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ABSTRACT

F

Ions with energy E  and a distribution ,&E i about this energy tra-

versing an impulsive electric field will gain or lose an amount of

velocity inversely proportional to their mass. Consequently the final

ion energy of the ions in the beam is mass dependent. Further the

final ion energy distribution has been broadened or narrowed by a

factor which is a function of the impulsive energy gain or loss and the

initial ion energy. Ion energy gains and losses in planar and cylindri-

cal impulsive fields are investigated theoretically.

Ion energy analyzers suitable for analyzing energies of ions

emerging from impulsive electric fields are discussed theoretically

and experimental results are presented. Ion energy analyzers studied

include those based on a simple retarding field, t>1e retarding field in

combination with an energy bandpass filter, and cylindrical as well

as spherical sector fields.

Applications of the mass dispersive properties of the impulsive

electric field to mass spectrometry are discussed, and the resolving

power as a function of the impulsive field strength and the initial i.)n

energy spread of the ions in a. beam incident upon the impulsive field

y	 is worked out. Complete impulsive mass spectrometers are described

and experimental results are presented. Possible uses of the impul-

sive mass spectrometer are suggested,

i

r
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I. INTRODUCTION

1. Basic Theory

Singly charged ions traversing a region to which an electric 	
of

field of short duration is applied gain or lose an identical impulsive

momentum, provided the time duration of the field is less than the

time it takes the ions to traverse the region to which the field is

applied. Let pc be this impulsive momentum, then

pc =	 e f(t)dt	 (1)
pt

where a is the charge on the ions, E'(t) is the electric field, and pt

is the time duration of the field. After the ions emerge from the

impulsive field region, the total ion energy will be

	

E f = 
m 

(p i ± pc) 2
	

( 2)

where pi is the initial

impulsive momentum gain

The constant k is 0.483

in µ seconds, mass in ai

distance in cm. Define

ion momentum and the positive sign indicates an

while the negative sign indicates a loss.

in a system of units  in which time is measured

nu, voltage in volts, energy in eV, and

the impulsive energy E  to be

E
C	 m pc 2'	

Def . 1

then with the initial ion energy E  equation (2) becomes

E f = E  + E  ± 2 Ejc	(3)
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Equation (3) is a generalization of the expression for the energy of

an ion emerging from the impulsive electric field derived by J. A.

Hipple10 (1953), V. B. Fiks 11 (1958), J. Bracher 
16 

(1965), and I. E.

Dayton et al  (1966) to the case when the initial ion energy is

greater than zero.

2. The Impulsive Momentum Integral

Consider now the integral of equation (1). This integral will
be evaluated for planar and cylindrical (non-planar) geometries.

The evaluation of the integral in the case of a planar geo-

metry and linear potential is straightforward. Let d be the distance

between two grids held at zero potential. After ions have entered the

region between the two grids, a voltage V c (t) is applied to one of the

grids for a time T. The impulsive momentum gained or lost by singly

charged ions will then be given by

T

pc = ± d	 Vc(t)dt.	 (4)fo
Note that pc is neither dependent upon the initial ion position at

t = 0 nor the initial ion energy.

The solution of the integral in cylindrical coordinates can only

be obtained approximately. Consider two cylindrical grids having

radii Rl and R2 with Rl < R2 . Let all distances r be measured from

the common axis of the grids to the position of the ions. Assume

that singly charged ions are injected radially towards the axis into

the region between the grids, and the pulse voltage V c (t) is applied
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to the outer grid for a time T such that the ions gain an impulsive

momentum. Then if p is the ion momentum

4I

d = r̂ 	 (5)

where We = eVc/ln(R2/Rd

dp = dr dp = p, dp,	
(6)dt dt dr m dr

hence

Pap _ _ Wcdr
M

	

	 ^^^r 

from which

2
- We In r + K.	 (8)

Let the initial energy of the ions be E  and let r  be position of the

ions at the instant the pulse is turned on. Note that R 2 > r  > RV

Then

Ei	 - We In r i + K	 (9)

from which K can be evaluated. Thus

Ef E i - We In r-r 	 (10)i
with the restriction that r > r. The position r as a function of

time can be found by solving equation (10) for the momentum p. Then

dr - - 

ZWc E.
 In 

r	
(11)

dt	 m W	 r.
c	 1

The minus sign indicates that the ions travel from R2 towards RV



F,

(12)

4

Solving for dt one obtains

	

dt	 - dra VT - In r
i

where the substitutions

L
	 E

a =	 and r a Wi

C

have been made. Equation (12) is to be integrated over the pulse

duration T. This, however, cannot be done in closed form. If T and

E  are not too large, then the final position r  is not too far away

from r so that In r/r i can be expanded in a series about r 

2
r	 ri-r	 1 ri-r

In r	 - r	 + 2	
r	

+ ....	 (13)
i	 z	 i

Then

1	 1r r i -r

	

^
F 1n	 r +	 .	 (14)r i	 ri

Equation (14) may now be expanded to yield

1	 .

Tr+
ri-r ^	 1+(2Ar +...)	 (15)
r i	 i

where A = 1 + r, hence to first order one obtains

dt N	 1— 1 + L r dr	 (16)
aVA	 i

which integrates to
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Thus T to zero order will be

UrvA

Returning now to equation (5), let p c be the impulsive momentum gain.

Then

T

	

P
C
 = - We	 rddtt	 (19)

0

Substituting for dt from equation (16) and integrating yields

	

P — -Wc ri-r
f
 - In 

rE	
(24)

	

C USA 
12Ar i	ri

Expansion (13) is used again, and terms are collected to obtain

	

PC
 = 

-Wc 
I + 2	 rlrrf	 (21)

O A	
A	

i

Solving Equation (18) for r  - r  and substituting into equation (21),

p becomes
c

E,

W 3 + 2(W1)
C	 c T

pc=	 2	 E,	 r	
(22)

1
+Wi

C

Note that the impulsive momentum gain in a cylindrical field is

dependent both upon the initial ion energy and position. Similarly it

can be shown that pc is a function of r  and E  in spherical impulsive

fields.
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3. Effect of the Impulsive Field Upon Ion Energy Scatter

Returning now to the general problem of ion energy gains and

losses in an impulsive field, assume that the ions in the beam incident

upon the impulsive field have an energy distribution of width & Ei.
v'

The final ion energy scatter may be determined from the Taylor

expansion
2

GCE _ aE f LSE + 1 a E f 
A E +	 (23)

f ^ 1 2 aE. 2 	i
1

Differentiating equation (3) one obtains.to  first order in &E V

T
AE f = L^E i 1 t c	 (24)

ik

The positive sign indicates an impulsive acceleration, and the

negative sign an impulsive deceleration. Thus for an impulsive

momentum gain AE  will be greater than QE i, while an impulsive loss

decreases the ion energy spread. Note further, that with E  = E 

lQE f = 0 to first order.

