 l
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“whers A, A are constants discussed above.,
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4

’ In case somo a priort informution was avallable on F 4 we found previously

- rotl
the sot of rules

. ,’?{.

K

if fuilure ' (2-1 04)/

—

==

et
Xy

g - o
rg = rm (1 -B) S if success ._ , .

where B 18 defined in (2-99).

e =

The "puyment! for needing no a priori information at ull in ASR-1 uand ASR-2 ig

T u slower ruate of convergence compared with the more or less optimal convergence at

i constant rate for ASR~3,

SIPEENT -‘:fu}."s;_-f‘, L ot

Theoretically, complets convergence for all algorithmy is aghieved fov the limit

m - o , However, in practice, since we have to assume ¢ = 0 in (2-156) for the

fuhction evaluations because of the limited computer accuracy, the search process

s )

e

terminates at a finite ster number. Mors exactly, the geavoh-derminates-when o - oo = oo s
i _

distance, 4, is reached which corresponds to the value, ¢ , in (2-15).

The adaptation rules above can be further extended including adaptation of the
vector length.by the principles discussed under 2.4, if more a priori information is

given. The result would be a :Eurther increased speed of convergence.

Iinally, we note that the introduction of the adaptation of the direction of the
gearch vector in addition to the vector length will result in a set of rules in addition to
those st@téd, without modifying the structure of the formulas, For derivation of the
rules for direction adaptation the same general requirements as stateduin\. this chapter

for the length adaptation have to bé imposed. It is clear that the directional information

will increase the speed of convergence,’ Moreover, even more important, it will in- | o
crease the number of solvable proble;s in the class, . Some preliminary investiga- i
tions using"' conv'ergipg directional 'adaptation rules show pfomising results for highly 1
disturbed quality functions. A detailed study is outstanding because of the complexity i
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i of the problem alreudy mentioned for the nolseless cuse under Chapter 2.4, Continuu-
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tion of the study in thig direction can be considered very vital,

a
1
!
B
4 Vi
¥
t
.
!. g

14

A

’ ?"“:“:-_/‘)
i . .
o,
i . .




2.7 PROOF OF OPERATION, SOLUTION OF PROBLEM NO. 1, COMPAHISON
WITH 8TOCHASTIC APP’ROXIMATION

9.7.1 Problem Definition

The following problem sot by NASA, and denoted ag Problem No. 1, will be
golved using the developed adaptive search technique.

Given the two-dimensional unimodal function
Q=2-0.2 ’ xl’ - 04 lle = QX) (2-108)

e ~10=x4<+10 . R
defined in the region - BExp=+ 5 L ~

The function defines a pyramid in the three-dimensional space (xl, X,,Q) The peak
of the pyramid is located at (0, 0, 2).

The problem to be solved consists of finding the coordinates x ¢ iy that

1 opt’ 2 opt
correspond to the maximum value of Q. However, Q_ in (2-105) cannot be observed
directly; instead only a noisjr furictional value, Z, is obtained for each two-dimensional

vector (or its end point), X,

7 (X)=Q (X)+ B 8 |  (2-106)

- where the-randem variable; g8; has the-property -~ — o mrmm

o Rt : _ o
g = ’_1 ‘ with pwbqbility.?p 8 ; 0.5 %

and 8. = 0.2 ) o )
A search 18 to be started at two different initial points

1ox® ) ,)

g, x\Y =(x(11), x(l)) = (8, 1)
For the comparison of the two methods, adaptive search - sfochastic approximatioh,
we will use for the end test the fact that we know the Optimal point, X opt = (0, 0). The

search process is terminated when the distance a( m) -,‘/ xl + xz:a reaches a value so
o(m) o
(1)

that 510"3. Thatyis, we end the search when a search point falls in the circle

a

with radius, “a“m), and the center in the origin.

= N | 2-5/
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It should be noted that in a general, real problem we would not have the inform-
ation on the location of the peak and would have to use another criterion for the stop

of the search.

