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ABSTRAC'Y

Ions with energy Ei and a distribution AEi about this energy tra-
versing an impulsive electric field will gain or lose an amount of
velocity inversely proportional to their mass, Consequently the final
ion energy of the ions in the beam is mass dependent. Further the
final ion energy distribution has been broadened or narrowed by a
factor which is a function of the impulsive energy gain or loss and the
initial ion energy, JIon energy gains and losses in planar and cylindri-
cal impulsive fields are investigated theoretically,

Ion energy analyzers suitable for analyzing energies of ions
emerging from impulsive electric fields are discussed theoretically
and experimental results are presented, Ion energy analyzers studied
include those based on a simple retarding field, the retarding field in
combination with an energy bandpass filter, and cylindrical as well
as spherical sector fields,

Applications of the mass dispersive properties of the impulsive
electric field to mass spectrometry are discussed, and the resolving
power as a function of the impulsive field strength and the initial ion
energy spread of the ions in a beam incident upon the impulsive field
is worked out, Complete impulsive mass spectrometers are described
and experimental results are presented. Possible uses of the impul-

sive mass spectrometer are suggested,

T



I. TINTRODUCTION

1. Basic Theory

Singly charged ions traversing a region to which an electric
field of short duration is applied gain or lose an identical impulsive
momentum, provided the time duration of the field is less than the
time it takes the ions to traverse the region to which the field is

applied. Let P. be this impulsive momentum, then

pc=fe€umt (1)
Nt

where e is the charge on the ions, €(t) is the electric field, and At
is the time duration of the field. After the ions emerge from the

impulsive field region, the total ion energy will be

Eg = = (p, % p) (2

where Py is the initial ion momentum and the positive sign indicates an
impulsive momentum gain while the negative sign indicates a loss.

The constant k is 0.483 in a system of units1 in which time is measured
in p seconds, mass in amu, voltage in volts, energy in eV, and

distance in cm. Define the impulsive energy EC to be

Def. 1

then with the initial ion energy Ei equation (2) becomes

E; =E, +E_ ¢ 2\/}3115;C . (3)

e



Equation (3) is a generalization of the expression for the energy of
an ion emerging from the impulsive electric field derived by J. A.
nipplel® (1953), V. B. Fiks'l (1958), J. Bracher'® (1965), and 1. E.
Dayton et gl? (1966) to the case when the initial ion energy is

greater than zero.

2. The Impulsive Momentum Integral

Consider now the integral of equation (1l). This integral will
be evaluated for planar and cylindrical (non-planar) geometries.

The evaluation of the integral in the case of a planar geo-
metry and linear potential is straightforward. Let d be the distance
between two grids held at zero potential. After ions have entered the
region between the two grids, a voltage Vc(t) is applied to one of the
grids for a time tv. The impulsivé momentum gained or lost by singly
charged ions will then be given by

T

j; v (t)dt. (4)

o]
|
ajo

Note that P. is neither dependent upon the initial ion position at
t = 0 nor the initial jion energy.

The solution of the integral in cylindrical coordinates can only
be obtained approximately. Consider two cylindrical grids having
radii R1 and R2 with R1 < RZ' Let all distances r be measured from -
the common axic of the grids to the position of the ions. Assume
that singly charged ions are injected radially towards the axis into

the region between the grids, and the pulse voltage Vc(t) is applied

S

gl

P



to the outer grid for a time T such that the ions gain an impulsive

momentum. Then if p is the ion momentum

W
dp _ . ¢
dt r (3)
where W _ = ch/ln(Rz/Rl).
dp _ dr dp - pdp (6)
dt  dt dr m dr’
hence
W dr
pdp _ _ _¢
m r N
from which
p’
5o = T Wc In r + k. (8)

Let the initial energy of the ions be Ei and let r, be position of the

ions at the instant the pulse is turned on. Note that R2 > ri > Rl'
Then
E.=-W Inr, + kK 9
i c - i
from which K can be evaluated. Thus
E.=E, - W In—& (10)
£ - "i c ¥

i
with the restriction that ry > r. The position r as a function of

time can be found by solving equation (10) for the momentum p. Then

dr C(E-i--ln——r-) (11)
W r, |’
C 1

towards R, .

The minus sign indicates that the ions travel from R2 1

1+



Solving for dt one obtains

dt = — dr =
a Vr - ln —
i
where the substitutions
2wc Ei
a = r and F"T
c
have been made. Equation (12) is to be integrated over the
duration t. This, however, cannot be done in closed form.
Ei are not too large, then the final position re is not too
from r, so that 1ln r/ri can be expanded in a series about r,
r,-r r,-r 2
ln == ~ - 1 + L4 + ...,
r, r, 2 \r
i i i

Then

1
- T ri-r
=\/I‘-1n—~ I"+r .
Ty i

Equation (14) may now be expanded to yield

1
Y, -r 1 l r
i ~ 1 + (-—--’. .")]
r + r w?A [ 2A r,
where A = 1 + 1, hence to first order one obtains
| 1 1l r )
dt ~ = — |1l + 7= — | dr
Na 2h Ty
which integrates to
2
1 (F47Tg)

1
Te—= |r,-r.) + 5 ——5
ah 1t 4Al ri2

(12)

pulse
If v and

far away

(13)

(14)

(15)

(16)

(17)



Thus T to zero order will be
(r,-r.)

L £ (18)
C{g}A

IrN

Returning now to equation (5), let P. be the impulsive momentum gain,

Then
lr
dt
p. = - W, .jm T (19)
)
Substituting for dt from equation (16) and integrating yields
g I - (20)
— N \
c dvg'”ZAri X

Expansion (13) is used again, and terms are collected to obtain

-w » Y. -1
c 1 i f
c dNQ: 2A r,

Solving Equation (18) for r, - rg and substituting into equation (21),

P, becomes

wC C T
S T Ol (22)

Note that the impulsive momentum gain in a cylindrical field is

dependent both upon the initial ion energy and position. Similarly it

can be shown that P, is a function of r, and Ei in spherical impulsive

fields.