The impulsive retarding field has the advantage that it reduces

the ion energy spread thus increasing the effective mass dispersion

of the impulsive field. Equation (24) is valid for cases where

E  >6Ei > 0. It can be shown 3, however, that

E:-
LE f = AE i 1 ± 2 ^c	 (24a)

i

when E. = 0.

Flo a.,..	
`...
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4. Mass Dispersion in the Impulsive Field

A measure of mass dispersion in an impulsive field will be the

change in total ion energy per unit mass increment. Generally the

impulsive energy E  will be given by

E c = m
	

(25)

where C generally is a function of initial ion energy, the impulsive

field strength, the time duration of the field, and the initial

position of the ion in the impulsive field. Combining equation (3)

with equation (25), one obtains

E	

(

C

C ±	
i

E f =E i +m	 2	
cn	

26)

A Taylor-expansion of E f (m) about m yields

EE.
E f (m + pm) = E f (m) - 

me 1 
± E1 Qm

c	
27

+ E  1 ± 3 
El 

6
2m +

2	 4 E
M	 c

Thus the change in the total ion energy between mass m and m + 1 will

be to the first order in pm

E	 E

(L f )	 = m e 1 ± E l	 ( 28)
pm= 1	 c

Fig. (1) shows the variation of 
(AEf)pcn=1 

as a function of mass m for

m > 10. For such m all terms involving em. (n > 2) may be neglected.

Typical operating parameters are listed on the figure. Note that

(LEf)Z'Sm=1 in the decelerating field is sma'.ler than in the accelerating

field for all masses, other parameters being equal.

11110111 - C 	 —
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Consider an ion in an ion beam traversing a planar impulsive

field. Let C1i (p) be the tangent of the angle between the initial ion

trajectory and the beam axis. a  will generally be a function of the

radial distance p from the beam axis. The radial momentum is then

pp = pi 01 (A)	 (29)

where p i is the initial ion momentum. Let Cxf (p) be the tangent of the

angle between the final ion trajectory and the beam axis immediately

after the ion emerges from the impulsive field,

pP	a f	+(A) _	 (30)
p z pc

where p  is the initial ion momentum along the beam axis. If p  is

much larger than p A , then p z N p i . Using this approximation and

i
equation (29) and definition (

/
1), one obtains

	

(	 l

	

af (A) = 1
	

Q 
1 /2 ai (A)	 (31)

11 ± 

where Q = Ec/Ei.

Consider now La = o f - ai

^ Q1/2

^	 1/2 a (A) -	 (32)

^ 1 ± Q
1/2

The positive sign must be chosen for an accelerating impulsive field,

hence

aacc.	
0'

for decelerating fields the negative sign is indicated making

L adec. > 0 .
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The second inequality shows that the planar impulsive decelerating

field defocuses the ion beam, Fig. (2) shows the relative change

&a/ai as a function of Q for the retarding impulsive field.

6. Summary

Four conclusions may be drawn from the preceding analysis:

1. The planar accelerating impulsive field enhances any

initial ion energy spread, while the decelerating

field decreases the spread.

2. The mass dispersion (QE 
f)	

is larger for accel-

erating impulsive fields than for decelerating

impulsive fields for constant pc.
c

3. Non-collimated ion beams are defocused in the

planar decelerating impulsive field.

4. The impulsive momentum gain or loss of an ion

traversing a cylindrical impulsive electric field

is a function of the initial ion energy and posi-

tion of the ion within the impulsive field region;

while the impulsive momentum gained or lost by ions

traversing a planar impulsive field is independent

if initial ion energy and position within the field

region.

From an experimental viewpoint planar impulsive fields could be used

to construct a very sensitive, compact mass-analyzer. The choice

between accelerating or decelerating impulsive fields must be

determined experimentally on the basis of points 1, 2, and 3.
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II. ION ENERGY ANALYSIS

1. The Planar Retarding Grid

r
The simplest way to determine ion energies is to apply a re-

tarding voltage Vr (t) in front of the ion current detector, then if

N(E')dE' is the number of ions per unit time having energy in the

range from E' to E'+dE', the number of ions per unit time arriving at

the collector will be given by

00

F  (Vr) =	 N(E') dE'	 ( 33)

E=eV
r

from which

dF

dE
C = N(E) .

The above analysis assumes of course a perfectly collimated ion beam.

Generally there will be a small beam divergence which will be enhanced

in the retarding field. In order to obtain an estimate of this en-

hancement, consider an ion having initial energy E  traversing the

region between two grids separated by the distance d. Let z be the

direction perpendicular to the grids and p the radial distance from

the axis of symmetry. A voltage V  is applied to the grid at z = d;

the other grid at z = 0 is held at zero potential. Thus with the

initial conditions z = 0 and p = p o at t = 0 the solution to the

equation of motion m p = 0 and mz -eV r /d will be

(34)
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eV
z = v t -
	

t 2 (35a)z	 2md

P = po + vpt (35b)

FAssume v z > > vp, so that v z N
	
= v i, further with ai the initial

angle of the tangent to the ion trajectory with the system axis, and

Er = eVr one obtains,
Er

z = V  -	 t 2
i	 2md

(36a)

P - P  + v iai t. (36b)

When z = d, t = ti,	 then

2mr T2 -v
iti+d=0 (37)

from which -`
V. ±\/&E . -Er)i

= Er
and

= 
d y2m	 ^--

Ei ± 

-

VE i -Er (38)E
r

Since ti must not become unbounded as Er goes to zero, the minus sign

must be chosen.	 Thus with Pd = P o + viaiT

E .	 -_  E

P d = Po + 2dai  Er 	 1
(39)

i
r	 i

where a 	 may in general depend upon po.

Conservation of charge demands that the current di c flowing through a

differential area p 0dp0dO about p 	 will flow through the area

p ddp ddO , hence

Jo(Po)PodPodO = J d (P d)P ddP ddO (40)

_.^ ...._ _.
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from which
p	 dp

d

 -1

Jd(Pd) = Jo (Po) p—o dp	 (41)
Pd	 o

From equation (39) one finds

p dp	 'l	 E	 E

Pd 

dpd	 = 1+2 E3 1 - 1 - Er x
d	 o	 L	 r	 i

(42)

2	 2	 -1

	

ai + dQ i 
+ 4d2 E 

i 1
	 Er a

i dal

Po dPo	Er	 Ei Po dPo

Expression (42) is somewhat complex for arbitrary a i (po). Consider,

however, an ion beam diverging from a point at a distance D from the

first grid, then

ai (Po ) = D
Po	

(43)

and equation (42) reduces to

-1	 -2L dp	 E .	 E

P
—° dpd	 = 1 + 

D
d E1 1 - 1 - 

E
r 	 (44)

Pd	 o	 r	 i

so that equation (41) becomes

	

E.	 E
-2

	

J d (P d) = Jo (P o) 1 + Dd 
E1
	
Er
	

(45)
r	 i

Note that in the limit as Er /E i --.)0

-2

J d(P d) -4 Jo (P o) l + D	 (46)

which agrees with results obtainable from geometric considerations.

