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Sound radiated from inlet and engines gives
a major contribution to perceived aireralt noise on the ground,
particulsrly during aspproach and landing. this sound originates in
the fan stapges of the engine compressor. By treating inlet and

fan duct with sound absorbing linings, the sound can be attenuated
in ite prepagation path. Such linings are bullt up from a number
of pervicus layers of different permeabiliiy and & number of air
spaces of different depths. The particular combination of pervious

Jayers and air spaces determines the magnitude and frequency range

of scund attenvation.

In the present duct lining design preocedurs, experimental results
are reliéd upon. Since the number of lining parameters, that can

be varied, is very large, a-computer technique was developed by
whiéh a pre-selection of multi-layer linings could be performed.
These linings, selected to be tested éxperimentaliy, are synthesized
from pervious layers and air spaces, to~givé optimum attenuatien.
The critericon for optimum attenuation of a given engine spectrum
ié)maximum reducticn in perceived noise level, i.e., an evaluation
of the sound specltrum weighted for the subjective response to the

~different frequencies of the spectrum,
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A computer prosram for the CDUSA0

cross-section,

Inputs to the

and for curved ducts of re
program are the ewperimentally determined cheracleristics of a

of the

selection of pervicus materisls; and constrains on thickne
lining and its individual layers, Optimizeticn of the altenuation

n he performed for any number of modes of sound. propagation in

ca

b

¥

the duct. A merit function allowing optimizelion over any Ireguenc:
& A

s

range is used.

The;flcw chart for determining an optimized lining is shown in
Table 1. The computer program for straight, rectangular ducts
is described in Ref. 7 . of this document, and the program for
vemaining duct shapes in Ref. 8, . Typical design problems and

their solutions are so presented in References 7 and 8.
1.3 Conclusion

The purpose of computerizing the design of acoustic linings with
optimum attenuvation has been achieved. - Various duct geomeiries can
be handled. The method is limited to "locally reacting"” linings, i.e.,

linings for which the boundary conditions in the duct can be specified

completely by the normal incidence impedance of the lining.
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Ae  Noisze

1OCaiiun for an eirc ft with unlined 6uctaﬂ

spectra at a

. S
Calculate impedance of ing as a function
N
1 of ICY o
Calenlate the attenuation of individual duck
HERTE Lol N
i e &2 )5 & f
P Ix1
(o} )y
B
E_rf .
<y bt . s
o m Caleulate the total attenuvation, taking all dust
X
B+ A o modes into consideration
I =3
i~
Bl By
SR S

§ i ) Calculate a sudvjeciive nmeasure of the nolse

=1 7 {PNL} from an aircraft with lined ducts

f . . ~

= using input 3,

) Tl
Evaluate a weighted merit function (PNL) and chose

B 8 new lining configuration, different from input 1,
A Y

using materials in input 2. This function is
performed by optimization program MINUM, see Ref, 1.

L

QUTPUT

Degipgn of lining, reduction in PNL,.

i.e., impedance at zerc freguency

=

ot

TABLE 1 - FLOW CHA 0
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reequent

L ovelocity

¥ radiation paztterns from duct exit taking exi

s '

proiiles into account.

attenuation in Lined conieal ducts

* dnclusion of & cost function in the merit Funct f

tion for opt
zation. The cost function would relatle weight, volume, and

aerodynanic drag of the lining with incresse in operating cost
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In this volume the problem of optimum selection of linings for

sound attenuaticn in ducts of various shapes is analysed. The

7!

final result of the znalysis ls a set of equations, written in a

L8

Corresponding computer

prograi 7 g & of this document, The

&
»
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@
§e
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m
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o
ol
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e
=

method for optimum selection can be divided in the following

steps, each described in detzil in the subseguent

s, Calculation of the attermation of each mode (Ly

wave propagated) through the duct when the wall impedance

fied.

e

(property of the duct wall lining) is spec

~

v. Caleulation of fthe lining iwpedance from parametere of
‘individual lining elements, such as porous layers and air
spaces.

¢. Calculation of total attenuvation in the duct taking all modes

that cen propagate into account simultaneously.

d. Calculate a value of a merit function,; j.e., a function
that gives a measure of the efficiency of the lining in
attenuvating sound.

€. Optimize lining by choice of lining element parameters which
give a minimum valuve to the merit functiom.

RBeturn to a., and repeat seguence a specified number of times,

A flow chart showing these steps is alsce shown in the summary.
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Defined in Section Z2.3.1.k4

fo

Attenustion per unit length of duct (5zc
Attenuation for duct of length L

Attepuation per unit length of duct for
mode (m,n)

Energy in mode (m,n)
Defined where used

Defined by Bgs (95) and (12&)‘
Insertion loss

Length of duct

Defined in Section 2.7

Mach number

Q.,
6,4

Rumber of evenly-space truts, or, for
unevenly-spaced struts: %60/angle between
2 adjacent struts

Defined in Section 2.7

[

Perceived Noise Level
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Dimensions of duct

Speed of sound in air

Speed of'gound in material m
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Defined by Egs (Sh

Ratic of

Real and imaglnary

- Defined by Bgs (96) and (125)

2nwf

Yave number, .= T

Complex wave number in

X,v.,2,r —girections; respe.

Specific admittance

: (Sec. 2.5)

Thickness of layer in Lining

Specific admittances of walls in rectangular
Guct at x = 0, x = a8, y = 0, ¥y = b, resp.

Order of Begsel function

Integer, See Eg. (16)

lasyers in lining (Sec. 2.5)

o
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Displacement of a fluid particlie at a
in the duct linzng

uld particle in fres

lining

velocity

Digplacement velocity in free stream

Gas particle velocity normal fo duct walls
Totel velocity in x-diresction

Gas particle velocity due to pressure wave
Gas velocity

Coordinates

Arguments used in iterations, = ak_ ,

x
ak ak
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Figure 1 shows the

ing in radians

Compley propagation constant (Sec. 2.5)

L)

and 4, function of

Total local density, stalic gas density,

denzity due (o pressure wave, resph.