ﬁv‘»



3. Effect of the Impulsive Field Upon Ion Energy Scatter

Returning now to the general problem of ion energy gains and
losses in an impulsive field, assume that the ions in the beam incident
upon the impulsive field have an energy distribution of width A Ei'

The final ion energy scatter may be determined from the Taylor-

expansion
O ¢ | 3%
AEf=5EIAEi+-2--a;—2'AEi+... . (23)
i

Differentiating equation (3) one obtains,to first order in AEi’

E
AE. = AE, (1 * E':’ ) (24)

13

The positive sign indicates an impulsive acceleration, and the
negative sign an impulsive deceleration. Thus for an impulsive
momentum gain AEﬁ will be greater than AEi’ while an impulsive loss
decreases the ion energy spread. Note further, that with Ec = Ei

NE_. =0 to first order.

f

The impulsive retarding field has the advantage that it reduces
the ion energy spread thus increasing the effective mass dispersion
of the impulsive field. Equation (24) is valid for cases where

Ei >LE; > 0. It can be shown3, however, that

(24a)

when E, = 0.
i



4, Mass Dispersion in the Impulsive Field
A measure of mass dispersion in an impulsive field will be the
change in total ion energy per unit mass increment., Generally the

impulsive energy EC will be given by
C
E, =2 (25)

where C generally is a function of initial ion energy, the impulsive
field strength, the time duration of the field, and the initial
position of the ion in the impulsive field. Combining equation (3)

with equation (25), one obtains

C
= =2 o+ —
E E, +—- % 2 . (26)

A Taylor-expansion of Ef(m) about m yields

E E,
c . i
Ef(m + Am) = Ef(no - = 1+ Ec Hm
— (27)
E E
c 3 i 2
+ = 1i4\/E Am+ ...,
m c

Thus the change in the total ion energy between mass m and m + 1 will

be to the first order in Am

E_ “/E:
= - — +\[—
@ = - |LE (28)
= c
Fig. (1) shows the variation of (AEf)Am=1 as a function of mass m for

m > 10, For such m all terms involving APm.(n'Z 2) may be neglected.
Typical operating parameters are listed on the figure. Note that
(AEf)Am=1 in the decelerating field is sma’ler than in the accelerating

field for all masses, other parameters being equal.
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5. Effect of the Planer Impurlsive dicla Upow Tou Trajostories
Consider an ion in an ion beam traversing a planar impulsive

field. Let ai(p) be the tangent of the angle between the initial ion

trajectory and the beam axis. ai will generally be a function of the

radial distance p from the beam axis. The radial momentum is then

P, = Py (P (29)

where Py is the initial ion momentum. Let af(p) be the tangent of the

angle between the final ion'trajectory and the beam axis immediately

after the ion emerges from the impulsive field,

ac(p) = —F—= (30)

where P, is the initial ion momentum along the beam axis. If P, is
much larger than pp’ then P, ~ Py- Using this approximation and

equation (29) and definition (1), one obtains

[

1
ae(p) = | 7377 | % (p) (31)
£ 1/2 i
\1 * Q
where Q = Ec/Ei’
Consider now AX = Qe -y
gt
pr= - = (p). (32)
e o
The positive sign must be chosen for an accelerating impulsive field,
hence
b Qe <0

for decelerating fields the negative sign is indicated making

i adec. > 0.



The second inequality shows that the planar impulsive decelerating

field defocuses the ion beam.,

Aaﬂdi as a function of Q for the retarding impulsive field.

6.

Summary

Four conclusions may be drawn from the preceding analysis:

1‘

The planar accelerating impulsive field enhances any
initial ion energy spread, while the decelerating
field decreases the spread.

The mass dispersion (AEf)AmFl is larger for accel-
erating impulsive fields than for decelerating
impulsive fields for constant P

Non-collimated ion beams are defocused in the
planar decelerating impulsive field.

The impulsive momentum gain or loss of an ion
traversing a cylindrical impulsive electric field
is a function of the initial ion energy and posi-

tion of the ion within the impulsive field region;

while the impulsive momentum gained or lost by ions

traversing a planar impulsive field is independent
if initial ion energy and position within the field

region.

Fig. (2) shows the relative change

10

From an experimental viewpoint planar impulsive fields could be used

to construct a very sensitive, compact mass-analyzer.

between accelerating or decelerating impulsive fields must be

determined experimentally on the basis of points 1, 2, and 3.

The choice
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Fig. 2 Change of Ion Trajectory as a Function of Q
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II. TON ENERGY ANALYSIS

1. The Planar Retarding Grid

12

The simplest way to determine ion energies is to apply a re-

tarding voltage Vr(t) in front of the ion current detector, then if

N(E')dE' is the number of ions per unit time having energy in the

range from E' to E'+dE', the number of ions per unit time arriving at

the collector will be given by

Fc(vr) = J( N(E')dE' (33)
E=eV
T
from which
dFC
-d—E-:— = N(E). (34)

The above analysis assumes of course a perfectly collimated ion beam.

Generally there will be a small beam divergence which will be enhanced

in the retarding field. 1In order to obtain an estimate of this en-

hancement, consider an ion having initial energy Ei traversing the

region between two grids separated by the distance d. Let z be the

direction perpendicular to the grids and p the radial distance from

the axis of symmetry. A voltage Vr is applied to the grid at z =

the other grid at z = 0 is held at zero potential. Thus with the

initial conditions z = 0 and p = p, at t = 0 the solution to the

equation of motion m g = 0 and mZ = -eVr/d will be

d;

1
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eV

r 2 '
z = vzt - 3 t (35a)
P =0, + th . (35b)

_,ZE
Assume v_ > > v , so that v_ ~ 1. v,, further with o, the initial
2z P z m 1 i

angle of the tangent to the ion trajectory with the system axis, and

E_ = eV_ one obtains,
r r

Er 2
z ~ Vit " Tmd t (36a)
p=p, ¥ v,o,t. (36b)
When z = d, t = 1, then
Er 2
3T VT +d=0 (37)
from which 5 -
v, i\/—(E.-E )
o = L m' i
E
T

md
dVom [~ N\ e
i (‘\/}E1 iVEi-Er ) (38)

Since T must not become unbounded as E_ goes to zero, the minus sign

must be chosen. Thus with Pq = Po + viaiT
V]
1 -\l - EI (39)

where ai may in general depend upon Py

E

_i
E
Y

Pg = P, t 2d06i

Conservation of charge demands that the current dIC flowing through a
differential area podpod¢ about Py will flow through the area
pddpdd¢ , hence

Jo(po)podpod¢ = Jd(pd)pddpdd¢ (40)
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from which
Py dpd -1
Jalpg) = J,(p,) pg \@o_ | - (41)
o
From equation (39) one finds
p \[ldp -1 E E
(-2(3—3 =[1+2Ei(1-\/1-55x
Pall\%q L r i
(42)
2 2 -1
ozi dai 2 Ei Er ai dai
< 4+ —= |+ 4| 1 -V1 - =l
Po dpo Er Ei Po dpo