Fig. (3) shows the experimental verification of equation (45). A

surface ionization source  provided a diverging beam of ions having an

energy E i . The radial distribution of the ions was measured with an
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annular ion collector described in a previous paper 4 . Despite the

crudeness of the measurements, the agreement is very close over the

range of points obtained. Note that the beam impinges slightly off-

axis upon the collector. Measurements showed that there was a mis-

alignment of the collimator apertures giving rise to the observed

deviation. In order to minimize the undesirable defocusing effect-,

it is advisable to collimate the ion beam and to make the distance d

quite small - of course d has to be kept many times larger than the

grid mesh spacing so that the retarding field stays reasonably uniform.

2. The Ion Energy Band-Pass Filter

In the analysis of.energy distribution of ions emerging from an

impulsive field, it is convenient to set an upper limit E u to the ion

energy of those ions collected so that

E u

F  (Vr) =	 I N(E' ) dE' .	 ( 33a)

E = eV
r

Such an energy band-pass filter was used by I. E. Dayton et al  to

analyze energies of ions emerging from a 2KV impulsive field, but not

discussed in detail.

Consider an ion having energy E i greater than eV r incident
upon the grids shown in Fig. (4). When the ion enters the region

between the slanted electrodes, the equations governing the ion

trajectory will be

MY S(Va -Vr)	 (47a)

mx 0	 (47b)

w	 __.
A

r'
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A first integration yields

mjr = MVt - m v i 	(48a)

mx = const. = m v i r	 ^'

where pV = V  - Vr ,	 = cos 0 , and r sin 0. Integrating equations

(48) one obtains

y ms t
2 - v ipt + s	 (49a)

X = virt .	 (49b)

Define E 
s 

E i - eV r , then an upper limit E u to E 
s 

is found by

demanding that y = O when my = 0. Thus letting my = 0 in equation

(48a), solving for t and substituting into equation (49a), one obtains

,r

but y = 0, hence

Eu^2

y	 s	 + 1,.	 (50)e,6u

Eu = eAV2	 (51)
cos 0

Equation ( 51) expresses the upper limit E  of E s in terms of the

applied voltages V  and V  and the angle of inclination B .

The angle 0 must be chosen such that the collection efficiency

of the analyzer-detector does not vary with the ion energy over a

range of ion energies. One way to insivo a this is to adjust 0 such

that x  only varies minimally with ion energy. Consider equations

(49). Solving equation (49b) for t and substituting into equation

(49a) yields
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When y - s, x = x s , hence

x 	 R 2 xs -	 = 0	 (53)
4ST

where R = e&V/Es.

Thus

s = Rs Y 1 - Y2X	 (54)

Consider .small angular deviations from the axis of symmetry';

differentiating equation (52) at the point x  and using equation (53),

one obtains

	

_	 (55)dx x
	 r
s

hence 0	 0. This implies that the variations in 0 are reflected

exactly in 0. in order that x  have an extremal value with respect to

y, one must require that

6x  — 4s (1-2 2) = 0	 56ar g ,^	 ( )

Solving equation (56) for the roots r o , one obtains Yo = ± 1/-\/2.

Clearly the choice To = 1/A/r2 is indicated, so that the optimum

deflection angle 0 is 45°. Experimental work using the energy filter

is described in section 111.3.

3. The Electrostatic Energy Analyzer

The electrostatic sector field has been analyzed in a number of

books and articles 6 '
7

' $ ' 9 . This mathematical treatment follows the

analyses of Wollnick
7
 and Ewald and Liebl$ as they are the most general

Vf

r,
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and concise. Consider Fig. (5). Ra, R  are the radii nf curvature of

the electrostatic sector field in the vertical direction while r a, r 

are the radii of curvature in the horizontal direction. Let

ra + rb
rm =	 2	 (57a)

and
R +R

Rm = a 2 b	 (57b)

Consider a surface S in the plane of the median trajectory

	

S =Rm rm 8	 (58)

where p8 and 6 10 are angular displacements in the horizontal and

vertical direction respectively. Let S' be a surface differentially

displaced in the horizontal direction such that the plane of surface

S' is located at a distance r = r m(l+p) and R = Rm(l+ prm/Rm) from the

centers of curvature of the electrostatic sector field, then

r
S' = R

m rm 
(1 + Rm P) (

l + P) AO Ae	 (59)
m

Since V E= 0, E S= CS'. Thus0

E = Co	
1 

r

(l+P)(l+RmP)

	

m	 (60)
r

Co 1 (1 +Rm P) +
m

Hence with c = rm/Rm the r and z components of E will be

E	 Ecos o	 Go [l -(l+C) p + ....l

r	 J
E  = Esin = Rm c

m 1(+ P)

r

fir
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where r 	 rm(1 + p)S is a small displacement in the vertical

direction in the plane of S'. To the first order in p and ^ equations

(61) reduce to

Er N E. (1 - (1 + c)p]	 (62a)

L 
N r 

o 
c S.	 (62b)

From equations (62) the potential V(r,z) in the neighborhood of the

median trajectory is found to be

V(r,z) = - E° rm [p - 2(1  + c) p 2 + 2 ct 2 + ...	 (63)

The equations of motion for a particle having charge a and mass m in

the electrostatic sector field are:

mr = mr 8 2 + e E r	 (64a)

m(dt) (r 2 6) = 0	 (64b)

mz = e E z	 (64c)

A particle on the median trajectory having mass m  and velocity v 0

will stay on the trajectory provided

m V 2

e E ° = °r°	 (65)
m

Consider next a particle of mass m = mo (1 + Y) entering the sector

field with a velocity v = v o(1 + P) on the median trajectory. From the

conservation of energy it follows that

mo (1+T) Vo 2 (1+P) 2 mo ( 1+Y) (1+P+ Ti) 2 V° 
2

+ e V(r,z)	 (66)
2	 2 
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where q _ Tl(p,C). Solving equation (66) for n one obtains

TI 2 + 2(1+0)q + 2A(1-Y) - 0	 (67)

where A = p - 1/2(1+c)p + 1/2 cp 2 . TI, however, is a differential

quantity which goes to zero with p and , so that neglecting the TI2

term one obtains

T1(p)t) = - A(1-P-Y) . 	 (68)

Hence the particle velocity in the neighborhood of the median tra-

jectory will be to second order

v = vo 1+13-p + 1c(p 2 -^ 2) + 2 P 2 + P(Y + ^)	 (69)

From equation (69) one obtains 8 to first order

v
8 = V = -° (,1+P-2p) .	 (70)

r r
m

inserting expression (62a), (65), and (70) into equation (64a) yields

mo (1+Y)rmp = mo (1+Y)rm (1+p) x

V 2	 V 2	 (71)

	

r—° (1+2p-4p) - rmmo r—°	 ll-(I+c)p,
m	 m

which can be reduced to

V 2

P	
ro	

K2 (5-P)	 (72)
m

M

where K = -2	 2- ^c, and 5 = (2p+Y) /K. The first order equation of

motion in the vertical plane may be derived by inserting equation (65)

into (64c) and simplifying the resulting equation to obtain

V 2

	

