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ABSTRACT

INVESTIGATION OF ADAPTIVE.

COMPUTER TECIiNIQUES

This report deals with a new approach to 'bile problem of minimizing or maxi-
mizing an unknown function of many variables, given only the abi!*ty to evaluate the
function at chosen points.

The best classical methods are reviewed, and it is noted that their strategy at
a given point in asearch depends very little, if at all, on the !previous steps. Thus,
valuable information which could lead to accelerated convergence is neglected.

An adaptive step size random search which makes use of past information is
introduced. A theory for the rate of convergence is formulated and confirmed by
simulation in a digital computer. The computer time is shown to be less than that
needed by non-adaptive methods, particularly for functions of many-:tables.

The adaptive, search method is shown to solve a trial problem, in which function
measurements are corrupted by noise, twice as fast as the best classical method.
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1.0 INTRODUCTION

I
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c

In recent years, an increasing amount of research has been directed at the theory
and development of adaptive systems, that is systems that improve their performance
through experience. Although adaptive principles have been increasingly introduced for

solving various specific problems, their application in the area of numerical mathema-
tics occurred only recently more frequently, mostly in the Russian literature (1, 2, 3, 4)

Particular areas of interest for the application of adaptive principles is the analy-
sis and optimization of multiparameter nonlinear systems. There are many nonadaptive
methods that have been formulated for solving these problems and the variations or mod-
ifications to these methods a^e numerous. One explanation for the existence of so many
methods and variations is sidply that any one method is frequently not suited to a partic-
ular problem. It is for this r;ason one might ask if it is feasible to develop an adaptive
method capable of solving a large variety of complicated optimization or root finding
problems by automatic adaptation to each particular problem.

Fundamental questions on such an adaptive search technique are: convergence,
speed of convergence, final accuracy, increasing complexity with increasing dimension-
ability, behavior when the systems parameters are ill-defined, or have noise of unknown
characteristics super!W,, posed upon them.

The various nonadaptive iterative approaches for solving systems of equations,
such as Newton - Raphson (5) and Fletcher Powell (6) require an initial estimate
sufficiently close to the root in question. They fail completely when the parameters are
ill-defined or "noisy". The latter conditions can only be solved - up to now - by the well
known method of stochastic approximation ( 7, 8,-9, 10; 11, 1?,), which has the -disadvantage
of converging very slowly. A remarkable disadvantage of all techniques (a discussion
of the most important techniques can be found In 13) is that the complexity of compu-
tations increases quadratically with increasing numbers of parameters, or dimensions.

In the following technical discussion, general models for adaptive computation
will be introduced. Subsequently, important basic aspects or, adaptive search procedures
will be discussed. In Chapter 2.3 we will derive some upper limits for the speed of
convergence of the adaptive search procedure under the assumption that the information
is given a priori and the functions are hyperspherical. Chapter 2.4 will be devoted to
deriving an adaptive algorithm for the theoretical cases assumed under 2.3.

In Chapter 2.5 conditions and upper limits for the speed of convergence will be
derived under the assumption that noise is superimposed. A convergent adaptive search
algorithm based on these results applicable to a larger class of functions will be dis-
cussed in Chapter 2.6.

In Chapters 2.7 and 2.8 proof of operation,of the derived adaptive search algorithm
will be performed on the two problems formulated by NASA.

1-1
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2.0 TECHNICAL DISCUSSION

2,1 PROBLEM DEFINITION

Recently, much attention has been given to the theory of optimization of systems.
However, only simple, well formulated problems have been solved analytically using
Indirect methods because of the tedious computations which have to be carried out.
Furthermore, efficient optimizing techniques are today of vital use for the solution of
arbitrary systems of simultaneous algebraic and transcendental equations (5).

2.1,1 Direct Search Techniques

The presence of high speed digital computers has stimulated the interest in a
class of optimizing procedures which are called Direct Search Techniques. In ac-
cordance with Leon (14) a brief definition of direct search techniques is the following:

Direct search is a sequential examination of trial solutions which are ob-
tained by direct numerical functional evaluations. Each trial solution might
be compared with the "best" obtained in previous trials, and there is a
strategy for determining the parameters for the next trial solution.

Direct search procedures may be classified as deterministic or nondeterministic,
and further as adaptive and nonadaptive techniques. A search method is called de-
terministic if it does not contain any random element or random variable. Examples
of deterministic methods include the factorial method, the universal method, the
gradient method and some modifications and combination of these principles, for
example, the powerful conjugate gradient procedure (6, 15).

Deterministic methods do not normally converge to a solution when the param-
eters are ill-defined due to erroneous measurements or noise. The only well known
deterministic method, which converges under the presence of noise of a certain char-
acteristic, is, the method of stochastic approximation (7-12). The procedure is
essentially a gradient method in which the partial derivatives are taken experimentally
by measuring differences. The term 'stochastic' refers to the class of problems
which can be solved; the search method is deterministic.

A search method is nondeterministic if the search algorithum itself contains a
random>element. The simplest method in this category is the global random search
proposed by Brooks (16). Although, no assumption on the modality ;number of extremes)
of the function need be made, the global random search has a very slow rate of con-
vergence. However, it has some merits as a starting procedure for the solution of
multimodal problems. An improved nondeterministic procedure, but restricted to
unimodal problems, was introduced by Box (17) who called the improved procedure
"evolution strategy". However, this method does not converge with probability 'one"
to the optimal point,

'i	
2-1
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2.1.2 Computation Models for Direct Search Techniques

It is convenient to divide the class of problems to be solved by direct search
techniques into two categories. These are: (1) problems that are solvable by a closed
loop system configuration; and (2) those solvable using an open loop configuration.

a. Closed Loop System Configuration

Let SE be a physical system or a mathematical model of a process (Figure
2-1), and let

U = (ul, u2 ... u  ) be an independent input vector,

Y = (yip y2 ' ' ' ym ) be its output vector,

and

X = (xi, x2 ... xn ) be the state vector

of the system SE . X is the vector of state parameters which governs the behavior of
system, SE. Let be further defined a criterion, Q, of optimality or some general
index of performance relating to system, S E . In general, the criterion, Q, may be a
functional on the vector, Y. Since the behavior of S E, reflected in its output (Y),
depends upon the state vector, X, the criterion, Q, is an implicit function of the state
vector, X.

The input vector, (U), might be some external input to SE which may be present
or absent depending on the particular problem. Furthermore, there may be some
noise superimposed with the effect that instead of observing Q (X) we observe

Z (X + XN 1 = Q (X) + QN	(2-1)

where XN indicates the "noisy" part of the state vector, and Q N is the "noisy" part of
the criterion.

The optimization problem consists of determining the vector, X, (i.e., the values
of the parameters, xi ) which represents the optimal state of system, SE . The optimal
state of SE is the vector X = X opt, where Xopt minimizes (maximizes) the function,
Q, so that

Tr	 Q (Xopt)	 Q (X) for all X E a ,	 (2-2)

where n is the region in the state space, X, in which the function, Q (X), is defined.
f
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Figure 2-1. Mathematical Model of an Environmental Process



Throughout this paper we will assume minimization unless otherwise mentioned.

It is well known that minimization procedures may be used to solve systems of
linear-`or nonlinear equations. Given the system of equations:

fl (X) = 0

f2 (X) = 0

(X) = 0	 (2-3)
m

where X can be thought as the state of system, S E , in Figure 2-1, the input, U, for
this case is not occurrent. The functions.' (X) ... fm (X), are the components yl ...
ym of the output vector; Y. 	 #

To find the roots of the system (2-3) the function Q (X) is formed, with

Q (X)'°	 f2• (X)	 (2-4)
j

^-	 or more exact, if the fj (X-)) I s are complex functions,
s

m
Q (

X) * fj 0 • f (Xl	
T

L..	 _	 (2-5)	 f

where f (X) indicates the conjugate complex functions.

i

R

For simplicity, we will restrict our discussion to real functions, f. (X). The
function, Q (X), is nonnegative and achieves the minimum value zero only when the
system (2-3) is satisfied. The vector, X, which minimizes (2-4) therefore, satisfies
(2-3), i.e., it is a root of the system.

The computational model for the solutions of optimization or root-finding
problems is represented in Figure 2-2. The output vector, C `; of syystem, SA,
produces changes in the state of system, S E ; for instance, at the mth trial point the
state vector, X(m) is given by

X (m) = X (k) + 4 (m)	 (2-6)

(-

2-4
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where X(k) is some state vector determined in previous trials and

(m) _ (
	

(m) . 12 (m) .....	 n(m) )	 (2-7)
1

is the output vector of S A at the mth trial. .

After the evaluation of the function,the(m)Q (X )	 syystem SA will produce, after
corresponding computations, the output vector 	 (m + 1) which effects subsequently
the state of S E similar to that indicated by (2-6).

b. Open Loop System Configuration

There is a class of problems where the system input of S E is not accessible.
In other words, SA cannot perform changes of the state vector, X, of system, S E . The
problem formulation is in general the design of a transformation system, T, in order
to transform the output, UT, of system, SE , into the output, Y,r . All information
filtering problems belong to this problem class.

The computational model for this class of problems is shown in Figure 2-3.
Let the state of the transformation system, T, be

T	 (X	 , xT2 , .... xTn)	 (2-8)

A sys'iem, SA, representing a certain search procedure changes the state vector X7,
of system, T, by supplying a vector g  at time instant m.

T (m) - (41 (m)I	 (m),....., F (m) )	 (2-9)
2	 n

A quality criterion, Q (X), evaluated,at each time instant serves as input to system,
SA. The system, SA, in Figure 2-3 performs the same search task as in the closed
loop configuration. The only difference is that instead of experimenting with system,
SE, it experiments with the transformation system, T. It changes the parameters
xTi step by step in such a way that the quality criterion, Q (Xp

p	

), approximates the
optimal value, Q (XT ' t ).

if

The following discussion does not specifically deal with the details of the
transformation system, T, which may be different for the various problems. Main
interest is directed to system, SA, representing the search procedure. In both the 	 r
closed loop and the open loop configuration, S A has the task of searching for the
optimal conditions.

d

I
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2.1.3 Considerations and Assumptions

Depending on the specific problem, different possible conditions have to be con-
sidered. Some interesting items are briefly discussed.

(a) The optimum quality value, Qopt, may be a priori known or unknown.

(b) The states of the systems, SE or T, to be changed by the output of system,
SA, may be reversible or nonreversible.

(c) The mathematical process governing system, S E or T, may be stationary
or nonstationary.

