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AUTOMATIC ANALOG COMPUTER SCALING 
USING DIGITAL\ OPTIMIZATION TECHNIQUES 

by 

John Celmer and Mary Rouland* 


Goddard Space Flight Center 

INTRODUCTION 

The Automatic Scaling Program is a digital program designed to eliminate the tedious, time-
consuming process of manually scaling a linear or nonlinear system of differential equations for 
an analog computer. Optimum scaling performed by the program minimizes the deviation from 
unity of each amplifier gain. Since the analog's accuracy is limited to four significant figures, any 
scaling that results in excessively high o r  low gains, that is, with a large deviation from unity, re ­
duces precision even further. While it is important to recognize the program's time-saving fea­
ture and optimization of the analog's limited precision, it is even more important to emphasize 
that true optimum scaling is extremely difficult i f  not impossible to perform manually. All the 
inputs required a r e  simple numerical data; the outputs include documentation of all maximums, 
levels, and potentiometer readings and gains. 

GENERAL PRINCIPLES 

The Automatic Scaling Program is a digital program which optimizes the scaling of an arbi­
t rary number of differential equations, linear o r  nonlinear, for an analog simulation. The obvious 
advantage of having a digital computer perform the scaling is the time saved for the engineer who 
formerly performed this tedious task manually. The primary advantage, however, is that the pro­
gram produces an optimum set of maximum values. 

The necessary input, designed for simplicity, requires only simple numerical data. The num­
ber of equations, NEQ, the coefficient matrix, A ( I ,  J ) ,  and an integer matrix M(I, J )  which identifies 
the variable or variables of each term, suffice to completely describe a system to be scaled. The 
input also allows the engineer to specify some constant maximum values or to place minimum 
and/or maximum constraints on one or  more maximum. If only NEQ, A( I ,  J ) ,  and M( I ,  J )  a r e  used 
as input, that is, if no maximums are to be held constant o r  constrained, the program assumes the 

'Stabilization and Control Branch Systems Division. 

1 




maximum value vector 

AMA(1) = 10.0 1 = 1, 2, - * *  , N E Q  

as a starting point for the search for the optimum vector. 

Optimum scaling minimizes the deviation from unity of the gain at each amplifier. This gain, 
represented by a matrix, P ~ I ,J) ,  describes the potentiometer gain of every term in all equations. 
Each element of the P G  matrix 

is calculated to minimize the merit  value 

NEQ No. of t e r m s  

MERIT = 	 C [PG(I ,  J ) - 1 1 2  

I=1 J = 1  

where FqI ,  J )  is replaced by l/PG(I, J )  if  PG(1, J )  < 1.0 and W(1,J )  is replaced by 1 if  M ( I ,J )  = I ,  

in order that unchangeable first-order loop gains do not contribute to the merit value. 

The AMA vector associated with the minimum merit  value of a set of equations, located by the 
program's search routine running completely free without constant maximums or constraints as 
input, produces optimum scaling of the problem, that is, scaling that is subject only to problem 
coefficients. If some maximums a r e  held constant o r  constrained, the scaling is optimum but it 
is subject to constraints and constant maximums as well as problem coefficients. 

The principal method used in obtaining the minimum merit value is the gradient or  direction 
of steepest descent in conjunction with the Fibonacci search procedure-a one-dimensional, se­
quential routine used to determine the optimum distance to move in the direction of steepest descent. 
In general, the slope o r  sensitivity of each maximum increases as its magnitude decreases, with 
very small  maximums having very steep slopes. Therefore, if a problem has any maximums less 
than unity with steep slopes, the step size o r  distance moved in the steepest-descent direction is 
limited and the steepest-descent routine becomes ineffective in its convergence to the minimum 
merit  value. The program follows a new search technique in which a modified steepest-descent 
movement is performed in three steps. With all AMA's less than o r  equal to unity held constant, 
the first step allows maximums greater than unity to move in the modified steepest descent direc­
tion until the merit value is minimized. The second step allows a similar movement for maximums 
greater than one-tenth but less  than or  equal to one, and the third step follows the same procedure 
for maximums less than or equal to one-tenth. 

The three-step modified steepest-descent method continues its normal sequence unless the 
auxiliary search routine is activated by the manual turning on of a predesignated sense switch on 
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the computer console. The auxiliary search is a combination sequential, linear interpolation 
routine in which the slope of each maximum less than one is individually minimized with respect 
to all other AMA's held constant. While this would be too time-consuming to be a part  of the normal 
search procedure, it is useful as a "kicking" device near the beginning of the search or whenever 
the three-step modified steepest descent may be moving very slowly. If the search is actually 
near the true global minimum, the rate of change of the merit value due to the auxiliary search 
will not be much improved over the normal routine and will be much more time-consuming. How­
ever, i f  the modified steepest-descent search is slowed by a local minimum, the auxiliary search 
will "kick" it out of the region and allow the normal search to become effective again. Therefore, 
one of the two methods-the modified steepest-descent o r  the manually controlled auxiliary routine-
will continue the search for the AMA vector that minimizes the merit value, until the precision or 
stepping condition specified by the program is reached. 

All data used as input in the program, including any optional data, a re  printed for future ref­
erence and documentation. The merit value is printed at the conclusion of each search step in 
order that the programmer may follow the progress of the search and, with this information, de­
cide when the auxiliary search might be useful. After optimum scaling is determined, documenta­
tion of results is provided. This includes the equation number, the maximum value, the level, the 
potentiometer readings and gains of each equation, and the minimum merit value. An additional 
feature in which all levels a r e  rounded to one significant figure is also included as output, since 
convenient levels may be preferred. The merit  value resulting from the rounding of levels is also 
given, to simplify evaluation of the rounding effect. 