Since each measurement Z(xl, xz) is disturbed by a relatively lérge amount of
additive noise, no two searches from the same initial point to the same final region
will be the same. In general, the number of steps needed is itself a statistical quantity
and its distribution function is unknown. Therefore, it is necessary to run a number of
searches to derive a firm estimate on which a comparison may be based. It is
accepted practice in dealing with Gaussian distributions to take at leas‘t 30 sample
searches before computing confidence leve!_{i;ﬁ;: In solving Preblem No. 1 we have found

that the step number is not normally distrﬁ;_‘gg_f_,s el \f—jﬁtq we have chosen to make 100 runs

’.

of each search in order to estimate the a\_i:?

J W FRl Ity

w,der of steps.
2.7.2 Solution Using the Adaptive Search /;f‘echniqué i

For the solution of Problem No. 1 using the adaptive search technique we will

assume that no a priori information is given. Then from chapter 2.6 we can use either

of the two algorithms: ASR-1 or ASR-2.

" Before we discuss the results obtained we will investigate if theStated Problem
No. 1, belongs to the class of functions, F, solvable by ASR-1 or ASR-2, Figure 2-12
shows two equiquality contours of the function defined in (2-105). Because the contours
are not circular the probabilit"y of success depends on the‘location of the center of the

search circle. We will consider the three extreme cases:when:

(a) Moves occur only along the x, - axes

1

(c) Moves occur only perpendicuiar to the equiquality contours

(b) Moves occur only along the x - axes

Assume that the amount of noise, 8 ., is much greater than the distance

N
(1) 2 z - ’ 5
2 ° '

a ‘' =4fx. +X
1

SRR ST =

et

—




Then, for assumption, (a), using the angle, o,, the probability of success for
r ' . o
every ra‘tio,"a— , i8 -

Pg =Pgn + Pay

PS = 0.1105 + 0.213
That is, the noige causes more often move away from the optimum and, clearly, '
E [A;il <0 for all r or, rather, case (a) does not satisfy the condition of being in the

‘ class of functions, F.

Considering case (b) we find with «

R

b
Pg = Pgn ¥ Py
P, = 0.265+ 0.162

is will result in E { :’] >( for every— It follows that case (b)),

& e s ek T PN

S
Since PSD SN

belongs to the class, F.

e

Finally, for the hypothetical case, (c), we obtain with"ae and 0<i—<b,

b>0

Ps ™ Pep " Pan d

i - - 0875+ 0025

for Whlch E [ a] =0 with the conclusmn that (c) satisfies the condmon w be in class =

F. Y,
{(

i That is, only when we would stay on the unfavorable edge at every search step

the defined function would_not belong to the ‘solvable:{problems in class F. However, the

i

probability of staying on the edie at each move is zero. We conclude from (a), (B) and

(c) that the problem function is in F.

The problem has been solved by using the adaptive search technique, ASR-2, de-

fined in (2-103) with the fixed, arbitrarily chosen parameters, A’ = 0.1 %%=0.2 and
(1)

_ various initial conditions for the vector length, r

. Table 2-8 shows the average

number of search steps needed to reach a point in the circle around the origin with

radius a(m)slo'-s. The average was taken from 100 runs for each case.




.E

TABLE 2-8

AVERAGE STEP NUMBER FOR SOLUTION OF PROBLEM NO. 1
USING ADAPTIVE SEARCH TECHNIQUE

r(-l) "M from & (8, 0) M from X(l') =(8, 1)
10 616 | 590
12 511 (best) 477 (best)
14 563 548
16 594 | 544
18 588 632

The simpler rules in ASR-1 would give slightly better results. With ASR-1 it was
found', for example, for r(l') =12 and X(l) = (8, 0) that M = 485 compared with M= 511
obtained with ASR-ZV; The reason for this is neiﬁ1er of the parameters A", A 1}?8 been
optimized. |

The printout of a single run using ASR-1 is shown in Appendix A-1.

