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ABSTRACT

A detailed experimental investigation of the structure of weak turbulence
generated by vori’ous single~and multiple-stage grids has been mode, The weak
turbulent fields were.limited to those having no interaction with the mean flow
f"”ﬂ‘eld".:':a‘;}‘z-“;\";presenf study covers a range of Reynolds numbers of turbulence between

70 and 7. Components of turbulence were found to have equipartition of e;wergy

in the final stage of decay. When the Reynolds number of turbulence is < 30,

the kinetic energy of turbulence decreases inversely as the square of decay time.
All the length scales of turbulence increase as the square root of time, while the

Reynolds number of turbulence decreases as the square root of time. Both the
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not in c;-g‘reemeni' with those predicted by the normal statistics of turbulence. The
longitudinal correlation function is closer to a Cauchy's distribution than a Gaussian
distribution function, The resultant three-dimensional energy spectrum sEow continuous
trcn;Fer of energy from the low to high wave numbers through out the fincl stage of

decay. The measured time-correlation functions up to the fourth order iridicofé

. - thot v’rh_ewgrid—generated turbulence is not completely consistent with normal statistics.,

---All experimenta! evidences imply that in the final stage of decay the wave components
of turbulence are not completely independent with unlimited degrees of freedom but

are closely related to the kinetic model of a field consisting of a speciﬁc type of line

vortices which are aged and essentially non-interacting.
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1.0 INTRODUCTION

In almost forty years of reseérch in turbulence, the classical problem of
how a weak turbulent field decays with time is still an unseftled question. The
traditional statistical treatment of turbulence is to derive from the Navier-Stokes
equations the correlation equations for fluctuating velocities at two and three points
in the flow field. The second-order correlation equations contain the third-order
correlations. Equations for the third-order correlations can be obtained, but these
involve the fourth-order correlations, and so on. In a weak turbulent field, i.e., -
in a final period of decay, the third-order correlations are usually assumed
negligible, and then the second-order correlations become linear differential
UqUUI'iU“S, IiIC cnerygy :p(—:ci‘l U TeTO01 01 r}lt? rurUuienr v&:‘ioctfy l‘iucruuflons, wnicn
are Fourier transformations of t‘he second-order correlations, are introduced to provide
the basis for ideas about the energy distribution among different wave numbers. Solutions
of the energy spectrum fensér for the weak turbulent field can be expressed by the
product of an exponential time-decay function with an unspecified initial spectrum
tensor. Early theoretical investigations of this subjeci were made by Tcylor],
Millionshfchikovz, Kérmén—Howcrfh3, Loifsiansky4, and Lin5. Upon assuming fEe
Loitsiansky invariant, Batchelor® found that the energy of a homogeneous and isotropic
turbulence decays as (f—fo)—5/2 in the final period, where t is the time, and tg is
a virtual time. The Loitsiansky invariant was used to postulate the unspecified initial
spectrum feﬁsor. Retaining the hypothesis of homogeneity, Batchelor and Chandrasekhar”

extended the analysis for anisctropic turbulence. They again arrived at the same




power law to the =5/2 for the final period of energy decay. Inhomogeneous turbulence
was further analyzed by Deisslers. When the energ} spectrum tensor near the origin
of wave-number space is taken to be the same as that assumed by Batchelor for
homogeneous turbulence, all components of wave energy are found to decay as the
power law to -5/2.

However, Philips9 and recently Saffman !0 found that the energy in the
final period decays as (f—fo)-3/2‘, if the net linear momentum of the fluid is not
zero. Birkhoff1] poinfed'ouf *haf a decay law be‘fween -3/2 and =5/2 power in
the final period had theoretical possibility compatible with the Navier-Stokes and the
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continuity equations. Recently Lee and Tan'“, indicated that the initial spectrum
tensors, which uitimately led to decay laws to the -=5/2 ond -2 powers in the
TINGI PEriod OF an INNOMOGENEOUS TUIDUIENCE , WEIE U CIUSS U1 UQIITSIDIE 1811301
satisfying the conservation of mass and the symmetrical condition of the spectrum
tensor.

Although the statistical theory for the weak turbulent field attracted so
much attention, only a few experimental investigations appear in the literature,
Validity of the statistical theory for turbulence in the final period has not been

A : : .
verified in detail. The experimental evidence made by Batchelor and Townsend
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:
to confirm the energy decay law of the -5/2 power was considered by Birkhoff' | to
be inconclusive. Further experimental study on weak decaying turbulence seems fo

be necessary to clarify the analytical predictions. The experimental result of Ton

and LingM shows that the energy of turbulence decays as +72 within a substantial
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range of final decay time. A kinetic model, based on aged and noninteracting
line vortices, was proposed fo expldin this observation; however, no spectrum
measurement was made at that time. Deisslerw suggested that spectrum measurement
in the final period would be necessary for positive identification of the structure
of weak turbulence. Hence, under his encouragement and support, an intensive
restudy of the structure of a weak turbulent field was undertaken. An improved
testing facility was built with the specific objective of extending the decay time
as long as possible so as to obtain a more accurate indication of the decay ldw,

The specific turbulent field studied in this paper can be classified as one
of low Reynolds number of turbulence (<100) with physical eddies of limited range
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mean flow field. To generate such a flc;w field, several methods were considered.
1. Generation of turbulence by placing a grid in a uniform steady
flow field,
2. Generation of turbulence by a grid moving at uniform speed through
an initici‘ly quiescent body of fluid, and
3. Generation of uniform -furbulence throughout the volume of an
initially quiescent large body of fluid by dropping a grid quickly
through the body of fluid;
The third method of generating turbulence is considered to be most ideal in that the
energy grédient of turbulence will be .mi.nimum throughout the voiume'of fluid. -

However, it has the same common defect associated with the second method because
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it is difficult to avoid small secondary fluid motions caused by nonuniform temperatures
existing in a large body of stagnant fluid. Furthermore, if one employs the hot wire
or hot film techniques to obtain statistical data for the turbulent field, one would
be required to tow the sensor mechanically through the body of fluid at a high degree
of uniform speed. This was found to be very difficult to achieve, considering the
present state of the art as well as the need to maintain a reasonable cost. Most '
of all, the length of each statistical record that could be obtained from these methods
is critically limited by the size of any testing facilities. The overall characteristic
of the first method was found to be the best of all three in that uniform temperature
could be maintained through the continuous recirc&!a.‘ing and mixing processes
employed in the sysiem. Due fo the great inertia ot a tlowing body ot tluid, noise,
vibration, and unsteady flow can be reduced to a desirable limit. In addition, the
sensor can remain stationary with respect to the laboratory frame, thus eliminating
an important source of noise. Above all, unlimited amounts of stéfisﬁcci deta
could be obtained in such a system. Therefore, this method was adopted to generate
all turbulences studied in this report,

Detailed techniques for the experimental setup, mecéuremenfs, data reductions,

and analytical results are described in the following sections. ingeneral , the

- turbulence in its final stage of decay waus found to have a distinctive self-preserving

velocity structure, The wave components of such a field do not show any terdency

to decay independently, even at very low Reynolds number of turbulence. The

‘measured energy transfer function indicates continuous transfer of energy from the low



to high wave numbers throughout the final stage of decay. This was found to be the
key experimental fact which is contrary to the present theory of weak turbulence,
in which the transfer of energy other than the self diffusion of waves is taken

to be zero in the limit, A maximum energ>./ decay rate proportional to the inverse
square of decay time was consistently observed for a weak turbulent field that

did not interact with the mean flow field. For turbulence which i-nferqcfs with the
mean flow field, the decay rate is always less than the inverse-square law. All
attempts to create turbulent fields that wquld decay faster than the inverse-square
law as well as the predicted -5/2 power law have.nof been successful., It is now

doubtful whether such a field could be created or exist within the physical limits