STRUCTURE 

Required Input 

The standard notation for systems of algebraic equations is 

where C(1, J )  is an N x N coefficient matrix. For linear differential equations the standard nota­
tion is 
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Since analog simulations involve both summations and integrations it is convenient to mix both 
algebraic and differential equations 

X ( 1 )  = cC(1, K )  * X(K) , 
K 

The N X N matrix C frequently contains a profusion of zero entries (the number of nonzero entries 
in any row is usually less than five). It is thus more convenient to use an alternate notation in­
volving an N x 4 coefficient matrix A in conjunction with an N x 4 integer matrix M 

x ( I )  = A ( I ,  K)  * X[M(I ,  K)] , 
K 

This approach reduces storage requirements and simplifies input preparation. 

Assume the following set of differential equations: 

X ( 1 )  = - O . S [ X ( l ) ]  + O . O 9 [ X ( 2 ) ]  - 2 . O [ X ( 3 ) * X ( l ) ]  , 

X ( 2 )  = + 1 . 0  [ X ( l ) ]  - 2 . 0  [ X ( 2 ) ]  , 

X ( 3 )  = - 0.055 [ X ( l )  * X ( 2 ) ]  - 0 . 8  [ X ( 3 ) ]  

The input required to scale this problem is NEQ (the number of equations), an A ( 1 ,  J )  matrix 
(coefficients of each term), and an M ( 1 ,  J )  matrix (the variable or  variables of each term), where 
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I = 1, 2, - - ,NEQ and J = 1, 2, - ,number of terms of (I). 

NEQ = 3 

A ( 1 ,  J) Matrix 

2 3 

1 - 0 . 5  t0.09 -2 .0  

2 t1.0 -2 .0  

3 -0.  055 -0 .8 

1 2 3001" 

1 2 

1002" 3 

Note: (*) indicates the form in which multipliers a r e  entered as data. The format in which the 
program accepts these data will be included under "Operating Instructions-Required Input." 

Optional Input 

The engineer may provide an initial set  of maximums describing the point in space where the 
search wil l  begin and/or he may specify that some of the maximums are to be held at constant val­
ues. The maximum value of any equation not included in the optional input is set  to 10.Obefore the 
search is begin. If the system is nonlinear, the engineer may want to place minimum and/or maxi­
mum constraints on the maximums of some equations. This is also possible in the optional input. 
Format for the four variations of optional input is found under "Operating Instructions-Optional Input. ' I  

Optimum Scaling 

Each amplifier o r  integrator used in the analog mechanization of the equations has a gain as­
sociated with each input. The coefficients of a problem uniquely determine the total loop gain through 
any n t "  -order loop of the system where 1 5 n 5 NEQ. While amplitude scaling cannot alter the total 
gain through any given n t h  -order loop, it can insure against any excessively high or low gains by 
even distribution. If all n t h  -order loops were independent of each other, calculation of the total 
loop gains of order n and the n t h  roots of these total gains would suffice to describe optimum dis­
tribution of gains through each loop. Since the nt h  -order loops a r e  not independent, an optimization 
technique f a r  too complex to perform manually is employed. 

Program Notation 

The notation used for the vector whose n components are the maximum values of the system 
is AMA(I), where I = 1, 2, 3 , . - . ,  NEQ. The elements of "(1) where I = 1, 2 , - - - ,NEQ are the 
number of terms of each equation. 
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The gain at each amplifier is represented by the matrix PG( I ,  J); that is, the potentiometer-
amplifier gain of each term in every equation. Each element of the PG matrix is calculated by the 
following equation: 

If the M ( I ,  J )  of any term indicates that two variables v, and v, are to be multiplied, then the equa­
tion is interpreted as 

Optimum scaling, defined previously as minimizing the deviation from unity of the gain at each 
amplifier, is accomplished by minimizing the merit value, 4, described by 

where (a) PG(1, J )  is replaced by l.O/PC(I, J )  if PG(1 ,  J )  < 1.0 and (b) PG(1 ,  J )  is replaced by 1.0 
if M( I ,  J )  = I .  Part (a)above assures  that low gains will not be ignored in the minimization rou­
tine; for example, a PG gain of 1/4 contributes the same value to 6 as a PG gain of 4. Part (b) says 
that pot gains required in first-order feedback loops are not to be included in the value of @. Since 

when M( I ,  J )  = I, the pot gain is constant, not dependent on a memum-value  choice, and therefore 
not included in the calculation of 6. 

Search Methods 

The principal search routine used in finding the minimum merit  value is the gradient o r  
steepest-descent method. The gradient is obtained from the derivative of the function 6 at some 
point in the space represented by the vector AMA, ( I )  , I = 1, NEQ. Since c$ is a multi-variable func­
tion, (a function of NFQ variables), partial differentiation is used. The gradient line o r  direction of 
steepest descent is represented parametrically by 

where A is an arbitrary negative parameter. 

6 



The selection of an optimum A ,  which determines the distance to move on the steepest-descent 
line, results in movement to a new point in space, AMA, ( I )  ,calculated from 

If the system of equations does not have product terms, the new merit value associated with 
the new point in space, AMA, ( I )  ,is calculated from Equations 1-a, 2, 3,  and 4 to obtain 

o r  simplified 

For a nonlinear system with multipliers, Equations 1-b, 2, 3 ,  and 4 result in 

or  simplified 

where v, and v, a r e  the variables to be multiplied. 

Since in both Equations 5 and 6 is a function of the independent variable A in Equation 3 and 
has only one degree of freedom, a uni-dimensional search routine is used to find the value of A that 
minimizes +, . This routine consists of selecting trial values of A within the interval being searched, 
evaluating 4, for these trial values, and reducing the interval. These three procedures take place 
according to a specified algorithm. 