Circuvlar freguency, = 2wvf

coordinate systems used in the analysis.
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Neglecting second order terms, Equation {(4) can be rewritten as

-
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g
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P
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oy
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To obtain Bulerfs equation of motion, the pressure forces in oune
direction on an elementary volume are equated to the inertial forces

in the same direction:

plx) - plx + dx)

dxdydz = - 2 dxdydz

éx ’ ax
"
. ﬁvX dxdvdr
= gf) e AGyUd
Jo dt
0
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&
4
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[shY
' (6)
At 3 {:“’, -»,::;;n -
[SIR SN

SeOong G

¥

lay terms can be ignored for Low

; f i e derivie o f Ty e
. %W apain ls the total derivative consisting oI the
Gt

jocal and the convective acceleration Leyms, YOED: &

1 i

3 . -
«(,;»tm . i {v D vd } .
dt o

) o ' LY AR 4 e P LI ¢ ot ST
Fauation (&) cean be gengralized in vector notation:

dv
b Pg wwg = 0 . (7)

Lguations (3), {5}, and (7} can be combined to eliminate p and Vv .

i
[
2
N
£
e
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ot
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e
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et
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ey
w
=
o4
o
-
I
M
w3

= : SR S P AN ~e
Taking the divergence of all terms in Equation {7} gives

2 d -
v + e (Fev = (0
3 po at (Vev)

and substituting Equation (8) into the last. equation:

2oty - (1) e : o

\dt

1f the pas flow is taken in the z-direction only, Egquation (¢) becowmes

Y 2 , o2

i [ i : )
- “ ] G & T . 2 A B p
7 e 2. = s VA - N . 5
» 5 Z LA Z . &
AV AR at 2 Z 8t¢ -
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Egvation (10) is the acoustic wave equation presence of slow,

)

i

unidirectional gas flow.

-

2.2.1 Solution of the Wave Eouation eand Boundary Conditions

ot + AY B . . .
Equation (10} can be solved by separation of variables:

X(x) Y(y) 7(z)

B

P

X =2 cos (kx) <5 sin (k x)
X b b p.4
¥Y=C_cos (ky)+ 5 sin (k y)
¥ 3 v
g - oKy

T=ce

Substitutinrg X, Y, 2 and T into Eg. (10) and using

«

e

C

Vy

(54

k =

M=

results in

1

«kM +-Lk2 . (1< 1) (ki + k;)]
kz i (1 - M) T

(10)

(11)
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ednmilttance

If &, is defined as the
[

free stream near the duct
because, at both sides of

free stream is

=1 ipfcc

The dmvedance of a multi-layer lined wall is

The relationship k. or k_ eand impedance {or admittance)
b2 ¥

of the liming can be found from the boundary conditions. If By

a point in the lining, and

Jor e
‘f’
p P

A e @ ol

&
-
Eq. {lla) becomes
de )
i Ap,
at T p.c
3.9
or, integrating,
p L .
§. = =it 4 constant (12}

displacement of a fluid particle in the

lining, then

¥

the interface of lining and free stream the

particles have the same displacement. The displacement velocity in the

REV SYM
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or with Fg. (12)

B
¢
3
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I
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pe
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St
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. S e
w at boundary

or

i
§

. e [N ton Lk x) = =
. &k - ) M] “ k_ * Cx
k Z %

vhere x refers to boundary.

Siwilarly, if the boundary is taken in the x~2z plane, Eg. (13) becomes

w1 ;

~
Py
b
H
v
¥y
-
Vi
V)
]
i+
e
e}
ol
~~
f?
=
p—g

1+ Ef tan (kyy)

wvhere y refers to boundary. Egs (13) and (14) are the basic equations
along with Bq. (11) used to determine sound attepuation in a rectsngular

duct. S_,5 QCX? and CY are eliminated using given boundary conditions.

ar
P

X

4?; k, M and y are known. Whern M is equal to zero, k_ is found from
Fq. (127, kV from Eo. (1), and k, from Fa. (11}, When M is not equal

to zero, only a few cases of wall linings can

[l
{g
@ The complex number k  will be used to find the
£
L4
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the coordinate system. At x = 0O
sign applies; =t the respectively opposife wells the plus sign

s

applies.

The following ways to line a rectangular duct are available. The

a

case for zerc Mach number is hand

2
ot

ed sey

1.5 and on deal with solutions of the wave
>

number is great

Cames when Mach number is zero:

2.2.1.1 One wall lined only.

At x = C "Q‘:‘El

ot
i
o
h S—

. X
tan (ak } - ro
0 = Kk ® "y .
= k_ =
P .

REV SYM
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By

and also

<
"
e
e

or

Therefore

Together with ky s

be rewritten for M

A

fro

m the

-

IEYRR ST P
(ak_J) tan (ak_ )}
s X
o
bt
5
.
4
d
9
L
‘ . A3
£ g 5 YR bl
LED (bh_\') e
y Cy
S

one may

Equation (15) may be sclved

no=0, 1y 2, 35 ece

o

find k

using
g OOHE

%]
FEN

numerically for k
R p.4

ey
.%_’J
N4
e?

for all modes

Bg. (11). This equation may

a7
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Walls Lined.

511s are lined. Bu. (15) may be used to find
a procedure similar to that shown in Section

2.2,1.1 can be applied to find k for t
X

1 acdmittance ,f:: 4?

a

he sdjacent wall. Assunme

o

that at v = O the wall Iining he and
o i) ¢

at vy = b the wall is rigid (/g:: 0). Equation (14) may then be

1
O
Ry
ae

written {(with M

5
©tan (bk ) - =
J C.

> 3 JY
b SV »
1+ == tan (bk )
v i
y‘
Again, eliminating EX s these equations can be combined to
v .

e

vl x = (bk ) tan(bk ) ; . (18)
2 Y ¥

Equations (15) and (18) may be solved numerically for k = and ky,

respectively. ky may again be obtained by substituting the values
into Eq. (17).

2.2.1.3 Two Opposite Walls Lined with linings of same admittance.

at x = 0 -
\ £
J A

X = a

IR
“

[

M =0

gt
1

REVY S5YM
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T o ey
Subatitut hecae boundary

and

Rt B 4 tan(ak ) + Ziﬁ k=0
k X x ]
4 e
Eguation [19) mey be simplified, i.e., the ccordinaie system

2 tan (“E‘)

tan {ak ) = By
Ietan (—) -
2

eina

g

L 1 + oy v
For &l e nodes.

€

al

R fwug}

an
2

- iaf It ak
cﬁg. “x

m e e 0T

gimple arithmetic, two equations (Egs

(19)
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2.2.1.4

eliminating

Two

Substitution

Tor i
! - oy A .
WINe &% Fom oy

at

of these

iflk = kx

[hon

C
X

w = O

“»

{ﬂl, b ] - . . "'
Jalls Lins

=

PEIE 7% S A VR SN
with linings o

3
”

T

different

PamiN
T
S
&
p

(23)

admittances,
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If, in addition, &t

= 0 e

No furither sigoificent simplificztion of Bua (2h) and (28

possible.