Expression (42) is somewhat complex for arbitrary ai(po)' Consider,
however, an ion beam diverging from a point at a distance D from the
first grid, then

pO
o, (0) = =2, (43)

and equation (42) reduces to

T ST [AEV )

so that equation (41) becomes

[ -2
E E
- 2d (i - _ L
Jaleg) = Jo(py) |1+ (E 1 1 - g, (43)
r 1
Note that in the limit as Er/Ei -0
-2
d
Jaley) - I, () [1 + -D-jl (46)

which agrees with results obtainable from geometric considerations.
Fig. (3) shows the experimental verification of equation (45). A
surface ionization source4 provided a diverging beam of ions having an

energy Ei' The radial distribution of the ions was measured with an

A



15

W

prag Surpaelay leueld ® Ko weag uol ue 3O Sursnoojaq € 914

wo ur O
! . | . .
01 m. 0
|
- 39dx9 Avavvh
S T
Q= °
fde
(2}
o)
<300y (P9)Pr E
-107 <
0
=]
N
%
—II-
)
=
L S ¢
g/v = "3/ 3 - Aoavoh
wdy 2°9 = a
wy» g°h =P
- %




16

annular ion collector described in a previous papera. Despite the
crudeness of the measurements, the agreement is very close over the
range of points obtained. Nole that the beam impinges slightly off-
axis upon the collector. Measurements showed that there was a mis-
alignment of the collimator apertures giving rise to the observed
deviation. In order to minimize the undesirable defocusing effect,
it is advisable to collimate the ion beam and to make the distance d
quite small - of course d has to be kept many times larger than the

grid mesh spacing so that the retarding field stays reasonably uniform.

2., The Ion Energy Band-Pass Filter
In the analysis of energy distribution of ions emerging from an
impulsive field, it is convenient to set an upper limit Eu to the ion

energy of those ions collected so that

E,
F (V) = /’ N(E')dE' . (33a)
“E = eV

r
Such an energy band-pass filter was used by I. E. Dayton ét a15 to
analyze energies of ions emerging from a 2KV impulsive fiela, but not
discussed in detail.

Consider an ion having energy Ei greater than eVr incident
upon the grids shown in Fig. (4). When the ion enters the region
between the slanted electrodes, the equations governing the ion
trajectory will be

o _ €.
mx = S(Va Vr) (47a)

ok =0 . (47b)
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A first integration yields

my

[}
|
'
a3
<
w

; eﬁ” (48a)

where AV = Va - Vr’ B =rcos O, and ¥ = sin 6. Integrating equations

(48) one obtains

-\ A
y = tT - v.Bt+s (49a)
X = Vi‘rt . (49b)

Define Es = Ei - ev, then an upper limit E to Es is found by

demanding that y = 0 when my = 0, Thus letting my = 0 in equation

(48a), solving for t and substituting into equation (49a), one obtains

E B’
y = s {- oAV + 1)‘ (50)
but y = 0, hence
E, = - (51)
cos B

Equation (51) expresses the upper limit Eu of ES in terms of the
applied voltages Vr and Va and the angle of inclination 6 .

The angle O must be chosen such that the collection efficiency
of the analyzer-detector does not vary with the ion energy over a
range of ion energies. One way to insuie this is to adjust 6 such
that X only varies minimally with ion energy. Consider equations
(49). Solving equation (49b) for t and substituting into equation

(49a) yields

X+ s (52)
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When y = 5, x = X hence

R _Bi
X [(4572) X Y] 0 (53)

where R = eAV/ES.

Thus
_ 4s \/1 - 2
xs = r\/1 r . ‘ (54)

Consider small angular deviations from the axis of symmetry;
differentiating equation (52) at the point X and using equation (53),
one obtains

dy
dx

-8
v (35)

X
S

hence 8 = ¢, This implies that the variations in 6 are reflected
exactly in ¢. 1In order that X have an extremal value with respect to

Y, one must require that

2

ox
S - .éi (1'2 ) =0 . (56)
oy R {A_Yz

Solving equation (56) for the roots Y, one obtains Ty = * 1/“¢Ei
Clearly the choice T, = 1/°V2 is indicated, so that the optimum
deflection angle 6 is 45°. Experimental work using the energy filter

is described in section III, 3.

3. The Electrostatic Energy Analyzer Eg

The electrostatic sector field has been analyzed in a number of

books and articles6’7’8’9. This mathematical treatment follows the

analyses of Wollnick7 and Ewald and Liebl8 as they are the most general
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and concise. Consider Fig. (5). Ra, R, are the radii of curvature of
the electrostatic sector field in the vertical direction while T Ty
are the radii of curvature in the horizontal direction. Let

r +r
— (57a)

and

R = ——— . (57b)

Consider a surface S in the plane of the median trajectory

S=RmrmA¢A9 (58)

where A6 and A% are angular displacements in the horizontal and
vertical direction respectively. Let S' be a surface differentially
displaced in the horizontal direction such that the plane of surface
S' is located at a distance r = rm(l+p) and R = Rm(14-prm/Rm) from the

centers of curvature of the electrostatic sector field, then

r

v _ L
§' =R T (1 + R PY(1 + p) Ad A6 . (59)
Since V € = 0, €os= €s'. Thus
b ]
1
€= €, T J
A+pA+ 0
" (60)
ro ]
=€, |[1- Q0+ + ...
m P
ks
Hence with ¢ = rm/Rm the r and z components of € will be
€r = €coso ~ €, [1 -(14C) p + ] (61a)
€ m
€z = Csin¢ ~ E;TI:ES)E. (61b)
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where rmg ~ rm(l + p)t is a small displacement in the vertical
direction in the plane of S'. To the first order in p and { equations
(61) reduce to

€.~ €, [1 -1+ C)p] (62a)
€.~ foc b (62b)

From equations (62) the potential V(r,z) in the neighborhood of the
median trajectory is found to be
1 2 .1 2
V(r,z) = - 60 ro [p - 5(1 +c) p + 7c ¢+ ...] . (63)

The equations of motion for a particle having charge e and mass m in

the electrostatic sector field are:

mE = mr 6° + e €r (642a)
m(-ac'lz)(rze) =0 (64b)
mZ = e Gz : (64c)

A particle on the median trajectory having mass mg and velocity Vo

will stay on the trajectory provided

e € =22 (65)