(d) The system, SE or T, may be:

(1) Undisturbed by noise

(2) Disturbed by noise with known characteristics

(3) Disturbed by noise with unknown characteristics

(e) The Quality function, Q (X), may be:

(1) Unim'odal - there is aunique optimum

(2) Multimodal	 there is a global optimum and some local optima or
subextrema

(f) The-quality function, Q (X), may be:

(1) A continuous function with existing derivatives for every X e it

(2) A continuous function, but derivatives don't exist for every X e SZ

(3) A discrete function

(g) . The parameter values, xi , i.e., the domain of the function, Q (X), may be:

(1) Conti-uous and unbounded in the real number space

(2) Continuous, but bounded to a certain region, a

(3) Discrete

The requirements on the algorithm or iterative search procedure of system,
SA, are different forthe various conditions. From the point of view of application,
it would be convenient to develop an algorithm which is appropriate for each of the
conditions stated above. All known direct search procedures, with the exception of
the simple global random search technique, impose a restricted number of the above
conditions on the quality function, Q (X).

l	
2-8
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One severe condition is the modality. If the problem to be solved is multi-
modal (this is, for instance, the case when the problem to be solved is the root-
finding of a system of nonlinear equations), the various known search techniques
require an initial estimate sufficiently close to the root in question. Generally,
multimodal problems must be reduced a priori to a number, say K, of unimodal
problems by partitioning the region, n, in K subregions in which the local optima
are located, and determining K initial vectors, X, such that each one is sufficiently
close to the corresponding local optimal point Xopt•

Another severe condition is that of disturbance by noise or ill-defined param-
eters, xi . All deterministic search techniques fail if noise is superimposed on the
quality function, Q (X). Besides simple random search procedures, the only method
capable of solving problems with superimposed noise is stochastic approximation.
However, the noise must be unbiased; i.e., the expected value of the noise is required

to be zero.

Still another, perhaps most severe, property of practically all known search
techniques is the so-called curse of dimensionality. For instance, all search tech-
niques, which require measurements of the gradient and estimations of the location
of the optimum, need for quadratic functions at least (n + 1) 2 function evaluations,
Q (X), besides further computations for each of the (n + 1) 2 search steps, where n is
the number of dimensions. In the literature, gradient techniques are often said to be
linearly dependent on the dimension, n. This accounts only for the measurements of
the n partial derivatives. To locate the optimal point of a general quadratic at least
n gradient measurements are needed, besides an additional function evaluation for
each point at which the gradient is measured. Thus, referring to the number of
function evaluations it can be stated that the computation time for all well known
search techniques increases quadratically with the number of dimensions, n.

In the following we will investigate the general question: Whether adaptive
principles can be introduced in system, SA, (see Figures 2-2 and 2-3) with the prop-
erty of having a faster speed of convergence than known search techniques and with
the capability of solving problems with ill-defined parameters or superimposed noise,
hopefully, with a faster speed of convergence than the method of stochastic
approximation.

2.2 BASIC ASPECTS OF AN ADAPTIVE SEARCH PROCEDURE

We will begin our discussion with very simple and restricted conditions on the
quality function Q (X) as follows:

(a) The optimal value, 'Qopt , is unknown.

(b) The states of the system S E or T to,be optimized are reversible.

(c) The process governing the behavior of Sro_r T is stationary.

(d) No noise is superimposed; all parameters are well-defined.

2-9
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(e) The function Q (X) is unimodal.

(f) The function Q (X) maybe continuous or discrete; no derivatives are re-
quired to exist.

(g) The parameters xi are not bounded.

These conditions are assumed for a first description and investigation of the under-
lying principles; they will be considerably relaxed, and most of them eventually re-
moved as we progress with the exception of (e). Let us consider the projection of
the domain of the n-dimensional quality function Q (X) in the two-dimensional plane
of Figure 2-4. Let us denote the initial n-dimensional X vector by X(1) and assume
the search procedure starts at this point The corresponding functional value Q at
this point is observed as Q (X ( 1) ) = Q (1)

Let us denote the distance from the initial point X 	 to the optimal point Xopt
by a(

`	 with

`1)) 2
a

(xi,
 pt -
 xi

i 1	 '

or, generally, at the mth search step

(m) \
-	 a (m)	 n	 2=	 _- ( xi opt- x	 f	 - _	 (-8-10)C=

i=1

where X(m) is the point X at the mth search step, and a (m) the corresponding distance
to Xopt.

Let us define a search hypersphere of radius r centered at the initial point X(1).
Any point on the hypersphere of radius r can be described by vectors X 	 =

X = X (1) + r • V	 (2-11)

with V being an n-dimensional vector of unit length

V = (V1 ., V2, ... , Vn )

	

	 (2-12)
}i jl

n
IVI _

	

	 V. 2 = 1	 (2-13)
i-1 i

and r 0.

2-10
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At the second search step let us evaluate the function Q (X) at the endpoint of the
vector X in the n-dimensional space

(11	 ('1i	 (1)X = X	 + r,.	 V

X (1) +	 (1)	 (2-14)

We assume the optimal point to be a minimum and call the search step a success if for
a given e ^ 0

Q(x( 1) + I ( ^1) e Q(x (1) ) - { 1 - e}	 (2-15)

We denote a success by S(1) = 1 . e maybe chosen to

E = 2 • 10 
-k	

(2-16)

where k is the number of digits in the mantissa of the floating point computation.
Similarly, we call the search step a failure, denoted by S (1) - 0, if

Q (x (11 + f ( 1
)) =L Q( x (1) )	 i - e	 (2-17)

Depending on the outcome of the second search step - success or failure - we deter-
mine the vector X (2) after , the second search step as follows:

(2)	 (1)	 ill
X = X , if S = 0 (2-18)

or

x (2) = X (1) +	
{1) if S 

( 11 = 1	 (2-19)

At the third search step, we evaluate the quality function Q (X) for the endpoint of the
vector

.,	 I

x = X (2) + r ( 2) , V (2)	 (2-20)

= X (2) + j (2)

and determine the vector X (3)depending on the result of the evaluation, S (2)=0 or
S(2)	 1,



I
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The vector X (m + 1 ) whose endpoint represents the relative optimal location of the
search process, is then computed to

X (m + 1) = X 
(m) . if S (m) = 0
	

(2-22)

or

X (m + 1) = X (m) + ^ (m) , if S (m) = 1	 (2-23)

Out of m search steps designate the number of successes by ms and the number
of failures by mf , where

m = ms + mf 	(2-24)

Note that the number in of search steps equals the number of function evaluations.
After each successful step a "move" to the new relative optimal point X (m + 1) is

made. Clearly a fundamental question is that of the convergence of the sequence of
"moves" to the optimal point Xopt . We realize, the convergence is completely
governed by the sequence of the search vectors

a-	 t (m) = r (m) • V (m) , m = 1, 2, ....	 (2-25)

L	 where r (m) represents the length and V(m) represents the direction of the search
vector t (m) -at the mth step with resplect to the vector X (m) representing the relative

ŷ	optimal location in the space, at the m t step.

At this point it is important to note that the search procedure depends on the two
parameters r (m) , V (m) only. From the point of view of function evaluations, the
n-dimensional search problem is reduced to a two-dimensional one, provided that for
the successive computations of r (m) , V (m) no further function evaluations are re-
quired besides those determined by the number m. Assuming at the start no infor-
mation is given on the type of the tdnction Q (X), in order that the search process
converges, the system SA (see Figures 2-2, and 2-3) must contain means to adapt
the parameters r ( m) ,V(m) at each step by using the information gained during the
previous search steps.

Ideally, the adaptation procedure in SA should be an optimal algorithm; i.e.,

(a) It should assure convergence of the search.

(b) It should. maximize the speed of convergence, resulting in a minimal number

I
	 'of search steps.



l`

The assumption of arbitrary functions Q(X) is surely too general to find an op-
timal adaptation algorithm in an easy way, if at all. One should remember that even
for straightforward deterministic search procedures, for instance, such as the
Fletcher-Powell method (6) the assumption that Q (X) is quadratic has to be made
to prove convergence.
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2.3 UPPER BOUNDS OF SPEED OF CONVERGENCE FOR HYPERSPHERICAL
FUNCTIONS UNDER VARIOUS ASSUMPTIONS

Before we start with the development of adaptive algorithms, let us derive upper

bounds for various assumed ideal cases. Although we will never achieve in reality

the limits obtained under the ideal assumptions, the results will give some insight

into the variou- corresponding ideal search processes.

2.3.1 Assumption: Complete Information on Optimal Direction of Search Vector; No
Information on Distance

We first assume the very unrealistic case that the directional information VW
is completely given a priori. Referring to Figure 2-4 this means the optimal direc-

tion of the search vector is given by

X - X (1)

Va(1) = X pt - X(1

)I 	

(2-26)

(.	 I opt

Let us assume Va(1) = Va(2) _ ...	 Va(m) is given a priori; however, the dis-
tance a (1) is unknown. For this case, our search problem is reduced to a one-
parameter problem. For the optimal answer we refer to optimal single variable

m(	 search procedures, exhaustively treated in (18, 19). The optimal sequence r( ),
m = 1, 2, .. „ M can be derived appro?dmately from the Fibonacci sequence Fm

(see also 20). The sequence Fm is represented for increasing M in Table 2-1.

The number Fm is the ratio of the initial length of the uncertainty interval over the

final length (at step m) of the uncertainty interval. As the initial interval of uncertain-

(	 ty is unknown for our assumed ideal case, a slightly increased number of steps m

^C

can be xpected for a desired ratio F m . The sequence Fm represents the upper

bound. For example, in order to reduce the distance a(1) to a(M) such that



ITT

E

TABLE 2-1

t_	 SEQUENCE

m

0

OF FIBONACCI

F
m

NUMBERS

m F
m

3770 141,

1 1 15 610

'	 2 1 16 987

3 2 17 1,597

4 3 18 2,584

5 5 19 4,181

6 8 20 6,765

7 13 21 10,946

8 21 22 17,711

9 34 23 28,657

10 55 24 46,368

11 89 25 75,025

12 144 26 121,393



I

at least M = 16 search steps are needed, or in general, approximately five steps to

reduce the distance by one order. For M = 50 the initial distance a (1) would be

reduced to a fraction

	

(M)	 M

	

a(1)	
10 5 = 10-10

for any dimension n .

2.3.2 Assumption: Complete Information on Distance, No Information on Direction

In order to come closer to the real case we derive the upper boundary for the

speed of convergence for the assumptions stated in Chapter 2.2, (a) to (g) and under

the following further assumptions:

(h) The function Q(X) is spherical

(i) Neither is any information on the optimal direction of the search vector
given a priori, nor is an adaptive procedure used to determine any favorable
direction during the search.

(k) However, at each step the distance from the relative optimal point to the

R	 optimal point 
Xopt 

is known.