_	 o	 c	 (73)
rm

r



I'

24

Equations (72) and (73) may be solved using standard techniques. The

solutions, of course, are oscillatory and have the form:

P(t) = po sin (lout + al ) + 8 ( 74a)

to sin
( -\/c wt + a2) (74b)

r

where w = Vo /rm, all a2 are phase angles and po, to are amplitudes

dependent upon initial conditions. Consider p(t) = K w p  cos (KCUt

+ al). For some t = th p(t)	 p(t + t l), hence wt l = n /K. Thus the

horizontal deflection angle Q = n /Kc; similarly the vertical deflection

angle 0 = n/-\/C—. There are two special cases of interest: R  is

infinite, and R  = rm. The former is the cylindrical sector field

for which c = 0 so that Q = 1t/ V2 = 127° 17'. Note that there is no

focusing action in the vertical plane. The latter case is the

spherical sector for which Q = 0 = 9. This sector field focuses the

charged particles in both planes. The focusing properties of the

sector field will in practice be affected by the fringing fields at

the entrance and exit of the sector. The effect of the fringing field

can be minimized by suitably shielding the entrance and exit of the

sector with a grounded plate. The mathematical analysis of the

shielding diaphragms and their position relative to the sector is

given by H. Wollnick7.

Equation (66) shows that only ions having an energy in the

neighborhood of E o = e E rm/2 may be transmitted. Thus the electro-
static sector field is a convenient energy analyzer. A cylindrical
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constructed. Figs. (6) and (8a) show the cylindrical EEA and a

typical energy spectrum obtained with an electron beam incident upon

the analyzer respectively. Figs. (7) and (8b) show a spherical EEA

and energy spectrum obtained by using the same electron source. The

thermal spread of the electrons is approximately 0.2eV at typical

operating temperatures of the filament. Considering the above to be

the true energy spread of the electrons, Fig. (9) shows that the

resolutionsof the cylindrical and the spherical EEA are approximately

0.5eV and 0.9eV respectively.

.-..,.
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III. APPLICATION OF THE PLANAR IMPULSIVE FIELD TO MASS SPECTROMETRY

1. The f ::;:stant Momentum Mass Analyzer

The mass dispersive characteristics of the planar impulsive

field may be used to good advantage in performing mass analysis.

Figure (10), which is taken from Hippie's patent 10 , shows how a

planar impulsive field and an ion energy analyzer may be combined to

function as a constant momentum mass analyzer (CMMA). The CMMA was

originally proposed by J. A. Hippie 10 in 1953. A later paper by V. B.

Fiks
11
 proposed the same device. In 1958 W. M. Brubaker 

12 
patented a

CMMA consisting of two cylindrical EEA's and a planar accelerating

impulsive field. One EEA was placed in front of the impulsive field

in order to reduce the initial energy spread &E i of ions entering the

impulsive field, The other EEA was positioned behind the impulsive

field to analyze the energies of ions emerging from the impulsive

field. None of the above, however, reported any experimental work on

E

the analyzer.

Experimental work on constant momentum mass analyzers had its

beginnings in 1953 when M. M. Wolff aid W. E. Stephens 
13 

used an

impulsive accelerating field to construct a time of flight mass

analyzer with a linear mass scale. In 1959 B. R. F. Kendall 14,15

worked on a CMMA consisting of a planar accelerating impulsive field

and a cylindrical EEA. He, however, did not obtain an adequate

resolving power from the instrument. In 1965 a constant momentum

mass analyzer composed of a planar impulsive accelerating field and
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cylindrical electrostatic energy analyzer was described by J.

'Bracher16 . A year later I. E. Dayton5 published a report on an

operational CMMA having a somewhat lower resolving power but a higher

sensitivity than Bracher's instrument. The same year H. M. Luther

reported on a CMMA having a resolving power comparable to that

obtained by the other workers; this analyzer, however, does not

require the extreme pulse voltages of both Bracher's and Dayton's

instruments. Further experiments by Luther have led to an analyzer

which is described in section 111.4. The mass analyzers are all

compared in the chart on Fig. (11). All spectrometers listed in the

chart are of the accelerating type.

2. Resolving Power

There are currently two definitions for the resolving power of

a mass analyzer in use. The resolving power at mass m is defined to be

where Ain is the width of the mass peak in mass units. The resolving

power may also be defined as that mass at which an adjacent peak can

just be resolved. This definition is a special case of definition 2

and is obtained by requiring Am to be equal to 1 amu. Then the re-

solving power R  is equal to the numerical value of the mass m 

Ro = ImoI
	 Def . 3

Consider equation (28). Solving for the numerical value of m/pm one
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( m ! _ Ec

	

1 + El
	

(75)
tyml of (m)	 Ec

If the ion energy analyzer has an energy resolution of E and assuming.
r

that E is independent of the ion energy, then the resolving power

R(m) of the mass spectrometer will be

EE,
R(m) = ec	 1	 El	 (76)

c

in the absence of any initial energy scatter of the incident ions.

Assume now that the incident ions have an energy spread QE i. This

spread is broadened according to the eauation (24). Thus the

effective resolving power R(m,pE i) will be given to first order in

Am bym

	

	 Fj-i-Ec1\
R(m,6E i) =

	

	 c
 F
	 (77)

E+AE i 1+ 
i

where, as before, the positive sign is indicated for an accelerating

impulsive field and the minus sign is indicated for the decelerating

impulsive field.

Consider the accelerating case of equation (77). Let E  get

very large. Then

E
Rm(AE i) 	 ^c	 (78)

E c L
i
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R0WEi) ~ Vc2/3	 (79)

where V  is the impulsive field voltage of the planar impulsive field.

This dependence is in general agreement with Bracher's lf, presumably

empirical, determination of

R0 
(AE i) N Vc l/2 .	 (80)

It is experimentally convenient to define the measurable

resolving power ReXp (m) of the spectrometer as

Ei

E  l ^ E
__	 c

Rexp (m)	 AE(m)	 0.5	
(81)

where the subscript 0.5 indicates that the measurement of AE(m) is

made at the half-height of the mass peak. Note that as E  approaches

zero
E

R	 (m)	 c	 ( 81a)
exp	 LE (m)	 0.5

which is the experimental resolving power as defined in a previous

publication 3.

3. The Retarding Field CMMA

In section 1,6 it was observed that the width of the ion energy

distribution of ions emerging from a decelerating impulsive field was

smaller than the width of the initial ion energy spread. This

observation lad to a series of experiments designed to evaluate the

performance of a decelerating field CMMA. Tests evaluating the

performance of a gated decelerating field CMMA have been described

F
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previously 3 . It was seen that both mass sensitivity and resolving

power were low. In order to determine the reason for this deficiency,

an ungated mass spectrometer was constructed using parts from an

electron - optical kit 4 . F'ig. (12) shows the essential details of the	 r

spectrometer. A surface ionization source  charged with Na and K

salts provided an ion beam of about 10 -9 A incident upon the mass

analyzer. The impulsive field region measured 2.5 cm, and the total

ion flight path was 8 cm. The pulse divider network shown in the

upper left hand corner of Fig. ( 12) insured a spatially linear de-

celerating field, while the capacitors C1..4 were used to correct any

distortions in the pulse shape due to stray capacitance in the

resistor chain. The dashed curve in Fig. (13) shows the energy

distribution about E. = 12eV of the ions incident upon the analyzer.