Consider next a particle of mass m = mo(l + 7v) entering the sector
field with a velocity v = vo(l + B) on the median trajectory. From the

conservation of euergy it follows that

n (1) V.2 (1)’ m (1) (g v

> = 5 + e V(r,2z) (66)
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where 1 = n(p,f). Solving equation (66) for n one obtains
22 + 2(14B)n + 2A(1-Y) = 0 (67)

where A = p - 1/2(14c)p + 1/2 cp2. n, however, is a differential
quantity which goes to zero with p and [, so that neglecting the nz
term one obtains

ne, ) = - A(1-g-7). (68)

Hence the particle velocity in the neighborhood of the median tra-

jectory will be to second order

2

V=V [1+B-p + %C(pz'gz) + % pT + p(y + B;} (69)

From equation (69) one obtains é to first order

|o®

5 =L,

% (148-2p) . (70)

r

=]

Inserting expression (62a), (65), and (70) into equation (64a) yields

mo(1+r)rmp = mo(l+r)rm (14p) x

(71)
Vo 2 v 2
;; (1+2B-4p) - r oo\ [1-(1+c)p]
which can be reduced to
2
Vo 2
P=|—] k(&) (72)
m

where Kk =7\/2 - ¢, and & = (ZB+T)/K2. The first order equation of
motion in the vertical plane may be derived by inserting equation (65)
into (64c) and simplifying the resulting equation to obtain

L) V 2
5"(?94 ct . (73)
m
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Equations (72) and (73) may be solved using standard techniques. The

solutions, of course, are oscillatory and have the form:

p(t) = p, sin (ot + al) + 5 (74a)

g(t) = ¢ sin (Ve ot + Q) (74b)

where o = Vo/rm? al, az are phase angles and Py go are amplitudes
dependent upon initial conditions. Consider p(t) = K ® P, cos (k oot
+ ;). For some t = tl,é(t) = o(t + tl), hence wt, = x/k. Thus the
horizontal deflection angle ®@= n/kc; similarly the vertical deflection
angle ¢ = ﬂ/'VGT There are two special cases of interest: Rm is
infinite, and Rm =T - The former is the cylindrical sector field
for which ¢ = 0 so that @ = ﬂ/W/§_= 127° 17'. Note that there is no
focusing action in the vertical plame. The latter case is the
spherical sector for which @ = ¢ = . This sector field focuses the
charged particles in both planes. The focusing properties of the
sector field will in practice be affected by the fringing fields at
the entrance and exit of the sector. The effect of the fringing field
can be minimized by suitably shielding the entrance and exit of the
sector with a grounded plate. The mathematical analysis of the
shielding diaphragms and their position relative to the sector is
given by H. Wollnick7.

Equation (66) shows that only ions having an energy in the
neighborhood of E0 = e€orm/2 may be transmitted. Thus the electro-
static sector field is a convenient energy analyzer. A cylindrical

and a spherical electrostatic energy analyzer (EEA) have been
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constructed. Figs. (6) and (8a) show the cylindrical EEA and a
typical energy spectrum obtained with an electron beam incident upon
the analyzer respectively. Figs. (7) and (8b) show a spherical EEA
and energy spectrum obtained by using the same electron source. The
thermal spread of the electrons is approximately 0,2eV at typical
operating temperatures of the filament. Considering the above to be
the true energy spread ;f the electrons, Fig. (9) shows that the
resolutionsof the cylindrical and the spherical EEA are approximately

0.5eV and 0.9eV respectively.
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ITI. APPLICATION OF THE PLANAR IMPULSIVE FIELD TO MASS SPECTROMETRY

1. The (.sastant Momentum Mass Analyzer

The mass dispersive characteristics of the planar impulsive
field may be used to good advantags in performing mass analysis,
Figure (10), which is taken from Hipple's patentlo, shows how a
planar impulsive field and an ion energy analyzer may be combined to
function as a constant momentum mass analyzer (CMMA). The CMMA was
originally proposed by J. A. Hipplelo in 1953, A later paper by V. B,
Fiks11 proposed the same device. In 1958 W. M. Brubaker12 patented a
CMMA consisting of two cylindrical EEA's and a planar accelerating
impulsive field. One EEA was placed in front of the impulsive field
in order to reduce the initial energy spread AEi of ions entering the
impulsive field. The other EEA was positioned behind the impulsive
field to analyze the energies of ions emerging from the impulsive
field. None of the above, however, reported any experimental work on
the analyzer, )

Experimental work on constant momentum mass analyzers had its
beginnings in 1953 when M. M. Wolff anhd W. E, Stephens13 used an
impulsive accelerating field to construct a time of flight mass
analyzer with a linear mass scale. 1In 1959 B. R. F, KendalllA’15
worked on a CMMA consisting of a planar accelerating impulsive field
and a cylindrical EEA. He, however, did not obtain an adequate

resolving power from the instrument. In 1965 a constant momentum

mass analyzer composed of a planar impulsive accelerating field and
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cylindrical electrostatic energy analyzer was described by J.
Bracher16. A year later I. E. Dayton5 published a report on an
operational CMMA having a somewhat iower resolving power but a higher
sensitivity than Bracher's instrument. The same year H. M. Luther
reported on a CMMA having a resolving power comparable to that
obtained by the other workers; this analyzer, however, does not
require the extreme pulse voltages of both Bracher's and Dayton's
instruments. Further experiments by Luther have led to an analyzer
which is described in section I1I1.4. The mass analyzers are all
compared in the chart on Fig. (11). All spectrometers listed in the

chart are of the accelerating type.

2. Resolving Power
There are currently two definitions for the resolving power of
a mass analyzer in use. The resolving power at mass m is defined to be

R(m) = g—al Def. 2

where Am is the width of the mass peak in mass units. The resolving
power may also be defined as that mass at which an adjacent peak can
just be resolved. This definition is a special case of definition 2
and is obtained by requiring Amto be equal to 1 amu. Then the re-

solving power RO is equal to the numerical value of the mass m,

R = |m Def. 3

Consider equation (28). Solving for the numerical value of m/Am one

obtains
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mi_ e ! (75)
anl” RELm 1T EVE

If the ion energy analyzer has an energy resolution of € and assuming.
that ¢ is independent of the ion energy, then the resolving power

R(m) of the mass spectrometér will be

—
Ec Ei

R(m) = o 1+ B (76)
(]

in the absence of any initial energy scatter of the incident ions.
Assume now that the incident ions have an energy spread AEi. This
spread is broadened according to the equation (24). Thus the

‘effective resolving power R(m,AEi) will be given to first order in

Am
m by /Ei
+\[ —=
Ec 1 :\ Ec

R(m,AE,) = » E: : (77)
, e + AEi

+\/ —
L E,
1

where, as before, the positive sign is indicated for an éccelerating
impulsive field and the minus sign is indicated for the decelerating
impulsive field.