Cases When Mach Number ig not Zero

-

2.2.1.5 One ¥Wall Lined Only

Using the same procedure as in Section 2.2.1.1, Bq. (15) now

becemes (starting from Eq. (13))

if. . ‘
— k =k M] “ = k_tan (ak )
k I 2 b4 X

2

o3

or using Bq. (11) to eliminate k,

Z]

if o , , %y 2
2 2 2.

m,m“%:w: k - K !u K- (1wm2) (5~ 4 k%) 1 "
k(1-K7)° S A,

= k_ tan(ak_)
EaN -

(26)
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where from . (7{)\%
ko=
v
o= ()g 1-; 2, 34‘- e & o «

2.2.1.6 Two adiscent walls lined.

}i:a " f‘:O
4

e
)
iy
@)

-

d
1"
o
=
1
o

In this case, Eq. {26} applies;  but instead of Eq. (16), an equation

similar to Eg. {(26) applies:

i g, i/2

k(lmma)ﬁ'

Yy
f sk tan (b)) (27)

{ 2 2y 2 2.}
- M g - ~K T+
i k - ¥ 11 (1-17) (k4 k) -

Also, if preferred, the respective sides of Fgs (26) and (27) may bhe
divided by each other,; résulting in a new eguation which will take the
place of Eq. (27) and may be easier to prograimé

k k
5~ tan (ak ) = %= tan (bk ) (28)

Either Egs (26) and (27) or Fgs (26) and (28) must be solved for

k- end k
X Y

+

REV SYM : =g : ,%sh;g,

wme Clprmmao
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f = E?) ¢ the following equations may be writien directly paralisl

-~

(31)

difierent sdmittances.

’ at x = 0. j:-'ﬁj
X o= &y /ﬁzﬁ},

-~
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above bour

ek botan(a) = G- 07 (L) +4)) (33)

For the other two walls this is

ntly with f :ﬂg at y = 0

and £ :-:[{4 at y=b

TS DL S/ (sh)
Li & 53

.

| -
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Section 2.2.2) can be found by nume

v

in the equations are k (a linear function of sound freguency

admittance of multi-layer lining), & and b (the dimensions of the

of lining peometry {(shown in
methods. The given psrameters
Zi (the

duct).

The problem is to solve the equations for k. In this section, only
s

e

scusged, kg

the solution of the equations for k = and k_ is d may
X K 2

be found without complications from k_  and ko«

Newton's tangent method was chosen Lo find solutions for an unlimited

3

number of modes. In this report, only cases for M = 0 are covered,

Some of the simpler cases with M7 0 may be solved by first finding

.

iteration methods to find

Ias
"
v
jo
N
=
o
n
hedy
o
[

2 solution with M = C and

the

The major problem encountered when using Newton's method ig to find
I L)

suitable starting points. To facilitate this, a plot of Eqg. (15) is
[SH 3 P q

included which shows an approximately cyclic behavior along the

Re g akxg axis. On the graph (Figure 2),,akx iz denoted by =

and

ia.ﬁlk by f . Both z and f are complex. The mode is determined

by the relative vagnluuuc of Re 2 2§ . Therefore, the fundamental

(zero) mode is the first solution of Eg. (15) found as one moves

up

along the vertical axis., Two distinct regions are apparent in the

graph: one in which - Re % fg is negative and one in which Re

is positive. The positive regions are well-defined pockets near

3
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Fach of these pockets corresponds to a

is connected for all modes and extends over all

values of Im %‘z E « While FPieure 2 was drawn up for Re { f%

ag the varameter, Figure % was drawn up for Im f% as the paranmeter.

b

. The two sets of curves are orthogonal, Figure 2 shows only the first
qu s the first turned about

the origin through 180° (§f = z tan z = -2z tan(«z)). The second and

fourth cuandrants are of no interest in acoustics.

The iteration equation for the taungent method for solving Eg. (15)

for 2k is
Y

where

I
E

(ak ) tan(ak ) ~ ia £,k

i

z, tan (Zn),u f

s

o

2
o~
AN
i
St

and F' is the derivative of F with respect to z evalusted 2t z . Ez.
P ;

may alsoc be written as

_ 2 zﬁ + £ + cos (2z,)) : (36)

n+l 2z + sin (2z )
no n

%

¥hen Re { f} is positive the starting point for all modes is chosen
near Re { fg = +¢2; i.e., for the fundsmental mode, Re { zg is
i < . . .
3= 05 and Im Z z& is .02. For the first mode, Re % ZS is

increased by T , while Im { z§ is unchanged. The starting points

for all succeeding modes are obtained by increasing the preceeding

values of Re é z% by T
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%
;

iPAGE 36 )

o

(Y

REV

wn
-

G-7000




Im

e

Z

G syal Qv

L5

A5 o
Ve R
i 'y
I

620356




AD 1546 D

when Re é fg is negative, the saddle point (for the fundamental

mode near Re i f} 2 -1,7) complicates the solution of Egq. (15)

for kx « The Newton method is not applicable at such points.
Therefore, a scheme of starting points must be chosen such that

for at least one of them, kx for a given mode is on the same side

of the saddle point., This requires that the number of starting
_boints for a given number of modes (from the fundamental up) exceeds
the number of modes. For the values of f of interest in acoustic
linings it was found that the following starting points gave complete

solutions of Eq. (15) for negzative values of Re'{ f‘ﬁ 2

Re 2‘ f.g near <9

: n v . . "
{Re i z} is =5~ + <05 4y with n = 142¢Bgsea §
and 1l 2‘ 2t is .05)

Re { f’} near zero
(Re { zt is nTW - 05, with n = 1,2,3,.c. ;

and im ? z} again is .05)

However, in some extreme cases, the fundamental mode was not found with
these starting points. Thercfore, another scheme was devised, taking

advantage of the béhavior of Fq. (15) at large values of Im {zzo For

large values of Im{z} s Eq. (15) can be simplified to

=2z tan z
3 sin(ézr) + i sinh (ZZi)
= (zx + lZi) cos(zzr) T cosh (ézi)
REV SYM ‘ ﬁﬂ?g@‘:ff? I NO. D6-2G356TN ..};.,‘..
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Re 3 ;i <0 to

find the

e number of modes is egual

wton's method 1s applicable in the

oyder of increasing modes as n 1s increased Irom 1 to the value

nooa

of the number of mode:

For Re { i’{ < 0 the values of K
; - X

aoloe mrern ot

By AT Aniavs o e s i e e e s s
¢I 3007 3y GaS0, e

B3¢ GGANE MO
Limes over as n  is increased. Therefore, in computer programming,
& subprogram is reguired to elimirate duplicate values of k. and

to order the remaining values of k_ according ito the increasing

. 2]
magnitude of Re i k v .

N

Equation (18) has-the same form as Eg. (15), and is solved for k

is solved for k.

in the same fashion as Eg. (15) .

and

L

—~
3

In general, the above scheme can also be used to solve Egs (20

ak., T ia ? k
8y 28V L. ¢ o, RSN
5 or 5 and £ 5
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Equetions (21) and (23),
Fisures b and &

to that showvn

changed :

For

jre)

ol
PRCLN

s
Nm?