Wilde (1964) discusses one-dimensional search procedures and includes a table showing re ­
duction ratios for various sequential search plans. The reduction ratios show the Fibonacci search 
to be the most efficient, followed closely by the Golden Section routine. The Fibonacci and Golden 
Section procedures a r e  very similar once the first experiment (trialvalue) has been determined. 
The basic difference is that in the Fibonacci search the number of experiments is selected a priori  
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and enters into the calculation of the first experiment, while the starting point for the Golden Sec­
tion is determined by a fixed ratio with the number of experiments dependent upon a defined e r r o r  
criterion. These techniques a r e  effective in finding the minimum value of a function if it is not 
multimodal (more than one minimum) in the interval to be searched. If the function does have more 
than one minimum in the interval, i t  is possible that the search may not locate the minimum having 
the lowest value of the function. 

The search procedure used in the program to find the optimum A is the Fibonacci technique 
using twenty experiments. The Fibonacci number associated with twenty experiments is 10,946; 
this says that after twenty experiments the original interval of uncertainty is reduced to less  than 
0.0001 times its original length. 

The first step in the Fibonacci search is to establish a lower bound and an upper bound of the 
A interval. The lower bound, BD1, is set  at 0 for all searches; the upper bound, BD2, is recalculated 
for each search. Since maximum values must be greater than zero and since A is always a nega­
tive parameter, a unique upper bound, BD2, is determined before each search by the following: 

then 

BD2 = MINIMUM ( Z I  > 0.0) ( I  = 1, 2 ,  . . .  , NEQ) . (7) 

Also, 2,  is negative only if  the partial derivative, d$/aAMA, ( I )  , is negative. Re-examination of 
Equations 3 and 4 shows that maximums with negative partials cannot become negative and there­
fore a re  eliminated in the calculation of B D ~in Equation 7. 

The next step is to select the first experiment, EXP 1, in the established interval. Wilde (pp. 29­
30) gives the following formula for obtaining X I ,  the ratio of the interval [ B D ~ ,EXP 11 to the whole 
interval [ B D ~ ,B D ~ I  : 

where n is the number of experiments, Fn is the reduction ratio for n experiments from the table 
mentioned previously, and E is the minimum separation between any two experiments. Since the 
rate of change of & as a function of A is very diverse, it would be difficult to choose a constant E 

appropriate for all searches. Computer experimentation showed that the formula, 

F nx, = - '  
F"t1 (9) 
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was very close to the precision of Equation 8 with n = 20, and satisfactorily handled the varied 
slope field of the @ function. 

The length of the interval to be searched is 

L = B D 2 - B D 1 ;  

while the value for EXPERIMENT 1, the first  trial value of A, is 

The search is continued by placing EXP 2 symmetric about the midpoint of the interval [ B D ~ ,~ ~ 2 1 

with respect to EXP 1. Calculation of the 6 values with A = EXP 1 and A = EXP 2 allows the ex­
perimenter to discard a portion of the interval, either [ B D ~ ,Em 21 o r  [EXP 1, B D ~ ]  depending on 
which experiment has the minimum 6 value. In Figure 1 with the function @ as shown, the segment 
tBD1, EXP 21 would be eliminated from the interval since &(Em2) > NEW 1) . Thus, the new BD1 is 
EXP 2 and EXP 3 is placed symmetric about the midpoint of the new interval [ m l ,  BD21 with re ­
spect to EXP 1. After n experiments, the final 
selection of A is calculated from 

BD1 -t BD2x =  2 . 

With the optimum A known, Equations 3 and 4 
can be solved for the new point in the space, 
AMA, ( I )  , where I = 1, 2 , e - s  ,NEQ. Following 
the same procedure, the vector AMA, ( I )  is 
found. This cycle continues until the new point 
is as close to the true optimum point a s  the 
precision of the program allows. 

In general, slope (sensitivity) of the merit 
value as a function of an AMA component varies 

w 

3
Q, 

1 L -
BDI EXPP EXPl B D2 

A ,  PARAMETER 

Figure 1-Graph of merit value versus 
arbitrary negative parameter. 

inversely with the magnitude of the component. Extremely small AMA's have very steep slopes. 
Calculation of A for  any steepest-descent movement in which a given equation or  equations have 
small maximum values and large positive partial derivatives shows that A must be extremely small 
in order to satisfy Equation 7, which assures  that no maximums will become negative o r  zero. This 
obviously becomes a limiting factor on the rate  of convergence to the optimum point. Even if all 
small  maximums had negative partials, the size of A would still be limited owing to the steep slopes 
involved. 
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Since most linear and any nonlinear system of equations with a moderate range of coefficients 
necessitates presence of small maximums, a solution to the limitations of steepest descent is of­
fered in the form of a three-step, modified steepest-descent movement: 

S tep  1: a. M ' s  5 1.0 are held constant 

b. AMA'S > 1.0 move in modified steepest descent direction until 4 is minimized. 

Step  2: a. AMA's 5 0.1 and AMA's > 1.0 a r e  held constant 

b. 0.1 < AMA's 5 1.0 move as in step l(b). 

Step  3: a. AMA'S > 0.1 a re  held constant 

b. AMA's 5 0.1 move as in step l(b). 

Lf at any time in the search, the 20-step Fibonacci routine does not provide enough precision 
for  the merit value to be steadily decreased, the program automatically increases the number of 
steps of the A search. This feature is desirable, particularly when the neighborhood of the optimum 
point is reached. 

