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AUTOMATIC ANALOG COMPUTER SCALING
USING DIGITAL! OPTIMIZATION TECHNIQUES

by
John Celmer and Mary Rouland*
Goddavd Space Flight Center

INTRODUCTION

The Automatic Scaling Program is a digital program designed to eliminate the tedious, time-
consuming process of manually scaling a linear or nonlinear system of differential equations for
an analog computer. Optimum scaling performed by the program minimizes the deviation from
unity of each amplifier gain. Since the analog's accuracy is limited to four significant figures, any
scaling that results in excessively high or low gains, that is, with a large deviation from unity, re-
duces precision even further. While it is important to recognize the program's time-saving fea-
ture and optimization of the analog's limited precision, it is even more important to emphasize
that true optimum scaling is extremely difficult if not impossible to perform manually. All the
inputs required are simple numerical data; the outputs include documentation of all maximums,
levels, and potentiometer readings and gains.

GENERAL PRINCIPLES

The Automatic Scaling Program is a digital program which optimizes the scaling of an arbi-
trary number of differential equations, linear or nonlinear, for an analog simulation. The obvious
advantage of having a digital computer perform the scaling is the time saved for the engineer who
formerly performed this tedious task manually. The primary advantage, however, is that the pro-
gram produces an optimum set of maximum values.

The necessary input, designed for simplicity, requires only simple numerical data. The num-
ber of equations, NEQ, the coefficient matrix, A(1, J), and an integer matrix M(I1, J) which identifies
the variable or variables of each term, suffice to completely describe a system to be scaled. The
input also allows the engineer to specify some constant maximum values or to place minimum
and/or maximum constraints on one or more maximum. If only NEQ, A(I, J), and M(I, J) are used
as input, that is, if no maximums are to be held constant or constrained, the program assumes the

*Stabilization and Control Branch Systems Division.



maximum value vector
AMA(I) = 10.0 I = 1,2, -+ ,NEQ

as a starting point for the search for the optimum vector.

Optimum scaling minimizes the deviation from unity of the gain at each amplifier, This gain,
represented by a matrix, PG(I, J), describes the potentiometer gain of every term in all equations.
Each element of the PG matrix

[acx. ] {aafmcr, 1]}
AMA (1)

PG(I, J) =

is calculated to minimize the merit value

NEQ No. of terms
MERIT = E § [PG(I,J)—1]2
T=1 J=1

where PG(I, J) is replaced by 1/PG(I, J) if PG(I, J) < 1.0 and PG(I, J) is replaced by 1if M(I, J) = I,
in order that unchangeable first-order loop gains do not contribute to the merit value.

The AMA vector associated with the minimum merit value of a set of equations, located by the
program's search routine running completely free without constant maximums or constraints as
input, produces optimum scaling of the problem, that is, scaling that is subject only to problem
coefficients. If some maximums are held constant or constrained, the scaling is optimum but it
is subject to constraints and constant maximums as well as problem coefficients.

The principal method used in obtaining the minimum merit value is the gradient or direction
of steepest descent in conjunction with the Fibonacci search procedure—a one-dimensional, se-
quential routine used to determine the optimum distance to move in the direction of steepest descent.
In general, the slope or sensitivity of each maximum increases as its magnitude decreases, with
very small maximums having very steep slopes., Therefore, if a problem has any maximums less
than unity with steep slopes, the step size or distance moved in the steepest~descent direction is
limited and the steepest-descent routine becomes ineffective in its convergence to the minimum
merit value. The program follows a new search technique in which a modified steepest-descent
movement is performed in three steps. With all AMA's less than or equal to unity held constant,
the first step allows maximums greater than unity to move in the modified steepest descent direc-
tion until the merit value is minimized. The second step allows a similar movement for maximums
greater than one-tenth but less than or equal to one, and the third step follows the same procedure
for maximums less than or equal to one-tenth,

The three-step modified steepest-descent method continues its normal sequence unless the
auxiliary search routine is activated by the manual turning on of a predesignated sense switch on



the computer console. The auxiliary search is a combination sequential, linear interpolation
routine in which the slope of each maximum less than one is individually minimized with respect
to all other AMA's held constant. While this would be too time-consuming to be a part of the normal
search procedure, it is useful as a 'kicking' device near the beginning of the search or whenever
the three-step modified steepest descent may be moving very slowly. If the search is actually
near the true global minimum, the rate of change of the merit value due to the auxiliary search
will not be much improved over the normal routine and will be much more time-consuming. How-
ever, if the modified steepest-descent search is slowed by a local minimum, the auxiliary search
will "kick" it out of the region and allow the normal search to become effective again. Therefore,

one of the two methods--the modified steepest-descent or the manually controlled auxiliary routine—

will continue the search for the AMA vector that minimizes the merit value, until the precision or
stepping condition specified by the program is reached.

All data used as input in the program, including any optional data, are printed for future ref-
erence and documentation. The merit value is printed at the conclusion of each search step in
order that the programmer may follow the progress of the search and, with this information, de-
cide when the auxiliary search might be useful. After optimum scaling is determined, documenta-
tion of results is provided. This includes the equation number, the maximum value, the level, the
potentiometer readings and gains of each equation, and the minimum merit value. An additional
feature in which all levels are rounded to one significant figure is also included as output, since
convenient levels may be preferred. The merit value resulting from the rounding of levels is also
given, to simplify evaluation of the rounding effect.

STRUCTURE

Required Input

The standard notation for systems of algebraic equations is
X(I) = ZC(I, Iy = X(I)
J

(I,J = 1,2"'N) s

where C(I, J) is an N X N coefficient matrix, For linear differential equations the standard nota-
tion is

X1y = ZC(I,J) . X(T)
J

(I, J=1,2--N) .



Since analog simulations involve both summations and integrations it is convenient to mix both
algebraic and differential equations

Z C(I, K) * X(K) ,
K

X(I)

X(J) = ZCU, K) * X(K) .

K
(I =1-+NA; J=NA+L-"-N),

(K: 1"'N) .

The N X N matrix C frequently contains a profusion of zero entries (the number of nonzero entries
in any row is usually less than five), It is thus more convenient to use an alternate notation in-
volving an N X 4 coefficient matrix A in conjunction with an N X 4 integer matrix M

X(I) = ZA(I,K) * X[M(1, K)]

K

X1 7 ) AT x XM B]

K

(I =1---NA; J=NA+1--N),

1
[y

(X -4y .

This approach reduces storage requirements and simplifies input preparation.

Assume the following set of differential equations:

X(1) = - 0.5[X%(1)] +0.09[x(2)] - 2.0[x<3)*x<1)] ,
X(2) = +1.0[xD] - 2.0[x2],
X(3) = - 0.055[X(1)*X(2)] - 0.8[X(3)] -

The input required to scale this problem is NEQ (the number of equations), an A(I, J) matrix
(coefficients of each term), and an M(I, J) matrix (the variable or variables of each term), where

4



1=1,2,---,NeQand J = 1, 2,---, number of terms of (I).