Consider the accelerating case of equation (77). Let Ec get

very large. Then

E
Cc
Rp(E ) > 7= (78)
Ve ap :
\ Ei i?

so that for very large Ec it can be shown3 that
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2/3

RO(AEi) ~ V. (79)

where Vc is the impulsive field voltage of the planar impulsive field.
This dependence is in general agreement with Bracher'sle presumably
empirical, determination of

1/2'

R (AE,) ~ V, (80)

It is experimentally convenient to define the measurable

resolving power Rexp(uo of the spectrometer as

By
Ec 1+ B
_ c
Rexp(“o - AE (m) 0.5 (81)

where the subscript 0.5 indicates that the measurement of AE(m) is
made at the half-height of the mass peak. Note that as Ei approaches

Zero

E
, c
Rexp(m) —’[AE(m) ] 0.5 (81a)

which is the experimental resolving power as defined in a previous

publications.

3. The Retarding Field CMMA

- In section 1,6 it was observed that the width of the ion energy
distribution of ions emerging from a decelerating impulsive field was
smaller than the width of the initial ion energy spread. This ?
observation led to a series of experiments designed to evaluate the
performance of a decelerating field CMMA. Tests evaluating the

performance of a gated decelerating field CMMA have been described
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previously3. It was seen that both mass sensitivity and resolving
power were low. In order to determine the reason for this deficiency,
an ungated mass spectrometer was constructed using parts from an
electron - optical kita. Fig. (12) shows the essential details of the
spectrometer. A surface ionization source4 charged with Na and K
salts provided an ion beam of about 10-9 A incident upon the mass
analyzer. The impulsive field region measured 2.5 cm, and the total
ion flight path was 8 cm. The pulse divider network shown in the
upper left hand corner of Fig. (12) insured a spatially linear de-

celerating field, while the capacitors C were used to correct any

1..4
distortions in the pulse shape due to stray capacitance in the
resistor chain. The dashed curve in Fig. (13) shows the energy
distribution about Ei = 12eV of the ions incidernt upon the analyzer,
Before the retarding pulse voltage Vc(t) was turned on, the voltage
applied between the electrodes of the energy band pass filter was
adjusted such that no ions having energy greater than Ei were
collected. The magnitude of AV = 6V determined experimen’ally was
found to agree with equation (51) within a few percent.

The performance of the spectrometer verified qualitatively the
predictions made in sections I,4 and 1,5. For Ec ~ Ei the collector
. current was attenuated by a factor of 103, and the mass dispersion was
barely large enough to separate the Na+ and K+, the two components of
the incident ion beam. The solid line in Fig. (13) shows the mass
spectrum. The experimental resolving power at mass 40 was found to be

about 3 which is in agreement with the theoretical prediction based on

equation (77). The reason for the low resolving power of the retarding
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field CMMA is thus seen to be a consequence of the fact that to first
order in Am.
Lim R(ﬂb&Ei) =0 (82)

as E,./JE -1
i’ e

provided ¢ is independent of the final ion energy, while its low
sensitivity is seen to be caused by the defocusing effect of the de-
celerating impulsive field.

There is, however, another mode of operation of the retarding
field CMMA which relies on the defocusing effect meiitioned in section
I1,4. The geometry of this spectrometer is shown in Fig. (14). Con-
sider an ion beam incident upon the impulsive field region at an angle
ai with respect to the normal of the field region. Analogous to the

development in section I,5

P .
tan a = —2—, (83)
P, P,
hence
sin ai
tan Q. = (84)
£ cos ai-Ql/z

where, as before, Q = Ec/Ei’
Consider now the ray reaching the collector. The angle af of this

particular ray is n/2 so that tan Qe = o from which it follows that

E =E, cos o, . (85)

Consider now the integral in equation (4). 1If Vc(t) is a square

pulse, then with b = k(eVC/d)2 one obtains
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E =~ (86)

where v is the time duration of the decelerating pulse. Combining
equations (85) and (86) one obtains after rearranging terms

b'rz 2
m = o (1 4+ tan ai) (87)
i

Consider now a Taylor-expansion of m('r,Ei,ai) about (t’Ei’ai)

m('r+A'r,Ei+AEi,ai+Mi) = m(T,Ei,ai) +
88
-zéi-eE—i-i-ZtanaM + -
m T Ei i i [ ]
hence to first order in Art, AEi’ and Aozi

LE
Am=m[—2%1-—é-}-+2tanaimi}. (89)

i

1f a perfectly collimated, mono-energetic ion beam were incident upon
the mass analyzer, the maximum obtainable resolving power R(m) would be

R(m) = L

T

In the presence of angular deviation Aoti about @, and an energy spread

i

AEi about Ei’ the resolving power R(m,AEi,mi), however, becomes

R(m)
1 + R(m) (el + 262)

R(m,AE, ,A0,) = (91)

where e, = |AEi/Ei! and ¢, = !2 tan 0, AQ | . Note that the factor 2
multiplying €, takes into account a symmetric angular distribution of
the ion trajectories about Q, while LE . is not doubled, since it was
chosen symmetrically about the energy Ei' It is clear from the form

of € that the initial energy should be made large in order to make
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€, small., The angle &@,, however, may not be chosen arbitrarily, since

1 i’
it depends upon the required pulse generator duty cycle, defined as the
ratio of the pulse¢ duration 7 to the period T of the output voltage
Vc(t), the initial ion energy Ei and the physical dimensions of the

analyzer. 1In order to derive an explicit expression for @, in terms

i
of the above parameters, consider an ion with a mass M which is at the
upper limit of the dynamic mass range of the mass analyzer. This ion
must traverse the distance a shown in Fig. (14) within a time interval
smaller than T. T is related to duty cycle & and the pulse duration 7%
by the equation

T = (92)

e AL

Let SM be the duty cycle corresponding to the mass M, then the time
interval t of transit of the ion having mass M must be related to 5M
in the following way

T
£ = =23 <2t =T (93)

=

2ME, sinQ,
i i

Consider now the central inequality of equation (93). Assume the
limiting case, then equating the two terms and substituting equations