2.0 EXPERIMENTAL SETUP AND PROCEDURE

2.1 Water Channel

A water channel instead of a wind tunnel was selected for the present
study because the kinematic viscosity of water is app}oximcfely 16 times less
than that of air. Hence, for modeling a given Reynolds number, either based on
the mesh length of the turbulence generating ‘grid or the dissipation length of the
grid generated furbulencé( the mean velocity required for water is only one-sixteenth
that of air. Also there will be a corresponding incréase in time scale for water as
against air, The required Reynolds numbers, based on the mesh length and the
dissipation length, are of the order of <1000 and <100, respectively, for the
present study. The 16 times reduction in mean velocity for water would not only
keep the boundary layer of the channe! laminar to reduce the interaction with the
turbulent field, but also the corresponding increase in the time scale would enhance
the oécurccy of measurements for the decay rate of turbulence. The lengthened time
‘scale also perm-ifs one to obtain a direct visqal observation of the sturcture of
turbulence using the dye-streak technique.

A special water channel 0.6 meter’in width by 0.6 meter in depth and
11.0 meters in length was constructed of double layers of 1,9-cm marine plywood,
as shown in Fig. 1. The walls of the channel were built to wifiﬁn 0.16 cm of the true
straight line by carefully overlapping the joints of the plywood panels. Fora

designed flow speed of less than 5 cm/sec, no measurable slope was necessary for the

’



bottom of the channel. The channel bottom was built to within 0.16 cm of the

true level. The inside surface of the channel was Iin;ed with marine fiber-glass
plastic and a smooth overcoat of paint. Two plastic pipes 10.2 cm in 1.D. were
used for recirculating the flow from one end of the channel to the other. At the
outlet end of the channel, a 26.7-cm diameter low-velocity propeller pump was
used for recirculating the fluid. The pump was driven by a special motor-generator

set made by Electro-Craft Corporation. By means of feedback control, the motor

speed was regulated against the output signal from the generator. A regulation
within 0.02 percent of the set speed for all external variation of line voltages and
changes in load was achieved.
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uniform flow in the fest section. Uniform flow in the channel was accomplished

by using multiple sections of honeycomb and fine mesh screens. Since head loss
through the ;creen wcsvnegligible, multiple layers of 12.6-mesh/cm screens were
used to damp out o“ physical eddies larger than 0.1 cm. Small eddies of low energy.
level decayed very quickly within 10 cm from the last screen. To prevent clotting
of the fine screens, water in the channel was filtered continuously by a swimming
pool filter system to keep the water free of lint and bacterial growth. Conditions

for uniform and steady flow in the channel were found to depend critically on the
absolute uniformity of the damping screens;vhence they were carefully cleaned at

the beginning of each experiment. A baffle plate was installed at the outlet end

of the channel. It was set at such a level that the water flowing over it would reach



the critical velocity shown in Fig. 1. Under this condition no waves downstream of
the plate could propagate upstream; most of all, the backwater effect causing
nonuniform flow in the channel was eliminated. The zone of stagnant flow field
in front of the baffle plate was found to be less than half the width of the channel
and it did not notably shorten the usable length of the test channel. Additional
wave traps were installed at the inlet end to eliminate surface waves, To reduce
external noises, the channel was set on a solid concrete floor far away from all
sources of vibrations.

The low ambient noise of the test channel had been démonsirated by the

fact that capillary dye streaks initiated at the inlet end of the channel remained
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diffused laminarly to approximately 2.0 cm from the wall at the outflow end, This
indicated that the channel boundary layers were laminar throughout the channel

when no turbulence-generating grid was introduced into the channel. With the
introduction of turbulence generating grid used in this report, the dye drops introduced
at the channel boundary near the grid were found to diffuse laterally about 5 cm

from the wall 1 meter downstream from the grid. Thi; was due mainly to the furbuien.ce
created by the grid. At the downstream end of the channel the lateral diffusion was
limited to 8 cm because the Boundory layer tended to remain laminar, and the grid
turbulence decc;yed. Thus, the major protion of the channel core was free from either
the disturbance generated from the channel walis or from the cutoff effect by the

walls on the grid turbulence. These features were key reasons for using a water

channel! in preference to the wind tunnel for this study.




2.2 Biplane Grids

The mesh size of the turbulence-generating grid to be used was limited by
the finite size of the water channe!. The physical size of the turbulent eddies
created by the grid should be small with respect to the width of the channel in
order to avoid interaction of such eddies with the mean flow field, However,
the mesh size should not be too small. The grfd should be of a size that will
produce turbulence of sufficient Reynolds number and energy that could still be
detected at the outflow end of the channel. Three sizes of biplcné square grids
meeting the previously described requirements were used in this study. Two grids
have the same mesh~to-rod ratio of M/d = 2.8, one with M = 3,56 cm and the
other with M = 1.78 cm. The third is an open-type grid with M/d = 5.0 and
M=3.18 crﬁ. Henceforth, these grids will be designated as Grids A, B and C,
respectively, A detailed survey of the intensity of furl;ulence and grid wake was
made immediately behind each of the three gr%ds. In general, the grid wake can be
detected at a distance of x/M = 5 behind the grid. Beyond x/M =5, the wake
becomes unstable. Farther downstream the wake is undetectable, and the turbulence
becomes homogeneous in a plane normal to the mean flow. Measurements were-taken
to check the planar homogeneity ofirhe generated turbulence at x > 35M from
Grids A and B, and at x 2 10M from Grid C. It was found that the measured intensities
of turbulence were constant within 2 percent in the cross-flow planes. The energy
‘components of furbulénce v;/ere measured by varying the angle between the hot film

sensor and the mean flow direction; see Section 2.3. The ratio of the energy of
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, and the cross-flow direction, v2, s

turbulence in the flow direction, v ,

shown in Fig. 2. The equipartition of the energy components of turbulence
indicates that the turbulence in the present study has met a necessary condition

of plane isotropy (within 5 percent). This result is different from the measurements

RS

516, fhey s:z.’:,;ior’red the turbulence to be anisotropic
(u2/§/q2 = 1.5) in the final period of decay after being apparently isotropic in the

initial period.

2.3 Velocity Probe
Perfect low-frequency response and linear-output characteristics of a
velocity probe are essential for measurement of weak furbulence in water. A

:-E%f\;b.'z-zef:cr, c\;.is.dr'{‘f‘—fempercfure hot-film anemometer system '/ was used to
measure the fluctuating velocities. The basic sensor was a 30-degree, hoi~film
wedge, 0.15 mm in chord and ].O.mm in span. The probe was mounted on brass
tubing 2.5 mm in diameter by 10 cm in length. Both the velocity and the dirécfionc!
response of the probe were carefully calibrated; see Fig, 3. For the condition in
jv‘\‘yhich the fluctuating signal voltage e(t) and the turbulence velocity u(t) cre
uneorly relafe;d, i.e., e(t) = Bu(t), the output signal from the sensor, whose

plane of symmetry (bisecting plane of wedge) is parallel to the.u and v cbmponenf

of the velocities, can be expressed by the following equation:

e(t) = ﬁ{u(f)cosﬁ + v(t)singd }+ Qw(t) ’ (2.1)
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where & is the angle between the mean velocity component U and the normal to
the long axis of the hot film; u(t) is the fluctuating velocity along U; v(t) and
w(t) are the cross velocity components normal to U; and 8 and Q are the
calibration constants. Both the constants 8 and Q and the directional sensitivity .
were obtained and verified by oscillatiné the probe sinusoidally in a mean flow
field. The probe was oscillated mechanically in three different modes at a fixed

amplitude of 1.27 cm for different oscillating frequencies. In mode 1, the plane

“of symmetry of the sensor was placed in the plane of uvand v components, with

@ = 0degree. The probe was oscillated along the direction of mean flow. In
mode 2, the film was set at @ = 45 degrees and was also oscillated along the