NEQ = 3

A(I, J) Matrix

1 2 3
1 -0.5 +0.09 -2.0
+1.0 -2.0
3 ~0.055 -0.8

M(I, J) Matrix

1 2 3
1 1 2 300 1*
1 2
1002% 3

Note: (*) indicates the form in which multipliers are entered as data. The format in which the
program accepts these data will be included under '"Operating Instructions—Required Input,"

Optional Input

The engineer may provide an initial set of maximums describing the point in space where the
search will begin and/or he may specify that some of the maximums are to be held at constant val-
ues. The maximum value of any equation not included in the optional input is set to 10.0 before the
search is begin. If the system is nonlinear, the engineer may want to place minimum and/or maxi-
mum constraints on the maximums of some equations. This is also possible in the optional input.
Format for the four variations of optional input is found under ""Operating Instructions—Optional Input.'"

Optimum Scaling

Each amplifier or integrator used in the analog mechanization of the equations has a gain as-
sociated with each input. The coefficients of a problem uniquely determine the total loop gain through
any n" -order loop of the system where 1 < n < NEQ., While amplitude scaling cannot alter the total
gain through any given n*h -order loop, it can insure against any excessively high or low gains by
even distribution. If all nth-order loops were independent of each other, calculation of the total
loop gains of order n and the n*" roots of these total gains would suffice to describe optimum dis-
tribution of gains through each loop. Since the n*"-order loops are not independent, an optimization
techhique far too complex to perform manually is employed.

Program Notation

The notation used for the vector whose n components are the maximum values of the system
is AMA(I), where 1 = 1,2, 3,---, NEQ. The elements of NTER(1) where I = 1, 2,---, NEQ are the
number of terms of each equation,

&



The gain at each amplifier is represented by the matrix PG(1, J); that is, the potentiometer-
amplifier gain of each term in every equation, Each element of the PG matrix is calculated by the

following equation:

(AL, ) {AMA[M(I, J)]} .
AMACT)

PG(I, J) -~ (1_a)

If the M(I, J) of any term indicates that two variables v, and v, are to be multiplied, then the equa-
tion is interpreted as
[AC1. )] [AMA(VI) ~AMA(v2)]

PG(I, J) = MACT) . (1-b)

Optimum scaling, defined previously as minimizing the deviation from unity of the gain at each
amplifier, is accomplished by minimizing the merit value, ¢, described by

NEQ NTER(I)
= - 2
$7), ) Deapoa]r. @)

=1 3

n
-

where (a) PG(I, J) is replaced by 1.0/pPG(I, J) if PG(I, J) < 1.0 and (b) PG(I. J) is replaced by 1.0
if M(1I, J) = 1. Part (a) above assures that low gains will not be ignored in the minimization rou-
tine; for example, a PG gain of 1/4 contributes the same value to ¢ as a PG gain of 4. Part (b) says
that pot gains required in first-order feedback loops are not to be included in the value of #. Since

ACL, T) AMA[M(CT, T) ACT, J) AMA(CT
PG(L J) = TTURATY } . L_K_g&ﬁ)(g) - ALD

when M(I, J) = I, the pot gain is constant, not dependent on a maximum-value choice, and therefore
not included in the calculation of ¢,

Search Methods

The principal search routine used in finding the minimum merit value is the gradient or
steepest-descent method. The gradient is obtained from the derivative of the function ¢ at some
point in the space represented by the vector AMA  (I), I = 1, NEQ. Since ¢ is a multi-variable func-
tion, (a function of NEQ variables), partial differentiation is used. The gradient line or direction of
steepest descent is represented parametrically by

d¢
A AMA, (1) :mx (I =1,2, -+, NEQ) , 3)

where X is an arbitrary negative parameter,



The selection of an optimum A, which determines the distance to move on the steepest-descent
line, results in movement to a new point in space, AMA, (1), calculated from

AMA, (I) = AMA,(I) + DAMA, (D) (I =1,2 - ,NEQ) . @)

If the system of equations does not have product terms, the new merit value ¢, associated with
the new point in space, AMA, (1), is calculated from Equations 1-a, 2, 3, and 4 to obtain

NEQ NTER(D | A(T, J){AMAO [mcxz, 1) o6 Ama, [MCT, J)]}
AMA, (1) < AAMA, (T) G-2)

¢, =

1=1 J=1

or simplified
NEQ NTER(D [ A(j, J){AMAl [M(I, J)]} :
o -1

$1 7 AMA, (T) ' (5-b)

=1 J=1
For a nonlinear system with multipliers, Equations 1-b, 2, 3, and 4 result in

e Er facr o [ang (v,) +an, (v,)] [, (v,) <omm, (v,)]

! AMA, (1) +AAMA, (T) (6-a)
1=1  J=1

or simplified

NEQ NTER ACT, n [AMAI (Vl) . AMAI (V2)] i

Pt AMA, (1) (6-b)

=1 J=1

where v, and v, are the variables to be multiplied.

Since ¢, in both Equations 5 and 6 is a function of the independent variable A in Equation 3 and
has only one degree of freedom, a uni-dimensional search routine is used to find the value of A that
minimizes ¢, . This routine consists of selecting trial values of A within the interval being searched,
evaluating ¢, for these trial values, and reducing the interval. These three procedures take place
according to a specified algorithm.

wilde (1964) discusses one-dimensional search procedures and includes a table showing re-
duction ratios for various sequential search plans., The reduction ratios show the Fibonacci search
to be the most efficient, followed closely by the Golden Section routine. The Fibonacei and Golden
Section procedures are very similar once the first experiment (trial value) has been determined. .
The basic difference is that in the Fibonacci search the number of experiments is selected a priori



and enters into the calculation of the first experiment, while the starting point for the Golden Sec-
tion is determined by a fixed ratio with the number of experiments dependent upon a defined error
criterion. These techniques are effective in finding the minimum value of a function if it is not
multimodal (more than one minimum) in the interval to be searched. If the function does have more
than one minimum in the interval, it is possible that the search may not locate the minimum having

the lowest value of the function.

The search procedure used in the program to find the optimum X is the Fibonacci technique
using twenty experiments, The Fibonacci number associated with twenty experiments is 10,946;
this says that after twenty experiments the original interval of uncertainty is reduced to less than
0.0001 times its original length.

The first step in the Fibonacci search is to establish a lower bound and an upper bound of the
A interval, The lower bound, BD1, is set at 0 for all searches; the upper bound, BD2, is recalculated
for each search. Since maximum values must be greater than zero and since x is always a nega-
tive parameter, a unique upper bound, BD2, is determined before each search by the following:

_ o _
£z, = A, (D/Fam, (D (I =1,2 -, NEQ) ,
then
BD2 = MINIMUM(Z >0.0) (I =1,2, -+, NEO) . )

Also, z_ is negative only if the partial derivative, d¢/dAMA, (1) , is negative. Re-examination of
Equations 3 and 4 shows that maximums with negative partials cannot become negative and there-
fore are eliminated in the calculation of BD2 in Equation 7.