The derivation of the optimal conditions for the vector length r (m) for the :stated	
^..

assumptions has already been given in the literature (4, 21, 22). However, no proof of

convergence for the practical implementation of a corresponding algorithm could be

achieved.

Based on the theoretical results in this chapter we will derive a convergent

algorithm for the adaptation of r (m) in Chapter 2.4.

Because of the assumption (i) that no information on the location of the op aii ri^ri,

Xopt is known we select the parameter V (M) of the search procedure at each step

randomly with uniform density, i.e., each unit area on the surface of the search hyper-

sphere is selected with equal probability.

The investigation in this section concentrates then on the derivation of the optimal

condition for the parameter r (m) , and the optimal speed of convergence which mini-

mizes the number of search steps.

2-17
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Suppose at some stage the distance from the optimum is a , and the vector

has length r , as indicated in Figure 2-5. Suppose the trial vector is at an angle ¢

away from the direction of the optimum. Then from the figure, the trial vector leads

to an improvement if -a < < a. The angle a is

a = arc cos (2 
a

)	 (2-27)

or	 r=2cos aa

A-- shown in (1 and 23) the uniform density for the direction of the search vector can

be expressed using the angle 0 defined in Figure 2-5. For the probability density as

a function of the angle 95 one finds:

n_2P/2sin	 (2-28)

2 
J 

sin -2$d^
0

where ¢ is considered in the interval (0, ,r ) .

The probability that a search step leads to a success, denoted by P S is

P	 dS J P (^6)
0

aI 	 nsin - 2.O d 0

PS 	 7r/2(2 29)

n -2
2	 sin	 d

The behavior of 
PS 

as a function of a (or 
a 

respectively) and dimension n is an

interesting pointer for the derivation of an adaptive algorithm (Chapter 2.4). For this

reason it has been evaluated and represented in Figure 2-6 for various dimensions

and the interval of interest. I

2-18
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Figure 2-5. Hyper"Ph r-`cal Function Q (X)
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0°S a < 90 0

or for r respectively;a

2> r >0a

For r -> 0 the probability P S approaches P S = 0.5 for every dimension n. How-

ever,for

2> r > 0a

independently increasing the dimensionality n reduces P S .

Referring to the search procedure described under 2.2 and from Figure 2-5 we

see that if a search step leads to success, 1 0 I 
< I a 

I , 
then the search point is shifted

to the new position nearer the optimum. The change in the distance is

oa- a- Vat +r2 -2arcos	 ,if-a<¢ <a 	
2 -30

0 , otherwise	 (	 )

and dividing through by "a" gives the fractional decrease in distance

2

as = 1	 .r,- 1 + ( 	 2 (a) co s q, 
	

(2-31)

if - a < ¢ < a , and 0 otherwise

Using (2-27) we obtain

oa
1 -	 1 + 4 cos a (cos a - cos	 ) ,

a

if - .a < ¢ < a , and 0 otherwise

The expected fractional decrement in distance per step is

(2-32)

r l	 fEraaJ
	

as p (^) d
	

(2-33)

0
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which substitutes using (2-28) and (2-32) to

J 1 - 1 + 4 cos a (cos a - cos ) }

E o a^ = 0
a	 7rj2

sin n-2 0 d 0

2	 sinn
-2 

d	 (2-34)

0

Maximizing the expected value E 
LaaJ 

with respect to a , or ( a)r espectively, will

minimize the number of search steps and lead to the optimal conditions:

r	
r 0aa opt' (a)	

E	
Popt ,

	
` a + opt , S opt

The optimal parameters computed for increasing dimension n are listed in Table 2-2. 	 1`	 1r

It is worthwhile to it irestigate further the behavior of the expected value

E as	 as a function of tlf? ratio a . Figure 2-7 shows that the extrema of

E 
as 

for the various dimensions are relatively broad, i.e., small deviations from
( a )	 have little effect on E [a a]1 .

opt	
L 3

Using the optimal value E [ : opt we can now calculate the expected mini-

mal number of search steps. Starting at an initial distance a the optimum

we can expect M search steps to reduce a(1) to a(M) , where M is

a(M)log ,
a(1)

M =	 /	 ^0a 1 (2-35)
log (1 - E `_-1 . —^

a [\	 opt
a(M) -3Equation (2-35) has been evaluated for n = 2, ... , 14, and a ratio	 =
a(1)

10

the results are shown in Table 2-3. The step number M is approximately a linear

function of the dimension n. One finds:

M = -47 + 34.03	 n (2-36)

a(M)	 -3 + 11.34 a(M)for -1= 10for	 = 10	 and	 M = -15.66 n
a(1) a(1j

2-•22
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TABLE 2-2

OPTIMAL PARAMETERS FOR ASSUMPTION 2.3.2

(—) E 
[
A
a ]

n
a

opt a opt, opt p S opt

2 0.909 62.98 0.1656 0.3434

3 0.750 67.99 0.0935 0.3024

4 0.644 71.20 0.0645 02891
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TABLE 2-3

NUMBER OF SEARCH STEPS NEEDED TO REDUCE THE
INITIAL DISTANCE TO A FRACTION 10-3

I

n M

2 31

3 62

/ 4 95

5 128

6 162

7 196

8 230

9 264

10 298

11 332

12 366

13 400

14_ 434

Assuming spherical quality functions of the type

i

w
n	 2 2Q (X) = Qo 

p t 
+

	

	 (xi - xi opt)
i=1 

Q , + aµ 	(2-37)opt

where a is the distance of any point X from the optimum Xopt , we find for the

expected value of the fractional decrement of the Q-value

3
2-25	 '



m (2-36)

[ A A)EOQ
	

(2-38)
1-1  Q - Qopt

Schumer and Steiglitz (4) based their derivations on the function

Q (X) = a2

that is, for the case µ = 2. They derived the approximations of the optimal para-

meters for large dimensions n. Their results have been modified for the more

1	 general distance relation in (2-37) and are listed in Table 2-2.

With (2-38) and (2-85) we obtain for the minimal step number needed to reduce

the initial difference Q-value IQ(1) - Qoptl to a value IQ(M) - Qopt I
MQ	 µ	 Ma	 (2-39)

For instance for µ = 2 and

IQ(M) - Q Iopt = 10-8

I Q `1' -Qopti

(This case was assumed in (4)
for a simulation)

I

MQ = 62.64 + 45.36 • n	 (2-40)

In (4) an adaptive procedure for the vector length r is described, however,

without proof of convergence. The simulation of the assumed function corresponding

to (2-40) shows that	 MQ = 80-n	 steps, i.e., about twice the number of

steps were needed for the real case. It will be shown in Chapter 2.4 that the speed

of convergence for the real case can be brought very close to the theoretical results
k

obtained in this section, if the adaptive algorithm is optimized.

2.3.3 Assumption: Complete Information on Distance, Partly Information on Direction

The two previous chapters showed the effect of complete information onyfihe.two._

parameters r, V. The results for the two assumed cases show that information on

the direction has a much higher effect on the speed of convergence. However, any

adaptation of directional information can never result in a complete knowledge as

:,

2-26



(2-42)

and for the angle ¢ , if

- R{0 X19

assumed under 2.3.1. For this reason we assume in this chapter that besides com-

plete information on the distance, only some incomplete information on the direction
9
	

is given.

The question arises what amount of incomplete information we should assume

For instance, we could change the uniform density in 2.3.2 to a shape which is maximal

in the direction to the optimum	 0), and which falls off towards 	 = a . A

similar effect is obtained by the procedure discussed below.

Let's assume search vectors with uniform density for the angle ¢ as under 2.3.2.

--	 If a random trial leads to a success we might ask whether it is worthwhile to use the

^s	 same direction and length r deterministically at the next step, denoted by "vector

extension."

	

If a random trial leads to a failure we ask whether it is worthwhile to use the
	 N

opposite direction and same length r deterministically at the next step, called

"vector inversion."

For the derivation of the optimal conditions for vector extension we refer to

Figure 2-8. A successful search step centered around the initial point X (m) results

in a move to X(m + 1) along`a line at an angle 0 fro_? the direction of the optimum.

It is profitable to extend to X(m. 2), rather than make a new random trial at X(m + 1)

if

c b > E C 
aa

J
	(2-41)c 

Using the geometry of Figure 2-8 we find the equivalent conditions for vector exten-

sion if

A 
1-

a

1-2 (rY

//( l 22 ' (̂ .1 - E L
ed J



Distance Scale

Figure 2-8, Conditions for'Search Vector Extension
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n E

where 8 is a function of a

2
R =arc cos 4 Cos

a 1+ 4 cost a- 1- 8 cos 

(

a 	 2

2-
C1-E[

1
a ])

(2-43)

E IaaJ is given by equation (2-34). Using the optimal values a opt ' E [ ^a 
opt

derived under 2.3.2 the optimal limit angle p opt  can be obtained for the correspond-

ing dimension. Some values are listed in Table 2-4. Note, the optimal criterion for

extension cannot be satisfied for n = 2, 3, 4.

The conditions for vector inversion are derived using Figure 2-9. The random

trial centered around X(m) leads to a failure at X(m + 1), Therefore, no move to
X(m + 1) will be made. It is profitable to invert the search vector to X(m + 2)

rather than make a new random trial at X (m) if

a a b 
j E[ 4a J	 (2 -44)

..
which leads from riiu ,reometry of Figure 2-9 to the equivalent inequality for vector

L	 inversion if

2	 2

^a	 2 I a) + 1 ' J- 1 1- E L aa] I - 1	 (2-45).

and for the angle ¢ , if

where
2]	 apt

y = arc cos 4 cos a 
4 cos t a + 1 (1 - E [-a] (2-46)

The optimal limit angle y opt can be obtained by inserting the optimal values

"	 a opt , and E [tea opt in (2-46). Table 2-4 contains values of -y 	 for n = 21 3,
P

t

, 14. The values in Table 2-4 show that Y opt > Ropt, i.e., the condition for

vector inversion is satisfied more often than the condition for extension.
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TABLE 2-4

OPTIMAL LIMIT ANGLES FOR VECTOR EXTENSION AND
INVERSION FOR VARIOUS DIMENSIONS

n
R opt

(degrees)
Yopt

(degrees)

2 0 50.72

3 0 59.47

4 0 64.52

5 23.92 67.72

6 33.21 70.03

7 39.59 71.79

8 44.01 73.14

9 47.46 74.24

10 50.00 75.11

11 52.38 75.90

12 54.19 76.54

13 55.84 77.12

14 57.24 77.62
i



Figure 2-9, Cundition for Vector Inversion
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Finally we are interested in the expected value of the fractional distance decre-

ment per step including extension and inversion. The search steps can be divided in

independent random steps and completely dependent steps for extension and inversion.