2.7.3  Optimization Using Stochastic Approxim&tion

-~ The only-well known method suited for the optimization of noisy problem =

functions is the stochastic approximation. In the following we discuss the Kiefer--
Wolfowifz (K-W) fule, which uses stochastic aporoximation to find thé maximﬁm of a
function, and .some of the practical considerations encountered in programming.
~ First we define some of the notations which will be used in the disoussion of
stochastic approximation. :
X a single independent variable o / -

Vi

lan ]

y(x)  the underlying no.seless function whose mafimum is to be found

£ . the location of the maximum of y(x)
) an additive noise term

- z(X) =y(x) + §, a noisy measurement of y(x)
i iteration index or, rather, i'unning step numher

m total step number

2-61
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a step size at the ith step

ao initial step size
c, span over which finite difference approximation to gradient is measured
b ag ith geep !

The actual problem we are dealing with is two-dimensional so the subscript is used to
denote dimension and a bracketed superscmpt denotes step number. For 1nstanoe

2( ) § is the value of the xz component at the 1th step.

The K-W rule is stated for a function of one variable, y(x}), as follows: it is

assumed that only noisy measurements, z(x) y(x) + 8, areavailable, and that the noise

.3

8 has zero mean and f1n1te variance. To find‘ a maxnnum of y(x), x is stepped

i
]

according to

z(xi + oi) - z(xi - ci)

K1 TR T T ¢,
i
The fraction amounts to a finiteT differenoeé{_éibproximation to the gra@jent and it will
usually be in error at any given step because different values of noise will enter into
the two measurements of z. The convergence conditions consist of a bound on y(x),
which is nearly always satisfied in praotical problems, and some stipulations which

“limit the arca of choice of a1 and o ““The bound on y(x) is that, for all Xl ‘and x2

X, ¥ Xy WE must have
y(x ) -y(x )I <A| ) I +B<<

where R is the true location of the maxunum of y(x), and A and B are constants. The

t "r
Y '

stlpulatlons about al and c1 are

lim 1 =0 lim ci =0 .
iow i=»ow .
b oy ‘ .
b - - ) o 9
z: 8= E : (af/ci) <,
i=1 i=1" ;7

which completes the desoription of the rule. Note that the conditions imply ultimate

’ convergence in mean Square

‘lim E[(x —ﬁ)z]*o

m—> oo

AL

I
S R P I POR R .
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angd with probkability one ,

Probability { im  x =% } =1
m o0
Howevei-_.. in practice one would like to know more about convergence i,n. a rea.sc;nablé
amount of computer time, although this is strongly problem-tlie'pe'hdent. The sequence
a is uaually chosen to be harmonic, a, = 1/i, because this is the fastest diminishing

series which satisfies the convergence conditions.

It is perhaps worthwhile to see qunlitatively why such a sequence is useful when
applied to noisy measurements; Suppns\" we wish to estimate the valué_of a constant,
k, given only a series of noisy measurements

Zi=k+si i=1,2,...{(m-1)

where Si is random with zerc mean. Then an estimalte is

1 -1
k =2 = z Z,
- i
: i=1

If we are given one more measurement, the new estimate is

m-1
1, e g oL, Lmil
mgm = i m m m e

1
that is, = (= +(1 -1/m) k
at is l{m (m) 2 ( /m) -1
The new measurement is accepted with harmenic weight 1/m.

T

~ This leaves a certain available range for ¢, » which is found as follows. It is
well known fact that

[+1}
z 1/jp<opfor p> 1.

=1
- Now suppose a= i-:L and e =i 7. What is the permissible range of y ? We have
2 2
a‘_- ._1 N
c 4
i i
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so the condition:%s is p = 2(1~ y )>1, that isy <<1/2. Also, y must be greater than zero,

SO
+a,) - .
e ae .l z(xi ci) z(xi ci)
i+l i | c,
1 0
with ¢, = i~7 and Oéy < 1/2 as a convergent class of K-W rules. Dupac (10) has

shown that for certain general assumptions about y(x), the best practical choice to
minimize E [(xi - <x‘)z]is‘. y = 1/4. There still remains a selection of the initial step
size, so the full statement of this rule is

Z{x. + ¢.)=2(xX, - c,
ao (xl 1) (1 01)