Re
Im

f o}

For

o

a

{23

alsé, for Re 1 fg <0

]
o]
_L$

The iteration equation

and (23) for

where

G =gz
n

and G' is the derivative of

AD 1546 T

- o P I P
Were Grawn ups

(f'-‘igxw) and  (

cot =
n

5,4 73 is

zz.i is
< O
i z% is

N

(ri - 1/2

is  a T o+ 05 (

For these,

pattern is very similar

Z. Only the starting points must be

JHW - .05

N = 1,2,30e4)

T \
(ro= 0,2,%. . 0.0)

(in both case Im g z§€305)

& L
—¥%-) , respective
2
G
n G

+ f

G with respect to

s respectively,

s respectively,

(38)

7z evaluated at zp .
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Tauation (38 2150

mey

be

The solution of Fgs (24)

is somewhat
would look like Figure 2
arting points

of

values

depend on the

To solve Hgs (24) and (2
to zero,
Below,
but all
described above, and k

iterative solution of Ig.

V4

repeated,

For some values of

1

the process is

some coses (especially wh

than 2, and where Re f
fundamental, first,

started from the problem

more difficult.

for the iterative

S
54

which reduced those

hold for Bg. (25). ZXqus

and second modes were mis

(z0)

In general; a

.,‘ 9 . e o 5 n,
with the positive szones shifted upward. “‘he

solution of vations, thercfore

The relation is very complex.
+. El

different from the above

wasg

ya (respectivalyi‘g ) was sct
L3 )

equations to the form of Bg.

reference be made only to

tion (15) is

so found is now the gtarting point for the

(24).

his will not give all the modes. Therefore,

ot

this time setting_fj equal to zero. In

ere

4]

Im % fl% and  Im $ 1% are larger

11}5 or Re 'zfag or both are positive), the

:ing. Here, the solution

of a duct with the same lining on opposite

- ) ' '
walls. That 11ﬁ1n ( f or /3 ) was chosen for this procedure for
-
* See Equation (h1)
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reduces to Bgs (20) and (21). ‘The sclution of the

£

points for each mode of the

olution of Ng. (P4). The iterstion equatien for the

[
fo N
s
s
iy
¥

«

o T e (20Y and (25 - 5
method for solving Egs (24) and (25) for ak

o

where

z = alk ) s reapectively b(ky)n

—
P
-
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' e e
.~ respectively ibkl,
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The acoustic wave ecunbion was developed

to heat radiation, and

wave equatll

The axisymmetric and
though the awxisymmeiric case is & special solution of the asymmeiric

Case .

¥ b4 amd Pavimde Crmnds 4
ve bouaticon and Pouncary wonoirions

FEquation (43) can be solved by separation of variables:
p = R(r) qb (¢) 2 (z) T (£) (hk)

Substituting Eq. (44) into Eg. (43) results in

7 A
19°%%  113R. 1 of Y. fr 2727 |1 1 )% .
RN2 TRy " gaed 2 N TEELE s
Sr“ o r(ﬁ%fl 2" ¢ St
for the pressure wave along the duct axis one has

ilw t«lczz)




Cs, = Ccos (mif) + S sin {m &3 (L7)

The solution of Eq, (45) for R is then

—~

>

pe

4

P

~~

oo
ot

. .
is therefcrs

(m'?) + D sinlm ""}1*
1 .

k) | - EC cos
S
1

(& S o

& P <o i (f’fw\

i
The order and the argument of the Bessel functions J and N may be complex,
m mo o

2.%,1,1 Cylindrical Puct with Axisymwetric Pressure Digtribution
i{es telky ) - (51)

With the assumption that .V_ = O, Buler's eqguation can ke writien as

AD 1545 D
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2 d b ey . .
ittance one has

the

(52)

P

Sing

from Eq.

o~
\JT

i g
—t

Equation (54) is similar in form to Fg. (15). The latter can be

revwritten as

.
The solution of Eg. (54) for kr follows that of %o, (53) for kx .

The attenuation aloneg the duct axis is obtained from k_ which is

calculated using Bg. (49)

ko= 0 - kD) | (56)
If the duct haé 8 rigid wali (no lining), then from Eq. (54)

J, (ak ) =0 | S (57)
In this case, kr is real.

For this and all following cases it will be assumed that the lining
is the same on all walls. The only exception occurs when struts in

annular ducts are lined (Section 2,3.1.5).
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v
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5

AD %

—_
puct

and then

ibf k = nbkr

Fliminating A and B

Equivalsntly, for the cuter surface of the inner ¢

N (2) - 21, (2)
[¢] EX

AT {ak )
Ze) r

+ BN {ak J
C r

£

.

= iu@fo az'?xb

AJl(bkr) + BNJ(bkr)

,Ado(DKr) + Bho(bkr)

from Fos (59) and (60) gives

. .
N (f 2) + 2N, (£ 2)

fJ (z)
(&}

or

28 (g k:

G

= ,)\
bt qu‘(u}

2
r ) +2°s
) o

7 (f 2) + =d. (f z)
o r 1'7r

Since there a2 solution of Eq. (82) at r = 0 ,
kind is retained:
T4 (e k) {58
(}{ X‘)l e Lo P
-
If the radius of the outer cylinder is a , and Hgs (52) and (53)
are used, then one has
AL (ak ) o+ BN (ak )
'g‘ 1 r 1 .o e }}
LB K K = a.»}n N

{60)

REV SYM
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0

£

where

p o=d () N (£ 2) ~ 3 {f 2) N (z)
o o o' r o r o

(G2)

s = J {zY B (Ff 2) «J {frz) N, {z)
i

= i .{7 k

f = b/a

7
[}

If the dnner wall is rig

. 1
A N, (k)

e gy, SSsme o . ‘[ -
BT 7 I (bk (63)
r

Eliminating A and B from Egs (59) and (63%) and using the definitions

in Eg. (62) results in a simplification of Eq. (61):
£z oy — / (64)
a
"0 .
If the outer wall is rigid, Eq. {(59) redu ices to
o b

Eliminating A and B from Egs (6C) and (65) results in

o
L, | (66)
Tf-the inner and the outer walls are rigid, one has from Eq. (59)

AT (ak ) 4 BN . (ek ) = O
1 T -

™
53N

g
L

REV

i
| ko, 6293560

SYM A

lPﬁxGE [4_9

£F00D




AR 1346 D

iminating

P

e

In this

cLse

2.%.1.3 Cylindrical

Y

The azimuthal

is modified

A and

where

With Eqs (52)

where O,

For a

o

4 . . 7Y
AT {bk ¥ + 0 (bk ) = O {68)
1 ¥ L ¥
and B results in
s =0 (69)

\

p = AJ (k1) co
1 r

¢ are constant

and (53) one ke

nd {(53) one ha

v

fyr +m)

(ia

k

E

with Asymmetric

5

s m () ei(éﬁ twkzz)

S

of integration.

then

{(71)

(71) reverts to Fq. (54),

%
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The pressur

where w = 0, 1, 2, 34 ¢ce « Using

one can find the eguation for ky ¢

Ch p = GH + CH t - Dt = 7
: Pr " Pral ltm; w4l tm+l?zﬁ 0 (7t

whers
C = iak{ +m

D= ibtkf - m

o}
i

ak = z
r

-
Y

o 1. R -]
i = uh - 4

T e

::{(Qg.z_”;rf i (7
pm Tm‘/) Rm(frf) m\frz) I\'m<])