The corresponding density function for the angle $ can be expressed by

p, ($) =	 a	
sin  - 2$

/ 2	 R	 Y

2 3 sin  - 2 $ d $ + f sin n - 2 $ d $ + f sinn - 2 $ d $
0	 0	 0

(2-47)

Q	 The expected displacement for a random trial is obtained by, using (2-32) and (2-47) to:
(

E [Aa^=
J

(1- 1+4cosa (cosa-cos$) p($)d$
 rand.	 0	

(2-48)

Referring to Figure 2-8 the .expected displacement due to extension is obtained to

11 + 8 cos a (2 cos a -cos	 I	
d

a	

- 
R

Aa	 _	 $)
(E	

ext.	 \1	 1 + 4 cos a (cos a - cos $) 	 ) p ($) $
0	 (2-49)

a	 With the geometry in Figure 2-9 the expected displacement clue to vector inversion is

YE rAal	 =	 (1 - 1 + 4 cos a (cos a - cos ,-O) ) P^ ( $) d $a
inv.	 0	 (2-50)

The expected value of the displacement per search step is obtained to

'(	 (	 l	 r
E C A aJ = 

E ( n al	 + E ^A al	 + E I A aI	 (2-51)a	 IL a J 	a JJ	 L a Jrand.	 ext.	 inv.

(rand. + ext. + inv.)

Using formula (2-35) and the optimal conditions a opt ' R opt Yopt for the com-

putation of E' 
Ca] , 

the expected minimal step number results. Table 2-5 shows

the results for a ratio a^M> = 10- 3 for the various assumed cases. As under 2.3.2

the minimal expected step number for the case 2.3.3 is approximately a linear function

of the dimension n

2-32
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M = -25.9 + 20.5 n	 (2-52)

M)
for a ratio a(M)= 	 10-3

^-	 and

M = -8.63 + 6.83 n	 (2-53)

for a ratio al) = 10-1

Although not much directional information was assumed in using vector exten-

sion and inversion the results show that the number of steps needed for a certain

distance reduction is only about half the step number needed for the case 2.3.2,

without any directional information. We conclude: directional information is very

important to consider in the search process.

Unfortunately, directional information is only effective when it is applied

together with the appropriate information on the distance. Although directional

information is relatively easy to obtain using adaptive principles it is not worthwhile

to consider them until the much harder part is solved, namely the adaptation of the

search vector length r in relation to the distance with proof of convergence.

x	 .-	 t

4
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TABLE 2-5

EXPECTED MINIMAL STEP NUMBERS FOR THE IDEAL ASSUMPTIONS

Expected Minimal Step Number for the Assumed Cases

(simple (extension,
(Fibonacci) random) inversion)

n 2.3.1 2.3.2 2.3.3

2 31 20

3 62 39

4 95 59

5 128 79

6 162 98

7 196 119

8 230 139

9 16 264 159

10 298 180

11 332 200

12 366 221

13 400 241

14 434 262

d
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2.4 DERIVATION OF A QUASIOPTIMAL ADAPTIVE SEARCH ALGORITHM FOR
UNDISTURBED HYPERSPHERICAL FUNCTIONS

Based on the results obtained for the hypothetical case under 2.3.2 we now de-

velop an adaptive algorithm for the adaption of the optimal search vector length r. We

consider the same assumptions as in 2.3.2 except that we remove condition (k) and

assume that no information on the distance to the optimal point is given other than by

the search algorithm.

Let's first assume we start our search with an initial vector length r(1) with

ail) 
>> 2. From Figure 2-6 we realize no success can be obtained. In order to make

^.

	 1

successes possible r has to be reduced in successive failure trials, i.e., the sequence

r(1) , r(2) , ., r(u),....., where the superscript u indicates the number of successive

unsuccesses must be a decreasing sequence. Consider the sequence corresponding

to the recursive formula

r(m+1)=r(m) (1-A)

a_	 where	 0 <A<1

The sequence in (2-54) has the property

limr (u) =0-

u->CO
OD

r(u) <
u=1

The property in (2-56) indicates that the sequence converges relatively fast towards

r = 0. The speed of convergence is governed by the parameter A. Obviously the

sequence has the property to converge with a constant rate. The unrestricted use of 	 u

this sequence for the change of r after an unsuccessful search step however, bears

the danger that r (u) diminishes too fast toward zero before a success is obtained due 	
k
F

to the'statistical nature of the process.

It is well known that the fastest diverging sequence is the harmonic sequence

(u) , r(1)

i1.
t
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It has the property

lim r(1)	 = 0	 (2-58)
u-+OD u

OD

r
L.^ r(1) (2-59)
u=1

u

Comparing the two sequences we find that for 0<A<0.5 the sequence in (2-54) stays

first above the harmonic sequence and falls below at a certain finite u.

The combination of the two sequences by imposing the harmonic sequence as the

lower boundary satisfies our general requirements that at successive failures the
u

vector length  r is reduced such that in a finite number of steps it is a) < 2,

h owever, a(m) approaching zero with a decreasing rate of convergence as u increases.

We defer the discussion of the parameter A for the moment and assume the

other extreme of an initial condition that the length r is much smaller than the un-

Imown distance, i.e., a1̂) is close to zero. From Figure 2-6 we see that in this case

the probability of success approaches P S -► 0.5, however, Figure 2-7 shows that the

expected amount of success is much smaller than the imaximal obtainable for PSop t.
In order to increase the length r, we must have an adaptation rule for successful

steps

r(m + 1) = r (m) C, C>1 ,	(2-60)

After the general discussion of the two rules, namely to shorten the length r in

case of unsuccess and to enlarge r in case of success we now state our objectives

more precisely. Since r is changed after each search step and we never can adapt

complete information on the distance we cannot achieve the optimal speed of con-

vergence obtained for the ideal hypothetical case under 2.3.2. However, as Figure

2-7 indicates, by proper choice of the parameters A in (2-54) and C in (2-60), it is

possible to achieve in the real case an average amount of displacement E 0 a
a real

close to E [AaI opt in Figure 2-7. Let's denote the vector length after them  -th

success as rS and define

2-36
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_	

aS - ( a >opt + O 1 ' G I >0	 (2-61)

where( !)opt depends on the dimension and is given in Table 2 -2. Let's assume that

the following number of expected successive unsuccesses and the parameter A is such

that the next success can be expected at

rS . (1 - A)(u) 	 ( r )opt
 - `a /o t	 >0	 (2-62)- 4 2'	 2S	 p

where rS.( 1-A)(u) represents the value of the length r after formula ( 2-54) is applied
u times. From Figure 2-7 we see, since the functions E [^a J = E ( r , n) are for

LL a J	 \ a
small D 1 , a 2 , approximately symmetric with respect to 	 that we would have

optimal conditions for the real case and given o l , a . Moreover for o 2 -3- 0 we2	 1 
Aawould approach the theoretical value E I a] opt* Obviously the fractions All a2

depend on A, and thefxpected number of successive unsuccesses. o f 2 = 0 would
require A = 0, that is, no adaptation is possible anymore. Thus, A must be greater
than zero. What is an optimal value for A? The exact solution of this problem can

"	 only be obtained by very tedious and costly computations. We shall come close to the

optimal conditions by assuming A as a function of the theoretical optimal parameters

obtained in 2.3.2. We found that the optimal probability of success approaches the
value PSopt = 0.27 for large n, where a significant deviation occurs practically only
for n <5 (or even n < 4, as seen in Table 2-2). That means that about every fourth

step is successful, or more exact in the average out of 1 steps u
1'Sopt

1-PSopt successive unsuccesses occur. The expected displacement at a successfulstep
PSopt

is given by	 o a	 -
E

E	 =	 .a, opt	 (2-63)Sopt	 PSo tP
In the real case we can only expect ESreal which is dependent on the search parameters.

1
For instance, with the very unfavorable initial condition, 

1--
close to zero the ex

pected valve ES real for the first success is very small. For strong proof of con-
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vergence we will not take into account the amount of success at each successful. step.

The loss resulting from this assumption should be compensated at least in one un-

successful step, that is the quasi-optimal conditions are
l

restored after one step.

Referring to the form-t las (2 ^') and (2-62) the value (a/o t is shifted towards

(

rll

	

	
A

a/opt + E (^ > 0) by neglecting ESreal` If we assign the value

A = E6opt	 (2-64)

the unsymmetry E can be reduced by at most one step. Using the relations for large

n in Table 2-2 we find the relation

A = 0.27 . C1 -	
1 O.n061	 (2-65)

For small n the relation (2-63) using the values in Table 2-2 can be used for a more

exact computation.

The parameter A is a function of the dimension n and has a characteristic pro-

portional to E [ Aa ] opt = E [ ' a ] opt (n). It remains to derive the factor C such

that the assumed conditions in (2-61) and 2-62) with the correction

(a)o t ^ (a A)o t + e are obtained. We require that the real expected value of the ratio
A 

(r)	 for all possible sequences of successive unsuccesses is identical to the initiala real
rS

	

i_	 value	 where the sequences of unsuccesses started, that isa 
S	

r

	

_	
r	 S

-	 )E [ a ] real	 aS	 (2'-66

r
According to the previous discussion we may select as appropriate value for aS

	

.-	 S

	

-	 —	 (2-67) 1
asS - (a/

l
 opt	 1 l - Popt

(1 - A) (T P opt

The considered adaptation rules are in case of failure or unsuccess:

r = r (1 - A) or equivalent r = r S . (1 - A) u with the boundary condition

r 
u 1
	 (2-68)
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i

where r. is the initial condition after the s-th unsuccess, and u the number of successive

unsuccesses

In case of success:

r = r • C	 (2-69)

The expected value E [r ^ 	 is obtained to:
a real

_	

r	

r  
	
K	

w
1

	

C ' — { } '̂ (1 - A)
1
 W. + ^,	 — W .	 (2-70)'	 aJreal	 aS	 ^	 ^(((i=1	 i=K+1	 9

with the condition for K:
x

rS (1 •-A)K > K

but	
r	

(2-71)

rS (^ - A)K + 1 ^ K 
S 

2

W  is the probability for the.occurrance of a success after i - 1 unsuccesses. As the

random trials are assumed to be independent it is

W1 =P S1 
q with q = 1 - PW2 - PS2 1	 1_	 S1

Wi PSi q1 q2 .... qi-1	 (2--72)

where q0 =1, and qi-1 =.1 - PSi-1

Fimi`kzdsuh I+ ;Q.	 a.