Although the modified steepest descent is fast and sufficiently handles most problems, an am­
iliary search was programmed which can be activated and deactivated by sense switch 5, turned on 
and off manually on the computer console. The auxiliary search is a combination sequential, 
linear-interpolation routine, in which the partial derivative or  slope of each maximum less than one 
is individually minimized with respect to all other maximums held constant. While in most cases 
this is too time-consuming to be a part  of the normal search, it is useful near the beginning of a 
search or  at any time that the modified gradient method is moving slowly, perhaps indicating ap­
proach to a local minimum. The auxiliary search provides a boost so that the modified gradient 
can again be effective. 

Special Systems 

A LCC (linear constant coefficient) system of equations allows a great deal of flexibility in the 
optimization of scaling. A suggested approach for automatic scaling is to use only the required in­
put as discussed under "Structure-Required Input," letting the program supply the initial AMA vector. 

Since all LCC systems have an infinite number of AMA vectors associated with the optimum-
merit test, the resulting AMA vector may then be multiplied by any scalar and still maintain the 
same minimized merit  value and corresponding potentiometer settings. This property of a linear 
system enables the engineer to keep peak voltages near the &lOO-volt level simply by adjusting the 
scalar quantity. 

A linear system with variable coefficients, while not permitted the freedom of a LCC system, 
does have an infinite number of AMA vectors that have the same minimum 4 value. However, since 
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these maximum vectors are not proportional, as they are in the LCC case, the engineer must rely 
on the search routine to find different vectors with the same minimum +. 

Nonlinear systems have only one maximum-value (AMA) vector having the minimum merit value. 
This vector will be located by the search if no constraints or constant maximums are specified as 
input. If constraints are placed on some maximums or if any maximums are determined and used 
as input, scaling will be optimum but subject to the input constraints. If limits and nonlinearities 
other than multipliers are in the system, it is suggested that the engineer examine the nonlinearities 
and place constraints o r  constant maximums where they are necessary or  beneficial. 

output 

The output provides documentation of (1)all data used as input to the program, (2) the results 
of the optimum scaling-maximum values, levels, potentiometer readings and gains (printed se­
quentially by equation), and (3) the minimized 6 value. 

Obviously, the levels chosen by the program, although optimum for the analog simulation, are 
not convenient rounded numbers. Since in most cases the engineer prefers scaling that will allow 
him to quickly change from scaled to problem units, perhaps even mentally, the output includes an 
additional feature in which all levels are rounded to one significant figure, barring any which had 
been specified as constant in the input. Revised documentation of (2) and (3) listed above is printed. 
The increased 4 value provides simple evaluation of the rounding effect. 

A data card is punched for each equation, giving the equation number and the rounded maximum 
value in the format accepted as input to the program. This deck is invaluable to the programmer 
for any future rescaling that may be required by additional constraints or changes or simply for 
new documentation. 

All input prepared for the Automatic Scaling Program (NEQ, A MATRIX, M MATRIX) and 
the AMA deck (punched output of the program discussed in the preceding paragraph) also is in the 
proper format for the FAST Program, a digital program which provides static and dynamic solu­
tions as a checkout for the analog. 

OPERATING INSTRUCTIONS 

Required Input 

Assuming the three-equation problem with the equations, coefficients, and variables as dis­
cussed under IIStructure-Required Input,I1 the following cards are required. Data card 1contains 
NE�) entered as an integer, right-justified in columns 1-5. Data cards 2-4 contain the A ( 1 ,  J )  ma­
trix, one card for each equation. In card 2, for instance, columns 1-5 contain the equation number, 
right-justified, integer form. The coefficient A( 1, 1) is entered in floating point starting in 
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COL 1-5 7-72 COL 1-5 7-72 

Card 1 Card 2 

.o, -2.0 

COL 1-5EL 
COL 1-5 7-727-72 

Card 3 Card 4 

column 6 and terminated by a comma. The column to the immediate right of the comma contains 
the sign o r  first digit of A( 1, 2 ) .  A( 1, 2 )  is similarly terminated by a comma. This process 
continues until all coefficients of the equation have been entered. Each coefficient including signs 
and decimal point must not exceed 15 columns. 

Data cards 5- 7 contain the M( I ,  J )  matrix, 
one equation per card. The equation number in 
interger form is right-justified in columns 1-10 
and is followed by the M( I ,  1), M( I, 2), M( I, 3) 
terms, all integer, right-justified in columns 
11-20, 21-30, 31-40. 

Card 5 indicates the format for multipliers. 

COL 10 20 30 40 
The integer 3001 right-justified in the 10 col­
umns allowed for the ~ ( 1 ,3) shows that the vari-

Card 5 able of term (1, 3) is the product, x, . x,. 

COL 10 20 30 40 COL 10 20 30 40 

Card 6 Card 7 
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Optional Input 

The optional input is entered as two different data sets described by: 

Set 1:  	 Contains a starting set of maximums and indicates which, if any, of these values are 
to be held constant. 

Set 2: Specifies all minimum and maximum constraints placed on any AMA's. 

A blank card must be at the end of each data set to indicate termination of the se t  unless values 
are given for every equation. Even if a data se t  is omitted entirely, the blank card is still needed. 

Assuming the same problem used as an example in the required input section, suppose that 
the programmer wants the maximums of Equations 1and 2 to have the values 12.0 and 5.6 at the 
beginning of the search. Suppose also that the 5.6 value is to be held constant throughout the search. 
These values a re  found on cards 8 and 9. Columns 1-5 contain the equation number in integer form 
and right-justified. The maximum appears in floating point starting in column 6, not to exceed 
column 21. Any maximums to be held constant must have a minus sign preceding the equation 
number. 

Since Equation 3 is not supplied with a starting or  constant maximum, the program sets its 
maximum equal to 10.0 before the search is begun. Card 10 must be a blank card to show the end 
of optional input, Set 1. 