(85) and (86) into equation (93) one obtains after simplifying

a
sinad. - sin a + E I SM ) = 0. (94)
‘ 1
Recall that
EA
b=k \—q (95)

for a square pulse_Vc(t). Using equation (95) in equation (94) and
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solving for sin a,, one obtains

aV Z 9 1/2
sin a, =_ﬁ— [1 x ”\ﬁ 2k (?Iv—cl' ) ﬁu] : (96)

The negative root has been discarded, since only positive angles are
of interest. The discriminant appearing in equation (96) yields the
maximum duty cycle AM at mass M in terms of the geometrical parameters
a and d, the impulsive voltage Vc, and the accelerating voltage Vi.
R el
M =T\ v
c
Thus equation (96) may be simplified using equation (97) to yield

— 7 41/2
singl, =\-/% {1 +\1 - (%) } . (98)

(97

Consider now the case when aM < <.AM. Expanding equation (98) to

first order and collecting terms yields two solutions sin ai+ and

sin ai 2.1/2
sin o, ~ {1 -(—a—m- ) | (99a)
i = 2,1 |
sin o, " :%(EMM-—) (99b)

Let ai+ = n/2 - v, then it follows from an expansion of sin ai+ that

5
Yz%Zﬁ (100a)
while
MR 'S (100b)
i =2{},
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It follows from equations (100a and b) that ai+ is an entrance angle
close to 90° while ai' is an entrance angle close to 0°, Physically
these two angles are seen to be a consequence of the fact that a small
BM may be obtained by either letting TM‘get very small or by letting

T get very large. The former case implies that P, would be very
small, thus requiring the z-component of the initial momentum to be
very small as well, while in the latter case a very small initial
radial momentum requires a long transit time t. Finally it should be
noted that both ai+ and ai- approach n/4 as 5M approaches its Ppper
limit AM' Since the transmiesion efficiency of impulsive field mass
analyzers is directly proportional to the pulse repetition frequency
l/c (see equation 119), an injection angle Q, = n/4, and a duty cycle
at mass M of AM optimize the performance of the mass analyzer. Further

L

with a, = n/4, the term ¢, appearing in equation (91) becomes Zﬂui

2
which turns out to be the magnitude of the angular spread of the

incident ion beam. Aai, however, is readily controlled by using

collimating apertures at the entrance slits So' The previous cal-

culations are all based on the assumption that ions in the impulsive

region are only deflected once. It is possible, however, for ions

having mass m > M to be deflected through an angle af = 5/2 after

. having been deflected n times within the impulsive field region.

The collected ions thus give rise to an nth order mass spectrum. The A;
mass peaks, however, appear in erroneous positions on the mass scale

of the first order mass spectrum. If the order n can be established,

however, nth order spectra may be used to extend the useful range of

the mass analyzer.
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From an experimental viewpoint, this mass analyzer has an
important advantage over the other impulsive mass analyzers, as it
requires no separate energy analyzer. Consequently the mechanical and
electronic hardware is simplified. The only parts that need careful
alignment are the slits So and Se' These slits, of course, limit the
sensitivity of the analyzer. The sensitivity, however, may be en-
hanced if, instead of slits Se’ optically aligned grids spaced at
regular intervals b are inserted in front of the collector. If n is
the number of such grids having a mesh size of s holes per cm, then it
follows from a purely geometrical consideration that the maximum de-

viation from the final trajectory angle ¢, will be 1l/sb as long as the

f

collector subtends a solid angle smaller than QC where QC is given by

b1
Q. ~ ' (101)
c (bs)2

The numerical values of s and b must be chosen on the basis of a com-
promise between maximum transparency and allowable angular deviation.
The retarding field impulsive mass spectrometers that have been
discussed and evaluated are, of course, only a few examples of a large
family of such spectrometers. The direction of further inquiry into

other possible configurations has, however, been indicated.

4. Accelerating-Field Constant-Momentum Mass Spectrometers

The mass spectrometers listed in Fig. (11) all belong to the
general class of accelerating-{ield constant momentum mass analyzers
(CMMA) . The instruments may be divided into two groups - gated and
ungated mass analyzers. The gated instruments have an ion buncher in

front of the impulsive field region the purpose of which is to inject
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an ion bunch into the impulsive field at the instant the pulse voltage
is turned on., This insures that no ions leave the impulsive field
while the pulse voltage is on. The ion energy analysis of the ions
emerging from the impulsive field region may be carried out with a
simple retarding voltage placed in front of the ion collector, Two
types of gated mass analyzers have been evaluated in previous pub-
licationS%S. The ungated mass analyzers require a more sophisticated
ion energy analysis, since ions located beyond a critical distance from
the first grid (grid No. 1 in Fig. 10) leave the impulsive field before
the pulse voltage is turned off. These ions have a range of energies
adding an undesirable background to the energy spectrum. This back-
ground may be minimized by using an energy analyzer which may be tuned
to a particular energy. Consequently the EEA is the appropriate energy
analyzer for the ungated mass analyzer,

There are two ways of obtaining a mass spectrum from a mass
analyzer consisting of an impulsive accelerating field region and an
EEA: one may fix the time duration 7 of the pulse Vc(t) and then
sweep the voltage applied across the EEA, or one may keep a constant
voltage across the EEA and vary the time duration 7 of Vc(t)° The
former mode of operation has the disadvantage that the mass sensitivity
of the mass spectrometer varies inversely with the mass of the ions,
since the usable fraction of ions located within the pulse region
becomes small for the light ions., Its single advantage lies in the
fact that only a free running pulse generator and a ramp function
generator are required. The latter mode of operation has the advantage

that the mass sensitivity is not as strongly dependent upon the ion
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mass over the chosen mass range, since the distance traversed by the
ions inside the impulsive field region while the pulse voltage Vc(t) is
on is independent of the mass of the ions. A more thorough discussion
of this point follows. Experimentally this mode of operation may be
realized by using a pulse generator with a pulse voltage output, the
time duration T of which may be controlled by an applied voltage VR(t)
such as a ramp function (see appendix). The ramp function is simul-
taneously applied to the horizontal axis of either an X-Y recorder or
an oscilloscope, while the y-axis is connected to an electrometer.
Fig. (15) shows the essential features of this mode of operation. 1In
order to calibrate the mass analyzer it is necessary to obtain T as a
function of m and Ei' T(m,Ei) may be derived from equation (3), with
the minus dropped since the ions are accelerated, into which equation

(86) is inserted to obtain

-2 b . FY =
st + 2\/Ei =17 - (B,E) = 0 (102)

®
H

Solving equatimn {i02) for the roots T(m,Ei) one finds that

(o

b g

E.-VE.
t(mE.) = Vm EeVE; . (103)
i

Vo

Note that the parameters E_ and Ei are fixed - the former by the choice

£
of voltages across the EEA, and the latter being determined by the ion
source conditions.