I
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with
rr = rrS (1-A)i-1\a/ i a 

Substituting (2-67) in (2-75) we obtain

1-P o t
i- 2T? 

p -1

(a^i -\a.Jopt (I - A)	
opt

Combining (2-66) and (2-70) we find for the parameter C

C =	
K	

1 00

^(1 - A)^ - W. + E 1 W.
i=1	 i= K+1 i	 i

(2-75)

(2-76)

(2-77)

The adaptive search process converges with certainty to the final solution since C is

determined such that (2-66) is satisfied. The adaptation parameters A, C are, cl(arly,

only quasi-optimal. The exact optimization process would be to optimize E ^^^^^ real

subject to the variation of A and S in equation (2-67) and repetitive computation ofas
the corresponding C from (2-77) which assures convergence.

Note; For the computation of C she infinite series can be approximated by ter- in-
ating the eomp ►lting process when most of the possible sequences of
successive unsuccesses are included precisely -when

T

Wi + e = 1,	 0(2-78)

i=1	 ,

where E can be predetermined," for instance e = 10^3,

The computaiion'%of the parameter C = C (n, A) corresponding to the parameter

A in (2-64) has been delayed until needed, since the computation of C is costly, To prove

the operation a simpliftO version of (2-77) has been assumed for n = 10, where P Si in

(2-73) was approximated as a linear function of (a) in (2-74). As a result C = 1,28 was

obtained,

Since exhaustive simulations were made in an earlier investigation for assumed

values A 0,11 C = 1,3, no further simulations were performed with the comgpted

value C = 1,28 for A = 0,081, For A = 0,1, C = x,3 in the average M = 338 search steps

were needed) for a`i) 
= 10 -3 . The theoretical limit under 2,3,2 shows Mmin = 298.
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With the quasi-optimal value C based on equation (2-77) better results will be obtained,

since the assumed values for A, C (A = 0.1, C = 1,3) are leso optimal, The reason for

this is, that S is shifted towards a higher ratio which satitlfies the coi^^ergenceaSr 1
condition because the expected value H ^d J Sim > E 

LaJ 
in (2-66). However,

E L- a sim-aJ	
is smaller than the quasi-optimal value due to the unsymmetric shift.

With proper computation of C in (2-77) one can expect results for the average

number of search steps which are less than 10% higher than the theoretical values in

Table 2-3, This is true for dimensions n;-> 4. For n = 2, 3 the step number deviates

more from the theoretical values due to the fact recognizable in Figure 2-7 that the

Shape of the characteristic for I'; [ Aa] , n = 2, 3 is more sensitive to the unsymmetric

shift by an amount r to

it

	

(a) opt +	 (2-79)

2,4,1 Adaptive Search Algorithm Including Directional information

The previously derived search algorithm does not require or assume any

directional information, In Chapter 2,3 we concluded, however, that directional in-

formation is yery effective in accelerating the speed of convergence, Given a certain

algorithm for the adaptation of directional information one can 'derive, similar to the

cases in Chapter 2.3, the theoretical limits, and can furthermore derive the corre-

sponding quasi-optimal adaptive search algorithm using the principles applied fox the

non-directional search algorithm in the, previous section. Clearly, since the random

trials become dependent, because the information of the outcome of previous trials is

used to control the probability, density of the angle 0 , the computations will become

much more complex, Again, derivations can only be performed for a specific class of

functions, say hyperspherical functions, No Such derivations have been performed

during this work,

However, directional information has been t sed ine, simulations for which the

adaptive search algorithm derived abode has been applied, The adaptation of the

direction was based on the adaptation of the mean valtte vector similar to the method

described by Matyas- in [2] However, besides the normal distribution, applied in
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[2] , some other distributions like the triangle distribution and similar ones, have

been used.

Since the directional information inpreases the probability of success, Le., all

curves in Figure 2-6 are shifted toward:: higher values,, the convergence of the adap-

tive search algorithm (based on non-directional information) is assured, However,

the process stabilizes in a region for ! which W off the optimal conditions. Still, the
a

results obtained for the step number were below the theoretical limits obtained in

2,3.2, but higher than the minimal step number obtained in 2.3.3, It can be concluded

that an optimal adaptation algorithm based on the adaptation of the search vector

length and search vector direction will result in a speed of convergence which is at

least as good or even better than the values obtained in 2.3,3.

The reason why the derivation of an adaptation algorithm has been delayed is

the fact th2t the imposed assumptions on the derivations are still too restrictive and

as we have now gained insight into the behavior of the adaptation process, we can

study the more complex problem of allowing disturbances in the evaluation of the

quality function,

fi	 ^	 ^

i
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2.5 CONDITIONS AND LINIIT OF SPEED OF CONVERGENCE FOR HIGHLY
DISTURBED IIXPERSPIIERICAL FUNI CTIONS

Up to now we assumed that the components of the state vector, X, can be exactly

assigned and that the corresponding function value, Q(X), can be exactly computed. In

the following we shall investigate the case that the functional values, Q, are replaced

by disturbed measurements. Again, in order to get an answer to this problem we

61 	consider hyperspherical functions.

We impose the same assumptions as under 2.3.2 except we assume that all

function evaluations are disturbed by Bernoulli noise; i.e., instead of,observing

Q (X (m) ) we observe

z (X(m)) = Q (X(m)) F p (m)	 s N	 (2^80)

where Q (m) are independent random variables

Fl(m) _	 { } with probability PR	 f 0.5	 (2,81)

`	 and S N > 0 is the amount of disturbance. We apply the same basic search and

evaluation procedure as described under 2,2; however, in the test function in (221) Q
i	 has to be replaced by Z; Le., at 	 o ,aech step we test

	 e

Z (X'm) i	 (m) ) <Z (X(ax; l	 ; 1 - }	 (2--82)

where

z (X	 Q (X(m)	 (m) )	 p (m a- 1) . s N	 (2^e3)

and	 Z (X (rri) )	W Q (X (rrm) ) *  (m) . 8N
	

(2-84)

The two random variables, R (m + 1) , /3 (M) , are independent at each search step;

i,e., in case of successive unsuceesses the relative optimal value, Z (X (m) ), is also

affected randomly at each search step, This is the worst type of noise which can be

considered,
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Q (ln) Q (m 
+ 

1) Probability of Occurrence

(a)	 i i 0.25

(b)	 - - 0,25

(c)	 - i 0,25

(d)	 i - 0125

We discuss the four cases further:

(a)	 Z (X
(m) ) Q (X(m)) H $ N

Z (X(m) (? ))	 -	 Cl (X (m)
(ml.) (2 _A a)

Since both values, Z, are disturbed by the same sign and amount, the noise has 110

effect.	 The situation is identical to the trio in 2,3,2.

(b)	 2 (X 0a ) =	 Q (X(m) )	 - $N

7 (X t 	 Q (X (nl)	 r (m) ) - $ N

here the same applies as discussed under (a), above, The noise hus na offect,

(c)	
z 

(X(m))
==	 (^ (X (M) ) $ N

? (X(m)
t	 (III)) 	 Q (X(m)	 _,. (m) .,	 $	 (-a7)

N

As we base our discussion on minimization and $ N >>	 (t^ (X (m) )	 - QOat	 (M^8?i}
1

2-44

We assume that the amount, $ N, of the noise is very much greater than the

difference, I Q 	 where Q (I) is the undisturbed initial value. Since each

random variable in (2-83) and (2-84) can assume the binary values, + 	 there are

four possible combinations (Table 2-6) each occurring with equal probability,

TABLE 2-6

POSSIBLE COMBINATIONS FOR THE VALUES OF THE
RANDOM VARIABLES IN (2-83) AND (2,84)



no success is possible. The noise disturbs the observation completely, I•lowever,

no move away from the optimum can occur.

(d) Z (X(m) )	 Q (X(m))  	 S N

Z (X(m) h	 (in))	
Q 

(X(?n)	
e 

(m) ) Y 8 N 	(2-89)

For this case the probability of success is

PS (d) = P 
SD 

(d) H 13 (d)	 1	 (2-90)

!

	

	 where PSD is the part which corresponds to real successes and P SN the part which

leads to "noisy" successes causing moves away from the optimum.

The question to be answered in the following is;

(a) Under what conditions call 	 search process converge?

(b) What Is the theoretical limit for the .spood of convergence?

Note that we assume complete information oil the distauioo, a (m) , but no directional

Information at all, Using the nomonelatttre as Grader 2,13.2 and the relations derived

from Figure 2-5 we find the following.

1

The probability Miat 4 searcil stop leads to a real success rnsuliing in it move

towards the optimum is obtained to
f

a
n.."

PSI)	
0,75	 0 n/9	 (': 91)

J
Silln{

0

sutra the cativsa, ( a), (h) and (d), contribute the same fraction, 0.'115,

For the probability of "sicisy" auccesses we find from (d) and roluLlon (2-p0)

sill

laSN
^f

n
Hill

0
M_45
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The behavior of PS Gran he seen in Figure :;-10. Of specific interest is the oxpeotod

valuo for the fructiollal distanco decrement per stop, E ^ ^^^ r Tile noise caused

Ow rolative. optimum to move away from the truo optimum under certain conditions,

If 01v "noisy" moves are overwhelming the expeoted value E FA alal will be negative

amd tho l eamh process loos now uum orl o,

Corrospcnding to the thoury under we formulate F. 	 it)a4
1

:,	 0,5
cr

amt	
it () d ¢+

a

0,.'S	 l" û
'

1,	 (^) Cl ¢^	 ('	 Ot)	 -

U U

The behavior of PSD and PSN as a function of a has been evaluated for the inter-

esting interval and various dimensions. Figure 2-10 shows the functional behavior

for two different dimensions, n = 0 and n = 10. For 	 -*0 the probability, PSD,

approaches the value, PSD = 0,375, and the "noisy" part, PSN , goes towards PSN

0,125 for every dimension. For an increasing ratio, a , the probability, P SD , is

monotonically decreasing and reaches the value PSD = 0 for r = 2 for every

dimension. However, independently increasing n reduces P SD ; i.e., with increasing

dimensionality the function, P SD = PSD (A) decreases faster.

Contrary to this the "noisy" part; PSN , increases with increasing	 and

approaches the value, PSN = 0.25, for every dimension. Because of the assumption

8 N >>IQ (N(m) ) ^ Ropt I the probability P SN is

PSN = 0.25 for I > 2	 (2-081,

as long as the above assumption for S N holds.
,

For a certain ratio, ^ , and dimension, n , the two probabilities, P SD a^ t

PSN , becomo equal, Below that value,	 , PSD is superior and above that 4Au'e

PS's is greater than P SD , Clearly, only the overall probability of su000ss, P S , is

observable aM

PS .- PSD 
.i 

PSN	
(2-94)
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i where Al	 and p (^) are defined under 2.2.2. The first integral in (2-95) relates toa

the cases in (2-85), and (2-86). The second integral results from case (2-89). Of

particular interest is the behavior of EI aa ] as a function of the ratio A . Figure

2-11 shows the dependency for the two dimensions, n = 6 and n = 10. It is seen that

y 	 the expected fractional decre-after a maximal value for a relativel 	 small(t)optr

meat is continuously decreasing, pas. 3s the value, 0, and decreases steadily with

increasing 1 . The search process can only converge for 	 E r aal ^0. As in

2.3.2, optimal conditions exist for the speed of convergence. Tlbe optimal conditions

for somr; dimensions, n, are listed in Table 2-7.