Before the retarding pulse voltage V c (t) was turned on, the voltage

applied between the electrodes of the energy band pass filter was

adjusted such that no ions having energy greater than E  were

collected. The magnitude of AV = 6V determined experimen tally was

found to agree with equation ( 51) within a few percent.

The performance of the spectrometer verified qualitatively the

predictions made in sections 1,4 and 1,5. For E  N E  the collector

current was attenuated by a factor of 10 3, and the mass dispersion was

barely large enough to separate the Na+ and K+, the two components of

the incident ion beam. The solid line in Fig. (13) shows the mass

spectrum. The experimental resolving power at mass 40 was found to be

about 3 which is in agreement with the theoretical prediction based on

equation ( 77). The reason for the low resolving power of the retarding

 NOW
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field CMMA is thus seen to be a consequence of the fact that to first

order in pm.

Lim R(m,&Ei) = 0	
(82)

as E i /E c - 1	
or

provided a is independent of the final ion energy, while its low.

sensitivity is seen to be caused by the defocusing effect of the de-

celerating impulsive field.

There is, however, another mode of operation of the retarding

field CMMA which relies on the defocusing effect me.tioned in section

1,4. The geometry of this spectrometer is shown in Fig. (14). Con-

sider an ion beam incident upon the impulsive field region at an angle

a  with respect to the normal of the field region. Analogous to the

development in section 1.5

P
tan Otf 

-- Pp 	 (83)
pZ-c

hence

sin Cx.

tan of =	 1 
1/

2 	 (84)
cos ai-Q

where, as before, Q = Ec/Ei.

Consider now the ray reaching the collector. The angle C1  of this

particular ray is n/2 so that tan Cxf = oo from which it follows that

E = E. cos 2 CY.
C	 1	 1

Consider now the integral in equation (4). If Vc (t) is a square

pulse, then with b = k(eV c /d) 2 one obtains

(85)
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2

	

E = bT	 (86)c	 m

where T is the time duration of the decelerating pulse. Combining

equations (85) and (86) one obtains after rearranging terms

2
M = ET (1 + tan  a i )	 (87)i

Consider now a Taylor-expansion of m(T,E i ,ai) about (t,Evai)

m(T-FOT, E i+pE i , ai+Aai) = m(T, E i , ai) +

OE
(88)

M	
ti - Ei + 2tan of LYxi +

hence to first order in AT, 6E i , and &ai

LE
pm = m 2aT - E1 + 2 tan ai Wi	 (89)

i

if a perfectly collimated, mono-energetic ion beam were incident upon

the mass analyzer, the maximum obtainable resolving power R(m) would be

	

R(m)	 2 ( T ) .	 (90)

In the presence of angular deviation W  about 
ai 

and an energy spread

AE  about EV the resolving power R(m,LE i , l̂ lai), however, becomes

	

R(m DE2^a i ) =	 R(m)	 (91)
i t 	1 + R(m) (t 1 + 2E 2)

where E 1	 IQE i /E i f and E 2 = 12 tan ai Aa,	 Note that the factor 2	 {

multiplying 
E2 

takes into account a symmetric angular distribution of

the ion trajectories about ai , while LL  is not doubled, since it was

chosen symmetrically about the energy E i . it is clear from the form

of E 1 that the initial energy should be made large in order to make

r
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e 1 small. The angle ai, however, may not be chosen arbitrarily, since

it depends upon the required pulse generator duty cycle, defined as the

ratio of the pulse duration T to the period T of the output voltage

Vc (t), the initial ion energy E  and the physical dimensions of the

analyzer. In order to derive an explicit expression for 
a  

in terms

of the above parameters, consider an ion with a mass M which is at the

upper limit of the dynamic mass range of the mass analyzer. This ion

must traverse the distance a shown in Fig. (14) within a time interval

smaller than T. T is related to duty cycle S and the pulse duration T

by the equation

	

T = s .
	

(92)

Let 5M be the duty cycle corresponding to the mass M, then the time

interval t of transit of the ion having mass M must be related to N
in the following way

t= M-a	 ATM =T.	 (93)

2 M E
i 
sina sMi

Consider now the central inequality of equation (93). Assume the

limiting case, then equating the two terms and substituting equations

(85) and (86) into equation (93) one obtains after simplifying

a 	 2

	

sin4CX i. - sin 2C1i + 2	 i	 = 0..	 (94)
1

Recall that

	

I eV	 2

b = k	
do

	
(95)

for a square pulse V c (t). Using equation (95) in equation (94) and

 INN 

Wrl
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solving for sin ai , one obtains

aV
sin GL. =	 1	 - 2k	

c	 2	
(96)

-7'

AV
 
i 1'

The negative root has been discarded, since

of interest. The discriminant appearing in

maximum duty cycle 
AM 

at mass M in terms of

a and d, the impulsive voltage V c, and the

1 dV i
41 72k  aVc

only positive angles are
te

equation (96) yields the

the geometrical parameters

accelerating voltage Vi.

(97)

Thus equation (96) may be simplified using equation (97) to yield

.^2	 2 1/2

	

sinot = 2 1 ± 1 -	 (98)i
Consider now the case when 5M < < LM . Expanding equation (98) to

first order and collecting terms yields two solutions sin a i + and

	

sin ai
8	

2., 1/2

sin CI 
i+
	 (99a)

sin CI = 2  	 (99b)
—M

Let ai
+

 A/2 - T, then it follows from an expansion of sin a. that

1 SM	 (100a)

while

1 5M
CI 	

2 LM	.
(100b)
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It follows from equations (100a and b) that 
ai+ 

is an entrance angle

close to 90° while a is an entrance angle close to 0°. Physically

these two angles are seen to be a consequence of the fact that a small

5M may be obtained by either letting TM 
get very small or by letting

T get very large. The former case implies that p c would be very

small, thus requiring the z-component of the initial momentum to be

very small as well, while in the latter case a very small initial

radial momentum requires a long transit time t. Finally it should be

noted that both 
ai+ 

and Chi approach v /4 as 5M approaches its upper

limit LM . Since the transmission efficiency of impulsive field mass

analyzers is directly proportional to the pulse repetition frequency

vc (see equation 119), an injection angle a  = ?C/4, and a duty cycle

at mass M of AM optimize the performance of the mass analyzer. Further

with CLi = 7C /4 1 the term 
s2 

appearing in equation (91) becomes 2&X i

which turns out to be the magnitude of the angular spread of the

Incident ion beam. 6a,, however, is readily controlled by using

collimating apertures at the entrance slits S o . The previous cal-

culations are all based on the assumption that ions in the impulsive

region are only deflected once. It is possible, however, for ions 	 '

having mass m > M to be deflected through an angle a = n/2 after

having been deflected n times within the impulsive field region.