TR c.
i
a 1/4 _
e, = — a_ free, o (DK-W Rule)
i i o

Kesten (11) has proposed an acceleration scheme for the K-W search whick |

should mitigate two well known disadvantages: firstly, that the search moves very

slovly in regions of slight gradient, and secondly that high gradient regions may cause

repetitive overshooting. The Kesten modification is based on the reasoning that there

should be few changes in the sign of the gradient when x, is far from &, so the step |

size should not be reduced much, but that when X, is near the maximum, the sign of
the gradient changes often, and the step size should shrink quite fast. The statement
of the Kesten K-W rule is

z(xi +c) ~ z(xi - c)

l = -+ -
TR 5 (KK-W Rule)

The a, are still based on the harmonic sequencex, but they are only stepped along fhat

sequence when the fraction changes sign. T'hus a typical Kesten sequence might be

oA 1 1111/2 1/2 1/2 1/3 1/3 1/3 1/3 1/4 1/5 .....

)(4

Note that ¢ = constant all i,is a cond1t10n for convergence of the accelerated rule

Also, as before, the 1n1t1a1 step size, 18 18 free, so in a computer program there are

two parameters, a and c, to be chosen. Although this is called an acceleratmn there

is no known proof that 1t is always faster than the basm rule
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In the pyramid problem, y is a function of two variables, Xy and xz, so the uni-
variate convergence proofs do not apply directly.  Fortunately, there is a general
theorem due to Dvoretzky (12} which contains both the K-W and KK-W proofs as }
spec_i_al cases, and which applies to multivariate functions. Thus the two methods |
mayrllae formulated for Problem No. 1 as follows: ; ‘

Dupac Kiefer-Wolfowitz Rule

(W), )
() _ @), () Hx T
1 R - (1)
(]

D) e Do, O

(1) _ (1) (1) (1)
(1) (1) (i) DX Xy o ter) -axg
X =X +a

2 2 e

(1) _ oty

(X ) X, |

4 _ . .-l () _

o1
at’ =ai a(l)) &
o

(

empirical ‘choice of 2

Kesten Kiefer-Wolfowitz Rule

LD @, B @

. s
j j i

o

(1) (1)

(1)
. . _“_cla 9 )

1(1) + cl',xz ___)__-fZ(Xl

1 C 1
n 1 H e

(1) ()

!xz

Lo, e ._ﬂ: a as

+<32) - z(xl

Cq

a W =g s k,=1,2,3. .. ‘ .
] o ] J , :

kj is stepped only when the sign of sj changes. Empirical choice of a ¢y and Cye '
1-C=¢ and ex-~ ;.
plored the performance of the rule for various values of a and c. The following

To keep the investigation reasonably simpie, we have set ¢

tables show the average number of function evsaluations needed for a search which

starts at (8, 0) and terminates within a radius of 0.008 of (0, 0).
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TABLE 2-9

NUMBER OF FUNCTION EVALUATIONS NEEDED BY THE DUPAC
KIEFER-WOLFOWITZ RULE TO SOLVE PROBLEM NO. 1

Average Number of “ 1
a Function Evaluations o
3 3,800
4 1,552
5 1,280 (best)
10 1,628
50 . 2,456

TABLE 2-10 j

NUMBER OF FUNCTION EVALUATIONS NEEDED BY THE KESTEN
KIEFER-WOLFOWITZ RULE TO SOLVE PROBLEM NO. 1

ao\ 0.8 1 1.9
5 . 1,412 1,140 (best) 1,328 7
; S ]_ 504 1,352 1,368 . ‘- ‘

t

Thus, the Kesten acceleration leads to a slightly better resuit, given an optimum choice

of parameters in bothrmethods'.
2.74 Cemparison of Results

The results in Tables 2-7, 2-8 and 2-9 show that the adaptive search technique

under the worst condition (i.e., no a priori information is given) converges better than

S i A S 4 M T s < B

twice as fast to a solution of a predetermine’d aecuracy compared with the solution

?

using stochastic approximation. Clearly, in both methods the limiting factor of the

- speed of convergence is the harmomc sequence. However, if a little information on the

]

B H E 3 - 3 H

type of the quahty function were o be used in order to be able to apply ASR-3, the speed

of convergence would be hlghxy increased since the search would converge wn‘h a con-

‘\'.