JET IV S ol | S Fla... L snmcdn T tha cancar uric war hmrls $m Of = 0 Apares
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and was oscillated in the direction of the w component. Typical calibration

~ curves for the three modes are shown in Fig. 3. The slope of the calibration curve for

mode | gives the constant B, while the slope of mode 3 gives the constantQ . The
curve for mode 2 verifies the cosine response characteristics. The value of Q/8

was found to be 0.09, which is negligible as far as the contribution of w2 to the
measured quantifies of v2 and v2 is concerned. When the plane of symmetry of the
probe is in the u and v plane, one notes that thé relationship of e(t) and u(t)

is perfectly linear for both @ = 0 and 45 degrees fhro'ughouf the range of measurement,

These ideal operating characteristics were built specifically into the anemometer

system for this work. The cosine direction sensitivity (Eq. 2. 1) was found to break

down for @ > 55 degrees. Hence, Eq. 2.1 is valid for all turbulent fields studied,
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except at locations very close to the grid where the instantaneous value of #
could cxceed the previously described limit,
Let e; and ey be the root-mean-square (rms) outputs of the anemometer

setat @ = Odegree and @ = 45 degrees, respectively; then
A —_ A 62 |
| 2 - ‘ . (2.2)

N

This relationship was used to obtain the ratio of energy components shown in Fig. 2.

Heis-we take Uv = 0, since there was no mean velocity gradient in the field.

2.4 Recording and Reprocessing Data
Siﬂ_ciz_nal output from the anemometier system was normally recorded on a
freque:iiié;/—modulufed magnetic tape recorder. A continuous recording time of 35
minutes was used for each data run, Before a data run a calibration run was recorded
by oscillating the probe at two frequencies (f .= 1/7 and 1/14 cps) in the mean flow
field, The decaying turbulent fields were measured at approximately 10 locations
along the channel, starting at a few mesh lengths from the grid and extending to a
location where the energy of the ambient noise was approximately equal to 17 percent
of 'fhé:ianergy of turbulence. The ambient noise of the channel and equipment wifhou't-'
the turbulence-generating grid was also recorded on the tape after each data run.
During data recording, both the mean velocity cﬁd root-mean-square of turbulence

were continuously monitored by analog means to provide assurance that the data were

_valid throughout the long recording period.

°



13

The recorded data can be analyzed either by an analog or by a digital
computer. Most analog data-processing techniques use a low-pass RC filter
to integrate the instantaneous quantities. Consequently, the resolution of the
low-frequency result is not alkwcys too satisfactory. In analyzing data of a
weak furbuience, especially in water, the low-frequency domain is extremely important
since the bulk of energy is contained within the 2-cps region. To obtc'in unbiased
measurements at fow Frequenéies, digital computing techniques were chosen.

Before the recorded analog data could be analyzed by a digital computer

the following reprocessing of data was required:

1. Transferral of the low-speed tape to a high-speed tape to meet

te 1 .t P 1L U (SRR S | R T I N LN
LR T R e i el o A it o . )

2, Conversion of continuous analog data into discrete digital

samples of equispaced time interval.

3. Removal of the long period trend and mean velocity U by means

of a digital running-average technique.

The high-speed capability of the analog-to-digital converter required an
increase in tape speed 32 times the original recording speed (4.78 cm/sec). This
was done by speeding up the original tape recorded on an Ampex SP-300 by eight
times and by transferring the data to a tape on an Ampex SR-600 recorder at a
tape speed of 19 cm/sec. The transfer tape was then digitized at a speed four times
faster than its recording speed.

To compute accurate autocorrelation and energy spectrum functions within
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reasonable computer time, a careful trade-off study between the resolution of the
results and the cost and capacity of the computer musi be made. According fo

18

Blackman and Tukey '*, and Bendat and Piersolw, a sample interval equal to
one-fourth of the period of the highest frequency component observable in the
record is sufficient for computing accurate autocorrelation and energy spectrum
functions. From oscilloscope displays of the hot film output, the highest frequency
component in the signal was ﬁbouf 10 cps. Thus,' a sample interval of At = 1/40
second is used to digitize the analog data. It was found that the computed spectra
contain almost no energy at frequencies higher than 5 cps; hence, the digitized
sample interval used would not cause significant aliasing érror.

The mean velocity and its long period trend may be removed from the

original data, e'(t), by a running average, e/(t).
e(t) = e'(t) - er'(f) (2.3

where

| t+T
(1) = o= ff_T e'(n) dn

The effect of the running average on the recorded data can be seen as follows, The

value of e'(t) can be represented by a Fourier transform

e (1) = f°° G (§) exp (i2n f¥) df
and _ N ' (2.4)

G'(f) =f°° &' (1) exp (-2 ft) dt



The running average in terms of a Fourier transform can be obtained as

o,

[¢0] .
[ e _SL%%ETﬂ exp (127 Ft) dt

+

T o
[ G'(f) exp(i2mfn) dndt
T 7me (2.5)

=00
It can be seen that the running average has a minimum high-frequency cutoff

effect proportional to 1/2nfT with band stops at f=n/2T, wheren=1,2. .. . It

follows that the Fourier transform of e(t) is of the form

\ Cosin2wfT
G(f) = 60 [1 - o] (2.6)
and the power spectrum cutoff factor due to the running average is
[U'\T} - b\r)]', - [smurr'n]', ./
G'(f) 2w fT

For a low frequency of f=1/8T, the power spectrum after removal of the ruhn}ing
average, G(f)z, is equal to 0,005 G'(F)z, On the other hand, if f 2 15/T, then

we have a cutoff factor of less than 1 percent. A digital 5-minute running average

of 2T = éOO seconds was used to remove both the mean velocity and the tong period
trend from the original data. As can be seen from Eq. 2.7, a trend with a period longer
than 20 minutes is almost completely removed, while for a frequency greatél' than 0,05
cps the energy spectrum is practically not affected by the running average. The time-
series sample of 72,000 data points, representing the original analog data minus its
S-minute running average, was then uséd as an input to an IBM-7090 high-speed
computer for subsequent calculations of the correlation functions. A short sample of

turbulence and calibration wave reproduced’frbm the digitized data is shown in Fig. 4.



The ordinate of the figure is in arbitrary computer units, representing velocity,
Superposed on the data is the sinusoidal calibration signal, through which the

absolute values of both velocity and fiime scale can be recovered,

~>
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3.0 DECAY OF WEAK TURBULENCE IN THE FINAL PERIO!j

The main objectives of this study was to find how the kinetic energy of weak
turbulences decay with time and how the turbulence-generating mechanism affect
the final decay of such turbulences. It was found that in the final stage of decay
the turbulence had equipartition of energy components and homogeneity in the cross-
flow planes; see Section 2.2 and Fig. 2. This condition simplified the measurements
that were required to describe such a field, Th.af is, only one measurement of the
tongitudinal component of furbulence was sufficient for representing the field at
each cross~flow section. A 35-minute récording of the turbulence was made at
each different cross-flow plane, x distance from the grid. The data represent the
turbulence at different decay times, T = x/U. The recorded data after being digitized
and having their 5-minute running average removed were used fo calculate :2 and
various correlation functions.