Suppose that the AMA (1)should not exceed 100.0 and the m ( 3 )  should be greater than 5.0 but 
less than 50.0. These constraints are found on cards 11and 12. The equation number is entered 
as an integer, right-justified in columns 1-5. The constraints are entered as floating-point num­
bers;  first the minimum which starts in column 6, next a comma, and finally the maximum. If 
there is no maximum constraint, the comma is not necessary. 

-2 

COL 1-5 7-72 COL 1-5 7-72 

Card 8 Card 9 

3 

COL 1-5 

COL 1-5 7-72 

1 
7-72 

Card 1 1  Card 12 
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Number 

Card 13, a blank card indicating the end of optional input Set 2, is the final card of the input. 

Sense-Switch Operation 

Table 1 shows the programming controlled by sense switches 1-5. The switches marked r'*tt 

are particularly valuable. Under normal conditions all switches are turned off. 

Table 1 

Programming Controlled by Sense Switches 1-5. 

1 s-s* I "ON" Operation 

1 Prints documentation after each search. 

2 Prints Fibonacci steps and Auxiliary Search. 

3 Resets program for more than one set of data. 

*4 	 Designed to allow the programmer to choose his own precision; 
"ONtt state terminates the program, provides complete documentation. 

*5 Activates auxiliary search. 

FUTURE DEVELOPMENTS 

Future developments will focus on additional flexibility and ease in programming nonlinearities. 

Division of variables will be allowed vrith standard input form similar to the present form of 
multiplier input. 

Beside permitting constant m k m u m s  and constraints as now programmed, future development 
will include the option of stating constant ratios to be maintained between two o r  more maximum 
values. This will be helpful in eliminating potentiometers and handling built-in gains in switching 
networks and other equipment. 

If mathematical time-scaling is beneficial, this must, at present, be precalculated and reflected 
in the coefficient matrix. In the future the engineer will be given the option to experiment with dif­
ferent time-scaling factors by simply providing the factors as input. The program will evaluate 
the merit of time-scaling by comparing all minimized 4 values. 

Goddard Space Flight Center 
National Aeronautics and Space Administration 

Greenbelt, Maryland, August 1969 
604-31-03-12-5 1 

REFERENCES 

Wilde, D. J., "Optimum Seeking Methods," Englewood Cliffs, N. J.: Prentice Hall, Inc., 1964, 
pp. 10-52. 
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Appendix A 

Automatic Scaling Example 

The sample problem displayed in this section was run using the Fortran program listed in 
Appendix B developed specifically for the SDS 9300 digital computer. The sample program shows 
scaling of the set of three differential equations previously discussed in both sections dealing with 
required input. 

I 2 JU, 1 

2 2
.> 3 
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I 

,g AUTUMATIC SCALING EXAMPLE i lAlE 18 APR 1909 PAGE OOUZ 
EO A M A (  I I DELTA( 1 1  LEVEL( I ) T E R M 1  lERML TERM3 TLRh4 

+++ +++++++++++++++ +++++++++++++++ +++++++++++++++ +++++++++++++++ +++++++++++++++ +++++++++++++++ ++++++++++++++ 

1 lLi.0GilUOO .1i0 lo.ou5uoo .50030~ 0900ou ~0.050000 


2 IO. uciiluiri) .uo I o.ouolJ00 1 . u u o u o u  2.00000u 

3 10.uu0uoo - 0 0  Iu.DuOuo0 .55GUOL, 

M E R I T  T E S T  

NU. 1 M E d I T  = 

NU. 4 M E d I T  = 

NU. 7 M t K l r  = 

NU. 10 M t R I T  = 

NU. 13 M E d I T  = 

NO. 16 M E R I T  = 

I\rO. 19 m t R I T  = 

NO. 22 M E R I T  = 

NU. 25 M E d I T  = 

NU. 28 M E d I T  = 

NU. 31 M C d I T  = 

NU. 34 M C d I T  = 

NU. 37 M t R I T  = 

NO. 30 M E R I T  = 

NO. 40 M t d I T  = 

NU. 41 M E R 1 1  = 

NO. 43 M E d I T  = 

NO. 44 MCKIT = 

Ntt . 46 M E R I T  = 

NO. 47 M i R I T  = 

NU. 49 M E R I T  = 

NO. 5u MERIT = 

NO. 52 M E R I T  

NO. 53 M C R I T  = 

NO. 55 M E R I T  = 

Ne. 56 MERIT = 

NU. 58 M E d I T  = 

NU. 59 M E R I T  = 

NO. 61 M t d l T  = 

NO. 62 M E R I T  = 

NU. 64 M E N I T  = 

hO. 65 MCRlT = 

NO. 67 M t d I T  = 

NO.  68 MERIT = 




A U T b M A T I C  S C A L I N G '  E X A M P L E  
NU. 7 0  M E K I T  = 
NO. 7 1  M E R I T  = 
NU. 7 3  M E R I T  = 
NO. 7 4  M E R I T  = 
NO. 7 6  M E H I T  = 
N U - 77 M E R I T  = 
NO,  
NU. 

7 9  
8 0  

PIERIT 
M E R I T  

= 
= 

NO. 8 0  M E H I T  = 
NU, 
NU. 

82 
82 

M E R I T  
M E R I T  

= 
= 

NU. 8 3  M E R I T  = 
NO. 83 M E R I T  = 
NO. 8 5  M E R I T  = 
NO. 8 5  M E R I T  = 
NU. 8G M E R I T  = 
NU. 8 6  M E R I T  
NU. 88 M E R I T  = 
NO. 8 8  M E K I T  = 
NO. 89 M E R I T  = 
NU. 8 9  M E R I T  = 
NO. 8 9  M E H I T  = 
NU; 
N U .  