The collected ions thus give rise to an nth order mass spectrum. The

mass peaks, however, appear in erroneous positions on the mass scale

of the first order mass spectrum. If the order n can be established,

however, nth order spectra may be used to extend the useful range of

the mass analyzer.

..	
VON 
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From an experimental viewpoint, this mass analyzer has an

important advantage over the other impulsive mass analyzers, as it

requires no separate energy analyzer. Consequently the mechanical and

electronic hardware is simplified. The only parts that need careful

alignment are the slits S o and S e . These slits, of course, limit the

sensitivity of the analyzer. The sensitivity, however, may be en-

hanced if, instead of slits S e, optically aligned grids spaced at

regular intervals b are inserted in front of the collector. if n is

the number of such grids having a mesh size of s holes per cm, then it

follows from a purely geometrical consideration that the maximum de-

viation from the final trajectory angle of will be 1/sb as long as the

collector subtends a solid angle smaller than ac where QC is given by

SZc N	
2	

(101)
(bs)

The numerical values of s and b must be chosen on the basis of a com-

promise between maximum transparency and allowable angular deviation.

The retarding field impulsive mass spectrometers that have been

discussed and evaluated are, of course, only a few examples of a large

family of such spectrometers. The direction of further inquiry into

other possible configurations has, however, been indicated.

4. Accelerating-Field Constant-Momentum Mass Spectrometers

The mass spectrometers listed in Fig. (11) all. belong to the

general class of accelerating-field constant momentum mass analyzers

(CMMA). The instruments may be divided into two groups - gated and

ungated mass analyzers. The gated instruments have an ion buncher in

front of the impulsive field region the purpose of which is to inject

r
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an ion bunch into the impulsive field at the instant the pulse voltage

is turned on. This insures that no ions leave the impulsive field

while the pulse voltage is on. The ion energy analysis of the ions

emerging from the impulsive field region may be carried out with a
r

simple retarding voltage placed in front of the ion collector, Two

types of gated mass analyzers have been evaluated in previous pub-

lications	 The ungated mass analyzers require a more sophisticated

ion energy analysis, since ions located beyond a critical distance from

the first grid (grid Non 1 in Fig. 10) leave the impulsive field before

the pulse voltage is turned off. These ions have a range of energies

adding an undesirable background to the energy spectrum. This back-

ground may be minimized by using an energy analyser which may be tuned

to a particular energy. Consequently the EEA is the appropriate energy

analyzer for the ungated mass analyzer,

'there are two ways of obtaining a mass spectrum from a mass

analyzer consisting of an impulsive accelerating field region and an

EEA: one may fix the time duration '4 of the pulse V c (t) and then

sweep the voltage applied across the EEA, or one may keep a constant

voltage across the EEA and vary the time duration T of V c (t)o The

former mode of operation has the disadvantage that the mass sensitivity

of the mass spectrometer varies inversely with the mass of the inns,

since the usable fraction of ions located within the pulse region

becomes small for the light ions, Its single advantage lies in the

fact that only a free running pulse generator and a ramp function

generator are required, The latter mode of operation has the advantage
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mass over the chosen mass range, since the distance traversed by the

ions inside the impulsive field region while the pulse voltage V c (t) is

on is independent of the mass of the ions. A more thorough discussion

of this point follows. Experimentally this mode of operation may be

realized by using a pulse generator with a pulse voltage output, the

time duration ti of which may be controlled by an applied voltage VR(t)

such as a ramp function (see appendix). The ramp function is simul-

taneously applied to the horizontal axis of either an X-Y recorder or

an oscilloscope, while the y-axis is connected to an electrometer.

Fig. (15) shows the essential features of this mode of operation. In

order to calibrate the mass analyzer it is necessary to obtain T as a

function of m and E i . T(m,E i) may be derived from equation (3), with

the minus dropped since the ions are accelerated, into which equation

(86) is inserted to obtain

z 2 + 2 E^^b  ti - (E f -E i) = 0	 (102)

Solving equat °. rna 4' ),02) for the roots r(m,E i) one finds that

'r(m,Ed = V m

	

	 (103)
_/b

Note that the parameters E  and E  are fixed the former by the choice

of voltages across the EEA, and the latter being determined by the ion

source conditions.

Consider equation (102). A Taylor-expansion of E f (i) about T

yields the following after simplifying with equation (86)

__	 _.

millia
m _, - ,
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E c =( Ef - -FE i) (105)
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E (T + AT) = E (T) + 2Ec 1 + E.i 	+ ...	 (104)
f	

f	
c 1

From equations (103) and (86) it follows that

Thus inserting equation (105) into the expression for E f (T + &T)-Ef(T)

one obtains to the first order in &T

af E f (1 -^G) 
2&T

IT
	 (106)

where G = Ei/Ef.

Consider now the expression for the resolving power R(m) given

by equation (76). Combining equations (76) and (105) yields

Ef(1 -^)
R(m) =	 ,	 (107)

hence letting E =[ E f,m , the width of a mass peak at mass m,

R(m) = 2 
A

'T	 (108)
M

Similarly insertion of equation (105) into the expression for R(m,DE d

given by equation (77) yields

R(m,LEd	 R(m)	
LE .
	 (109)

1 + R(m) -	 1
EiEf(1-T)

i
Note here that R(m,LE i) is determined entirely by the instrument e.g.

E  and E  are determined by EEA and source condition respectively,

while E is determined by the energy resolution , of the EEA.

The experimental resolving power ReXp (m) may be obtained from

the equation .	 y
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R	 (m)	 2 r 	
1 

0.5
(110)

exP	 [E,-r

where AT is measured at half-height of the mass peak T(m).

Two accelerating field CMMA's were constructed. The first

instrument combined a 2.5 cm long impulsive field region with the

cylindrical EEA described in section 11,3. The second combines an

impulsive field region of the same length but having an arc-shaped

cross section with the spherical EEA also described in section 11,3.

The ions were collected at the exit slit of the EEA by a Faraday cup 17

connected to an electrometer. The spectra were recorded by a Moseley

model 2-D X-Y recorder. The time duration T of the pulse voltage Vc(t)

varied from 0.6 µsec to 2.6 µsec and E  was set between 50 and 100 eV

while E  was 20 eV. These parameters insured that the mass range of

the mass analyzer included the alkali metals from Na to Cs. Li was

excluded, since the pulse generator went unstable for T less than 0.6

µ sec. In Fig. (16) ReXp (m) is compared to R(m,a i) . Curves marked

A,A' are R(m,&E i) and ReXp (m) respectively for the CMMA using the

cylindrical EEA, while the curves marked B and B' are those for the

CMMA with the spherical EEA. The spectrum of the alkali metals

obtained with the CMMA using the cylindrical EEA is shown in Fig. (17).