The energy of turbulence for each recc.)rd is calculated as

-5 2 N ,
2 B 2
Upn = N hi] eh (3. 1)

where e}, is the digitized §ample: B, the calibration cons‘fonf; and N, the total number
of digitized samples,

An estimate can be made on the normalized standard error due to limited record
length, T, of the data. Assuming that the spectra of fu'rbulence are approximately of
white-noise fyApe with band width, W, one finds that the normalized standard error was

given by Bendat and Piersol 17 as

.0 Var(v? )] /2 = (WT, )"]/2 (3.2)

5
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The band width of the turbulence is a function of the mean flow velocity, U, and a

wave number, Ky representing the cutoff wave number

'd
I\w U

27

W =

where K,, for the present study (Fig; 10) is assumed to be Kyl v (t—’ro)] 2= 0.50.

Since the dissipation length of turbulence is x=[5v(t-t,)] 1/2 ; see Section 5.0

14

then
- [ 21 ]]/2 (3.3)
1.12UT, )
For a mean velocity, U, the record length, T,, has to be increased with increasing
v S f “L-O e mesee f::‘ :Ef:?:‘.?:‘.; Ll: :.v;.Lv: vvvvvv iy Wt e St uouuv ;;cni«)l;s.

(t - to), is to be maintained. The maximum value for (2xx /1,12U) at the largest
period of decay measured is of the order of 6 seconds (Fig. 8). For the fixed record
length, Ty, of 30 minutes used in this experiment, the largest possible error ¢ is
about 5,7 percent; at shorter decay periods near the grid, the error is negligible.
Thus, the record period T, = 30 minutes is considered adequate for the present
investigation,

A small correction for the ambient noise was found necessary for the weak
turbulence measured near the end of the chqnnel. In generalv, the measured data
ended when the ambient noise was more than 17 percent of the energy of turbulence.
For every measured record of furbulence‘, the corresponding ambient noise of the same

station was also recorded by removing the turbulence-generating grid. The noise
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level was found to be nearly constant along the whole test channel. The same

was tiue for the correlation function and the energy spectrum of the noise. Dye
traces initiated at the upstream end of the channel were found to remain straight

to the end of the channel. This indicated that there were no vortical velocity
fields associated with the measured noise field; therefore, one may assume that
these noises were due mainly to minute longitudinal oscillations of the channel flow

and recorder noises. One may also assume that the noise fields were uncorrelated

with the turbulence under study and could be subtracted from the measured datal4,

as

v | (3.4)

where um2 is the measured energy uncorrected for noise, and un2 is the energy of
ambient noise.

In practice, the energy of turbulence was obtained as part of the computation
for the autocorrelation function to be discussed in Section 4.0. The measured turbulence
energies for different single grids were plotted in Fig. 5 as functions of the decay time
t. The energy of turbulence created by the open Grid C approaches the inverse~-square
decay law at the very early stage of decay, while the turbulence energies for the fW('J.
solid Grids A and B approach the same decay law at a later decay time. The data
in Fig. 5 were replotted in linear scales as shown in Fig. 6. It is clear that (UZ/:JE) !
varies linearly with t in the final period. This plot is used mainly to obtain the
virtual origin of decay time, ty , by extending the straight part of the energy curve

toward the abscissa of time.,



Further tests were conducted to see whether different initial conditions of
the turbulence-generating process would affect the final decay law. This was
done by using different combinations of multiple grids. One experiment consisted
of a large solid Grid A placed 30.5 cm upstream of a small solid Grid B. The
“energy of turbulence was plotted in Fig. 5 against the decay ffme, t, in reference
to the large Grid A. One notes that the energy of turbulence generated by Grid A
was significantly reduced by the small Grid B. However, the turbulence in the
final period followed the same inverse-square law. With the positions of the two
grids interchanged, it is seen in Fig. 5 that there is no effect of the small grid on

the large one. The decay time in this case is again in reference to the large

~atoa LT A O O r (R B [ N A -
~
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spacing between these grids was varied between 4.8 and 9.8 M. The decay time
is in reference to the downstream grid. It was found that in this case the turbulence
generated by the three grids was exactly the same as that of one single grid, A

20

similar frend was also observed by Tsuji and Hama“™ in their study of the initial
period of turbulence decay behind multiple grids. - However, the present e-xperimenf
indicated that for weak turbulence produéed by grids, the energy of such fields o'oes.
not consist of waves that are independent and superpos'qble but rather a field composed
of a specific type of eddies,

In the experimental tests, it was found that multiple grids having nonintegre!

multiples of M/d ratios could cause a strong Moiré effect, i.e., large nonuniform

drag effect, This results in large-scale eddies which could interact with the mean
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flow field. For this cosé, the energy decay rate of turbulence was found to be
less than the inverse-square law.

tempts to create turbulence that would decay faster than the inverse-
square law were not successful . All energy decay rates were either less than or
equal to the inverse-square law. It should be noted that in order to obtain the
observed inverse-square law, one has to achieve absolute uniformity in the mean
flow field. If such a condition were not attained, the decay rate would always
be less than the inverse-square. This may be the reason why such a decay rate

is not commonly observed.
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4.0 SELF-PRESERVATION OF CORRELATION FUNCTIONS AND ENERGY.
SPECTRA IN THE FINAL PERIOD

A correlation function for a weak turbulence field was first obtained
by Batchelor and Townsend ' in ]948.‘ Since then no further work verifying
the results has been known in fhé literature. This may be due largely to the
fact that the technical ‘difﬁcpl’ries involved in the measurement of weak turbulence

oo were formidable. However, due to recent advances in both anemometry and data~

processing techniques, studies éf this nature are now possible,

In the present experimental sefup, the turbulence under study is decaying
in the mean flow direction. The effect of this iongi;rudinol energy gradient is
considered to have only minor effects on the basic decaying mechanism o-F the
turbulence in its final period8’]2. Hence, the mean velocity field may be
considered as a carrier of turbulence. In compuﬁng the correlation functions
and energy spectra, one may cppfoxi'mc’re the turbulence as being locally homogeneous.
The digitized data for the fluctuating velocity component along the mean fléw
direction were used to compute the autocorrelation functions. From this the
longitudinal correlation coefficients can be obtained by u;ing the Taylor's cpproximuﬁon] .
The one-dimensional energy spectra were computed directly from the Fourier
transformation of the autocorrelation functions. Based on the assumption of local
homogeneity and isotrophy, one may further compute the three-dimensional energy

and dissipation spectra from the one-dimensional spectra.
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The recorded data for the turbulence generated by a single Grid C and
Grid B were used %or detailed digital analysis. The analyzed data were further
limited to the finc‘JI' period of decay, since the turbulence within this period
was found to be plane homogeneous.

The autocorrelation function of u(t) is defined as
1 T
R(x) = «lim—_‘-.— fo u(t) u(t+ ) dt ) (4.1)

T— o

which may be written in a discrete form for numerical computation

2 N-m ‘ _
R = _L_ z ' 4
m N-m hel eh eh+ m (4°2>

fee b= N AnAmE S G R

where e}, is the discrete digitized sample after the 5-minufe running dverage is
remové‘d from the ‘origincl data; T =mAt is the correlation lag with sample interval
At; N, the samplesize; Q,the total discrete lag number; and 8, the calibration

constant. Note that R(0) =R —q= u2. The nondimensional time correlation is

defined as

R() _ Rm

Rl) = Ry © R

In actual computation one has to choose a total lag, Q, which is more fhcnllorge
enough to cover the complete range of correlation function. After the first trial
computation the required Q or moximun"l T can be determined, so that for subsequent
calculation Q can be reduced to a minimum in order to save computer time. The
total correlation Idg used in computing aufo&:o’rrelcﬂons were Q = 200 or T = 5 seconds

for Grid C, and Q = 400 or T = 10 seconds for Grid B.
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An estimate for the normalized standard errors of the computed correlation
function and energy specfruml9 could be made if one assumes that the spectra

of turbulence are approximately of white-noise type with band width, W, i.e.,

Vor[R(‘r)]]/z - (zwr,.)"/z[H R2(0) ,1/2

R = TR R2(+)

] (4.