Consider equation (102). A Taylor-expansion of Ef(T) about T

yields the following after simplifying with equation (86)

[y
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E
i} AT
1 ’:\/;}'F+ cee . (104)

Ef("c + AT) = Ef('r) + 2Ec

C

From equations (103) and (86) it follows that

2
E, = (W/E; -WJE;) . (105)
Thus inserting equation (105) into the expression for Ef(T +'Aﬁ)-Ef(T)

one obtains to the first order in At
2AT
pE = Ec(1 -\6) =5 (106)
where G = Ei/Ef’

Consider now the expression for the resolving power R(m) given

by equation (76). Combining equations (76) and (105) yields

E¢(1 -/6)

R(m) = . (107)
hence letting e =[AE£LH, the width of a mass peak at mass m,
=1l
R(m) = 5 (ATm . (108)

Similarly insertion of equation (105) into the expression for R(m,AEi)

given by equation (77) yields

R{(m)

R(m)AEi) = (109)

A'Ei
1 + R(m)
VE,E (1-/G)
Note here that R(m,AEi) is determined entirely by the instrument, e.g.
Ef and Ei are determined by EEA and source condition respectively,
while ¢ is determined by the energy resolution of the EEA.
- The experimental resolving power Rexp(m) may be obtained from

the equation

P



50

i

[«
&7 0.5 (110)

1
Rexp(“o T2

where At is measured at half-height of the mass peak T(m).

Two accelerating field CMMA's were constructed., The first
instrument combined a 2.5 cm long impulsive field region with the
cylindrical EEA described in section II,3. The second combines an
impulsive field region of the same length but having an arc-shaped
cross section with the spherical EEA also described in section II, 3.
The ions were collected at the exit slit of the EEA by a Faraday cup17
connected to an electrometer. The spectra were recorded by a Moseley
model 2-D X-Y recorder. The time duration T of the pulse voltage Vc(t)

varied from 0.6 psec to 2.6 psec and E_ was set between 50 and 100 eV

£

while Ei was 20 eV, These parameters insured that the mass range of
the mass analyzer included the alkali metals from Na to Cs. Li was
excluded, since the pulse generator went unstable for 7 less than 0.6
uw sec., In Fig. (16) Rexp(m) is compared to R(uyAEi). Curves marked
A,A' are R(m,AEi) and Rexp(m) respectively for the CMMA using the
cylindrical EEA, while the curves marked B and B' are those for the
CMMA with the spherical EEA. The spectrum of the alkali metals
obtained with the CMMA using the cylindrical EEA is shown in Fig. (17).
Having determined the resolving power of the accelerating field
CMMA, there remains the problem of arriving at an estimate of the
transmission efficiency of the CMMA. Let the transmission efficiency
n be defined as the ratio of the collector current Ic(m) of ions having

mass m and charge e to the ion current IO(HO of the same ions incident

upon the CMMA, thus
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Fig. 16 R(m,AEi) and Rexp(m) for the
Accelerating Field CMMA
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0.6 pusec

Na

The vertical shift in the
base line is proportional
to the sum of all partial
currents Ic(m) preceding

the mass peak being
recorded.
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Cs

Vert Axis: 2 x 10-12A/cm

Horiz Axis: 1l cm = 0,18
psec of pulse width v

Fig. 17 Mass Spectrum of Alkali Metals Obtained
with Accelerating Field CMMA
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(111)

In order to simplify the derivation, assume that the ions are mono-
energetic having energy Ei’ and that the ion current is perfectly
collimated - the ion beam incident upon the CMMA having a cross
section A. Thus for an ungated accelerating field CMMA, the charge

density p(m) inside the impulsive field region will be
Io(no n
p(m) = ——"\/3 E, - (112)

In Fig. (10) let the z-axis be along the axis of symmetry of the mass

analyzer, and let z = 0 be the coordinate of grid (1). Consider now
an ion at z = z, the instant that Vc(t) is turned on. Assume that
after T seconds the ion just passes grid (2). Let 2, be the cdistance

through which the ion accelerated

c 2 i
ol + =T (113)

where WC = ch and d is the distance between grids (1) and (2). Hence
z =d -z, (114)

It follows from equation (114) that all ions located at z 22z, leave
the impulsive field before the pulse is over. Consequently these ijons
ére lost. The usable fraction of ions are thus contained within the
volume for which z < Z.s and the number N of ions that receive the

required impulsive energy will be
N = Qéﬂl F(d-z) (115)

where F is the cross-sectional area of grids (1) and (2). Let a be
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the cross-sectional arca of the entrance slit of the energy analyzer
(in this case the EEA) ; then the number n ol ions entering the energy
analyzer will be

n=NZ (116)

Further if 100 percent transmission through the energy analyzer is

assumed, the collector current Tc(m) is

IC(UD = e 1l 92 (117

where Lé is the pulse repetition frequency. Finaily the efficiency 7

may be derived from equations (1l1ll) through (117) to obtain

Y el
= 2 - .U
n=2(-2) U\ i (118)

It is apparent that 7, given by equation (118), is an upper limit to the
transmission efficiency obtainable experimentally, since usually the
incident ions are not monoenergetic so that the ions emerging from the

impulsive field have an energy distribution f(Ei,Ec) about E If the

£
energy band width of the EEA is( centered about the final jon energy
Ef, then only those ions will be collected whose energies lie within the
interval (E; * ¢)  Note that n is a function of the ion mass. This
fact was already noted when the two modes of operating the accelerating
field CMMA were compared. For the case in which 7 = K‘/;: (d - zT) is
independent of m, so that only the'V;—dependence remains in equation (118).
The calculated transmission efficiency of the accelerating field
CMMA, evaluated experimentally, turned out to be 9 x 1‘0“3 for mass 133,

other parameters having been listed previously. From the experimental

data n was found to be about 4 x 10-3: The agreement is reasonable;
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the factor of two could well be accounted for by the energy spread of
the ions emerging from the impulsive field.