The next step is to select the first experiment, EXP 1, in the established interval, Wilde (pp. 29-
30) gives the following formula for obtaining X,, the ratio of the interval [BD1, Exp1] to the whole
interval (BD1, BD2] :

X " F *tF ’ (8)

where n is the number of experiments, F_ is the reduction ratio for n experiments from the table
mentioned previously, and ¢ is the minimum separation between any two experiments, Since the
rate of change of ¢ as a function of A is very diverse, it would be difficult to choose a constant ¢

appropriate for all searches. Computer experimentation showed that the formula,

Xy, °F ' (9)



was very close to the precision of Equation 8 with n = 20, and satisfactorily handled the varied
slope field of the ¢ function.

The length of the interval to be searched is

L = BD2 - BD1 ; (10)

while the value for EXPERIMENT 1, the first trial value of A, is

EXP1 = BD1 +L - X, . (11)

The search is continued by placing EXP 2 symmetric about the midpoint of the interval [BD1, BD2]
with respect to EXP 1. Calculation of the ¢ values with A = EXP 1 and X = EXP 2 allows the ex-
perimenter to discard a portion of the interval, either [BD1, EXP 2] or (EXP 1, BD2] depending on
which experiment has the minimum ¢ value. In Figure 1 with the function ¢ as shown, the segment
[BD1, EXP2) would be eliminated from the interval since #(EXP 2) > #(EXp 1). Thus, the new BD1 is
EXP 2 and EXP 3 is placed symmetric about the midpoint of the new interval [BD1, BD2) with re-
spect to EXP 1. After n experiments, the final

selection of » is calculated from

_ BD1+BD2
NS T (12)

With the optimum A known, Equations 3 and 4
can be solved for the new point in the space,
AMA, (1), where I =1, 2,---, NEQ. Following
the same procedure, the vector AMA, (1) is
found. This cycle continues until the new point
is as close to the true optimum point as the A, PARAMETER
precision of the program allows.

¢, MERIT VALUE

Figure 1—Graph of merit value versus
arbitrary negative parameter.

In general, slope (sensitivity) of the merit
value as a function of an AMA component varies
inversely with the magnitude of the component. Extremely small AMA's have very steep slopes.
Calculation of A for any steepest-descent movement in which a given equation or equations have
small maximum values and large positive partial derivatives shows that A must be extremely small
in order to satisfy Equation 7, which assures that no maximums will become negative or zero. This
obviously becomes a limiting factor on the rate of convergence to the optimum point. Even if all
small maximums had negative partials, the size of A would still be limited owing to the steep slopes
involved,



Since most linear and any nonlinear system of equations with a moderate range of coefficients
necessitates presence of small maximums, a solution to the limitations of steepest descent is of-
fered in the form of a three-step, modified steepest-descent movement:

Step 1: a. AMA's < 1,0 are held constant

b. AMA's > 1.0 move in modified steepest descent direction until ¢ is minimized,

Step 2: a. AMA'S < 0.1 and AMA’s > 1.0 are held constant

b. 0.1 < AMA's < 1.0 move as in step 1(b).

Step 3: a. AMA's > 0.1 are held constant

b. AMA's < 0,1 move as in step 1(b).

If at any time in the search, the 20-step Fibonacci routine does not provide enough precision
for the merit value o be steadily decreased, the program automatically increases the number of
steps of the » search. This feature is desirable, particularly when the neighborhood of the optimum
point is reached.

Although the modified steepest descent is fast and sufficiently handles most problems, an aux-
iliary search was programmed which can be activated and deactivated by sense switch 5, turned on
and off manually on the computer console, The auxiliary search is a combination sequential,
linear-interpolation routine, in which the partial derivative or slope of each maximum less than one
is individually minimized with respect to all other maximums held constant, While in most cases
this is too time-consuming to be a part of the normal search, it is useful near the beginning of a
search or at any time that the modified gradient method is moving slowly, perhaps indicating ap-
proach to a local minimum. The auxiliary search provides a boost so that the modified gradient
can again be effective.

Special Systems

A LCC (linear constant coefficient) system of equations allows a great deal of flexibility in the
optimization of scaling. A suggested approach for automatic scaling is to use only the required in-
put as discussed under "Structure—Required Input,’ letting the program supply the initial AMA vector,

Since all LCC systems have an infinite number of AMA vectors associated with the optimum-
merit test, the resulting AMA vector may then be multiplied by any scalar and still maintain the
same minimized merit value and corresponding potentiometer settings. This property of a linear
system enables the engineer to keep peak voltages near the +100-volt level simply by adjusting the
scalar quantity.

A linear system with variable coefficients, while not permitted the freedom of a L.LCC system,
does have an infinite number of AMA vectors that have the same minimum ¢ value. However, since

10



these maximum vectors are not proportional, as they are in the LCC case, the engineer must rely
on the search routine to find different vectors with the same minimum ¢.

Nonlinear systems have only one maximum-value (AMA) vector having the minimum merit value.

This vector will be located by the search if no constraints or constant maximums are specified as
input. If constraints are placed on some maximums or if any maximums are determined and used
as input, scaling will be optimum but subject to the input constraints, If limits and nonlinearities

other than multipliers are in the system, it is suggested that the engineer examine the nonlinearities

and place constraints or constant maximums where they are necessary or beneficial.

Output

The output provides documentation of (1) all data used as input to the program, (2) the results
of the optimum scaling—maximum values, levels, potentiometer readings and gains (printed se-
quentially by equation), and (3) the minimized ¢ value.

Obviously, the levels chosen by the program, although optimum for the analog simulation, are
not convenient rounded numbers. Since in most cases the engineer prefers scaling that will allow
him to quickly change from scaled to problem units, perhaps even mentally, the output includes an
additional feature in which all levels are rounded to one significant figure, barring any which had
been specified as constant in the input. Revised documentation of (2) and (3) listed above is printed.
The increased ¢ value provides simple evaluation of the rounding effect.

A data card is punched for each equation, giving the equation number and the rounded maximum
value in the format accepted as input to the program. This deck is invaluable to the programmer
for any future rescaling that may be required by additional constraints or changes or simply for
new documentatign.

All input prepared for the Automatic Scaling Program (NEQ, A MATRIX, M MATRIX) and
the AMA deck (punched output of the program discussed in the preceding paragraph) also is in the
proper format for the FAST Program, a digital program which provides static and dynamic solu-
tions as a checkout for the analog,

OPERATING INSTRUCTIONS

Required Input

Assuming the three-equation problem with the equations, coefficients, and variables as dis-
cussed under ''Structure—Required Input,' the following cards are required. Data card 1 contains
NEQ entered as an integer, right-justified in columns 1-5. Data cards 2-4 contain the A(I, J) ma-
trix, one card for each equation. In card 2, for instance, columns 1-5 contain the equation number,
right-justified, integer form. The coefficient A(1l, 1) is entered in floating point starting in

11



COL 1-5 7-72

Card 1

20t .0, -2.0

COoL 1-5 7-72

Card 3

1T
1-.5, .09, -2.0

COoL1-5 7-72

Card 2
37 .055, -.8 ]
CoL1-5  7-72
Card 4

column 6 and terminated by a comma. The column to the immediate right of the comma contains

the sign or first digit of A(1, 2).