Having determined the resolving power of the accelerating field

CMMA, there remains the problem of arriving at an estimate of the
AL

transmission efficiency of the CMMA. Let the transmission efficiency

Ti be defined as the ratio of the collector current I c (m) of ions having

mass m and charge a to the ion current 1 o (m) of the same ions incident

upon the CMMA, thus

i-1-

r



51

A,A'	 BIB'
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Fig. 16 R(m,&E i) and ReXp (m) for the

Accelerating Field CMMA
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0.6 µsec
	

2.6 pser,	
r

Na

K

Cs

The vertical shift in the
base line is proportional
to the sum of all partial
currents Ic (m) preceding

the mass peak being
recorded.

Vert Axis: 2 x 10-12A/cm

Horiz Axis: l cm = 0.18
µsee of pulse width K

Rb

Fig. 17 Mass Spectrum of Alkali Metals Obtained
with Accelerating Field CMN,A
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Ic(m)
Io
---(M)
	 (111)

in order to simplify the derivation, assume that the ions are mono-

energetic having energy E i, and that the ion current is perfectly

collimated - the ion beam incident upon the CMMA having a cross

section A. Thus for an ungated accelerating field CILIA, the charge

density p (m) inside the impulsive field region will be

r

Io(m)
p (m) = A ^2Ei .

(112)

In Fig. ( 10) let the z-axis be along the axis of symmetry of the mass

analyzer, and let z = 0 be the coordinate of grid ( 1). Consider now

an ion at z	 zc the instant that Vc(t) is turned on. Assume that

after T seconds the ion just passes grid (2). Let z IT be the distance

through which the ion accelerated

1 We 2
2E i

zti 2 Td + m 
x (113)

where We = eV c and d is the distance between grids(1) and (2). Hence

zc = d - z^ .
	 (114)

It follows from equation (114) that all ions located at z > z  lea^ie

the impulsive field before the pulse is over. Consequently these ions

are lost. The usable fraction of ions are thus contained within the

volume for which z < z , and the number N of ions that receive the

required impulsive energy will be

N	 P(M) F(d-z,^)
	

(115)

where F is the cross-sectional area of grids (1) and (2). Let a be
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the cross-sectional area of the entrance slit of the energy analyzer

(in this case the EEA); then the number n of ions entering the energy

analyzer will be

Further if 100 percent transmission through the energy analyzer is

assumed, the collector current T c (m) is

Ic (m) = e u ^)c 	 (117)

where Uc is the pulse repetition frequency. Finally the efficiency n

may be derived from equations (111) through (117) to obtain

	

7)A (d	 z^) ^c 
4r 2E.	 (11E3)

It is apparent that r, given by equation (11$), is an upper limit to the

transmission efficiency obtainable experimentally, since usually the

incident ions are not monoenergetic so that the ions emerging from the

r

impulsive field have an energy distribution f(E i ,E c) about- E f . if the

	energy band width of the EEA is 
	

centered about the final, ion energy

E f then only those ions will be collected whose energies lie within the

interval (E f ± s). Note that n is a function of the ion mass. This

fact was already noted when the two modes of operating the accelerating

field CMMA were compared: For the case in which T = K 'F (d - z T ) is

independent of m, so that only the m dependence remains in equation (118).

The calculated transmission efficiency of the accelerating field

CMMA, evaluated experimentally, turned out to be 9 x 10 -3 for mass 133,

other parameters having been listed previously. From the experimental

data ^ was found to be about 4 x W
-3 4 

The agreement is reasonable;
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the factor of two could well be accounted for by the energy spread of

the ions emerging from the impulsive field.

The high pressure limit of a mass analyzer is determined by the

total flight path and the electric field strength in any part of the

instrument. The ion flight path is required to be smaller than the

mean free path length of the L)ns in the mass analyzer, while the

maximum field strength sets an upper limit to the pressure above which

there exists the danger of field ionization of the background gases.

The accelerating field CMMq 's evaluated were able to operate at

pressures of ca. 7 x 10 -4 Torr without suffering a significant loss

of either sensitivity or resolving power. Since the operating voltages

were reasonably low, there was no danger of breakdown at those

pressures. The ability of the C.,,LHA to operate successfully at

pressures up to a micron makes it useful as a partial pressure monitor.

In the next section other uses of the CMMA will be discussed.

5. Possible Uses for the CMMA

It has been shown in sections 111,3 and 111,4 that the CMMA may

be characterized by: compactness, high sensitivity, simplicity of

operation, but low resolving power and a high sensitivity to the

initial ion energy spread. Consequently the mass analyzer is useful

in any mass analysis program in which a high degree of reliability is

required, but the resolving power is not critical. One such program

is rocket-borne mass analysis of the lower E and upper D region of the

ionosphere. In these regions the pressure varies from 10 -2 to 10-5

Torr while the thermal energy spread of the ions is no greater than

r
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0.1 eV. With this energy spread one may, according to equation (109),

anticipate a resolving power of about 20, which is quite adequate for

the analysis of the ion species present in these regions. Other pro-

grams may include monitoring of partial pressures within vacuum

systems, leak detection, and the observation of chemical reactions by

the method of "finger print" spectra.

This study has derived and verified experimentally the equations

governing the operation of the constant-momentum mass analyzer.

Further work on the CMMA is now needed in order to verify the limits of

R(m,AE i) and j as both the physical dimensions and the operating

voltages become large. Such an investigation would be helpful in

arriving at the optimum operating parameters of the mass: analyzer,

r

f

I
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IV. CONCLUSION

Ions traversing an impulsive electric field region gain or lose

an impulsive momentum p  given by equation (1). This momentum p  is

dependent upon the initial energy E i and the initial position r i of

the ion_ within a cylindrical or spherical impulsive field at the

instant the field is turned on. In a linear, planar impulsive field

PC does not depend upon E  or ri . A planar accelerating impulsive

field broadens any initial ion energy spread QEi of ions in a beam

traversing the field, while a planar decelerating field decreases the

width GEi . The latter field tends to defocus the ion beam traversing

it.

The energy analyzer based on the simple retarding field requires

a strongly collimated ion beam incident upon it and a small inter-

electrode dimension d (equation 45), The simple retarding field in

combination with an energy band-pass "Ater has found application as

an ion energy analyzer in order to measure ion energies E' in the

interval E = eV r L. E' < Eu, where bath E and E  are determined by the

potentials applied to the retarding field and the band-pass filter,

and the parameter 0 as shown in Fig. (4). Ion current losses within

the energy analyzer are minimized when 0 = 450.