)

‘The approximate band width of turbulence for this case is (1.12 U/2u)); see Section 3.0,

where U is the mean flow velocity,and x is the dissipation length. At the longest
period of decay for the present experiments, the value for 1/W is about 6 seconds;
~hence, for a record length, T, of 30 minutes, the largest standard error, ep, of the

‘correlation function is

_ KW T
@ = 0.04 01+ AL

T

One notes that at large T where R(0)/R(7) is not small the present measurements are not

expected to be accurate, However, at small v, the expected error is more acceptable .

It should be noted that a tradeoff to make the present experiment more accurate must
be made against computer time and capacity. In spite of the predicted large €pr the
computed data show better consistency. The results of the normolizea time-correlation
functions, Ry(7), at different stages of decay are shown in Figs. 7 and 8 for Grids C
and B, respectively,

4 From the described results, one may re-examine more closely the condition
of homogeneiry‘?] within the decaying field. For example, the gradients of length

scales and energy in the mean flow direction must be small
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e hdr s 212 (4.4
dX - bN dx ° ZR U2 << ]
A
and
L, du2 3 1/2
- = . 29_(_‘_{_2)/ < 1 (4.5)
o2 dx R, U

where R, is the Reynolds number of furbulence; » , the Taylor's dissipation length

______parameter; and Ly, the longitudinal integral length. These parameters are calculated

and discussed in detail in Section 5.0. From the measured data we found that

0.01 < 9 < 0.025
X
and
L a2
0.04 < - =9 < 0.1
uZ dx

Hence the fields may be considered to be locally homogeneous, and the Taylor's
O I . . .
approximation' is applicable for the present experimental setup. It follows that

the longitudinal correlation coefficient can be approximated by

£(r) = Yxk+n)ulx) o opiun 4.6)

(r) = (U ) (
u“(x)

where r=Ur. The longitudinal correlation distant, r, is further normalized by the

diffusion length parameter as

% = r[y(f—fo)]—]/z ‘ (4.7)
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In the final period of decay the longitudinal correlation coefficients for both

Grid B and Grid C are found to have self-preserving form, as shown in Fig, 9. One
should note that this function is close to a Cauchy's distribution function, and is
definitely not of Gaussian type. It was found that in order to obtain the correct
dissipation and three-dimensional energy spectra from the correlotioln function one
must first obtain a precise one~dimensional spectrum through the Fourier transformation
of the longitudinal correlation coefficient . Since the spectra must coyér an energy
range of at least 6 decades,v see Fig. 10, it would be impractical to obtain such

spectra through direct measurements. The best solution at this stage is to attempt

“to fit an analytical function over the measured self-preserving longitudinal=correlation

L. - : - - - . [T at - ~ e ~ rov
AAARTTIAIANT A SNAWN 11 FIO L Y 0 A LUV S WD PDUTEUE TONI v Wi e i iy

form was found to fit the correlation coefficient within experimental errors:

) - —g 0o
1+ (=)
a

where o is the half width of the distribution function. The function with a=3.2
gives a perfect fit with the experimental data for r* < 10, see Fig. 9, For r* > 10
the fit is not as good. Since the values at large r* will effect only the low frequency
spectrﬁ, they will have a small effect on the dissipation and the three-dimensional
spectra; and hence inaccuracy in this zone can be tolerated.

As discussed in the following section 5.0, the important nondimensienal radius

of curvature, X*, for the longitudinal correlation function at r* = 0 is directly related

to the energy decay rate of the system. The radius A* can be found directly from

Eq. 4.8 as:

S STt et e ek aTh A e ek i = o it D PRI ST et < I S S )
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¢ e o012 o a2V (4.9)

According fo the Kérmén-Howarf.h equation 5.7 for a turbulent fieid whose energy

decays as (f—to)"2 the value for a* should be equal to V5 or 2.24. Thus the

prop%r valve for « in Eq. 4.9 should be equal to 3,16 instead of 3.2 according to the
best fitted curve. This coefficient will be shown later to have a strong influence on

the dissipation rate of turbulence. It was also found that the nondimensional correlation

- functions have only a small change in functional form between the infermediot.e and
 the final stages of decay.

From the analytical expression of the longitudinal correlation function one

' ) )
Ey(K) = .2_1:-"- f f(r)cosKrdr ' (4.]0')
0 .

" Here the power spectrum is defined in the positive wave number space so that

o0

W = A(f-fo)—2-= fo Ej(K,t) dK - ' (4.]1)

‘where A is a function of the geometry and the Reynolds number of the grid. Equations

4,10 and 4.11 can be nondimensionalized as follows:

Eq (K, 1) (t- to)3/2

EY =
] Av]/2

0
2 [ * B
= — fo f(r*) cosKv* dr* (4.12)

where K* =K [v (- ’ro):e/2
| Substituting Eq. 4.8 into Eq. 4.12, one obtains the nondimensional one-dimensional

spectrum
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*

* -akK
= = f cos K*r* dr* ae (4.13)
1+ (___)2 _

This spectrum also known as the Laplace's distribution function, is plotted in Fig. 10
for o equal to 3.16. It will be shown later that the decay rate of turbulence is
dictated primarily by the small variation at the vanishing end of the energy spectra;

and hence, the most important parameter governing this rate is the Taylor's dissipation

length » . Henceforth we shall take a =3.16 as being the asympfotic value,

The nondimensional three~dimensional energy spectrum E* can be obtained
from the following frc:nsFormc:fion22 of the one-dimensional spectrum, if the turbulent

field is homogenecus and isotropic,

3/2 +3 .dE*

E(t-t K™d 1 % L

E* = —(;-2%72— e dKL] - %_u<*+a|< 2) €] (4.14)
y |

where E is the three-dimensional energy spec'i'rum.' It has been shown previously that

the present weak turbulence is approximately homogeneous ond isotropic, except the
third-order correlation functions (see Section 6.0, Fig. 14) do not fully satisfy the
condition of local isotropy. Nevertheless, it is assumed that Eq. 4.14 is valid with
reservation. The self-preserving fhree-dimeﬁsionol energy spectrum for fhé weak
turbulence is shown in Fig. 11. One notes that it peaks at about K* = 0.5 and vanishes to
a value of less than 0.01 at K* = 3, while the one-dimensicnal spectrum vanishes at

about K* = 1.8, see Fig. 10. It is clear that in order to obtain the correct three -
dimensional spectrum extreme accuracy is required in the pne—dimensioswdl spectrum,

Note also that E* is proportional to K* as K* - 0,
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Erom the three-dimensional energy spectrum one can obtain the dissipation

spectrum D= 2UK2E, which can be expressed in the nondimensional form as

p* = D (t-15)" 2 . -2K*2

E* (4.15)
A v 1/2

This function is shown in Fig. 12 for the case in which a =3.16. The dissipation
spectrum pecks at K* = 1,2 and vanishes at K* = 4,0,

With these results one may proceed to examine the balance and transfer of
energy among all of the wave number componeﬁfs. The time rate of change of