A(1, 2) is similarly terminated by a comma. This process

continues until all coefficients of the equation have been entered. Each coefficient including signs

and decimal point must not exceed 15 columns.

1 i 2
COL 10 20 30 40
Card 5
TT L
2 1 2
cOoL 10 20 30 40
Card 6

12

Data cards 5-7 contain the M(I, J) matrix,
one equation per card. The equation number in
interger form is right-justified in columns 1-10
and is followed by the M(I, 1), M(I, 2), M(I, 3)
terms, all integer, right-justified in columns
11-20, 21-30, 31-40,

Card 5 indicates the format for multipliers.
The integer 3001 right-justified in the 10 col-
umns allowed for the M(1, 3) shows that the vari-
able of term (1, 3) is the product, X, - X, .

w2

TT LI
ﬂ 1002
COL 10 20 30 40
Card 7



. )

Optional Input

The optional input is entered as two different data sets described by:

Set 1: Contains a starting set of maximums and indicates which, if any, of these values are
to be held constant.

Set 2: Specifies all minimum and maximum constraints placed on any AMA's,
A blank card must be at the end of each data set to indicate termination of the set unless values
are given for every equation. Even if a data set is omitted entirely, the blank card is still needed,

Assuming the same problem used as an example in the required input section, suppose that
the programmer wants the maximums of Equations 1 and 2 to have the values 12,0 and 5.6 at the

beginning of the search, Suppose also that the 5.6 value is to be held constant throughout the search.

These values are found on cards 8 and 9. Columns 1-5 contain the equation number in integer form
and right-justified. The maximum appears in floating point starting in column 6, not to exceed
column 21, Any maximums to be held constant must have a minus sign preceding the equation
number,

Since Equation 3 is not supplied with a starting or constant maximum, the program sets its
maximum equal to 10.0 before the search is begun. Card 10 must be a blank card to show the end
of optional input, Set 1.

Suppose that the AMA (1) should not exceed 100.0 and the AMA (3) should be greater than 5.0 but
less than 50.0. These constraints are found on cards 11 and 12, The equation number is entered
as an integer, right-justified in columns 1-5. The constraints are entered as floating-point num-
bers; first the minimum which starts in column 6, next a comma, and finally the maximum. If
there is no maximum constraint, the comma is not necessary.

1M2.0 -2 .6
COL 1-5 7-72 CcOL 1-5 7-72
Card 8 Card 9
. . _
]'0' , 100 3 , 50
COL 1-5 7-72 COL 1-5 7-72
Card 11 Card 12

13



Card 13, a blank card indicating the end of optional input Set 2, is the final card of the input.

Sense—Switch Operation

Table 1 shows the programming controlled by sense switches 1-5. The switches marked "*"
are particularly valuable. Under normal conditions all switches are turned off.

Table 1
Programming Controlled by Sense Switches 1-5,
S.S. i ;
ON"
Number Operation
1 Prints documentation after each search.
2 Prints Fibonacci steps and Auxiliary Search.
3 Resets program for more than one set of data.
*4 Designed to allow the programmer to choose his own precision;
"ON" state terminates the program, provides complete documentation.
*5 Activates auxiliary search.

FUTURE DEVELOPMENTS

Future developments will focus on additional flexibility and ease in programming nonlinearities.

Division of variables will be allowed with standard input form similar to the present form of
multiplier input,

Beside permitting constant maximums and constraints as now programmed, future development
will include the option of stating constant ratios to be maintained between two or more maximum
values. This will be helpful in eliminating potentiometers and handling built-in gains in switching
networks and other equipment.

If mathematical time-scaling is beneficial, this must, at present, be precalculated and reflected
in the coefficient matrix. In the future the engineer will be given the option to experiment with dif-
ferent time-scaling factors by simply providing the factors as input. The program will evaluate
the merit of time-scaling by comparing all minimized ¢ values.

Goddard Space Flight Center
National Aeronautics and Space Administration
Greenbelt, Maryland, August 1969
604-31-03-12-51

REFERENCES

Wilde, D. J., "Optimum Seeking Methods," Englewood Cliffs, N. J.: Prentice Hall, Inc., 1964,
pp. 10-52.
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Appendix A

Automatic Scaling Example

The sample problem displayed in this section was run using the Fortran program listed in
Appendix B developed specifically for the SDS 9300 digital computer. The sample program shows

scaling of the set of three differential equations previously discussed in both sections dealing with
required input,

AUIOMATLIL SCALiINL tXAMPLE  (NO OPTIONAL INPUT)

Noo =
A MATR]I X
1 ~edovubluv e LYLUULULUL Y VIC VA TIIV RV sUuUUuLUY
2 LeyoJduude =2.uULvuLul S ISVIVIVIVIV N s UL UuU
3 ~asBBuuls kI SN sLuvdULUL s UJJLLUUL
MorA T X
i i 2 3001
1 2
3 luve 3
AaX My
ConPIRAINTS
15

zég



-
)

AUTGMATIC SCALING EXAMPLE
EQ AMACTL)
+H+ AerErtbEebbetEs

1 10.000000

2 19.000000

3 10940000
MERIT TEST =
NG o 1 MERIT =
NO . 4 MERIT =
N8, 7 MeRly =
NB, 1ty MERIT =
NG, 13 MERIT =
NB. 16 MERLT =
NOe 19 MERIT =
NG, 22 MER{T =
NGB, 25 MERIT =
NO. 28 MERIT =
NB. 31 MERIT =
N, 34 MERIT =
NO. 37 MERIT =
NO. 38 MERIT =
NO, 40 MERIT =
NEB, 41 MERIT =
NG, 43 MERIT =
NG 44 MERIT =
NS, 46 MERIT =
NG, 47 MERIT =
NG, 49 MERIT =
N8, Su MERIT =
NO, 52 MERIT =
NB. 53 MERIT =
NO, 55 MERLIT =
NB. 56 MERIT =
NB, 58 MERIT =
N8, S9 MERIT =
NB. 61 MERIT =
NO. 62 MERIT =
NB. 64 MERIT =
NOB, 65 MERIT =
NB. 67 MERIT =
NB., 68 MERIT =

DELTA(D)
L S S

-00

-00

463-9v3989389

47.6914760942
31.8816575337
2v.1429973378
17.1616107626
15.1862255049
14,.6474874758
14.3417070574
14.27,2215434
14.2284847689
14.2226775511
14.,2155651171
14.1997667058
14.0170847617
14.0161128830
12.8622146225
12.8622130664
1247508967381
12.7477292105
12.7426480996
12.742u924535
12,7411870731
12.7410791704
12.74,8452642
12.7408163005
127447442527
12.7407348893
12.74.,7102898
127437472995
12.74.,6987791
12.74406975928
12.7406941927
12.7406937588
12.7406924722
12.74,6923282