The high pressure limit of a mass analyzer is determined by the
total flight path and the electric field strength in any part of the
instrument. The ion flight path is required to be smaller than the
mean free path length of the f)ns in the mass analyzer, while the
maximum field strength sets an upper limit to the pressure above which
there exists the danger of field ionization of the background gases.
The accelerating field CMMA's evaluated were able to operate at
pressures of ca. 7 x 10-4 Torr without suffering a significant loss
of either sensitivity or resolving power. Since the operating voltages
were reasonably low, there was no danger of breakdown at those
pressures. The ability of the C4MA to operate successfully at
pressures up to a micron makes it useful as a partial pressure monitor.

In the next section other uses of the CMMA will be discussed.

5. Possible Uses for the CMMA

It has been shown in sections III,3 and III,4 that the CMMA may
be characterized by: compactness, high sensitivity, simplicity of
operation, but low resolving power and a high sensitivity to the
initial ion energy spread. Consequently the mass analyzer is useful
in any mass analysis program in which a high degree of reliability is
‘required, but the resolving power is not critical. One such program
is rocket-borne mass analysis of the lower E and upper D region of the
ionosphere. 1In these regions the pressure varies from 10-2 to 10-5

Torr while the thermal energy spread of the ions is no greater than
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0.1 eV. With this energy spread cne may, according to equation (109),
anticipate a resolving béwer of about 20, which is qdite adequate for
the analysis of the ion species present in these regions, Other pro-
grams may include monitoring of partial pressures within vacuum
systems, leak detection, and the observation of chemical reactions by
the method of "finger print" spectra.

This study has derived and verified experimentally the equations
governing the operation of the constant-momentum mass analyzer.
Further work on the CMMA is now needed in order to verify the limits of
R(m,AEi) and 7y as both the physical dimensicns and the operating
voltages become large. Such an investigation would be helpful in

arriving at the optimum operating parameters of the mass analyzer,
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IV. CONCLUSION

Ions traversing an impulsive electric field region gain or lose
an impulsive momentum P, given by equation (1). This momentumpc is
dependent upon the initial energy E; and the initial position r; of
the ion within a cylindrical or spherical impulsive field at the
instant the field is turned on. In a linear, planar impulsive field
p, does not depend upon E; or rj. A planar accelerating impulsive
field broadens any initial ion energy spread AE; of ions in a beam
traversing the field, while a planar decelerating field decreases the
width AEj. The latter field tends to defocus the ion beam traversing
it,

The energy analyzer based on the simple retarding field requires
a strongly collimated ion beam incident upon it and a small inter-
electrode dimension d (equation 45). The simple retarding field in
combination with an energy band-pass “*1lter has found application as
an ion energy analyzer in order to measure ion energies E' in the
interval E = eVr 5_E' ﬁ_Eu, where both E and Eu are determined by the
potentials applied to the retarding field and the band-pass filter,
and the parameter © as shown in Fig. (4). Ion current losses within
the energy analyzer are minimized when © = 45°,

Experimental evidence suggests that very sensitive, compact
cylindrical and spherical electrostatic energy analyzers can be
constructed for energy analysis of ions emerging from an impulsive
field. The energy analyzers are shown in Figs. (6) and (7), Operating

parameters of the above analyzers are tabulated in Fig. (9).

i :;
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Constant momentum mass analyzers, CMMA's, using a linear,
planar accelerating or decelerating impulsive field and an energy
analyzer have been shown to achieve a mass resolving power between 10
and 20 for ion energy spreads of widths between 1 and 2 eV. Decel-
erating field CMMA's require ion energy analyzers having a high
resolution at very low energies. The deflection field CMMA shown in
Fig. (14) meets this requirement by only allowing ions having energies
located closely about the energy kpf/m associated with the axial
component pp of the initial ion momentum to reach the collector.
CMMA's consisting of an accelerating impulsive field having a pulse
duration T given by T = Kk Am were found to have an experimental
resolving power in close agreement with the predicted resolving power
given by equation (109). The above mode of operatiom has the
additional advantage that the current efficiency n is only weakly
dependent upon the mass of the ions.

The three distinguishing characteristics of the CMMA (its
simplicity, high sensitivity, but low resolving power) suggest its

use in mass analysis programs outlined in section IIL,6.



APPENDIX

Swept Pulse Width Pulse Generator for Impulsive Mass Analyzers

Fig. 18 shows the circuit diagram of a pulse generator capable
of delivering a 100 V square pulse intc a capacitive load of about 100
pf at a pulse repetition frequency of €0 KHz. The time duration 7 of
the pulse may be controlled by a ramp function voltage Vr(t) internally
generated. The internal ramp function generator also drives an X-Y
recorder at 2 rate which is adjustable from a sweep time of 3 seconds
to approximately 10 seconds by varying the integrating capacitor Cr on
the ramp function generator from 0.5 pf to approximately 1.0 uf. The
pulse repetition frequency Dc is fixed by the astable multivibrator
Ql and QZ’ the master clock of the pulse generator. The output pulse
from the clock is differentiated and clipped to obtain a negative
going spike. This spike is inverted and amplified by the transistor
Q3. The positive spike from the collector of Q3 triggers a monostable
multivibrator consisting of Q4 and Q5 the output pulse width of which
is linearly dependent upon the voltage Vr(t) applied to the base of
Qa. In order to reduce the risetime of the input pulse of the high
voltage driver Q6’ the clock pulse is added to the output pulse of
the multivibrztor at the base of Q6' The resultant pulse rises more
sharply than could be obtained by using the output pulse from the
monostable multivibrator alone. This arrangement has the added
advantage that the pulse voltage at the base of Q6 does not vary

with 7.the pulse duration. The output pulse of the high volcage
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driver Q6 is applied to the final pulse amplifier Q7 and Q8. These
two transistors are connected in series in order to obtain a resultant
pulse height approximately twice that of one transistor alone. The
positive going output pulse from the final amplifier has an amplitude
of 100 V, a risetime of 100 nsec and a decay time of about 300 nsec
when the generator is connected to a load having a distributed
capacitance of approximately 100 pf.

The integrated circuits Q9 and QlO together furnish the ramp
voltage Vr(t). Q10 is used as a Schmittttigger, while Q9 functions
as an integrator of the output voltage from QlO' This voltage is
applied to Q4 and an emitter follower amplifier Qyq which provides
the necessary impedance matching for the X-Y recorder. Finally RW
and R0 set the upper and lower limits of Vr(t) which in turn deter-
mines the range of t. Typically R0 and RW are adjusted to give 71 a
range from 0.7 psec to 3 psec. There is a slight interaction between

adjustments.

3
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