2 .
energy 2 for a given wave can be expressed as

9E
B r,n - 2wk (4.16)

and the integrated rate of change of energy over all waves is

00 00 00 . 2
JE 2 du -3 ,
il - ( - - = - - 4,17
fo > dK = J'O L(K,t) dK fo 2vKPEdK = g = 2 Alt-to) (4.17)

where E(K,1) is related to the triple correlation function representing the transfer of

energy among the various waves. One notes that for the present case

fw I(K,1)dKk = 0 (4.18)
0 .

since no energy is generated or lost while the energy of waves are redistributed. Both

Egs. 4.16 and 4.17 can be nondimensionalized os

2=y - 4 p* (4.19)

S
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and f (-é-—) dK* = f D*dK* = -2 (4.20)
t )

0 0

Therefore . SE
<

Since 3E « 3 . K* dE*

(7)) = -7EF + 53
hence » 2

™ = °‘3K [2aK* + (2 - __%‘_)K*2 - oK' 1€} (4.21)

The energy transfer function is:ploffed in Fig. 12 for the case a=3.16. It is evident
that the energy transfer function has a self-preserving and nonvanishing form, wif|-1

* continuous transfer of energy from low to high K*. In other words,. the waves are
correlated throughout the tinal stage ot decay,; and they must be reiated to some
specific types of physical vortices.

The integral of the dissipation spectra can be evaluated as

' 0 0 4 *
f D¥dK* = f -gm'a‘?[.K*3+ ak*41 ™ Ky --rf’% C(4.22)
0 0 a
The integral must equal -2, see Eq, 4.20, for the case in which w? = A(x‘—i‘o)_2 .

Hence, o must equal to V10 = 3,16 as is required by the Karman-Howarth equation 52

mentioned before,



5.0 LENGTH PARAMETERS AND REYNOLDS NUMBER OF TURBULENCE

It is of general interest to find out how the various length parameters such
as the Taylor's dissipation length parameter, X\ , and the longitudinal integral

length, Ly, and the Reynolds number of turbulence R, , vary with the decay

time.
The turbulence Reynolds number is defined as
T “2.\1/2
r o WA
A v
= 1/2. - : L
where (u4) is the characteristic velocity; x , the dissipation length parameter
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(5.1)

tc talian pe the charanteriarie lenath of turbitlence . and v is the kinematic viscosifpv.

The dissipation length parameter, \ , is defined by the Kdrmdn~Howarih

equorion3 at correlation distance equal to zero as
du 10 v u2
dt \2

If the decay of the kinetic energy of turbulence follows a simple power law of the

form u2 o (f—fo)_z, the dissipation length parameter may be written as

N [51/(f—fo)]]/2

since t, << t in the final period, this approximation is a valid one to use, The
parameter A\ may also be evaluated, as mentioned before, from the radius of the

longitudinal correlation coefficient f(r) necr the origin, i.e.,

(5.2)



32

’ "f"(l’:O) = ]/ X2 (5.4)

The numerical evaluation of A from f"(0) was made by the least-square fitting of power
series of r through f(r) near the origin and solving for the radius of curvature at
r=0. It was found that A evaluated by this rr;e’rhod was quite close to the Karman-
Howarth approximation of X in the final period of decay. Before the final period, A

" can only be obtained from the radius of curvature éf f(r) atr=0.

The longitudinal integral length, L., may be computed from the following

definition:

S A SO A )
: J 0 A 7
It was found numerically that L = 2x .
The Reynolds number of turbulence in the final period may be estimated by
O Ve S S I
A v v
while R, before the final period is computed directly from
T R Y —

f(0)

The measured Ry and A are presented in Fig. 13. It is interesting to note that for the
case of open Grid C, the Reynolds numEers of turbulence are under 30, and the decay

of energy follows the inverse-square law at a very early stage. However, for the two solid
Grids, A and B, the initial Reynolds numbers of turbulence are more than 50. As R,

decreased tc approximately 30, the decay of energy was found to approach the inverse-
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square law, and followed the law throughout the last period. In the present experimental

setup, the onset of the inverse—squcfe law is approximately R, < 30.
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6.0 THIRD AND FOURTH-ORDER CORRELATION FUNCTIONS

The correlation functions of the third and the fourth orders are the additional
statistical characteristics of the turbulent field which are of direct interest to the
statistical theory of turbulence.

The time~correlation coefficients?3 of higher order are defined as

RO oy L) o) 6.1)
e o [u2(r)7 (mtn)/2

If the joint-probability density distribution of velocities is assumed to be Gaussian,
then the correlation coefficients of higher order that are even are given by a function
of the second-order correlation coefficients 23 Ri(T), and the correlation coefficients
of odd order are all zero. This may be subjected to experimental verification.

The measured correlation coefficients of the third and fourth orders at various
stages of decay were compared with results of Frenk.iel and Klebanoff23 in Fig. 14,
The data used for computing the correlation coefficients of the third and fourth orders
are based on those of the small open Grid C with measurements taken at positions
*/M =4.8and 19.2. As ;hown in Fig. 14, the measured correlation coefficients
of the third order are very similar to fhosé of Frenkiel and Klebanoff . In the case
of isotropic turbulence, sz' ](-r) should be equal to -Rf]’z('r), and third order moment
coefficient, ?(f)/ [;-2—(1‘)]3/2, should be equal to zero. The present results for weak
turbulence and the results of Frenkiel cm.d Klebanoff at higher Reynolds numbers

emphasize that turbulence produced by grids is not exactly isotropic, since
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RE (1) £ - RA()
and

RZ10) = RI72(0) £ 0O

The fact that the third-order moment coefficient is not zero also implies that the
waves are not completely independent,

If the time skewne5523 is written as
' 2,1 1,2,
s3(r) = BLRY (1) - R/T(DI (6.2)

~ it is noted that the maximum time skewness at two different stages of decay (Fig. 14)
< Quexinuiely Ui 2 A .

If the Gaussi'an probability density distribution of turbulence velocities is
'”.*o-svs_umed, the fourth-order correlations can be represented by the second-order

23

correlation®?, 1.e.,

1,3 _ 3,1 _
Rf = Rf = 3Rf (6.3)
and
2 .
RZ2 = 14 2(R,) - 6.4)

The experimentally measured fourth-order correiations are compared with the
: . : . 1,3
corresponding Gaussian values calculated by using Egs. 6.3 and 6.4 fer R, ™,
3,1 2,2 ¢ : £F et :
Ry ", and Ry“7“ from the measured second~order correlation coefficients, Ry, in

Fig. 7. As shown in Fig. 15, the measured fourth-order correlation coefficients

depart from the predicted curves at regions of small lag.,
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7.0 COMPARISON WITH STATISTICAL THEORY OF TURBULENCE

On the basis of the theoretical result of Diessler (Fig. 3 of Ref. 8) and
also of Lee and Tonlz, the effects of longitudinal inhomogeneity of the present
grid-produced weak turbulence on the spectrum tensor are negligible. Thus,

~ the statistical fheoryé’”' 13,24

for the weak homogeneous turbulence can be
used to compare against the measured data, Before making such comparisons, a