LEVEL(LD)
A e

10.0u0u00

10.00U0V00

lu.0u0uoo

OALE
TERML
LR L L X

«50000v

1.00000V

«550U0v

18 APR 1909 PAGE Qou2
TERMZ
++trtrbr et

TERM3
thrteet e bbbt

09000V

<0.000000

2-00000v

«80000U

TERM4
rhttt et ratets



AUTGMATIC
NO .
NO o
NO o
NO .
NG .
NO .
NO
NO o
NO .
NO
NO,
NO .
NO .
NO .
NO .
NO .
NO.
NG,
NO.
NO o
NO .
NO .
NO &
NO .
NO o
NG .
NO .
NO .
NGO .
NO .
NG.
NO.
NG .
NO .
NG o
NO .
NG .
NG .
NO .,
NB ,
NO .,
NG .
NO .
ND .
NGO,

SCALING EXAMPL

70 MERIT =
71 MERIT =
73 MERIT =
74 MERIT =
76 MERIT =
77 MERIT =
79 MERIT =
80 MERIT =
80 MERIT =
82 MERIT =
82 MERIT =
83 MERIT =
83 MERIT =
85 MERIT =
85 MERIT =
86 - MERIT =
86 MERIT =
88 MERIT =
88 MERIT =
89 MERIT =
89 MERIT =
89 MERIT =
89 MERIT =
91 MERIT =
91 MERIT =
92 MERIT =
92 MERIT =
94 MERIT =
94 MERIT =
95 MERIT =
995 MERIT =
95 MERIT =
95 MERIT =
97 MERIT =
97 MERIT =
97 MERIT =
97 MERIT =
98 MERIT =
98 MERIT =
98 MERIT =
98 MERIT =
190 MERIT =
100 MERIT =
100 MERIT =
100 MERILIT =

12.7406919070
12.740L6918531
12.74,691697¢
12.74U6916693
12.74u6%15765
12.74(36915749
12,74u6915453
12.7406915699
12.74u6915446
12,74u6916012
12.74U6915399
12.74U6915650
1247406915393
12,74y6916117
12.7446915374
12.,74u6915658
127406915372
12.7406916197
12.74uU6915364
12.7406915669
12.7406915363
12.74U6915363
12.7406915363
12.74,6916267
12.74y6915362
12.7406915647
12.74U6915359
12.74,6916283
12.74,6915358
12.7406915684
12.7406915358
12.74u6915358
12.7406915358
12.7406916315
12.7406915358
12.7406915358
12.7406915358
12.7406915684
12.7406915358
12.74.6915358
12.74u6915358
12.74U6916315
12.7406915358
12.74uU6915358
12.7406915358
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-

AJTUMATIC SCALING EXAMPLE
Eud AMACL)
L A LT TR L R

1 3.035474

2 10892903

3 + 953569
MERIT TEST =

MINEMM MERIT yALyE

AUTOMATIC SCALING EXAMPLE
Euw AMAL(L)
L R ST R P e

L 34333333
2 11.111111
3 1+000G00

MERLIT TEST =
ALL LEVELS ARE ROUNDED

*STOP* QQULI0GU

DELIA(L)
LR e

=+0U0

124740691536

DELTALL)
ettt at e et bbbt

1+81

1.53

12.964334735

LEVEL({D)
AR e Y

32943779

9.180290

104.869206

LEVEL(I)
R el

$0.0u0000

9.000QU0

1U0«0u0000

JALE

TERML

R AR R L

« 30000V

«27866>

1.907139

DAL
TERML
*tdttrtitrre++t

.50000v

+ 30000y

24037037

3

18 APR 1909 PAGE 00ua
TERMZ TERM3
L A RN, [XT TR R T PR ey
+ 322968 1.907138
2+00000v
«800UV0V
18 APR 1go9 PAGE Quvs
TERM2 TERM3
+Etrrt et e et T+t reteteteb et
» 30000V 2+000000
2+00000v
* 80000V

TcRM4
R LTS

TERM4
ISR RS L 2




Appendix B

Fortran Program

INTEGER NEGLNTER(150)sM(150,4),C(150)
DOUBLE PRECISIGBN A(1505,4)sAMA(02150)sCT(15022),DELTA(D323150),

* PG(150s4)sSAMA(150)-SDELTA(150),XAMA(150)sXDELTA
w* (150) s XLEV(150)sYAMA(150) - YDELTA(150)
DOUBLE PRECISIGN ABS,5D1,BD2,BD3,8MAX,CDELTA,D,D1,D2,DIFF-EXP1.
* EXP2sFACT,6KsMERIToSGK,SINsSIS,SMERIT,S5UBT,SUM,
* SUMPs Ve Xa X1PHI s X2PHI s Y0 s ZZ
c
Py 2 R R A 2y R Y R R R R R R A AR A R R RIS RS2SR 22 2222
C.
Cc AUTOMATIC ANALBG SCALING
c
..*‘.*.'*'.-*‘.‘ﬂ*-.""'*.*..'***ﬁ‘*‘*.*‘*********‘*:*ﬁ***ﬁ***‘*.*“'*"*
Cc SEC 1 = READ IN NEQ, CUEFFICIENTS, AND M MATRIX

' 2 2 R e R R R a2 Ry X 2 Y E SR RS SR RS AR 22 RS R R SRR 2R AR R RS SR
A33(X)=DABS(X)
READ(105s 10) NEQ
10 FORMAT(1S,4(F16.,8))
QUTPUT(108) NEQ,**,*%,"A MATRIX®,*”*
D6 30 I=1.NEQ
READ(105s 10) C(l)s (Al1sJ)sJ=1,4)
WRITE(108s, 10) C(I)s(AlIsl)ad=1,4)
IF(CI{I).NELI) GB T8 1370
NTER(I)=1
08 20 J=1,4
IF(A(]lsJ).EQ.Q.,) GO T& 30
NTERCII=NTER(1)+1
20 CONTINUE
30 CONTINUE
BUTPUT(108)°°,*%,°M MAIRIX*,**
D8 50 I=1,NEG
READ(10Ss 40) C(I)s(M(1sJ)aJ =g sNTER(I)=~1)
WRITE(108s 40) C(I)a(MUl,J)sJ=1,NTER(I)=1)
40 FORMAT(5110)
IF(C(1).NE.1) GO T8 1370
50 CONTINUE
' AR i R s Y2 222 2 R X2 2 RS2SRRSR AR R AR SRR AR R R B0 22|
c SEC 2 = RESET CONDITIOGNS FBGR NEW AMA SET AND CONSTRAINTS
' 2 22 A R R R A R X R R R R R R R RS RS RS RS RSS2 AR Rl
60 SENSE LIGHT 023,15
NUM=MUM=NAC=NBD=LAST=MAST=(
BD3=1,
AMA(Q)=1.0
SMERIT=,9%(10.*%20)
CDELTA=0.0
70 D6 80 I=1,NEQ
SDELTA(I)=0.0
AMA(1)=12345,
C(l)=+t
Do 80 J=1,2
80 CT(I»J)=Q.
2 L R R R R R A I s s 2 A I P X2 2 SR AR R AR RS SRR S22 2 A 222
Cc SEC 3 - READ IN INITIAL MAXIMUM VALUES