41

t = J (Z) N (f Z) -

f z) N (z
“inymel i o+l T m+1( r ) m )

ER — - e S
= J’m+l(z) Nm(f‘rz) Jm\irz) N (z)

v
m+l,m +1

If the inner wall is rigid, Eg. (74) is somewhat simpler:

w(Copy = Gty ) HE R o Oty ) =0 (75)

m+l,m mom+l’

If, in addition, the outer wall is also rigid, BEg. (74) becomes

WP - m{G t + H +Glp =0 (76)

t )
m4d g w1+l




g
e N

2.5 1.5 Annular Duct

At

e
e
n
Lot
'
ot
w
[
[
as
o
o

1
@]
o

) =5

0o N
C{Q =0

' y Fa T £ N R e e
Using Bg. (73), Ta. (78) becomes

tan (men) = =St

(v

3

/ l ‘J ’ - :,
I o E;z i g

I R

where N = 1, 2, 3,

Eq. (80) becomes

- il Sk,
tan m (ﬁm ) = —

" a7 . f
(ﬁm m) tan (ﬁw m) = 14 x

The parameter 'm is, therefore, a

o o ,
solution of Bg. (43) by sepuration

seeo = number cf struts,

17 only the oubter w ¥o. (V) becomss
m(Dp + 0t ) - G(i%p .+ Dt ) =
“m 1w, mt] m+ i+l mW

Eliminating & between Bq. (79) and (81), one has finally

However,

based on

Substituting for p ,

the

the

~

~J
o

St

(81)

~
oo
o
—?”
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;
assumption that mw (and therefore %?) is dnde

The problen

The paremeter m is &
applicable, the Bessel functions are now
struts are rigid and not lined, Bg. (82)
.
tan (o7~ m) = O
Iy N
or
m=Nn
where N = 0, 1, 25 3 eee and n = O 1, 24
is independent of r and a reazl integer.

v b uged when

constant

BOW one o

manufacturing such a lining.

number, and even thou
of complex order.

becomes

Eg. (74) azpplies for finding k.

If only the outer cylinder wall is lined, m
and kr is determined by Equation (75).

If only the inner wall is lined, m agsin is
and kr is found from Eq. {77).

If both cylinder walls are lined, m from By.

into fq. (7

T B T .
i1 no walls are s

4) to find k.

lined, m from Eg. (85) i

substituted into Eg.

s

Lt

3. . Mmoo
pendent of Thus,

e

eh (74) is

Eq.

If the

-~
o

\n

N

In this case m

is determined by Eg. (85)

found from Eq. (85),

(85) is substituted

(763

€
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L T i TP PO SRS S
When the abruts o
- e S G T S, RN
4 Ql1lIeront 5pRcl
o ot e by £F b1
wall may always be Y= 0, the

where

1.6

now becomes

tan o
or
mo= el
In this case m is a real npuy 1

ther, but

Annular Duct with Asymmetric Pressur

- T, ”
they Tha LiE

{934 ro

n

L

1, L ey LT R SR 14
When the pgas velocity is not zero, kf. \

i

oL necessari
e Distribution

56) becorn

o

1/

While

gre

cated at ﬁ? = &

strut

-

o
3

S

! 2 el - -
kM- Lk = Hy (1 - M )1 (?i‘:~
o= : (85¢)
7, 2
: 1o M7
For an annular duct with ssymmetric pressure distribution, Eg. (74)

still holds, except and D are uow

IS 2 p, &\ -
‘ Y Fak - MLa“%kS = (1 « M) 1 R
ak L 1 - r(;2 J
. 1/2
LA R S T {bﬂf' - }{2 (1 - y?)f; o
D =

l . 7,1 .?a

ke 4 ~ 4 3 AN e “

Equations (79), {76}, and (77} may also
s ¢ e PR

defined by Fas (8940 and (ESe.

1%

~

L

co
1
o

(85¢)

and D

%

Ed
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The gi in the eguations of the previous sections are

=

solution for kK (ans, where sppropriate,
L

kK is found from Eg. (56).

mo) is di

3 -
ki

solutions for an unlimited number of modes. To

Findinge storting noint
z LIy tariing poiny

08

Figures 6 and 7 were drawn. On the graphs, akr ie dencted by
and iafk by f . Both 2 and f are complex, The mode i
determined by the relative magnitude of Re { z % . Therefore, the
fundamental (AO?O) mode is the first solution of qu (54) found as
one moves up along the vertical axis. Two distinct regions are

apparent in the graph: one in which Ke { f%’ is negative and one

in which it is positive. The positive regions are well- defined

pockets near Inm % % % =0 . Each of these pockets correponds to

& mode. The negative region is connected for all modes and extends

JJ

aver all values of Im { % % . Figure 6 was draws for Re % £ i &3

(2 linear Jenction of sound fr&quenay)ﬁgé (the admittance of multi-
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the origin thr are of no

for the tangent method for solving Ege (54)

for ak i
¥
-
£ 7y
A A T {85
Iia it &
wvhere
F peied

and FY is the gerivative of F with respect to 2z evaluated at B

Equation (86)

s o e
J,(z )\
. 11 (,.l_,ﬁ, ]

n Jd (z )i |

Wnen Re 25 is positive, the starting point for all modes ig

[Vt

chosen near Re ; f% = +00¢, The equations for the starting points

3

o

were taken from Reference 3 and adjusted for this application. 1t
should be noted that the points of Re { f% = 0 do not cccur at

repnlar intervals along the ordinate of Figure 6. The equation for

REY
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- o e
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, 52 (5779) , N
Re § 5} =[5+ A & N | (28)
i P - ~
15(8p)7

where

lr’ = (.,‘: - 1/&} T (89)

and & = 1, 2, %, *=°°° N,

N is the number of modes reguired.

e . y 14 o e . e -
The number of terms in Eg S0) te be retained is critical only

. s
with resn

act

line. Retoining the first ihres terms and the ‘'stand " factor

(~.00) Egq. (88) becomes

Re §

(90)

The imaginary psrt of =z in this case and all following ones is
o {al = .005 ‘ (91)

When Re { ff is nepative, two starting points for each mode were

e
ny

NN

chosen. This was necessary because of the presence of a saddle po

in the region of each mode. One starting point is given by Eg. (90),
with the proviso that it is shifted to the other side of Re 2 fg = O

thus

1 u | ]
Re % uk ::f;; + 571 - ;iiﬂl-;{ + 0L (92)

R

j
L
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o

A

o

W

P
P
-

St

43,200
46,341
49,483
52,624

55.766

E

£

ok
B
.
[y
e
£

B
[
"y
o
o

N
L
.