_ brief review of the statistical theory of turbulence is desirable. The Navier-

Stokes equations for the weak homogeneous turbulence field are in the form of

— = - %R L2 : - (7.h
V) e P vV |

. where u; and p are the fluctuating velocity components and pressure, respecﬁveiy;
_and the constants p and v are mass density and kinematic viscosity of the fluid,
respectively, If we multiply Eq.7.1by uj and add to the product a similar equation

with i and j interchanged, the resultant two~point correlation equation is

ad

éTRij(r,'r) = Sij(r,t) + 2vV Rij(r,’r) | | (7.2)
where

Rij(r,‘r) = uix,t) uj(x+r,f)
‘and

S_ij(r, t) = Oy {S—XI-( ui(x,t) uj(x+r,f‘) uplx, 1) + -;—%;;p(x,t) ui(x+r,t) }

Here the operator O, acting on a second-order tensor Cij(l") is
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O, {Cij} = Cij(r) + Cj;(-r)

One may take Fourier transformation of Eq. 7.2 by defining

® KT
CI’ij (K,i‘) = fff Rij(r,f) e dr
-0
and o KT
z.ij (K,t) = ;/‘i'f Sij(r,f) e dr

Then one obtains the spectrum tensor equation from Eq. 7.2

a ) .
?@ij(K,f) = Z;j(K,f) - ZUqu)ij(K,f) ' (7-3)

- It is clear that the two-point correlation and spectrum tensor equations are

indeterminate since the terms S;j:(r,f) and I::(K,t) are completely unspecified,

~ Equations for Sij(r,f) can be obtained; however, these involve the fourth~crder

. correlations, and so on,

In the final period of decay, S;j(r,f) and Zij(K,f) are assumed negligible;

~ then we have

5 .
'b—f-Rij(r,f) = 2VV2Rij(l',f) ‘ (7'4)
and
3 L .
= qpij(K,t) = -2 vV (K t) A (7.5)

Equation 7.5 possesses a solution of the form

Bk = -2 vK (f-fo)

(K
®ij ‘J ”e

(7.6)
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The equations of motion do not supply the initial spectrum tensor, @ij(K,fo) ,

although they must obey continuity and the condition of symmetry, i.e.,

Kiq’:j(K'fo) = Kj q)ij(Krfo) = 0 (7.7)
and
@ij(K,fo) Y | (7.8)

o " As (t-tg) »o0 , the exponeﬁfiol factor will be small except for small value; of K,

| fhen 'one can replace q:;j(K,fO)‘by the Taylorsexpansion of @;j(K,fo) about K = 0.
THis expansion satisfies Eqs.7.7and 7.8 and is defined as a class of admissible initial
cnantra. Whan tha tinholence ic ientranic. the fareaning resilts can be areatly

simplified. The isotropic three-dimensional energy spectrum, E(K,t) = 2w qum(K,t)

is given by
3 7.9
SEK) = - 20K%E(K, 1) (7.9)
and
“2vK2(t-1ty)
E(K,t) = E(Kit,)e ° (7.10)

Equations 7.5and 7. 2indicate that the energy components coming from different wave
numbers are statistically independent. By the Taylor's expansion of initial spectrum,
E(k,to), about K =0, one can find a class of admissible solutions for E(K,t) that is
consistent with the NovierA—Stoke equation (Eq. 7.1), continuity (Eq. 7.7), and the

condition of symmetry for the spectrum tensor (Eq. 7.8). The admissible solutions of
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the specfrum] 112 tor the homogeneous and isotropic weak turbulence are in the

form of
2
-2vK™°(t-t

E (K1) = JK'e (1) (7.11)
for s=2,3,4 ..., where J; is a constant. This leads to a total decay of energy in
the final period of the following form:

— )

2 e [ EKNIK = Y It (s*+1)/2] (7.12)

0 (2vt)(5+])/2

It is apparent that considerable variety in the ultimate decay of turbulence can be

obtained by choosing different admissible initial spectra.

e .- - - . . [ [ L oL }
R . \ . - b - B A & *
LIS SSIITPISIGE Vity 1vini 0 sris seiercmim s concenne o o oomackroes fon e

obfained by rewriting Eq. 7.11, i.e.,

e, V-2 - V220K 00) ()

i
= —terTy VKAt
: v
The dimensionless plots of Eg 17]/2('r-t0 )5/2 versus. K" for all the admissible

%

20y 2

solutions possess a self-preserving "bell shape™ with Ey J]/z(f—fo), E3 1;]
and E4 J]/z(f-fo )2 peaking at K* equal’fo 1.00, 0.866, and 0.707,
respectively,

The longitudinal correlation functions corresponding to the admissible solutions

given by Birkoff” are

2 50 2
o T/2X (7.14)

f4(|';:) =
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2 2 -5/2
"2 K t-t ’ d t-t
corresponding to  E4(K,t) J4K~4 e Y (t-t5), ond u" (t-15) ;

_2 5)K 2
F3(-rT) = X +5r / f @) smKrdK - _j_i‘i_ (7.15)

r

2 uK2(}- > -
corresponding to E3(K,f) = J3K3 e 2w f°), and Uzm(f‘fo) 2 ;
. 3 -5¢ 2/6 X
| r - Iy oo x ‘
and F2 (T) = 53/2 3 { V©/2 erf(\/5/3 ) 5/3 e }

(7.16)

2 -2 vK2(t-t,)

corresponding to By = J, K" e , vc;nd 2 o (f‘fo)—s/z

Here we have normalized r by the dissipation length a = [20V(t-t,)/(s +1)] 1/2
which is the curvature of the longitudinal correlation function, f((r), near the origin
ofr=0.
As shown in Fig. 5, the kinetic energy of turbulence decays as the inverse-
square of time for all cases tested. Although the inverse-square decay law is one of
the admissible solutions of the normal statistic of weak turbulence, the measured
longitudinai correlation coefficients and the eneréy spectrum should afso be in
agreement with those corresponding to the inverse~square decay law predicted by the existing

theory. For large correlation distance, the longitudinal correlation coefficient, f3,

corresponding to the inverse-square decay law, should be slightly larger than the curve,
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f4, corresponding fo the -5/2 power law, and slighfly less than f, corresponding
to the -3/2 power law. As shown in Fig. 9, the present measured longitudinal

correlation coefficient, f(r), is not only larger than f3 but also larger than f5 as

predicted by the existing theory. Also the three~-dimensional energy spectrum

iggpredicféd. Consequently, the energy
fronsfern?fu'n;::hgh is Tiot Zero ai‘the’ fi;al stage of decay but plays an important role
in the mechanics of decay.

In general, the experimental results are not in full agreement with the
results of existing theories for weak turbulence. The statistical theory of turbulence
according fo Birkhoff! ! is characterized by

ae Aannw! L dinearly an the velacity fiald beina normallv

DA

-;Jisfribufed, and™
2. Components coming from different wave number vectors being
statistically indiiié;ﬁ'ia.ndenf (Egs. 7.5and 7.9).
Under normal statistics all odd-order correlations should vanish and the fourth-order

moment coefficient should be equal to 3. It was found that the measured third and

) fcq h-order correlation functions were not consistent with Statement 1. As shown

in Fig,v 14 and 15, the third-order moment coefficienf,?(f)/[:i'(f N 32 , is between’
0.06 and 0.1, and the fourth-order moment coefficient, F(f)/[:_z-(f)]z , is not quite
equal to 3. The assumption of a Gaussian joint-probability distribution of velocities

is also not quite valid. Furthermore, siﬁce the measured energy transfer function (Fig. 12)
and consequently the second-order correlation ancfion (Fig. 9) are not in agreement

with those assumed by the existing theories, ‘Statement 2 is not consistent with the

present measurements.
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8.0 COMPARISON WITH KINETIC MODEL

Visual observation of the perturbation of capillary dye traces in all
grid-produced weak turbulence showed a ‘disfincfive turbulent field structure
consisting of noninteracting, randomly orientated, aged vortices identical to
those reported by Tan and LingM, No detectable change in the basic structure
of turbulence was observed even down to the very last stage of decay, which was
no Iongér measurable by the iné‘rrumgnfs. For all cases tested, the energy of
turbulence decayed precisely as (1’—’ro)".2 in the final period (Fig. 5), which was
consistent with the kinetic model. Thus, it is interesting to discuss the kinetic
model in relationship to the present experimental data.