19



20

I L R T R R R A L R R R T

GUTPUT(108)°%,° 7 MAXIMUMS?,**
D€ 100 I=1.NEQ
READ(105» 90) N,V
IF(NLJEG.O) GO TO 110
WRITE(108» 90) NaV

90 FORMAT(IS,F16.8)
L=1A88(N)
AMA(L) =V
C(L)=N

100 CONTINUE

110 D6 120 I=1.NEQ
IF(AMA(I) JNE.12345.)60 T6 120
AMA(T1)=10.0

120 CONTINUE

i'*i*****ﬁ*wt**iﬁt**ﬁ**ﬁ**it*t*ﬁ'ﬁ**ﬁ*it***iﬁ*ii***ii***ﬁ'ﬁ***ﬁ**it*t**t*ﬁ

c SEC 4 = READ IN CONSTRAINTS
I R N T e R R R R R R R R R R S R R R R R R R d
GUTPUT(108)°°5*22,°CONSIRAINTS?,**
De 140 I=1.NEQ
READ(105» 130) Ns(CT(NsJ)sJ=1,2)
IF(N.EQ.O) GO TO 150
WRITE(108s 130) Ns(CT(NsJ)2J=1,2)
130 FORMAT(15,2(F16.8))
140 CONTINUE

R R R R R R R R R R S A R R A R R R S A R E R R R R R R R A A R R R R R R R A ES SR X

c SEC 5 = CALCULATION OF MERIT VALUE
P R R R R R L T e
150 D6 170 [I=1,NEQ
D8 170 J=1.NTER(I)=1
LL=M(I1,J)/1000
NN=MOBD(M(1sJ)»1000)
160 PG(IsJ)=(AMA(LL)*AMA(NN)*A(]2J))/AMAL(])
PG(I»J)=ABS(PG(IsJ))
170 CONTINUE
MERIT=Q.
D8 200 I=1,NE@
D8 200 J=1.NTER(I)=-1
IF(M(I-J) .EQ. I) GO T8 200
IF(PG(IsJ).GE.1,0) G8 i0 180
Y= (1.0/PG(IsJ))=1.0
Go To 190
180 Y=PG(IsJ)=1.0
19C MERIT=MERIT + (Ywx2)
200 CONTINUE

Y L T A N ey T Y
c SEC 6 = PRINT AMAS, LEVELSs, POBT GAINS, MERIT VALUE
T R L R 2 e AR e e

210 IF(SENSE LIGHT 3) 260s 220

220 CONTINUE

IF(SENSE SWITCH 2) 230, 250

230 WRITE(108s 240) LYLMERIT

240 FORMAT(5Xs3LY=3,13,8-MERIT=8$,F25,9)

250 IF(SENSE LIGHT 10) 1080, 110U



260 IF(SENSE LIGHT 15) 270, 370
270 WRITE(108, 280)
280 FORMAT(1H15XsSEQS,11XsSAMA(I)S,10XsSDELTA(TI)S»10X,SLEVEL(1)8,13X,
* STERMISs13Xs STERM2S,13XsSTERM3ISs 12X STERMAS)
WRITE(108s, 290)
290 FORMAT(5X,3(S+8)s2X,(7(15(8+$)53X)))
DO 340 1I=1,NEQ
XLEV(I)=100./AMA(] ]
BUTPUT(108) * *
IF((MAST.EQ.1).0R, (LASI.EQ,1)) GO TO 300
GG To 340
300 IF({MAST.EQ.1).AND.(C(1).LT,D))} GB TO 330
310 WRITE(106s 320) J.AMALL)
320 FORMAT(IS5,F16.8)
GO TO 340
330 IT=«l
WRITE(1065, 320) IT,AMAL])
340 WRITE(108s 350) IsAMACI)sSDELTA(I)AXLEV(I)s(PG(1aJ)aJ=1,NTER(I)~1)
350 FORMAT(2/05Xs13s2XsF15662F18¢2s3Xs(5(F15,623X)))
WRITE(108s 360) MERIT
360 FBRMAT(5/25XsSMERIT TEST =8$.F24.9)
IF(LAST.EQ.1) GO TOG 1450
IF(MAST.EG.1) GO T8 1400
BUTPUT(108) * *,* *
SENSE LIGHT 2
370 IF(SENSE LIGHT 2) 400s» 380
380 WRITE(108s 390) NBD,MERIT
390 FORMAT(S5X»5N0.5,14,5XsSMERIT = $sF21.10)
M o v % ok v de o e W e o ol o ok v o A ol W e v W ol o ol e W W gl gk v ol ale T W e ke Y g o e W e e e ok W W e e ok e o e o o o o e W e o o e o e e W e W
c SEC 7 = COMPARE NEW MERIT WITH MINIMUM MERITs. STGBRE MINIMUM MERIT
X2 A R R E R R R R T R R R L R R R N R R YRR NSRRI E R AR AR AR AR R R R 2 2
400 IF(SENSE LIGHT 14) 139Js 410
410 IF({SMERIT=MERIT) .GT, (10.**(=10Q))) GO TO 460
IF(NAC.NE,2) G8 T8 430
D8 420 I=1,NEQ
420 AMA(I)=YAMA(])
NAC=Q
G8 70 570
430 NUM=NUM+1
IF(NUM,LT,.4) G8 T8 1050
D8 440 1=1.NEQ
440 AMACI)I=YAMA(I)
MUM=MUM+ 1
NUM=Q
G8 T 510
450 SENSE LIGHT 3,14.15,16
66 T8 1250
460 SMERIT=MERIT
U8 470 I=1.NE®
YAMA(I)=AMA(CL)
YDELTACI)=SDELTA(I)
470 CONTINUE
NUM=MUM=0
IF((MOD(NBDs3) ER.2) AND.{NAC,EQ,2) )NBD=NUD+}



T R R e R S L I  F R e R P T RS L e R R R R R R R R L]
c SEC 8 = SENSE SWITCH TO TERMINATE PROGRAM
R R L L s s I T Y T Ty
IF(SENSE SWITCH 4) 480» 490
480 SENSE LIGHT 3,15

MAST=]

Go T8 150
R R R R R R AR AR R R R R AR AR R R R R AR AR RN R AR R R AR AN R R RN R AR AR AN RF R PR AW
c SEC 9 =~ SENSE SWITCH FOR INTERPOLATION OF AMAS LESS THAN GNE

(2 X R R R R R Y R R R AL AR R RS AR R R R R SRS 2 X2 22X R 2R 2R R AR 2222

490 IF(SENSE SWITCH S) SQ0e 510
500 NAC=1

68 T8 520
510 NAC=¢

IF(MUM.GT.3) GO® TO 450

2 X R R Ry L N A R A R R R R A A R R R R A R A S R X R R A AR X222 2R

c SEC tQ = CALCULATION B8F DELTAS
LR R R I L A L A R R R R s I Iy
520 NOD=NOD+1
530 IF(MOD(NOD.3).EQ.1) GB TO S7y
IF(MUDINOGD,3).EQ.,0) GB T8 550
D6 540 I=1,NEQ
IF(CAMA(T) oGT.0,1) . ANDe(AMA(I) . LE.1.0)) GO TE 570
540 CONTINUE
G8 TO6 5290
550 D6 560 I=1.NEG
IF(AMA(]).LE.D.1) GO TG 570
560 CONTINUE
Go T8 s20
570 D6 580 I=1.NEQ
DELTA(I)=0.0
06 580 J=1sNTER(I)=1
NN=MOBD(M(I.J),1000)