8 9  
91 

M E R I T  
M E R I T  = 

NU. 9 1  M E R I T  = 
NU. 92 M E R I T  
N O .  9 2  M E R I T  = 
NU. 9 4  MEt3IT = 
NU, 94 M E H I T  = 
NO. 9 5  M E H I T  = 
NO. 95 M E R I T  = 
NU, 9 5  M E R I T  = 
NU. 95 M E R I T  = 
NU. 97 M E d I T  = 
rdu. 97 M E R I T  = 
NO. 97 M E R I T  = 
NU, 97 M E R I T  = 
NU. 98  M E K I T  = 
rdO. 9 8  M E H I T  = 
N u .  98 M E H I T  = 
NO. 9 8  M E H I T  = 
NU. 130 M E K I T  = 
NU. 100 M E R I T  = 
N B .  100 H E R I T  = 
NU. 100 M E R I T  = 

1 2 . 7 4 ~ 1 6 9 1 9 0 7 0  
1 2 . 7 4 b 6 9 1 8 5 3 1  
1 2 . 7 4 ~ 6 9 1 6 9 7 0  
1 2 9 7 4 U 6 9 1 6 6 9 3  
1 2 . 7 4 ~ 6 9 1 5 7 6 5  
12.7406915749 
12 ,7466915453  
1 2 . 7 4 ~ 6 9 1 5 6 9 9  
1 2 . 7 4 ~ 6 9 1 5 4 4 6  
1 2 . 7 4 ~ 6 9 1 6 0 1 2  
22.74b69153gg 
1 2 - 7 4 ~ 6 9 1 5 6 5 0  
1 2 . 7 4 ~ 6 9 1 5 3 9 3  
12.74U6916117 
12.7446915374 
12.74U6915658 
1 2 . 7 4 ~ 6 9 1 5 3 7 2  
1 2 . 7 4 ~ 6 9 1 6 1 9 7  
12.74U6915364 
12.74b6915669 
1 2 . 7 4 ~ 6 9 1 5 3 6 3  
12.74U6915363 
11.7406915363 
1 2 . 7 4 ~ 6 9 1 6 2 6 7  
1 2 . 7 4 ~ 6 9 1 5 3 6 2  
1 2 . 7 4 ~ 6 9 1 5 6 4 7  
1 2 . 7 4 ~ 6 9 1 5 3 5 9  
1 2 . 7 4 ~ 6 9 1 6 2 8 3  
12.74,6915358 
1 2 . 7 4 ~ 6 9 1 5 6 8 4  
1 2 . 7 4 ~ 6 9 1 5 3 5 8  
12.74U6915358 
1 2 . 7 4 ~ 6 9 1 5 3 5 8  
12 .74b6916315  
1 2 . 7 4 ~ 6 9 1 5 3 5 8  
1 2 . 7 4 ~ 6 9 1 5 3 5 8  
1 2 . 7 4 ~ 6 9 1 5 3 5 8  
1 2 . 7 4 ~ 6 9 1 5 6 8 4  
1 2 . 7 4 ~ 6 9 1 5 3 5 8  
12 .74b6915358  
12.74Ub915358 
1 2 . 7 4 ~ 6 9 1 6 3 1 5  
1 2 . 7 4 ~ 6 9 1 5 3 5 8  
12.74U6915358 
1 2 . 7 4 ~ 6 9 1 5 3 5 8  
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C, A J r U M A T l C  SCALING LXAMPLE 3 A I E  1 8  APH 1909 PAGE OOU4 
01 Ed A M A C I )  DEL i A  ( I ) L E V E L (1 )  T E N M I  TERM2 TERM3 TLRM4 

ttt ttttttt+ttt+t+t +ttttt+ttttt+tt t + t t t t t + + + + + t t +  + t t t t + t t + t + + t + +  + + + t t t t + + + t + t t +  t + + t t t t + t t + t t t +  t+tttttttttttt 

1 3.035474 1.81 52.943779 .5uGUOu -322966 1.907138 

2 1U.892903 1.53 9.180290 -278663 2. O ~ O Q O ~  

3 -9535b9 -.oo 104.869236 1 -90713J .8ooLlou 

M E H I T  TEST = 

M I N I M U M  M k H I T  VAL& 

A U I U M A T I C  SCALING EXAPIPLE U A I k  18 APH 19OY PAGE OUU5 
EW A M A ( I )  DELIA(1) L E V E L (  1 )  1 E * M I  TERM2 TERM3 T t H M 4  

t t t  +tttttt+t+t+ttt tt+tt++tttttttt t+ttt+tttttt++t t+t++t+t++tttt+ ttt+tttt+ttttt+ t+ttt+t+ttttt+t tttttttttttttt 

1 5.333333 1 - 8 1  ~ i . 0 ~ 0 0 0 0  . ~ 0 0 0 O U  .~ ' J O U O U  ~.000000 

2 11.111111 1.53 9.0UOOUO .3uooou 2. ooocou 

3 1.0~0000 -.GO 1uo.0LJ0000 2.037037 ' 8 0 0 0 0 ~  

M E H I T  TEST = 12.964334705 
ALL LEVELS A R i t  HBUNDEU 

+ s r u p *  SOUUlOGU 

L 



Appendix B 

Fortran Program 
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I I I 1  I 1 1 1 1  I I 1  I I 1111 I 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
U U T P U T ~ ~ ~ ~ ) " D " ~ ' M A X I ~ U M S ~ , ~ = 