The turbulence field in the final period of decay may be considered as a
field consisting of essentially noninteracting, aged line vortices with limited
distribution in energy and size. In the absence of a mean shear field, the
probability distribution of the vortices in space should be uniform and the orientation
of the vortices should be completely random. The main feature of such a field is dom-
inated by the physical .line eddies, whose eﬁergy decay rate is indepe;ﬁdent of size. ‘
The velocity field of a line vortex of finite energy is best described by the Rouse-HsuZ?

model, i.e.,
¢2 ¢

V = H [e—- ca+dvt . . 0+Zl/f] (8.])

e

It is important to note that the velocity field is a solution of the Navier-Stokes equation,

where r in Eq. 8.1 is the distance from the vortex center. The constants H, o, and o
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are related to the initial field characteristics®” ry, 1o , and &5 as

{loea/(o-1)]In 0}1/2

_,
i

Fo = H(o-])oo/(]_a)
e, = H(o-1)/moa

where ro s the initial radius of maximum circulation PO; $o  the initial

centerline vorticity; a = 4vty; tq, the initial decay time (ahead of t = 0);
o = ] tfg/fd;,_?nd tg is the time of vortex generation.

The kinetic energy per unit length of vortex is

)
K.E. = np] V2 dr
0

(8.2)
. ! :2 4 1/2 '}'~2
To8m U (ca+4dvt)as 4ut)
In the final period of decay, ty +t >>tgy; thus, the asymptotic expansion of the
energy decay becomes
2,2 '
K., = PHt -2 (8.3)

-2
T (gt ) Y Al )

Tan and LingM have shown that the statistical average éf the turbulence kinetic
énergy in plane Z(t). decays with (t + fd)_z, according to the same decay law as
an individual eddy, provided the latter does not depend on the eddy scale. It is clear
that this déccy law is not affected by the inherent initial conditions.

The typical length scales of the single vortex are the core sizes of the maximumn
velocity and the maximum circulation 01; any time in the final period. Let § and n be

the radii of the maximum velocity and the maximum circulation of the vortex, respectively.
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Thenat r=& , 9V/3r=0,andatr= n , orV/dr = 0, Thus

2&’2(0’- Da

2
a(oc-1)¢
(oat+ 4vt)(a+dut) + 282 (a+dut)

(ca+ 4vt)(a+ 4vt)

In {1+ ]

and

o(o—])nz _ (o-1)a
(oat 4vt)(at 4wt) In {1+ a+ 4vt ’

Again assume that tgq+t >> t_in the final period, then the asymptotic expansion -

g
of €& and n are
g = VI Lu(t-ty)] 172 _ 5.63» (8.4)
1/2
n o= 20u(t-ty)] / = 0.89 (8.5)

It is important to note that the Taylor's dissipation length is of the order of & | If
the weak turbulent eddies generated by a grid are considered as noninteracting,
randomly orientated, aged vortex elements, the typical length scale of the weak
turbulent eddies is always proportional to the length scale of the single vortex. The
length scaies of a single vortex in the final period is § ~n ~ [w(t-1t )]7/2, where "d'

is taken fo be of the order of ty. If the spectral function in the final period possesses

a self-preserving form, it may be written as

E](K,f) = F{v,(t-t,)}¥(K [v(t-t,)] ]/2} (8.6)
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where Ej is the longitudinal one-dimensional energy spectrum and g/J{K*} is a

similarity function. The total energy is

o0 OOF (*-.-1- ) " *
JIISUEL vttt} 1K™}k
0 0 [u(t-t,)11/2

W2 o A(t-t5)72

Thus

| 2 -3/2
F{V,(f"fo)} - AU [V(f-fo)] / = C VI/Z(f_to)—B/Z (8.7)
[y wiK 1K

where K* = K[v(t-t,) ] }/2, and C is a constant. The measured self-preserving

form of the one~dimensional energy spectra shown in Fig. 10, confirms the
narmAliTins tinetion Tar tne c,pprrmi enerav.

The correlation and spectral functions based on the kinetic model have not
yet been developed. However, since the measured spectral and correlation functions
are different from those based on the normal statistics, it would imply that the
statistical structure of a weak turbulence field has a limited degrees of freedo-m. That
is, the field has some preferred structures in the form of aged physical line-eddies.
In.generol, the correlation function is directly related to the eddy structure, i.e.,
the velocity fields at two points within an eddy are correlated, while those -withouf
an eddy are uncorrelated, Since the physical eddies are not spherical in structure,
they would contribute to a correlation function having broader shape, and a three~
.dimensioncl ;pecfro!—funcfion peaking o‘f lower wave numbers, similar to those observed
experimentally. In addition, the wave components from such a field are expected to

be correlated in part as indicated by the experimental results.



9.0 CONCLUSIONS

By comparing the experimental results with the existing statistical theories
and the kinetic mode! of a weak turbulent field, one may draw the following
conclusions:

1. The kinetic energy of weak turbulence generated by single-biplane

and multiple-stage grids was found to decay in the final period
o m“ﬂp_réc;éselyvo’s the inverse-square of the decay time. The energy of

the weak turbulence produced by muitiple stages of grids does not

follow the simple superposition principle. This implies that the

) R L T T T 2 3PN P
WOUR Tuluiviive 19 1ot wuiipeotd of finemenn D00 TS SV T L

that has a definite preferred structure which controls the mechanics
of decay.
2. Although the inverse-square decdy law is one of the admissible solutions
of the statistical theory of weak turbulence, both the measured second- '
order correlation and the energy transfer functions are not consistent
with those assumed under normal statistics. This inconsistency implies
also that the wave components coming from a field of definite structure
are not completely random with unlimited-degrees of freedom. Experimental
results indicated continuous transfer of energy from low to high wave

numbers throughout the final stage of decay.
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The measured third-order moment coefficient, :g(f)/[:é(f)] 2 , is
approximately equal to 0.1; the measured fourth-order moment
coefficient, F(f)/[—u_é(f)] 2 , is not quite equal to 3; and the assump-
tion of a Guassian joint-probability distribution of velocities is also
not quite valid with regard to the third and fourth-order correlations
especially at small lags. These results are contradictory to the assump-
tion that quantities linearly related to the \{elocity field are normally
distributed.

When the Reynolds number of turbulence was less than 30, the energy
of turbulence was found to decay as the inverse-square of time. In

this fina! pariad of deca_v. all turbilence lenath scrlas were fannd +a
increase as the squdre root of decay time, while the Reynolds number
of turbulence was found to decrease with the inverse-square root of
time, The measured longitudinal correlation coefficients are close to

the Cauchy's distributions, and they possess a self-preservative form with res-

—

2
* pect to r[v(f—fo)]/., Both the measured Taylor's dissipation length and

the integral of dissipation spectrum correspond well with the observed
decay rate of turbulence.

Through visual observation of the herfurbations of capillary dye streaks,
the turbulent field in the final period of decay was found to be also
characterized by aged and essentially noninteracting line vortices. No
further change in the basic structure of turbulence was observed down
to the last perceptible per;urbaﬁon of the dye streaks. Thus, all
experimental evidence indicated that a weak homogeneous turbulence

has a definite preferred structure,
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Fig. 5 Energy Decay of Weak Turbulence
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