LL=M{],J)/1000
IF(PG(IsJ)ebkToaf,0) X=2(2e* ((AMACI)/(AMA(LLI*AMAINN)I*A(ISJ)))=1.) )

* (1,7 CAMACLL)*AMA(NNI*A(1,J)))
IF(PG(IsJ)eGE.1,0) X=(2,*({(AMA(LL)*AMA(NNI®A(I,J))/AMA(]I))=1,0))%
* (=1e*((AMA(LL)*AMA(NN)I®A(TIL,J))/(AMA(L)w*2)))

580 DELTA(I)=DELTAC(I)+X
D8 590 I=1.NEQ
D6 590 J=1«NTER(I}=1
LL=M(I,J)/1000

NN=MOD(M(I.J)»1000)
IF(PG(I2J)elTol,0) Z=(2*((AMA(L )}/ (AMACLL)*AMA(NN)*A(IsJ)))=1,1))

* w((=1e *AMA(IN)I/(A(ILJ)wAMA(NN)*(AMAILL)%*2)}))
EF(PG{I1sJ)aBGEal,0) Z=(2,*(((AMA(LL)=AMA(NNI*A(ILJ))/AMA(]))=1,.0))
* w((ACTsJ)*AMA(NNY)/AMAC(TL))

S90 DELTA(LL)I=DELTA(LL)+Z
D6 600 I=1.NEQ
08 600 J=1s,NTER(I)=1
LL=M(1,J)/1000

NN=MOD(M(I»J)»1000)
IFIPE(IsJ)elTel1,0) ZZ=(2. v ((AMA(L) /7 (AMA(LL)I*AMA(NN)I*A(ILJ)))=1.))

* w( (=1, *AMACI))I/(A(TILJI*AMA(LL)I*(AMA(NN)ww2)))
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600

LA R R 2

c

LR 2 A2

610
620
630

640
650

660
670
680
690
700
710
720

730

740
750

760
779

780
790

800

810

IF(PGC]aJ)eBEe1.0) ZZ=(2,%x({( AMA(LL)®AMA(NN)I*A(I,J))/AMA(]))=1.))
» *(CACIsJIwAMA(LL)I/ZAMAC(L))
DELTA(NN)=DELTA(NN)+22 )
X R R R R R R R R X 222222 X222 222X 2242 22 AR Y RRRERE XX EEREEREY
SEC 11 = INTERPOLATION ROUTINE ACTIVATED 8Y SENSE SWITCH 5
NN RN R RRAANN A AN RN w R s dor e W W st oy R % v o g W o o ok ey o o o 2 e W ok o o o o o ok
IF(NACL.EQ.,0) GO TO0 970

IF(MBD(NOD,3).EQ.1) GO TO 970

IF (SENSE LIGHT 11) 730, 620

IF(SENSE LIGHT 19) 800+ 630

NiT=0

REPEAT 9Q0,WHILE((BMAX(AMASDELTALNEQsC)oeGlolo01)) AND.(NIT,LEL.20))
D& 890 L=1.NEQ

MAD=MAR=Q

SIS=SIN=,01

MMaMMM=Q

FACT=2,.0

SENSE LIGHT ©

IF(C(L),LT,0) GO T8O 890

IF(AMA(L).GT.1.) GO TO 890
IF(ABS(DELTA(L)).LE.(.D1)) GG TO 890

XAMA(L)=AMA(L)

XDELTA(L)=DELTA(L)

AMA(L)=XAMA(L)

IF(SENSE LIGHT 12) 680» 650
AMA(L)=AMA(L)+(AMA(L)*SIS)

IF(SENSE SWITCH 2) 660s 670

BUTPUT(108) 2AMA + ,01°,AMA(L)

Go T0 720

AMA(L)=AMA(L)=(AMA(L)®SIN)

IF(SENSE SWITCH 2) 700s 710

BUTPUT(108) *AMA = .01°,AMA(L)

SENSE LIGHT 17

SENSE LIGHT 11

G0 T8 570

IF(SENSE SWITCH 2) 740» 750

OUTPUT (108 ) XDELTA(L)#sDELTA(L)
IFC(XDELTA(L)*DELTA(L)I.GT.0.) GO TO 820
SUM=ABS(XDELTA(L))+ABS(DELTA(L))
DIFF=ABS(XAMA(L)=AMA(L))

SUMP= ABS(XDELTA(L))/SuM

IF(SENSE SWITCH 2) 760+ 770

QUTPUT(108) XAMA(L),SUMP,DIFF

IF(XAMA(L) oGT.AMA(L)) AMA(L)*XAMA(L)=(SUMP*DIFF)
IFCXAMA (L) LT oAMACL) AMA (L) =XAMA(L )+ (SUMP*UIFF)
SENSE LIGHT 23

IF(SENSE SWITCH 2) 780+ 790

BUTPUT(108) AMA(L),L

SENSE LIGHT 19

G8 T0 570

MMM=MMM+ 1

IF(SENSE LIGHT 23) 810» 89C
IF((ABS({DELTA(L))eLEe(e1)) OR. (MMM,NE.1)) GO TO 890
IF(AMA(L).GT.1.0) GO T9 890
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24

820

830

840

850

860
870

880

890
900

910
920

930
940
950
960

SENSE LIGHT @

MM=MAD=MAR=Q

SI1S=SIN=.01

FACT=2.0

XAMA(L )=AMA(L)

XDELTA(L)=DELTA(L)

Ge Te 650

IF(AMA(L).GE.CT(Ls1)) O TO 830
AMA(L)=CT(Ls1)

CiL)==_

CT(Ls1)=0,

BUTPUT(108) *MINIMUM CUNSTRAINT IN ITERATIOBN?
66 TO0 790

IF(AMA(L) .GE.(.00001)) GO TG 840
AMA(L)=1.,E=~5

G868 T0 790

IF(AMA(L).GE.1.0) GB TC 790

IF(SENSE LIGHT §17) 860 850
IF(ABS(DELTA(L) ) GE.,ABS(XDELTA(L))) GB T8 870
MAR=MAR+1

IF(IMARLEG,]1)eORL(MAREQ,L,2)) SIS=SISw*i(Q.
IF(MAR.,GE.3) SiS=SIS#2.