TABLE 2-7

OPTIMAL, PARAMETERS AND MINIMAL, NUMBER OF
SEARCH STEPS FOR HIGHLY DISTURBED

HYPERSPHERICAL, FUNCTIONS

r	 a opt	 E	 a a	 ° Mopt
In (a}a zit	 deg)	 a	 opt	 PSopt	 a (m)/a(1) = 10-3

2	 0.560	 7392	 ` 0,0478	 0,4533	 141

4	 0,285	 81.7	 0.0153	 0;4531	 450

6	 0,213	 83.9	 0.0080	 0.4551	 77.4

$	 0,17.1	 85,0	 0.0062	 0.4556	 1103

10	 0.153	 85.6	 0.0048	 0.4561	 1433

Besides the optimal parameters tha theoretical minimal step number, M, is

listed, M can be computed with formula (2-35), As for the results under 2.3,2 and

shown in Table '4-3 M was calculated for the ratio 	 ^ ^^ = 10-3 , The relationship

M = M (u) again is linear like under ',^1.3,2i however, the minimal step number is

about 4,8 times greater than for the undisturbed case.

-}u 
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2.6 ADAPTIVE SEARCH ALGORITHMS FOR A LARGER CLASS OF DISTURBED
QUALITY FUNCTIONS

2.6.1 Adaptive Algorithms for Disturbed Hyperspherical Functions

The results of the previous chapter show that certain similarities exist for the

disturbed hyperspherical functions with the results obtained in 2.3.2 for the undis-

turbed case. Because the probability of success, P S , (see Figure 2-10) is also for

the "noisy" case a decr a-asing function with respect toa in the interesting interval

for which E 
C
aaj is positive around the maximum, we can use the theory in 2.4 to

establish an adaptive algorithm for highly disturbed hyperspherical functions.

The condition is again that, for a given parameter, A, the parameter, C, has

to be dt ar,_Aned so that the search process stabilizes mound (a) 	after
rS opt

the beginning transient period. Obviously, the formulas for A,a and C in
S

Chapter 2.4, which were applied for the disturbed case, satisfy the require-

ment for convergence if we use the corresponding parameters,
oafl	 r

E L a J opt ES opt ' (R )opt ' PS opt and PSi .

The formula for PSi in (2-73) changes however to
t-

Z

«.51
sire n-2 

$d$
P 	 0.5	 0/2	 t0.25

2	 sin n- 2 4,d$

(2-96)

0

where (2-96) is obtained by combining (2-91), (2-92), imd (2-94).

At this pint, we could derive an adaptive algorithm based on the adaptation of

the search vector length and search vector direction. The general steps of such a

derivationwere outlined in the last part of -Chapter 24. However, no convergence

could he assured it the algorithm were applied to problems other than the hype,

spherical type, , One can even show the divergence for certain problems. The reason

is because the algorithm would have been approximately optimized for hyperspherical

contours using the functional relatioiiships pS - pS (a, n) and E aâ  =1•i ^a !a A.	 i
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2.6.2 Adaptive Search Algorithm for Disturbed Quality Functions

The objective is the derivation of an adaptive search algorithm applicable for

disturbed arbitrary quality functions. In the following we will loose the restriction

of the function type and shall derive a convergent adaptive search algorithm for a

larger class of quality functions.

We refer to the derivations under 2.5 and Figure 2 .11 and impose the following

conditions. Assume a class of ill-defined or disturbed functions, F. Every member

of F has the general property that there existo an expected value for ,the fractional

decrement E	 0 in the interval, 0 a ^ b, b>0, where r is the length

of the search vector length of a search procedure. Fora zb E [ ate, might be

zero or negative. Clearly, the class of functions, F, is now completely dependent on

the search procedure. A simpler algorithm will restrict F to a smaller ,lumber. It

should be noted that we do not impose any specific conditions on the noise. For

inst4nce, we allow biased noise also, as long'as the required condition on E a
is=;jatisfied.. Furthermore, directional infbrmation may increase the number of

elements in the allowed class, F.

For simplicity we will first derive the algorithm without directional informa-

tion because the latter can be added later without modifications.

Assume the search process stkrts at an initial condition such that E L A ]n
is negative (see Figure 2-11); i.e., the noise causes moves away from the true

optimum. In order to reduce the ratio a to the region where E C na becomes

positive, we must have an algorithm. which 1) performs the reduction of r in a finite
l	 number of steps awd: 2) prevents r from going to zero with a rate higher than the

rate the distance, a, approaches zero. The contradiction in this requirement can be

removed by splitting off the algorithm into two adaptation rules, namely a rule for

successful steps and a rule for the case of failures.

We derived in Chapter 2.4 equation (2-68) for hyperspherical functions the rule

in case of failure:

r=r(1-A),

2:53
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or equivalent r = rS (1 - A)
Q
	(2-97)

with the boundary

r
spi\ rZu*1

This rule satisfies a part of our requirements. The harmonic sequence

a.	 Prevent)3 r from going to zero too fast, if we are in the interval
-_ 0< a <b and we are in a cycle of successive failures.
C

b.	 Reduces r in case of failures in a finite number of stpiRf if we are in the
interval L ^ b ^ ^

What remains to be found is the rule for successes which satisfies also the two 	 a '

requirements stated. As the probability of success P S can be greater than zero for

Z b	 the simple rule in (2-69) r = r • C is not satisfactory, if PS is unknown .

and arbitrary 0 ^ P S '< l , which we will assume.

We may further consider the two cases that the shape of the function	 p

E [ aa , =	 E [ da	 (	 , n) is known or unknown. If the shape is known we can

calculate the real value, E	 areal	 the following rule

r = 
r(l)	

(J. - B)	 8	 if success,	 (ms is the number of	 (2-98)

successful steps)

where	 0 < B	 Es	 (2-99)real

would their, satisfy the requirements, since

a.	 it reduces r w.'ith wTate not faster than the distance, a, is reduced, and

b.	 reduces r fast enough so that the region 0< a <b can be reached in a
finite number of -Jteps.

' As it is seen from (2-99) the values E 	 P.Ps have not to be known
L a J	 _

exactly since any B in the stated boundaries is' satisfactory. 	 Optimal speed

of convergence is obtained for B = Es real' For B >	 s real the
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search process stops before the optimum is reached, since r approaches zero with

a faster rate than a.

In case that no information on E 
	

and Ps i.e available, the fastest sequence

satisfying the requirements is the harmonic sequence resulting in the rule
7

1

r = m	 if success and no information on 
Es real	 (2-100)

S

The requirements are satisfied because

The harmonic sequence satisfies the ea4e 
Bs real	 `' 0 , since

a

41 M  =^

We can further refine the rule for the case of auccess in (2-100) based on the dis-

	

eussion in 2.4 and equation (2-57). Using (2-100) as boundary rule, any sequence is 	 t

allowed which has thz property of staying above the sequence in (2-100) and con-

verging; i.e., }y' ei c Qo where ai are the elements of the sequence._ We
•,	 i	

1	
_	 ,

found that the significant property `:of the sequences stated in (2-54) and (?-98) is the

constant rate of convergence. A combination with the harmonic sequence as it is

done in (2-97) for the case of, failure results in a sequence which normally behaves

better than the harmonic sequence in the interval after the starting point.

rbr the case that nothing is known about E 	 we may state wIth con-
s real

venleace the combined rule for successes similar to (2-97):

'	 m

rS = r(1) (1 - A') S	 (2-101)

with the boundary



where A' may be selected independently of A in (2-97). Useful values for A'

(as with A , if not determined by (2-64)) are in the interval 0 <A -'-- 0,5, 	 For

instance, for A = 0.1 the initial value of the first sequence fit 	 is reduced to

1/10 in about m S = 20 steps and still satisfies for this m  the boundary condition
r(1)

r> 21

To summarize: if no information on F s real is a priori given, the

simpleot rules for the adaptation of the search vector length, r, are the boundary

sequences in (2-97) and (2-101), denoted as ASR -1 (Adaptive Search Rule No. 1)

ASR-1;

r = a 51	 if failure	 (2-102)

rS = m	 1	 if success
S

where u is the number of ^iuecessive failures and m  the number of successes.

A refined set of rules under the same assumption that no a priori information

I	 is given is

ASR-2

r = 'r 1: - A)'
	 (2103)

if failure

r 
rzU+1

rs = r(1) (1 - A) MS

if success
r(1>.

r 	 MS + 1

wherry A, A^ are constmits discussed above.,
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in case some a priori information was available on is seal we found previously

the set of rules

A Sit - 3'

rS (1 - A )u

if failure
r

rs = r (1) (1 - 13) m 
s 

if success

where B is def,ned in (2-99).

The "payment" for needing no a priori information at all in AS11-1 and ASS-2 is

a slower rate of convergence compared with the more or less optimal convergence at

a constant rate for ASR-3.

Theoretically, complete convergence for all algorithms is at,1ieved for the limit

m	 however, in practice, since we have to assume s >- 0 in (2- 15) for the

function evaluations because of the limited computer accuracy, the search process

terminates at afinite sta, number-. _M_ore,exantly, the-s^asrirtermi pates when-tt

distance, a, is reached which corresponds to the value, E , in (2-15).

The adaptation rules above can be further extended including adaptation of the

vector length,by the principles discussed under 2.4, If more a priori information is

given. The result would be a further increased speed of convergence.

Finally, we note that the introduction of the adaptation of the direction of the

search vector in addition to the vector length will result in a set of rules in addition to

those stated, without modifying the structure of the formulas. For derivation of the

rules for direction adaptation the same general requirements as stated im this chapter

for the length adaptation have to be imposed. It is clear that the directional information

will increase the speed of convergence., Moreover, even more important, U will in-

crease the number of solvable problems in the class, F. Some preliminary investiga-

tions using converging directional adaptation rules show promising results for highly

disturbed quality functions. A detailed study is outstanding because of the complexity
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of the problem alrtwdy mentioned for the noiseless case under Chapter 2,4, Continua.

tion of the study in this direction can be considered very vital,
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2,7 PROOF OF OPERATION, SOLUTION OF PT{OBIarM NO, 1, COMPARISON
WITH STOCHASTIC AP1iROXIMATION

2,7,1 Problem Definition

The following problem set by NASA, and denoted as Problem No, 1, will be

solved using the developed adaptive search technique.