Experimental evidence suggests that very sensitive, compact

cylindrical and spherical electrostatic energy analyzers can be

constructed for energy analysis of ions emerging from an impulsive

field. The energy analyzers are shown in Figs. (6) and (7). Operating

parameters of the above analyzers are tabulated in Fig. (9)
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Constant momentum mass analyzers, CMMA's, using a linear,

planar accelerating or decelerating impulsive field and an energy

analyzer have been shown to achieve a mass resolving power between 10

and 20 for ion energy spreads of widths between 1 and 2 eV. Decel-

erating field CMMA's require ion energy analyzers having a high

resolution at very low energies. The deflection field CMMA shown in

Fig. (14) meets this requirement by only allowing ions having energies

located closely about the energy k2 m associated with the axial

component p^ of the initial ion momentum to reach the collector.

CMMA's consisting of an accelerating impulsive field having a pulse

duration T given by T = K ,4—M were found to have an experimental

resolving power in close agreement with the predicted resolving power

given by equation (109). The above mode of operation has the

additional advantage that the current efficiency n is only weakly

dependent upon the mass of the ions,

The three distinguishing characteristics of the CMMA (its

simplicity, high sensitivity, but low resolving power) suggest its

use in mass analysis programs outlined in section 111,6.
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APPENDIX

Swept Pulse Width Pulse Generator for Impulsive Mass Analyzers

Fig. 18 shows the circuit diagram of a pulse generator capable

of delivering a 100 V square pulse into a capacitive load of about 100

pf at a pulse repetition frequency of 60 KHz. The time duration T of

the pulse may be controlled by a ramp function voltage V r (t) internally

generated. The internal ramp function generator also drives an X-Y

recorder at a rate which is adjustable from a sweep time of 3 seconds

to approximately 10 seconds by varying the integrating capacitor Cr on

the ramp function generator from 0.5 µf to approximately 1.0 µf. The

pulse repetition frequency %)
c
 is fixed by the astable multivibrator

Q l and Q21 the master clock of the pulse generator. The output pulse

from the clock is differentiated and clipped to obtain a negative

going spike. This spike is inverted and amplified by the transistor

Q3. The positive spike from the collector of Q 3 triggers a monostable

multivibrator consisting of Q 4 and Q5 the output pulse width of which

is linearly dependent upon the voltage Vr (t) applied to the base of

Q4. In order to reduce the risetime of the input pulse of the high

voltage driver Q61 the clock pulse is added to the output pulse of

the multivibr%itor at the base of Q 6 . The resultant pulse rises more

sharply than could be obtained by using the output pulse from the

V,
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driver Q6 is applied to the final pulse amplifier Q 7 and Q8 . These

two transistors are connected in series in order to obtain a resultant

pulse height approximately twice that of one transistor alone. The

positive going output pulse from the final amplifier has an amplitude 	 3

of 100 V, a risetime of 100 nsec and a decay time of about 300 nsec

when the generator is connected to a load having a distributed

capacitance of approximately 100 pf.

The integrated circuits Q9 and Q 10 together furnish the ramp

voltage Vr (t) . Q10 is used as a Schmitttrigger, while Q,q functions

as an integrator of the output voltage from Q 10 . This voltage is

applied to Q4 and an emitter follower amplifier Q11 which provides

the necessary impedance matching for the X-Y recorder. Finally R 

and R  set the upper and lower limits of V r (t) which in turn deter-

mines the range of T. Typically R  and w are adjusted to give T a

range from 0.7 µsec to 3 µsec. There is a slight interaction between

adjustments.

I



Pr

62

BIBLIOGRAPHY

1. W. M. Brubaker, Proceedings of the ASTM -E14 Conference, Dallas,
Texas, May 1966, p. 528,

2. H. M. Luther, B. R. F. Kendall, Proceedings of the ASTM-E14
Conference, Dallas, Texas, May 1966, pp. 369-372,

3. H. M. Luther, Scientific Report No. 283, Ionosphere Reseax.^h
Laboratory, The Pennsylvania State University, Nov. 1966.

4, B. R. F. Kendall, H. M. Luther, Am. J. Phys. 34, 580, (1966).

5. I. E. Dayton, et al. Boeing Scientific Laboratory's Report No.
DI-82-0508. Clearinghouse for Federal Scientific and Technical
Information;Report No. A.D. 634-235.

6. V. E. Cosslett, Electron Optics, Oxford, Clarendon Press, 1950.

7. H. Wollnick, Focusing of Charged Particles, A. Septier ed..
Vol. II, p. 163 ff. Academic Press, New York, London, (1967).

8. H. Ewald, H. Liebl, Z. Naturforschg. 10a, 872-876, (1953) .

9. H. Ewald, H. Liebl, Z. Naturforschg. 12a, 28, (1956) .

10. J. A. Hippie, U. S: Patent 2,764,691 Filed August 3, 1953.

11. V. B. F iks, Soviet Phys. (Doklady) 1, 89, (1956) .

12. W. M. Brubaker, U. S. Patent 2, 157, 985 Filed June 5, 1958.

13. M. M. Wolff, W. E. Stephens, Rev. Sci. Inst. 24, 616-617, (1953) .

14. B. R. F. Kendall, Bulletin of the Radio and Electrical Engineering
Division, National Research Council of Canada 9, No. 2, 22, (1959).

15. B. R. F. Kendall, Bulletin of the Radio and Electrical Engineering
Division, National Research Council of Canada 10, No. 1, 25,
(1960) .	 $^

16. J. Bracher, Zeit. Angew. Phys. 19, 347, (1965). `

17. W. R. Miller, N. N. Axelrod, Rev. Sci. Inst. 37, 1996, (1966).


	GeneralDisclaimer.pdf
	0020A03.pdf
	0020A04.pdf
	0020A05.pdf
	0020A06.pdf
	0020A07.pdf
	0020A08.pdf
	0020A09.pdf
	0020A10.pdf
	0020A11.pdf
	0020A12.pdf
	0020B01.pdf
	0020B02.pdf
	0020B03.pdf
	0020B04.pdf
	0020B05.pdf
	0020B06.pdf
	0020B07.pdf
	0020B08.pdf
	0020B09.pdf
	0020B10.pdf
	0020B11.pdf
	0020B12.pdf
	0020C01.pdf
	0020C02.pdf
	0020C03.pdf
	0020C04.pdf
	0020C05.pdf
	0020C06.pdf
	0020C07.pdf
	0020C08.pdf
	0020C09.pdf
	0020C10.pdf
	0020C11.pdf
	0020C12.pdf
	0020D01.pdf
	0020D02.pdf
	0020D03.pdf
	0020D04.pdf
	0020D05.pdf
	0020D06.pdf
	0020D07.pdf
	0020D08.pdf
	0020D09.pdf
	0020D10.pdf
	0020D11.pdf
	0020D12.pdf
	0020E01.pdf
	0020E02.pdf
	0020E03.pdf
	0020E04.pdf
	0020E05.pdf
	0020E06.pdf
	0020E07.pdf
	0020E08.pdf
	0020E09.pdf
	0020E10.pdf
	0020E11.pdf
	0020E12.pdf
	0021A02.pdf
	0021A03.pdf
	0021A04.pdf
	0021A05.pdf
	0021A06.pdf
	0021A07.pdf
	0021A08.pdf
	0021A09.pdf