G8 T 640
IF(ABS(DELTA(L)) LT, ABS(XDELTA(L))) GO TO 880
MM=MM+1

IF(MM.NE.2) GO& 7O 88y

AMALL)=XAMA(L)

Ge 76 790

SENSE LIGHT 12

MAD=MAD+1

IF(MAD,EQ.2) SIN=SIN+*10,

IF(MAD,LE.2) GO TO 640

IF(MAD,GE.S) FACT=1,Q0+((FACT=1.0)/2.0)
SIN=SIN=FACT

68 T8 640

CONTINUE

NIT=NIT+1

IF(SENSE SWITCH 2) 910s 920
GUTPUT(108) *91 CONTINUE®

SENSE LIGHT 3

NAC=2

IF(SENSE SWITCH 1) 940, 950

SENSE LIGHT 15

Do 960 [=1.,NEQ

SDELTAC(I)=DELTA(I)

Go T6 150

R R R R R R R R R R X X A R R 2 A R A X R R R R R R R A A R RSS2 22222 ]

c

SEC 12 = STORE AMAS ANU DELTAS

2 A X RS R R R R R R R R R R R R X S R I A R A X R R R S R R A A RS A R A R R R R R SR RSS2 X X3

970

980

Do 980 I=1.,NEQ
SDELTA(I)=DELTA(ID)
SAMA(T)=AMA(L)
CONTINUE

R R R R R R R Y A R R R X NI A A R A R R R R R IR R ]



c SEC 13 = ESTABLISH UPPER BOUND OF LAMBDA
2 2 R Y R R R S A 2 X R R R AR AR ZZZ AR ZAZSSRRRRRE AR AR R R AR R R R 2 2 2 2 2 J
990 MAX=Q
IF (MBD(NOD,»3).EQ.2) BD3I=1,E=5
IF (MOD(NBD,3).EQ.0) BD3=1.E=8
D8 1020 LX=1.NEQ
IF (SDELTA(LX).LE.Q0.) GO TO 1020
IF(C(LX),LT.0) G8 TO 1020
IF ((MBD(NBDs3)eEQe1) e ANDo (SAMA(LX) oLE.1.0)) 68 TO 1020
1F ({MBD(NBDs3) eEQe2) e AND o { (SAMA(LX).6To1.0) «BRe (SAMA(LX) eLE.Qa1)))
*+ GO TO 1020
IF({MBD(NBD,3).EG.0)+AND. {SAMA(LX).GT..1))60 T8 1020
1000 MAX=MAX + 1
GK=AHS (AMA(LX)/SDELTA(LX))
IF(MAX.NE.1) GO TO 1010
SGK=GK
68 TY 1020
1010 IF(SGK.GT.GK) SGK=GK
1620 CONTINUE
IF (MAX.EQ.Q) BD2=BDJ
IF (MAX,NE.Q) BD2=SGK
BDISO.
BD3=BD2
IF (SENSE SWITCH 2) 1030, 1050
1030 WRITE(108s 1040)8D1,8D2
1040 FORMAT(5X»$BD1=$,F20.9s5, BD2=$,F20.9)
ﬁﬁ'ﬁ*i.t**ﬁi*t**'itﬁ*i.t'itﬁﬁ*".t'*i‘ﬁii**ﬁi‘i**ﬁ*ﬁi*ii.*i***'i***"i*i
c SEC 14 = FIBONACCI SEARCH FOR OPTIMUM LAMBDA
X A2 R R R R A R A R R E R R R S XX AR A2 R YRR R RN E AR AR A SRR RS2 R R X AR R SRR R
1050 DO 1199 LY=1,19
IF(LY.NE.1) G8 T® 1060
DIFF=BD2~-8D1
D2=10946./17711.
D13D2*DIFF
EXP12BD1+D1
EXP2=8D2-D1
SENSE LIGHT8
SENSE LIGHT ¢
1060 IF(SENSE LIGHT 8) 1070s 1090
1070 CDELTA=EXP1
SENSE LIGHT 10
G@ TO 1250
1080 X1PHI=MERIT
IF(SENSE LIGHT 9) 1090s 1110
1090 CDELTA=EXP2
66 Tv 1250
1100 X2PHI=MERIT
1110 IF(X2PHI.GT.X1PHI) G8 10 115U
BD2=EXP1
EXP1=EXP2
SUBT=BD2-EXP1
EXP2=BD1+SUBT
X1PHI=X2PHI
IF(SENSE SWITCH 2) 1120, 1140
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1120 WRITE(108, 1130) EXP1,EXP2,BD1.BD2

1130 FQR"AT(SXJSCASEISJFIBO§’F18090388D1=le1509.sasnz=$’F15¢9)

1140 IF(LY.EQ.,19) GO T8 1200
Go 7o 1190

1150 BDiI=EXP2
EXP2=EXP1
SUBT=EXP2=8D1
EXP1=BD2=-SUBT
X2PHI=X1{PHI
SENSE LIGHT 8
IF(SENSE SWITCH 2) 1160, 1180

1160 WRITE(108, 1170) EXP1,EXP2,BD01,8D2

1170 FORMAT(S5X,8CASE23,F18495F18,95,3,B01=%5F15.9,%,B8D2=5,F15,9)

1180 IF(LY.EQ.19) GO TO 1200

1190 CONTINUE

1200 CDELTA=(BD2+BD1)/2.0
SENSE LIGHT 3
IF(SENSE SWITCH 1) 1210, 122U

1210 SENSE LIGHT 15

1220 CONTINUE
IF(SENSE SWITCH 2) 1230, 1250

1230 WRITE(108» 1240) CDELTA

1240 FORMAT(SX»3FINAL CDELTA=$,F2V.9)

X 22 2 A2 22X 2Rz 2 2R R R AR RS AR S22 A SRS AALNASAREE S 2SS RS R 2 22 2
[o! SEC 15 =~ CALCULATION OF AMAS WITH OPTIMUM LAMBDA
' X R R 3 222 222222 X2 2 R XY R RS R R AR SRR RSN R AN R AESZ R SRR SRS RS2SR X X

1250 DO 1340 I=1.NEQ
IF(SENSE LIGHT t6) 1320, 1260

1260 IF(C(I1).LT.0) GO TO 1340
IF((MOD(NODS»3)EQ.1)«AND,(SAMA( [)oLE.1.0)) GO TO 1340
IF((MBD(NOD23)eEQe2) e ANDL ((SAMA( 1) GT,.1,0).0R.{SAMA( [).LE.0.1)))

* G8 TO 1340
IF({MOD(NOD»3) eEQD) e ANDL(SAMA( [),6T..1))68 TO 1340
DELTA(I)=SDELTVA(])*(CDELTA)

1270 AMA(1)=SAMA(I) <DELTA(I)
IF({CT(151)eEQaQe) e AND(CT(I52).EQ.0D.)
IF((CT(1s1) eNEeQoe) e ANDe(CT(I22).NEL.OD.)
IF(CT(I,1).EQ.0,) GO T8 1280
IF(AMA(IL) .GE.CT(I»1))G8 TOB 1340
GO T6 1300

1280 IF(AMA(I)LE.CT(I-2)) 5O TO 1340
8 TG 1310

1290 IF((AMA(]) aGECT(1s1))eAND (AMA(])LELCT(1»2))) GO TO 1340
IF(AMA(]) GT.CT(I»2)) b0 T6 1310

1300 C(i)==]

AMA(T)=CT(Is1)}
CT(ls1)=0.
SENSE LIGHT 4
GO TB 1340

1310 C(i)=~1I

AMACL)=CT(1,2)
CT(I»2)=Q.
SENSE LIGHT 4

Ge TO 1340

) GO 7O 1340
) GB TO 1290