Given the two-dimensional unimodal function

Q = 2 - 0,2 I x1 I - M I x21 = Q(X)	 (2-105)

defined in the region Q	 1

	

-5sx25* 1 5	 r^
(1

The function defines a pyramid in the three-dimensional space (x 1 , x2 ,Q), The peak

of the pyramid is located at (0, 0, 2).

The problem to be solved consists of finding the coordinates xi opt' "x2 opt that
correspond to the maximum value of Q, However, in (2-105) cannot be observed

directly; instead only a noisy functional value, Z, is obtained for each two-dimensional

vector (or its end point), X,

z (X) = ,Q (X) + Q 8 N 	(2-106)
where the random variable, fl, has the property

/3 = ( +1 } with probability, pR =	 0.5

and 8 . =' 01 .2 )	 1	 l
N

A search is to be started at two different initial points

1. X(1) (xh) x21) )  (8 1 0)

2. X(1) = (x11} , x21}) = (
8 , 1)

For the comparison of the two methods, adaptive search - stochastic approximation,

we will use for the end test the fact that we know the optimal point, X opt = (0, 0). The

9A
	search process is terminated when the distance a(m) - x1 + x2 reaches a value so

i_	 a(m)	 -3
that

a(l)
 510	 That is, we end the search when a search point falls in the circle

with radius, a(M)and the center in the origin.

i^
Sl.	
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It should be noted that in a general, real problem we would not •have'the Inform-

ation on the location of the peak and would have to use another criterion for the stop

of the search.

Since each measurement Z(xl , x2) is disturbed by a relatively large amount of

additive noise, no two searches from the sane initial point to the same final region

will be the same, In general, the number of steps needed is itself a statistical quantity

and its distribution function is unknown. Therefore, it is necessary to run a number of

searches to derive a firm estimate on which a comparison may be based. It is

accepted practice in dealing with Gaussian distributions to take at least 30 sample

searches before computing confidence leveljt, In solving Problem No, 1 we have found

that the step number is not normally distr0b d j'!Po we have chosen to make 100 runs

of each search in order to estimate the acv M	 '+ u per of steps,

_	 2.7.2 Solution Using the Adaptive Search Technique

For the solution of Problem No. 1 using the adaptive search technique we will

 assume that no ariori information isp	 given. Then from chapter 2.6 we can use either

of the two algorithms; ASR-1 or ASR-2.

Before we discuss the results obtained we will investigate if the stated Problem

No. 1, belongs to the class of functions, F, solvable by ASR-1 or ASR-2, Figure 2-12

-	 shows two equiquality contours of the function defined in (2-105). Because the contours

are not circular the probability of success depends on the location of the center of the

search circle. We will consider the three extreme cases;when;

(a) Moves occi r only along the x  - axes

(b) Moves occur only along the x 2 - axes

(c) Moves occur only perpendicular to the equiquality contours

Assume that the amount of noise, 8 N , is much greater than the distance

(1) -	 2	 2a - xl + x2	 1

I

l
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Then, for assumption, (a), usitig the angle, ci a, the probability of success for
r

every ratio, a , is

PS - PSD + PSN

PS = 0.1105 + 0,213

That is, the noise causes more often move away from the optimum and, clearly,

E [AaJ ^0 for all r or, rather, case (a) does not satisfy the condition of being in thea
class of functions, F.

Considering case (b) we find with a b

PS =P 
SD  + PSN

PS = 0.265 + 0,162

Since PSD "-PSN is will result in E aa  >0 for every-!! .   It follows that case (b),

belongs to the class, F.

Finally, for the hypothetical case, (c), we obtain with a C and 0 < r <b,

b>0

FS = PSD + PSN

gS = 0375+'0.125

for which E rAi > 0 with the conclusion that ( c) satisfies the condition to be in class
l a.l

F.

That is, only when we would stay on the unfavorable edge at every search step

the defined function would not belong to the solvable problems in class F. However, the

probability of ataying on the ed at each move is zero. We conclude from (a), (b) and

(c) that the problem function is in F.

The problem has been solved by using the adaptive search technique, ASR-2, de-

fined in (2-103) with the fixed, arbitrarily chosen parameters, A' = 0,1, = `0,2 and

various initial conditions for the vector length, r(1)Table 2-8 shows the average

number cf search steps needed to reach a point in the circle around the origin with 	 ?
radiusa(m)510_

3
 The average was taken from 100 runs for each case. i

l

t= _



ti
u,	 r,n

TABLE 2-8

AVERAGE STEP NUMBER FOR SOLUTION OF PROBLEM NO. 1
USING ADAPTI6'E SEARCH TECHNIQUE

rf 
1)

iVI from X(1) (8, 0) M from X(1) _ (8,1)

10 616 590

12 511 (best) 477 (best)

14 563 548

16 594 544

18 588 632

The simpler rules in ASR-1 would give slightly better results. With ASR-1 it was

found, for example, for r (1) = 12 and X(1) _ (8, 0) that M = 485 compared with M = 511

obtained with ASR-2. The reason for this is neither of the parameters A , , A has been

optimized.

The printout of a single run using ASR-1 is shown in Appendix A-1.

2.7.3	 Optimization Using Stochastic Approximation

The ordy well-known method suited for the optimization of noisy problem

functions is the stochastic approximation. In the following we discuss the Kiefer

Wolfowitz (K W) rule, which uses stochastic approximation to find the maximum of a

function, and some of the practical considerations encountered in programming.

First we define some of the notations which will be used in the discussion of

stochastic approximation.

I

I

x	 a single independent variable	 -

y(x) the underlying nc:aeless function whose maximum is to be found

x	 the location of the maximum of y(x)

S	 an additive noise term

z(x) =y(x) + 8, a noisy measurement of y(x)

i	 iteration index or, rather, running step number

m	 total step number
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tJ

a

i

	

a 
i	

step size at the ith step

	

a0	 initial step size

	c,	 span over which finite difference approximation to gradient is measured

	

1	 at ith step

The actual problem we are dealing with is 'two-dimensional so the subscript is used to

denote dimension and a bracketed superscript denotes step number. For instance,

x2(1) is the value of the x2 component at the ith step.

The K W rule is stated for a function of one variable, y(x), as follows: it is

assumed that only noisy measurements, z(x) y(x) + 8, are available, and that the noise
i

S has zero mean and finite variance. To fiend a maximum of y(x), x is stepped

according to

z(xi + ci) - z(xi - ci)
i+1	 i	 i	 C.i

The fraction amounts to a finite difference, approximation to the gradient and it will

usually be in error at any given step because different values of noise will enter into

the two measurements of z. The convergence conditions consist of a bound on y(x),

which is nearly always satisfied in practical problems, and some stipulations which

limit the a-x,.--,a of choice of a  and ci . The bound- on y(x) is that, for all x  and x2,

x,

j

 :^ x2 , we must have

 
I 
y(x2 ) -y(xl )I <AIx2 X I+ B<

where x is the true location of the maximum of y(x), and A and B are constants.. The

stipulations about a, and c. are

lira	 a. = 0	 lim	 C. =01	 1i --),ao	 i-► W
00	 o0

2

i=1	 i=1	 ;;^^^

which completes the description of the rule. Note that the conditions imply ultimate

convergence in mean square

lim	 E r (x 
m 2J = 0M-+ OD-L 

X =x +a



and with probability one

Probability	 J lim	 x  = x 1	 =1
t m-^m	 J

Howeve • -. in practice one would like to know more about convergence in a reasonable

amount of computer time, although this is strongly problem-de pendent. The sequence

a  is uaually chosen to be harmonic, a  = 1/i, because this is the fastest diminishing

series which satisfies the convergence conditions.

It is perhaps worthwhile to see qun!i atively why such a sequence is useful when

applied to noisy measurements. Suppn4 , `we wish to estimate the value of a constant,

k, given only a series of noisy measurements

z. = k + 8,	 i = 1, 2.... (m-1)

where S. is random with zero mean. Then an estimate is

1 m-1

A'	 km-1 - ^M-1 M-1 i 1 Z 

If we are given one more measurement, the new estimate is

k 	
'^ Z,

m m In 
i	

i
=1

	

= 1 J	 ^,1= 1 	m-1

z	

_

M St m + i`1 z1	 m zm + m __^m-1

that is,	 k = ( 1 ) z + (1 - 1/m) k
m m m	 m-1

The new measurement is accepted with harmonic weight 1/m.

'

	

	 This leaves a certain available range for c i , which is,£ound as follows. It is

well known fact that

m
1/Jp< w for p > 1.

J=1

Now suppose a.= i 1 and c. =i -y . What is the permissible range of y 7 We have

2	 2

ai	 __	
i-1	

=	 2(1- Y)
C.	 -y
1	 1
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i

so the condition, is p = 2(1- y )>1, that is y e 1/2. Also, y must be greater than zero,

so

1	 z(xi + Ci ) - z(xi - ci)
x, + x, + —	 --

i+1	 i	 i
	

C.
1

with ci = i - y and 0¢y 1/2 as a convergent class of K _W rules. Dupac (10) has

shown that for certain general assumptions about y(x), the best practical choice to

minimize E I(x. - x)Iis y = 1/4. There still remains a selection of the initial stepi
size, so the full statement of this rule is

a 	 Z(xi + Ci) = z(xi - ci)
Xi+1 - Xi i	 C.

i

a )1/4

ci = i°	 ao free.	 (DK-W Rule)
i

Kesten (11) has proposed an acceleration scheme for the K-W search which

should mitigate two well known disadvantages: firstly, that the search moves very 	 }

slowly in regions of slight gradient, and secondly that high gradient regions may cause

repetitive overshooting. The Kesten modification is based on the reasoning that there	 -

should be few changes in the sign of the gradient when x, is far from x, so the step

size should not be reduced much, but that when x i is near the maximum, the sign of

the gradient changes often, and the step size should shrink quite fast. The statement

of the Kesten K W rule is
F

i._	
Z(Xi + C) - Z(Xi - C)

xi+1 - xi + a 	 C	
(KK W Rule)

The a. are still based on the harmonic sequence, but they are only stepped along that
i	

1

sequence when the fraction changes sign. Thus a typical Kesten sequence might be
i

1 1 . 1 1 1 1/2 1/2 1/2 1/3 1/3 1/3 1/3 1/4 1/5 .....

Note that c = constant, all i, is a condition for convergence of the accelerated rule.