stant rate.
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Further, an important fact not discussed so far is that the convergence of the
stochastic approximation requires that tk= noise be unbiased; i.e., its expected value is
zero. This condition is satisfied for thé- -ynsidered problem function No. 1. No
specific a,ssumption on the noise ‘was madé in defining the class of functions, F,
tractable by the adaptive search method. Thus, even if the noise is biased, the
adaptive search will converge to the optimal point whenever the problem function is in
class F. From a theoretical aspect of the information oae can even expect that the
obtainable speed of convergence is faster for the biased case, since the entropy of the
nolse source is smaller for the unsymmetric case. But the adaptive search is based
on the results (or information) gained in the past. Although in the discussed adaptation
(m)

rules only the information '"success' or "failure' is used, the vector length, r at

a certain step, m, is a function of the whole previous history.
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3 4 3.0 CONCLUSION AND RECOMMENDATION

It has been shown that existing search procedures are greatly improved by a
new adaptive non-deterministic search technique. The technique is especially applic- =
able to problems operating in the presence of noise and having ill-defined parameters ;
and/or inputs. Further advantages and features of the procedure are:

| | |
(1) It converges for a large class of functions. I\
(2) The speed of convergence is high and does not affect the final accuracy. |
(3) The accuracy is only restricted by instrumentation of the computing device, ; i

(4) No strong conditions are imposed on the functions, for example, no deriva- |
tives are required to exist, :

PUo - . <

(8) Superimposed noise does not prevent the search process from converging:
it only reduces the speed of convergence.

;.I_. idiaq
o

(8) No conditions have to be imposed on the unknown characteristic of the noise.

(7Y The search algorithm can be easily implemented as computer program.

154 At bbene & 5 v e 8 irarir s

(8) Assuming undisturbed functions it is superior to all known direct search
techniques above a certain dimension n.

(9) Assuming disturbed functions it is superior to the method of stochastic
approximation with respect to speed of convergence and requirements on
the characteristic of the noise.

|
g
i

Clearly, a number of investigations and improvements remain to be solved. o
Some vital problems are stated below: | ' g

"mﬁ

(a) Investigatiohs of 'noisy" problems assuming other characteristics of
noise for the theoretical case, and corresponding simulations with the : T
adaptive search technique ‘ '

(b) Studies concerning the size of the class of functions F for which the .
search converges under the consideration of various adaptation rules ;

(c) Development of adaptation rules for the direction of the search vector
for disturbed and undisturbed functions

e

(d) Devélopment of adaptive search techniques for multimodal undisturbed
and disturbed functions.
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000003
000003
000004
600005
000006
000007
cooo0l0
000011
co0012
000014
000015
000017
000021
000025
000026
000030
000032
000033
000036
000047
000050
000061
000065
000066
000067
000073
000075
000077
000100
000106
00011!
00011
000116
000117

..000122
000133

000134
000145
000150
000152
000153
000155
000161
000166
000170
000173
000174
000174
000176
000200
000203
000203
0006205
000206
000206
000210

10

28
24

104

41,

42
43
102

44
45

46

103

PROGRAM PRONAME ( INPUT+OUTPUT « TAPES=INPUT» TAPE6=0UTPUT)
DIMENSION XC10)oV(L10)oVV(10) o XMIN(LIO) +KKZ(105)¢D(10)
N=2

I1X=33333

I17=33333

IW=33333

I[XX=0

UNLD=1.0

SOLD=1.0

ROLD=12.0

RINT=ROQLD

X{1)=8.0

DO 10 I=2sN

X(I)=0.0

KZ=1

FRZ=KZ

CALL RANDUI(TZsIYWLYEL)

1Z2=1Y

IF(YFL=045) 24243
ONEW=+2,0~0.2#ABS (X (1)) «0.43#ABS{X{(2))=0.2

GO TO 4

ANEW=+2+0~0. Z*ABS(X(I))-Ooh*ABS(X(B))+0 2
IF(KZ.GT«1l) GO TO 24

QRMS=QNEW

DO 28 IsleN

XMIN(T)=X (1)

DO 104 I=1e¢N

CALL RANDU(TIXeIYeYFL)