O
[
4)\

57.328
60,469

63.611
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The other starviing point is Kef % and is By
Re §zb = j +f_ = .01 (9%)
n s
where .01 is the “stond-ofi factor’ and
“t N © 7l
o .,.! A 1 . 2 . 4 & - \1 ((‘l!%\
w2 . e 2L N5 2 RTINS | B
o 5 A Pt NS L g
K .;H(b] wl; Sggnuu i

also

-~
N
Wt
AN

e

The term jn is found by iteration from

where jn41 is the value of after each iteration.

The starting

point for the iteration is

Tabel 4 lists the first twenty starting points each for 27 = O

(Bgs (90) and (92))and for 2 = 1 (8g. (93)). The data do not

17

include the "stand-off factor”, While the sterting points are

listed with respect to specific modes (s-1), this does not mean
to imply thst when one starts iteration from these starting points

the listed modes are found. In some cases of interest the fundamental

(zero) mode mey only be found by an additional starting point. For

o

1 ree values of I { zk , it can be shown by writing By, (54) in
series of Beasel Tunciions of

[

&(2

3

{3

g

REV 3YM 4 O, b
g
l PAGE oy :
i e GF000



AD 1848

hz%z§~@ ~Re {f%

is negstive,

°

:

faét(:ﬁf‘" B

LY

“resal imag
and
5= o+ iﬁb
and
J () = J (0) =1
s} G
J (A} =3 (0) =0
n n
now= b, 2
d .k :5 i = (—» Ly
iz@a_L : ’imaggj ; /‘5
when
{);) ESU s |
then
l() i Il
or
Re %z% - Im %f%
and

The solution of Eq. (57) is straight-forward. In fact, Table 4

modes (s> 20) may be found from Eg. (

(98)

Fquation (98) is used as ar additional starting peint when Re § f%

&

gives the values of ak_  for the first 20 modes (27 = 1). Higher

'y -3

%), omitting the "stand-off
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i a0y degey seiviion as above (bqg (U/ M, and then using
'y &

T T T T B S S SN, L

thlb a8 Lhne f_;'{.(il‘l‘,i_fiéé w‘ﬂt in

where, for Fg, (61) (inner and outer cylinders lined),

255 = fp (100)

—
ot
o

Fooo oo £(-f Jlp +8 ) -
; e o

A more efficient scheme is to Tind the sterting points for Eg. (€1)

directly. ¥ith £ = 0, Eg. (61) becomes

or

(o Y11 (H . o =
()0, (£, 2) - I, (F 2N (2) =0 . (103)

Ref. % can be used {o find the starting noints for any given value of

f o The zercs of Lg. (103) are

| {104)

o
o

| 2
- e P, ap relipg + 2p
SRA 20

y 3 (o 5

where
, 5T
T
o= x3

-
e § ¢

p o= S 105
B I3 }u ] . e (105)

(/»@3)6/4 ~25) (}15“»1)
6 A )3 A1)

2
w
5
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st

tog

- e ot o ~ o L
Lo stande GXY

.o £ Y o a . o
side of Fg. (104}, & stend-of? factor, Yhe stand-
off factor iz 01 in both cases.
fnother zero of Bg. (61) for Xe 3 f@ negative can be found for f

is valuz Ffor 1 into Bg. (6

J results in

fot

B, =0

J (2N (. 2) - N () = 0
| o (2 (£ 2] Jo(frg)Fo(') 0

Eqs (104) and (105) held, except that now

Subtract the stand~off factor from the right side of Eq. (104).

(99) to (101) are applicable.