De 106 I=l.NEQ 

READ(lO5. 9 0 )  NsV 

IF(N.EQ.0) GU TU 110 

WRITE(l08, 9 0 )  N s V  


90 FBRMAT(I5mF16.8) 
L=IAYS IN 1 
AMA(L )=V 
C(L)=N 

109 CONTINUE 
110 D U  120 I=lsNEQ 

IF(AMA(I).NE.l2345.)GU TU 120 
AMA(1)rlO.O 


120 CUNTINUE 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C SEC 4 - READ IN CONSTRAINTS 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

UUT~UT(~~~)"~"D'CUNS~RAII~TS','' 

U U  160 I'lsNEQ 
READ(105. 130) Ns(CT(NsJ)rJ=l,2) 

IF(N.EQ.0) GU TU 150 

WRITE(l08r 130)  N,(CT(%sJ)*Jrl+2) 

130 FORMAT(I5,2(F16.8)) 

140  CUNTiNUE 

* * * t * * * * * * * * * * * * * * * * * * * * . * ~ * * * + t + * * * * * * * * * * * * * n * * * * * * * * * * * * * * * * * * *  

C SEC 5 - CALCULATION BF MERIT VALUE 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

150 DU 170 IZlrNEQ 

D U  170 J=lsNTER(I)-l 

LL=M(IsJ)/1000 

NN=MUD(M(IsJ)sl003) 


160 PG(I,J)=(AMA(LL)*AMA(NN)*A(I,J))/AMA(I) 

PG(I*J)=ABS(PG(I.J)) 


170 CONTINUE 

MER I T=O. 

DU 200 I=l,NEQ 

D B  200 J=l,NTER(I)-l

IF(M(1rJ) .EQ. I )  GO T4 200 

IF(PG(I,J).GE.l~O) GO 18 180 

Y =  (l.~/PG(IsJ))-l.O 

GB TU 190 


180 Y=PG(IsJ)-l*O 
196 MERII-MERIT + (V**2) 
200 CUNT I NUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C SEC 6 - PRINT AMAS, LEVELS. PUT GAINS, MEHIT VALUE 
*****+***e******t******************************************************* 

2 1 0  IF(SENSE LIGHT 3) 26dr 220 

220 CUNTINUE 


IFtSENSE SWITCH 2) 230. 250 

230 WRITE(lO8. 240) LYaMERIT 

240 FURMAT(5X,%LY'%rI3.S.M~RIT=$,F25.9)

250 IFtSENSE LIGHT 10) 1 0 8 0 ~llOU 

20 

1 

..... .... 
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IF(PG(IsJl.GE.1.O) ZZ=(2.*((( AM A ( L L ) * A M A ( N N ) * A ( I s J ) ) / A M A ( I ) ) - l o ) )
* *((A(IsJ)*AMA(LL)i/AMA(I)l 

600 D E L T A ( ~ N ) = D E L T A ( N N ) * Z Z  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C SEC 1 1  - INTERPOLATION RUUTINE ACTIVATED dY SENSE SWITCH 5 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

IF(NAC.Ei2.U) G O  T O  970 

I F ( M O D ( N O D D ~ ) . E Q . I I  G 8  TO 970 


610 IF(SENSE L I G H T  11) 730. 620 

620 IF (SENSE L I G H T  191 800. 630 

630 N I T S O  


REPEAT 9 0 0 . W H I L E ( ( B M A X ( A M A . D E L T A . N E O I C ) . G I . ( . O I ) ) o A N D . ( N I T o L E . 2 ~ ) )  

DO 890 LPlaNEQ 

MAD=MAR=O 

SIS=SIN=.Ol 

MM=MMM=O 

F A C T r 2  .O 

SENSE L I G H T  0 

IF (C(L l .LT.0)  GO TO 890 

IF(AMA(L).GT.l.) GO TO 890 

I F ( A B S ( D E L T A ( L ) ) . L E . ( . 9 1 ) )  GO TO 890 

X A M A ( L ) = A M A ( L )  

XDELTA(L)=DELTA(L)  


640 . A M A ( L ) = X A M A ( L )  

I F t S E N S E  L I G H T  1 2 )  680. 650 


650 AMA(L)=AMA(L)+(AMA(L)*SISl 

IF(SENSE SWITCH 2 )  660s 670 


660 OUTPUT(IO8) .AHA + .OlmsAMA(L) 

670 GO TO 720 

680 A M A ( L ) = A M A ( L l - ( A M A ( L ) * S I N )  

690 IF (SENSE SWITCH 2) 700. 710 

700 UUTPUT( IO8)  'AMA - . O l s s A M A ( L )  

7 1 0  SENSE L I G H T  17 

720 SENSE L I G H T  11 


GO TO 570 

730 IF (SENSE SWITCH 2) 740s 750 

740 O U T P U T ( 1 0 8 1 X D E L T A ( L ) * D ~ L T A ( L ) 

750 I F ( ( X D E L T A ( L l * D E L T A ( L ) ~ . G T . O . )  GO T O  820 


S U M ~ A B S ( X D E L T A I L ) ) + A B S O )  
D I F F r A B S ( X A M A ( L ) - A M A ( L ) )  
SUMP= ABS(XDELTA(L) ) /SJM 

I F ( S E N S E  SWITCH 2) 7 6 0 s  770 


760 OUTPUT(IO8) XAMA(L)sSUMPaDIFF
770 	IF(XAMA(L),GT.AMA(L))  AMA(L)IXAMA(L)-(SUMP*DIFF) 


I F ( X A M A ( L ) . L T . A M A ( C ) ) A M A ( L ) = X A M A ( L ) + ( S U M P * ~ ~ F F )  

SENSE L I G H T  23 

IF (SENSE SWITCH 2) 780s 790 


780 OUTPUT(108) A M A ( L ) D L 

790 SENSE L I G H T  19 


6 8  TO 570 

800 M M M = H M M + l  


IF (SENSE L I G H T  231 810. 89C 

810 	IF((ABS(DELTAIL)) .LE.( . I ) ) .ORo(MMMoNE.I))  GO TU 890 


I F ( A M A ( L l . G T . 1 . 0 )  GO TU 890 
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SENSE LIGHT 0 

MM=MAD=MAR=O 

SIS=SIN=.Ol 

FACT=2.0 

XAMA(L)=AMA(L) 

XDELTA(L)=DELTA(L) 

GU T U  650 


82G IF(AMA(L).GE.CT(L.l)) GO TU 830 

AMA(L)=CT(Lsl) 

c 1L)=-L 

CT(LDI)PO.