Ix=1Y

VV(T1)=2.0%YFL=1,0

CALL SNORM({VeVVeN)

IF(K7Z.EQ4s1) GO TO 43

CALL RANDU(IWeIYsYEL)

Tw=1Y

IF(YEL=0.5) 4lea)sy?2

QRMS=2,0=0.27ABS (XMIN{1))}=0.,4%ABS(XMIN(2))=0.2.
GO TO 43

ORMS=2+0=0 2%ABS(XMIN(1) ) =0 . 4#ABS (XMIN(2) ) +0. 2
TF {QNEW=UIRMS) 103,103,102

IXX=]XX+}

~FIXX=1IXX

DO 1 I=1eN
AMIN (D) =X {1}
RUPP=RINT#(]1.0=0,10) ##FIXX
RLOW=RINT/SOLD

IF(RUPP.LT«RLOW) GO TO 44

RHONN=RUFP

GO TO 45

RBOND=RLOW

ROLD=RINT/SOLD .
IF (ROLD.GE«RBOND) GO TO 46

ROLD=RBOND
SOLD=S0LD+1.0

GO To 108
UOLD=UOLD+1.0
IF(IXX.EQe0) GG TO 31

B P PP
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000212
000212
000214
noo215
gonzee
000223
000226
000231
000233
000234
000236
000237
00n24l
000246
000250
000283
n0o284
000754
0600256
000260
000243
000263
000245
000272

000776 ..
000774

000310
800310
00032
000314
000315
000317
000323
000324
000376
000333
000333

000334

000006
000006
000007
000010
000014
000016
000021
000026
000026

11
103

31
32

47
4B

108
107

i3
301

18

303

FND

UoLNml . n

XRMS=N ,

NO 11 ImleN
XRMSEXRMS s XMTH (1) 882
XRMSeSQRT { XAMS)

KKZ (JJ)=sKZ

IF{XAMS«0.008} 139s13,108
HOLDsUO| Del, 0

IF(IXX,FQ,0) G0 TO 31
F1s({SOLN=1.0)*UALD

60 TN 3?2 -

Fl=ssSOLD«UNLD ,
RUPPRRINT#(1,0=0,2)8%F]
RLOWaRIMT/F1}

IF(RUPP ,LT.RLOWY GO TO 47
RROND=R! PR

GO TO 48

RAONND=R_OW

ROLN=RINT/FY ~
IF(ROLD,GFRANNDY GO TO 14R
ROLD=RANND

PO 10T T=1eN
X(T)mXMIN(1}aROILNOV(T)
K7uKZ+]

GO YO &

WRITE(64301) KZ+IXXsROLDXRMS
FORMAT (X4 14X, T499XoF17,1492XeF11,8)
NNE RNLS

TF(JJ«LFa100) G TO 14

KSliMmaQ ‘

Do 15 t=1,100
KSUMEKS IMe KK7 ()

FSUMaKSUM

FSUMaFSIIM/100.0

HRITE(64303) FSuUM

FORMAT (/775X ,25HAVERAGE NUMAFR OF TnIan-crn 3)
CALL EXTT

SUBROUTINE SNORM (UsReN2)
DIMENSION U{10)+R(10)

DO 1 I=1sN2
VR=VR4R (1) ##2

VR=SORT (VR)

DO 2 I=1sN2

YT =R(I)/VR

RETURN

END

2 Mt Bt e )

o Vet ) pebnd et e




i if.

i

; . SUBROUTINE RANDU
;" USAGE

CALL RANDU (IX, IY, YFL)
g— IX =1Y

Produces uniformly distributed random numbers between 0- and 1- 0 in location YFL,

- SUBROUTINE RANDU (IX, [Y, YFL)
TY = IX * 65539
IF (IY) 5, 6, 6 , | |
g 5 IY =1IY + 2147483647 |
! 5 YFL=1Y -
YFL = YFL x . 4656613E-9 a
: RETURN |
@- END

i LISTING

WARNING

THIS SUBROUTINE IS SPECIFIC TO THE IBM SYSTEM/360 COMPUTER. 1T
MAY NOT BE SATISFACTORY ON OTHER MACHINES.

e
/_,/
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