starting

~~~
O
~r
e
&

(1063

(12077

(108)
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For the sclution of Eg. (6LY (outer cyliinder wall only lined) one
. ¥ A
hoas in Bg. (99)
s
- . )
T o o4 g e
P
. ° 4 e, 1 ‘
IR R - (f p = s )Y (1107
R % A ‘ g o o’d)
L § "U o

- Pl el A ey A 3
for the iterative solution of Xg. (64} are found

from I = O3

g = 0 137%)

3344

1%3{ f% negative. An sdditional zero

ke { £} nesative

e
0
h
&)
o
=
jo N
=
Qo
=
]
{1

i0s. Substitution in Eq. (64) yields

= , (1227
9, © 0

or

e
&
N
S
tormy
5
~
~
-
i
o=}
~
N
et
s
P
-
Vana
~a
]
e
1t
o
~
H
3...J
o
g

Eg. (104) applies, but

i
%
3
§

{(114)

o
u
Y
-
ey
*

udi St
g
g
4
~
=
A
'
ot
g

(A" + b6 63N - (1 m:z,}(}a ~25)
6(h A )7(X-1)

ALY 1546 D

REV SYH A




8]
[

iy

0

) . > o . : s
v (s S 2057 + 1899 W7 = (fa 1) CiAT wlii%/ff‘ + 1073}
5N )7 (A1)

%

1
AE 7

£,

o

55 eees I

fector from the right side of Fq. (10h) .

< wall only lined) the

£
.. o -
Foowifeazg - (11%)
ny. -
<
- = )i .
F' = g § f +5}qg =-— (p = 1f_s )1 (116
no( Lo T r o ;
o 0
One set of starting points is obtained from Egs (10h) and (105). The
other for Re g f§ negative is obtained from f = i oD g OF

{r 1¢{, - t (g \ -
J, \irz) ﬁo(é) JO( ) hO(frz) 0

Egs (104) and (114) apply, except that the }ight side of Eq. (104}

1

A

o
BS

is multiplied by .

, and in Eq. (114)

Equation (69) (no lining) is solved directly from Egs (104) and {105).

No stand-off factor is used.

Equation (71) may be solved by substitution into

Eq. (99) of

o~
=

LS
et
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1} o ey s .
The startine
listed values

- - . %
When Re 3 fﬁ
is {(+.00%).

required.

te 8 . 4dai
where
f o=
b3

also,

- [
e “ 7 |1 (120}
Tt %‘%
vhere
Ff=delk +m
moe Op 1y 2y By eace (121

k3 1 >
points may be t Loand 5 withh 2= m., The
are starting weloes For w. 5.0 (A Yatand =g
are LLartiig salueg 103 R 1 -:Asi_ v s A SLENU-0OTY
g it #
be adc
‘o . e 6§ 2
“stand-off factor' is («.01)e Inm ¢z
8 = 1y 2y 3y cece N where N iz the number of modes

only values of Re ; z§ for m from O

e
o

may be found f¥om the following procedure

.{.

2 (122)
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55.730
S8.873
62.016

65.15%

Bled

28, 8B
2.065
35.219

38,370

[

A "
LS
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ot

44,670

47.818

54.112
57.258
60.403
63.548

66.693

Jom vy
L Fe WA

46.168

49,320

61.919

65,067

68.214

REV 5YH

31.61z2
34,4985

38.160

60,270
63.422

66,573

- 68,723

59,116
52,279
55,441
58,600
61.757
64,912
68,067

71.220

50,568
53,738

56.905

60,069

63,231
66,391

69.550

ol

72,707
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v 4 oE D v o= 6 oo f o o= 8
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7,588 &.771 G.836 11080 12,225
11.065 12,335 13,589 14,821 16,038
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The solution of Eq. (72 ively simples

real number, 5 also a

the firast

starts with FEgs

¢, provided
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Do

ibk L = - £ om , ' ' (128)
and

“pmvl " DLm+1?m =0 (129)
(S0

£, = mllof ) et = © | (130)

where 2z 1is taken as a real number. One method of finding the

Y v

zeros of Ea. (130) is to solve Eg. {(130) for increasing values of

z (2= .001, 1, 2, 3, o) until & = is reached for which the

g

left side of Eq. (130) changes sign. Then this valve of 2z is

[}

used as a starting point in the tangent methed. Calling the left

5

side of Eg. (130) F and differentiating F with respect to =z

m{l + £ )

- 7/
} r°
Ff o= { z 7 + - e | +z 1t
r % A m+l,m r om,m+l

- [ (1 +_fr) mp, o+ £ (0 +m(l - £J) - pm+1] o (131)

Substituting F and F!' idinto Eg. (99) yields z . The solutiecu

of BEq. (74) msy now be found by iteration of FEq. (99) where F

e

X
i

is defined by Eg. (132) and F' defined by Bg. (133). The starting

e
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Re § C¢ is the L005).
¥oe CDpo o GHop + CH t Lo DGt (132}
i el T AL mtlm -

and

hs before, this may not yielid 211 modes, therefore another starting

[
b}
o
fud
[
vt
Ea)
o
u
~
o
()
i
o
ok
ot
i3
jo N
[
et
3
[
find
2
1%
o
LA
,
ar
o
P

-~
!,_, X
o
s
~

¥

- o N - PR S S s .
Eqs (104) an %) can be d to find Ke § 2 g ., with the

vields the starting point

Lo}
=
9]
=
&
tods
o
o
. N (—f;»-
g
iy
-
St g

¢ ﬁ negative: (Re 3 z} +

e,

Bquation (75) is solved similarly, except that D in Egs (132)

angd (133) is set equal to (-m). Bquation (130) becomes

F=1f 2zp = 0 (135)

o= m ot
b e m+l m+l 1

and Eg. (131) is

¥ 4

,
o= [afl 2 l T S
‘ {136)
- {‘m P, * lr(l + m) pm+i]

The other starting point (equivalent to Eq. (134)} is found from
C = & s O

- £ o7 1

F t
a ro Tmgnmdl

B
3

: if 2 i .
oo (Pt e fT2)p +fzp -0 it ; + £t 1 (3%
o ) r” Pral i+l romgmtld 7

. DB-29356TH




ueing the

in Egs (99)

similarly to Eg. (7%). Setting D

Fquation (77)

cqual to zero, and with =z & real number:

el
§
i
=
s
)
]
£
S
et
!
o
—
et
A\
O
et

' =om T L

%), where now

70), With

D = o0 the other starting points arce founds.

e T

0 Fatl S Ve m,mtl m+lﬁm)

Equation (141) is solved like Eg. (129) and the results are used

like Egq. (13%),

For annular ducts with struts the solution of the wave equation is

£

similar to that for anuular ducts with asymmetric pressure distri-

byl

btution. The only difference is that in the former the permissible

valves of m are restricted by Eg. (83),
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Fauation (43) applies and has the so

U1PQV,@}i

where

\)

o fEE e

2.4.2 Poundary Conditions

Assuming that all walls are lined, the

the following equations. If the lining at

or

=
ki~

a

I
=

F

2ok FONUATION IN CURVED I ANGULAR DUCTS
In & with constant curvature
is taken in the ¢ ~direction. The z-axis
of curvature

-~ 1 . < .

2ehedl  Sclution of

[

hounda

Ly
cie

i{etem @)

ry

k 4 k and m can be determinad from the houndary conditions.

nditions le d to

has a normalized

admittance ifa ¢ then the particle veloecity normal to this wall is

(145)
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Coordinzte System for Curved Duct
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IS S - %, oA S ey e S I R T,
where the primes indicate

O |
noymalises

kﬁ’n

P — [

ik
5

2l 5 5 oy . . s VT T S JUU. R o 7
If the lining at 2z = 0 heas a pormalized admittance £ . then,
. G *

equivalent to the above,

f

of the lining at 2z = g has a normalized admittance 7 s then

kfg = =C Sjn(k g) + 5 COS(?NQ)

ik C coslk_g) + S sinlk_g)

Eguations(149) and (150) are combined by eliminating C

2
KL 7 |
— Bk ten(k g) - ik( £ + Jy=o0

Z ” o

This equation is of the same form as Eg. (24), and can be sclved for

: . A
nation of 5

+ 1 R 5
f & n bom i

Pt
P
oo

e

.
Fo e
(199

(151)

(i52)
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I =
&
F—
£
p o= « J (bk_JH (:
i i I HY
\
¢ = Z’ (15%)
i 7
roo= J'(ak N (bk_ ) ~ ¢ (bk IN'(ak )
i H] room r m IR ¢ i
s 0=
i /

cutlined in Section 2:.5.5 may be used to

The attenuation per uvnit lengih of duet is

P4
fany
=
g,
jond
=
npmged
N
$ad
\n

Fd
o
Nt

¥
ab

where r is the radius of curvature of the centeriine of the duct

r =
ab

(& 4+ b) o (155)
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L4

o e
e

are

porous material. I the lining is "locally

reacting', its effect on scoustic waves is complelely described by

impedance'. A lining is lecally reacting when
it is divided inte compariments, which ave perpendicular to the duct

wall. Such compariments prevent waves. from traveling inside the

lining in directions otner than those normal to the duct wall. “he

gnalvsis will be rescting linings.

The impedance of a multi~layer lining is calculated uwsing elecirical

= H T VO PPN . 3 g 3 i ons N o o ey
analopies. Pach laver in the lining is regarded as a four-pole, and

the total linineg will thus be a cascade of four-poles.

Yo — o e TR S o