Also, as before, the initial step size, ao , is free, so in a computer program there are

two parameters, a  and c, to be chosen. Although this is called an acceleration, there

is no known proof that it is always faster than the basic rule.
w
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In the pyramid problem, y is a function of two variables, x 1 and x2 , so the uni-

variate convergence proofs do not apply directly. , Fortunately, there is a general

theorem due to Dvoretzky (12) which contains both the K-W and KK-W proofs as

special cases, and which applies to multivariate functions. Thus the two methods

may be formulated for Problem No. 1 as follows:

Dupac Kiefer- Wolfowitz Rule

x (i+1) = x (1) + a(i) 
z(x1(1) + c(i) , x2(1) ) 4(x1(i) -00) , x2(i))

1	 1	 c(i)

x (1) , x (1) + c(1) z x ( i)	 (i)	 M
x (1+1) = x ( i) +	 za(i) ( 1	 2	 ) - ( 1 + x2	 - c

2	 2	 c(;.)

a(1) = a i -1	 c(1) = (a(i)) 1/40
empirical choice of a0
Kesten Kiefer-Wolfowitz Rule

x (i+1) = x, (1) + a. (1) s. (1)	 j= 1, 2
J	 J	 J	 J

M	 z(x1 (i) + cl , x 2 M ) -z(x1G) -cl, x2(1))

1	 cl

(x i (i) , x M +c) - z(x (1) , x (1) - c )
s 
(i) 	 2	 2	 1	 2	 2

2
c2

a 
J
.(1) = a 

o 
/k 

J
,	 k 

J
. = 1, 2, 3. .

k.
J 

is stepped only when the sign of s,
J	 o 1	 Lchanges. Empirical choice of a , c and c .

To keep the investigation reasonably simple, we have set c 1 = c 2 = c and ex-

plored the performance of the rule for various values of a  and c. The following

tables show the average number of function evaluations needed for a search which

starts at (8, 0) and terminates within a radius of 0.008 of (0, 0).
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TABLE 2-9

NUMBER OF FUNCTION EVALUATIONS NEEDED BY THE DUPAC
KIEFER-WOLFOWITZ RULE TO SOLVE PROBLEM NO. 1

Average Number of

	

a	 Function Evaluations
0

	3 	 3,800

.	 4	 1,552

i	
5	 1,280 (best)

	

10	 1,628

	

50	 2,456

TABLE 2-10

NUMBER OF FUNCTION EVALUATIONS NEEDED BY THE KESTEN
KIEFER -WOLFOWIT Z RULE TO SOLVE PROBLEM NO. 1

c
ao	 0.8	 1	 1.2

4	 1,372	 1,360	 1,368
7
x

5	 1,412	 1,140 (best)	 1,328

7 _
	

1,504	 1,352	 1,368

Thus, the Kesten acceleration leads to a slightly better result, given an optimum choice

of parameters in both methods*.

2.7.4 Comparison of Results

The results in Tables 2-7, 2-8 and 2-9 show that the adaptive search technique

under the worst condition (i.e., no a priori information is given) converges better than

twice as fast to a solution of a predetermined accuracy compared with the solution

using stochastic approximation. Clearly, in both methods the limiting factor of the

speed of convergence is the harrhoriic sequence. However, if a little information on the

type of the quality function were to be used in order to be able to apply ASR -3, the speed

of convergence would be highly increased since the search would converge with a con-

stant rate.
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Further, an important fact not discussed so far is that the convergence of the

stochastic approximation requires that tl' n noise be unbiased; i.e., its expected value is

zero. This condition is satisfied for the :)nsidered problem function No. 1. No

specific assumption on the noise was made in defining the class of functions, F,

tractable by the adaptive search method. Thus, even if the noise is biased, the

adaptive search will converge to the optimal point whenever the problem function is in
class F. From a theoretical aspect of the information oae can even expect that the

obtainable speed of convergence is faster for the biased case, since the entropy of the

noise source is smaller for the unsymmetric case. But the adaptive search is based

on the results (or information) gained in the past. Although in the discussed adaptation

rules only the information "success" or "failure" is used, the vector length, r(m) at

a certain step, m, is a function of the whole previous history.



3.0 CONCLUSION AND RECOMMENDATION

It has been shown that existing search procedures are greatly improved by a
new adaptive non-deterministic search technique. The technique is especially applic-
able to problems operating in the presence of noise and having ill-defined parameters
and/or inputs. Further advantages and features of the procedure are:

(1) It converges for a large class of functions.

(2) The speed of convergence is high and does not affect the final accuracy.

(3) The accuracy is only restricted by instrumentation of the computing device.

(4) No strong conditions are imposed on the functions, for example, no deriva-
tives are required to exist.

(5) Superimposed noise does not prevent the search process from converging,,
it only reduces the speed of convergence.

(S) No conditions have to be imposed on the unknown characteristic of the noise.

(7) The search algorithm can be easily implemented as computer program.

(8) Assuming undisturbed functions it is superior to all known direct search
techniques above a certain dimension n.

(9) Assuming disturbed functions it is superior to the method of stochastic
approximation with respect to speed of convergence and requirements on
the characteristic of the noise.

Clearly, a number of investigations and improvements ,remain to be solved.
Some vital problems are stated below:

(a) Investigations of "noisy" problems assuming other characteristics of
noise for the theoretical case, and corresponding simulations with the
adaptive search technique

(b) 'Studies concerning the size of the class of functions F for which the
search converges under the consideration of various adaptation rules

(c) Development of adaptation rules for the direction of the search vector
for disturbed and undisturbed functions

(d) Development of adaptive search techniques for multimodal undisturbed
and disturbed functions.

4
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000003
000004
000005
000006
000007
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000011
000012
000014
000015
000017
000021
000025
000026
000030
000032
000033
000036
000047
000050
000061
000065
000066
000067
000073
000075
000077
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000106
00011'
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000116
000117
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000133
000134
000145
000150
000152
000153
000155
000161
000166
000170
000173
000174
000174
000176
000200
000203
000203
000205
000206
000206
000210

I
I
I

I

I
I

I

PROGRAM PRONAME(INPUTgOUTPUT*TAPE5=INPUT+TAPE6= OUTPUT)
DIMENSION X(10)•V(10)gVV (10).XMIN(10),K.KZ(105)+D(10)
N=2
IX=33333
IZ=33333
IW=33333
IXX=O
UOLD=1.0
SOLD=1.0
ROLD=12.0
RINT=BOLD
X(1)=8.0
DO 10 I=29N

10 X(I)=060
KZ=1

8 FKZ=KZ
CALL RANDU(IZ91Y*YEL)
IZ=IY
IF(YEL-0 * 5) 2*293

2 ONEW=+2.0-0.2*ASS(X(l))-0.4*ABS(X(2))-0.2
GO TO 4

3 014EW=+2. 0-0.2*ABS(X(1))-0.4*ABS(X(2)) +0.2
4 IF(KZ.GT.1) GO TO 24

ORMS=ONEW
DO 28 I=19N

28 XMIN(I)=X(1)
24 DO 104 I =19N

CALL RANDU(IX9IY:YFL)
IX=IY

104 VV(I)=2.0*YFL-1.0
CALL SNORM(V.VV,N)
IF(KZ.E0.1) GO TO 43
CALL RANDU(IW +IY +YEL)
IW=IY
IF(YEL-0.5) 41+41942

41 ORMS=2.0-0.2*ABS(XMIN(I))-0.4*ABS(XMIN(Z))-0.2
GO TO 43'

42 ORMS=2. 0-092*ABS(XMIN(1))-0.4*ABS(XMIN(2)) +0.2
43 IF(ONEW-ARMS) 103.1039102

102 IXX=IXX+1
FIXX=IXX
DO 1 1 =1•N

1 XMIN(I) =X(I)
RUPP=RINT*(1.0.-0.10)**FIXX
RLOW=RINT/SOLD
IF(ROPP.LTsRLOW) GO TO 44
RHOND=RUPP
GO TO 45

44 RBOND=RLOW
45 ROLD=RINT/SOLD

IF(ROLD.GE+RBOND) GO TO 46
ROLD=RBOND

46 SOLD=SOLD +1.0
UOLD=1.0
G0 TO 108

103 (JOLD=UOLD+1.0
IF(IXX.FQ.0) GO TO 31
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000212
000212
000214
000215
000222
0002?.3
000226
000231
000233
000234
0002.36
000237
0002.1
000246
000250
000253
00054
000254
000296
000260
000263
000263
000265
000272
000x74
000?74
00031.0
000310
000312
000314
000315
000317
0003?3
000324
000376
000333
000333
000334

UOLDs 1. n
XRMSsO.n
DO 11 1 n1.N

11 XRMSrXRM5*X1141N(T10M2
XRMSm5QRT(XRM431
KKZ(JJ)sKZ
IF(XRMS.0.009) 1311113910A

103 1JOLDsU01, Do 1.0
TF(IXX.FQ.0) AO TO 31
F1s(S0Ln•1.0)•UnLO
60 TO 3P

31 F1=SOL0»U0LO
32 RUPP=ATNT«(1.0.n.21•+F1

RLOWmATKIT/F1
TF(ROPP.LT.RLOW) GO TO 47
RRONO=RI IPP
SO TO 4A

47 RRONDURLOW
48 ROLDsRINT/F1

1F(RnLD.GF.RRnNn) 60 TO 108
POLnuAROND

l0A DO 107 T=1 9N
107 X(I)sXMTN(I)*RO).O*V(I)

K7sK7*1
GO TO A

13 WRITE(60ol) KZ.TXX.ROLD.xRMS
301 FORMAT(4X9I4.9X.T499XtF17,i4t2XgF11.A)

JJ=JJ+I
TF(JJ.LF.100) GA TO .14
KSLIMsO
DO 15 I219100

15 KSUM=KSIIM+KK7(I)
FSUMsKSUM
FSUMaFSUM/100.0
wRITE(69303) FSUM

303 FORMAT(/ / /SX t 2SWAVERAGE NUMBER OF TRI6L4,q=+FA.3)
CALL EXIT
FNS

000006
000006
000007
000010
000014
000016
000021
000026
000026

SUBROUTINE SN0RM(U.R.N2)
DIMENSION U(10)9R(10)
VR=0.0
D(1 1 I=19NZ

1 VR=VR+R (I) **2
VR=SQRT(VR)
DO 2 I=1+N2

2 0(I)=R(1)/VR
RETURN
END
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SUBROUTINE RANDU

USAGE

CALL RANDU (IX, IY, YFL)
IX = iY

Produces uniformly distributed random numbers between 0 • and 1 . 0 in location YFL.

'	 LISTING

SUBROUTINE RANDU (IX, IY, YFL)
IY = IX * 65539
IF (IY) 5, 6, 6

5 IY = IY + 2147483647
'3 YFL = IY

YFL = YFL x • 4656613E-9
RETURN
END

-	 WARNING

THIS SUBROUTINE IS SPECIFIC TO THE IBM SYSTEM/360 COMPUTER. IT
MAY NOT BE SATISFACTORY ON OTHER MACHINES.
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