UUTPUT(108) ‘ M I N I M U M  CUNSTRAINT I N  ITERATIBN* 

GU TO 790 


830 IF(ANA(L).GE.(.00001)) G U  T U  840 

AMA(L)=I.E-5 

G U  TO 790 


840 IF(AMA(L).GE.l.O) GU TU 790 

IF(SENSE LIGHT 17) 860. 850 


850 I F ( A B S ( D E L T A ( L ) ) . G E . A B S ( X D E L T A ( L ) ) )  GO TU 870 

M A R = M A R + l  

I F ( ( M A R . E Q . l ) . U R . ( n A R . r 0 . 2 ) )  SIS=SIS*lO. 

IF(MAH.GE.3) SIS=SIS*P. 

G8 TU 640 


8 6 0  IF(ABS(DELTA(L)).LT.ABS(XDELTA(L))) GO TO 880 

6 7 6  	M M = M M + I  


IF(MMoNE.2) GU TU 880 

AMA(L)=XAMA(L) 

G U  TU 790 


880 SENSE LIGHT 12 

MAD=MAD+l 

iF(MAD.EQ.2) SIN=SIN*lD. 

IF(MAD.LE.2) G O  T O  640 

IF(MAD.GE.51 FACT=l.O+((FACT-1.0)/2.0)

SINESINIFACT 

GO T U  640 


890 CUNTINUE 

900 NIT=NIT+l 


IFISENSE SWITCH 2) 910’ 920 

910 UUTPUT(108) *91 CUNTINUE. 

920 SENSE LIGHT 3 


NACS2 

930 IFtSENSE SWITCH 1) 940’ 950 

940 SENSE LIGHT 15 

950 U U  960 I=lsNEQ 

960 SDELTA(I)=DELTA(I) 


GB TU 150 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C SEC 12 - STURE A M A S  A N U  DELTAS 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

970 DU 980 I X l e N E O  

SDELTA(I)=DELTA(II

SAMA(I)=AMA(I) 


980 CONTINUE 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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c SEC 13 - ESTABLISH UPPCR BUUND OF LAMBDA 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
993 MAX=O 


IF(PlOD(NOD.3).EQ.2) BD3Sl.E-5 

IF(MQD(NOD.3).EQ.O) BDJ=l.E-B 

DO 1020 LXrlrNEQ 

IF(SDELTA(LX).LE.O.) GU T B  1020 

IF(C(LX).LT.O) GO TQ 1320 

IF((MOD(NUD,3).EQ.l)oA~Do(SAMA(LX)oLEoloO)) GU TO 1020 

l F ( ~ M O D ( N 8 D ~ 3 ~ . E Q . 2 ) ~ A ~ D ~ ( ( S A M A ( L X ) ~ G T ~ ~ ~ O ~ ~ U R ~ ~ S A M A f L X ~ ~ L E o ~ ~ l ~ ~ ~ 


* 	 GQ TO 1020 
I $ (  ( M U D  (NOD.3) .EQ.O1 .AND. ( S A M A  (LX1 .GT.. 1 ) )GU T U  1020 

1000 M A X P M A X  + 1 
G K n A B S ( A M A ( L X ) / S D E L T A ( L . X ) )  
IF(MAX.NE.1) GO TO 1010 
SGK=EK 
60  TU 1020 

1010 IF(SGK.GT,GK) SGK=GK 
lG20 CUNTINUE 


IF(MAX.EQ.0) BD2sBD3 

IF(MAX.NE.0) BU2xSGK 

BD1"O. 

BD3=BD2 

IFtSENSE SWITCH 2) 1030. 105U 

1030 WRITE(lO8. 1040)BDlsBDZ
1040 ~ U H M A T ( ~ X . $ B D ~ ~ $ D F ~ ~ . ~ ~ % .BD2=%.F20.9) 

............................................................... 

C SEC 1 4  - FIBONACCI SEAdCH F U R  OPTIMUM LAMtlUA 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1053 DO 1190 LYSlrl9 

IF(LYoNE-1) GB TB 1060 
D I FF=BD2-BD1 
D2=10946./17711.

D1=D2*DIFF 

EXPl=BDl+Dl 

EXP2=BD2-D1 

SENSE LIGHT8 

SENSk LIGHT 9 

1069 IF(SENSE LIGHT 8 )  1070. 1090 
1070 CDELTAnEXPl 

SENSE LIGHT 10 
rie T U  1250 

1080 XlPHl=MERIT 
IFtSENSE LIGHT 9) 1090. 1110 

10Y 0 CJE L T A =EX P2 
GU TO 1250 

1100 X2PHI=MERIT 
1110 IF(X2PHI.GT.XlPHI) GO I Q  1153 

BU2=EXPl 

EXPlrEXP2 

SUBT=BDE-EXPI 

EXPZ=BDl+SUBT 

XIPHI=X2PHI 

IF(SENSE SWITCH 2 )  1120s 1140 
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