P 121 - ]
O S S T o S —

The input impedance of this cascade is the lining impedance. The
output of four-pole No. 1 is copen, dindictating that the layer closest
to. the duct Mdll is terminated by an infinite impedance, viz. that

of the Figid wall.

Twe types of four-poles ave considered, corresponding to two different

[

types of layers, '"discrete element type" and Ycontinuous element type"
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gration.

uration are

v : i3 TSR SN 4 - [T S oV
gince,in the limitisg case when the

are 7erd.

rather than thelr impedeénce

6]

Pl

admittances

o

o

y vl
” |

Ee—— %«,g@f, s
oy

oy

The input impedance of the link is denoted by 27 and the
impedance of the preceding link, which constitules the load

by 4 e
m=1

fo N

dance on the ocutput of ilink number w ¢ is denote

2

3}
G

-
.-
ot

vse of input end output admittances instead of impedances leads to

somewhat shorter expressiens, thus for the input admittance

In the case of hard termination, as for m = 1 , ¥ =0 .

The values of Yl s & ¢ ¥

o

we get:

, which in general are all complex numbers,

can be determined theoretically or experimentally. A computer program

for evaluation of 2 from measurements performed in an impedance tube

on thin layers (for which Y, = ¥, = 0) is described in Ref.
. . [

]

P
i

&

1 no. bb
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This type corresponds te an electrical itransmission line, and

W, its propagation

[ e | e 1
- %, it F
fio T—— e &

The rnpuv impedarce 74 of a transmissicn line terminated by an

m .
impedance 4 . s (cf. ret. 5):
Z_ _jeosh yf + W sink £
7 = WA S 57)

m Z cuisinho £+ Wocosh v
m-1 8 &

Rewriting this expression in the more convenient admittance form we

get
WY o - i tan(iyf)
oW L - A WY L tean(iyg)

(158)

W oand 2( are theoretically or experimentally determined values, W

is a real number and zf’are in general complex mummbers. For Y we have
&

N ifo , ' ’ (159)

where ¢h. is the sttenuvation constant and ﬁ) is the phase constant. (5

is given by

ﬂB xigj/hm = ETTQ/cm ‘ ; (160)
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ut impedance of the fourepule
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cascade, is calculated s wall,
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the input

¢ 3 FE ) N 156 Y o j YE OLYS v
sdmittance to that sgiven by Eg. (156}, where X is given by

b e ¥ s 4 i 1

Fq. (161). ZEguations (156) end (158) are used altermately to find
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y

AD T

nee of & compesite lining.
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nuation of Lthe wave is given by the form

of the function describing riztion with the coor~

dinate in the direction of propagaltioc cction in

2.% , end the ¢¢ ~direction in Section 2.k, From

ot
2
<.
&
i
£
I8
by
~
o™
A%
R

(&) &

The attenvation D per unit length of the duct, in dE measure, is

given by

. ~im{k, )
= 2 Prg ) %
20 1cb10 ¢

3]

D= 20 log

= 85,68 Im(kz) ' . (164)

Eguation (11) for k_ has two solutions differing from each other
- 2
by & sign. We must choose the solution that gives a wave of decreas-

mplitude along the propagation path, and therefore we can rewrite

4=
=
]
j3]

D= 8.68 | i) o ae)

For the case described in Section 2.4 we get analogously
» <3 4

. ; .f\ﬁ
D= 8.68 Pima)|

Py
[

[
N
e
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solution of the wave eguation in the duct is a supers

ey ™

solutions of the types given in Ig. (10a). Each

,,7,,
5]
wn
—r
e
¢
o
o
@
=y

r‘w
bt
bt

%

of Bgs (13) and (14) for k_ and k_ has an infinite nuwber of

solutions. Let us number the selutions m = O, 1, 24 <. and
1 $ 3

no= 0, 1y & cee, respec (m, n) thus corresponds

H & ¥ b A 3 I T T P SR . S 9 ; .
to & solubtion of k., Bg. (11}, &nd will be referred to s a

Ymoda'., The atienuations, Er , for ithe different modas are thus
1381 .

x v & B4 R ¢ 9 b y %4 *hi
different. Assume that the energy in moede (myn) at the entry of

5 . . . N LI - " S T e . e X - D<A
the duct is kmﬁ(O/e Then the energy in that mods a distance £

E (z) = Em {0) lompmn z/10

For the total energy, made up from all modes, we can write

Re) = S B ()= Z_ E_(0) 107m#0
lilg 13 Men )

The total ettenuation for a duct of length L can thus be writien

p.o= 10 log‘.’;c; S7EY 10 lo

L 810 . '
25; E (0)-10
m,n mn

o8

~DpnL/10

(169)
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Yhe otienuation is, for

Lede

. TS B - e LR N R ST S
sn insertion loss, L.e., the difference 1n att

1

a lined and an unlined duct

+ ¥
B (o) 107 Panl/10

g (0) 1¢~ D/ 10

“er to the wnlined duect. The value of 1L i=

pmmhey of modes ineluded, as long as this

The number of modes to be included can be

]

and (197). For the unlined duct k _ and kv are real for all
+

I3,

modes, as can be seen from Eg. (16). 'Thus only medes for which

2 2.2 .
k) ky'}’x | (171)

will be attenuated, of Eg. (17). 'The attenuation of modes, for

which Eg. (171) holds with some margin, is, however, very large,

and these wodes do not have to be included in the summation.

(170

stimated from Fgs (16)

This gives wmeximal values ¢f = and n , which can be calculated

from Eq. (16) and the corresponding expression for k.

a
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of aircrafts with lined and v

for freguency bands 1.

O, are caloulsted Tor

A IRWATS
< . 13/10

levels O, correspond, conventionally,

o .

+ 0.3 2 N) (17%)
. L%
J »

A standard subroutine that

@

Of the total scound from an aircraft, only &

EA TP oo d B T A 1 1 PPy 9 W
Lhe Guct Lo altenuniion. neEre1ere, ine

REY SYM




545 D

AD Y

lining, and one unallected.

reguency bands of the former

. 1 e T . . Vo de e . 5 i ek v . o] Loy ey .
Aig and of the latler be B, {given). Ve have
e

L = 10 logy, (10 oL 10t ) (174 )

i
Let the given (usually measured) sound spectrum levels at the ground

2ft with unlined duct be Ai . Then the levels

Ay ave calculated using ¥, (170) for 1L

2

A, = A
R A

e 1L (

-
~J
0
~

$
i

Now PNL can be calculated using Ege (172)-(175). PHL is takep to -

be the merit function which is going to be minimized. In the

optimization procedure, t of lining parameters are varied

il o miniwaw in DPNL 45 reached. The parameters glving minimum
PHL, are optimal in the sense that when used in the design of linings

for an aircraft, this aircraft will give minimum annoyance at {lyover,

when fitted with linings.

REV 5YK -

67500




AT 154G D

the

of
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in

whi

Two

Bon

foliowing four methods are used to change the values of the vari

e 4 3o . £
is used for the optimization procedure. The

algovithm for MINUM is described in Ref. 1. Only an excerpt of

reference paper

function mey have discontinuvities, many relative minima and

be differentiable.

need

FTNUM determines the minimum valuoe of a function of several variables.

windmum valve of the functien is found by 2 comparative evaluvation

>

the funetiorn for many values of the normalized variables. The

]

Gradient steps

3 K . T PR . ¢
Handom Qlreciion steps. LI unsuaceeasyiil, a8 3vey 38 taken 1

Averape direction step (the direction for this step is the
of the previous five successful steps)

Random jump step

the firsit three methods, the step size 1s dependent upon the

mumber of successes and failures in previous steps. The rate at

ch each method is used can be specified by the user.

other methods to change the varisbles are used when the prev

slep was near o boundary. These are the mirrored step and the

naary dient step.

anles.

average

ious
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give values

CAD 1545

A

o do go

func

sion meeting de

iteration until

s multituvde of local minima, many of which will
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